1 ===================== 1 ===================== 2 BPF Type Format (BTF) 2 BPF Type Format (BTF) 3 ===================== 3 ===================== 4 4 5 1. Introduction 5 1. Introduction 6 =============== !! 6 *************** 7 7 8 BTF (BPF Type Format) is the metadata format w 8 BTF (BPF Type Format) is the metadata format which encodes the debug info 9 related to BPF program/map. The name BTF was u 9 related to BPF program/map. The name BTF was used initially to describe data 10 types. The BTF was later extended to include f 10 types. The BTF was later extended to include function info for defined 11 subroutines, and line info for source/line inf 11 subroutines, and line info for source/line information. 12 12 13 The debug info is used for map pretty print, f 13 The debug info is used for map pretty print, function signature, etc. The 14 function signature enables better bpf program/ 14 function signature enables better bpf program/function kernel symbol. The line 15 info helps generate source annotated translate 15 info helps generate source annotated translated byte code, jited code and 16 verifier log. 16 verifier log. 17 17 18 The BTF specification contains two parts, 18 The BTF specification contains two parts, 19 * BTF kernel API 19 * BTF kernel API 20 * BTF ELF file format 20 * BTF ELF file format 21 21 22 The kernel API is the contract between user sp 22 The kernel API is the contract between user space and kernel. The kernel 23 verifies the BTF info before using it. The ELF 23 verifies the BTF info before using it. The ELF file format is a user space 24 contract between ELF file and libbpf loader. 24 contract between ELF file and libbpf loader. 25 25 26 The type and string sections are part of the B 26 The type and string sections are part of the BTF kernel API, describing the 27 debug info (mostly types related) referenced b 27 debug info (mostly types related) referenced by the bpf program. These two 28 sections are discussed in details in :ref:`BTF 28 sections are discussed in details in :ref:`BTF_Type_String`. 29 29 30 .. _BTF_Type_String: 30 .. _BTF_Type_String: 31 31 32 2. BTF Type and String Encoding 32 2. BTF Type and String Encoding 33 =============================== !! 33 ******************************* 34 34 35 The file ``include/uapi/linux/btf.h`` provides 35 The file ``include/uapi/linux/btf.h`` provides high-level definition of how 36 types/strings are encoded. 36 types/strings are encoded. 37 37 38 The beginning of data blob must be:: 38 The beginning of data blob must be:: 39 39 40 struct btf_header { 40 struct btf_header { 41 __u16 magic; 41 __u16 magic; 42 __u8 version; 42 __u8 version; 43 __u8 flags; 43 __u8 flags; 44 __u32 hdr_len; 44 __u32 hdr_len; 45 45 46 /* All offsets are in bytes relative t 46 /* All offsets are in bytes relative to the end of this header */ 47 __u32 type_off; /* offset of t 47 __u32 type_off; /* offset of type section */ 48 __u32 type_len; /* length of t 48 __u32 type_len; /* length of type section */ 49 __u32 str_off; /* offset of s 49 __u32 str_off; /* offset of string section */ 50 __u32 str_len; /* length of s 50 __u32 str_len; /* length of string section */ 51 }; 51 }; 52 52 53 The magic is ``0xeB9F``, which has different e 53 The magic is ``0xeB9F``, which has different encoding for big and little 54 endian systems, and can be used to test whethe 54 endian systems, and can be used to test whether BTF is generated for big- or 55 little-endian target. The ``btf_header`` is de 55 little-endian target. The ``btf_header`` is designed to be extensible with 56 ``hdr_len`` equal to ``sizeof(struct btf_heade 56 ``hdr_len`` equal to ``sizeof(struct btf_header)`` when a data blob is 57 generated. 57 generated. 58 58 59 2.1 String Encoding 59 2.1 String Encoding 60 ------------------- !! 60 =================== 61 61 62 The first string in the string section must be 62 The first string in the string section must be a null string. The rest of 63 string table is a concatenation of other null- 63 string table is a concatenation of other null-terminated strings. 64 64 65 2.2 Type Encoding 65 2.2 Type Encoding 66 ----------------- !! 66 ================= 67 67 68 The type id ``0`` is reserved for ``void`` typ 68 The type id ``0`` is reserved for ``void`` type. The type section is parsed 69 sequentially and type id is assigned to each r 69 sequentially and type id is assigned to each recognized type starting from id 70 ``1``. Currently, the following types are supp 70 ``1``. Currently, the following types are supported:: 71 71 72 #define BTF_KIND_INT 1 /* 72 #define BTF_KIND_INT 1 /* Integer */ 73 #define BTF_KIND_PTR 2 /* 73 #define BTF_KIND_PTR 2 /* Pointer */ 74 #define BTF_KIND_ARRAY 3 /* 74 #define BTF_KIND_ARRAY 3 /* Array */ 75 #define BTF_KIND_STRUCT 4 /* 75 #define BTF_KIND_STRUCT 4 /* Struct */ 76 #define BTF_KIND_UNION 5 /* 76 #define BTF_KIND_UNION 5 /* Union */ 77 #define BTF_KIND_ENUM 6 /* !! 77 #define BTF_KIND_ENUM 6 /* Enumeration */ 78 #define BTF_KIND_FWD 7 /* 78 #define BTF_KIND_FWD 7 /* Forward */ 79 #define BTF_KIND_TYPEDEF 8 /* 79 #define BTF_KIND_TYPEDEF 8 /* Typedef */ 80 #define BTF_KIND_VOLATILE 9 /* 80 #define BTF_KIND_VOLATILE 9 /* Volatile */ 81 #define BTF_KIND_CONST 10 /* 81 #define BTF_KIND_CONST 10 /* Const */ 82 #define BTF_KIND_RESTRICT 11 /* 82 #define BTF_KIND_RESTRICT 11 /* Restrict */ 83 #define BTF_KIND_FUNC 12 /* 83 #define BTF_KIND_FUNC 12 /* Function */ 84 #define BTF_KIND_FUNC_PROTO 13 /* 84 #define BTF_KIND_FUNC_PROTO 13 /* Function Proto */ 85 #define BTF_KIND_VAR 14 /* << 86 #define BTF_KIND_DATASEC 15 /* << 87 #define BTF_KIND_FLOAT 16 /* << 88 #define BTF_KIND_DECL_TAG 17 /* << 89 #define BTF_KIND_TYPE_TAG 18 /* << 90 #define BTF_KIND_ENUM64 19 /* << 91 85 92 Note that the type section encodes debug info, 86 Note that the type section encodes debug info, not just pure types. 93 ``BTF_KIND_FUNC`` is not a type, and it repres 87 ``BTF_KIND_FUNC`` is not a type, and it represents a defined subprogram. 94 88 95 Each type contains the following common data:: 89 Each type contains the following common data:: 96 90 97 struct btf_type { 91 struct btf_type { 98 __u32 name_off; 92 __u32 name_off; 99 /* "info" bits arrangement 93 /* "info" bits arrangement 100 * bits 0-15: vlen (e.g. # of struct' 94 * bits 0-15: vlen (e.g. # of struct's members) 101 * bits 16-23: unused 95 * bits 16-23: unused 102 * bits 24-28: kind (e.g. int, ptr, ar !! 96 * bits 24-27: kind (e.g. int, ptr, array...etc) 103 * bits 29-30: unused !! 97 * bits 28-30: unused 104 * bit 31: kind_flag, currently us 98 * bit 31: kind_flag, currently used by 105 * struct, union, fwd, enu !! 99 * struct, union and fwd 106 */ 100 */ 107 __u32 info; 101 __u32 info; 108 /* "size" is used by INT, ENUM, STRUCT !! 102 /* "size" is used by INT, ENUM, STRUCT and UNION. 109 * "size" tells the size of the type i 103 * "size" tells the size of the type it is describing. 110 * 104 * 111 * "type" is used by PTR, TYPEDEF, VOL 105 * "type" is used by PTR, TYPEDEF, VOLATILE, CONST, RESTRICT, 112 * FUNC, FUNC_PROTO, DECL_TAG and TYPE !! 106 * FUNC and FUNC_PROTO. 113 * "type" is a type_id referring to an 107 * "type" is a type_id referring to another type. 114 */ 108 */ 115 union { 109 union { 116 __u32 size; 110 __u32 size; 117 __u32 type; 111 __u32 type; 118 }; 112 }; 119 }; 113 }; 120 114 121 For certain kinds, the common data are followe 115 For certain kinds, the common data are followed by kind-specific data. The 122 ``name_off`` in ``struct btf_type`` specifies 116 ``name_off`` in ``struct btf_type`` specifies the offset in the string table. 123 The following sections detail encoding of each 117 The following sections detail encoding of each kind. 124 118 125 2.2.1 BTF_KIND_INT 119 2.2.1 BTF_KIND_INT 126 ~~~~~~~~~~~~~~~~~~ 120 ~~~~~~~~~~~~~~~~~~ 127 121 128 ``struct btf_type`` encoding requirement: 122 ``struct btf_type`` encoding requirement: 129 * ``name_off``: any valid offset 123 * ``name_off``: any valid offset 130 * ``info.kind_flag``: 0 124 * ``info.kind_flag``: 0 131 * ``info.kind``: BTF_KIND_INT 125 * ``info.kind``: BTF_KIND_INT 132 * ``info.vlen``: 0 126 * ``info.vlen``: 0 133 * ``size``: the size of the int type in bytes 127 * ``size``: the size of the int type in bytes. 134 128 135 ``btf_type`` is followed by a ``u32`` with the 129 ``btf_type`` is followed by a ``u32`` with the following bits arrangement:: 136 130 137 #define BTF_INT_ENCODING(VAL) (((VAL) & 0x 131 #define BTF_INT_ENCODING(VAL) (((VAL) & 0x0f000000) >> 24) 138 #define BTF_INT_OFFSET(VAL) (((VAL) & 0x !! 132 #define BTF_INT_OFFSET(VAL) (((VAL & 0x00ff0000)) >> 16) 139 #define BTF_INT_BITS(VAL) ((VAL) & 0x 133 #define BTF_INT_BITS(VAL) ((VAL) & 0x000000ff) 140 134 141 The ``BTF_INT_ENCODING`` has the following att 135 The ``BTF_INT_ENCODING`` has the following attributes:: 142 136 143 #define BTF_INT_SIGNED (1 << 0) 137 #define BTF_INT_SIGNED (1 << 0) 144 #define BTF_INT_CHAR (1 << 1) 138 #define BTF_INT_CHAR (1 << 1) 145 #define BTF_INT_BOOL (1 << 2) 139 #define BTF_INT_BOOL (1 << 2) 146 140 147 The ``BTF_INT_ENCODING()`` provides extra info 141 The ``BTF_INT_ENCODING()`` provides extra information: signedness, char, or 148 bool, for the int type. The char and bool enco 142 bool, for the int type. The char and bool encoding are mostly useful for 149 pretty print. At most one encoding can be spec 143 pretty print. At most one encoding can be specified for the int type. 150 144 151 The ``BTF_INT_BITS()`` specifies the number of 145 The ``BTF_INT_BITS()`` specifies the number of actual bits held by this int 152 type. For example, a 4-bit bitfield encodes `` 146 type. For example, a 4-bit bitfield encodes ``BTF_INT_BITS()`` equals to 4. 153 The ``btf_type.size * 8`` must be equal to or 147 The ``btf_type.size * 8`` must be equal to or greater than ``BTF_INT_BITS()`` 154 for the type. The maximum value of ``BTF_INT_B 148 for the type. The maximum value of ``BTF_INT_BITS()`` is 128. 155 149 156 The ``BTF_INT_OFFSET()`` specifies the startin 150 The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values 157 for this int. For example, a bitfield struct m 151 for this int. For example, a bitfield struct member has: 158 << 159 * btf member bit offset 100 from the start of 152 * btf member bit offset 100 from the start of the structure, 160 * btf member pointing to an int type, 153 * btf member pointing to an int type, 161 * the int type has ``BTF_INT_OFFSET() = 2`` a 154 * the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4`` 162 155 163 Then in the struct memory layout, this member 156 Then in the struct memory layout, this member will occupy ``4`` bits starting 164 from bits ``100 + 2 = 102``. 157 from bits ``100 + 2 = 102``. 165 158 166 Alternatively, the bitfield struct member can 159 Alternatively, the bitfield struct member can be the following to access the 167 same bits as the above: 160 same bits as the above: 168 << 169 * btf member bit offset 102, 161 * btf member bit offset 102, 170 * btf member pointing to an int type, 162 * btf member pointing to an int type, 171 * the int type has ``BTF_INT_OFFSET() = 0`` a 163 * the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4`` 172 164 173 The original intention of ``BTF_INT_OFFSET()`` 165 The original intention of ``BTF_INT_OFFSET()`` is to provide flexibility of 174 bitfield encoding. Currently, both llvm and pa 166 bitfield encoding. Currently, both llvm and pahole generate 175 ``BTF_INT_OFFSET() = 0`` for all int types. 167 ``BTF_INT_OFFSET() = 0`` for all int types. 176 168 177 2.2.2 BTF_KIND_PTR 169 2.2.2 BTF_KIND_PTR 178 ~~~~~~~~~~~~~~~~~~ 170 ~~~~~~~~~~~~~~~~~~ 179 171 180 ``struct btf_type`` encoding requirement: 172 ``struct btf_type`` encoding requirement: 181 * ``name_off``: 0 173 * ``name_off``: 0 182 * ``info.kind_flag``: 0 174 * ``info.kind_flag``: 0 183 * ``info.kind``: BTF_KIND_PTR 175 * ``info.kind``: BTF_KIND_PTR 184 * ``info.vlen``: 0 176 * ``info.vlen``: 0 185 * ``type``: the pointee type of the pointer 177 * ``type``: the pointee type of the pointer 186 178 187 No additional type data follow ``btf_type``. 179 No additional type data follow ``btf_type``. 188 180 189 2.2.3 BTF_KIND_ARRAY 181 2.2.3 BTF_KIND_ARRAY 190 ~~~~~~~~~~~~~~~~~~~~ 182 ~~~~~~~~~~~~~~~~~~~~ 191 183 192 ``struct btf_type`` encoding requirement: 184 ``struct btf_type`` encoding requirement: 193 * ``name_off``: 0 185 * ``name_off``: 0 194 * ``info.kind_flag``: 0 186 * ``info.kind_flag``: 0 195 * ``info.kind``: BTF_KIND_ARRAY 187 * ``info.kind``: BTF_KIND_ARRAY 196 * ``info.vlen``: 0 188 * ``info.vlen``: 0 197 * ``size/type``: 0, not used 189 * ``size/type``: 0, not used 198 190 199 ``btf_type`` is followed by one ``struct btf_a 191 ``btf_type`` is followed by one ``struct btf_array``:: 200 192 201 struct btf_array { 193 struct btf_array { 202 __u32 type; 194 __u32 type; 203 __u32 index_type; 195 __u32 index_type; 204 __u32 nelems; 196 __u32 nelems; 205 }; 197 }; 206 198 207 The ``struct btf_array`` encoding: 199 The ``struct btf_array`` encoding: 208 * ``type``: the element type 200 * ``type``: the element type 209 * ``index_type``: the index type 201 * ``index_type``: the index type 210 * ``nelems``: the number of elements for thi 202 * ``nelems``: the number of elements for this array (``0`` is also allowed). 211 203 212 The ``index_type`` can be any regular int type 204 The ``index_type`` can be any regular int type (``u8``, ``u16``, ``u32``, 213 ``u64``, ``unsigned __int128``). The original 205 ``u64``, ``unsigned __int128``). The original design of including 214 ``index_type`` follows DWARF, which has an ``i 206 ``index_type`` follows DWARF, which has an ``index_type`` for its array type. 215 Currently in BTF, beyond type verification, th 207 Currently in BTF, beyond type verification, the ``index_type`` is not used. 216 208 217 The ``struct btf_array`` allows chaining throu 209 The ``struct btf_array`` allows chaining through element type to represent 218 multidimensional arrays. For example, for ``in 210 multidimensional arrays. For example, for ``int a[5][6]``, the following type 219 information illustrates the chaining: 211 information illustrates the chaining: 220 212 221 * [1]: int 213 * [1]: int 222 * [2]: array, ``btf_array.type = [1]``, ``bt 214 * [2]: array, ``btf_array.type = [1]``, ``btf_array.nelems = 6`` 223 * [3]: array, ``btf_array.type = [2]``, ``bt 215 * [3]: array, ``btf_array.type = [2]``, ``btf_array.nelems = 5`` 224 216 225 Currently, both pahole and llvm collapse multi 217 Currently, both pahole and llvm collapse multidimensional array into 226 one-dimensional array, e.g., for ``a[5][6]``, 218 one-dimensional array, e.g., for ``a[5][6]``, the ``btf_array.nelems`` is 227 equal to ``30``. This is because the original 219 equal to ``30``. This is because the original use case is map pretty print 228 where the whole array is dumped out so one-dim 220 where the whole array is dumped out so one-dimensional array is enough. As 229 more BTF usage is explored, pahole and llvm ca 221 more BTF usage is explored, pahole and llvm can be changed to generate proper 230 chained representation for multidimensional ar 222 chained representation for multidimensional arrays. 231 223 232 2.2.4 BTF_KIND_STRUCT 224 2.2.4 BTF_KIND_STRUCT 233 ~~~~~~~~~~~~~~~~~~~~~ 225 ~~~~~~~~~~~~~~~~~~~~~ 234 2.2.5 BTF_KIND_UNION 226 2.2.5 BTF_KIND_UNION 235 ~~~~~~~~~~~~~~~~~~~~ 227 ~~~~~~~~~~~~~~~~~~~~ 236 228 237 ``struct btf_type`` encoding requirement: 229 ``struct btf_type`` encoding requirement: 238 * ``name_off``: 0 or offset to a valid C ide 230 * ``name_off``: 0 or offset to a valid C identifier 239 * ``info.kind_flag``: 0 or 1 231 * ``info.kind_flag``: 0 or 1 240 * ``info.kind``: BTF_KIND_STRUCT or BTF_KIND 232 * ``info.kind``: BTF_KIND_STRUCT or BTF_KIND_UNION 241 * ``info.vlen``: the number of struct/union 233 * ``info.vlen``: the number of struct/union members 242 * ``info.size``: the size of the struct/unio 234 * ``info.size``: the size of the struct/union in bytes 243 235 244 ``btf_type`` is followed by ``info.vlen`` numb 236 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_member``.:: 245 237 246 struct btf_member { 238 struct btf_member { 247 __u32 name_off; 239 __u32 name_off; 248 __u32 type; 240 __u32 type; 249 __u32 offset; 241 __u32 offset; 250 }; 242 }; 251 243 252 ``struct btf_member`` encoding: 244 ``struct btf_member`` encoding: 253 * ``name_off``: offset to a valid C identifi 245 * ``name_off``: offset to a valid C identifier 254 * ``type``: the member type 246 * ``type``: the member type 255 * ``offset``: <see below> 247 * ``offset``: <see below> 256 248 257 If the type info ``kind_flag`` is not set, the 249 If the type info ``kind_flag`` is not set, the offset contains only bit offset 258 of the member. Note that the base type of the 250 of the member. Note that the base type of the bitfield can only be int or enum 259 type. If the bitfield size is 32, the base typ 251 type. If the bitfield size is 32, the base type can be either int or enum 260 type. If the bitfield size is not 32, the base 252 type. If the bitfield size is not 32, the base type must be int, and int type 261 ``BTF_INT_BITS()`` encodes the bitfield size. 253 ``BTF_INT_BITS()`` encodes the bitfield size. 262 254 263 If the ``kind_flag`` is set, the ``btf_member. 255 If the ``kind_flag`` is set, the ``btf_member.offset`` contains both member 264 bitfield size and bit offset. The bitfield siz 256 bitfield size and bit offset. The bitfield size and bit offset are calculated 265 as below.:: 257 as below.:: 266 258 267 #define BTF_MEMBER_BITFIELD_SIZE(val) ((va 259 #define BTF_MEMBER_BITFIELD_SIZE(val) ((val) >> 24) 268 #define BTF_MEMBER_BIT_OFFSET(val) ((va 260 #define BTF_MEMBER_BIT_OFFSET(val) ((val) & 0xffffff) 269 261 270 In this case, if the base type is an int type, 262 In this case, if the base type is an int type, it must be a regular int type: 271 263 272 * ``BTF_INT_OFFSET()`` must be 0. 264 * ``BTF_INT_OFFSET()`` must be 0. 273 * ``BTF_INT_BITS()`` must be equal to ``{1,2 265 * ``BTF_INT_BITS()`` must be equal to ``{1,2,4,8,16} * 8``. 274 266 275 Commit 9d5f9f701b18 introduced ``kind_flag`` a !! 267 The following kernel patch introduced ``kind_flag`` and explained why both 276 exist. !! 268 modes exist: >> 269 >> 270 https://github.com/torvalds/linux/commit/9d5f9f701b1891466fb3dbb1806ad97716f95cc3#diff-fa650a64fdd3968396883d2fe8215ff3 277 271 278 2.2.6 BTF_KIND_ENUM 272 2.2.6 BTF_KIND_ENUM 279 ~~~~~~~~~~~~~~~~~~~ 273 ~~~~~~~~~~~~~~~~~~~ 280 274 281 ``struct btf_type`` encoding requirement: 275 ``struct btf_type`` encoding requirement: 282 * ``name_off``: 0 or offset to a valid C ide 276 * ``name_off``: 0 or offset to a valid C identifier 283 * ``info.kind_flag``: 0 for unsigned, 1 for !! 277 * ``info.kind_flag``: 0 284 * ``info.kind``: BTF_KIND_ENUM 278 * ``info.kind``: BTF_KIND_ENUM 285 * ``info.vlen``: number of enum values 279 * ``info.vlen``: number of enum values 286 * ``size``: 1/2/4/8 !! 280 * ``size``: 4 287 281 288 ``btf_type`` is followed by ``info.vlen`` numb 282 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_enum``.:: 289 283 290 struct btf_enum { 284 struct btf_enum { 291 __u32 name_off; 285 __u32 name_off; 292 __s32 val; 286 __s32 val; 293 }; 287 }; 294 288 295 The ``btf_enum`` encoding: 289 The ``btf_enum`` encoding: 296 * ``name_off``: offset to a valid C identifi 290 * ``name_off``: offset to a valid C identifier 297 * ``val``: any value 291 * ``val``: any value 298 292 299 If the original enum value is signed and the s << 300 that value will be sign extended into 4 bytes. << 301 the value will be truncated into 4 bytes. << 302 << 303 2.2.7 BTF_KIND_FWD 293 2.2.7 BTF_KIND_FWD 304 ~~~~~~~~~~~~~~~~~~ 294 ~~~~~~~~~~~~~~~~~~ 305 295 306 ``struct btf_type`` encoding requirement: 296 ``struct btf_type`` encoding requirement: 307 * ``name_off``: offset to a valid C identifi 297 * ``name_off``: offset to a valid C identifier 308 * ``info.kind_flag``: 0 for struct, 1 for un 298 * ``info.kind_flag``: 0 for struct, 1 for union 309 * ``info.kind``: BTF_KIND_FWD 299 * ``info.kind``: BTF_KIND_FWD 310 * ``info.vlen``: 0 300 * ``info.vlen``: 0 311 * ``type``: 0 301 * ``type``: 0 312 302 313 No additional type data follow ``btf_type``. 303 No additional type data follow ``btf_type``. 314 304 315 2.2.8 BTF_KIND_TYPEDEF 305 2.2.8 BTF_KIND_TYPEDEF 316 ~~~~~~~~~~~~~~~~~~~~~~ 306 ~~~~~~~~~~~~~~~~~~~~~~ 317 307 318 ``struct btf_type`` encoding requirement: 308 ``struct btf_type`` encoding requirement: 319 * ``name_off``: offset to a valid C identifi 309 * ``name_off``: offset to a valid C identifier 320 * ``info.kind_flag``: 0 310 * ``info.kind_flag``: 0 321 * ``info.kind``: BTF_KIND_TYPEDEF 311 * ``info.kind``: BTF_KIND_TYPEDEF 322 * ``info.vlen``: 0 312 * ``info.vlen``: 0 323 * ``type``: the type which can be referred b 313 * ``type``: the type which can be referred by name at ``name_off`` 324 314 325 No additional type data follow ``btf_type``. 315 No additional type data follow ``btf_type``. 326 316 327 2.2.9 BTF_KIND_VOLATILE 317 2.2.9 BTF_KIND_VOLATILE 328 ~~~~~~~~~~~~~~~~~~~~~~~ 318 ~~~~~~~~~~~~~~~~~~~~~~~ 329 319 330 ``struct btf_type`` encoding requirement: 320 ``struct btf_type`` encoding requirement: 331 * ``name_off``: 0 321 * ``name_off``: 0 332 * ``info.kind_flag``: 0 322 * ``info.kind_flag``: 0 333 * ``info.kind``: BTF_KIND_VOLATILE 323 * ``info.kind``: BTF_KIND_VOLATILE 334 * ``info.vlen``: 0 324 * ``info.vlen``: 0 335 * ``type``: the type with ``volatile`` quali 325 * ``type``: the type with ``volatile`` qualifier 336 326 337 No additional type data follow ``btf_type``. 327 No additional type data follow ``btf_type``. 338 328 339 2.2.10 BTF_KIND_CONST 329 2.2.10 BTF_KIND_CONST 340 ~~~~~~~~~~~~~~~~~~~~~ 330 ~~~~~~~~~~~~~~~~~~~~~ 341 331 342 ``struct btf_type`` encoding requirement: 332 ``struct btf_type`` encoding requirement: 343 * ``name_off``: 0 333 * ``name_off``: 0 344 * ``info.kind_flag``: 0 334 * ``info.kind_flag``: 0 345 * ``info.kind``: BTF_KIND_CONST 335 * ``info.kind``: BTF_KIND_CONST 346 * ``info.vlen``: 0 336 * ``info.vlen``: 0 347 * ``type``: the type with ``const`` qualifie 337 * ``type``: the type with ``const`` qualifier 348 338 349 No additional type data follow ``btf_type``. 339 No additional type data follow ``btf_type``. 350 340 351 2.2.11 BTF_KIND_RESTRICT 341 2.2.11 BTF_KIND_RESTRICT 352 ~~~~~~~~~~~~~~~~~~~~~~~~ 342 ~~~~~~~~~~~~~~~~~~~~~~~~ 353 343 354 ``struct btf_type`` encoding requirement: 344 ``struct btf_type`` encoding requirement: 355 * ``name_off``: 0 345 * ``name_off``: 0 356 * ``info.kind_flag``: 0 346 * ``info.kind_flag``: 0 357 * ``info.kind``: BTF_KIND_RESTRICT 347 * ``info.kind``: BTF_KIND_RESTRICT 358 * ``info.vlen``: 0 348 * ``info.vlen``: 0 359 * ``type``: the type with ``restrict`` quali 349 * ``type``: the type with ``restrict`` qualifier 360 350 361 No additional type data follow ``btf_type``. 351 No additional type data follow ``btf_type``. 362 352 363 2.2.12 BTF_KIND_FUNC 353 2.2.12 BTF_KIND_FUNC 364 ~~~~~~~~~~~~~~~~~~~~ 354 ~~~~~~~~~~~~~~~~~~~~ 365 355 366 ``struct btf_type`` encoding requirement: 356 ``struct btf_type`` encoding requirement: 367 * ``name_off``: offset to a valid C identifi 357 * ``name_off``: offset to a valid C identifier 368 * ``info.kind_flag``: 0 358 * ``info.kind_flag``: 0 369 * ``info.kind``: BTF_KIND_FUNC 359 * ``info.kind``: BTF_KIND_FUNC 370 * ``info.vlen``: linkage information (BTF_FU !! 360 * ``info.vlen``: 0 371 or BTF_FUNC_EXTERN - see :r << 372 * ``type``: a BTF_KIND_FUNC_PROTO type 361 * ``type``: a BTF_KIND_FUNC_PROTO type 373 362 374 No additional type data follow ``btf_type``. 363 No additional type data follow ``btf_type``. 375 364 376 A BTF_KIND_FUNC defines not a type, but a subp 365 A BTF_KIND_FUNC defines not a type, but a subprogram (function) whose 377 signature is defined by ``type``. The subprogr 366 signature is defined by ``type``. The subprogram is thus an instance of that 378 type. The BTF_KIND_FUNC may in turn be referen 367 type. The BTF_KIND_FUNC may in turn be referenced by a func_info in the 379 :ref:`BTF_Ext_Section` (ELF) or in the argumen 368 :ref:`BTF_Ext_Section` (ELF) or in the arguments to :ref:`BPF_Prog_Load` 380 (ABI). 369 (ABI). 381 370 382 Currently, only linkage values of BTF_FUNC_STA << 383 supported in the kernel. << 384 << 385 2.2.13 BTF_KIND_FUNC_PROTO 371 2.2.13 BTF_KIND_FUNC_PROTO 386 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 372 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 387 373 388 ``struct btf_type`` encoding requirement: 374 ``struct btf_type`` encoding requirement: 389 * ``name_off``: 0 375 * ``name_off``: 0 390 * ``info.kind_flag``: 0 376 * ``info.kind_flag``: 0 391 * ``info.kind``: BTF_KIND_FUNC_PROTO 377 * ``info.kind``: BTF_KIND_FUNC_PROTO 392 * ``info.vlen``: # of parameters 378 * ``info.vlen``: # of parameters 393 * ``type``: the return type 379 * ``type``: the return type 394 380 395 ``btf_type`` is followed by ``info.vlen`` numb 381 ``btf_type`` is followed by ``info.vlen`` number of ``struct btf_param``.:: 396 382 397 struct btf_param { 383 struct btf_param { 398 __u32 name_off; 384 __u32 name_off; 399 __u32 type; 385 __u32 type; 400 }; 386 }; 401 387 402 If a BTF_KIND_FUNC_PROTO type is referred by a 388 If a BTF_KIND_FUNC_PROTO type is referred by a BTF_KIND_FUNC type, then 403 ``btf_param.name_off`` must point to a valid C 389 ``btf_param.name_off`` must point to a valid C identifier except for the 404 possible last argument representing the variab 390 possible last argument representing the variable argument. The btf_param.type 405 refers to parameter type. 391 refers to parameter type. 406 392 407 If the function has variable arguments, the la 393 If the function has variable arguments, the last parameter is encoded with 408 ``name_off = 0`` and ``type = 0``. 394 ``name_off = 0`` and ``type = 0``. 409 395 410 2.2.14 BTF_KIND_VAR << 411 ~~~~~~~~~~~~~~~~~~~ << 412 << 413 ``struct btf_type`` encoding requirement: << 414 * ``name_off``: offset to a valid C identifi << 415 * ``info.kind_flag``: 0 << 416 * ``info.kind``: BTF_KIND_VAR << 417 * ``info.vlen``: 0 << 418 * ``type``: the type of the variable << 419 << 420 ``btf_type`` is followed by a single ``struct << 421 following data:: << 422 << 423 struct btf_var { << 424 __u32 linkage; << 425 }; << 426 << 427 ``btf_var.linkage`` may take the values: BTF_V << 428 see :ref:`BTF_Var_Linkage_Constants`. << 429 << 430 Not all type of global variables are supported << 431 The following is currently available: << 432 << 433 * static variables with or without section a << 434 * global variables with section attributes << 435 << 436 The latter is for future extraction of map key << 437 map definition. << 438 << 439 2.2.15 BTF_KIND_DATASEC << 440 ~~~~~~~~~~~~~~~~~~~~~~~ << 441 << 442 ``struct btf_type`` encoding requirement: << 443 * ``name_off``: offset to a valid name assoc << 444 one of .data/.bss/.rodata << 445 * ``info.kind_flag``: 0 << 446 * ``info.kind``: BTF_KIND_DATASEC << 447 * ``info.vlen``: # of variables << 448 * ``size``: total section size in bytes (0 a << 449 to actual size by BPF loaders su << 450 << 451 ``btf_type`` is followed by ``info.vlen`` numb << 452 << 453 struct btf_var_secinfo { << 454 __u32 type; << 455 __u32 offset; << 456 __u32 size; << 457 }; << 458 << 459 ``struct btf_var_secinfo`` encoding: << 460 * ``type``: the type of the BTF_KIND_VAR var << 461 * ``offset``: the in-section offset of the v << 462 * ``size``: the size of the variable in byte << 463 << 464 2.2.16 BTF_KIND_FLOAT << 465 ~~~~~~~~~~~~~~~~~~~~~ << 466 << 467 ``struct btf_type`` encoding requirement: << 468 * ``name_off``: any valid offset << 469 * ``info.kind_flag``: 0 << 470 * ``info.kind``: BTF_KIND_FLOAT << 471 * ``info.vlen``: 0 << 472 * ``size``: the size of the float type in byt << 473 << 474 No additional type data follow ``btf_type``. << 475 << 476 2.2.17 BTF_KIND_DECL_TAG << 477 ~~~~~~~~~~~~~~~~~~~~~~~~ << 478 << 479 ``struct btf_type`` encoding requirement: << 480 * ``name_off``: offset to a non-empty string << 481 * ``info.kind_flag``: 0 << 482 * ``info.kind``: BTF_KIND_DECL_TAG << 483 * ``info.vlen``: 0 << 484 * ``type``: ``struct``, ``union``, ``func``, << 485 << 486 ``btf_type`` is followed by ``struct btf_decl_ << 487 << 488 struct btf_decl_tag { << 489 __u32 component_idx; << 490 }; << 491 << 492 The ``name_off`` encodes btf_decl_tag attribut << 493 The ``type`` should be ``struct``, ``union``, << 494 For ``var`` or ``typedef`` type, ``btf_decl_ta << 495 For the other three types, if the btf_decl_tag << 496 applied to the ``struct``, ``union`` or ``func << 497 ``btf_decl_tag.component_idx`` must be ``-1``. << 498 the attribute is applied to a ``struct``/``uni << 499 a ``func`` argument, and ``btf_decl_tag.compon << 500 valid index (starting from 0) pointing to a me << 501 << 502 2.2.18 BTF_KIND_TYPE_TAG << 503 ~~~~~~~~~~~~~~~~~~~~~~~~ << 504 << 505 ``struct btf_type`` encoding requirement: << 506 * ``name_off``: offset to a non-empty string << 507 * ``info.kind_flag``: 0 << 508 * ``info.kind``: BTF_KIND_TYPE_TAG << 509 * ``info.vlen``: 0 << 510 * ``type``: the type with ``btf_type_tag`` at << 511 << 512 Currently, ``BTF_KIND_TYPE_TAG`` is only emitt << 513 It has the following btf type chain: << 514 :: << 515 << 516 ptr -> [type_tag]* << 517 -> [const | volatile | restrict | typede << 518 -> base_type << 519 << 520 Basically, a pointer type points to zero or mo << 521 type_tag, then zero or more const/volatile/res << 522 and finally the base type. The base type is on << 523 int, ptr, array, struct, union, enum, func_pro << 524 << 525 2.2.19 BTF_KIND_ENUM64 << 526 ~~~~~~~~~~~~~~~~~~~~~~ << 527 << 528 ``struct btf_type`` encoding requirement: << 529 * ``name_off``: 0 or offset to a valid C ide << 530 * ``info.kind_flag``: 0 for unsigned, 1 for << 531 * ``info.kind``: BTF_KIND_ENUM64 << 532 * ``info.vlen``: number of enum values << 533 * ``size``: 1/2/4/8 << 534 << 535 ``btf_type`` is followed by ``info.vlen`` numb << 536 << 537 struct btf_enum64 { << 538 __u32 name_off; << 539 __u32 val_lo32; << 540 __u32 val_hi32; << 541 }; << 542 << 543 The ``btf_enum64`` encoding: << 544 * ``name_off``: offset to a valid C identifi << 545 * ``val_lo32``: lower 32-bit value for a 64- << 546 * ``val_hi32``: high 32-bit value for a 64-b << 547 << 548 If the original enum value is signed and the s << 549 that value will be sign extended into 8 bytes. << 550 << 551 2.3 Constant Values << 552 ------------------- << 553 << 554 .. _BTF_Function_Linkage_Constants: << 555 << 556 2.3.1 Function Linkage Constant Values << 557 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ << 558 .. table:: Function Linkage Values and Meaning << 559 << 560 =================== ===== =========== << 561 kind value description << 562 =================== ===== =========== << 563 ``BTF_FUNC_STATIC`` 0x0 definition of su << 564 ``BTF_FUNC_GLOBAL`` 0x1 definition of su << 565 ``BTF_FUNC_EXTERN`` 0x2 declaration of a << 566 =================== ===== =========== << 567 << 568 << 569 .. _BTF_Var_Linkage_Constants: << 570 << 571 2.3.2 Variable Linkage Constant Values << 572 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ << 573 .. table:: Variable Linkage Values and Meaning << 574 << 575 ============================ ===== ======= << 576 kind value descrip << 577 ============================ ===== ======= << 578 ``BTF_VAR_STATIC`` 0x0 definit << 579 ``BTF_VAR_GLOBAL_ALLOCATED`` 0x1 definit << 580 ``BTF_VAR_GLOBAL_EXTERN`` 0x2 declara << 581 ============================ ===== ======= << 582 << 583 3. BTF Kernel API 396 3. BTF Kernel API 584 ================= !! 397 ***************** 585 398 586 The following bpf syscall command involves BTF 399 The following bpf syscall command involves BTF: 587 * BPF_BTF_LOAD: load a blob of BTF data int 400 * BPF_BTF_LOAD: load a blob of BTF data into kernel 588 * BPF_MAP_CREATE: map creation with btf key 401 * BPF_MAP_CREATE: map creation with btf key and value type info. 589 * BPF_PROG_LOAD: prog load with btf functio 402 * BPF_PROG_LOAD: prog load with btf function and line info. 590 * BPF_BTF_GET_FD_BY_ID: get a btf fd 403 * BPF_BTF_GET_FD_BY_ID: get a btf fd 591 * BPF_OBJ_GET_INFO_BY_FD: btf, func_info, l 404 * BPF_OBJ_GET_INFO_BY_FD: btf, func_info, line_info 592 and other btf related info are returned. 405 and other btf related info are returned. 593 406 594 The workflow typically looks like: 407 The workflow typically looks like: 595 :: 408 :: 596 409 597 Application: 410 Application: 598 BPF_BTF_LOAD 411 BPF_BTF_LOAD 599 | 412 | 600 v 413 v 601 BPF_MAP_CREATE and BPF_PROG_LOAD 414 BPF_MAP_CREATE and BPF_PROG_LOAD 602 | 415 | 603 V 416 V 604 ...... 417 ...... 605 418 606 Introspection tool: 419 Introspection tool: 607 ...... 420 ...... 608 BPF_{PROG,MAP}_GET_NEXT_ID (get prog/map 421 BPF_{PROG,MAP}_GET_NEXT_ID (get prog/map id's) 609 | 422 | 610 V 423 V 611 BPF_{PROG,MAP}_GET_FD_BY_ID (get a prog/ 424 BPF_{PROG,MAP}_GET_FD_BY_ID (get a prog/map fd) 612 | 425 | 613 V 426 V 614 BPF_OBJ_GET_INFO_BY_FD (get bpf_prog_inf 427 BPF_OBJ_GET_INFO_BY_FD (get bpf_prog_info/bpf_map_info with btf_id) 615 | 428 | | 616 V 429 V | 617 BPF_BTF_GET_FD_BY_ID (get btf_fd) 430 BPF_BTF_GET_FD_BY_ID (get btf_fd) | 618 | 431 | | 619 V 432 V | 620 BPF_OBJ_GET_INFO_BY_FD (get btf) 433 BPF_OBJ_GET_INFO_BY_FD (get btf) | 621 | 434 | | 622 V 435 V V 623 pretty print types, dump func signatures 436 pretty print types, dump func signatures and line info, etc. 624 437 625 438 626 3.1 BPF_BTF_LOAD 439 3.1 BPF_BTF_LOAD 627 ---------------- !! 440 ================ 628 441 629 Load a blob of BTF data into kernel. A blob of 442 Load a blob of BTF data into kernel. A blob of data, described in 630 :ref:`BTF_Type_String`, can be directly loaded 443 :ref:`BTF_Type_String`, can be directly loaded into the kernel. A ``btf_fd`` 631 is returned to a userspace. 444 is returned to a userspace. 632 445 633 3.2 BPF_MAP_CREATE 446 3.2 BPF_MAP_CREATE 634 ------------------ !! 447 ================== 635 448 636 A map can be created with ``btf_fd`` and speci 449 A map can be created with ``btf_fd`` and specified key/value type id.:: 637 450 638 __u32 btf_fd; /* fd pointing to 451 __u32 btf_fd; /* fd pointing to a BTF type data */ 639 __u32 btf_key_type_id; /* BTF typ 452 __u32 btf_key_type_id; /* BTF type_id of the key */ 640 __u32 btf_value_type_id; /* BTF typ 453 __u32 btf_value_type_id; /* BTF type_id of the value */ 641 454 642 In libbpf, the map can be defined with extra a 455 In libbpf, the map can be defined with extra annotation like below: 643 :: 456 :: 644 457 645 struct { !! 458 struct bpf_map_def SEC("maps") btf_map = { 646 __uint(type, BPF_MAP_TYPE_ARRAY); !! 459 .type = BPF_MAP_TYPE_ARRAY, 647 __type(key, int); !! 460 .key_size = sizeof(int), 648 __type(value, struct ipv_counts); !! 461 .value_size = sizeof(struct ipv_counts), 649 __uint(max_entries, 4); !! 462 .max_entries = 4, 650 } btf_map SEC(".maps"); !! 463 }; 651 !! 464 BPF_ANNOTATE_KV_PAIR(btf_map, int, struct ipv_counts); 652 During ELF parsing, libbpf is able to extract !! 465 653 them to BPF_MAP_CREATE attributes automaticall !! 466 Here, the parameters for macro BPF_ANNOTATE_KV_PAIR are map name, key and >> 467 value types for the map. During ELF parsing, libbpf is able to extract >> 468 key/value type_id's and assign them to BPF_MAP_CREATE attributes >> 469 automatically. 654 470 655 .. _BPF_Prog_Load: 471 .. _BPF_Prog_Load: 656 472 657 3.3 BPF_PROG_LOAD 473 3.3 BPF_PROG_LOAD 658 ----------------- !! 474 ================= 659 475 660 During prog_load, func_info and line_info can 476 During prog_load, func_info and line_info can be passed to kernel with proper 661 values for the following attributes: 477 values for the following attributes: 662 :: 478 :: 663 479 664 __u32 insn_cnt; 480 __u32 insn_cnt; 665 __aligned_u64 insns; 481 __aligned_u64 insns; 666 ...... 482 ...... 667 __u32 prog_btf_fd; /* fd poin 483 __u32 prog_btf_fd; /* fd pointing to BTF type data */ 668 __u32 func_info_rec_size; /* 484 __u32 func_info_rec_size; /* userspace bpf_func_info size */ 669 __aligned_u64 func_info; /* func in 485 __aligned_u64 func_info; /* func info */ 670 __u32 func_info_cnt; /* number 486 __u32 func_info_cnt; /* number of bpf_func_info records */ 671 __u32 line_info_rec_size; /* 487 __u32 line_info_rec_size; /* userspace bpf_line_info size */ 672 __aligned_u64 line_info; /* line in 488 __aligned_u64 line_info; /* line info */ 673 __u32 line_info_cnt; /* number 489 __u32 line_info_cnt; /* number of bpf_line_info records */ 674 490 675 The func_info and line_info are an array of be 491 The func_info and line_info are an array of below, respectively.:: 676 492 677 struct bpf_func_info { 493 struct bpf_func_info { 678 __u32 insn_off; /* [0, insn_cnt - 1] 494 __u32 insn_off; /* [0, insn_cnt - 1] */ 679 __u32 type_id; /* pointing to a BTF 495 __u32 type_id; /* pointing to a BTF_KIND_FUNC type */ 680 }; 496 }; 681 struct bpf_line_info { 497 struct bpf_line_info { 682 __u32 insn_off; /* [0, insn_cnt - 1] 498 __u32 insn_off; /* [0, insn_cnt - 1] */ 683 __u32 file_name_off; /* offset to st 499 __u32 file_name_off; /* offset to string table for the filename */ 684 __u32 line_off; /* offset to string 500 __u32 line_off; /* offset to string table for the source line */ 685 __u32 line_col; /* line number and c 501 __u32 line_col; /* line number and column number */ 686 }; 502 }; 687 503 688 func_info_rec_size is the size of each func_in 504 func_info_rec_size is the size of each func_info record, and 689 line_info_rec_size is the size of each line_in 505 line_info_rec_size is the size of each line_info record. Passing the record 690 size to kernel make it possible to extend the 506 size to kernel make it possible to extend the record itself in the future. 691 507 692 Below are requirements for func_info: 508 Below are requirements for func_info: 693 * func_info[0].insn_off must be 0. 509 * func_info[0].insn_off must be 0. 694 * the func_info insn_off is in strictly incr 510 * the func_info insn_off is in strictly increasing order and matches 695 bpf func boundaries. 511 bpf func boundaries. 696 512 697 Below are requirements for line_info: 513 Below are requirements for line_info: 698 * the first insn in each func must have a li 514 * the first insn in each func must have a line_info record pointing to it. 699 * the line_info insn_off is in strictly incr 515 * the line_info insn_off is in strictly increasing order. 700 516 701 For line_info, the line number and column numb 517 For line_info, the line number and column number are defined as below: 702 :: 518 :: 703 519 704 #define BPF_LINE_INFO_LINE_NUM(line_col) 520 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10) 705 #define BPF_LINE_INFO_LINE_COL(line_col) 521 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff) 706 522 707 3.4 BPF_{PROG,MAP}_GET_NEXT_ID 523 3.4 BPF_{PROG,MAP}_GET_NEXT_ID 708 ------------------------------ << 709 524 710 In kernel, every loaded program, map or btf ha 525 In kernel, every loaded program, map or btf has a unique id. The id won't 711 change during the lifetime of a program, map, 526 change during the lifetime of a program, map, or btf. 712 527 713 The bpf syscall command BPF_{PROG,MAP}_GET_NEX 528 The bpf syscall command BPF_{PROG,MAP}_GET_NEXT_ID returns all id's, one for 714 each command, to user space, for bpf program o 529 each command, to user space, for bpf program or maps, respectively, so an 715 inspection tool can inspect all programs and m 530 inspection tool can inspect all programs and maps. 716 531 717 3.5 BPF_{PROG,MAP}_GET_FD_BY_ID 532 3.5 BPF_{PROG,MAP}_GET_FD_BY_ID 718 ------------------------------- << 719 533 720 An introspection tool cannot use id to get det 534 An introspection tool cannot use id to get details about program or maps. 721 A file descriptor needs to be obtained first f 535 A file descriptor needs to be obtained first for reference-counting purpose. 722 536 723 3.6 BPF_OBJ_GET_INFO_BY_FD 537 3.6 BPF_OBJ_GET_INFO_BY_FD 724 -------------------------- !! 538 ========================== 725 539 726 Once a program/map fd is acquired, an introspe 540 Once a program/map fd is acquired, an introspection tool can get the detailed 727 information from kernel about this fd, some of 541 information from kernel about this fd, some of which are BTF-related. For 728 example, ``bpf_map_info`` returns ``btf_id`` a 542 example, ``bpf_map_info`` returns ``btf_id`` and key/value type ids. 729 ``bpf_prog_info`` returns ``btf_id``, func_inf 543 ``bpf_prog_info`` returns ``btf_id``, func_info, and line info for translated 730 bpf byte codes, and jited_line_info. 544 bpf byte codes, and jited_line_info. 731 545 732 3.7 BPF_BTF_GET_FD_BY_ID 546 3.7 BPF_BTF_GET_FD_BY_ID 733 ------------------------ !! 547 ======================== 734 548 735 With ``btf_id`` obtained in ``bpf_map_info`` a 549 With ``btf_id`` obtained in ``bpf_map_info`` and ``bpf_prog_info``, bpf 736 syscall command BPF_BTF_GET_FD_BY_ID can retri 550 syscall command BPF_BTF_GET_FD_BY_ID can retrieve a btf fd. Then, with 737 command BPF_OBJ_GET_INFO_BY_FD, the btf blob, 551 command BPF_OBJ_GET_INFO_BY_FD, the btf blob, originally loaded into the 738 kernel with BPF_BTF_LOAD, can be retrieved. 552 kernel with BPF_BTF_LOAD, can be retrieved. 739 553 740 With the btf blob, ``bpf_map_info``, and ``bpf 554 With the btf blob, ``bpf_map_info``, and ``bpf_prog_info``, an introspection 741 tool has full btf knowledge and is able to pre 555 tool has full btf knowledge and is able to pretty print map key/values, dump 742 func signatures and line info, along with byte 556 func signatures and line info, along with byte/jit codes. 743 557 744 4. ELF File Format Interface 558 4. ELF File Format Interface 745 ============================ !! 559 **************************** 746 560 747 4.1 .BTF section 561 4.1 .BTF section 748 ---------------- !! 562 ================ 749 563 750 The .BTF section contains type and string data 564 The .BTF section contains type and string data. The format of this section is 751 same as the one describe in :ref:`BTF_Type_Str 565 same as the one describe in :ref:`BTF_Type_String`. 752 566 753 .. _BTF_Ext_Section: 567 .. _BTF_Ext_Section: 754 568 755 4.2 .BTF.ext section 569 4.2 .BTF.ext section 756 -------------------- !! 570 ==================== 757 571 758 The .BTF.ext section encodes func_info, line_i !! 572 The .BTF.ext section encodes func_info and line_info which needs loader 759 which needs loader manipulation before loading !! 573 manipulation before loading into the kernel. 760 574 761 The specification for .BTF.ext section is defi 575 The specification for .BTF.ext section is defined at ``tools/lib/bpf/btf.h`` 762 and ``tools/lib/bpf/btf.c``. 576 and ``tools/lib/bpf/btf.c``. 763 577 764 The current header of .BTF.ext section:: 578 The current header of .BTF.ext section:: 765 579 766 struct btf_ext_header { 580 struct btf_ext_header { 767 __u16 magic; 581 __u16 magic; 768 __u8 version; 582 __u8 version; 769 __u8 flags; 583 __u8 flags; 770 __u32 hdr_len; 584 __u32 hdr_len; 771 585 772 /* All offsets are in bytes relative t 586 /* All offsets are in bytes relative to the end of this header */ 773 __u32 func_info_off; 587 __u32 func_info_off; 774 __u32 func_info_len; 588 __u32 func_info_len; 775 __u32 line_info_off; 589 __u32 line_info_off; 776 __u32 line_info_len; 590 __u32 line_info_len; 777 << 778 /* optional part of .BTF.ext header */ << 779 __u32 core_relo_off; << 780 __u32 core_relo_len; << 781 }; 591 }; 782 592 783 It is very similar to .BTF section. Instead of 593 It is very similar to .BTF section. Instead of type/string section, it 784 contains func_info, line_info and core_relo su !! 594 contains func_info and line_info section. See :ref:`BPF_Prog_Load` for details 785 See :ref:`BPF_Prog_Load` for details about fun !! 595 about func_info and line_info record format. 786 record format. << 787 596 788 The func_info is organized as below.:: 597 The func_info is organized as below.:: 789 598 790 func_info_rec_size /* __u32 !! 599 func_info_rec_size 791 btf_ext_info_sec for section #1 /* func_i 600 btf_ext_info_sec for section #1 /* func_info for section #1 */ 792 btf_ext_info_sec for section #2 /* func_i 601 btf_ext_info_sec for section #2 /* func_info for section #2 */ 793 ... 602 ... 794 603 795 ``func_info_rec_size`` specifies the size of ` 604 ``func_info_rec_size`` specifies the size of ``bpf_func_info`` structure when 796 .BTF.ext is generated. ``btf_ext_info_sec``, d 605 .BTF.ext is generated. ``btf_ext_info_sec``, defined below, is a collection of 797 func_info for each specific ELF section.:: 606 func_info for each specific ELF section.:: 798 607 799 struct btf_ext_info_sec { 608 struct btf_ext_info_sec { 800 __u32 sec_name_off; /* offset to sec 609 __u32 sec_name_off; /* offset to section name */ 801 __u32 num_info; 610 __u32 num_info; 802 /* Followed by num_info * record_size 611 /* Followed by num_info * record_size number of bytes */ 803 __u8 data[0]; 612 __u8 data[0]; 804 }; 613 }; 805 614 806 Here, num_info must be greater than 0. 615 Here, num_info must be greater than 0. 807 616 808 The line_info is organized as below.:: 617 The line_info is organized as below.:: 809 618 810 line_info_rec_size /* __u32 !! 619 line_info_rec_size 811 btf_ext_info_sec for section #1 /* line_i 620 btf_ext_info_sec for section #1 /* line_info for section #1 */ 812 btf_ext_info_sec for section #2 /* line_i 621 btf_ext_info_sec for section #2 /* line_info for section #2 */ 813 ... 622 ... 814 623 815 ``line_info_rec_size`` specifies the size of ` 624 ``line_info_rec_size`` specifies the size of ``bpf_line_info`` structure when 816 .BTF.ext is generated. 625 .BTF.ext is generated. 817 626 818 The interpretation of ``bpf_func_info->insn_of 627 The interpretation of ``bpf_func_info->insn_off`` and 819 ``bpf_line_info->insn_off`` is different betwe 628 ``bpf_line_info->insn_off`` is different between kernel API and ELF API. For 820 kernel API, the ``insn_off`` is the instructio 629 kernel API, the ``insn_off`` is the instruction offset in the unit of ``struct 821 bpf_insn``. For ELF API, the ``insn_off`` is t 630 bpf_insn``. For ELF API, the ``insn_off`` is the byte offset from the 822 beginning of section (``btf_ext_info_sec->sec_ 631 beginning of section (``btf_ext_info_sec->sec_name_off``). 823 632 824 The core_relo is organized as below.:: << 825 << 826 core_relo_rec_size /* __u32 << 827 btf_ext_info_sec for section #1 /* core_r << 828 btf_ext_info_sec for section #2 /* core_r << 829 << 830 ``core_relo_rec_size`` specifies the size of ` << 831 structure when .BTF.ext is generated. All ``bp << 832 within a single ``btf_ext_info_sec`` describe << 833 section named by ``btf_ext_info_sec->sec_name_ << 834 << 835 See :ref:`Documentation/bpf/llvm_reloc.rst <bt << 836 for more information on CO-RE relocations. << 837 << 838 4.2 .BTF_ids section << 839 -------------------- << 840 << 841 The .BTF_ids section encodes BTF ID values tha << 842 << 843 This section is created during the kernel comp << 844 macros defined in ``include/linux/btf_ids.h`` << 845 use them to create lists and sets (sorted list << 846 << 847 The ``BTF_ID_LIST`` and ``BTF_ID`` macros defi << 848 with following syntax:: << 849 << 850 BTF_ID_LIST(list) << 851 BTF_ID(type1, name1) << 852 BTF_ID(type2, name2) << 853 << 854 resulting in following layout in .BTF_ids sect << 855 << 856 __BTF_ID__type1__name1__1: << 857 .zero 4 << 858 __BTF_ID__type2__name2__2: << 859 .zero 4 << 860 << 861 The ``u32 list[];`` variable is defined to acc << 862 << 863 The ``BTF_ID_UNUSED`` macro defines 4 zero byt << 864 want to define unused entry in BTF_ID_LIST, li << 865 << 866 BTF_ID_LIST(bpf_skb_output_btf_ids) << 867 BTF_ID(struct, sk_buff) << 868 BTF_ID_UNUSED << 869 BTF_ID(struct, task_struct) << 870 << 871 The ``BTF_SET_START/END`` macros pair defines << 872 and their count, with following syntax:: << 873 << 874 BTF_SET_START(set) << 875 BTF_ID(type1, name1) << 876 BTF_ID(type2, name2) << 877 BTF_SET_END(set) << 878 << 879 resulting in following layout in .BTF_ids sect << 880 << 881 __BTF_ID__set__set: << 882 .zero 4 << 883 __BTF_ID__type1__name1__3: << 884 .zero 4 << 885 __BTF_ID__type2__name2__4: << 886 .zero 4 << 887 << 888 The ``struct btf_id_set set;`` variable is def << 889 << 890 The ``typeX`` name can be one of following:: << 891 << 892 struct, union, typedef, func << 893 << 894 and is used as a filter when resolving the BTF << 895 << 896 All the BTF ID lists and sets are compiled in << 897 resolved during the linking phase of kernel bu << 898 << 899 5. Using BTF 633 5. Using BTF 900 ============ !! 634 ************ 901 635 902 5.1 bpftool map pretty print 636 5.1 bpftool map pretty print 903 ---------------------------- !! 637 ============================ 904 638 905 With BTF, the map key/value can be printed bas 639 With BTF, the map key/value can be printed based on fields rather than simply 906 raw bytes. This is especially valuable for lar 640 raw bytes. This is especially valuable for large structure or if your data 907 structure has bitfields. For example, for the 641 structure has bitfields. For example, for the following map,:: 908 642 909 enum A { A1, A2, A3, A4, A5 }; 643 enum A { A1, A2, A3, A4, A5 }; 910 typedef enum A ___A; 644 typedef enum A ___A; 911 struct tmp_t { 645 struct tmp_t { 912 char a1:4; 646 char a1:4; 913 int a2:4; 647 int a2:4; 914 int :4; 648 int :4; 915 __u32 a3:4; 649 __u32 a3:4; 916 int b; 650 int b; 917 ___A b1:4; 651 ___A b1:4; 918 enum A b2:4; 652 enum A b2:4; 919 }; 653 }; 920 struct { !! 654 struct bpf_map_def SEC("maps") tmpmap = { 921 __uint(type, BPF_MAP_TYPE_ARRAY); !! 655 .type = BPF_MAP_TYPE_ARRAY, 922 __type(key, int); !! 656 .key_size = sizeof(__u32), 923 __type(value, struct tmp_t); !! 657 .value_size = sizeof(struct tmp_t), 924 __uint(max_entries, 1); !! 658 .max_entries = 1, 925 } tmpmap SEC(".maps"); !! 659 }; >> 660 BPF_ANNOTATE_KV_PAIR(tmpmap, int, struct tmp_t); 926 661 927 bpftool is able to pretty print like below: 662 bpftool is able to pretty print like below: 928 :: 663 :: 929 664 930 [{ 665 [{ 931 "key": 0, 666 "key": 0, 932 "value": { 667 "value": { 933 "a1": 0x2, 668 "a1": 0x2, 934 "a2": 0x4, 669 "a2": 0x4, 935 "a3": 0x6, 670 "a3": 0x6, 936 "b": 7, 671 "b": 7, 937 "b1": 0x8, 672 "b1": 0x8, 938 "b2": 0xa 673 "b2": 0xa 939 } 674 } 940 } 675 } 941 ] 676 ] 942 677 943 5.2 bpftool prog dump 678 5.2 bpftool prog dump 944 --------------------- !! 679 ===================== 945 680 946 The following is an example showing how func_i 681 The following is an example showing how func_info and line_info can help prog 947 dump with better kernel symbol names, function 682 dump with better kernel symbol names, function prototypes and line 948 information.:: 683 information.:: 949 684 950 $ bpftool prog dump jited pinned /sys/fs/b 685 $ bpftool prog dump jited pinned /sys/fs/bpf/test_btf_haskv 951 [...] 686 [...] 952 int test_long_fname_2(struct dummy_tracepo 687 int test_long_fname_2(struct dummy_tracepoint_args * arg): 953 bpf_prog_44a040bf25481309_test_long_fname_ 688 bpf_prog_44a040bf25481309_test_long_fname_2: 954 ; static int test_long_fname_2(struct dumm 689 ; static int test_long_fname_2(struct dummy_tracepoint_args *arg) 955 0: push %rbp 690 0: push %rbp 956 1: mov %rsp,%rbp 691 1: mov %rsp,%rbp 957 4: sub $0x30,%rsp 692 4: sub $0x30,%rsp 958 b: sub $0x28,%rbp 693 b: sub $0x28,%rbp 959 f: mov %rbx,0x0(%rbp) 694 f: mov %rbx,0x0(%rbp) 960 13: mov %r13,0x8(%rbp) 695 13: mov %r13,0x8(%rbp) 961 17: mov %r14,0x10(%rbp) 696 17: mov %r14,0x10(%rbp) 962 1b: mov %r15,0x18(%rbp) 697 1b: mov %r15,0x18(%rbp) 963 1f: xor %eax,%eax 698 1f: xor %eax,%eax 964 21: mov %rax,0x20(%rbp) 699 21: mov %rax,0x20(%rbp) 965 25: xor %esi,%esi 700 25: xor %esi,%esi 966 ; int key = 0; 701 ; int key = 0; 967 27: mov %esi,-0x4(%rbp) 702 27: mov %esi,-0x4(%rbp) 968 ; if (!arg->sock) 703 ; if (!arg->sock) 969 2a: mov 0x8(%rdi),%rdi 704 2a: mov 0x8(%rdi),%rdi 970 ; if (!arg->sock) 705 ; if (!arg->sock) 971 2e: cmp $0x0,%rdi 706 2e: cmp $0x0,%rdi 972 32: je 0x0000000000000070 707 32: je 0x0000000000000070 973 34: mov %rbp,%rsi 708 34: mov %rbp,%rsi 974 ; counts = bpf_map_lookup_elem(&btf_map, & 709 ; counts = bpf_map_lookup_elem(&btf_map, &key); 975 [...] 710 [...] 976 711 977 5.3 Verifier Log 712 5.3 Verifier Log 978 ---------------- !! 713 ================ 979 714 980 The following is an example of how line_info c 715 The following is an example of how line_info can help debugging verification 981 failure.:: 716 failure.:: 982 717 983 /* The code at tools/testing/selftests/ 718 /* The code at tools/testing/selftests/bpf/test_xdp_noinline.c 984 * is modified as below. 719 * is modified as below. 985 */ 720 */ 986 data = (void *)(long)xdp->data; 721 data = (void *)(long)xdp->data; 987 data_end = (void *)(long)xdp->data_end; 722 data_end = (void *)(long)xdp->data_end; 988 /* 723 /* 989 if (data + 4 > data_end) 724 if (data + 4 > data_end) 990 return XDP_DROP; 725 return XDP_DROP; 991 */ 726 */ 992 *(u32 *)data = dst->dst; 727 *(u32 *)data = dst->dst; 993 728 994 $ bpftool prog load ./test_xdp_noinline.o 729 $ bpftool prog load ./test_xdp_noinline.o /sys/fs/bpf/test_xdp_noinline type xdp 995 ; data = (void *)(long)xdp->data; 730 ; data = (void *)(long)xdp->data; 996 224: (79) r2 = *(u64 *)(r10 -112) 731 224: (79) r2 = *(u64 *)(r10 -112) 997 225: (61) r2 = *(u32 *)(r2 +0) 732 225: (61) r2 = *(u32 *)(r2 +0) 998 ; *(u32 *)data = dst->dst; 733 ; *(u32 *)data = dst->dst; 999 226: (63) *(u32 *)(r2 +0) = r1 734 226: (63) *(u32 *)(r2 +0) = r1 1000 invalid access to packet, off=0 size= 735 invalid access to packet, off=0 size=4, R2(id=0,off=0,r=0) 1001 R2 offset is outside of the packet 736 R2 offset is outside of the packet 1002 737 1003 6. BTF Generation 738 6. BTF Generation 1004 ================= !! 739 ***************** 1005 740 1006 You need latest pahole 741 You need latest pahole 1007 742 1008 https://git.kernel.org/pub/scm/devel/pahole 743 https://git.kernel.org/pub/scm/devel/pahole/pahole.git/ 1009 744 1010 or llvm (8.0 or later). The pahole acts as a 745 or llvm (8.0 or later). The pahole acts as a dwarf2btf converter. It doesn't 1011 support .BTF.ext and btf BTF_KIND_FUNC type y 746 support .BTF.ext and btf BTF_KIND_FUNC type yet. For example,:: 1012 747 1013 -bash-4.4$ cat t.c 748 -bash-4.4$ cat t.c 1014 struct t { 749 struct t { 1015 int a:2; 750 int a:2; 1016 int b:3; 751 int b:3; 1017 int c:2; 752 int c:2; 1018 } g; 753 } g; 1019 -bash-4.4$ gcc -c -O2 -g t.c 754 -bash-4.4$ gcc -c -O2 -g t.c 1020 -bash-4.4$ pahole -JV t.o 755 -bash-4.4$ pahole -JV t.o 1021 File t.o: 756 File t.o: 1022 [1] STRUCT t kind_flag=1 size=4 vlen=3 757 [1] STRUCT t kind_flag=1 size=4 vlen=3 1023 a type_id=2 bitfield_size=2 bit 758 a type_id=2 bitfield_size=2 bits_offset=0 1024 b type_id=2 bitfield_size=3 bit 759 b type_id=2 bitfield_size=3 bits_offset=2 1025 c type_id=2 bitfield_size=2 bit 760 c type_id=2 bitfield_size=2 bits_offset=5 1026 [2] INT int size=4 bit_offset=0 nr_bits 761 [2] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED 1027 762 1028 The llvm is able to generate .BTF and .BTF.ex 763 The llvm is able to generate .BTF and .BTF.ext directly with -g for bpf target 1029 only. The assembly code (-S) is able to show 764 only. The assembly code (-S) is able to show the BTF encoding in assembly 1030 format.:: 765 format.:: 1031 766 1032 -bash-4.4$ cat t2.c 767 -bash-4.4$ cat t2.c 1033 typedef int __int32; 768 typedef int __int32; 1034 struct t2 { 769 struct t2 { 1035 int a2; 770 int a2; 1036 int (*f2)(char q1, __int32 q2, ...); 771 int (*f2)(char q1, __int32 q2, ...); 1037 int (*f3)(); 772 int (*f3)(); 1038 } g2; 773 } g2; 1039 int main() { return 0; } 774 int main() { return 0; } 1040 int test() { return 0; } 775 int test() { return 0; } 1041 -bash-4.4$ clang -c -g -O2 --target=bpf t !! 776 -bash-4.4$ clang -c -g -O2 -target bpf t2.c 1042 -bash-4.4$ readelf -S t2.o 777 -bash-4.4$ readelf -S t2.o 1043 ...... 778 ...... 1044 [ 8] .BTF PROGBITS 779 [ 8] .BTF PROGBITS 0000000000000000 00000247 1045 000000000000016e 0000000000000000 780 000000000000016e 0000000000000000 0 0 1 1046 [ 9] .BTF.ext PROGBITS 781 [ 9] .BTF.ext PROGBITS 0000000000000000 000003b5 1047 0000000000000060 0000000000000000 782 0000000000000060 0000000000000000 0 0 1 1048 [10] .rel.BTF.ext REL 783 [10] .rel.BTF.ext REL 0000000000000000 000007e0 1049 0000000000000040 0000000000000010 784 0000000000000040 0000000000000010 16 9 8 1050 ...... 785 ...... 1051 -bash-4.4$ clang -S -g -O2 --target=bpf t !! 786 -bash-4.4$ clang -S -g -O2 -target bpf t2.c 1052 -bash-4.4$ cat t2.s 787 -bash-4.4$ cat t2.s 1053 ...... 788 ...... 1054 .section .BTF,"",@progbits 789 .section .BTF,"",@progbits 1055 .short 60319 # 790 .short 60319 # 0xeb9f 1056 .byte 1 791 .byte 1 1057 .byte 0 792 .byte 0 1058 .long 24 793 .long 24 1059 .long 0 794 .long 0 1060 .long 220 795 .long 220 1061 .long 220 796 .long 220 1062 .long 122 797 .long 122 1063 .long 0 # 798 .long 0 # BTF_KIND_FUNC_PROTO(id = 1) 1064 .long 218103808 # 799 .long 218103808 # 0xd000000 1065 .long 2 800 .long 2 1066 .long 83 # 801 .long 83 # BTF_KIND_INT(id = 2) 1067 .long 16777216 # 802 .long 16777216 # 0x1000000 1068 .long 4 803 .long 4 1069 .long 16777248 # 804 .long 16777248 # 0x1000020 1070 ...... 805 ...... 1071 .byte 0 # 806 .byte 0 # string offset=0 1072 .ascii ".text" # 807 .ascii ".text" # string offset=1 1073 .byte 0 808 .byte 0 1074 .ascii "/home/yhs/tmp-pahole/t2. 809 .ascii "/home/yhs/tmp-pahole/t2.c" # string offset=7 1075 .byte 0 810 .byte 0 1076 .ascii "int main() { return 0; } 811 .ascii "int main() { return 0; }" # string offset=33 1077 .byte 0 812 .byte 0 1078 .ascii "int test() { return 0; } 813 .ascii "int test() { return 0; }" # string offset=58 1079 .byte 0 814 .byte 0 1080 .ascii "int" # 815 .ascii "int" # string offset=83 1081 ...... 816 ...... 1082 .section .BTF.ext,"",@prog 817 .section .BTF.ext,"",@progbits 1083 .short 60319 # 818 .short 60319 # 0xeb9f 1084 .byte 1 819 .byte 1 1085 .byte 0 820 .byte 0 1086 .long 24 821 .long 24 1087 .long 0 822 .long 0 1088 .long 28 823 .long 28 1089 .long 28 824 .long 28 1090 .long 44 825 .long 44 1091 .long 8 # 826 .long 8 # FuncInfo 1092 .long 1 # 827 .long 1 # FuncInfo section string offset=1 1093 .long 2 828 .long 2 1094 .long .Lfunc_begin0 829 .long .Lfunc_begin0 1095 .long 3 830 .long 3 1096 .long .Lfunc_begin1 831 .long .Lfunc_begin1 1097 .long 5 832 .long 5 1098 .long 16 # 833 .long 16 # LineInfo 1099 .long 1 # 834 .long 1 # LineInfo section string offset=1 1100 .long 2 835 .long 2 1101 .long .Ltmp0 836 .long .Ltmp0 1102 .long 7 837 .long 7 1103 .long 33 838 .long 33 1104 .long 7182 # 839 .long 7182 # Line 7 Col 14 1105 .long .Ltmp3 840 .long .Ltmp3 1106 .long 7 841 .long 7 1107 .long 58 842 .long 58 1108 .long 8206 # 843 .long 8206 # Line 8 Col 14 1109 844 1110 7. Testing 845 7. Testing 1111 ========== !! 846 ********** 1112 << 1113 The kernel BPF selftest `tools/testing/selfte << 1114 provides an extensive set of BTF-related test << 1115 847 1116 .. Links !! 848 Kernel bpf selftest `test_btf.c` provides extensive set of BTF-related tests. 1117 .. _tools/testing/selftests/bpf/prog_tests/bt << 1118 https://git.kernel.org/pub/scm/linux/kerne <<
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.