~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/admin-guide/media/ipu3.rst

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /Documentation/admin-guide/media/ipu3.rst (Version linux-6.11.5) and /Documentation/admin-guide/media/ipu3.rst (Version linux-5.10.228)


  1 .. SPDX-License-Identifier: GPL-2.0                 1 .. SPDX-License-Identifier: GPL-2.0
  2                                                     2 
  3 .. include:: <isonum.txt>                           3 .. include:: <isonum.txt>
  4                                                     4 
  5 ==============================================      5 ===============================================================
  6 Intel Image Processing Unit 3 (IPU3) Imaging U      6 Intel Image Processing Unit 3 (IPU3) Imaging Unit (ImgU) driver
  7 ==============================================      7 ===============================================================
  8                                                     8 
  9 Copyright |copy| 2018 Intel Corporation             9 Copyright |copy| 2018 Intel Corporation
 10                                                    10 
 11 Introduction                                       11 Introduction
 12 ============                                       12 ============
 13                                                    13 
 14 This file documents the Intel IPU3 (3rd genera     14 This file documents the Intel IPU3 (3rd generation Image Processing Unit)
 15 Imaging Unit drivers located under drivers/med     15 Imaging Unit drivers located under drivers/media/pci/intel/ipu3 (CIO2) as well
 16 as under drivers/staging/media/ipu3 (ImgU).        16 as under drivers/staging/media/ipu3 (ImgU).
 17                                                    17 
 18 The Intel IPU3 found in certain Kaby Lake (as      18 The Intel IPU3 found in certain Kaby Lake (as well as certain Sky Lake)
 19 platforms (U/Y processor lines) is made up of      19 platforms (U/Y processor lines) is made up of two parts namely the Imaging Unit
 20 (ImgU) and the CIO2 device (MIPI CSI2 receiver     20 (ImgU) and the CIO2 device (MIPI CSI2 receiver).
 21                                                    21 
 22 The CIO2 device receives the raw Bayer data fr     22 The CIO2 device receives the raw Bayer data from the sensors and outputs the
 23 frames in a format that is specific to the IPU     23 frames in a format that is specific to the IPU3 (for consumption by the IPU3
 24 ImgU). The CIO2 driver is available as drivers     24 ImgU). The CIO2 driver is available as drivers/media/pci/intel/ipu3/ipu3-cio2*
 25 and is enabled through the CONFIG_VIDEO_IPU3_C     25 and is enabled through the CONFIG_VIDEO_IPU3_CIO2 config option.
 26                                                    26 
 27 The Imaging Unit (ImgU) is responsible for pro     27 The Imaging Unit (ImgU) is responsible for processing images captured
 28 by the IPU3 CIO2 device. The ImgU driver sourc     28 by the IPU3 CIO2 device. The ImgU driver sources can be found under
 29 drivers/staging/media/ipu3 directory. The driv     29 drivers/staging/media/ipu3 directory. The driver is enabled through the
 30 CONFIG_VIDEO_IPU3_IMGU config option.              30 CONFIG_VIDEO_IPU3_IMGU config option.
 31                                                    31 
 32 The two driver modules are named ipu3_csi2 and     32 The two driver modules are named ipu3_csi2 and ipu3_imgu, respectively.
 33                                                    33 
 34 The drivers has been tested on Kaby Lake platf     34 The drivers has been tested on Kaby Lake platforms (U/Y processor lines).
 35                                                    35 
 36 Both of the drivers implement V4L2, Media Cont     36 Both of the drivers implement V4L2, Media Controller and V4L2 sub-device
 37 interfaces. The IPU3 CIO2 driver supports came     37 interfaces. The IPU3 CIO2 driver supports camera sensors connected to the CIO2
 38 MIPI CSI-2 interfaces through V4L2 sub-device      38 MIPI CSI-2 interfaces through V4L2 sub-device sensor drivers.
 39                                                    39 
 40 CIO2                                               40 CIO2
 41 ====                                               41 ====
 42                                                    42 
 43 The CIO2 is represented as a single V4L2 subde     43 The CIO2 is represented as a single V4L2 subdev, which provides a V4L2 subdev
 44 interface to the user space. There is a video      44 interface to the user space. There is a video node for each CSI-2 receiver,
 45 with a single media controller interface for t     45 with a single media controller interface for the entire device.
 46                                                    46 
 47 The CIO2 contains four independent capture cha     47 The CIO2 contains four independent capture channel, each with its own MIPI CSI-2
 48 receiver and DMA engine. Each channel is model     48 receiver and DMA engine. Each channel is modelled as a V4L2 sub-device exposed
 49 to userspace as a V4L2 sub-device node and has     49 to userspace as a V4L2 sub-device node and has two pads:
 50                                                    50 
 51 .. tabularcolumns:: |p{0.8cm}|p{4.0cm}|p{4.0cm     51 .. tabularcolumns:: |p{0.8cm}|p{4.0cm}|p{4.0cm}|
 52                                                    52 
 53 .. flat-table::                                    53 .. flat-table::
 54     :header-rows: 1                            << 
 55                                                    54 
 56     * - Pad                                    !!  55     * - pad
 57       - Direction                              !!  56       - direction
 58       - Purpose                                !!  57       - purpose
 59                                                    58 
 60     * - 0                                          59     * - 0
 61       - sink                                       60       - sink
 62       - MIPI CSI-2 input, connected to the sen     61       - MIPI CSI-2 input, connected to the sensor subdev
 63                                                    62 
 64     * - 1                                          63     * - 1
 65       - source                                     64       - source
 66       - Raw video capture, connected to the V4     65       - Raw video capture, connected to the V4L2 video interface
 67                                                    66 
 68 The V4L2 video interfaces model the DMA engine     67 The V4L2 video interfaces model the DMA engines. They are exposed to userspace
 69 as V4L2 video device nodes.                        68 as V4L2 video device nodes.
 70                                                    69 
 71 Capturing frames in raw Bayer format               70 Capturing frames in raw Bayer format
 72 ------------------------------------               71 ------------------------------------
 73                                                    72 
 74 CIO2 MIPI CSI2 receiver is used to capture fra     73 CIO2 MIPI CSI2 receiver is used to capture frames (in packed raw Bayer format)
 75 from the raw sensors connected to the CSI2 por     74 from the raw sensors connected to the CSI2 ports. The captured frames are used
 76 as input to the ImgU driver.                       75 as input to the ImgU driver.
 77                                                    76 
 78 Image processing using IPU3 ImgU requires tool     77 Image processing using IPU3 ImgU requires tools such as raw2pnm [#f1]_, and
 79 yavta [#f2]_ due to the following unique requi     78 yavta [#f2]_ due to the following unique requirements and / or features specific
 80 to IPU3.                                           79 to IPU3.
 81                                                    80 
 82 -- The IPU3 CSI2 receiver outputs the captured     81 -- The IPU3 CSI2 receiver outputs the captured frames from the sensor in packed
 83 raw Bayer format that is specific to IPU3.         82 raw Bayer format that is specific to IPU3.
 84                                                    83 
 85 -- Multiple video nodes have to be operated si     84 -- Multiple video nodes have to be operated simultaneously.
 86                                                    85 
 87 Let us take the example of ov5670 sensor conne     86 Let us take the example of ov5670 sensor connected to CSI2 port 0, for a
 88 2592x1944 image capture.                           87 2592x1944 image capture.
 89                                                    88 
 90 Using the media controller APIs, the ov5670 se !!  89 Using the media contorller APIs, the ov5670 sensor is configured to send
 91 frames in packed raw Bayer format to IPU3 CSI2     90 frames in packed raw Bayer format to IPU3 CSI2 receiver.
 92                                                    91 
 93 .. code-block:: none                               92 .. code-block:: none
 94                                                    93 
 95     # This example assumes /dev/media0 as the      94     # This example assumes /dev/media0 as the CIO2 media device
 96     export MDEV=/dev/media0                        95     export MDEV=/dev/media0
 97                                                    96 
 98     # and that ov5670 sensor is connected to i     97     # and that ov5670 sensor is connected to i2c bus 10 with address 0x36
 99     export SDEV=$(media-ctl -d $MDEV -e "ov567     98     export SDEV=$(media-ctl -d $MDEV -e "ov5670 10-0036")
100                                                    99 
101     # Establish the link for the media devices    100     # Establish the link for the media devices using media-ctl [#f3]_
102     media-ctl -d $MDEV -l "ov5670:0 -> ipu3-cs    101     media-ctl -d $MDEV -l "ov5670:0 -> ipu3-csi2 0:0[1]"
103                                                   102 
104     # Set the format for the media devices        103     # Set the format for the media devices
105     media-ctl -d $MDEV -V "ov5670:0 [fmt:SGRBG    104     media-ctl -d $MDEV -V "ov5670:0 [fmt:SGRBG10/2592x1944]"
106     media-ctl -d $MDEV -V "ipu3-csi2 0:0 [fmt:    105     media-ctl -d $MDEV -V "ipu3-csi2 0:0 [fmt:SGRBG10/2592x1944]"
107     media-ctl -d $MDEV -V "ipu3-csi2 0:1 [fmt:    106     media-ctl -d $MDEV -V "ipu3-csi2 0:1 [fmt:SGRBG10/2592x1944]"
108                                                   107 
109 Once the media pipeline is configured, desired    108 Once the media pipeline is configured, desired sensor specific settings
110 (such as exposure and gain settings) can be se    109 (such as exposure and gain settings) can be set, using the yavta tool.
111                                                   110 
112 e.g                                               111 e.g
113                                                   112 
114 .. code-block:: none                              113 .. code-block:: none
115                                                   114 
116     yavta -w 0x009e0903 444 $SDEV                 115     yavta -w 0x009e0903 444 $SDEV
117     yavta -w 0x009e0913 1024 $SDEV                116     yavta -w 0x009e0913 1024 $SDEV
118     yavta -w 0x009e0911 2046 $SDEV                117     yavta -w 0x009e0911 2046 $SDEV
119                                                   118 
120 Once the desired sensor settings are set, fram    119 Once the desired sensor settings are set, frame captures can be done as below.
121                                                   120 
122 e.g                                               121 e.g
123                                                   122 
124 .. code-block:: none                              123 .. code-block:: none
125                                                   124 
126     yavta --data-prefix -u -c10 -n5 -I -s2592x    125     yavta --data-prefix -u -c10 -n5 -I -s2592x1944 --file=/tmp/frame-#.bin \
127           -f IPU3_SGRBG10 $(media-ctl -d $MDEV    126           -f IPU3_SGRBG10 $(media-ctl -d $MDEV -e "ipu3-cio2 0")
128                                                   127 
129 With the above command, 10 frames are captured    128 With the above command, 10 frames are captured at 2592x1944 resolution, with
130 sGRBG10 format and output as IPU3_SGRBG10 form    129 sGRBG10 format and output as IPU3_SGRBG10 format.
131                                                   130 
132 The captured frames are available as /tmp/fram    131 The captured frames are available as /tmp/frame-#.bin files.
133                                                   132 
134 ImgU                                              133 ImgU
135 ====                                              134 ====
136                                                   135 
137 The ImgU is represented as two V4L2 subdevs, e    136 The ImgU is represented as two V4L2 subdevs, each of which provides a V4L2
138 subdev interface to the user space.               137 subdev interface to the user space.
139                                                   138 
140 Each V4L2 subdev represents a pipe, which can     139 Each V4L2 subdev represents a pipe, which can support a maximum of 2 streams.
141 This helps to support advanced camera features    140 This helps to support advanced camera features like Continuous View Finder (CVF)
142 and Snapshot During Video(SDV).                   141 and Snapshot During Video(SDV).
143                                                   142 
144 The ImgU contains two independent pipes, each     143 The ImgU contains two independent pipes, each modelled as a V4L2 sub-device
145 exposed to userspace as a V4L2 sub-device node    144 exposed to userspace as a V4L2 sub-device node.
146                                                   145 
147 Each pipe has two sink pads and three source p    146 Each pipe has two sink pads and three source pads for the following purpose:
148                                                   147 
149 .. tabularcolumns:: |p{0.8cm}|p{4.0cm}|p{4.0cm    148 .. tabularcolumns:: |p{0.8cm}|p{4.0cm}|p{4.0cm}|
150                                                   149 
151 .. flat-table::                                   150 .. flat-table::
152     :header-rows: 1                            << 
153                                                   151 
154     * - Pad                                    !! 152     * - pad
155       - Direction                              !! 153       - direction
156       - Purpose                                !! 154       - purpose
157                                                   155 
158     * - 0                                         156     * - 0
159       - sink                                      157       - sink
160       - Input raw video stream                    158       - Input raw video stream
161                                                   159 
162     * - 1                                         160     * - 1
163       - sink                                      161       - sink
164       - Processing parameters                     162       - Processing parameters
165                                                   163 
166     * - 2                                         164     * - 2
167       - source                                    165       - source
168       - Output processed video stream             166       - Output processed video stream
169                                                   167 
170     * - 3                                         168     * - 3
171       - source                                    169       - source
172       - Output viewfinder video stream            170       - Output viewfinder video stream
173                                                   171 
174     * - 4                                         172     * - 4
175       - source                                    173       - source
176       - 3A statistics                             174       - 3A statistics
177                                                   175 
178 Each pad is connected to a corresponding V4L2     176 Each pad is connected to a corresponding V4L2 video interface, exposed to 
179 userspace as a V4L2 video device node.            177 userspace as a V4L2 video device node.
180                                                   178 
181 Device operation                                  179 Device operation
182 ----------------                                  180 ----------------
183                                                   181 
184 With ImgU, once the input video node ("ipu3-im    182 With ImgU, once the input video node ("ipu3-imgu 0/1":0, in
185 <entity>:<pad-number> format) is queued with b    183 <entity>:<pad-number> format) is queued with buffer (in packed raw Bayer
186 format), ImgU starts processing the buffer and    184 format), ImgU starts processing the buffer and produces the video output in YUV
187 format and statistics output on respective out    185 format and statistics output on respective output nodes. The driver is expected
188 to have buffers ready for all of parameter, ou    186 to have buffers ready for all of parameter, output and statistics nodes, when
189 input video node is queued with buffer.           187 input video node is queued with buffer.
190                                                   188 
191 At a minimum, all of input, main output, 3A st    189 At a minimum, all of input, main output, 3A statistics and viewfinder
192 video nodes should be enabled for IPU3 to star    190 video nodes should be enabled for IPU3 to start image processing.
193                                                   191 
194 Each ImgU V4L2 subdev has the following set of    192 Each ImgU V4L2 subdev has the following set of video nodes.
195                                                   193 
196 input, output and viewfinder video nodes          194 input, output and viewfinder video nodes
197 ----------------------------------------          195 ----------------------------------------
198                                                   196 
199 The frames (in packed raw Bayer format specifi    197 The frames (in packed raw Bayer format specific to the IPU3) received by the
200 input video node is processed by the IPU3 Imag    198 input video node is processed by the IPU3 Imaging Unit and are output to 2 video
201 nodes, with each targeting a different purpose    199 nodes, with each targeting a different purpose (main output and viewfinder
202 output).                                          200 output).
203                                                   201 
204 Details onand the Bayer format specific to the    202 Details onand the Bayer format specific to the IPU3 can be found in
205 :ref:`v4l2-pix-fmt-ipu3-sbggr10`.                 203 :ref:`v4l2-pix-fmt-ipu3-sbggr10`.
206                                                   204 
207 The driver supports V4L2 Video Capture Interfa    205 The driver supports V4L2 Video Capture Interface as defined at :ref:`devices`.
208                                                   206 
209 Only the multi-planar API is supported. More d    207 Only the multi-planar API is supported. More details can be found at
210 :ref:`planar-apis`.                               208 :ref:`planar-apis`.
211                                                   209 
212 Parameters video node                             210 Parameters video node
213 ---------------------                             211 ---------------------
214                                                   212 
215 The parameters video node receives the ImgU al    213 The parameters video node receives the ImgU algorithm parameters that are used
216 to configure how the ImgU algorithms process t    214 to configure how the ImgU algorithms process the image.
217                                                   215 
218 Details on processing parameters specific to t    216 Details on processing parameters specific to the IPU3 can be found in
219 :ref:`v4l2-meta-fmt-params`.                      217 :ref:`v4l2-meta-fmt-params`.
220                                                   218 
221 3A statistics video node                          219 3A statistics video node
222 ------------------------                          220 ------------------------
223                                                   221 
224 3A statistics video node is used by the ImgU d    222 3A statistics video node is used by the ImgU driver to output the 3A (auto
225 focus, auto exposure and auto white balance) s    223 focus, auto exposure and auto white balance) statistics for the frames that are
226 being processed by the ImgU to user space appl    224 being processed by the ImgU to user space applications. User space applications
227 can use this statistics data to compute the de    225 can use this statistics data to compute the desired algorithm parameters for
228 the ImgU.                                         226 the ImgU.
229                                                   227 
230 Configuring the Intel IPU3                        228 Configuring the Intel IPU3
231 ==========================                        229 ==========================
232                                                   230 
233 The IPU3 ImgU pipelines can be configured usin    231 The IPU3 ImgU pipelines can be configured using the Media Controller, defined at
234 :ref:`media_controller`.                          232 :ref:`media_controller`.
235                                                   233 
236 Running mode and firmware binary selection        234 Running mode and firmware binary selection
237 ------------------------------------------        235 ------------------------------------------
238                                                   236 
239 ImgU works based on firmware, currently the Im !! 237 ImgU works based on firmware, currently the ImgU firmware support run 2 pipes in
240 in time-sharing with single input frame data.  !! 238 time-sharing with single input frame data. Each pipe can run at certain mode -
241 - "VIDEO" or "STILL", "VIDEO" mode is commonly !! 239 "VIDEO" or "STILL", "VIDEO" mode is commonly used for video frames capture, and
242 and "STILL" is used for still frame capture. H !! 240 "STILL" is used for still frame capture. However, you can also select "VIDEO" to
243 "VIDEO" to capture still frames if you want to !! 241 capture still frames if you want to capture images with less system load and
244 load and power. For "STILL" mode, ImgU will tr !! 242 power. For "STILL" mode, ImgU will try to use smaller BDS factor and output
245 output larger bayer frame for further YUV proc !! 243 larger bayer frame for further YUV processing than "VIDEO" mode to get high
246 high quality images. Besides, "STILL" mode nee !! 244 quality images. Besides, "STILL" mode need XNR3 to do noise reduction, hence
247 hence "STILL" mode will need more power and me !! 245 "STILL" mode will need more power and memory bandwidth than "VIDEO" mode. TNR
248 TNR will be enabled in "VIDEO" mode and bypass !! 246 will be enabled in "VIDEO" mode and bypassed by "STILL" mode. ImgU is running at
249 running at "VIDEO" mode by default, the user c !! 247 “VIDEO” mode by default, the user can use v4l2 control V4L2_CID_INTEL_IPU3_MODE
250 V4L2_CID_INTEL_IPU3_MODE (currently defined in !! 248 (currently defined in drivers/staging/media/ipu3/include/intel-ipu3.h) to query
251 drivers/staging/media/ipu3/include/uapi/intel- !! 249 and set the running mode. For user, there is no difference for buffer queueing
252 running mode. For user, there is no difference !! 250 between the "VIDEO" and "STILL" mode, mandatory input and main output node
253 "VIDEO" and "STILL" mode, mandatory input and  !! 251 should be enabled and buffers need be queued, the statistics and the view-finder
254 enabled and buffers need be queued, the statis !! 252 queues are optional.
255 are optional.                                  << 
256                                                   253 
257 The firmware binary will be selected according    254 The firmware binary will be selected according to current running mode, such log
258 "using binary if_to_osys_striped " or "using b    255 "using binary if_to_osys_striped " or "using binary if_to_osys_primary_striped"
259 could be observed if you enable the ImgU dynam    256 could be observed if you enable the ImgU dynamic debug, the binary
260 if_to_osys_striped is selected for "VIDEO" and    257 if_to_osys_striped is selected for "VIDEO" and the binary
261 "if_to_osys_primary_striped" is selected for "    258 "if_to_osys_primary_striped" is selected for "STILL".
262                                                   259 
263                                                   260 
264 Processing the image in raw Bayer format          261 Processing the image in raw Bayer format
265 ----------------------------------------          262 ----------------------------------------
266                                                   263 
267 Configuring ImgU V4L2 subdev for image process    264 Configuring ImgU V4L2 subdev for image processing
268 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    265 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
269                                                   266 
270 The ImgU V4L2 subdevs have to be configured wi    267 The ImgU V4L2 subdevs have to be configured with media controller APIs to have
271 all the video nodes setup correctly.              268 all the video nodes setup correctly.
272                                                   269 
273 Let us take "ipu3-imgu 0" subdev as an example    270 Let us take "ipu3-imgu 0" subdev as an example.
274                                                   271 
275 .. code-block:: none                              272 .. code-block:: none
276                                                   273 
277     media-ctl -d $MDEV -r                         274     media-ctl -d $MDEV -r
278     media-ctl -d $MDEV -l "ipu3-imgu 0 input":    275     media-ctl -d $MDEV -l "ipu3-imgu 0 input":0 -> "ipu3-imgu 0":0[1]
279     media-ctl -d $MDEV -l "ipu3-imgu 0":2 -> "    276     media-ctl -d $MDEV -l "ipu3-imgu 0":2 -> "ipu3-imgu 0 output":0[1]
280     media-ctl -d $MDEV -l "ipu3-imgu 0":3 -> "    277     media-ctl -d $MDEV -l "ipu3-imgu 0":3 -> "ipu3-imgu 0 viewfinder":0[1]
281     media-ctl -d $MDEV -l "ipu3-imgu 0":4 -> "    278     media-ctl -d $MDEV -l "ipu3-imgu 0":4 -> "ipu3-imgu 0 3a stat":0[1]
282                                                   279 
283 Also the pipe mode of the corresponding V4L2 s    280 Also the pipe mode of the corresponding V4L2 subdev should be set as desired
284 (e.g 0 for video mode or 1 for still mode) thr    281 (e.g 0 for video mode or 1 for still mode) through the control id 0x009819a1 as
285 below.                                            282 below.
286                                                   283 
287 .. code-block:: none                              284 .. code-block:: none
288                                                   285 
289     yavta -w "0x009819A1 1" /dev/v4l-subdev7      286     yavta -w "0x009819A1 1" /dev/v4l-subdev7
290                                                   287 
291 Certain hardware blocks in ImgU pipeline can c    288 Certain hardware blocks in ImgU pipeline can change the frame resolution by
292 cropping or scaling, these hardware blocks inc    289 cropping or scaling, these hardware blocks include Input Feeder(IF), Bayer Down
293 Scaler (BDS) and Geometric Distortion Correcti    290 Scaler (BDS) and Geometric Distortion Correction (GDC).
294 There is also a block which can change the fra    291 There is also a block which can change the frame resolution - YUV Scaler, it is
295 only applicable to the secondary output.          292 only applicable to the secondary output.
296                                                   293 
297 RAW Bayer frames go through these ImgU pipelin    294 RAW Bayer frames go through these ImgU pipeline hardware blocks and the final
298 processed image output to the DDR memory.         295 processed image output to the DDR memory.
299                                                   296 
300 .. kernel-figure::  ipu3_rcb.svg                  297 .. kernel-figure::  ipu3_rcb.svg
301    :alt: ipu3 resolution blocks image             298    :alt: ipu3 resolution blocks image
302                                                   299 
303    IPU3 resolution change hardware blocks         300    IPU3 resolution change hardware blocks
304                                                   301 
305 **Input Feeder**                                  302 **Input Feeder**
306                                                   303 
307 Input Feeder gets the Bayer frame data from th    304 Input Feeder gets the Bayer frame data from the sensor, it can enable cropping
308 of lines and columns from the frame and then s    305 of lines and columns from the frame and then store pixels into device's internal
309 pixel buffer which are ready to readout by fol    306 pixel buffer which are ready to readout by following blocks.
310                                                   307 
311 **Bayer Down Scaler**                             308 **Bayer Down Scaler**
312                                                   309 
313 Bayer Down Scaler is capable of performing ima    310 Bayer Down Scaler is capable of performing image scaling in Bayer domain, the
314 downscale factor can be configured from 1X to     311 downscale factor can be configured from 1X to 1/4X in each axis with
315 configuration steps of 0.03125 (1/32).            312 configuration steps of 0.03125 (1/32).
316                                                   313 
317 **Geometric Distortion Correction**               314 **Geometric Distortion Correction**
318                                                   315 
319 Geometric Distortion Correction is used to per !! 316 Geometric Distortion Correction is used to performe correction of distortions
320 and image filtering. It needs some extra filte !! 317 and image filtering. It needs some extra filter and envelop padding pixels to
321 work, so the input resolution of GDC should be    318 work, so the input resolution of GDC should be larger than the output
322 resolution.                                       319 resolution.
323                                                   320 
324 **YUV Scaler**                                    321 **YUV Scaler**
325                                                   322 
326 YUV Scaler which similar with BDS, but it is m    323 YUV Scaler which similar with BDS, but it is mainly do image down scaling in
327 YUV domain, it can support up to 1/12X down sc    324 YUV domain, it can support up to 1/12X down scaling, but it can not be applied
328 to the main output.                               325 to the main output.
329                                                   326 
330 The ImgU V4L2 subdev has to be configured with    327 The ImgU V4L2 subdev has to be configured with the supported resolutions in all
331 the above hardware blocks, for a given input r    328 the above hardware blocks, for a given input resolution.
332 For a given supported resolution for an input     329 For a given supported resolution for an input frame, the Input Feeder, Bayer
333 Down Scaler and GDC blocks should be configure    330 Down Scaler and GDC blocks should be configured with the supported resolutions
334 as each hardware block has its own alignment r    331 as each hardware block has its own alignment requirement.
335                                                   332 
336 You must configure the output resolution of th    333 You must configure the output resolution of the hardware blocks smartly to meet
337 the hardware requirement along with keeping th    334 the hardware requirement along with keeping the maximum field of view. The
338 intermediate resolutions can be generated by s    335 intermediate resolutions can be generated by specific tool -
339                                                   336 
340 https://github.com/intel/intel-ipu3-pipecfg       337 https://github.com/intel/intel-ipu3-pipecfg
341                                                   338 
342 This tool can be used to generate intermediate    339 This tool can be used to generate intermediate resolutions. More information can
343 be obtained by looking at the following IPU3 I    340 be obtained by looking at the following IPU3 ImgU configuration table.
344                                                   341 
345 https://chromium.googlesource.com/chromiumos/o    342 https://chromium.googlesource.com/chromiumos/overlays/board-overlays/+/master
346                                                   343 
347 Under baseboard-poppy/media-libs/cros-camera-h    344 Under baseboard-poppy/media-libs/cros-camera-hal-configs-poppy/files/gcss
348 directory, graph_settings_ov5670.xml can be us    345 directory, graph_settings_ov5670.xml can be used as an example.
349                                                   346 
350 The following steps prepare the ImgU pipeline     347 The following steps prepare the ImgU pipeline for the image processing.
351                                                   348 
352 1. The ImgU V4L2 subdev data format should be     349 1. The ImgU V4L2 subdev data format should be set by using the
353 VIDIOC_SUBDEV_S_FMT on pad 0, using the GDC wi    350 VIDIOC_SUBDEV_S_FMT on pad 0, using the GDC width and height obtained above.
354                                                   351 
355 2. The ImgU V4L2 subdev cropping should be set    352 2. The ImgU V4L2 subdev cropping should be set by using the
356 VIDIOC_SUBDEV_S_SELECTION on pad 0, with V4L2_    353 VIDIOC_SUBDEV_S_SELECTION on pad 0, with V4L2_SEL_TGT_CROP as the target,
357 using the input feeder height and width.          354 using the input feeder height and width.
358                                                   355 
359 3. The ImgU V4L2 subdev composing should be se    356 3. The ImgU V4L2 subdev composing should be set by using the
360 VIDIOC_SUBDEV_S_SELECTION on pad 0, with V4L2_    357 VIDIOC_SUBDEV_S_SELECTION on pad 0, with V4L2_SEL_TGT_COMPOSE as the target,
361 using the BDS height and width.                   358 using the BDS height and width.
362                                                   359 
363 For the ov5670 example, for an input frame wit    360 For the ov5670 example, for an input frame with a resolution of 2592x1944
364 (which is input to the ImgU subdev pad 0), the    361 (which is input to the ImgU subdev pad 0), the corresponding resolutions
365 for input feeder, BDS and GDC are 2592x1944, 2    362 for input feeder, BDS and GDC are 2592x1944, 2592x1944 and 2560x1920
366 respectively.                                     363 respectively.
367                                                   364 
368 Once this is done, the received raw Bayer fram    365 Once this is done, the received raw Bayer frames can be input to the ImgU
369 V4L2 subdev as below, using the open source ap    366 V4L2 subdev as below, using the open source application v4l2n [#f1]_.
370                                                   367 
371 For an image captured with 2592x1944 [#f4]_ re    368 For an image captured with 2592x1944 [#f4]_ resolution, with desired output
372 resolution as 2560x1920 and viewfinder resolut    369 resolution as 2560x1920 and viewfinder resolution as 2560x1920, the following
373 v4l2n command can be used. This helps process     370 v4l2n command can be used. This helps process the raw Bayer frames and produces
374 the desired results for the main output image     371 the desired results for the main output image and the viewfinder output, in NV12
375 format.                                           372 format.
376                                                   373 
377 .. code-block:: none                              374 .. code-block:: none
378                                                   375 
379     v4l2n --pipe=4 --load=/tmp/frame-#.bin --o    376     v4l2n --pipe=4 --load=/tmp/frame-#.bin --open=/dev/video4
380           --fmt=type:VIDEO_OUTPUT_MPLANE,width    377           --fmt=type:VIDEO_OUTPUT_MPLANE,width=2592,height=1944,pixelformat=0X47337069 \
381           --reqbufs=type:VIDEO_OUTPUT_MPLANE,c    378           --reqbufs=type:VIDEO_OUTPUT_MPLANE,count:1 --pipe=1 \
382           --output=/tmp/frames.out --open=/dev    379           --output=/tmp/frames.out --open=/dev/video5 \
383           --fmt=type:VIDEO_CAPTURE_MPLANE,widt    380           --fmt=type:VIDEO_CAPTURE_MPLANE,width=2560,height=1920,pixelformat=NV12 \
384           --reqbufs=type:VIDEO_CAPTURE_MPLANE,    381           --reqbufs=type:VIDEO_CAPTURE_MPLANE,count:1 --pipe=2 \
385           --output=/tmp/frames.vf --open=/dev/    382           --output=/tmp/frames.vf --open=/dev/video6 \
386           --fmt=type:VIDEO_CAPTURE_MPLANE,widt    383           --fmt=type:VIDEO_CAPTURE_MPLANE,width=2560,height=1920,pixelformat=NV12 \
387           --reqbufs=type:VIDEO_CAPTURE_MPLANE,    384           --reqbufs=type:VIDEO_CAPTURE_MPLANE,count:1 --pipe=3 --open=/dev/video7 \
388           --output=/tmp/frames.3A --fmt=type:M    385           --output=/tmp/frames.3A --fmt=type:META_CAPTURE,? \
389           --reqbufs=count:1,type:META_CAPTURE     386           --reqbufs=count:1,type:META_CAPTURE --pipe=1,2,3,4 --stream=5
390                                                   387 
391 You can also use yavta [#f2]_ command to do sa    388 You can also use yavta [#f2]_ command to do same thing as above:
392                                                   389 
393 .. code-block:: none                              390 .. code-block:: none
394                                                   391 
395     yavta --data-prefix -Bcapture-mplane -c10     392     yavta --data-prefix -Bcapture-mplane -c10 -n5 -I -s2592x1944 \
396           --file=frame-#.out-f NV12 /dev/video    393           --file=frame-#.out-f NV12 /dev/video5 & \
397     yavta --data-prefix -Bcapture-mplane -c10     394     yavta --data-prefix -Bcapture-mplane -c10 -n5 -I -s2592x1944 \
398           --file=frame-#.vf -f NV12 /dev/video    395           --file=frame-#.vf -f NV12 /dev/video6 & \
399     yavta --data-prefix -Bmeta-capture -c10 -n    396     yavta --data-prefix -Bmeta-capture -c10 -n5 -I \
400           --file=frame-#.3a /dev/video7 & \       397           --file=frame-#.3a /dev/video7 & \
401     yavta --data-prefix -Boutput-mplane -c10 -    398     yavta --data-prefix -Boutput-mplane -c10 -n5 -I -s2592x1944 \
402           --file=/tmp/frame-in.cio2 -f IPU3_SG    399           --file=/tmp/frame-in.cio2 -f IPU3_SGRBG10 /dev/video4
403                                                   400 
404 where /dev/video4, /dev/video5, /dev/video6 an    401 where /dev/video4, /dev/video5, /dev/video6 and /dev/video7 devices point to
405 input, output, viewfinder and 3A statistics vi    402 input, output, viewfinder and 3A statistics video nodes respectively.
406                                                   403 
407 Converting the raw Bayer image into YUV domain    404 Converting the raw Bayer image into YUV domain
408 ----------------------------------------------    405 ----------------------------------------------
409                                                   406 
410 The processed images after the above step, can    407 The processed images after the above step, can be converted to YUV domain
411 as below.                                         408 as below.
412                                                   409 
413 Main output frames                                410 Main output frames
414 ~~~~~~~~~~~~~~~~~~                                411 ~~~~~~~~~~~~~~~~~~
415                                                   412 
416 .. code-block:: none                              413 .. code-block:: none
417                                                   414 
418     raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.o    415     raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.out /tmp/frames.out.ppm
419                                                   416 
420 where 2560x1920 is output resolution, NV12 is     417 where 2560x1920 is output resolution, NV12 is the video format, followed
421 by input frame and output PNM file.               418 by input frame and output PNM file.
422                                                   419 
423 Viewfinder output frames                          420 Viewfinder output frames
424 ~~~~~~~~~~~~~~~~~~~~~~~~                          421 ~~~~~~~~~~~~~~~~~~~~~~~~
425                                                   422 
426 .. code-block:: none                              423 .. code-block:: none
427                                                   424 
428     raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.v    425     raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.vf /tmp/frames.vf.ppm
429                                                   426 
430 where 2560x1920 is output resolution, NV12 is     427 where 2560x1920 is output resolution, NV12 is the video format, followed
431 by input frame and output PNM file.               428 by input frame and output PNM file.
432                                                   429 
433 Example user space code for IPU3                  430 Example user space code for IPU3
434 ================================                  431 ================================
435                                                   432 
436 User space code that configures and uses IPU3     433 User space code that configures and uses IPU3 is available here.
437                                                   434 
438 https://chromium.googlesource.com/chromiumos/p    435 https://chromium.googlesource.com/chromiumos/platform/arc-camera/+/master/
439                                                   436 
440 The source can be located under hal/intel dire    437 The source can be located under hal/intel directory.
441                                                   438 
442 Overview of IPU3 pipeline                         439 Overview of IPU3 pipeline
443 =========================                         440 =========================
444                                                   441 
445 IPU3 pipeline has a number of image processing    442 IPU3 pipeline has a number of image processing stages, each of which takes a
446 set of parameters as input. The major stages o    443 set of parameters as input. The major stages of pipelines are shown here:
447                                                   444 
448 .. kernel-render:: DOT                            445 .. kernel-render:: DOT
449    :alt: IPU3 ImgU Pipeline                       446    :alt: IPU3 ImgU Pipeline
450    :caption: IPU3 ImgU Pipeline Diagram           447    :caption: IPU3 ImgU Pipeline Diagram
451                                                   448 
452    digraph "IPU3 ImgU" {                          449    digraph "IPU3 ImgU" {
453        node [shape=box]                           450        node [shape=box]
454        splines="ortho"                            451        splines="ortho"
455        rankdir="LR"                               452        rankdir="LR"
456                                                   453 
457        a [label="Raw pixels"]                     454        a [label="Raw pixels"]
458        b [label="Bayer Downscaling"]              455        b [label="Bayer Downscaling"]
459        c [label="Optical Black Correction"]       456        c [label="Optical Black Correction"]
460        d [label="Linearization"]                  457        d [label="Linearization"]
461        e [label="Lens Shading Correction"]        458        e [label="Lens Shading Correction"]
462        f [label="White Balance / Exposure / Fo    459        f [label="White Balance / Exposure / Focus Apply"]
463        g [label="Bayer Noise Reduction"]          460        g [label="Bayer Noise Reduction"]
464        h [label="ANR"]                            461        h [label="ANR"]
465        i [label="Demosaicing"]                    462        i [label="Demosaicing"]
466        j [label="Color Correction Matrix"]        463        j [label="Color Correction Matrix"]
467        k [label="Gamma correction"]               464        k [label="Gamma correction"]
468        l [label="Color Space Conversion"]         465        l [label="Color Space Conversion"]
469        m [label="Chroma Down Scaling"]            466        m [label="Chroma Down Scaling"]
470        n [label="Chromatic Noise Reduction"]      467        n [label="Chromatic Noise Reduction"]
471        o [label="Total Color Correction"]         468        o [label="Total Color Correction"]
472        p [label="XNR3"]                           469        p [label="XNR3"]
473        q [label="TNR"]                            470        q [label="TNR"]
474        r [label="DDR", style=filled, fillcolor    471        r [label="DDR", style=filled, fillcolor=yellow, shape=cylinder]
475        s [label="YUV Downscaling"]                472        s [label="YUV Downscaling"]
476        t [label="DDR", style=filled, fillcolor    473        t [label="DDR", style=filled, fillcolor=yellow, shape=cylinder]
477                                                   474 
478        { rank=same; a -> b -> c -> d -> e -> f    475        { rank=same; a -> b -> c -> d -> e -> f -> g -> h -> i }
479        { rank=same; j -> k -> l -> m -> n -> o    476        { rank=same; j -> k -> l -> m -> n -> o -> p -> q -> s -> t}
480                                                   477 
481        a -> j [style=invis, weight=10]            478        a -> j [style=invis, weight=10]
482        i -> j                                     479        i -> j
483        q -> r                                     480        q -> r
484    }                                              481    }
485                                                   482 
486 The table below presents a description of the     483 The table below presents a description of the above algorithms.
487                                                   484 
488 ======================== =====================    485 ======================== =======================================================
489 Name                     Description              486 Name                     Description
490 ======================== =====================    487 ======================== =======================================================
491 Optical Black Correction Optical Black Correct    488 Optical Black Correction Optical Black Correction block subtracts a pre-defined
492                          value from the respec    489                          value from the respective pixel values to obtain better
493                          image quality.           490                          image quality.
494                          Defined in struct ipu    491                          Defined in struct ipu3_uapi_obgrid_param.
495 Linearization            This algo block uses     492 Linearization            This algo block uses linearization parameters to
496                          address non-linearity    493                          address non-linearity sensor effects. The Lookup table
497                          table is defined in      494                          table is defined in
498                          struct ipu3_uapi_isp_    495                          struct ipu3_uapi_isp_lin_vmem_params.
499 SHD                      Lens shading correcti    496 SHD                      Lens shading correction is used to correct spatial
500                          non-uniformity of the    497                          non-uniformity of the pixel response due to optical
501                          lens shading. This is    498                          lens shading. This is done by applying a different gain
502                          for each pixel. The g    499                          for each pixel. The gain, black level etc are
503                          configured in struct     500                          configured in struct ipu3_uapi_shd_config_static.
504 BNR                      Bayer noise reduction    501 BNR                      Bayer noise reduction block removes image noise by
505                          applying a bilateral     502                          applying a bilateral filter.
506                          See struct ipu3_uapi_    503                          See struct ipu3_uapi_bnr_static_config for details.
507 ANR                      Advanced Noise Reduct    504 ANR                      Advanced Noise Reduction is a block based algorithm
508                          that performs noise r    505                          that performs noise reduction in the Bayer domain. The
509                          convolution matrix et    506                          convolution matrix etc can be found in
510                          struct ipu3_uapi_anr_    507                          struct ipu3_uapi_anr_config.
511 DM                       Demosaicing converts     508 DM                       Demosaicing converts raw sensor data in Bayer format
512                          into RGB (Red, Green,    509                          into RGB (Red, Green, Blue) presentation. Then add
513                          outputs of estimation    510                          outputs of estimation of Y channel for following stream
514                          processing by Firmwar    511                          processing by Firmware. The struct is defined as
515                          struct ipu3_uapi_dm_c    512                          struct ipu3_uapi_dm_config.
516 Color Correction         Color Correction algo    513 Color Correction         Color Correction algo transforms sensor specific color
517                          space to the standard    514                          space to the standard "sRGB" color space. This is done
518                          by applying 3x3 matri    515                          by applying 3x3 matrix defined in
519                          struct ipu3_uapi_ccm_    516                          struct ipu3_uapi_ccm_mat_config.
520 Gamma correction         Gamma correction stru    517 Gamma correction         Gamma correction struct ipu3_uapi_gamma_config is a
521                          basic non-linear tone    518                          basic non-linear tone mapping correction that is
522                          applied per pixel for    519                          applied per pixel for each pixel component.
523 CSC                      Color space conversio    520 CSC                      Color space conversion transforms each pixel from the
524                          RGB primary presentat    521                          RGB primary presentation to YUV (Y: brightness,
525                          UV: Luminance) presen    522                          UV: Luminance) presentation. This is done by applying
526                          a 3x3 matrix defined     523                          a 3x3 matrix defined in
527                          struct ipu3_uapi_csc_    524                          struct ipu3_uapi_csc_mat_config
528 CDS                      Chroma down sampling     525 CDS                      Chroma down sampling
529                          After the CSC is perf    526                          After the CSC is performed, the Chroma Down Sampling
530                          is applied for a UV p    527                          is applied for a UV plane down sampling by a factor
531                          of 2 in each directio    528                          of 2 in each direction for YUV 4:2:0 using a 4x2
532                          configurable filter s    529                          configurable filter struct ipu3_uapi_cds_params.
533 CHNR                     Chroma noise reductio    530 CHNR                     Chroma noise reduction
534                          This block processes     531                          This block processes only the chrominance pixels and
535                          performs noise reduct    532                          performs noise reduction by cleaning the high
536                          frequency noise.         533                          frequency noise.
537                          See struct struct ipu    534                          See struct struct ipu3_uapi_yuvp1_chnr_config.
538 TCC                      Total color correctio    535 TCC                      Total color correction as defined in struct
539                          struct ipu3_uapi_yuvp    536                          struct ipu3_uapi_yuvp2_tcc_static_config.
540 XNR3                     eXtreme Noise Reducti    537 XNR3                     eXtreme Noise Reduction V3 is the third revision of
541                          noise reduction algor    538                          noise reduction algorithm used to improve image
542                          quality. This removes    539                          quality. This removes the low frequency noise in the
543                          captured image. Two r    540                          captured image. Two related structs are  being defined,
544                          struct ipu3_uapi_isp_    541                          struct ipu3_uapi_isp_xnr3_params for ISP data memory
545                          and struct ipu3_uapi_    542                          and struct ipu3_uapi_isp_xnr3_vmem_params for vector
546                          memory.                  543                          memory.
547 TNR                      Temporal Noise Reduct    544 TNR                      Temporal Noise Reduction block compares successive
548                          frames in time to rem    545                          frames in time to remove anomalies / noise in pixel
549                          values. struct ipu3_u    546                          values. struct ipu3_uapi_isp_tnr3_vmem_params and
550                          struct ipu3_uapi_isp_    547                          struct ipu3_uapi_isp_tnr3_params are defined for ISP
551                          vector and data memor    548                          vector and data memory respectively.
552 ======================== =====================    549 ======================== =======================================================
553                                                   550 
554 Other often encountered acronyms not listed in    551 Other often encountered acronyms not listed in above table:
555                                                   552 
556         ACC                                       553         ACC
557                 Accelerator cluster               554                 Accelerator cluster
558         AWB_FR                                    555         AWB_FR
559                 Auto white balance filter resp    556                 Auto white balance filter response statistics
560         BDS                                       557         BDS
561                 Bayer downscaler parameters       558                 Bayer downscaler parameters
562         CCM                                       559         CCM
563                 Color correction matrix coeffi    560                 Color correction matrix coefficients
564         IEFd                                      561         IEFd
565                 Image enhancement filter direc    562                 Image enhancement filter directed
566         Obgrid                                    563         Obgrid
567                 Optical black level compensati    564                 Optical black level compensation
568         OSYS                                      565         OSYS
569                 Output system configuration       566                 Output system configuration
570         ROI                                       567         ROI
571                 Region of interest                568                 Region of interest
572         YDS                                       569         YDS
573                 Y down sampling                   570                 Y down sampling
574         YTM                                       571         YTM
575                 Y-tone mapping                    572                 Y-tone mapping
576                                                   573 
577 A few stages of the pipeline will be executed     574 A few stages of the pipeline will be executed by firmware running on the ISP
578 processor, while many others will use a set of    575 processor, while many others will use a set of fixed hardware blocks also
579 called accelerator cluster (ACC) to crunch pix    576 called accelerator cluster (ACC) to crunch pixel data and produce statistics.
580                                                   577 
581 ACC parameters of individual algorithms, as de    578 ACC parameters of individual algorithms, as defined by
582 struct ipu3_uapi_acc_param, can be chosen to b    579 struct ipu3_uapi_acc_param, can be chosen to be applied by the user
583 space through struct struct ipu3_uapi_flags em    580 space through struct struct ipu3_uapi_flags embedded in
584 struct ipu3_uapi_params structure. For paramet    581 struct ipu3_uapi_params structure. For parameters that are configured as
585 not enabled by the user space, the correspondi    582 not enabled by the user space, the corresponding structs are ignored by the
586 driver, in which case the existing configurati    583 driver, in which case the existing configuration of the algorithm will be
587 preserved.                                        584 preserved.
588                                                   585 
589 References                                        586 References
590 ==========                                        587 ==========
591                                                   588 
592 .. [#f5] drivers/staging/media/ipu3/include/ua !! 589 .. [#f5] drivers/staging/media/ipu3/include/intel-ipu3.h
593                                                   590 
594 .. [#f1] https://github.com/intel/nvt             591 .. [#f1] https://github.com/intel/nvt
595                                                   592 
596 .. [#f2] http://git.ideasonboard.org/yavta.git    593 .. [#f2] http://git.ideasonboard.org/yavta.git
597                                                   594 
598 .. [#f3] http://git.ideasonboard.org/?p=media-    595 .. [#f3] http://git.ideasonboard.org/?p=media-ctl.git;a=summary
599                                                   596 
600 .. [#f4] ImgU limitation requires an additiona    597 .. [#f4] ImgU limitation requires an additional 16x16 for all input resolutions
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php