1 ===================== 1 ===================== 2 BPF Type Format (BTF) 2 BPF Type Format (BTF) 3 ===================== 3 ===================== 4 4 5 1. Introduction 5 1. Introduction 6 =============== 6 =============== 7 7 8 BTF (BPF Type Format) is the metadata format w 8 BTF (BPF Type Format) is the metadata format which encodes the debug info 9 related to BPF program/map. The name BTF was u 9 related to BPF program/map. The name BTF was used initially to describe data 10 types. The BTF was later extended to include f 10 types. The BTF was later extended to include function info for defined 11 subroutines, and line info for source/line inf 11 subroutines, and line info for source/line information. 12 12 13 The debug info is used for map pretty print, f 13 The debug info is used for map pretty print, function signature, etc. The 14 function signature enables better bpf program/ 14 function signature enables better bpf program/function kernel symbol. The line 15 info helps generate source annotated translate 15 info helps generate source annotated translated byte code, jited code and 16 verifier log. 16 verifier log. 17 17 18 The BTF specification contains two parts, 18 The BTF specification contains two parts, 19 * BTF kernel API 19 * BTF kernel API 20 * BTF ELF file format 20 * BTF ELF file format 21 21 22 The kernel API is the contract between user sp 22 The kernel API is the contract between user space and kernel. The kernel 23 verifies the BTF info before using it. The ELF 23 verifies the BTF info before using it. The ELF file format is a user space 24 contract between ELF file and libbpf loader. 24 contract between ELF file and libbpf loader. 25 25 26 The type and string sections are part of the B 26 The type and string sections are part of the BTF kernel API, describing the 27 debug info (mostly types related) referenced b 27 debug info (mostly types related) referenced by the bpf program. These two 28 sections are discussed in details in :ref:`BTF 28 sections are discussed in details in :ref:`BTF_Type_String`. 29 29 30 .. _BTF_Type_String: 30 .. _BTF_Type_String: 31 31 32 2. BTF Type and String Encoding 32 2. BTF Type and String Encoding 33 =============================== 33 =============================== 34 34 35 The file ``include/uapi/linux/btf.h`` provides 35 The file ``include/uapi/linux/btf.h`` provides high-level definition of how 36 types/strings are encoded. 36 types/strings are encoded. 37 37 38 The beginning of data blob must be:: 38 The beginning of data blob must be:: 39 39 40 struct btf_header { 40 struct btf_header { 41 __u16 magic; 41 __u16 magic; 42 __u8 version; 42 __u8 version; 43 __u8 flags; 43 __u8 flags; 44 __u32 hdr_len; 44 __u32 hdr_len; 45 45 46 /* All offsets are in bytes relative t 46 /* All offsets are in bytes relative to the end of this header */ 47 __u32 type_off; /* offset of t 47 __u32 type_off; /* offset of type section */ 48 __u32 type_len; /* length of t 48 __u32 type_len; /* length of type section */ 49 __u32 str_off; /* offset of s 49 __u32 str_off; /* offset of string section */ 50 __u32 str_len; /* length of s 50 __u32 str_len; /* length of string section */ 51 }; 51 }; 52 52 53 The magic is ``0xeB9F``, which has different e 53 The magic is ``0xeB9F``, which has different encoding for big and little 54 endian systems, and can be used to test whethe 54 endian systems, and can be used to test whether BTF is generated for big- or 55 little-endian target. The ``btf_header`` is de 55 little-endian target. The ``btf_header`` is designed to be extensible with 56 ``hdr_len`` equal to ``sizeof(struct btf_heade 56 ``hdr_len`` equal to ``sizeof(struct btf_header)`` when a data blob is 57 generated. 57 generated. 58 58 59 2.1 String Encoding 59 2.1 String Encoding 60 ------------------- 60 ------------------- 61 61 62 The first string in the string section must be 62 The first string in the string section must be a null string. The rest of 63 string table is a concatenation of other null- 63 string table is a concatenation of other null-terminated strings. 64 64 65 2.2 Type Encoding 65 2.2 Type Encoding 66 ----------------- 66 ----------------- 67 67 68 The type id ``0`` is reserved for ``void`` typ 68 The type id ``0`` is reserved for ``void`` type. The type section is parsed 69 sequentially and type id is assigned to each r 69 sequentially and type id is assigned to each recognized type starting from id 70 ``1``. Currently, the following types are supp 70 ``1``. Currently, the following types are supported:: 71 71 72 #define BTF_KIND_INT 1 /* 72 #define BTF_KIND_INT 1 /* Integer */ 73 #define BTF_KIND_PTR 2 /* 73 #define BTF_KIND_PTR 2 /* Pointer */ 74 #define BTF_KIND_ARRAY 3 /* 74 #define BTF_KIND_ARRAY 3 /* Array */ 75 #define BTF_KIND_STRUCT 4 /* 75 #define BTF_KIND_STRUCT 4 /* Struct */ 76 #define BTF_KIND_UNION 5 /* 76 #define BTF_KIND_UNION 5 /* Union */ 77 #define BTF_KIND_ENUM 6 /* !! 77 #define BTF_KIND_ENUM 6 /* Enumeration */ 78 #define BTF_KIND_FWD 7 /* 78 #define BTF_KIND_FWD 7 /* Forward */ 79 #define BTF_KIND_TYPEDEF 8 /* 79 #define BTF_KIND_TYPEDEF 8 /* Typedef */ 80 #define BTF_KIND_VOLATILE 9 /* 80 #define BTF_KIND_VOLATILE 9 /* Volatile */ 81 #define BTF_KIND_CONST 10 /* 81 #define BTF_KIND_CONST 10 /* Const */ 82 #define BTF_KIND_RESTRICT 11 /* 82 #define BTF_KIND_RESTRICT 11 /* Restrict */ 83 #define BTF_KIND_FUNC 12 /* 83 #define BTF_KIND_FUNC 12 /* Function */ 84 #define BTF_KIND_FUNC_PROTO 13 /* 84 #define BTF_KIND_FUNC_PROTO 13 /* Function Proto */ 85 #define BTF_KIND_VAR 14 /* 85 #define BTF_KIND_VAR 14 /* Variable */ 86 #define BTF_KIND_DATASEC 15 /* 86 #define BTF_KIND_DATASEC 15 /* Section */ 87 #define BTF_KIND_FLOAT 16 /* 87 #define BTF_KIND_FLOAT 16 /* Floating point */ 88 #define BTF_KIND_DECL_TAG 17 /* 88 #define BTF_KIND_DECL_TAG 17 /* Decl Tag */ 89 #define BTF_KIND_TYPE_TAG 18 /* 89 #define BTF_KIND_TYPE_TAG 18 /* Type Tag */ 90 #define BTF_KIND_ENUM64 19 /* << 91 90 92 Note that the type section encodes debug info, 91 Note that the type section encodes debug info, not just pure types. 93 ``BTF_KIND_FUNC`` is not a type, and it repres 92 ``BTF_KIND_FUNC`` is not a type, and it represents a defined subprogram. 94 93 95 Each type contains the following common data:: 94 Each type contains the following common data:: 96 95 97 struct btf_type { 96 struct btf_type { 98 __u32 name_off; 97 __u32 name_off; 99 /* "info" bits arrangement 98 /* "info" bits arrangement 100 * bits 0-15: vlen (e.g. # of struct' 99 * bits 0-15: vlen (e.g. # of struct's members) 101 * bits 16-23: unused 100 * bits 16-23: unused 102 * bits 24-28: kind (e.g. int, ptr, ar 101 * bits 24-28: kind (e.g. int, ptr, array...etc) 103 * bits 29-30: unused 102 * bits 29-30: unused 104 * bit 31: kind_flag, currently us 103 * bit 31: kind_flag, currently used by 105 * struct, union, fwd, enu !! 104 * struct, union and fwd 106 */ 105 */ 107 __u32 info; 106 __u32 info; 108 /* "size" is used by INT, ENUM, STRUCT !! 107 /* "size" is used by INT, ENUM, STRUCT and UNION. 109 * "size" tells the size of the type i 108 * "size" tells the size of the type it is describing. 110 * 109 * 111 * "type" is used by PTR, TYPEDEF, VOL 110 * "type" is used by PTR, TYPEDEF, VOLATILE, CONST, RESTRICT, 112 * FUNC, FUNC_PROTO, DECL_TAG and TYPE 111 * FUNC, FUNC_PROTO, DECL_TAG and TYPE_TAG. 113 * "type" is a type_id referring to an 112 * "type" is a type_id referring to another type. 114 */ 113 */ 115 union { 114 union { 116 __u32 size; 115 __u32 size; 117 __u32 type; 116 __u32 type; 118 }; 117 }; 119 }; 118 }; 120 119 121 For certain kinds, the common data are followe 120 For certain kinds, the common data are followed by kind-specific data. The 122 ``name_off`` in ``struct btf_type`` specifies 121 ``name_off`` in ``struct btf_type`` specifies the offset in the string table. 123 The following sections detail encoding of each 122 The following sections detail encoding of each kind. 124 123 125 2.2.1 BTF_KIND_INT 124 2.2.1 BTF_KIND_INT 126 ~~~~~~~~~~~~~~~~~~ 125 ~~~~~~~~~~~~~~~~~~ 127 126 128 ``struct btf_type`` encoding requirement: 127 ``struct btf_type`` encoding requirement: 129 * ``name_off``: any valid offset 128 * ``name_off``: any valid offset 130 * ``info.kind_flag``: 0 129 * ``info.kind_flag``: 0 131 * ``info.kind``: BTF_KIND_INT 130 * ``info.kind``: BTF_KIND_INT 132 * ``info.vlen``: 0 131 * ``info.vlen``: 0 133 * ``size``: the size of the int type in bytes 132 * ``size``: the size of the int type in bytes. 134 133 135 ``btf_type`` is followed by a ``u32`` with the 134 ``btf_type`` is followed by a ``u32`` with the following bits arrangement:: 136 135 137 #define BTF_INT_ENCODING(VAL) (((VAL) & 0x 136 #define BTF_INT_ENCODING(VAL) (((VAL) & 0x0f000000) >> 24) 138 #define BTF_INT_OFFSET(VAL) (((VAL) & 0x 137 #define BTF_INT_OFFSET(VAL) (((VAL) & 0x00ff0000) >> 16) 139 #define BTF_INT_BITS(VAL) ((VAL) & 0x 138 #define BTF_INT_BITS(VAL) ((VAL) & 0x000000ff) 140 139 141 The ``BTF_INT_ENCODING`` has the following att 140 The ``BTF_INT_ENCODING`` has the following attributes:: 142 141 143 #define BTF_INT_SIGNED (1 << 0) 142 #define BTF_INT_SIGNED (1 << 0) 144 #define BTF_INT_CHAR (1 << 1) 143 #define BTF_INT_CHAR (1 << 1) 145 #define BTF_INT_BOOL (1 << 2) 144 #define BTF_INT_BOOL (1 << 2) 146 145 147 The ``BTF_INT_ENCODING()`` provides extra info 146 The ``BTF_INT_ENCODING()`` provides extra information: signedness, char, or 148 bool, for the int type. The char and bool enco 147 bool, for the int type. The char and bool encoding are mostly useful for 149 pretty print. At most one encoding can be spec 148 pretty print. At most one encoding can be specified for the int type. 150 149 151 The ``BTF_INT_BITS()`` specifies the number of 150 The ``BTF_INT_BITS()`` specifies the number of actual bits held by this int 152 type. For example, a 4-bit bitfield encodes `` 151 type. For example, a 4-bit bitfield encodes ``BTF_INT_BITS()`` equals to 4. 153 The ``btf_type.size * 8`` must be equal to or 152 The ``btf_type.size * 8`` must be equal to or greater than ``BTF_INT_BITS()`` 154 for the type. The maximum value of ``BTF_INT_B 153 for the type. The maximum value of ``BTF_INT_BITS()`` is 128. 155 154 156 The ``BTF_INT_OFFSET()`` specifies the startin 155 The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values 157 for this int. For example, a bitfield struct m 156 for this int. For example, a bitfield struct member has: 158 157 159 * btf member bit offset 100 from the start of 158 * btf member bit offset 100 from the start of the structure, 160 * btf member pointing to an int type, 159 * btf member pointing to an int type, 161 * the int type has ``BTF_INT_OFFSET() = 2`` a 160 * the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4`` 162 161 163 Then in the struct memory layout, this member 162 Then in the struct memory layout, this member will occupy ``4`` bits starting 164 from bits ``100 + 2 = 102``. 163 from bits ``100 + 2 = 102``. 165 164 166 Alternatively, the bitfield struct member can 165 Alternatively, the bitfield struct member can be the following to access the 167 same bits as the above: 166 same bits as the above: 168 167 169 * btf member bit offset 102, 168 * btf member bit offset 102, 170 * btf member pointing to an int type, 169 * btf member pointing to an int type, 171 * the int type has ``BTF_INT_OFFSET() = 0`` a 170 * the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4`` 172 171 173 The original intention of ``BTF_INT_OFFSET()`` 172 The original intention of ``BTF_INT_OFFSET()`` is to provide flexibility of 174 bitfield encoding. Currently, both llvm and pa 173 bitfield encoding. Currently, both llvm and pahole generate 175 ``BTF_INT_OFFSET() = 0`` for all int types. 174 ``BTF_INT_OFFSET() = 0`` for all int types. 176 175 177 2.2.2 BTF_KIND_PTR 176 2.2.2 BTF_KIND_PTR 178 ~~~~~~~~~~~~~~~~~~ 177 ~~~~~~~~~~~~~~~~~~ 179 178 180 ``struct btf_type`` encoding requirement: 179 ``struct btf_type`` encoding requirement: 181 * ``name_off``: 0 180 * ``name_off``: 0 182 * ``info.kind_flag``: 0 181 * ``info.kind_flag``: 0 183 * ``info.kind``: BTF_KIND_PTR 182 * ``info.kind``: BTF_KIND_PTR 184 * ``info.vlen``: 0 183 * ``info.vlen``: 0 185 * ``type``: the pointee type of the pointer 184 * ``type``: the pointee type of the pointer 186 185 187 No additional type data follow ``btf_type``. 186 No additional type data follow ``btf_type``. 188 187 189 2.2.3 BTF_KIND_ARRAY 188 2.2.3 BTF_KIND_ARRAY 190 ~~~~~~~~~~~~~~~~~~~~ 189 ~~~~~~~~~~~~~~~~~~~~ 191 190 192 ``struct btf_type`` encoding requirement: 191 ``struct btf_type`` encoding requirement: 193 * ``name_off``: 0 192 * ``name_off``: 0 194 * ``info.kind_flag``: 0 193 * ``info.kind_flag``: 0 195 * ``info.kind``: BTF_KIND_ARRAY 194 * ``info.kind``: BTF_KIND_ARRAY 196 * ``info.vlen``: 0 195 * ``info.vlen``: 0 197 * ``size/type``: 0, not used 196 * ``size/type``: 0, not used 198 197 199 ``btf_type`` is followed by one ``struct btf_a 198 ``btf_type`` is followed by one ``struct btf_array``:: 200 199 201 struct btf_array { 200 struct btf_array { 202 __u32 type; 201 __u32 type; 203 __u32 index_type; 202 __u32 index_type; 204 __u32 nelems; 203 __u32 nelems; 205 }; 204 }; 206 205 207 The ``struct btf_array`` encoding: 206 The ``struct btf_array`` encoding: 208 * ``type``: the element type 207 * ``type``: the element type 209 * ``index_type``: the index type 208 * ``index_type``: the index type 210 * ``nelems``: the number of elements for thi 209 * ``nelems``: the number of elements for this array (``0`` is also allowed). 211 210 212 The ``index_type`` can be any regular int type 211 The ``index_type`` can be any regular int type (``u8``, ``u16``, ``u32``, 213 ``u64``, ``unsigned __int128``). The original 212 ``u64``, ``unsigned __int128``). The original design of including 214 ``index_type`` follows DWARF, which has an ``i 213 ``index_type`` follows DWARF, which has an ``index_type`` for its array type. 215 Currently in BTF, beyond type verification, th 214 Currently in BTF, beyond type verification, the ``index_type`` is not used. 216 215 217 The ``struct btf_array`` allows chaining throu 216 The ``struct btf_array`` allows chaining through element type to represent 218 multidimensional arrays. For example, for ``in 217 multidimensional arrays. For example, for ``int a[5][6]``, the following type 219 information illustrates the chaining: 218 information illustrates the chaining: 220 219 221 * [1]: int 220 * [1]: int 222 * [2]: array, ``btf_array.type = [1]``, ``bt 221 * [2]: array, ``btf_array.type = [1]``, ``btf_array.nelems = 6`` 223 * [3]: array, ``btf_array.type = [2]``, ``bt 222 * [3]: array, ``btf_array.type = [2]``, ``btf_array.nelems = 5`` 224 223 225 Currently, both pahole and llvm collapse multi 224 Currently, both pahole and llvm collapse multidimensional array into 226 one-dimensional array, e.g., for ``a[5][6]``, 225 one-dimensional array, e.g., for ``a[5][6]``, the ``btf_array.nelems`` is 227 equal to ``30``. This is because the original 226 equal to ``30``. This is because the original use case is map pretty print 228 where the whole array is dumped out so one-dim 227 where the whole array is dumped out so one-dimensional array is enough. As 229 more BTF usage is explored, pahole and llvm ca 228 more BTF usage is explored, pahole and llvm can be changed to generate proper 230 chained representation for multidimensional ar 229 chained representation for multidimensional arrays. 231 230 232 2.2.4 BTF_KIND_STRUCT 231 2.2.4 BTF_KIND_STRUCT 233 ~~~~~~~~~~~~~~~~~~~~~ 232 ~~~~~~~~~~~~~~~~~~~~~ 234 2.2.5 BTF_KIND_UNION 233 2.2.5 BTF_KIND_UNION 235 ~~~~~~~~~~~~~~~~~~~~ 234 ~~~~~~~~~~~~~~~~~~~~ 236 235 237 ``struct btf_type`` encoding requirement: 236 ``struct btf_type`` encoding requirement: 238 * ``name_off``: 0 or offset to a valid C ide 237 * ``name_off``: 0 or offset to a valid C identifier 239 * ``info.kind_flag``: 0 or 1 238 * ``info.kind_flag``: 0 or 1 240 * ``info.kind``: BTF_KIND_STRUCT or BTF_KIND 239 * ``info.kind``: BTF_KIND_STRUCT or BTF_KIND_UNION 241 * ``info.vlen``: the number of struct/union 240 * ``info.vlen``: the number of struct/union members 242 * ``info.size``: the size of the struct/unio 241 * ``info.size``: the size of the struct/union in bytes 243 242 244 ``btf_type`` is followed by ``info.vlen`` numb 243 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_member``.:: 245 244 246 struct btf_member { 245 struct btf_member { 247 __u32 name_off; 246 __u32 name_off; 248 __u32 type; 247 __u32 type; 249 __u32 offset; 248 __u32 offset; 250 }; 249 }; 251 250 252 ``struct btf_member`` encoding: 251 ``struct btf_member`` encoding: 253 * ``name_off``: offset to a valid C identifi 252 * ``name_off``: offset to a valid C identifier 254 * ``type``: the member type 253 * ``type``: the member type 255 * ``offset``: <see below> 254 * ``offset``: <see below> 256 255 257 If the type info ``kind_flag`` is not set, the 256 If the type info ``kind_flag`` is not set, the offset contains only bit offset 258 of the member. Note that the base type of the 257 of the member. Note that the base type of the bitfield can only be int or enum 259 type. If the bitfield size is 32, the base typ 258 type. If the bitfield size is 32, the base type can be either int or enum 260 type. If the bitfield size is not 32, the base 259 type. If the bitfield size is not 32, the base type must be int, and int type 261 ``BTF_INT_BITS()`` encodes the bitfield size. 260 ``BTF_INT_BITS()`` encodes the bitfield size. 262 261 263 If the ``kind_flag`` is set, the ``btf_member. 262 If the ``kind_flag`` is set, the ``btf_member.offset`` contains both member 264 bitfield size and bit offset. The bitfield siz 263 bitfield size and bit offset. The bitfield size and bit offset are calculated 265 as below.:: 264 as below.:: 266 265 267 #define BTF_MEMBER_BITFIELD_SIZE(val) ((va 266 #define BTF_MEMBER_BITFIELD_SIZE(val) ((val) >> 24) 268 #define BTF_MEMBER_BIT_OFFSET(val) ((va 267 #define BTF_MEMBER_BIT_OFFSET(val) ((val) & 0xffffff) 269 268 270 In this case, if the base type is an int type, 269 In this case, if the base type is an int type, it must be a regular int type: 271 270 272 * ``BTF_INT_OFFSET()`` must be 0. 271 * ``BTF_INT_OFFSET()`` must be 0. 273 * ``BTF_INT_BITS()`` must be equal to ``{1,2 272 * ``BTF_INT_BITS()`` must be equal to ``{1,2,4,8,16} * 8``. 274 273 275 Commit 9d5f9f701b18 introduced ``kind_flag`` a !! 274 The following kernel patch introduced ``kind_flag`` and explained why both 276 exist. !! 275 modes exist: >> 276 >> 277 https://github.com/torvalds/linux/commit/9d5f9f701b1891466fb3dbb1806ad97716f95cc3#diff-fa650a64fdd3968396883d2fe8215ff3 277 278 278 2.2.6 BTF_KIND_ENUM 279 2.2.6 BTF_KIND_ENUM 279 ~~~~~~~~~~~~~~~~~~~ 280 ~~~~~~~~~~~~~~~~~~~ 280 281 281 ``struct btf_type`` encoding requirement: 282 ``struct btf_type`` encoding requirement: 282 * ``name_off``: 0 or offset to a valid C ide 283 * ``name_off``: 0 or offset to a valid C identifier 283 * ``info.kind_flag``: 0 for unsigned, 1 for !! 284 * ``info.kind_flag``: 0 284 * ``info.kind``: BTF_KIND_ENUM 285 * ``info.kind``: BTF_KIND_ENUM 285 * ``info.vlen``: number of enum values 286 * ``info.vlen``: number of enum values 286 * ``size``: 1/2/4/8 !! 287 * ``size``: 4 287 288 288 ``btf_type`` is followed by ``info.vlen`` numb 289 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum``.:: 289 290 290 struct btf_enum { 291 struct btf_enum { 291 __u32 name_off; 292 __u32 name_off; 292 __s32 val; 293 __s32 val; 293 }; 294 }; 294 295 295 The ``btf_enum`` encoding: 296 The ``btf_enum`` encoding: 296 * ``name_off``: offset to a valid C identifi 297 * ``name_off``: offset to a valid C identifier 297 * ``val``: any value 298 * ``val``: any value 298 299 299 If the original enum value is signed and the s << 300 that value will be sign extended into 4 bytes. << 301 the value will be truncated into 4 bytes. << 302 << 303 2.2.7 BTF_KIND_FWD 300 2.2.7 BTF_KIND_FWD 304 ~~~~~~~~~~~~~~~~~~ 301 ~~~~~~~~~~~~~~~~~~ 305 302 306 ``struct btf_type`` encoding requirement: 303 ``struct btf_type`` encoding requirement: 307 * ``name_off``: offset to a valid C identifi 304 * ``name_off``: offset to a valid C identifier 308 * ``info.kind_flag``: 0 for struct, 1 for un 305 * ``info.kind_flag``: 0 for struct, 1 for union 309 * ``info.kind``: BTF_KIND_FWD 306 * ``info.kind``: BTF_KIND_FWD 310 * ``info.vlen``: 0 307 * ``info.vlen``: 0 311 * ``type``: 0 308 * ``type``: 0 312 309 313 No additional type data follow ``btf_type``. 310 No additional type data follow ``btf_type``. 314 311 315 2.2.8 BTF_KIND_TYPEDEF 312 2.2.8 BTF_KIND_TYPEDEF 316 ~~~~~~~~~~~~~~~~~~~~~~ 313 ~~~~~~~~~~~~~~~~~~~~~~ 317 314 318 ``struct btf_type`` encoding requirement: 315 ``struct btf_type`` encoding requirement: 319 * ``name_off``: offset to a valid C identifi 316 * ``name_off``: offset to a valid C identifier 320 * ``info.kind_flag``: 0 317 * ``info.kind_flag``: 0 321 * ``info.kind``: BTF_KIND_TYPEDEF 318 * ``info.kind``: BTF_KIND_TYPEDEF 322 * ``info.vlen``: 0 319 * ``info.vlen``: 0 323 * ``type``: the type which can be referred b 320 * ``type``: the type which can be referred by name at ``name_off`` 324 321 325 No additional type data follow ``btf_type``. 322 No additional type data follow ``btf_type``. 326 323 327 2.2.9 BTF_KIND_VOLATILE 324 2.2.9 BTF_KIND_VOLATILE 328 ~~~~~~~~~~~~~~~~~~~~~~~ 325 ~~~~~~~~~~~~~~~~~~~~~~~ 329 326 330 ``struct btf_type`` encoding requirement: 327 ``struct btf_type`` encoding requirement: 331 * ``name_off``: 0 328 * ``name_off``: 0 332 * ``info.kind_flag``: 0 329 * ``info.kind_flag``: 0 333 * ``info.kind``: BTF_KIND_VOLATILE 330 * ``info.kind``: BTF_KIND_VOLATILE 334 * ``info.vlen``: 0 331 * ``info.vlen``: 0 335 * ``type``: the type with ``volatile`` quali 332 * ``type``: the type with ``volatile`` qualifier 336 333 337 No additional type data follow ``btf_type``. 334 No additional type data follow ``btf_type``. 338 335 339 2.2.10 BTF_KIND_CONST 336 2.2.10 BTF_KIND_CONST 340 ~~~~~~~~~~~~~~~~~~~~~ 337 ~~~~~~~~~~~~~~~~~~~~~ 341 338 342 ``struct btf_type`` encoding requirement: 339 ``struct btf_type`` encoding requirement: 343 * ``name_off``: 0 340 * ``name_off``: 0 344 * ``info.kind_flag``: 0 341 * ``info.kind_flag``: 0 345 * ``info.kind``: BTF_KIND_CONST 342 * ``info.kind``: BTF_KIND_CONST 346 * ``info.vlen``: 0 343 * ``info.vlen``: 0 347 * ``type``: the type with ``const`` qualifie 344 * ``type``: the type with ``const`` qualifier 348 345 349 No additional type data follow ``btf_type``. 346 No additional type data follow ``btf_type``. 350 347 351 2.2.11 BTF_KIND_RESTRICT 348 2.2.11 BTF_KIND_RESTRICT 352 ~~~~~~~~~~~~~~~~~~~~~~~~ 349 ~~~~~~~~~~~~~~~~~~~~~~~~ 353 350 354 ``struct btf_type`` encoding requirement: 351 ``struct btf_type`` encoding requirement: 355 * ``name_off``: 0 352 * ``name_off``: 0 356 * ``info.kind_flag``: 0 353 * ``info.kind_flag``: 0 357 * ``info.kind``: BTF_KIND_RESTRICT 354 * ``info.kind``: BTF_KIND_RESTRICT 358 * ``info.vlen``: 0 355 * ``info.vlen``: 0 359 * ``type``: the type with ``restrict`` quali 356 * ``type``: the type with ``restrict`` qualifier 360 357 361 No additional type data follow ``btf_type``. 358 No additional type data follow ``btf_type``. 362 359 363 2.2.12 BTF_KIND_FUNC 360 2.2.12 BTF_KIND_FUNC 364 ~~~~~~~~~~~~~~~~~~~~ 361 ~~~~~~~~~~~~~~~~~~~~ 365 362 366 ``struct btf_type`` encoding requirement: 363 ``struct btf_type`` encoding requirement: 367 * ``name_off``: offset to a valid C identifi 364 * ``name_off``: offset to a valid C identifier 368 * ``info.kind_flag``: 0 365 * ``info.kind_flag``: 0 369 * ``info.kind``: BTF_KIND_FUNC 366 * ``info.kind``: BTF_KIND_FUNC 370 * ``info.vlen``: linkage information (BTF_FU !! 367 * ``info.vlen``: 0 371 or BTF_FUNC_EXTERN - see :r << 372 * ``type``: a BTF_KIND_FUNC_PROTO type 368 * ``type``: a BTF_KIND_FUNC_PROTO type 373 369 374 No additional type data follow ``btf_type``. 370 No additional type data follow ``btf_type``. 375 371 376 A BTF_KIND_FUNC defines not a type, but a subp 372 A BTF_KIND_FUNC defines not a type, but a subprogram (function) whose 377 signature is defined by ``type``. The subprogr 373 signature is defined by ``type``. The subprogram is thus an instance of that 378 type. The BTF_KIND_FUNC may in turn be referen 374 type. The BTF_KIND_FUNC may in turn be referenced by a func_info in the 379 :ref:`BTF_Ext_Section` (ELF) or in the argumen 375 :ref:`BTF_Ext_Section` (ELF) or in the arguments to :ref:`BPF_Prog_Load` 380 (ABI). 376 (ABI). 381 377 382 Currently, only linkage values of BTF_FUNC_STA << 383 supported in the kernel. << 384 << 385 2.2.13 BTF_KIND_FUNC_PROTO 378 2.2.13 BTF_KIND_FUNC_PROTO 386 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 379 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 387 380 388 ``struct btf_type`` encoding requirement: 381 ``struct btf_type`` encoding requirement: 389 * ``name_off``: 0 382 * ``name_off``: 0 390 * ``info.kind_flag``: 0 383 * ``info.kind_flag``: 0 391 * ``info.kind``: BTF_KIND_FUNC_PROTO 384 * ``info.kind``: BTF_KIND_FUNC_PROTO 392 * ``info.vlen``: # of parameters 385 * ``info.vlen``: # of parameters 393 * ``type``: the return type 386 * ``type``: the return type 394 387 395 ``btf_type`` is followed by ``info.vlen`` numb 388 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_param``.:: 396 389 397 struct btf_param { 390 struct btf_param { 398 __u32 name_off; 391 __u32 name_off; 399 __u32 type; 392 __u32 type; 400 }; 393 }; 401 394 402 If a BTF_KIND_FUNC_PROTO type is referred by a 395 If a BTF_KIND_FUNC_PROTO type is referred by a BTF_KIND_FUNC type, then 403 ``btf_param.name_off`` must point to a valid C 396 ``btf_param.name_off`` must point to a valid C identifier except for the 404 possible last argument representing the variab 397 possible last argument representing the variable argument. The btf_param.type 405 refers to parameter type. 398 refers to parameter type. 406 399 407 If the function has variable arguments, the la 400 If the function has variable arguments, the last parameter is encoded with 408 ``name_off = 0`` and ``type = 0``. 401 ``name_off = 0`` and ``type = 0``. 409 402 410 2.2.14 BTF_KIND_VAR 403 2.2.14 BTF_KIND_VAR 411 ~~~~~~~~~~~~~~~~~~~ 404 ~~~~~~~~~~~~~~~~~~~ 412 405 413 ``struct btf_type`` encoding requirement: 406 ``struct btf_type`` encoding requirement: 414 * ``name_off``: offset to a valid C identifi 407 * ``name_off``: offset to a valid C identifier 415 * ``info.kind_flag``: 0 408 * ``info.kind_flag``: 0 416 * ``info.kind``: BTF_KIND_VAR 409 * ``info.kind``: BTF_KIND_VAR 417 * ``info.vlen``: 0 410 * ``info.vlen``: 0 418 * ``type``: the type of the variable 411 * ``type``: the type of the variable 419 412 420 ``btf_type`` is followed by a single ``struct 413 ``btf_type`` is followed by a single ``struct btf_variable`` with the 421 following data:: 414 following data:: 422 415 423 struct btf_var { 416 struct btf_var { 424 __u32 linkage; 417 __u32 linkage; 425 }; 418 }; 426 419 427 ``btf_var.linkage`` may take the values: BTF_V !! 420 ``struct btf_var`` encoding: 428 see :ref:`BTF_Var_Linkage_Constants`. !! 421 * ``linkage``: currently only static variable 0, or globally allocated >> 422 variable in ELF sections 1 429 423 430 Not all type of global variables are supported 424 Not all type of global variables are supported by LLVM at this point. 431 The following is currently available: 425 The following is currently available: 432 426 433 * static variables with or without section a 427 * static variables with or without section attributes 434 * global variables with section attributes 428 * global variables with section attributes 435 429 436 The latter is for future extraction of map key 430 The latter is for future extraction of map key/value type id's from a 437 map definition. 431 map definition. 438 432 439 2.2.15 BTF_KIND_DATASEC 433 2.2.15 BTF_KIND_DATASEC 440 ~~~~~~~~~~~~~~~~~~~~~~~ 434 ~~~~~~~~~~~~~~~~~~~~~~~ 441 435 442 ``struct btf_type`` encoding requirement: 436 ``struct btf_type`` encoding requirement: 443 * ``name_off``: offset to a valid name assoc 437 * ``name_off``: offset to a valid name associated with a variable or 444 one of .data/.bss/.rodata 438 one of .data/.bss/.rodata 445 * ``info.kind_flag``: 0 439 * ``info.kind_flag``: 0 446 * ``info.kind``: BTF_KIND_DATASEC 440 * ``info.kind``: BTF_KIND_DATASEC 447 * ``info.vlen``: # of variables 441 * ``info.vlen``: # of variables 448 * ``size``: total section size in bytes (0 a 442 * ``size``: total section size in bytes (0 at compilation time, patched 449 to actual size by BPF loaders su 443 to actual size by BPF loaders such as libbpf) 450 444 451 ``btf_type`` is followed by ``info.vlen`` numb 445 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_var_secinfo``.:: 452 446 453 struct btf_var_secinfo { 447 struct btf_var_secinfo { 454 __u32 type; 448 __u32 type; 455 __u32 offset; 449 __u32 offset; 456 __u32 size; 450 __u32 size; 457 }; 451 }; 458 452 459 ``struct btf_var_secinfo`` encoding: 453 ``struct btf_var_secinfo`` encoding: 460 * ``type``: the type of the BTF_KIND_VAR var 454 * ``type``: the type of the BTF_KIND_VAR variable 461 * ``offset``: the in-section offset of the v 455 * ``offset``: the in-section offset of the variable 462 * ``size``: the size of the variable in byte 456 * ``size``: the size of the variable in bytes 463 457 464 2.2.16 BTF_KIND_FLOAT 458 2.2.16 BTF_KIND_FLOAT 465 ~~~~~~~~~~~~~~~~~~~~~ 459 ~~~~~~~~~~~~~~~~~~~~~ 466 460 467 ``struct btf_type`` encoding requirement: 461 ``struct btf_type`` encoding requirement: 468 * ``name_off``: any valid offset 462 * ``name_off``: any valid offset 469 * ``info.kind_flag``: 0 463 * ``info.kind_flag``: 0 470 * ``info.kind``: BTF_KIND_FLOAT 464 * ``info.kind``: BTF_KIND_FLOAT 471 * ``info.vlen``: 0 465 * ``info.vlen``: 0 472 * ``size``: the size of the float type in byt 466 * ``size``: the size of the float type in bytes: 2, 4, 8, 12 or 16. 473 467 474 No additional type data follow ``btf_type``. 468 No additional type data follow ``btf_type``. 475 469 476 2.2.17 BTF_KIND_DECL_TAG 470 2.2.17 BTF_KIND_DECL_TAG 477 ~~~~~~~~~~~~~~~~~~~~~~~~ 471 ~~~~~~~~~~~~~~~~~~~~~~~~ 478 472 479 ``struct btf_type`` encoding requirement: 473 ``struct btf_type`` encoding requirement: 480 * ``name_off``: offset to a non-empty string 474 * ``name_off``: offset to a non-empty string 481 * ``info.kind_flag``: 0 475 * ``info.kind_flag``: 0 482 * ``info.kind``: BTF_KIND_DECL_TAG 476 * ``info.kind``: BTF_KIND_DECL_TAG 483 * ``info.vlen``: 0 477 * ``info.vlen``: 0 484 * ``type``: ``struct``, ``union``, ``func``, 478 * ``type``: ``struct``, ``union``, ``func``, ``var`` or ``typedef`` 485 479 486 ``btf_type`` is followed by ``struct btf_decl_ 480 ``btf_type`` is followed by ``struct btf_decl_tag``.:: 487 481 488 struct btf_decl_tag { 482 struct btf_decl_tag { 489 __u32 component_idx; 483 __u32 component_idx; 490 }; 484 }; 491 485 492 The ``name_off`` encodes btf_decl_tag attribut 486 The ``name_off`` encodes btf_decl_tag attribute string. 493 The ``type`` should be ``struct``, ``union``, 487 The ``type`` should be ``struct``, ``union``, ``func``, ``var`` or ``typedef``. 494 For ``var`` or ``typedef`` type, ``btf_decl_ta 488 For ``var`` or ``typedef`` type, ``btf_decl_tag.component_idx`` must be ``-1``. 495 For the other three types, if the btf_decl_tag 489 For the other three types, if the btf_decl_tag attribute is 496 applied to the ``struct``, ``union`` or ``func 490 applied to the ``struct``, ``union`` or ``func`` itself, 497 ``btf_decl_tag.component_idx`` must be ``-1``. 491 ``btf_decl_tag.component_idx`` must be ``-1``. Otherwise, 498 the attribute is applied to a ``struct``/``uni 492 the attribute is applied to a ``struct``/``union`` member or 499 a ``func`` argument, and ``btf_decl_tag.compon 493 a ``func`` argument, and ``btf_decl_tag.component_idx`` should be a 500 valid index (starting from 0) pointing to a me 494 valid index (starting from 0) pointing to a member or an argument. 501 495 502 2.2.18 BTF_KIND_TYPE_TAG !! 496 2.2.17 BTF_KIND_TYPE_TAG 503 ~~~~~~~~~~~~~~~~~~~~~~~~ 497 ~~~~~~~~~~~~~~~~~~~~~~~~ 504 498 505 ``struct btf_type`` encoding requirement: 499 ``struct btf_type`` encoding requirement: 506 * ``name_off``: offset to a non-empty string 500 * ``name_off``: offset to a non-empty string 507 * ``info.kind_flag``: 0 501 * ``info.kind_flag``: 0 508 * ``info.kind``: BTF_KIND_TYPE_TAG 502 * ``info.kind``: BTF_KIND_TYPE_TAG 509 * ``info.vlen``: 0 503 * ``info.vlen``: 0 510 * ``type``: the type with ``btf_type_tag`` at 504 * ``type``: the type with ``btf_type_tag`` attribute 511 505 512 Currently, ``BTF_KIND_TYPE_TAG`` is only emitt << 513 It has the following btf type chain: << 514 :: << 515 << 516 ptr -> [type_tag]* << 517 -> [const | volatile | restrict | typede << 518 -> base_type << 519 << 520 Basically, a pointer type points to zero or mo << 521 type_tag, then zero or more const/volatile/res << 522 and finally the base type. The base type is on << 523 int, ptr, array, struct, union, enum, func_pro << 524 << 525 2.2.19 BTF_KIND_ENUM64 << 526 ~~~~~~~~~~~~~~~~~~~~~~ << 527 << 528 ``struct btf_type`` encoding requirement: << 529 * ``name_off``: 0 or offset to a valid C ide << 530 * ``info.kind_flag``: 0 for unsigned, 1 for << 531 * ``info.kind``: BTF_KIND_ENUM64 << 532 * ``info.vlen``: number of enum values << 533 * ``size``: 1/2/4/8 << 534 << 535 ``btf_type`` is followed by ``info.vlen`` numb << 536 << 537 struct btf_enum64 { << 538 __u32 name_off; << 539 __u32 val_lo32; << 540 __u32 val_hi32; << 541 }; << 542 << 543 The ``btf_enum64`` encoding: << 544 * ``name_off``: offset to a valid C identifi << 545 * ``val_lo32``: lower 32-bit value for a 64- << 546 * ``val_hi32``: high 32-bit value for a 64-b << 547 << 548 If the original enum value is signed and the s << 549 that value will be sign extended into 8 bytes. << 550 << 551 2.3 Constant Values << 552 ------------------- << 553 << 554 .. _BTF_Function_Linkage_Constants: << 555 << 556 2.3.1 Function Linkage Constant Values << 557 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ << 558 .. table:: Function Linkage Values and Meaning << 559 << 560 =================== ===== =========== << 561 kind value description << 562 =================== ===== =========== << 563 ``BTF_FUNC_STATIC`` 0x0 definition of su << 564 ``BTF_FUNC_GLOBAL`` 0x1 definition of su << 565 ``BTF_FUNC_EXTERN`` 0x2 declaration of a << 566 =================== ===== =========== << 567 << 568 << 569 .. _BTF_Var_Linkage_Constants: << 570 << 571 2.3.2 Variable Linkage Constant Values << 572 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ << 573 .. table:: Variable Linkage Values and Meaning << 574 << 575 ============================ ===== ======= << 576 kind value descrip << 577 ============================ ===== ======= << 578 ``BTF_VAR_STATIC`` 0x0 definit << 579 ``BTF_VAR_GLOBAL_ALLOCATED`` 0x1 definit << 580 ``BTF_VAR_GLOBAL_EXTERN`` 0x2 declara << 581 ============================ ===== ======= << 582 << 583 3. BTF Kernel API 506 3. BTF Kernel API 584 ================= 507 ================= 585 508 586 The following bpf syscall command involves BTF 509 The following bpf syscall command involves BTF: 587 * BPF_BTF_LOAD: load a blob of BTF data int 510 * BPF_BTF_LOAD: load a blob of BTF data into kernel 588 * BPF_MAP_CREATE: map creation with btf key 511 * BPF_MAP_CREATE: map creation with btf key and value type info. 589 * BPF_PROG_LOAD: prog load with btf functio 512 * BPF_PROG_LOAD: prog load with btf function and line info. 590 * BPF_BTF_GET_FD_BY_ID: get a btf fd 513 * BPF_BTF_GET_FD_BY_ID: get a btf fd 591 * BPF_OBJ_GET_INFO_BY_FD: btf, func_info, l 514 * BPF_OBJ_GET_INFO_BY_FD: btf, func_info, line_info 592 and other btf related info are returned. 515 and other btf related info are returned. 593 516 594 The workflow typically looks like: 517 The workflow typically looks like: 595 :: 518 :: 596 519 597 Application: 520 Application: 598 BPF_BTF_LOAD 521 BPF_BTF_LOAD 599 | 522 | 600 v 523 v 601 BPF_MAP_CREATE and BPF_PROG_LOAD 524 BPF_MAP_CREATE and BPF_PROG_LOAD 602 | 525 | 603 V 526 V 604 ...... 527 ...... 605 528 606 Introspection tool: 529 Introspection tool: 607 ...... 530 ...... 608 BPF_{PROG,MAP}_GET_NEXT_ID (get prog/map 531 BPF_{PROG,MAP}_GET_NEXT_ID (get prog/map id's) 609 | 532 | 610 V 533 V 611 BPF_{PROG,MAP}_GET_FD_BY_ID (get a prog/ 534 BPF_{PROG,MAP}_GET_FD_BY_ID (get a prog/map fd) 612 | 535 | 613 V 536 V 614 BPF_OBJ_GET_INFO_BY_FD (get bpf_prog_inf 537 BPF_OBJ_GET_INFO_BY_FD (get bpf_prog_info/bpf_map_info with btf_id) 615 | 538 | | 616 V 539 V | 617 BPF_BTF_GET_FD_BY_ID (get btf_fd) 540 BPF_BTF_GET_FD_BY_ID (get btf_fd) | 618 | 541 | | 619 V 542 V | 620 BPF_OBJ_GET_INFO_BY_FD (get btf) 543 BPF_OBJ_GET_INFO_BY_FD (get btf) | 621 | 544 | | 622 V 545 V V 623 pretty print types, dump func signatures 546 pretty print types, dump func signatures and line info, etc. 624 547 625 548 626 3.1 BPF_BTF_LOAD 549 3.1 BPF_BTF_LOAD 627 ---------------- 550 ---------------- 628 551 629 Load a blob of BTF data into kernel. A blob of 552 Load a blob of BTF data into kernel. A blob of data, described in 630 :ref:`BTF_Type_String`, can be directly loaded 553 :ref:`BTF_Type_String`, can be directly loaded into the kernel. A ``btf_fd`` 631 is returned to a userspace. 554 is returned to a userspace. 632 555 633 3.2 BPF_MAP_CREATE 556 3.2 BPF_MAP_CREATE 634 ------------------ 557 ------------------ 635 558 636 A map can be created with ``btf_fd`` and speci 559 A map can be created with ``btf_fd`` and specified key/value type id.:: 637 560 638 __u32 btf_fd; /* fd pointing to 561 __u32 btf_fd; /* fd pointing to a BTF type data */ 639 __u32 btf_key_type_id; /* BTF typ 562 __u32 btf_key_type_id; /* BTF type_id of the key */ 640 __u32 btf_value_type_id; /* BTF typ 563 __u32 btf_value_type_id; /* BTF type_id of the value */ 641 564 642 In libbpf, the map can be defined with extra a 565 In libbpf, the map can be defined with extra annotation like below: 643 :: 566 :: 644 567 645 struct { !! 568 struct bpf_map_def SEC("maps") btf_map = { 646 __uint(type, BPF_MAP_TYPE_ARRAY); !! 569 .type = BPF_MAP_TYPE_ARRAY, 647 __type(key, int); !! 570 .key_size = sizeof(int), 648 __type(value, struct ipv_counts); !! 571 .value_size = sizeof(struct ipv_counts), 649 __uint(max_entries, 4); !! 572 .max_entries = 4, 650 } btf_map SEC(".maps"); !! 573 }; 651 !! 574 BPF_ANNOTATE_KV_PAIR(btf_map, int, struct ipv_counts); 652 During ELF parsing, libbpf is able to extract !! 575 653 them to BPF_MAP_CREATE attributes automaticall !! 576 Here, the parameters for macro BPF_ANNOTATE_KV_PAIR are map name, key and >> 577 value types for the map. During ELF parsing, libbpf is able to extract >> 578 key/value type_id's and assign them to BPF_MAP_CREATE attributes >> 579 automatically. 654 580 655 .. _BPF_Prog_Load: 581 .. _BPF_Prog_Load: 656 582 657 3.3 BPF_PROG_LOAD 583 3.3 BPF_PROG_LOAD 658 ----------------- 584 ----------------- 659 585 660 During prog_load, func_info and line_info can 586 During prog_load, func_info and line_info can be passed to kernel with proper 661 values for the following attributes: 587 values for the following attributes: 662 :: 588 :: 663 589 664 __u32 insn_cnt; 590 __u32 insn_cnt; 665 __aligned_u64 insns; 591 __aligned_u64 insns; 666 ...... 592 ...... 667 __u32 prog_btf_fd; /* fd poin 593 __u32 prog_btf_fd; /* fd pointing to BTF type data */ 668 __u32 func_info_rec_size; /* 594 __u32 func_info_rec_size; /* userspace bpf_func_info size */ 669 __aligned_u64 func_info; /* func in 595 __aligned_u64 func_info; /* func info */ 670 __u32 func_info_cnt; /* number 596 __u32 func_info_cnt; /* number of bpf_func_info records */ 671 __u32 line_info_rec_size; /* 597 __u32 line_info_rec_size; /* userspace bpf_line_info size */ 672 __aligned_u64 line_info; /* line in 598 __aligned_u64 line_info; /* line info */ 673 __u32 line_info_cnt; /* number 599 __u32 line_info_cnt; /* number of bpf_line_info records */ 674 600 675 The func_info and line_info are an array of be 601 The func_info and line_info are an array of below, respectively.:: 676 602 677 struct bpf_func_info { 603 struct bpf_func_info { 678 __u32 insn_off; /* [0, insn_cnt - 1] 604 __u32 insn_off; /* [0, insn_cnt - 1] */ 679 __u32 type_id; /* pointing to a BTF 605 __u32 type_id; /* pointing to a BTF_KIND_FUNC type */ 680 }; 606 }; 681 struct bpf_line_info { 607 struct bpf_line_info { 682 __u32 insn_off; /* [0, insn_cnt - 1] 608 __u32 insn_off; /* [0, insn_cnt - 1] */ 683 __u32 file_name_off; /* offset to st 609 __u32 file_name_off; /* offset to string table for the filename */ 684 __u32 line_off; /* offset to string 610 __u32 line_off; /* offset to string table for the source line */ 685 __u32 line_col; /* line number and c 611 __u32 line_col; /* line number and column number */ 686 }; 612 }; 687 613 688 func_info_rec_size is the size of each func_in 614 func_info_rec_size is the size of each func_info record, and 689 line_info_rec_size is the size of each line_in 615 line_info_rec_size is the size of each line_info record. Passing the record 690 size to kernel make it possible to extend the 616 size to kernel make it possible to extend the record itself in the future. 691 617 692 Below are requirements for func_info: 618 Below are requirements for func_info: 693 * func_info[0].insn_off must be 0. 619 * func_info[0].insn_off must be 0. 694 * the func_info insn_off is in strictly incr 620 * the func_info insn_off is in strictly increasing order and matches 695 bpf func boundaries. 621 bpf func boundaries. 696 622 697 Below are requirements for line_info: 623 Below are requirements for line_info: 698 * the first insn in each func must have a li 624 * the first insn in each func must have a line_info record pointing to it. 699 * the line_info insn_off is in strictly incr 625 * the line_info insn_off is in strictly increasing order. 700 626 701 For line_info, the line number and column numb 627 For line_info, the line number and column number are defined as below: 702 :: 628 :: 703 629 704 #define BPF_LINE_INFO_LINE_NUM(line_col) 630 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10) 705 #define BPF_LINE_INFO_LINE_COL(line_col) 631 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff) 706 632 707 3.4 BPF_{PROG,MAP}_GET_NEXT_ID 633 3.4 BPF_{PROG,MAP}_GET_NEXT_ID 708 ------------------------------ 634 ------------------------------ 709 635 710 In kernel, every loaded program, map or btf ha 636 In kernel, every loaded program, map or btf has a unique id. The id won't 711 change during the lifetime of a program, map, 637 change during the lifetime of a program, map, or btf. 712 638 713 The bpf syscall command BPF_{PROG,MAP}_GET_NEX 639 The bpf syscall command BPF_{PROG,MAP}_GET_NEXT_ID returns all id's, one for 714 each command, to user space, for bpf program o 640 each command, to user space, for bpf program or maps, respectively, so an 715 inspection tool can inspect all programs and m 641 inspection tool can inspect all programs and maps. 716 642 717 3.5 BPF_{PROG,MAP}_GET_FD_BY_ID 643 3.5 BPF_{PROG,MAP}_GET_FD_BY_ID 718 ------------------------------- 644 ------------------------------- 719 645 720 An introspection tool cannot use id to get det 646 An introspection tool cannot use id to get details about program or maps. 721 A file descriptor needs to be obtained first f 647 A file descriptor needs to be obtained first for reference-counting purpose. 722 648 723 3.6 BPF_OBJ_GET_INFO_BY_FD 649 3.6 BPF_OBJ_GET_INFO_BY_FD 724 -------------------------- 650 -------------------------- 725 651 726 Once a program/map fd is acquired, an introspe 652 Once a program/map fd is acquired, an introspection tool can get the detailed 727 information from kernel about this fd, some of 653 information from kernel about this fd, some of which are BTF-related. For 728 example, ``bpf_map_info`` returns ``btf_id`` a 654 example, ``bpf_map_info`` returns ``btf_id`` and key/value type ids. 729 ``bpf_prog_info`` returns ``btf_id``, func_inf 655 ``bpf_prog_info`` returns ``btf_id``, func_info, and line info for translated 730 bpf byte codes, and jited_line_info. 656 bpf byte codes, and jited_line_info. 731 657 732 3.7 BPF_BTF_GET_FD_BY_ID 658 3.7 BPF_BTF_GET_FD_BY_ID 733 ------------------------ 659 ------------------------ 734 660 735 With ``btf_id`` obtained in ``bpf_map_info`` a 661 With ``btf_id`` obtained in ``bpf_map_info`` and ``bpf_prog_info``, bpf 736 syscall command BPF_BTF_GET_FD_BY_ID can retri 662 syscall command BPF_BTF_GET_FD_BY_ID can retrieve a btf fd. Then, with 737 command BPF_OBJ_GET_INFO_BY_FD, the btf blob, 663 command BPF_OBJ_GET_INFO_BY_FD, the btf blob, originally loaded into the 738 kernel with BPF_BTF_LOAD, can be retrieved. 664 kernel with BPF_BTF_LOAD, can be retrieved. 739 665 740 With the btf blob, ``bpf_map_info``, and ``bpf 666 With the btf blob, ``bpf_map_info``, and ``bpf_prog_info``, an introspection 741 tool has full btf knowledge and is able to pre 667 tool has full btf knowledge and is able to pretty print map key/values, dump 742 func signatures and line info, along with byte 668 func signatures and line info, along with byte/jit codes. 743 669 744 4. ELF File Format Interface 670 4. ELF File Format Interface 745 ============================ 671 ============================ 746 672 747 4.1 .BTF section 673 4.1 .BTF section 748 ---------------- 674 ---------------- 749 675 750 The .BTF section contains type and string data 676 The .BTF section contains type and string data. The format of this section is 751 same as the one describe in :ref:`BTF_Type_Str 677 same as the one describe in :ref:`BTF_Type_String`. 752 678 753 .. _BTF_Ext_Section: 679 .. _BTF_Ext_Section: 754 680 755 4.2 .BTF.ext section 681 4.2 .BTF.ext section 756 -------------------- 682 -------------------- 757 683 758 The .BTF.ext section encodes func_info, line_i !! 684 The .BTF.ext section encodes func_info and line_info which needs loader 759 which needs loader manipulation before loading !! 685 manipulation before loading into the kernel. 760 686 761 The specification for .BTF.ext section is defi 687 The specification for .BTF.ext section is defined at ``tools/lib/bpf/btf.h`` 762 and ``tools/lib/bpf/btf.c``. 688 and ``tools/lib/bpf/btf.c``. 763 689 764 The current header of .BTF.ext section:: 690 The current header of .BTF.ext section:: 765 691 766 struct btf_ext_header { 692 struct btf_ext_header { 767 __u16 magic; 693 __u16 magic; 768 __u8 version; 694 __u8 version; 769 __u8 flags; 695 __u8 flags; 770 __u32 hdr_len; 696 __u32 hdr_len; 771 697 772 /* All offsets are in bytes relative t 698 /* All offsets are in bytes relative to the end of this header */ 773 __u32 func_info_off; 699 __u32 func_info_off; 774 __u32 func_info_len; 700 __u32 func_info_len; 775 __u32 line_info_off; 701 __u32 line_info_off; 776 __u32 line_info_len; 702 __u32 line_info_len; 777 << 778 /* optional part of .BTF.ext header */ << 779 __u32 core_relo_off; << 780 __u32 core_relo_len; << 781 }; 703 }; 782 704 783 It is very similar to .BTF section. Instead of 705 It is very similar to .BTF section. Instead of type/string section, it 784 contains func_info, line_info and core_relo su !! 706 contains func_info and line_info section. See :ref:`BPF_Prog_Load` for details 785 See :ref:`BPF_Prog_Load` for details about fun !! 707 about func_info and line_info record format. 786 record format. << 787 708 788 The func_info is organized as below.:: 709 The func_info is organized as below.:: 789 710 790 func_info_rec_size /* __u32 !! 711 func_info_rec_size 791 btf_ext_info_sec for section #1 /* func_i 712 btf_ext_info_sec for section #1 /* func_info for section #1 */ 792 btf_ext_info_sec for section #2 /* func_i 713 btf_ext_info_sec for section #2 /* func_info for section #2 */ 793 ... 714 ... 794 715 795 ``func_info_rec_size`` specifies the size of ` 716 ``func_info_rec_size`` specifies the size of ``bpf_func_info`` structure when 796 .BTF.ext is generated. ``btf_ext_info_sec``, d 717 .BTF.ext is generated. ``btf_ext_info_sec``, defined below, is a collection of 797 func_info for each specific ELF section.:: 718 func_info for each specific ELF section.:: 798 719 799 struct btf_ext_info_sec { 720 struct btf_ext_info_sec { 800 __u32 sec_name_off; /* offset to sec 721 __u32 sec_name_off; /* offset to section name */ 801 __u32 num_info; 722 __u32 num_info; 802 /* Followed by num_info * record_size 723 /* Followed by num_info * record_size number of bytes */ 803 __u8 data[0]; 724 __u8 data[0]; 804 }; 725 }; 805 726 806 Here, num_info must be greater than 0. 727 Here, num_info must be greater than 0. 807 728 808 The line_info is organized as below.:: 729 The line_info is organized as below.:: 809 730 810 line_info_rec_size /* __u32 !! 731 line_info_rec_size 811 btf_ext_info_sec for section #1 /* line_i 732 btf_ext_info_sec for section #1 /* line_info for section #1 */ 812 btf_ext_info_sec for section #2 /* line_i 733 btf_ext_info_sec for section #2 /* line_info for section #2 */ 813 ... 734 ... 814 735 815 ``line_info_rec_size`` specifies the size of ` 736 ``line_info_rec_size`` specifies the size of ``bpf_line_info`` structure when 816 .BTF.ext is generated. 737 .BTF.ext is generated. 817 738 818 The interpretation of ``bpf_func_info->insn_of 739 The interpretation of ``bpf_func_info->insn_off`` and 819 ``bpf_line_info->insn_off`` is different betwe 740 ``bpf_line_info->insn_off`` is different between kernel API and ELF API. For 820 kernel API, the ``insn_off`` is the instructio 741 kernel API, the ``insn_off`` is the instruction offset in the unit of ``struct 821 bpf_insn``. For ELF API, the ``insn_off`` is t 742 bpf_insn``. For ELF API, the ``insn_off`` is the byte offset from the 822 beginning of section (``btf_ext_info_sec->sec_ 743 beginning of section (``btf_ext_info_sec->sec_name_off``). 823 744 824 The core_relo is organized as below.:: << 825 << 826 core_relo_rec_size /* __u32 << 827 btf_ext_info_sec for section #1 /* core_r << 828 btf_ext_info_sec for section #2 /* core_r << 829 << 830 ``core_relo_rec_size`` specifies the size of ` << 831 structure when .BTF.ext is generated. All ``bp << 832 within a single ``btf_ext_info_sec`` describe << 833 section named by ``btf_ext_info_sec->sec_name_ << 834 << 835 See :ref:`Documentation/bpf/llvm_reloc.rst <bt << 836 for more information on CO-RE relocations. << 837 << 838 4.2 .BTF_ids section 745 4.2 .BTF_ids section 839 -------------------- 746 -------------------- 840 747 841 The .BTF_ids section encodes BTF ID values tha 748 The .BTF_ids section encodes BTF ID values that are used within the kernel. 842 749 843 This section is created during the kernel comp 750 This section is created during the kernel compilation with the help of 844 macros defined in ``include/linux/btf_ids.h`` 751 macros defined in ``include/linux/btf_ids.h`` header file. Kernel code can 845 use them to create lists and sets (sorted list 752 use them to create lists and sets (sorted lists) of BTF ID values. 846 753 847 The ``BTF_ID_LIST`` and ``BTF_ID`` macros defi 754 The ``BTF_ID_LIST`` and ``BTF_ID`` macros define unsorted list of BTF ID values, 848 with following syntax:: 755 with following syntax:: 849 756 850 BTF_ID_LIST(list) 757 BTF_ID_LIST(list) 851 BTF_ID(type1, name1) 758 BTF_ID(type1, name1) 852 BTF_ID(type2, name2) 759 BTF_ID(type2, name2) 853 760 854 resulting in following layout in .BTF_ids sect 761 resulting in following layout in .BTF_ids section:: 855 762 856 __BTF_ID__type1__name1__1: 763 __BTF_ID__type1__name1__1: 857 .zero 4 764 .zero 4 858 __BTF_ID__type2__name2__2: 765 __BTF_ID__type2__name2__2: 859 .zero 4 766 .zero 4 860 767 861 The ``u32 list[];`` variable is defined to acc 768 The ``u32 list[];`` variable is defined to access the list. 862 769 863 The ``BTF_ID_UNUSED`` macro defines 4 zero byt 770 The ``BTF_ID_UNUSED`` macro defines 4 zero bytes. It's used when we 864 want to define unused entry in BTF_ID_LIST, li 771 want to define unused entry in BTF_ID_LIST, like:: 865 772 866 BTF_ID_LIST(bpf_skb_output_btf_ids) 773 BTF_ID_LIST(bpf_skb_output_btf_ids) 867 BTF_ID(struct, sk_buff) 774 BTF_ID(struct, sk_buff) 868 BTF_ID_UNUSED 775 BTF_ID_UNUSED 869 BTF_ID(struct, task_struct) 776 BTF_ID(struct, task_struct) 870 777 871 The ``BTF_SET_START/END`` macros pair defines 778 The ``BTF_SET_START/END`` macros pair defines sorted list of BTF ID values 872 and their count, with following syntax:: 779 and their count, with following syntax:: 873 780 874 BTF_SET_START(set) 781 BTF_SET_START(set) 875 BTF_ID(type1, name1) 782 BTF_ID(type1, name1) 876 BTF_ID(type2, name2) 783 BTF_ID(type2, name2) 877 BTF_SET_END(set) 784 BTF_SET_END(set) 878 785 879 resulting in following layout in .BTF_ids sect 786 resulting in following layout in .BTF_ids section:: 880 787 881 __BTF_ID__set__set: 788 __BTF_ID__set__set: 882 .zero 4 789 .zero 4 883 __BTF_ID__type1__name1__3: 790 __BTF_ID__type1__name1__3: 884 .zero 4 791 .zero 4 885 __BTF_ID__type2__name2__4: 792 __BTF_ID__type2__name2__4: 886 .zero 4 793 .zero 4 887 794 888 The ``struct btf_id_set set;`` variable is def 795 The ``struct btf_id_set set;`` variable is defined to access the list. 889 796 890 The ``typeX`` name can be one of following:: 797 The ``typeX`` name can be one of following:: 891 798 892 struct, union, typedef, func 799 struct, union, typedef, func 893 800 894 and is used as a filter when resolving the BTF 801 and is used as a filter when resolving the BTF ID value. 895 802 896 All the BTF ID lists and sets are compiled in 803 All the BTF ID lists and sets are compiled in the .BTF_ids section and 897 resolved during the linking phase of kernel bu 804 resolved during the linking phase of kernel build by ``resolve_btfids`` tool. 898 805 899 5. Using BTF 806 5. Using BTF 900 ============ 807 ============ 901 808 902 5.1 bpftool map pretty print 809 5.1 bpftool map pretty print 903 ---------------------------- 810 ---------------------------- 904 811 905 With BTF, the map key/value can be printed bas 812 With BTF, the map key/value can be printed based on fields rather than simply 906 raw bytes. This is especially valuable for lar 813 raw bytes. This is especially valuable for large structure or if your data 907 structure has bitfields. For example, for the 814 structure has bitfields. For example, for the following map,:: 908 815 909 enum A { A1, A2, A3, A4, A5 }; 816 enum A { A1, A2, A3, A4, A5 }; 910 typedef enum A ___A; 817 typedef enum A ___A; 911 struct tmp_t { 818 struct tmp_t { 912 char a1:4; 819 char a1:4; 913 int a2:4; 820 int a2:4; 914 int :4; 821 int :4; 915 __u32 a3:4; 822 __u32 a3:4; 916 int b; 823 int b; 917 ___A b1:4; 824 ___A b1:4; 918 enum A b2:4; 825 enum A b2:4; 919 }; 826 }; 920 struct { !! 827 struct bpf_map_def SEC("maps") tmpmap = { 921 __uint(type, BPF_MAP_TYPE_ARRAY); !! 828 .type = BPF_MAP_TYPE_ARRAY, 922 __type(key, int); !! 829 .key_size = sizeof(__u32), 923 __type(value, struct tmp_t); !! 830 .value_size = sizeof(struct tmp_t), 924 __uint(max_entries, 1); !! 831 .max_entries = 1, 925 } tmpmap SEC(".maps"); !! 832 }; >> 833 BPF_ANNOTATE_KV_PAIR(tmpmap, int, struct tmp_t); 926 834 927 bpftool is able to pretty print like below: 835 bpftool is able to pretty print like below: 928 :: 836 :: 929 837 930 [{ 838 [{ 931 "key": 0, 839 "key": 0, 932 "value": { 840 "value": { 933 "a1": 0x2, 841 "a1": 0x2, 934 "a2": 0x4, 842 "a2": 0x4, 935 "a3": 0x6, 843 "a3": 0x6, 936 "b": 7, 844 "b": 7, 937 "b1": 0x8, 845 "b1": 0x8, 938 "b2": 0xa 846 "b2": 0xa 939 } 847 } 940 } 848 } 941 ] 849 ] 942 850 943 5.2 bpftool prog dump 851 5.2 bpftool prog dump 944 --------------------- 852 --------------------- 945 853 946 The following is an example showing how func_i 854 The following is an example showing how func_info and line_info can help prog 947 dump with better kernel symbol names, function 855 dump with better kernel symbol names, function prototypes and line 948 information.:: 856 information.:: 949 857 950 $ bpftool prog dump jited pinned /sys/fs/b 858 $ bpftool prog dump jited pinned /sys/fs/bpf/test_btf_haskv 951 [...] 859 [...] 952 int test_long_fname_2(struct dummy_tracepo 860 int test_long_fname_2(struct dummy_tracepoint_args * arg): 953 bpf_prog_44a040bf25481309_test_long_fname_ 861 bpf_prog_44a040bf25481309_test_long_fname_2: 954 ; static int test_long_fname_2(struct dumm 862 ; static int test_long_fname_2(struct dummy_tracepoint_args *arg) 955 0: push %rbp 863 0: push %rbp 956 1: mov %rsp,%rbp 864 1: mov %rsp,%rbp 957 4: sub $0x30,%rsp 865 4: sub $0x30,%rsp 958 b: sub $0x28,%rbp 866 b: sub $0x28,%rbp 959 f: mov %rbx,0x0(%rbp) 867 f: mov %rbx,0x0(%rbp) 960 13: mov %r13,0x8(%rbp) 868 13: mov %r13,0x8(%rbp) 961 17: mov %r14,0x10(%rbp) 869 17: mov %r14,0x10(%rbp) 962 1b: mov %r15,0x18(%rbp) 870 1b: mov %r15,0x18(%rbp) 963 1f: xor %eax,%eax 871 1f: xor %eax,%eax 964 21: mov %rax,0x20(%rbp) 872 21: mov %rax,0x20(%rbp) 965 25: xor %esi,%esi 873 25: xor %esi,%esi 966 ; int key = 0; 874 ; int key = 0; 967 27: mov %esi,-0x4(%rbp) 875 27: mov %esi,-0x4(%rbp) 968 ; if (!arg->sock) 876 ; if (!arg->sock) 969 2a: mov 0x8(%rdi),%rdi 877 2a: mov 0x8(%rdi),%rdi 970 ; if (!arg->sock) 878 ; if (!arg->sock) 971 2e: cmp $0x0,%rdi 879 2e: cmp $0x0,%rdi 972 32: je 0x0000000000000070 880 32: je 0x0000000000000070 973 34: mov %rbp,%rsi 881 34: mov %rbp,%rsi 974 ; counts = bpf_map_lookup_elem(&btf_map, & 882 ; counts = bpf_map_lookup_elem(&btf_map, &key); 975 [...] 883 [...] 976 884 977 5.3 Verifier Log 885 5.3 Verifier Log 978 ---------------- 886 ---------------- 979 887 980 The following is an example of how line_info c 888 The following is an example of how line_info can help debugging verification 981 failure.:: 889 failure.:: 982 890 983 /* The code at tools/testing/selftests/ 891 /* The code at tools/testing/selftests/bpf/test_xdp_noinline.c 984 * is modified as below. 892 * is modified as below. 985 */ 893 */ 986 data = (void *)(long)xdp->data; 894 data = (void *)(long)xdp->data; 987 data_end = (void *)(long)xdp->data_end; 895 data_end = (void *)(long)xdp->data_end; 988 /* 896 /* 989 if (data + 4 > data_end) 897 if (data + 4 > data_end) 990 return XDP_DROP; 898 return XDP_DROP; 991 */ 899 */ 992 *(u32 *)data = dst->dst; 900 *(u32 *)data = dst->dst; 993 901 994 $ bpftool prog load ./test_xdp_noinline.o 902 $ bpftool prog load ./test_xdp_noinline.o /sys/fs/bpf/test_xdp_noinline type xdp 995 ; data = (void *)(long)xdp->data; 903 ; data = (void *)(long)xdp->data; 996 224: (79) r2 = *(u64 *)(r10 -112) 904 224: (79) r2 = *(u64 *)(r10 -112) 997 225: (61) r2 = *(u32 *)(r2 +0) 905 225: (61) r2 = *(u32 *)(r2 +0) 998 ; *(u32 *)data = dst->dst; 906 ; *(u32 *)data = dst->dst; 999 226: (63) *(u32 *)(r2 +0) = r1 907 226: (63) *(u32 *)(r2 +0) = r1 1000 invalid access to packet, off=0 size= 908 invalid access to packet, off=0 size=4, R2(id=0,off=0,r=0) 1001 R2 offset is outside of the packet 909 R2 offset is outside of the packet 1002 910 1003 6. BTF Generation 911 6. BTF Generation 1004 ================= 912 ================= 1005 913 1006 You need latest pahole 914 You need latest pahole 1007 915 1008 https://git.kernel.org/pub/scm/devel/pahole 916 https://git.kernel.org/pub/scm/devel/pahole/pahole.git/ 1009 917 1010 or llvm (8.0 or later). The pahole acts as a 918 or llvm (8.0 or later). The pahole acts as a dwarf2btf converter. It doesn't 1011 support .BTF.ext and btf BTF_KIND_FUNC type y 919 support .BTF.ext and btf BTF_KIND_FUNC type yet. For example,:: 1012 920 1013 -bash-4.4$ cat t.c 921 -bash-4.4$ cat t.c 1014 struct t { 922 struct t { 1015 int a:2; 923 int a:2; 1016 int b:3; 924 int b:3; 1017 int c:2; 925 int c:2; 1018 } g; 926 } g; 1019 -bash-4.4$ gcc -c -O2 -g t.c 927 -bash-4.4$ gcc -c -O2 -g t.c 1020 -bash-4.4$ pahole -JV t.o 928 -bash-4.4$ pahole -JV t.o 1021 File t.o: 929 File t.o: 1022 [1] STRUCT t kind_flag=1 size=4 vlen=3 930 [1] STRUCT t kind_flag=1 size=4 vlen=3 1023 a type_id=2 bitfield_size=2 bit 931 a type_id=2 bitfield_size=2 bits_offset=0 1024 b type_id=2 bitfield_size=3 bit 932 b type_id=2 bitfield_size=3 bits_offset=2 1025 c type_id=2 bitfield_size=2 bit 933 c type_id=2 bitfield_size=2 bits_offset=5 1026 [2] INT int size=4 bit_offset=0 nr_bits 934 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED 1027 935 1028 The llvm is able to generate .BTF and .BTF.ex 936 The llvm is able to generate .BTF and .BTF.ext directly with -g for bpf target 1029 only. The assembly code (-S) is able to show 937 only. The assembly code (-S) is able to show the BTF encoding in assembly 1030 format.:: 938 format.:: 1031 939 1032 -bash-4.4$ cat t2.c 940 -bash-4.4$ cat t2.c 1033 typedef int __int32; 941 typedef int __int32; 1034 struct t2 { 942 struct t2 { 1035 int a2; 943 int a2; 1036 int (*f2)(char q1, __int32 q2, ...); 944 int (*f2)(char q1, __int32 q2, ...); 1037 int (*f3)(); 945 int (*f3)(); 1038 } g2; 946 } g2; 1039 int main() { return 0; } 947 int main() { return 0; } 1040 int test() { return 0; } 948 int test() { return 0; } 1041 -bash-4.4$ clang -c -g -O2 --target=bpf t !! 949 -bash-4.4$ clang -c -g -O2 -target bpf t2.c 1042 -bash-4.4$ readelf -S t2.o 950 -bash-4.4$ readelf -S t2.o 1043 ...... 951 ...... 1044 [ 8] .BTF PROGBITS 952 [ 8] .BTF PROGBITS 0000000000000000 00000247 1045 000000000000016e 0000000000000000 953 000000000000016e 0000000000000000 0 0 1 1046 [ 9] .BTF.ext PROGBITS 954 [ 9] .BTF.ext PROGBITS 0000000000000000 000003b5 1047 0000000000000060 0000000000000000 955 0000000000000060 0000000000000000 0 0 1 1048 [10] .rel.BTF.ext REL 956 [10] .rel.BTF.ext REL 0000000000000000 000007e0 1049 0000000000000040 0000000000000010 957 0000000000000040 0000000000000010 16 9 8 1050 ...... 958 ...... 1051 -bash-4.4$ clang -S -g -O2 --target=bpf t !! 959 -bash-4.4$ clang -S -g -O2 -target bpf t2.c 1052 -bash-4.4$ cat t2.s 960 -bash-4.4$ cat t2.s 1053 ...... 961 ...... 1054 .section .BTF,"",@progbits 962 .section .BTF,"",@progbits 1055 .short 60319 # 963 .short 60319 # 0xeb9f 1056 .byte 1 964 .byte 1 1057 .byte 0 965 .byte 0 1058 .long 24 966 .long 24 1059 .long 0 967 .long 0 1060 .long 220 968 .long 220 1061 .long 220 969 .long 220 1062 .long 122 970 .long 122 1063 .long 0 # 971 .long 0 # BTF_KIND_FUNC_PROTO(id = 1) 1064 .long 218103808 # 972 .long 218103808 # 0xd000000 1065 .long 2 973 .long 2 1066 .long 83 # 974 .long 83 # BTF_KIND_INT(id = 2) 1067 .long 16777216 # 975 .long 16777216 # 0x1000000 1068 .long 4 976 .long 4 1069 .long 16777248 # 977 .long 16777248 # 0x1000020 1070 ...... 978 ...... 1071 .byte 0 # 979 .byte 0 # string offset=0 1072 .ascii ".text" # 980 .ascii ".text" # string offset=1 1073 .byte 0 981 .byte 0 1074 .ascii "/home/yhs/tmp-pahole/t2. 982 .ascii "/home/yhs/tmp-pahole/t2.c" # string offset=7 1075 .byte 0 983 .byte 0 1076 .ascii "int main() { return 0; } 984 .ascii "int main() { return 0; }" # string offset=33 1077 .byte 0 985 .byte 0 1078 .ascii "int test() { return 0; } 986 .ascii "int test() { return 0; }" # string offset=58 1079 .byte 0 987 .byte 0 1080 .ascii "int" # 988 .ascii "int" # string offset=83 1081 ...... 989 ...... 1082 .section .BTF.ext,"",@prog 990 .section .BTF.ext,"",@progbits 1083 .short 60319 # 991 .short 60319 # 0xeb9f 1084 .byte 1 992 .byte 1 1085 .byte 0 993 .byte 0 1086 .long 24 994 .long 24 1087 .long 0 995 .long 0 1088 .long 28 996 .long 28 1089 .long 28 997 .long 28 1090 .long 44 998 .long 44 1091 .long 8 # 999 .long 8 # FuncInfo 1092 .long 1 # 1000 .long 1 # FuncInfo section string offset=1 1093 .long 2 1001 .long 2 1094 .long .Lfunc_begin0 1002 .long .Lfunc_begin0 1095 .long 3 1003 .long 3 1096 .long .Lfunc_begin1 1004 .long .Lfunc_begin1 1097 .long 5 1005 .long 5 1098 .long 16 # 1006 .long 16 # LineInfo 1099 .long 1 # 1007 .long 1 # LineInfo section string offset=1 1100 .long 2 1008 .long 2 1101 .long .Ltmp0 1009 .long .Ltmp0 1102 .long 7 1010 .long 7 1103 .long 33 1011 .long 33 1104 .long 7182 # 1012 .long 7182 # Line 7 Col 14 1105 .long .Ltmp3 1013 .long .Ltmp3 1106 .long 7 1014 .long 7 1107 .long 58 1015 .long 58 1108 .long 8206 # 1016 .long 8206 # Line 8 Col 14 1109 1017 1110 7. Testing 1018 7. Testing 1111 ========== 1019 ========== 1112 1020 1113 The kernel BPF selftest `tools/testing/selfte !! 1021 Kernel bpf selftest `test_btf.c` provides extensive set of BTF-related tests. 1114 provides an extensive set of BTF-related test << 1115 << 1116 .. Links << 1117 .. _tools/testing/selftests/bpf/prog_tests/bt << 1118 https://git.kernel.org/pub/scm/linux/kerne <<
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.