1 ======== 1 ======== 2 dm-crypt 2 dm-crypt 3 ======== 3 ======== 4 4 5 Device-Mapper's "crypt" target provides transp 5 Device-Mapper's "crypt" target provides transparent encryption of block devices 6 using the kernel crypto API. 6 using the kernel crypto API. 7 7 8 For a more detailed description of supported p 8 For a more detailed description of supported parameters see: 9 https://gitlab.com/cryptsetup/cryptsetup/wikis 9 https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt 10 10 11 Parameters:: 11 Parameters:: 12 12 13 <cipher> <key> <iv_offset> <devi 13 <cipher> <key> <iv_offset> <device path> \ 14 <offset> [<#opt_params> <opt_par 14 <offset> [<#opt_params> <opt_params>] 15 15 16 <cipher> 16 <cipher> 17 Encryption cipher, encryption mode and Ini 17 Encryption cipher, encryption mode and Initial Vector (IV) generator. 18 18 19 The cipher specifications format is:: 19 The cipher specifications format is:: 20 20 21 cipher[:keycount]-chainmode-ivmode[:ivo 21 cipher[:keycount]-chainmode-ivmode[:ivopts] 22 22 23 Examples:: 23 Examples:: 24 24 25 aes-cbc-essiv:sha256 25 aes-cbc-essiv:sha256 26 aes-xts-plain64 26 aes-xts-plain64 27 serpent-xts-plain64 27 serpent-xts-plain64 28 28 29 Cipher format also supports direct specifi 29 Cipher format also supports direct specification with kernel crypt API 30 format (selected by capi: prefix). The IV 30 format (selected by capi: prefix). The IV specification is the same 31 as for the first format type. 31 as for the first format type. 32 This format is mainly used for specificati 32 This format is mainly used for specification of authenticated modes. 33 33 34 The crypto API cipher specifications forma 34 The crypto API cipher specifications format is:: 35 35 36 capi:cipher_api_spec-ivmode[:ivopts] 36 capi:cipher_api_spec-ivmode[:ivopts] 37 37 38 Examples:: 38 Examples:: 39 39 40 capi:cbc(aes)-essiv:sha256 40 capi:cbc(aes)-essiv:sha256 41 capi:xts(aes)-plain64 41 capi:xts(aes)-plain64 42 42 43 Examples of authenticated modes:: 43 Examples of authenticated modes:: 44 44 45 capi:gcm(aes)-random 45 capi:gcm(aes)-random 46 capi:authenc(hmac(sha256),xts(aes))-ra 46 capi:authenc(hmac(sha256),xts(aes))-random 47 capi:rfc7539(chacha20,poly1305)-random 47 capi:rfc7539(chacha20,poly1305)-random 48 48 49 The /proc/crypto contains a list of curren 49 The /proc/crypto contains a list of currently loaded crypto modes. 50 50 51 <key> 51 <key> 52 Key used for encryption. It is encoded eit 52 Key used for encryption. It is encoded either as a hexadecimal number 53 or it can be passed as <key_string> prefix 53 or it can be passed as <key_string> prefixed with single colon 54 character (':') for keys residing in kerne 54 character (':') for keys residing in kernel keyring service. 55 You can only use key sizes that are valid 55 You can only use key sizes that are valid for the selected cipher 56 in combination with the selected iv mode. 56 in combination with the selected iv mode. 57 Note that for some iv modes the key string 57 Note that for some iv modes the key string can contain additional 58 keys (for example IV seed) so the key cont 58 keys (for example IV seed) so the key contains more parts concatenated 59 into a single string. 59 into a single string. 60 60 61 <key_string> 61 <key_string> 62 The kernel keyring key is identified by st 62 The kernel keyring key is identified by string in following format: 63 <key_size>:<key_type>:<key_description>. 63 <key_size>:<key_type>:<key_description>. 64 64 65 <key_size> 65 <key_size> 66 The encryption key size in bytes. The kern 66 The encryption key size in bytes. The kernel key payload size must match 67 the value passed in <key_size>. 67 the value passed in <key_size>. 68 68 69 <key_type> 69 <key_type> 70 Either 'logon', 'user', 'encrypted' or 'tr 70 Either 'logon', 'user', 'encrypted' or 'trusted' kernel key type. 71 71 72 <key_description> 72 <key_description> 73 The kernel keyring key description crypt t 73 The kernel keyring key description crypt target should look for 74 when loading key of <key_type>. 74 when loading key of <key_type>. 75 75 76 <keycount> 76 <keycount> 77 Multi-key compatibility mode. You can defi 77 Multi-key compatibility mode. You can define <keycount> keys and 78 then sectors are encrypted according to th 78 then sectors are encrypted according to their offsets (sector 0 uses key0; 79 sector 1 uses key1 etc.). <keycount> must 79 sector 1 uses key1 etc.). <keycount> must be a power of two. 80 80 81 <iv_offset> 81 <iv_offset> 82 The IV offset is a sector count that is ad 82 The IV offset is a sector count that is added to the sector number 83 before creating the IV. 83 before creating the IV. 84 84 85 <device path> 85 <device path> 86 This is the device that is going to be use 86 This is the device that is going to be used as backend and contains the 87 encrypted data. You can specify it as a p 87 encrypted data. You can specify it as a path like /dev/xxx or a device 88 number <major>:<minor>. 88 number <major>:<minor>. 89 89 90 <offset> 90 <offset> 91 Starting sector within the device where th 91 Starting sector within the device where the encrypted data begins. 92 92 93 <#opt_params> 93 <#opt_params> 94 Number of optional parameters. If there ar 94 Number of optional parameters. If there are no optional parameters, 95 the optional parameters section can be ski 95 the optional parameters section can be skipped or #opt_params can be zero. 96 Otherwise #opt_params is the number of fol 96 Otherwise #opt_params is the number of following arguments. 97 97 98 Example of optional parameters section: 98 Example of optional parameters section: 99 3 allow_discards same_cpu_crypt submit 99 3 allow_discards same_cpu_crypt submit_from_crypt_cpus 100 100 101 allow_discards 101 allow_discards 102 Block discard requests (a.k.a. TRIM) are p 102 Block discard requests (a.k.a. TRIM) are passed through the crypt device. 103 The default is to ignore discard requests. 103 The default is to ignore discard requests. 104 104 105 WARNING: Assess the specific security risk 105 WARNING: Assess the specific security risks carefully before enabling this 106 option. For example, allowing discards on 106 option. For example, allowing discards on encrypted devices may lead to 107 the leak of information about the cipherte 107 the leak of information about the ciphertext device (filesystem type, 108 used space etc.) if the discarded blocks c 108 used space etc.) if the discarded blocks can be located easily on the 109 device later. 109 device later. 110 110 111 same_cpu_crypt 111 same_cpu_crypt 112 Perform encryption using the same cpu that 112 Perform encryption using the same cpu that IO was submitted on. 113 The default is to use an unbound workqueue 113 The default is to use an unbound workqueue so that encryption work 114 is automatically balanced between availabl 114 is automatically balanced between available CPUs. 115 115 116 high_priority << 117 Set dm-crypt workqueues and the writer thr << 118 improves throughput and latency of dm-cryp << 119 responsiveness of the system. << 120 << 121 submit_from_crypt_cpus 116 submit_from_crypt_cpus 122 Disable offloading writes to a separate th 117 Disable offloading writes to a separate thread after encryption. 123 There are some situations where offloading 118 There are some situations where offloading write bios from the 124 encryption threads to a single thread degr 119 encryption threads to a single thread degrades performance 125 significantly. The default is to offload 120 significantly. The default is to offload write bios to the same 126 thread because it benefits CFQ to have wri 121 thread because it benefits CFQ to have writes submitted using the 127 same context. 122 same context. 128 123 129 no_read_workqueue 124 no_read_workqueue 130 Bypass dm-crypt internal workqueue and pro 125 Bypass dm-crypt internal workqueue and process read requests synchronously. 131 126 132 no_write_workqueue 127 no_write_workqueue 133 Bypass dm-crypt internal workqueue and pro 128 Bypass dm-crypt internal workqueue and process write requests synchronously. 134 This option is automatically enabled for h 129 This option is automatically enabled for host-managed zoned block devices 135 (e.g. host-managed SMR hard-disks). 130 (e.g. host-managed SMR hard-disks). 136 131 137 integrity:<bytes>:<type> 132 integrity:<bytes>:<type> 138 The device requires additional <bytes> met 133 The device requires additional <bytes> metadata per-sector stored 139 in per-bio integrity structure. This metad 134 in per-bio integrity structure. This metadata must by provided 140 by underlying dm-integrity target. 135 by underlying dm-integrity target. 141 136 142 The <type> can be "none" if metadata is us 137 The <type> can be "none" if metadata is used only for persistent IV. 143 138 144 For Authenticated Encryption with Addition 139 For Authenticated Encryption with Additional Data (AEAD) 145 the <type> is "aead". An AEAD mode additio 140 the <type> is "aead". An AEAD mode additionally calculates and verifies 146 integrity for the encrypted device. The ad 141 integrity for the encrypted device. The additional space is then 147 used for storing authentication tag (and p 142 used for storing authentication tag (and persistent IV if needed). 148 143 149 sector_size:<bytes> 144 sector_size:<bytes> 150 Use <bytes> as the encryption unit instead 145 Use <bytes> as the encryption unit instead of 512 bytes sectors. 151 This option can be in range 512 - 4096 byt 146 This option can be in range 512 - 4096 bytes and must be power of two. 152 Virtual device will announce this size as 147 Virtual device will announce this size as a minimal IO and logical sector. 153 148 154 iv_large_sectors 149 iv_large_sectors 155 IV generators will use sector number counte 150 IV generators will use sector number counted in <sector_size> units 156 instead of default 512 bytes sectors. 151 instead of default 512 bytes sectors. 157 152 158 For example, if <sector_size> is 4096 bytes 153 For example, if <sector_size> is 4096 bytes, plain64 IV for the second 159 sector will be 8 (without flag) and 1 if iv 154 sector will be 8 (without flag) and 1 if iv_large_sectors is present. 160 The <iv_offset> must be multiple of <sector 155 The <iv_offset> must be multiple of <sector_size> (in 512 bytes units) 161 if this flag is specified. 156 if this flag is specified. 162 << 163 integrity_key_size:<bytes> << 164 Use an integrity key of <bytes> size instea << 165 of the digest size of the used HMAC algorit << 166 << 167 << 168 Module parameters:: << 169 max_read_size << 170 Maximum size of read requests. When a re << 171 is received, dm-crypt will split the req << 172 concurrency (the split requests could be << 173 cores), but it also causes overhead. The << 174 fit the actual workload. << 175 << 176 max_write_size << 177 Maximum size of write requests. When a r << 178 is received, dm-crypt will split the req << 179 concurrency (the split requests could be << 180 cores), but it also causes overhead. The << 181 fit the actual workload. << 182 << 183 157 184 Example scripts 158 Example scripts 185 =============== 159 =============== 186 LUKS (Linux Unified Key Setup) is now the pref 160 LUKS (Linux Unified Key Setup) is now the preferred way to set up disk 187 encryption with dm-crypt using the 'cryptsetup 161 encryption with dm-crypt using the 'cryptsetup' utility, see 188 https://gitlab.com/cryptsetup/cryptsetup 162 https://gitlab.com/cryptsetup/cryptsetup 189 163 190 :: 164 :: 191 165 192 #!/bin/sh 166 #!/bin/sh 193 # Create a crypt device using dmsetup 167 # Create a crypt device using dmsetup 194 dmsetup create crypt1 --table "0 `bloc 168 dmsetup create crypt1 --table "0 `blockdev --getsz $1` crypt aes-cbc-essiv:sha256 babebabebabebabebabebabebabebabe 0 $1 0" 195 169 196 :: 170 :: 197 171 198 #!/bin/sh 172 #!/bin/sh 199 # Create a crypt device using dmsetup 173 # Create a crypt device using dmsetup when encryption key is stored in keyring service 200 dmsetup create crypt2 --table "0 `bloc 174 dmsetup create crypt2 --table "0 `blockdev --getsize $1` crypt aes-cbc-essiv:sha256 :32:logon:my_prefix:my_key 0 $1 0" 201 175 202 :: 176 :: 203 177 204 #!/bin/sh 178 #!/bin/sh 205 # Create a crypt device using cryptset 179 # Create a crypt device using cryptsetup and LUKS header with default cipher 206 cryptsetup luksFormat $1 180 cryptsetup luksFormat $1 207 cryptsetup luksOpen $1 crypt1 181 cryptsetup luksOpen $1 crypt1
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.