~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/admin-guide/ramoops.rst

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /Documentation/admin-guide/ramoops.rst (Version linux-6.12-rc7) and /Documentation/admin-guide/ramoops.rst (Version linux-5.2.21)


  1 Ramoops oops/panic logger                           1 Ramoops oops/panic logger
  2 =========================                           2 =========================
  3                                                     3 
  4 Sergiu Iordache <sergiu@chromium.org>                4 Sergiu Iordache <sergiu@chromium.org>
  5                                                     5 
  6 Updated: 10 Feb 2021                           !!   6 Updated: 17 November 2011
  7                                                     7 
  8 Introduction                                        8 Introduction
  9 ------------                                        9 ------------
 10                                                    10 
 11 Ramoops is an oops/panic logger that writes it     11 Ramoops is an oops/panic logger that writes its logs to RAM before the system
 12 crashes. It works by logging oopses and panics     12 crashes. It works by logging oopses and panics in a circular buffer. Ramoops
 13 needs a system with persistent RAM so that the     13 needs a system with persistent RAM so that the content of that area can
 14 survive after a restart.                           14 survive after a restart.
 15                                                    15 
 16 Ramoops concepts                                   16 Ramoops concepts
 17 ----------------                                   17 ----------------
 18                                                    18 
 19 Ramoops uses a predefined memory area to store     19 Ramoops uses a predefined memory area to store the dump. The start and size
 20 and type of the memory area are set using thre     20 and type of the memory area are set using three variables:
 21                                                    21 
 22   * ``mem_address`` for the start                  22   * ``mem_address`` for the start
 23   * ``mem_size`` for the size. The memory size     23   * ``mem_size`` for the size. The memory size will be rounded down to a
 24     power of two.                                  24     power of two.
 25   * ``mem_type`` to specify if the memory type !!  25   * ``mem_type`` to specifiy if the memory type (default is pgprot_writecombine).
 26   * ``mem_name`` to specify a memory region de << 
 27     line parameter.                            << 
 28                                                    26 
 29 Typically the default value of ``mem_type=0``      27 Typically the default value of ``mem_type=0`` should be used as that sets the pstore
 30 mapping to pgprot_writecombine. Setting ``mem_     28 mapping to pgprot_writecombine. Setting ``mem_type=1`` attempts to use
 31 ``pgprot_noncached``, which only works on some     29 ``pgprot_noncached``, which only works on some platforms. This is because pstore
 32 depends on atomic operations. At least on ARM,     30 depends on atomic operations. At least on ARM, pgprot_noncached causes the
 33 memory to be mapped strongly ordered, and atom     31 memory to be mapped strongly ordered, and atomic operations on strongly ordered
 34 memory are implementation defined, and won't w     32 memory are implementation defined, and won't work on many ARMs such as omaps.
 35 Setting ``mem_type=2`` attempts to treat the m << 
 36 which enables full cache on it. This can impro << 
 37                                                    33 
 38 The memory area is divided into ``record_size`     34 The memory area is divided into ``record_size`` chunks (also rounded down to
 39 power of two) and each kmesg dump writes a ``r !!  35 power of two) and each oops/panic writes a ``record_size`` chunk of
 40 information.                                       36 information.
 41                                                    37 
 42 Limiting which kinds of kmsg dumps are stored  !!  38 Dumping both oopses and panics can be done by setting 1 in the ``dump_oops``
 43 the ``max_reason`` value, as defined in includ !!  39 variable while setting 0 in that variable dumps only the panics.
 44 ``enum kmsg_dump_reason``. For example, to sto << 
 45 ``max_reason`` should be set to 2 (KMSG_DUMP_O << 
 46 ``max_reason`` should be set to 1 (KMSG_DUMP_P << 
 47 (KMSG_DUMP_UNDEF), means the reason filtering  << 
 48 ``printk.always_kmsg_dump`` boot param: if uns << 
 49 otherwise KMSG_DUMP_MAX.                       << 
 50                                                    40 
 51 The module uses a counter to record multiple d     41 The module uses a counter to record multiple dumps but the counter gets reset
 52 on restart (i.e. new dumps after the restart w     42 on restart (i.e. new dumps after the restart will overwrite old ones).
 53                                                    43 
 54 Ramoops also supports software ECC protection      44 Ramoops also supports software ECC protection of persistent memory regions.
 55 This might be useful when a hardware reset was     45 This might be useful when a hardware reset was used to bring the machine back
 56 to life (i.e. a watchdog triggered). In such c     46 to life (i.e. a watchdog triggered). In such cases, RAM may be somewhat
 57 corrupt, but usually it is restorable.             47 corrupt, but usually it is restorable.
 58                                                    48 
 59 Setting the parameters                             49 Setting the parameters
 60 ----------------------                             50 ----------------------
 61                                                    51 
 62 Setting the ramoops parameters can be done in      52 Setting the ramoops parameters can be done in several different manners:
 63                                                    53 
 64  A. Use the module parameters (which have the      54  A. Use the module parameters (which have the names of the variables described
 65  as before). For quick debugging, you can also     55  as before). For quick debugging, you can also reserve parts of memory during
 66  boot and then use the reserved memory for ram     56  boot and then use the reserved memory for ramoops. For example, assuming a
 67  machine with > 128 MB of memory, the followin     57  machine with > 128 MB of memory, the following kernel command line will tell
 68  the kernel to use only the first 128 MB of me     58  the kernel to use only the first 128 MB of memory, and place ECC-protected
 69  ramoops region at 128 MB boundary::               59  ramoops region at 128 MB boundary::
 70                                                    60 
 71         mem=128M ramoops.mem_address=0x8000000     61         mem=128M ramoops.mem_address=0x8000000 ramoops.ecc=1
 72                                                    62 
 73  B. Use Device Tree bindings, as described in      63  B. Use Device Tree bindings, as described in
 74  ``Documentation/devicetree/bindings/reserved- !!  64  ``Documentation/devicetree/bindings/reserved-memory/ramoops.txt``.
 75  For example::                                     65  For example::
 76                                                    66 
 77         reserved-memory {                          67         reserved-memory {
 78                 #address-cells = <2>;              68                 #address-cells = <2>;
 79                 #size-cells = <2>;                 69                 #size-cells = <2>;
 80                 ranges;                            70                 ranges;
 81                                                    71 
 82                 ramoops@8f000000 {                 72                 ramoops@8f000000 {
 83                         compatible = "ramoops"     73                         compatible = "ramoops";
 84                         reg = <0 0x8f000000 0      74                         reg = <0 0x8f000000 0 0x100000>;
 85                         record-size = <0x4000>     75                         record-size = <0x4000>;
 86                         console-size = <0x4000     76                         console-size = <0x4000>;
 87                 };                                 77                 };
 88         };                                         78         };
 89                                                    79 
 90  C. Use a platform device and set the platform     80  C. Use a platform device and set the platform data. The parameters can then
 91  be set through that platform data. An example     81  be set through that platform data. An example of doing that is:
 92                                                    82 
 93  .. code-block:: c                                 83  .. code-block:: c
 94                                                    84 
 95   #include <linux/pstore_ram.h>                    85   #include <linux/pstore_ram.h>
 96   [...]                                            86   [...]
 97                                                    87 
 98   static struct ramoops_platform_data ramoops_     88   static struct ramoops_platform_data ramoops_data = {
 99         .mem_size               = <...>,           89         .mem_size               = <...>,
100         .mem_address            = <...>,           90         .mem_address            = <...>,
101         .mem_type               = <...>,           91         .mem_type               = <...>,
102         .record_size            = <...>,           92         .record_size            = <...>,
103         .max_reason             = <...>,       !!  93         .dump_oops              = <...>,
104         .ecc                    = <...>,           94         .ecc                    = <...>,
105   };                                               95   };
106                                                    96 
107   static struct platform_device ramoops_dev =      97   static struct platform_device ramoops_dev = {
108         .name = "ramoops",                         98         .name = "ramoops",
109         .dev = {                                   99         .dev = {
110                 .platform_data = &ramoops_data    100                 .platform_data = &ramoops_data,
111         },                                        101         },
112   };                                              102   };
113                                                   103 
114   [... inside a function ...]                     104   [... inside a function ...]
115   int ret;                                        105   int ret;
116                                                   106 
117   ret = platform_device_register(&ramoops_dev)    107   ret = platform_device_register(&ramoops_dev);
118   if (ret) {                                      108   if (ret) {
119         printk(KERN_ERR "unable to register pl    109         printk(KERN_ERR "unable to register platform device\n");
120         return ret;                               110         return ret;
121   }                                               111   }
122                                                << 
123  D. Using a region of memory reserved via ``re << 
124     parameter. The address and size will be de << 
125     parameter. Note, that ``reserve_mem`` may  << 
126     in the same location, and cannot be relied << 
127     to be done, and it may not work on every m << 
128     Consider this a "best effort" approach. Th << 
129     takes a size, alignment and name as argume << 
130     to map the memory to a label that can be r << 
131                                                << 
132         reserve_mem=2M:4096:oops  ramoops.mem_ << 
133                                                   112 
134 You can specify either RAM memory or periphera    113 You can specify either RAM memory or peripheral devices' memory. However, when
135 specifying RAM, be sure to reserve the memory     114 specifying RAM, be sure to reserve the memory by issuing memblock_reserve()
136 very early in the architecture code, e.g.::       115 very early in the architecture code, e.g.::
137                                                   116 
138         #include <linux/memblock.h>               117         #include <linux/memblock.h>
139                                                   118 
140         memblock_reserve(ramoops_data.mem_addr    119         memblock_reserve(ramoops_data.mem_address, ramoops_data.mem_size);
141                                                   120 
142 Dump format                                       121 Dump format
143 -----------                                       122 -----------
144                                                   123 
145 The data dump begins with a header, currently     124 The data dump begins with a header, currently defined as ``====`` followed by a
146 timestamp and a new line. The dump then contin    125 timestamp and a new line. The dump then continues with the actual data.
147                                                   126 
148 Reading the data                                  127 Reading the data
149 ----------------                                  128 ----------------
150                                                   129 
151 The dump data can be read from the pstore file    130 The dump data can be read from the pstore filesystem. The format for these
152 files is ``dmesg-ramoops-N``, where N is the r    131 files is ``dmesg-ramoops-N``, where N is the record number in memory. To delete
153 a stored record from RAM, simply unlink the re    132 a stored record from RAM, simply unlink the respective pstore file.
154                                                   133 
155 Persistent function tracing                       134 Persistent function tracing
156 ---------------------------                       135 ---------------------------
157                                                   136 
158 Persistent function tracing might be useful fo    137 Persistent function tracing might be useful for debugging software or hardware
159 related hangs. The functions call chain log is    138 related hangs. The functions call chain log is stored in a ``ftrace-ramoops``
160 file. Here is an example of usage::               139 file. Here is an example of usage::
161                                                   140 
162  # mount -t debugfs debugfs /sys/kernel/debug/    141  # mount -t debugfs debugfs /sys/kernel/debug/
163  # echo 1 > /sys/kernel/debug/pstore/record_ft    142  # echo 1 > /sys/kernel/debug/pstore/record_ftrace
164  # reboot -f                                      143  # reboot -f
165  [...]                                            144  [...]
166  # mount -t pstore pstore /mnt/                   145  # mount -t pstore pstore /mnt/
167  # tail /mnt/ftrace-ramoops                       146  # tail /mnt/ftrace-ramoops
168  0 ffffffff8101ea64  ffffffff8101bcda  native_    147  0 ffffffff8101ea64  ffffffff8101bcda  native_apic_mem_read <- disconnect_bsp_APIC+0x6a/0xc0
169  0 ffffffff8101ea44  ffffffff8101bcf6  native_    148  0 ffffffff8101ea44  ffffffff8101bcf6  native_apic_mem_write <- disconnect_bsp_APIC+0x86/0xc0
170  0 ffffffff81020084  ffffffff8101a4b5  hpet_di    149  0 ffffffff81020084  ffffffff8101a4b5  hpet_disable <- native_machine_shutdown+0x75/0x90
171  0 ffffffff81005f94  ffffffff8101a4bb  iommu_s    150  0 ffffffff81005f94  ffffffff8101a4bb  iommu_shutdown_noop <- native_machine_shutdown+0x7b/0x90
172  0 ffffffff8101a6a1  ffffffff8101a437  native_    151  0 ffffffff8101a6a1  ffffffff8101a437  native_machine_emergency_restart <- native_machine_restart+0x37/0x40
173  0 ffffffff811f9876  ffffffff8101a73a  acpi_re    152  0 ffffffff811f9876  ffffffff8101a73a  acpi_reboot <- native_machine_emergency_restart+0xaa/0x1e0
174  0 ffffffff8101a514  ffffffff8101a772  mach_re    153  0 ffffffff8101a514  ffffffff8101a772  mach_reboot_fixups <- native_machine_emergency_restart+0xe2/0x1e0
175  0 ffffffff811d9c54  ffffffff8101a7a0  __const    154  0 ffffffff811d9c54  ffffffff8101a7a0  __const_udelay <- native_machine_emergency_restart+0x110/0x1e0
176  0 ffffffff811d9c34  ffffffff811d9c80  __delay    155  0 ffffffff811d9c34  ffffffff811d9c80  __delay <- __const_udelay+0x30/0x40
177  0 ffffffff811d9d14  ffffffff811d9c3f  delay_t    156  0 ffffffff811d9d14  ffffffff811d9c3f  delay_tsc <- __delay+0xf/0x20
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php