1 ================================ 1 ================================ 2 Application Data Integrity (ADI) 2 Application Data Integrity (ADI) 3 ================================ 3 ================================ 4 4 5 SPARC M7 processor adds the Application Data I 5 SPARC M7 processor adds the Application Data Integrity (ADI) feature. 6 ADI allows a task to set version tags on any s 6 ADI allows a task to set version tags on any subset of its address 7 space. Once ADI is enabled and version tags ar 7 space. Once ADI is enabled and version tags are set for ranges of 8 address space of a task, the processor will co 8 address space of a task, the processor will compare the tag in pointers 9 to memory in these ranges to the version set b 9 to memory in these ranges to the version set by the application 10 previously. Access to memory is granted only i 10 previously. Access to memory is granted only if the tag in given pointer 11 matches the tag set by the application. In cas 11 matches the tag set by the application. In case of mismatch, processor 12 raises an exception. 12 raises an exception. 13 13 14 Following steps must be taken by a task to ena 14 Following steps must be taken by a task to enable ADI fully: 15 15 16 1. Set the user mode PSTATE.mcde bit. This act 16 1. Set the user mode PSTATE.mcde bit. This acts as master switch for 17 the task's entire address space to enable/d 17 the task's entire address space to enable/disable ADI for the task. 18 18 19 2. Set TTE.mcd bit on any TLB entries that cor 19 2. Set TTE.mcd bit on any TLB entries that correspond to the range of 20 addresses ADI is being enabled on. MMU chec 20 addresses ADI is being enabled on. MMU checks the version tag only 21 on the pages that have TTE.mcd bit set. 21 on the pages that have TTE.mcd bit set. 22 22 23 3. Set the version tag for virtual addresses u 23 3. Set the version tag for virtual addresses using stxa instruction 24 and one of the MCD specific ASIs. Each stxa 24 and one of the MCD specific ASIs. Each stxa instruction sets the 25 given tag for one ADI block size number of 25 given tag for one ADI block size number of bytes. This step must 26 be repeated for entire page to set tags for 26 be repeated for entire page to set tags for entire page. 27 27 28 ADI block size for the platform is provided by 28 ADI block size for the platform is provided by the hypervisor to kernel 29 in machine description tables. Hypervisor also 29 in machine description tables. Hypervisor also provides the number of 30 top bits in the virtual address that specify t 30 top bits in the virtual address that specify the version tag. Once 31 version tag has been set for a memory location 31 version tag has been set for a memory location, the tag is stored in the 32 physical memory and the same tag must be prese 32 physical memory and the same tag must be present in the ADI version tag 33 bits of the virtual address being presented to 33 bits of the virtual address being presented to the MMU. For example on 34 SPARC M7 processor, MMU uses bits 63-60 for ve 34 SPARC M7 processor, MMU uses bits 63-60 for version tags and ADI block 35 size is same as cacheline size which is 64 byt 35 size is same as cacheline size which is 64 bytes. A task that sets ADI 36 version to, say 10, on a range of memory, must 36 version to, say 10, on a range of memory, must access that memory using 37 virtual addresses that contain 0xa in bits 63- 37 virtual addresses that contain 0xa in bits 63-60. 38 38 39 ADI is enabled on a set of pages using mprotec 39 ADI is enabled on a set of pages using mprotect() with PROT_ADI flag. 40 When ADI is enabled on a set of pages by a tas 40 When ADI is enabled on a set of pages by a task for the first time, 41 kernel sets the PSTATE.mcde bit for the task. 41 kernel sets the PSTATE.mcde bit for the task. Version tags for memory 42 addresses are set with an stxa instruction on 42 addresses are set with an stxa instruction on the addresses using 43 ASI_MCD_PRIMARY or ASI_MCD_ST_BLKINIT_PRIMARY. 43 ASI_MCD_PRIMARY or ASI_MCD_ST_BLKINIT_PRIMARY. ADI block size is 44 provided by the hypervisor to the kernel. Ker 44 provided by the hypervisor to the kernel. Kernel returns the value of 45 ADI block size to userspace using auxiliary ve 45 ADI block size to userspace using auxiliary vector along with other ADI 46 info. Following auxiliary vectors are provided 46 info. Following auxiliary vectors are provided by the kernel: 47 47 48 ============ ====================== 48 ============ =========================================== 49 AT_ADI_BLKSZ ADI block size. This i 49 AT_ADI_BLKSZ ADI block size. This is the granularity and 50 alignment, in bytes, o 50 alignment, in bytes, of ADI versioning. 51 AT_ADI_NBITS Number of ADI version 51 AT_ADI_NBITS Number of ADI version bits in the VA 52 ============ ====================== 52 ============ =========================================== 53 53 54 54 55 IMPORTANT NOTES 55 IMPORTANT NOTES 56 =============== 56 =============== 57 57 58 - Version tag values of 0x0 and 0xf are reserv 58 - Version tag values of 0x0 and 0xf are reserved. These values match any 59 tag in virtual address and never generate a 59 tag in virtual address and never generate a mismatch exception. 60 60 61 - Version tags are set on virtual addresses fr 61 - Version tags are set on virtual addresses from userspace even though 62 tags are stored in physical memory. Tags are 62 tags are stored in physical memory. Tags are set on a physical page 63 after it has been allocated to a task and a 63 after it has been allocated to a task and a pte has been created for 64 it. 64 it. 65 65 66 - When a task frees a memory page it had set v 66 - When a task frees a memory page it had set version tags on, the page 67 goes back to free page pool. When this page 67 goes back to free page pool. When this page is re-allocated to a task, 68 kernel clears the page using block initializ 68 kernel clears the page using block initialization ASI which clears the 69 version tags as well for the page. If a page 69 version tags as well for the page. If a page allocated to a task is 70 freed and allocated back to the same task, o 70 freed and allocated back to the same task, old version tags set by the 71 task on that page will no longer be present. 71 task on that page will no longer be present. 72 72 73 - ADI tag mismatches are not detected for non- 73 - ADI tag mismatches are not detected for non-faulting loads. 74 74 75 - Kernel does not set any tags for user pages 75 - Kernel does not set any tags for user pages and it is entirely a 76 task's responsibility to set any version tag 76 task's responsibility to set any version tags. Kernel does ensure the 77 version tags are preserved if a page is swap 77 version tags are preserved if a page is swapped out to the disk and 78 swapped back in. It also preserves that vers 78 swapped back in. It also preserves that version tags if a page is 79 migrated. 79 migrated. 80 80 81 - ADI works for any size pages. A userspace ta 81 - ADI works for any size pages. A userspace task need not be aware of 82 page size when using ADI. It can simply sele 82 page size when using ADI. It can simply select a virtual address 83 range, enable ADI on the range using mprotec 83 range, enable ADI on the range using mprotect() and set version tags 84 for the entire range. mprotect() ensures ran 84 for the entire range. mprotect() ensures range is aligned to page size 85 and is a multiple of page size. 85 and is a multiple of page size. 86 86 87 - ADI tags can only be set on writable memory. 87 - ADI tags can only be set on writable memory. For example, ADI tags can 88 not be set on read-only mappings. 88 not be set on read-only mappings. 89 89 90 90 91 91 92 ADI related traps 92 ADI related traps 93 ================= 93 ================= 94 94 95 With ADI enabled, following new traps may occu 95 With ADI enabled, following new traps may occur: 96 96 97 Disrupting memory corruption 97 Disrupting memory corruption 98 ---------------------------- 98 ---------------------------- 99 99 100 When a store accesses a memory locatio 100 When a store accesses a memory location that has TTE.mcd=1, 101 the task is running with ADI enabled ( 101 the task is running with ADI enabled (PSTATE.mcde=1), and the ADI 102 tag in the address used (bits 63:60) d 102 tag in the address used (bits 63:60) does not match the tag set on 103 the corresponding cacheline, a memory 103 the corresponding cacheline, a memory corruption trap occurs. By 104 default, it is a disrupting trap and i 104 default, it is a disrupting trap and is sent to the hypervisor 105 first. Hypervisor creates a sun4v erro 105 first. Hypervisor creates a sun4v error report and sends a 106 resumable error (TT=0x7e) trap to the 106 resumable error (TT=0x7e) trap to the kernel. The kernel sends 107 a SIGSEGV to the task that resulted in 107 a SIGSEGV to the task that resulted in this trap with the following 108 info:: 108 info:: 109 109 110 siginfo.si_signo = SIGSEGV; 110 siginfo.si_signo = SIGSEGV; 111 siginfo.errno = 0; 111 siginfo.errno = 0; 112 siginfo.si_code = SEGV_ADIDERR 112 siginfo.si_code = SEGV_ADIDERR; 113 siginfo.si_addr = addr; /* PC 113 siginfo.si_addr = addr; /* PC where first mismatch occurred */ 114 siginfo.si_trapno = 0; 114 siginfo.si_trapno = 0; 115 115 116 116 117 Precise memory corruption 117 Precise memory corruption 118 ------------------------- 118 ------------------------- 119 119 120 When a store accesses a memory locatio 120 When a store accesses a memory location that has TTE.mcd=1, 121 the task is running with ADI enabled ( 121 the task is running with ADI enabled (PSTATE.mcde=1), and the ADI 122 tag in the address used (bits 63:60) d 122 tag in the address used (bits 63:60) does not match the tag set on 123 the corresponding cacheline, a memory 123 the corresponding cacheline, a memory corruption trap occurs. If 124 MCD precise exception is enabled (MCDP 124 MCD precise exception is enabled (MCDPERR=1), a precise 125 exception is sent to the kernel with T 125 exception is sent to the kernel with TT=0x1a. The kernel sends 126 a SIGSEGV to the task that resulted in 126 a SIGSEGV to the task that resulted in this trap with the following 127 info:: 127 info:: 128 128 129 siginfo.si_signo = SIGSEGV; 129 siginfo.si_signo = SIGSEGV; 130 siginfo.errno = 0; 130 siginfo.errno = 0; 131 siginfo.si_code = SEGV_ADIPERR 131 siginfo.si_code = SEGV_ADIPERR; 132 siginfo.si_addr = addr; /* add 132 siginfo.si_addr = addr; /* address that caused trap */ 133 siginfo.si_trapno = 0; 133 siginfo.si_trapno = 0; 134 134 135 NOTE: 135 NOTE: 136 ADI tag mismatch on a load alw 136 ADI tag mismatch on a load always results in precise trap. 137 137 138 138 139 MCD disabled 139 MCD disabled 140 ------------ 140 ------------ 141 141 142 When a task has not enabled ADI and at 142 When a task has not enabled ADI and attempts to set ADI version 143 on a memory address, processor sends a 143 on a memory address, processor sends an MCD disabled trap. This 144 trap is handled by hypervisor first an 144 trap is handled by hypervisor first and the hypervisor vectors this 145 trap through to the kernel as Data Acc 145 trap through to the kernel as Data Access Exception trap with 146 fault type set to 0xa (invalid ASI). W 146 fault type set to 0xa (invalid ASI). When this occurs, the kernel 147 sends the task SIGSEGV signal with fol 147 sends the task SIGSEGV signal with following info:: 148 148 149 siginfo.si_signo = SIGSEGV; 149 siginfo.si_signo = SIGSEGV; 150 siginfo.errno = 0; 150 siginfo.errno = 0; 151 siginfo.si_code = SEGV_ACCADI; 151 siginfo.si_code = SEGV_ACCADI; 152 siginfo.si_addr = addr; /* add 152 siginfo.si_addr = addr; /* address that caused trap */ 153 siginfo.si_trapno = 0; 153 siginfo.si_trapno = 0; 154 154 155 155 156 Sample program to use ADI 156 Sample program to use ADI 157 ------------------------- 157 ------------------------- 158 158 159 Following sample program is meant to illustrat 159 Following sample program is meant to illustrate how to use the ADI 160 functionality:: 160 functionality:: 161 161 162 #include <unistd.h> 162 #include <unistd.h> 163 #include <stdio.h> 163 #include <stdio.h> 164 #include <stdlib.h> 164 #include <stdlib.h> 165 #include <elf.h> 165 #include <elf.h> 166 #include <sys/ipc.h> 166 #include <sys/ipc.h> 167 #include <sys/shm.h> 167 #include <sys/shm.h> 168 #include <sys/mman.h> 168 #include <sys/mman.h> 169 #include <asm/asi.h> 169 #include <asm/asi.h> 170 170 171 #ifndef AT_ADI_BLKSZ 171 #ifndef AT_ADI_BLKSZ 172 #define AT_ADI_BLKSZ 48 172 #define AT_ADI_BLKSZ 48 173 #endif 173 #endif 174 #ifndef AT_ADI_NBITS 174 #ifndef AT_ADI_NBITS 175 #define AT_ADI_NBITS 49 175 #define AT_ADI_NBITS 49 176 #endif 176 #endif 177 177 178 #ifndef PROT_ADI 178 #ifndef PROT_ADI 179 #define PROT_ADI 0x10 179 #define PROT_ADI 0x10 180 #endif 180 #endif 181 181 182 #define BUFFER_SIZE 32*1024*1024UL 182 #define BUFFER_SIZE 32*1024*1024UL 183 183 184 main(int argc, char* argv[], char* envp[]) 184 main(int argc, char* argv[], char* envp[]) 185 { 185 { 186 unsigned long i, mcde, adi_blksz, ad 186 unsigned long i, mcde, adi_blksz, adi_nbits; 187 char *shmaddr, *tmp_addr, *end, *ver 187 char *shmaddr, *tmp_addr, *end, *veraddr, *clraddr; 188 int shmid, version; 188 int shmid, version; 189 Elf64_auxv_t *auxv; 189 Elf64_auxv_t *auxv; 190 190 191 adi_blksz = 0; 191 adi_blksz = 0; 192 192 193 while(*envp++ != NULL); 193 while(*envp++ != NULL); 194 for (auxv = (Elf64_auxv_t *)envp; auxv 194 for (auxv = (Elf64_auxv_t *)envp; auxv->a_type != AT_NULL; auxv++) { 195 switch (auxv->a_type) { 195 switch (auxv->a_type) { 196 case AT_ADI_BLKSZ: 196 case AT_ADI_BLKSZ: 197 adi_blksz = auxv->a_un 197 adi_blksz = auxv->a_un.a_val; 198 break; 198 break; 199 case AT_ADI_NBITS: 199 case AT_ADI_NBITS: 200 adi_nbits = auxv->a_un 200 adi_nbits = auxv->a_un.a_val; 201 break; 201 break; 202 } 202 } 203 } 203 } 204 if (adi_blksz == 0) { 204 if (adi_blksz == 0) { 205 fprintf(stderr, "Oops! ADI is 205 fprintf(stderr, "Oops! ADI is not supported\n"); 206 exit(1); 206 exit(1); 207 } 207 } 208 208 209 printf("ADI capabilities:\n"); 209 printf("ADI capabilities:\n"); 210 printf("\tBlock size = %ld\n", adi_blk 210 printf("\tBlock size = %ld\n", adi_blksz); 211 printf("\tNumber of bits = %ld\n", adi 211 printf("\tNumber of bits = %ld\n", adi_nbits); 212 212 213 if ((shmid = shmget(2, BUFFER_SIZE, 213 if ((shmid = shmget(2, BUFFER_SIZE, 214 IPC_CREAT | 214 IPC_CREAT | SHM_R | SHM_W)) < 0) { 215 perror("shmget failed"); 215 perror("shmget failed"); 216 exit(1); 216 exit(1); 217 } 217 } 218 218 219 shmaddr = shmat(shmid, NULL, 0); 219 shmaddr = shmat(shmid, NULL, 0); 220 if (shmaddr == (char *)-1) { 220 if (shmaddr == (char *)-1) { 221 perror("shm attach failed"); 221 perror("shm attach failed"); 222 shmctl(shmid, IPC_RMID, NULL 222 shmctl(shmid, IPC_RMID, NULL); 223 exit(1); 223 exit(1); 224 } 224 } 225 225 226 if (mprotect(shmaddr, BUFFER_SIZE, PRO 226 if (mprotect(shmaddr, BUFFER_SIZE, PROT_READ|PROT_WRITE|PROT_ADI)) { 227 perror("mprotect failed"); 227 perror("mprotect failed"); 228 goto err_out; 228 goto err_out; 229 } 229 } 230 230 231 /* Set the ADI version tag on the sh 231 /* Set the ADI version tag on the shm segment 232 */ 232 */ 233 version = 10; 233 version = 10; 234 tmp_addr = shmaddr; 234 tmp_addr = shmaddr; 235 end = shmaddr + BUFFER_SIZE; 235 end = shmaddr + BUFFER_SIZE; 236 while (tmp_addr < end) { 236 while (tmp_addr < end) { 237 asm volatile( 237 asm volatile( 238 "stxa %1, [%0]0x90\n 238 "stxa %1, [%0]0x90\n\t" 239 : 239 : 240 : "r" (tmp_addr), "r 240 : "r" (tmp_addr), "r" (version)); 241 tmp_addr += adi_blksz; 241 tmp_addr += adi_blksz; 242 } 242 } 243 asm volatile("membar #Sync\n\t"); 243 asm volatile("membar #Sync\n\t"); 244 244 245 /* Create a versioned address from t 245 /* Create a versioned address from the normal address by placing 246 * version tag in the upper adi_nbits 246 * version tag in the upper adi_nbits bits 247 */ 247 */ 248 tmp_addr = (void *) ((unsigned long) 248 tmp_addr = (void *) ((unsigned long)shmaddr << adi_nbits); 249 tmp_addr = (void *) ((unsigned long) 249 tmp_addr = (void *) ((unsigned long)tmp_addr >> adi_nbits); 250 veraddr = (void *) (((unsigned long) 250 veraddr = (void *) (((unsigned long)version << (64-adi_nbits)) 251 | (unsigned long)tmp 251 | (unsigned long)tmp_addr); 252 252 253 printf("Starting the writes:\n"); 253 printf("Starting the writes:\n"); 254 for (i = 0; i < BUFFER_SIZE; i++) { 254 for (i = 0; i < BUFFER_SIZE; i++) { 255 veraddr[i] = (char)(i); 255 veraddr[i] = (char)(i); 256 if (!(i % (1024 * 1024))) 256 if (!(i % (1024 * 1024))) 257 printf("."); 257 printf("."); 258 } 258 } 259 printf("\n"); 259 printf("\n"); 260 260 261 printf("Verifying data..."); 261 printf("Verifying data..."); 262 fflush(stdout); 262 fflush(stdout); 263 for (i = 0; i < BUFFER_SIZE; i++) 263 for (i = 0; i < BUFFER_SIZE; i++) 264 if (veraddr[i] != (char)i) 264 if (veraddr[i] != (char)i) 265 printf("\nIndex %lu 265 printf("\nIndex %lu mismatched\n", i); 266 printf("Done.\n"); 266 printf("Done.\n"); 267 267 268 /* Disable ADI and clean up 268 /* Disable ADI and clean up 269 */ 269 */ 270 if (mprotect(shmaddr, BUFFER_SIZE, PRO 270 if (mprotect(shmaddr, BUFFER_SIZE, PROT_READ|PROT_WRITE)) { 271 perror("mprotect failed"); 271 perror("mprotect failed"); 272 goto err_out; 272 goto err_out; 273 } 273 } 274 274 275 if (shmdt((const void *)shmaddr) != 275 if (shmdt((const void *)shmaddr) != 0) 276 perror("Detach failure"); 276 perror("Detach failure"); 277 shmctl(shmid, IPC_RMID, NULL); 277 shmctl(shmid, IPC_RMID, NULL); 278 278 279 exit(0); 279 exit(0); 280 280 281 err_out: 281 err_out: 282 if (shmdt((const void *)shmaddr) != 282 if (shmdt((const void *)shmaddr) != 0) 283 perror("Detach failure"); 283 perror("Detach failure"); 284 shmctl(shmid, IPC_RMID, NULL); 284 shmctl(shmid, IPC_RMID, NULL); 285 exit(1); 285 exit(1); 286 } 286 }
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.