1 .. SPDX-License-Identifier: GPL-2.0 2 3 ==================================== 4 Nested KVM on POWER 5 ==================================== 6 7 Introduction 8 ============ 9 10 This document explains how a guest operating s 11 hypervisor and run nested guests through the u 12 hypervisor has implemented them. The terms L0, 13 refer to different software entities. L0 is th 14 that would normally be called the "host" or "h 15 guest virtual machine that is directly run und 16 and controlled by L0. L2 is a guest virtual ma 17 and controlled by L1 acting as a hypervisor. 18 19 Existing API 20 ============ 21 22 Linux/KVM has had support for Nesting as an L0 23 24 The L0 code was added:: 25 26 commit 8e3f5fc1045dc49fd175b978c5457f5f51e7 27 Author: Paul Mackerras <paulus@ozlabs.org> 28 Date: Mon Oct 8 16:31:03 2018 +1100 29 KVM: PPC: Book3S HV: Framework and hcall st 30 31 The L1 code was added:: 32 33 commit 360cae313702cdd0b90f82c261a8302fecef 34 Author: Paul Mackerras <paulus@ozlabs.org> 35 Date: Mon Oct 8 16:31:04 2018 +1100 36 KVM: PPC: Book3S HV: Nested guest entry via 37 38 This API works primarily using a single hcall 39 call made by the L1 to tell the L0 to start an 40 state. The L0 then starts this L2 and runs unt 41 is reached. Once the L2 exits, the state of th 42 the L1 by the L0. The full L2 vCPU state is al 43 and to L1 when the L2 is run. The L0 doesn't k 44 vCPU (except in the short sequence in the L0 o 45 -> L1 exit). 46 47 The only state kept by the L0 is the partition 48 it's partition table using the h_set_partition 49 other state held by the L0 about the L2s is ca 50 shadow page tables). 51 52 The L1 may run any L2 or vCPU without first in 53 simply starts the vCPU using h_enter_nested(). 54 vCPUs is done implicitly whenever h_enter_nest 55 56 In this document, we call this existing API th 57 58 New PAPR API 59 =============== 60 61 The new PAPR API changes from the v1 API such 62 associated vCPUs is explicit. In this document 63 API. 64 65 h_enter_nested() is replaced with H_GUEST_VCPU 66 be called the L1 must explicitly create the L2 67 and any associated vCPUs() created with h_gues 68 and setting vCPU state can also be performed u 69 hcall. 70 71 The basic execution flow is for an L1 to creat 72 delete it is: 73 74 - L1 and L0 negotiate capabilities with H_GUES 75 (normally at L1 boot time). 76 77 - L1 requests the L0 create an L2 with H_GUEST 78 79 - L1 requests the L0 create an L2 vCPU with H_ 80 81 - L1 and L0 communicate the vCPU state using t 82 83 - L1 requests the L0 runs the vCPU running H_G 84 85 - L1 deletes L2 with H_GUEST_DELETE() 86 87 More details of the individual hcalls follows: 88 89 HCALL Details 90 ============= 91 92 This documentation is provided to give an over 93 API. It doesn't aim to provide all the details 94 an L1 or L0. Latest version of PAPR can be ref 95 96 All these HCALLs are made by the L1 to the L0. 97 98 H_GUEST_GET_CAPABILITIES() 99 -------------------------- 100 101 This is called to get the capabilities of the 102 hypervisor. This includes capabilities such th 103 POWER9, POWER10) that are supported as L2s:: 104 105 H_GUEST_GET_CAPABILITIES(uint64 flags) 106 107 Parameters: 108 Input: 109 flags: Reserved 110 Output: 111 R3: Return code 112 R4: Hypervisor Supported Capabilities bi 113 114 H_GUEST_SET_CAPABILITIES() 115 -------------------------- 116 117 This is called to inform the L0 of the capabil 118 hypervisor. The set of flags passed here are t 119 H_GUEST_GET_CAPABILITIES() 120 121 Typically, GET will be called first and then S 122 subset of the flags returned from GET. This pr 123 L1 to negotiate an agreed set of capabilities: 124 125 H_GUEST_SET_CAPABILITIES(uint64 flags, 126 uint64 capabilities 127 Parameters: 128 Input: 129 flags: Reserved 130 capabilitiesBitmap1: Only capabilities a 131 H_GUEST_GET_CAPABIL 132 Output: 133 R3: Return code 134 R4: If R3 = H_P2: The number of invalid 135 R5: If R3 = H_P2: The index of first inv 136 137 H_GUEST_CREATE() 138 ---------------- 139 140 This is called to create an L2. A unique ID of 141 (similar to an LPID) is returned, which can be 142 identify the L2:: 143 144 H_GUEST_CREATE(uint64 flags, 145 uint64 continueToken); 146 Parameters: 147 Input: 148 flags: Reserved 149 continueToken: Initial call set to -1. S 150 after H_Busy or H_LongBus 151 returned, value that was 152 Output: 153 R3: Return code. Notable: 154 H_Not_Enough_Resources: Unable to crea 155 enough Hypervisor memory. See H_GUEST_ 156 takeOwnershipOfVcpuState) 157 R4: If R3 = H_Busy or_H_LongBusyOrder -> 158 159 H_GUEST_CREATE_VCPU() 160 --------------------- 161 162 This is called to create a vCPU associated wit 163 (returned from H_GUEST_CREATE()) should be pas 164 is a unique (for this L2) vCPUid. This vCPUid 165 L1:: 166 167 H_GUEST_CREATE_VCPU(uint64 flags, 168 uint64 guestId, 169 uint64 vcpuId); 170 Parameters: 171 Input: 172 flags: Reserved 173 guestId: ID obtained from H_GUEST_CREATE 174 vcpuId: ID of the vCPU to be created. Th 175 range of 0 to 2047 176 Output: 177 R3: Return code. Notable: 178 H_Not_Enough_Resources: Unable to crea 179 enough Hypervisor memory. See H_GUEST_ 180 takeOwnershipOfVcpuState) 181 182 H_GUEST_GET_STATE() 183 ------------------- 184 185 This is called to get state associated with an 186 This info is passed via the Guest State Buffer 187 explained later in this doc, necessary details 188 189 This can get either L2 wide or vcpu specific i 190 L2 wide is the timebase offset or process scop 191 info. Examples of vCPU specific are GPRs or VS 192 parameter specifies if this call is L2 wide or 193 IDs in the GSB must match this. 194 195 The L1 provides a pointer to the GSB as a para 196 provided is the L2 and vCPU IDs associated wit 197 198 The L1 writes only the IDs and sizes in the GS 199 associated values for each ID in the GSB:: 200 201 H_GUEST_GET_STATE(uint64 flags, 202 uint64 guestId, 203 uint64 vcpuId, 204 uint64 dataBuffer, 205 uint64 dataBufferSi 206 Parameters: 207 Input: 208 flags: 209 Bit 0: getGuestWideState: Request sta 210 of an individual VCPU. 211 Bit 1: takeOwnershipOfVcpuState Indic 212 over ownership of the VCPU state an 213 the storage holding the state. The 214 be returned to the Hypervisor via H 215 to H_GUEST_RUN_VCPU being called fo 216 returned in the dataBuffer is in a 217 format. 218 Bits 2-63: Reserved 219 guestId: ID obtained from H_GUEST_CREATE 220 vcpuId: ID of the vCPU pass to H_GUEST_C 221 dataBuffer: A L1 real address of the GSB 222 If takeOwnershipOfVcpuState, size must 223 returned by ID=0x0001 224 dataBufferSizeInBytes: Size of dataBuffe 225 Output: 226 R3: Return code 227 R4: If R3 = H_Invalid_Element_Id: The ar 228 element ID. 229 If R3 = H_Invalid_Element_Size: The 230 element size. 231 If R3 = H_Invalid_Element_Value: The 232 element value. 233 234 H_GUEST_SET_STATE() 235 ------------------- 236 237 This is called to set L2 wide or vCPU specific 238 passed via the Guest State Buffer (GSB), neces 239 240 This can set either L2 wide or vcpu specific i 241 L2 wide is the timebase offset or process scop 242 info. Examples of vCPU specific are GPRs or VS 243 parameter specifies if this call is L2 wide or 244 IDs in the GSB must match this. 245 246 The L1 provides a pointer to the GSB as a para 247 provided is the L2 and vCPU IDs associated wit 248 249 The L1 writes all values in the GSB and the L0 250 this call:: 251 252 H_GUEST_SET_STATE(uint64 flags, 253 uint64 guestId, 254 uint64 vcpuId, 255 uint64 dataBuffer, 256 uint64 dataBufferSizeInByt 257 Parameters: 258 Input: 259 flags: 260 Bit 0: getGuestWideState: Request sta 261 of an individual VCPU. 262 Bit 1: returnOwnershipOfVcpuState Ret 263 GET_STATE takeOwnershipOfVcpuState 264 Bits 2-63: Reserved 265 guestId: ID obtained from H_GUEST_CREATE 266 vcpuId: ID of the vCPU pass to H_GUEST_C 267 dataBuffer: A L1 real address of the GSB 268 If takeOwnershipOfVcpuState, size must 269 returned by ID=0x0001 270 dataBufferSizeInBytes: Size of dataBuffe 271 Output: 272 R3: Return code 273 R4: If R3 = H_Invalid_Element_Id: The ar 274 element ID. 275 If R3 = H_Invalid_Element_Size: The 276 element size. 277 If R3 = H_Invalid_Element_Value: The 278 element value. 279 280 H_GUEST_RUN_VCPU() 281 ------------------ 282 283 This is called to run an L2 vCPU. The L2 and v 284 parameters. The vCPU runs with the state set p 285 H_GUEST_SET_STATE(). When the L2 exits, the L1 286 hcall. 287 288 This hcall also has associated input and outpu 289 H_GUEST_{S,G}ET_STATE(), these GSB pointers ar 290 parameters to the hcall (This was done in the 291 performance). The locations of these GSBs must 292 the H_GUEST_SET_STATE() call with ID 0x0c00 an 293 below). 294 295 The input GSB may contain only VCPU specific e 296 GSB may also contain zero elements (ie 0 in th 297 GSB) if nothing needs to be set. 298 299 On exit from the hcall, the output buffer is f 300 determined by the L0. The reason for the exit 301 NIP is put in GPR4). The elements returned de 302 type. For example, if the exit reason is the L 303 0xc00), then GPR3-12 are provided in the outpu 304 state likely needed to service the hcall. If a 305 needed, H_GUEST_GET_STATE() may be called by t 306 307 To synthesize interrupts in the L2, when calli 308 the L1 may set a flag (as a hcall parameter) a 309 synthesize the interrupt in the L2. Alternativ 310 synthesize the interrupt itself using H_GUEST_ 311 H_GUEST_RUN_VCPU() input GSB to set the state 312 313 H_GUEST_RUN_VCPU(uint64 flags, 314 uint64 guestId, 315 uint64 vcpuId, 316 uint64 dataBuffer, 317 uint64 dataBufferSizeInByte 318 Parameters: 319 Input: 320 flags: 321 Bit 0: generateExternalInterrupt: Gen 322 Bit 1: generatePrivilegedDoorbell: Ge 323 Bit 2: sendToSystemResetâ: Generate 324 Bits 3-63: Reserved 325 guestId: ID obtained from H_GUEST_CREATE 326 vcpuId: ID of the vCPU pass to H_GUEST_C 327 Output: 328 R3: Return code 329 R4: If R3 = H_Success: The reason L1 VCP 330 0x000: The VCPU stopped running fo 331 example of this is the Hyperviso 332 due to an outstanding interrupt 333 0x980: HDEC 334 0xC00: HCALL 335 0xE00: HDSI 336 0xE20: HISI 337 0xE40: HEA 338 0xF80: HV Fac Unavail 339 If R3 = H_Invalid_Element_Id, H_Inva 340 H_Invalid_Element_Value: R4 is off 341 in the input buffer. 342 343 H_GUEST_DELETE() 344 ---------------- 345 346 This is called to delete an L2. All associated 347 deleted. No specific vCPU delete call is provi 348 349 A flag may be provided to delete all guests. T 350 L0 in the case of kdump/kexec:: 351 352 H_GUEST_DELETE(uint64 flags, 353 uint64 guestId) 354 Parameters: 355 Input: 356 flags: 357 Bit 0: deleteAllGuests: deletes all g 358 Bits 1-63: Reserved 359 guestId: ID obtained from H_GUEST_CREATE 360 Output: 361 R3: Return code 362 363 Guest State Buffer 364 ================== 365 366 The Guest State Buffer (GSB) is the main metho 367 about the L2 between the L1 and L0 via H_GUEST 368 H_GUEST_VCPU_RUN() calls. 369 370 State may be associated with a whole L2 (eg ti 371 specific L2 vCPU (eg. GPR state). Only L2 VCPU 372 H_GUEST_VCPU_RUN(). 373 374 All data in the GSB is big endian (as is stand 375 376 The Guest state buffer has a header which give 377 elements, followed by the GSB elements themsel 378 379 GSB header: 380 381 +----------+----------+----------------------- 382 | Offset | Size | Purpose 383 | Bytes | Bytes | 384 +==========+==========+======================= 385 | 0 | 4 | Number of elements 386 +----------+----------+----------------------- 387 | 4 | | Guest state buffer el 388 +----------+----------+----------------------- 389 390 GSB element: 391 392 +----------+----------+----------------------- 393 | Offset | Size | Purpose 394 | Bytes | Bytes | 395 +==========+==========+======================= 396 | 0 | 2 | ID 397 +----------+----------+----------------------- 398 | 2 | 2 | Size of Value 399 +----------+----------+----------------------- 400 | 4 | As above | Value 401 +----------+----------+----------------------- 402 403 The ID in the GSB element specifies what is to 404 archtected state like GPRs, VSRs, SPRs, plus a 405 the partition like the timebase offset and par 406 table information. 407 408 +--------+-------+----+--------+-------------- 409 | ID | Size | RW | Thread | Details 410 | | Bytes | | Guest | 411 | | | | Scope | 412 +========+=======+====+========+============== 413 | 0x0000 | | RW | TG | NOP element 414 +--------+-------+----+--------+-------------- 415 | 0x0001 | 0x08 | R | G | Size of L0 vC 416 | | | | | H_GUEST_GET_S 417 | | | | | flags = takeO 418 +--------+-------+----+--------+-------------- 419 | 0x0002 | 0x08 | R | G | Size Run vCPU 420 +--------+-------+----+--------+-------------- 421 | 0x0003 | 0x04 | RW | G | Logical PVR 422 +--------+-------+----+--------+-------------- 423 | 0x0004 | 0x08 | RW | G | TB Offset (L1 424 +--------+-------+----+--------+-------------- 425 | 0x0005 | 0x18 | RW | G |Partition scop 426 | | | | | 427 | | | | |- 0x00 Addr pa 428 | | | | |- 0x08 Num add 429 | | | | |- 0x10 Size ro 430 +--------+-------+----+--------+-------------- 431 | 0x0006 | 0x10 | RW | G |Process Table 432 | | | | | 433 | | | | |- 0x0 Addr pro 434 | | | | |- 0x8 Table si 435 +--------+-------+----+--------+-------------- 436 | 0x0007-| | | | Reserved 437 | 0x0BFF | | | | 438 +--------+-------+----+--------+-------------- 439 | 0x0C00 | 0x10 | RW | T |Run vCPU Input 440 | | | | | 441 | | | | |- 0x0 Addr of 442 | | | | |- 0x8 Buffer S 443 +--------+-------+----+--------+-------------- 444 | 0x0C01 | 0x10 | RW | T |Run vCPU Outpu 445 | | | | | 446 | | | | |- 0x0 Addr of 447 | | | | |- 0x8 Buffer S 448 +--------+-------+----+--------+-------------- 449 | 0x0C02 | 0x08 | RW | T | vCPU VPA Addr 450 +--------+-------+----+--------+-------------- 451 | 0x0C03-| | | | Reserved 452 | 0x0FFF | | | | 453 +--------+-------+----+--------+-------------- 454 | 0x1000-| 0x08 | RW | T | GPR 0-31 455 | 0x101F | | | | 456 +--------+-------+----+--------+-------------- 457 | 0x1020 | 0x08 | T | T | HDEC expiry T 458 +--------+-------+----+--------+-------------- 459 | 0x1021 | 0x08 | RW | T | NIA 460 +--------+-------+----+--------+-------------- 461 | 0x1022 | 0x08 | RW | T | MSR 462 +--------+-------+----+--------+-------------- 463 | 0x1023 | 0x08 | RW | T | LR 464 +--------+-------+----+--------+-------------- 465 | 0x1024 | 0x08 | RW | T | XER 466 +--------+-------+----+--------+-------------- 467 | 0x1025 | 0x08 | RW | T | CTR 468 +--------+-------+----+--------+-------------- 469 | 0x1026 | 0x08 | RW | T | CFAR 470 +--------+-------+----+--------+-------------- 471 | 0x1027 | 0x08 | RW | T | SRR0 472 +--------+-------+----+--------+-------------- 473 | 0x1028 | 0x08 | RW | T | SRR1 474 +--------+-------+----+--------+-------------- 475 | 0x1029 | 0x08 | RW | T | DAR 476 +--------+-------+----+--------+-------------- 477 | 0x102A | 0x08 | RW | T | DEC expiry TB 478 +--------+-------+----+--------+-------------- 479 | 0x102B | 0x08 | RW | T | VTB 480 +--------+-------+----+--------+-------------- 481 | 0x102C | 0x08 | RW | T | LPCR 482 +--------+-------+----+--------+-------------- 483 | 0x102D | 0x08 | RW | T | HFSCR 484 +--------+-------+----+--------+-------------- 485 | 0x102E | 0x08 | RW | T | FSCR 486 +--------+-------+----+--------+-------------- 487 | 0x102F | 0x08 | RW | T | FPSCR 488 +--------+-------+----+--------+-------------- 489 | 0x1030 | 0x08 | RW | T | DAWR0 490 +--------+-------+----+--------+-------------- 491 | 0x1031 | 0x08 | RW | T | DAWR1 492 +--------+-------+----+--------+-------------- 493 | 0x1032 | 0x08 | RW | T | CIABR 494 +--------+-------+----+--------+-------------- 495 | 0x1033 | 0x08 | RW | T | PURR 496 +--------+-------+----+--------+-------------- 497 | 0x1034 | 0x08 | RW | T | SPURR 498 +--------+-------+----+--------+-------------- 499 | 0x1035 | 0x08 | RW | T | IC 500 +--------+-------+----+--------+-------------- 501 | 0x1036-| 0x08 | RW | T | SPRG 0-3 502 | 0x1039 | | | | 503 +--------+-------+----+--------+-------------- 504 | 0x103A | 0x08 | W | T | PPR 505 +--------+-------+----+--------+-------------- 506 | 0x103B | 0x08 | RW | T | MMCR 0-3 507 | 0x103E | | | | 508 +--------+-------+----+--------+-------------- 509 | 0x103F | 0x08 | RW | T | MMCRA 510 +--------+-------+----+--------+-------------- 511 | 0x1040 | 0x08 | RW | T | SIER 512 +--------+-------+----+--------+-------------- 513 | 0x1041 | 0x08 | RW | T | SIER 2 514 +--------+-------+----+--------+-------------- 515 | 0x1042 | 0x08 | RW | T | SIER 3 516 +--------+-------+----+--------+-------------- 517 | 0x1043 | 0x08 | RW | T | BESCR 518 +--------+-------+----+--------+-------------- 519 | 0x1044 | 0x08 | RW | T | EBBHR 520 +--------+-------+----+--------+-------------- 521 | 0x1045 | 0x08 | RW | T | EBBRR 522 +--------+-------+----+--------+-------------- 523 | 0x1046 | 0x08 | RW | T | AMR 524 +--------+-------+----+--------+-------------- 525 | 0x1047 | 0x08 | RW | T | IAMR 526 +--------+-------+----+--------+-------------- 527 | 0x1048 | 0x08 | RW | T | AMOR 528 +--------+-------+----+--------+-------------- 529 | 0x1049 | 0x08 | RW | T | UAMOR 530 +--------+-------+----+--------+-------------- 531 | 0x104A | 0x08 | RW | T | SDAR 532 +--------+-------+----+--------+-------------- 533 | 0x104B | 0x08 | RW | T | SIAR 534 +--------+-------+----+--------+-------------- 535 | 0x104C | 0x08 | RW | T | DSCR 536 +--------+-------+----+--------+-------------- 537 | 0x104D | 0x08 | RW | T | TAR 538 +--------+-------+----+--------+-------------- 539 | 0x104E | 0x08 | RW | T | DEXCR 540 +--------+-------+----+--------+-------------- 541 | 0x104F | 0x08 | RW | T | HDEXCR 542 +--------+-------+----+--------+-------------- 543 | 0x1050 | 0x08 | RW | T | HASHKEYR 544 +--------+-------+----+--------+-------------- 545 | 0x1051 | 0x08 | RW | T | HASHPKEYR 546 +--------+-------+----+--------+-------------- 547 | 0x1052 | 0x08 | RW | T | CTRL 548 +--------+-------+----+--------+-------------- 549 | 0x1053 | 0x08 | RW | T | DPDES 550 +--------+-------+----+--------+-------------- 551 | 0x1054-| | | | Reserved 552 | 0x1FFF | | | | 553 +--------+-------+----+--------+-------------- 554 | 0x2000 | 0x04 | RW | T | CR 555 +--------+-------+----+--------+-------------- 556 | 0x2001 | 0x04 | RW | T | PIDR 557 +--------+-------+----+--------+-------------- 558 | 0x2002 | 0x04 | RW | T | DSISR 559 +--------+-------+----+--------+-------------- 560 | 0x2003 | 0x04 | RW | T | VSCR 561 +--------+-------+----+--------+-------------- 562 | 0x2004 | 0x04 | RW | T | VRSAVE 563 +--------+-------+----+--------+-------------- 564 | 0x2005 | 0x04 | RW | T | DAWRX0 565 +--------+-------+----+--------+-------------- 566 | 0x2006 | 0x04 | RW | T | DAWRX1 567 +--------+-------+----+--------+-------------- 568 | 0x2007-| 0x04 | RW | T | PMC 1-6 569 | 0x200c | | | | 570 +--------+-------+----+--------+-------------- 571 | 0x200D | 0x04 | RW | T | WORT 572 +--------+-------+----+--------+-------------- 573 | 0x200E | 0x04 | RW | T | PSPB 574 +--------+-------+----+--------+-------------- 575 | 0x200F-| | | | Reserved 576 | 0x2FFF | | | | 577 +--------+-------+----+--------+-------------- 578 | 0x3000-| 0x10 | RW | T | VSR 0-63 579 | 0x303F | | | | 580 +--------+-------+----+--------+-------------- 581 | 0x3040-| | | | Reserved 582 | 0xEFFF | | | | 583 +--------+-------+----+--------+-------------- 584 | 0xF000 | 0x08 | R | T | HDAR 585 +--------+-------+----+--------+-------------- 586 | 0xF001 | 0x04 | R | T | HDSISR 587 +--------+-------+----+--------+-------------- 588 | 0xF002 | 0x04 | R | T | HEIR 589 +--------+-------+----+--------+-------------- 590 | 0xF003 | 0x08 | R | T | ASDR 591 +--------+-------+----+--------+-------------- 592 593 594 Miscellaneous info 595 ================== 596 597 State not in ptregs/hvregs 598 -------------------------- 599 600 In the v1 API, some state is not in the ptregs 601 the vector register and some SPRs. For the L1 602 the L2, the L1 loads up these hardware registe 603 h_enter_nested() call and the L0 ensures they 604 (by not touching them). 605 606 The v2 API removes this and explicitly sets th 607 608 L1 Implementation details: Caching state 609 ---------------------------------------- 610 611 In the v1 API, all state is sent from the L1 t 612 on every h_enter_nested() hcall. If the L0 is 613 any L2s, the L0 has no state information about 614 exception to this is the location of the parti 615 via h_set_partition_table(). 616 617 The v2 API changes this so that the L0 retains 618 it's vCPUs are no longer running. This means t 619 communicate with the L0 about L2 state when it 620 state, or when it's value is out of date. This 621 for performance optimisation. 622 623 When a vCPU exits from a H_GUEST_RUN_VCPU() ca 624 marks all L2 state as invalid. This means that 625 the L2 state (say via a kvm_get_one_reg() call 626 H_GUEST_GET_STATE() to get that state. Once it 627 valid in L1 until the L2 is run again. 628 629 Also, when an L1 modifies L2 vcpu state, it do 630 to the L0 until that L2 vcpu runs again. Hence 631 state (say via a kvm_set_one_reg() call), it w 632 copy and only flushes this copy to the L0 when 633 the H_GUEST_VCPU_RUN() input buffer. 634 635 This lazy updating of state by the L1 avoids u 636 H_GUEST_{G|S}ET_STATE() calls.
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.