~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/RCU/listRCU.rst

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /Documentation/RCU/listRCU.rst (Architecture sparc64) and /Documentation/RCU/listRCU.rst (Architecture mips)


  1 .. _list_rcu_doc:                                   1 .. _list_rcu_doc:
  2                                                     2 
  3 Using RCU to Protect Read-Mostly Linked Lists       3 Using RCU to Protect Read-Mostly Linked Lists
  4 =============================================       4 =============================================
  5                                                     5 
  6 One of the most common uses of RCU is protecti      6 One of the most common uses of RCU is protecting read-mostly linked lists
  7 (``struct list_head`` in list.h).  One big adv      7 (``struct list_head`` in list.h).  One big advantage of this approach is
  8 that all of the required memory ordering is pr      8 that all of the required memory ordering is provided by the list macros.
  9 This document describes several list-based RCU      9 This document describes several list-based RCU use cases.
 10                                                    10 
 11 When iterating a list while holding the rcu_re     11 When iterating a list while holding the rcu_read_lock(), writers may
 12 modify the list.  The reader is guaranteed to      12 modify the list.  The reader is guaranteed to see all of the elements
 13 which were added to the list before they acqui     13 which were added to the list before they acquired the rcu_read_lock()
 14 and are still on the list when they drop the r     14 and are still on the list when they drop the rcu_read_unlock().
 15 Elements which are added to, or removed from t     15 Elements which are added to, or removed from the list may or may not
 16 be seen.  If the writer calls list_replace_rcu     16 be seen.  If the writer calls list_replace_rcu(), the reader may see
 17 either the old element or the new element; the     17 either the old element or the new element; they will not see both,
 18 nor will they see neither.                         18 nor will they see neither.
 19                                                    19 
 20                                                    20 
 21 Example 1: Read-mostly list: Deferred Destruct     21 Example 1: Read-mostly list: Deferred Destruction
 22 ----------------------------------------------     22 -------------------------------------------------
 23                                                    23 
 24 A widely used usecase for RCU lists in the ker     24 A widely used usecase for RCU lists in the kernel is lockless iteration over
 25 all processes in the system. ``task_struct::ta     25 all processes in the system. ``task_struct::tasks`` represents the list node that
 26 links all the processes. The list can be trave     26 links all the processes. The list can be traversed in parallel to any list
 27 additions or removals.                             27 additions or removals.
 28                                                    28 
 29 The traversal of the list is done using ``for_     29 The traversal of the list is done using ``for_each_process()`` which is defined
 30 by the 2 macros::                                  30 by the 2 macros::
 31                                                    31 
 32         #define next_task(p) \                     32         #define next_task(p) \
 33                 list_entry_rcu((p)->tasks.next     33                 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
 34                                                    34 
 35         #define for_each_process(p) \              35         #define for_each_process(p) \
 36                 for (p = &init_task ; (p = nex     36                 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
 37                                                    37 
 38 The code traversing the list of all processes      38 The code traversing the list of all processes typically looks like::
 39                                                    39 
 40         rcu_read_lock();                           40         rcu_read_lock();
 41         for_each_process(p) {                      41         for_each_process(p) {
 42                 /* Do something with p */          42                 /* Do something with p */
 43         }                                          43         }
 44         rcu_read_unlock();                         44         rcu_read_unlock();
 45                                                    45 
 46 The simplified and heavily inlined code for re     46 The simplified and heavily inlined code for removing a process from a
 47 task list is::                                     47 task list is::
 48                                                    48 
 49         void release_task(struct task_struct *     49         void release_task(struct task_struct *p)
 50         {                                          50         {
 51                 write_lock(&tasklist_lock);        51                 write_lock(&tasklist_lock);
 52                 list_del_rcu(&p->tasks);           52                 list_del_rcu(&p->tasks);
 53                 write_unlock(&tasklist_lock);      53                 write_unlock(&tasklist_lock);
 54                 call_rcu(&p->rcu, delayed_put_     54                 call_rcu(&p->rcu, delayed_put_task_struct);
 55         }                                          55         }
 56                                                    56 
 57 When a process exits, ``release_task()`` calls     57 When a process exits, ``release_task()`` calls ``list_del_rcu(&p->tasks)``
 58 via __exit_signal() and __unhash_process() und     58 via __exit_signal() and __unhash_process() under ``tasklist_lock``
 59 writer lock protection.  The list_del_rcu() in     59 writer lock protection.  The list_del_rcu() invocation removes
 60 the task from the list of all tasks. The ``tas     60 the task from the list of all tasks. The ``tasklist_lock``
 61 prevents concurrent list additions/removals fr     61 prevents concurrent list additions/removals from corrupting the
 62 list. Readers using ``for_each_process()`` are     62 list. Readers using ``for_each_process()`` are not protected with the
 63 ``tasklist_lock``. To prevent readers from not     63 ``tasklist_lock``. To prevent readers from noticing changes in the list
 64 pointers, the ``task_struct`` object is freed      64 pointers, the ``task_struct`` object is freed only after one or more
 65 grace periods elapse, with the help of call_rc     65 grace periods elapse, with the help of call_rcu(), which is invoked via
 66 put_task_struct_rcu_user(). This deferring of      66 put_task_struct_rcu_user(). This deferring of destruction ensures that
 67 any readers traversing the list will see valid     67 any readers traversing the list will see valid ``p->tasks.next`` pointers
 68 and deletion/freeing can happen in parallel wi     68 and deletion/freeing can happen in parallel with traversal of the list.
 69 This pattern is also called an **existence loc     69 This pattern is also called an **existence lock**, since RCU refrains
 70 from invoking the delayed_put_task_struct() ca     70 from invoking the delayed_put_task_struct() callback function until
 71 all existing readers finish, which guarantees      71 all existing readers finish, which guarantees that the ``task_struct``
 72 object in question will remain in existence un     72 object in question will remain in existence until after the completion
 73 of all RCU readers that might possibly have a      73 of all RCU readers that might possibly have a reference to that object.
 74                                                    74 
 75                                                    75 
 76 Example 2: Read-Side Action Taken Outside of L     76 Example 2: Read-Side Action Taken Outside of Lock: No In-Place Updates
 77 ----------------------------------------------     77 ----------------------------------------------------------------------
 78                                                    78 
 79 Some reader-writer locking use cases compute a     79 Some reader-writer locking use cases compute a value while holding
 80 the read-side lock, but continue to use that v     80 the read-side lock, but continue to use that value after that lock is
 81 released.  These use cases are often good cand     81 released.  These use cases are often good candidates for conversion
 82 to RCU.  One prominent example involves networ     82 to RCU.  One prominent example involves network packet routing.
 83 Because the packet-routing data tracks the sta     83 Because the packet-routing data tracks the state of equipment outside
 84 of the computer, it will at times contain stal     84 of the computer, it will at times contain stale data.  Therefore, once
 85 the route has been computed, there is no need      85 the route has been computed, there is no need to hold the routing table
 86 static during transmission of the packet.  Aft     86 static during transmission of the packet.  After all, you can hold the
 87 routing table static all you want, but that wo     87 routing table static all you want, but that won't keep the external
 88 Internet from changing, and it is the state of     88 Internet from changing, and it is the state of the external Internet
 89 that really matters.  In addition, routing ent     89 that really matters.  In addition, routing entries are typically added
 90 or deleted, rather than being modified in plac     90 or deleted, rather than being modified in place.  This is a rare example
 91 of the finite speed of light and the non-zero      91 of the finite speed of light and the non-zero size of atoms actually
 92 helping make synchronization be lighter weight     92 helping make synchronization be lighter weight.
 93                                                    93 
 94 A straightforward example of this type of RCU      94 A straightforward example of this type of RCU use case may be found in
 95 the system-call auditing support.  For example     95 the system-call auditing support.  For example, a reader-writer locked
 96 implementation of ``audit_filter_task()`` migh     96 implementation of ``audit_filter_task()`` might be as follows::
 97                                                    97 
 98         static enum audit_state audit_filter_t     98         static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 99         {                                          99         {
100                 struct audit_entry *e;            100                 struct audit_entry *e;
101                 enum audit_state   state;         101                 enum audit_state   state;
102                                                   102 
103                 read_lock(&auditsc_lock);         103                 read_lock(&auditsc_lock);
104                 /* Note: audit_filter_mutex he    104                 /* Note: audit_filter_mutex held by caller. */
105                 list_for_each_entry(e, &audit_    105                 list_for_each_entry(e, &audit_tsklist, list) {
106                         if (audit_filter_rules    106                         if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
107                                 if (state == A    107                                 if (state == AUDIT_STATE_RECORD)
108                                         *key =    108                                         *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
109                                 read_unlock(&a    109                                 read_unlock(&auditsc_lock);
110                                 return state;     110                                 return state;
111                         }                         111                         }
112                 }                                 112                 }
113                 read_unlock(&auditsc_lock);       113                 read_unlock(&auditsc_lock);
114                 return AUDIT_BUILD_CONTEXT;       114                 return AUDIT_BUILD_CONTEXT;
115         }                                         115         }
116                                                   116 
117 Here the list is searched under the lock, but     117 Here the list is searched under the lock, but the lock is dropped before
118 the corresponding value is returned.  By the t    118 the corresponding value is returned.  By the time that this value is acted
119 on, the list may well have been modified.  Thi    119 on, the list may well have been modified.  This makes sense, since if
120 you are turning auditing off, it is OK to audi    120 you are turning auditing off, it is OK to audit a few extra system calls.
121                                                   121 
122 This means that RCU can be easily applied to t    122 This means that RCU can be easily applied to the read side, as follows::
123                                                   123 
124         static enum audit_state audit_filter_t    124         static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
125         {                                         125         {
126                 struct audit_entry *e;            126                 struct audit_entry *e;
127                 enum audit_state   state;         127                 enum audit_state   state;
128                                                   128 
129                 rcu_read_lock();                  129                 rcu_read_lock();
130                 /* Note: audit_filter_mutex he    130                 /* Note: audit_filter_mutex held by caller. */
131                 list_for_each_entry_rcu(e, &au    131                 list_for_each_entry_rcu(e, &audit_tsklist, list) {
132                         if (audit_filter_rules    132                         if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
133                                 if (state == A    133                                 if (state == AUDIT_STATE_RECORD)
134                                         *key =    134                                         *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
135                                 rcu_read_unloc    135                                 rcu_read_unlock();
136                                 return state;     136                                 return state;
137                         }                         137                         }
138                 }                                 138                 }
139                 rcu_read_unlock();                139                 rcu_read_unlock();
140                 return AUDIT_BUILD_CONTEXT;       140                 return AUDIT_BUILD_CONTEXT;
141         }                                         141         }
142                                                   142 
143 The read_lock() and read_unlock() calls have b    143 The read_lock() and read_unlock() calls have become rcu_read_lock()
144 and rcu_read_unlock(), respectively, and the l    144 and rcu_read_unlock(), respectively, and the list_for_each_entry()
145 has become list_for_each_entry_rcu().  The **_    145 has become list_for_each_entry_rcu().  The **_rcu()** list-traversal
146 primitives add READ_ONCE() and diagnostic chec    146 primitives add READ_ONCE() and diagnostic checks for incorrect use
147 outside of an RCU read-side critical section.     147 outside of an RCU read-side critical section.
148                                                   148 
149 The changes to the update side are also straig    149 The changes to the update side are also straightforward. A reader-writer lock
150 might be used as follows for deletion and inse    150 might be used as follows for deletion and insertion in these simplified
151 versions of audit_del_rule() and audit_add_rul    151 versions of audit_del_rule() and audit_add_rule()::
152                                                   152 
153         static inline int audit_del_rule(struc    153         static inline int audit_del_rule(struct audit_rule *rule,
154                                          struc    154                                          struct list_head *list)
155         {                                         155         {
156                 struct audit_entry *e;            156                 struct audit_entry *e;
157                                                   157 
158                 write_lock(&auditsc_lock);        158                 write_lock(&auditsc_lock);
159                 list_for_each_entry(e, list, l    159                 list_for_each_entry(e, list, list) {
160                         if (!audit_compare_rul    160                         if (!audit_compare_rule(rule, &e->rule)) {
161                                 list_del(&e->l    161                                 list_del(&e->list);
162                                 write_unlock(&    162                                 write_unlock(&auditsc_lock);
163                                 return 0;         163                                 return 0;
164                         }                         164                         }
165                 }                                 165                 }
166                 write_unlock(&auditsc_lock);      166                 write_unlock(&auditsc_lock);
167                 return -EFAULT;         /* No     167                 return -EFAULT;         /* No matching rule */
168         }                                         168         }
169                                                   169 
170         static inline int audit_add_rule(struc    170         static inline int audit_add_rule(struct audit_entry *entry,
171                                          struc    171                                          struct list_head *list)
172         {                                         172         {
173                 write_lock(&auditsc_lock);        173                 write_lock(&auditsc_lock);
174                 if (entry->rule.flags & AUDIT_    174                 if (entry->rule.flags & AUDIT_PREPEND) {
175                         entry->rule.flags &= ~    175                         entry->rule.flags &= ~AUDIT_PREPEND;
176                         list_add(&entry->list,    176                         list_add(&entry->list, list);
177                 } else {                          177                 } else {
178                         list_add_tail(&entry->    178                         list_add_tail(&entry->list, list);
179                 }                                 179                 }
180                 write_unlock(&auditsc_lock);      180                 write_unlock(&auditsc_lock);
181                 return 0;                         181                 return 0;
182         }                                         182         }
183                                                   183 
184 Following are the RCU equivalents for these tw    184 Following are the RCU equivalents for these two functions::
185                                                   185 
186         static inline int audit_del_rule(struc    186         static inline int audit_del_rule(struct audit_rule *rule,
187                                          struc    187                                          struct list_head *list)
188         {                                         188         {
189                 struct audit_entry *e;            189                 struct audit_entry *e;
190                                                   190 
191                 /* No need to use the _rcu ite    191                 /* No need to use the _rcu iterator here, since this is the only
192                  * deletion routine. */           192                  * deletion routine. */
193                 list_for_each_entry(e, list, l    193                 list_for_each_entry(e, list, list) {
194                         if (!audit_compare_rul    194                         if (!audit_compare_rule(rule, &e->rule)) {
195                                 list_del_rcu(&    195                                 list_del_rcu(&e->list);
196                                 call_rcu(&e->r    196                                 call_rcu(&e->rcu, audit_free_rule);
197                                 return 0;         197                                 return 0;
198                         }                         198                         }
199                 }                                 199                 }
200                 return -EFAULT;         /* No     200                 return -EFAULT;         /* No matching rule */
201         }                                         201         }
202                                                   202 
203         static inline int audit_add_rule(struc    203         static inline int audit_add_rule(struct audit_entry *entry,
204                                          struc    204                                          struct list_head *list)
205         {                                         205         {
206                 if (entry->rule.flags & AUDIT_    206                 if (entry->rule.flags & AUDIT_PREPEND) {
207                         entry->rule.flags &= ~    207                         entry->rule.flags &= ~AUDIT_PREPEND;
208                         list_add_rcu(&entry->l    208                         list_add_rcu(&entry->list, list);
209                 } else {                          209                 } else {
210                         list_add_tail_rcu(&ent    210                         list_add_tail_rcu(&entry->list, list);
211                 }                                 211                 }
212                 return 0;                         212                 return 0;
213         }                                         213         }
214                                                   214 
215 Normally, the write_lock() and write_unlock()     215 Normally, the write_lock() and write_unlock() would be replaced by a
216 spin_lock() and a spin_unlock(). But in this c    216 spin_lock() and a spin_unlock(). But in this case, all callers hold
217 ``audit_filter_mutex``, so no additional locki    217 ``audit_filter_mutex``, so no additional locking is required. The
218 auditsc_lock can therefore be eliminated, sinc    218 auditsc_lock can therefore be eliminated, since use of RCU eliminates the
219 need for writers to exclude readers.              219 need for writers to exclude readers.
220                                                   220 
221 The list_del(), list_add(), and list_add_tail(    221 The list_del(), list_add(), and list_add_tail() primitives have been
222 replaced by list_del_rcu(), list_add_rcu(), an    222 replaced by list_del_rcu(), list_add_rcu(), and list_add_tail_rcu().
223 The **_rcu()** list-manipulation primitives ad    223 The **_rcu()** list-manipulation primitives add memory barriers that are
224 needed on weakly ordered CPUs.  The list_del_r    224 needed on weakly ordered CPUs.  The list_del_rcu() primitive omits the
225 pointer poisoning debug-assist code that would    225 pointer poisoning debug-assist code that would otherwise cause concurrent
226 readers to fail spectacularly.                    226 readers to fail spectacularly.
227                                                   227 
228 So, when readers can tolerate stale data and w    228 So, when readers can tolerate stale data and when entries are either added or
229 deleted, without in-place modification, it is     229 deleted, without in-place modification, it is very easy to use RCU!
230                                                   230 
231                                                   231 
232 Example 3: Handling In-Place Updates              232 Example 3: Handling In-Place Updates
233 ------------------------------------              233 ------------------------------------
234                                                   234 
235 The system-call auditing code does not update     235 The system-call auditing code does not update auditing rules in place.  However,
236 if it did, the reader-writer-locked code to do    236 if it did, the reader-writer-locked code to do so might look as follows
237 (assuming only ``field_count`` is updated, oth    237 (assuming only ``field_count`` is updated, otherwise, the added fields would
238 need to be filled in)::                           238 need to be filled in)::
239                                                   239 
240         static inline int audit_upd_rule(struc    240         static inline int audit_upd_rule(struct audit_rule *rule,
241                                          struc    241                                          struct list_head *list,
242                                          __u32    242                                          __u32 newaction,
243                                          __u32    243                                          __u32 newfield_count)
244         {                                         244         {
245                 struct audit_entry *e;            245                 struct audit_entry *e;
246                 struct audit_entry *ne;           246                 struct audit_entry *ne;
247                                                   247 
248                 write_lock(&auditsc_lock);        248                 write_lock(&auditsc_lock);
249                 /* Note: audit_filter_mutex he    249                 /* Note: audit_filter_mutex held by caller. */
250                 list_for_each_entry(e, list, l    250                 list_for_each_entry(e, list, list) {
251                         if (!audit_compare_rul    251                         if (!audit_compare_rule(rule, &e->rule)) {
252                                 e->rule.action    252                                 e->rule.action = newaction;
253                                 e->rule.field_    253                                 e->rule.field_count = newfield_count;
254                                 write_unlock(&    254                                 write_unlock(&auditsc_lock);
255                                 return 0;         255                                 return 0;
256                         }                         256                         }
257                 }                                 257                 }
258                 write_unlock(&auditsc_lock);      258                 write_unlock(&auditsc_lock);
259                 return -EFAULT;         /* No     259                 return -EFAULT;         /* No matching rule */
260         }                                         260         }
261                                                   261 
262 The RCU version creates a copy, updates the co    262 The RCU version creates a copy, updates the copy, then replaces the old
263 entry with the newly updated entry.  This sequ    263 entry with the newly updated entry.  This sequence of actions, allowing
264 concurrent reads while making a copy to perfor    264 concurrent reads while making a copy to perform an update, is what gives
265 RCU (*read-copy update*) its name.                265 RCU (*read-copy update*) its name.
266                                                   266 
267 The RCU version of audit_upd_rule() is as foll    267 The RCU version of audit_upd_rule() is as follows::
268                                                   268 
269         static inline int audit_upd_rule(struc    269         static inline int audit_upd_rule(struct audit_rule *rule,
270                                          struc    270                                          struct list_head *list,
271                                          __u32    271                                          __u32 newaction,
272                                          __u32    272                                          __u32 newfield_count)
273         {                                         273         {
274                 struct audit_entry *e;            274                 struct audit_entry *e;
275                 struct audit_entry *ne;           275                 struct audit_entry *ne;
276                                                   276 
277                 list_for_each_entry(e, list, l    277                 list_for_each_entry(e, list, list) {
278                         if (!audit_compare_rul    278                         if (!audit_compare_rule(rule, &e->rule)) {
279                                 ne = kmalloc(s    279                                 ne = kmalloc(sizeof(*entry), GFP_ATOMIC);
280                                 if (ne == NULL    280                                 if (ne == NULL)
281                                         return    281                                         return -ENOMEM;
282                                 audit_copy_rul    282                                 audit_copy_rule(&ne->rule, &e->rule);
283                                 ne->rule.actio    283                                 ne->rule.action = newaction;
284                                 ne->rule.field    284                                 ne->rule.field_count = newfield_count;
285                                 list_replace_r    285                                 list_replace_rcu(&e->list, &ne->list);
286                                 call_rcu(&e->r    286                                 call_rcu(&e->rcu, audit_free_rule);
287                                 return 0;         287                                 return 0;
288                         }                         288                         }
289                 }                                 289                 }
290                 return -EFAULT;         /* No     290                 return -EFAULT;         /* No matching rule */
291         }                                         291         }
292                                                   292 
293 Again, this assumes that the caller holds ``au    293 Again, this assumes that the caller holds ``audit_filter_mutex``.  Normally, the
294 writer lock would become a spinlock in this so    294 writer lock would become a spinlock in this sort of code.
295                                                   295 
296 The update_lsm_rule() does something very simi    296 The update_lsm_rule() does something very similar, for those who would
297 prefer to look at real Linux-kernel code.         297 prefer to look at real Linux-kernel code.
298                                                   298 
299 Another use of this pattern can be found in th    299 Another use of this pattern can be found in the openswitch driver's *connection
300 tracking table* code in ``ct_limit_set()``.  T    300 tracking table* code in ``ct_limit_set()``.  The table holds connection tracking
301 entries and has a limit on the maximum entries    301 entries and has a limit on the maximum entries.  There is one such table
302 per-zone and hence one *limit* per zone.  The     302 per-zone and hence one *limit* per zone.  The zones are mapped to their limits
303 through a hashtable using an RCU-managed hlist    303 through a hashtable using an RCU-managed hlist for the hash chains. When a new
304 limit is set, a new limit object is allocated     304 limit is set, a new limit object is allocated and ``ct_limit_set()`` is called
305 to replace the old limit object with the new o    305 to replace the old limit object with the new one using list_replace_rcu().
306 The old limit object is then freed after a gra    306 The old limit object is then freed after a grace period using kfree_rcu().
307                                                   307 
308                                                   308 
309 Example 4: Eliminating Stale Data                 309 Example 4: Eliminating Stale Data
310 ---------------------------------                 310 ---------------------------------
311                                                   311 
312 The auditing example above tolerates stale dat    312 The auditing example above tolerates stale data, as do most algorithms
313 that are tracking external state.  After all,     313 that are tracking external state.  After all, given there is a delay
314 from the time the external state changes befor    314 from the time the external state changes before Linux becomes aware
315 of the change, and so as noted earlier, a smal    315 of the change, and so as noted earlier, a small quantity of additional
316 RCU-induced staleness is generally not a probl    316 RCU-induced staleness is generally not a problem.
317                                                   317 
318 However, there are many examples where stale d    318 However, there are many examples where stale data cannot be tolerated.
319 One example in the Linux kernel is the System     319 One example in the Linux kernel is the System V IPC (see the shm_lock()
320 function in ipc/shm.c).  This code checks a *d    320 function in ipc/shm.c).  This code checks a *deleted* flag under a
321 per-entry spinlock, and, if the *deleted* flag    321 per-entry spinlock, and, if the *deleted* flag is set, pretends that the
322 entry does not exist.  For this to be helpful,    322 entry does not exist.  For this to be helpful, the search function must
323 return holding the per-entry spinlock, as shm_    323 return holding the per-entry spinlock, as shm_lock() does in fact do.
324                                                   324 
325 .. _quick_quiz:                                   325 .. _quick_quiz:
326                                                   326 
327 Quick Quiz:                                       327 Quick Quiz:
328         For the deleted-flag technique to be h    328         For the deleted-flag technique to be helpful, why is it necessary
329         to hold the per-entry lock while retur    329         to hold the per-entry lock while returning from the search function?
330                                                   330 
331 :ref:`Answer to Quick Quiz <quick_quiz_answer>    331 :ref:`Answer to Quick Quiz <quick_quiz_answer>`
332                                                   332 
333 If the system-call audit module were to ever n    333 If the system-call audit module were to ever need to reject stale data, one way
334 to accomplish this would be to add a ``deleted    334 to accomplish this would be to add a ``deleted`` flag and a ``lock`` spinlock to the
335 ``audit_entry`` structure, and modify audit_fi    335 ``audit_entry`` structure, and modify audit_filter_task() as follows::
336                                                   336 
337         static enum audit_state audit_filter_t    337         static enum audit_state audit_filter_task(struct task_struct *tsk)
338         {                                         338         {
339                 struct audit_entry *e;            339                 struct audit_entry *e;
340                 enum audit_state   state;         340                 enum audit_state   state;
341                                                   341 
342                 rcu_read_lock();                  342                 rcu_read_lock();
343                 list_for_each_entry_rcu(e, &au    343                 list_for_each_entry_rcu(e, &audit_tsklist, list) {
344                         if (audit_filter_rules    344                         if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
345                                 spin_lock(&e->    345                                 spin_lock(&e->lock);
346                                 if (e->deleted    346                                 if (e->deleted) {
347                                         spin_u    347                                         spin_unlock(&e->lock);
348                                         rcu_re    348                                         rcu_read_unlock();
349                                         return    349                                         return AUDIT_BUILD_CONTEXT;
350                                 }                 350                                 }
351                                 rcu_read_unloc    351                                 rcu_read_unlock();
352                                 if (state == A    352                                 if (state == AUDIT_STATE_RECORD)
353                                         *key =    353                                         *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
354                                 return state;     354                                 return state;
355                         }                         355                         }
356                 }                                 356                 }
357                 rcu_read_unlock();                357                 rcu_read_unlock();
358                 return AUDIT_BUILD_CONTEXT;       358                 return AUDIT_BUILD_CONTEXT;
359         }                                         359         }
360                                                   360 
361 The ``audit_del_rule()`` function would need t    361 The ``audit_del_rule()`` function would need to set the ``deleted`` flag under the
362 spinlock as follows::                             362 spinlock as follows::
363                                                   363 
364         static inline int audit_del_rule(struc    364         static inline int audit_del_rule(struct audit_rule *rule,
365                                          struc    365                                          struct list_head *list)
366         {                                         366         {
367                 struct audit_entry *e;            367                 struct audit_entry *e;
368                                                   368 
369                 /* No need to use the _rcu ite    369                 /* No need to use the _rcu iterator here, since this
370                  * is the only deletion routin    370                  * is the only deletion routine. */
371                 list_for_each_entry(e, list, l    371                 list_for_each_entry(e, list, list) {
372                         if (!audit_compare_rul    372                         if (!audit_compare_rule(rule, &e->rule)) {
373                                 spin_lock(&e->    373                                 spin_lock(&e->lock);
374                                 list_del_rcu(&    374                                 list_del_rcu(&e->list);
375                                 e->deleted = 1    375                                 e->deleted = 1;
376                                 spin_unlock(&e    376                                 spin_unlock(&e->lock);
377                                 call_rcu(&e->r    377                                 call_rcu(&e->rcu, audit_free_rule);
378                                 return 0;         378                                 return 0;
379                         }                         379                         }
380                 }                                 380                 }
381                 return -EFAULT;         /* No     381                 return -EFAULT;         /* No matching rule */
382         }                                         382         }
383                                                   383 
384 This too assumes that the caller holds ``audit    384 This too assumes that the caller holds ``audit_filter_mutex``.
385                                                   385 
386 Note that this example assumes that entries ar    386 Note that this example assumes that entries are only added and deleted.
387 Additional mechanism is required to deal corre    387 Additional mechanism is required to deal correctly with the update-in-place
388 performed by audit_upd_rule().  For one thing,    388 performed by audit_upd_rule().  For one thing, audit_upd_rule() would
389 need to hold the locks of both the old ``audit    389 need to hold the locks of both the old ``audit_entry`` and its replacement
390 while executing the list_replace_rcu().           390 while executing the list_replace_rcu().
391                                                   391 
392                                                   392 
393 Example 5: Skipping Stale Objects                 393 Example 5: Skipping Stale Objects
394 ---------------------------------                 394 ---------------------------------
395                                                   395 
396 For some use cases, reader performance can be     396 For some use cases, reader performance can be improved by skipping
397 stale objects during read-side list traversal,    397 stale objects during read-side list traversal, where stale objects
398 are those that will be removed and destroyed a    398 are those that will be removed and destroyed after one or more grace
399 periods. One such example can be found in the     399 periods. One such example can be found in the timerfd subsystem. When a
400 ``CLOCK_REALTIME`` clock is reprogrammed (for     400 ``CLOCK_REALTIME`` clock is reprogrammed (for example due to setting
401 of the system time) then all programmed ``time    401 of the system time) then all programmed ``timerfds`` that depend on
402 this clock get triggered and processes waiting    402 this clock get triggered and processes waiting on them are awakened in
403 advance of their scheduled expiry. To facilita    403 advance of their scheduled expiry. To facilitate this, all such timers
404 are added to an RCU-managed ``cancel_list`` wh    404 are added to an RCU-managed ``cancel_list`` when they are setup in
405 ``timerfd_setup_cancel()``::                      405 ``timerfd_setup_cancel()``::
406                                                   406 
407         static void timerfd_setup_cancel(struc    407         static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags)
408         {                                         408         {
409                 spin_lock(&ctx->cancel_lock);     409                 spin_lock(&ctx->cancel_lock);
410                 if ((ctx->clockid == CLOCK_REA    410                 if ((ctx->clockid == CLOCK_REALTIME ||
411                      ctx->clockid == CLOCK_REA    411                      ctx->clockid == CLOCK_REALTIME_ALARM) &&
412                     (flags & TFD_TIMER_ABSTIME    412                     (flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_SET)) {
413                         if (!ctx->might_cancel    413                         if (!ctx->might_cancel) {
414                                 ctx->might_can    414                                 ctx->might_cancel = true;
415                                 spin_lock(&can    415                                 spin_lock(&cancel_lock);
416                                 list_add_rcu(&    416                                 list_add_rcu(&ctx->clist, &cancel_list);
417                                 spin_unlock(&c    417                                 spin_unlock(&cancel_lock);
418                         }                         418                         }
419                 } else {                          419                 } else {
420                         __timerfd_remove_cance    420                         __timerfd_remove_cancel(ctx);
421                 }                                 421                 }
422                 spin_unlock(&ctx->cancel_lock)    422                 spin_unlock(&ctx->cancel_lock);
423         }                                         423         }
424                                                   424 
425 When a timerfd is freed (fd is closed), then t    425 When a timerfd is freed (fd is closed), then the ``might_cancel``
426 flag of the timerfd object is cleared, the obj    426 flag of the timerfd object is cleared, the object removed from the
427 ``cancel_list`` and destroyed, as shown in thi    427 ``cancel_list`` and destroyed, as shown in this simplified and inlined
428 version of timerfd_release()::                    428 version of timerfd_release()::
429                                                   429 
430         int timerfd_release(struct inode *inod    430         int timerfd_release(struct inode *inode, struct file *file)
431         {                                         431         {
432                 struct timerfd_ctx *ctx = file    432                 struct timerfd_ctx *ctx = file->private_data;
433                                                   433 
434                 spin_lock(&ctx->cancel_lock);     434                 spin_lock(&ctx->cancel_lock);
435                 if (ctx->might_cancel) {          435                 if (ctx->might_cancel) {
436                         ctx->might_cancel = fa    436                         ctx->might_cancel = false;
437                         spin_lock(&cancel_lock    437                         spin_lock(&cancel_lock);
438                         list_del_rcu(&ctx->cli    438                         list_del_rcu(&ctx->clist);
439                         spin_unlock(&cancel_lo    439                         spin_unlock(&cancel_lock);
440                 }                                 440                 }
441                 spin_unlock(&ctx->cancel_lock)    441                 spin_unlock(&ctx->cancel_lock);
442                                                   442 
443                 if (isalarm(ctx))                 443                 if (isalarm(ctx))
444                         alarm_cancel(&ctx->t.a    444                         alarm_cancel(&ctx->t.alarm);
445                 else                              445                 else
446                         hrtimer_cancel(&ctx->t    446                         hrtimer_cancel(&ctx->t.tmr);
447                 kfree_rcu(ctx, rcu);              447                 kfree_rcu(ctx, rcu);
448                 return 0;                         448                 return 0;
449         }                                         449         }
450                                                   450 
451 If the ``CLOCK_REALTIME`` clock is set, for ex    451 If the ``CLOCK_REALTIME`` clock is set, for example by a time server, the
452 hrtimer framework calls ``timerfd_clock_was_se    452 hrtimer framework calls ``timerfd_clock_was_set()`` which walks the
453 ``cancel_list`` and wakes up processes waiting    453 ``cancel_list`` and wakes up processes waiting on the timerfd. While iterating
454 the ``cancel_list``, the ``might_cancel`` flag    454 the ``cancel_list``, the ``might_cancel`` flag is consulted to skip stale
455 objects::                                         455 objects::
456                                                   456 
457         void timerfd_clock_was_set(void)          457         void timerfd_clock_was_set(void)
458         {                                         458         {
459                 ktime_t moffs = ktime_mono_to_    459                 ktime_t moffs = ktime_mono_to_real(0);
460                 struct timerfd_ctx *ctx;          460                 struct timerfd_ctx *ctx;
461                 unsigned long flags;              461                 unsigned long flags;
462                                                   462 
463                 rcu_read_lock();                  463                 rcu_read_lock();
464                 list_for_each_entry_rcu(ctx, &    464                 list_for_each_entry_rcu(ctx, &cancel_list, clist) {
465                         if (!ctx->might_cancel    465                         if (!ctx->might_cancel)
466                                 continue;         466                                 continue;
467                         spin_lock_irqsave(&ctx    467                         spin_lock_irqsave(&ctx->wqh.lock, flags);
468                         if (ctx->moffs != moff    468                         if (ctx->moffs != moffs) {
469                                 ctx->moffs = K    469                                 ctx->moffs = KTIME_MAX;
470                                 ctx->ticks++;     470                                 ctx->ticks++;
471                                 wake_up_locked    471                                 wake_up_locked_poll(&ctx->wqh, EPOLLIN);
472                         }                         472                         }
473                         spin_unlock_irqrestore    473                         spin_unlock_irqrestore(&ctx->wqh.lock, flags);
474                 }                                 474                 }
475                 rcu_read_unlock();                475                 rcu_read_unlock();
476         }                                         476         }
477                                                   477 
478 The key point is that because RCU-protected tr    478 The key point is that because RCU-protected traversal of the
479 ``cancel_list`` happens concurrently with obje    479 ``cancel_list`` happens concurrently with object addition and removal,
480 sometimes the traversal can access an object t    480 sometimes the traversal can access an object that has been removed from
481 the list. In this example, a flag is used to s    481 the list. In this example, a flag is used to skip such objects.
482                                                   482 
483                                                   483 
484 Summary                                           484 Summary
485 -------                                           485 -------
486                                                   486 
487 Read-mostly list-based data structures that ca    487 Read-mostly list-based data structures that can tolerate stale data are
488 the most amenable to use of RCU.  The simplest    488 the most amenable to use of RCU.  The simplest case is where entries are
489 either added or deleted from the data structur    489 either added or deleted from the data structure (or atomically modified
490 in place), but non-atomic in-place modificatio    490 in place), but non-atomic in-place modifications can be handled by making
491 a copy, updating the copy, then replacing the     491 a copy, updating the copy, then replacing the original with the copy.
492 If stale data cannot be tolerated, then a *del    492 If stale data cannot be tolerated, then a *deleted* flag may be used
493 in conjunction with a per-entry spinlock in or    493 in conjunction with a per-entry spinlock in order to allow the search
494 function to reject newly deleted data.            494 function to reject newly deleted data.
495                                                   495 
496 .. _quick_quiz_answer:                            496 .. _quick_quiz_answer:
497                                                   497 
498 Answer to Quick Quiz:                             498 Answer to Quick Quiz:
499         For the deleted-flag technique to be h    499         For the deleted-flag technique to be helpful, why is it necessary
500         to hold the per-entry lock while retur    500         to hold the per-entry lock while returning from the search function?
501                                                   501 
502         If the search function drops the per-e    502         If the search function drops the per-entry lock before returning,
503         then the caller will be processing sta    503         then the caller will be processing stale data in any case.  If it
504         is really OK to be processing stale da    504         is really OK to be processing stale data, then you don't need a
505         *deleted* flag.  If processing stale d    505         *deleted* flag.  If processing stale data really is a problem,
506         then you need to hold the per-entry lo    506         then you need to hold the per-entry lock across all of the code
507         that uses the value that was returned.    507         that uses the value that was returned.
508                                                   508 
509 :ref:`Back to Quick Quiz <quick_quiz>`            509 :ref:`Back to Quick Quiz <quick_quiz>`
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php