1 .. contents:: 1 .. contents:: 2 .. sectnum:: 2 .. sectnum:: 3 3 4 ====================================== 4 ====================================== 5 BPF Instruction Set Architecture (ISA) 5 BPF Instruction Set Architecture (ISA) 6 ====================================== 6 ====================================== 7 7 8 eBPF, also commonly !! 8 eBPF (which is no longer an acronym for anything), also commonly 9 referred to as BPF, is a technology with origi 9 referred to as BPF, is a technology with origins in the Linux kernel 10 that can run untrusted programs in a privilege 10 that can run untrusted programs in a privileged context such as an 11 operating system kernel. This document specifi 11 operating system kernel. This document specifies the BPF instruction 12 set architecture (ISA). 12 set architecture (ISA). 13 13 14 As a historical note, BPF originally stood for << 15 but now that it can do so much more than packe << 16 no longer makes sense. BPF is now considered a << 17 does not stand for anything. The original BPF << 18 as cBPF (classic BPF) to distinguish it from t << 19 eBPF (extended BPF). << 20 << 21 Documentation conventions 14 Documentation conventions 22 ========================= 15 ========================= 23 16 24 The key words "MUST", "MUST NOT", "REQUIRED", << 25 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RE << 26 "OPTIONAL" in this document are to be interpre << 27 BCP 14 `<https://www.rfc-editor.org/info/rfc21 << 28 `<https://www.rfc-editor.org/info/rfc8174>`_ << 29 when, and only when, they appear in all capita << 30 << 31 For brevity and consistency, this document ref 17 For brevity and consistency, this document refers to families 32 of types using a shorthand syntax and refers t 18 of types using a shorthand syntax and refers to several expository, 33 mnemonic functions when describing the semanti 19 mnemonic functions when describing the semantics of instructions. 34 The range of valid values for those types and 20 The range of valid values for those types and the semantics of those 35 functions are defined in the following subsect 21 functions are defined in the following subsections. 36 22 37 Types 23 Types 38 ----- 24 ----- 39 This document refers to integer types with the 25 This document refers to integer types with the notation `SN` to specify 40 a type's signedness (`S`) and bit width (`N`), 26 a type's signedness (`S`) and bit width (`N`), respectively. 41 27 42 .. table:: Meaning of signedness notation !! 28 .. table:: Meaning of signedness notation. 43 29 44 ==== ========= 30 ==== ========= 45 S Meaning 31 S Meaning 46 ==== ========= 32 ==== ========= 47 u unsigned 33 u unsigned 48 s signed 34 s signed 49 ==== ========= 35 ==== ========= 50 36 51 .. table:: Meaning of bit-width notation !! 37 .. table:: Meaning of bit-width notation. 52 38 53 ===== ========= 39 ===== ========= 54 N Bit width 40 N Bit width 55 ===== ========= 41 ===== ========= 56 8 8 bits 42 8 8 bits 57 16 16 bits 43 16 16 bits 58 32 32 bits 44 32 32 bits 59 64 64 bits 45 64 64 bits 60 128 128 bits 46 128 128 bits 61 ===== ========= 47 ===== ========= 62 48 63 For example, `u32` is a type whose valid value 49 For example, `u32` is a type whose valid values are all the 32-bit unsigned 64 numbers and `s16` is a type whose valid values 50 numbers and `s16` is a type whose valid values are all the 16-bit signed 65 numbers. 51 numbers. 66 52 67 Functions 53 Functions 68 --------- 54 --------- 69 !! 55 * htobe16: Takes an unsigned 16-bit number in host-endian format and 70 The following byteswap functions are direction !! 56 returns the equivalent number as an unsigned 16-bit number in big-endian 71 the same function is used for conversion in ei !! 57 format. 72 below. !! 58 * htobe32: Takes an unsigned 32-bit number in host-endian format and 73 !! 59 returns the equivalent number as an unsigned 32-bit number in big-endian 74 * be16: Takes an unsigned 16-bit number and co !! 60 format. 75 host byte order and big-endian !! 61 * htobe64: Takes an unsigned 64-bit number in host-endian format and 76 (`IEN137 <https://www.rfc-editor.org/ien/ien !! 62 returns the equivalent number as an unsigned 64-bit number in big-endian 77 * be32: Takes an unsigned 32-bit number and co !! 63 format. 78 host byte order and big-endian byte order. !! 64 * htole16: Takes an unsigned 16-bit number in host-endian format and 79 * be64: Takes an unsigned 64-bit number and co !! 65 returns the equivalent number as an unsigned 16-bit number in little-endian 80 host byte order and big-endian byte order. !! 66 format. >> 67 * htole32: Takes an unsigned 32-bit number in host-endian format and >> 68 returns the equivalent number as an unsigned 32-bit number in little-endian >> 69 format. >> 70 * htole64: Takes an unsigned 64-bit number in host-endian format and >> 71 returns the equivalent number as an unsigned 64-bit number in little-endian >> 72 format. 81 * bswap16: Takes an unsigned 16-bit number in 73 * bswap16: Takes an unsigned 16-bit number in either big- or little-endian 82 format and returns the equivalent number wit 74 format and returns the equivalent number with the same bit width but 83 opposite endianness. 75 opposite endianness. 84 * bswap32: Takes an unsigned 32-bit number in 76 * bswap32: Takes an unsigned 32-bit number in either big- or little-endian 85 format and returns the equivalent number wit 77 format and returns the equivalent number with the same bit width but 86 opposite endianness. 78 opposite endianness. 87 * bswap64: Takes an unsigned 64-bit number in 79 * bswap64: Takes an unsigned 64-bit number in either big- or little-endian 88 format and returns the equivalent number wit 80 format and returns the equivalent number with the same bit width but 89 opposite endianness. 81 opposite endianness. 90 * le16: Takes an unsigned 16-bit number and co !! 82 91 host byte order and little-endian byte order << 92 * le32: Takes an unsigned 32-bit number and co << 93 host byte order and little-endian byte order << 94 * le64: Takes an unsigned 64-bit number and co << 95 host byte order and little-endian byte order << 96 83 97 Definitions 84 Definitions 98 ----------- 85 ----------- 99 86 100 .. glossary:: 87 .. glossary:: 101 88 102 Sign Extend 89 Sign Extend 103 To `sign extend an` ``X`` `-bit number, A, 90 To `sign extend an` ``X`` `-bit number, A, to a` ``Y`` `-bit number, B ,` means to 104 91 105 #. Copy all ``X`` bits from `A` to the low 92 #. Copy all ``X`` bits from `A` to the lower ``X`` bits of `B`. 106 #. Set the value of the remaining ``Y`` - 93 #. Set the value of the remaining ``Y`` - ``X`` bits of `B` to the value of 107 the most-significant bit of `A`. 94 the most-significant bit of `A`. 108 95 109 .. admonition:: Example 96 .. admonition:: Example 110 97 111 Sign extend an 8-bit number ``A`` to a 16-bi 98 Sign extend an 8-bit number ``A`` to a 16-bit number ``B`` on a big-endian platform: 112 :: 99 :: 113 100 114 A: 10000110 101 A: 10000110 115 B: 11111111 10000110 102 B: 11111111 10000110 116 103 117 Conformance groups 104 Conformance groups 118 ------------------ 105 ------------------ 119 106 120 An implementation does not need to support all 107 An implementation does not need to support all instructions specified in this 121 document (e.g., deprecated instructions). Ins 108 document (e.g., deprecated instructions). Instead, a number of conformance 122 groups are specified. An implementation MUST !! 109 groups are specified. An implementation must support the base32 conformance 123 group and MAY support additional conformance g !! 110 group and may support additional conformance groups, where supporting a 124 conformance group means it MUST support all in !! 111 conformance group means it must support all instructions in that conformance 125 group. 112 group. 126 113 127 The use of named conformance groups enables in 114 The use of named conformance groups enables interoperability between a runtime 128 that executes instructions, and tools such as 115 that executes instructions, and tools such as compilers that generate 129 instructions for the runtime. Thus, capabilit 116 instructions for the runtime. Thus, capability discovery in terms of 130 conformance groups might be done manually by u 117 conformance groups might be done manually by users or automatically by tools. 131 118 132 Each conformance group has a short ASCII label 119 Each conformance group has a short ASCII label (e.g., "base32") that 133 corresponds to a set of instructions that are 120 corresponds to a set of instructions that are mandatory. That is, each 134 instruction has one or more conformance groups 121 instruction has one or more conformance groups of which it is a member. 135 122 136 This document defines the following conformanc 123 This document defines the following conformance groups: 137 124 138 * base32: includes all instructions defined in 125 * base32: includes all instructions defined in this 139 specification unless otherwise noted. 126 specification unless otherwise noted. 140 * base64: includes base32, plus instructions e 127 * base64: includes base32, plus instructions explicitly noted 141 as being in the base64 conformance group. 128 as being in the base64 conformance group. 142 * atomic32: includes 32-bit atomic operation i 129 * atomic32: includes 32-bit atomic operation instructions (see `Atomic operations`_). 143 * atomic64: includes atomic32, plus 64-bit ato 130 * atomic64: includes atomic32, plus 64-bit atomic operation instructions. 144 * divmul32: includes 32-bit division, multipli 131 * divmul32: includes 32-bit division, multiplication, and modulo instructions. 145 * divmul64: includes divmul32, plus 64-bit div 132 * divmul64: includes divmul32, plus 64-bit division, multiplication, 146 and modulo instructions. 133 and modulo instructions. 147 * packet: deprecated packet access instruction 134 * packet: deprecated packet access instructions. 148 135 149 Instruction encoding 136 Instruction encoding 150 ==================== 137 ==================== 151 138 152 BPF has two instruction encodings: 139 BPF has two instruction encodings: 153 140 154 * the basic instruction encoding, which uses 6 141 * the basic instruction encoding, which uses 64 bits to encode an instruction 155 * the wide instruction encoding, which appends 142 * the wide instruction encoding, which appends a second 64 bits 156 after the basic instruction for a total of 1 143 after the basic instruction for a total of 128 bits. 157 144 158 Basic instruction encoding 145 Basic instruction encoding 159 -------------------------- 146 -------------------------- 160 147 161 A basic instruction is encoded as follows:: 148 A basic instruction is encoded as follows:: 162 149 163 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 150 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 164 | opcode | regs | 151 | opcode | regs | offset | 165 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 152 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 166 | imm 153 | imm | 167 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 154 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 168 155 169 **opcode** 156 **opcode** 170 operation to perform, encoded as follows:: 157 operation to perform, encoded as follows:: 171 158 172 +-+-+-+-+-+-+-+-+ 159 +-+-+-+-+-+-+-+-+ 173 |specific |class| 160 |specific |class| 174 +-+-+-+-+-+-+-+-+ 161 +-+-+-+-+-+-+-+-+ 175 162 176 **specific** 163 **specific** 177 The format of these bits varies by instruc 164 The format of these bits varies by instruction class 178 165 179 **class** 166 **class** 180 The instruction class (see `Instruction cl 167 The instruction class (see `Instruction classes`_) 181 168 182 **regs** 169 **regs** 183 The source and destination register numbers, 170 The source and destination register numbers, encoded as follows 184 on a little-endian host:: 171 on a little-endian host:: 185 172 186 +-+-+-+-+-+-+-+-+ 173 +-+-+-+-+-+-+-+-+ 187 |src_reg|dst_reg| 174 |src_reg|dst_reg| 188 +-+-+-+-+-+-+-+-+ 175 +-+-+-+-+-+-+-+-+ 189 176 190 and as follows on a big-endian host:: 177 and as follows on a big-endian host:: 191 178 192 +-+-+-+-+-+-+-+-+ 179 +-+-+-+-+-+-+-+-+ 193 |dst_reg|src_reg| 180 |dst_reg|src_reg| 194 +-+-+-+-+-+-+-+-+ 181 +-+-+-+-+-+-+-+-+ 195 182 196 **src_reg** 183 **src_reg** 197 the source register number (0-10), except 184 the source register number (0-10), except where otherwise specified 198 (`64-bit immediate instructions`_ reuse th 185 (`64-bit immediate instructions`_ reuse this field for other purposes) 199 186 200 **dst_reg** 187 **dst_reg** 201 destination register number (0-10), unless 188 destination register number (0-10), unless otherwise specified 202 (future instructions might reuse this fiel 189 (future instructions might reuse this field for other purposes) 203 190 204 **offset** 191 **offset** 205 signed integer offset used with pointer arit 192 signed integer offset used with pointer arithmetic, except where 206 otherwise specified (some arithmetic instruc 193 otherwise specified (some arithmetic instructions reuse this field 207 for other purposes) 194 for other purposes) 208 195 209 **imm** 196 **imm** 210 signed integer immediate value 197 signed integer immediate value 211 198 212 Note that the contents of multi-byte fields (' 199 Note that the contents of multi-byte fields ('offset' and 'imm') are 213 stored using big-endian byte ordering on big-e 200 stored using big-endian byte ordering on big-endian hosts and 214 little-endian byte ordering on little-endian h 201 little-endian byte ordering on little-endian hosts. 215 202 216 For example:: 203 For example:: 217 204 218 opcode offset imm 205 opcode offset imm assembly 219 src_reg dst_reg 206 src_reg dst_reg 220 07 0 1 00 00 44 33 22 11 207 07 0 1 00 00 44 33 22 11 r1 += 0x11223344 // little 221 dst_reg src_reg 208 dst_reg src_reg 222 07 1 0 00 00 11 22 33 44 209 07 1 0 00 00 11 22 33 44 r1 += 0x11223344 // big 223 210 224 Note that most instructions do not use all of 211 Note that most instructions do not use all of the fields. 225 Unused fields SHALL be cleared to zero. !! 212 Unused fields shall be cleared to zero. 226 213 227 Wide instruction encoding 214 Wide instruction encoding 228 -------------------------- 215 -------------------------- 229 216 230 Some instructions are defined to use the wide 217 Some instructions are defined to use the wide instruction encoding, 231 which uses two 32-bit immediate values. The 6 218 which uses two 32-bit immediate values. The 64 bits following 232 the basic instruction format contain a pseudo 219 the basic instruction format contain a pseudo instruction 233 with 'opcode', 'dst_reg', 'src_reg', and 'offs 220 with 'opcode', 'dst_reg', 'src_reg', and 'offset' all set to zero. 234 221 235 This is depicted in the following figure:: 222 This is depicted in the following figure:: 236 223 237 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 224 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 238 | opcode | regs | 225 | opcode | regs | offset | 239 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 226 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 240 | imm 227 | imm | 241 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 228 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 242 | reserved 229 | reserved | 243 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 230 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 244 | next_imm 231 | next_imm | 245 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 232 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 246 233 247 **opcode** 234 **opcode** 248 operation to perform, encoded as explained a 235 operation to perform, encoded as explained above 249 236 250 **regs** 237 **regs** 251 The source and destination register numbers 238 The source and destination register numbers (unless otherwise 252 specified), encoded as explained above 239 specified), encoded as explained above 253 240 254 **offset** 241 **offset** 255 signed integer offset used with pointer arit 242 signed integer offset used with pointer arithmetic, unless 256 otherwise specified 243 otherwise specified 257 244 258 **imm** 245 **imm** 259 signed integer immediate value 246 signed integer immediate value 260 247 261 **reserved** 248 **reserved** 262 unused, set to zero 249 unused, set to zero 263 250 264 **next_imm** 251 **next_imm** 265 second signed integer immediate value 252 second signed integer immediate value 266 253 267 Instruction classes 254 Instruction classes 268 ------------------- 255 ------------------- 269 256 270 The three least significant bits of the 'opcod 257 The three least significant bits of the 'opcode' field store the instruction class: 271 258 272 .. table:: Instruction class !! 259 ===== ===== =============================== =================================== 273 !! 260 class value description reference 274 ===== ===== ============================== !! 261 ===== ===== =============================== =================================== 275 class value description !! 262 LD 0x0 non-standard load operations `Load and store instructions`_ 276 ===== ===== ============================== !! 263 LDX 0x1 load into register operations `Load and store instructions`_ 277 LD 0x0 non-standard load operations !! 264 ST 0x2 store from immediate operations `Load and store instructions`_ 278 LDX 0x1 load into register operations !! 265 STX 0x3 store from register operations `Load and store instructions`_ 279 ST 0x2 store from immediate operation !! 266 ALU 0x4 32-bit arithmetic operations `Arithmetic and jump instructions`_ 280 STX 0x3 store from register operations !! 267 JMP 0x5 64-bit jump operations `Arithmetic and jump instructions`_ 281 ALU 0x4 32-bit arithmetic operations !! 268 JMP32 0x6 32-bit jump operations `Arithmetic and jump instructions`_ 282 JMP 0x5 64-bit jump operations !! 269 ALU64 0x7 64-bit arithmetic operations `Arithmetic and jump instructions`_ 283 JMP32 0x6 32-bit jump operations !! 270 ===== ===== =============================== =================================== 284 ALU64 0x7 64-bit arithmetic operations << 285 ===== ===== ============================== << 286 271 287 Arithmetic and jump instructions 272 Arithmetic and jump instructions 288 ================================ 273 ================================ 289 274 290 For arithmetic and jump instructions (``ALU``, 275 For arithmetic and jump instructions (``ALU``, ``ALU64``, ``JMP`` and 291 ``JMP32``), the 8-bit 'opcode' field is divide 276 ``JMP32``), the 8-bit 'opcode' field is divided into three parts:: 292 277 293 +-+-+-+-+-+-+-+-+ 278 +-+-+-+-+-+-+-+-+ 294 | code |s|class| 279 | code |s|class| 295 +-+-+-+-+-+-+-+-+ 280 +-+-+-+-+-+-+-+-+ 296 281 297 **code** 282 **code** 298 the operation code, whose meaning varies by 283 the operation code, whose meaning varies by instruction class 299 284 300 **s (source)** 285 **s (source)** 301 the source operand location, which unless ot 286 the source operand location, which unless otherwise specified is one of: 302 287 303 .. table:: Source operand location !! 288 ====== ===== ============================================== 304 !! 289 source value description 305 ====== ===== =========================== !! 290 ====== ===== ============================================== 306 source value description !! 291 K 0 use 32-bit 'imm' value as source operand 307 ====== ===== =========================== !! 292 X 1 use 'src_reg' register value as source operand 308 K 0 use 32-bit 'imm' value as s !! 293 ====== ===== ============================================== 309 X 1 use 'src_reg' register valu << 310 ====== ===== =========================== << 311 294 312 **instruction class** 295 **instruction class** 313 the instruction class (see `Instruction clas 296 the instruction class (see `Instruction classes`_) 314 297 315 Arithmetic instructions 298 Arithmetic instructions 316 ----------------------- 299 ----------------------- 317 300 318 ``ALU`` uses 32-bit wide operands while ``ALU6 301 ``ALU`` uses 32-bit wide operands while ``ALU64`` uses 64-bit wide operands for 319 otherwise identical operations. ``ALU64`` inst 302 otherwise identical operations. ``ALU64`` instructions belong to the 320 base64 conformance group unless noted otherwis 303 base64 conformance group unless noted otherwise. 321 The 'code' field encodes the operation as belo 304 The 'code' field encodes the operation as below, where 'src' refers to the 322 the source operand and 'dst' refers to the val 305 the source operand and 'dst' refers to the value of the destination 323 register. 306 register. 324 307 325 .. table:: Arithmetic instructions !! 308 ===== ===== ======= ========================================================== 326 !! 309 name code offset description 327 ===== ===== ======= ===================== !! 310 ===== ===== ======= ========================================================== 328 name code offset description !! 311 ADD 0x0 0 dst += src 329 ===== ===== ======= ===================== !! 312 SUB 0x1 0 dst -= src 330 ADD 0x0 0 dst += src !! 313 MUL 0x2 0 dst \*= src 331 SUB 0x1 0 dst -= src !! 314 DIV 0x3 0 dst = (src != 0) ? (dst / src) : 0 332 MUL 0x2 0 dst \*= src !! 315 SDIV 0x3 1 dst = (src != 0) ? (dst s/ src) : 0 333 DIV 0x3 0 dst = (src != 0) ? (d !! 316 OR 0x4 0 dst \|= src 334 SDIV 0x3 1 dst = (src != 0) ? (d !! 317 AND 0x5 0 dst &= src 335 OR 0x4 0 dst \|= src !! 318 LSH 0x6 0 dst <<= (src & mask) 336 AND 0x5 0 dst &= src !! 319 RSH 0x7 0 dst >>= (src & mask) 337 LSH 0x6 0 dst <<= (src & mask) !! 320 NEG 0x8 0 dst = -dst 338 RSH 0x7 0 dst >>= (src & mask) !! 321 MOD 0x9 0 dst = (src != 0) ? (dst % src) : dst 339 NEG 0x8 0 dst = -dst !! 322 SMOD 0x9 1 dst = (src != 0) ? (dst s% src) : dst 340 MOD 0x9 0 dst = (src != 0) ? (d !! 323 XOR 0xa 0 dst ^= src 341 SMOD 0x9 1 dst = (src != 0) ? (d !! 324 MOV 0xb 0 dst = src 342 XOR 0xa 0 dst ^= src !! 325 MOVSX 0xb 8/16/32 dst = (s8,s16,s32)src 343 MOV 0xb 0 dst = src !! 326 ARSH 0xc 0 :term:`sign extending<Sign Extend>` dst >>= (src & mask) 344 MOVSX 0xb 8/16/32 dst = (s8,s16,s32)src !! 327 END 0xd 0 byte swap operations (see `Byte swap instructions`_ below) 345 ARSH 0xc 0 :term:`sign extending !! 328 ===== ===== ======= ========================================================== 346 END 0xd 0 byte swap operations << 347 ===== ===== ======= ===================== << 348 329 349 Underflow and overflow are allowed during arit 330 Underflow and overflow are allowed during arithmetic operations, meaning 350 the 64-bit or 32-bit value will wrap. If BPF p 331 the 64-bit or 32-bit value will wrap. If BPF program execution would 351 result in division by zero, the destination re 332 result in division by zero, the destination register is instead set to zero. 352 If execution would result in modulo by zero, f 333 If execution would result in modulo by zero, for ``ALU64`` the value of 353 the destination register is unchanged whereas 334 the destination register is unchanged whereas for ``ALU`` the upper 354 32 bits of the destination register are zeroed 335 32 bits of the destination register are zeroed. 355 336 356 ``{ADD, X, ALU}``, where 'code' = ``ADD``, 'so 337 ``{ADD, X, ALU}``, where 'code' = ``ADD``, 'source' = ``X``, and 'class' = ``ALU``, means:: 357 338 358 dst = (u32) ((u32) dst + (u32) src) 339 dst = (u32) ((u32) dst + (u32) src) 359 340 360 where '(u32)' indicates that the upper 32 bits 341 where '(u32)' indicates that the upper 32 bits are zeroed. 361 342 362 ``{ADD, X, ALU64}`` means:: 343 ``{ADD, X, ALU64}`` means:: 363 344 364 dst = dst + src 345 dst = dst + src 365 346 366 ``{XOR, K, ALU}`` means:: 347 ``{XOR, K, ALU}`` means:: 367 348 368 dst = (u32) dst ^ (u32) imm 349 dst = (u32) dst ^ (u32) imm 369 350 370 ``{XOR, K, ALU64}`` means:: 351 ``{XOR, K, ALU64}`` means:: 371 352 372 dst = dst ^ imm 353 dst = dst ^ imm 373 354 374 Note that most arithmetic instructions have 'o 355 Note that most arithmetic instructions have 'offset' set to 0. Only three instructions 375 (``SDIV``, ``SMOD``, ``MOVSX``) have a non-zer 356 (``SDIV``, ``SMOD``, ``MOVSX``) have a non-zero 'offset'. 376 357 377 Division, multiplication, and modulo operation 358 Division, multiplication, and modulo operations for ``ALU`` are part 378 of the "divmul32" conformance group, and divis 359 of the "divmul32" conformance group, and division, multiplication, and 379 modulo operations for ``ALU64`` are part of th 360 modulo operations for ``ALU64`` are part of the "divmul64" conformance 380 group. 361 group. 381 The division and modulo operations support bot 362 The division and modulo operations support both unsigned and signed flavors. 382 363 383 For unsigned operations (``DIV`` and ``MOD``), 364 For unsigned operations (``DIV`` and ``MOD``), for ``ALU``, 384 'imm' is interpreted as a 32-bit unsigned valu 365 'imm' is interpreted as a 32-bit unsigned value. For ``ALU64``, 385 'imm' is first :term:`sign extended<Sign Exten 366 'imm' is first :term:`sign extended<Sign Extend>` from 32 to 64 bits, and then 386 interpreted as a 64-bit unsigned value. 367 interpreted as a 64-bit unsigned value. 387 368 388 For signed operations (``SDIV`` and ``SMOD``), 369 For signed operations (``SDIV`` and ``SMOD``), for ``ALU``, 389 'imm' is interpreted as a 32-bit signed value. 370 'imm' is interpreted as a 32-bit signed value. For ``ALU64``, 'imm' 390 is first :term:`sign extended<Sign Extend>` fr 371 is first :term:`sign extended<Sign Extend>` from 32 to 64 bits, and then 391 interpreted as a 64-bit signed value. 372 interpreted as a 64-bit signed value. 392 373 393 Note that there are varying definitions of the 374 Note that there are varying definitions of the signed modulo operation 394 when the dividend or divisor are negative, whe 375 when the dividend or divisor are negative, where implementations often 395 vary by language such that Python, Ruby, etc. 376 vary by language such that Python, Ruby, etc. differ from C, Go, Java, 396 etc. This specification requires that signed m !! 377 etc. This specification requires that signed modulo use truncated division 397 (where -13 % 3 == -1) as implemented in C, Go, 378 (where -13 % 3 == -1) as implemented in C, Go, etc.:: 398 379 399 a % n = a - n * trunc(a / n) 380 a % n = a - n * trunc(a / n) 400 381 401 The ``MOVSX`` instruction does a move operatio 382 The ``MOVSX`` instruction does a move operation with sign extension. 402 ``{MOVSX, X, ALU}`` :term:`sign extends<Sign E 383 ``{MOVSX, X, ALU}`` :term:`sign extends<Sign Extend>` 8-bit and 16-bit operands into 403 32-bit operands, and zeroes the remaining uppe 384 32-bit operands, and zeroes the remaining upper 32 bits. 404 ``{MOVSX, X, ALU64}`` :term:`sign extends<Sign 385 ``{MOVSX, X, ALU64}`` :term:`sign extends<Sign Extend>` 8-bit, 16-bit, and 32-bit 405 operands into 64-bit operands. Unlike other a 386 operands into 64-bit operands. Unlike other arithmetic instructions, 406 ``MOVSX`` is only defined for register source 387 ``MOVSX`` is only defined for register source operands (``X``). 407 388 408 ``{MOV, K, ALU64}`` means:: << 409 << 410 dst = (s64)imm << 411 << 412 ``{MOV, X, ALU}`` means:: << 413 << 414 dst = (u32)src << 415 << 416 ``{MOVSX, X, ALU}`` with 'offset' 8 means:: << 417 << 418 dst = (u32)(s32)(s8)src << 419 << 420 << 421 The ``NEG`` instruction is only defined when t 389 The ``NEG`` instruction is only defined when the source bit is clear 422 (``K``). 390 (``K``). 423 391 424 Shift operations use a mask of 0x3F (63) for 6 392 Shift operations use a mask of 0x3F (63) for 64-bit operations and 0x1F (31) 425 for 32-bit operations. 393 for 32-bit operations. 426 394 427 Byte swap instructions 395 Byte swap instructions 428 ---------------------- 396 ---------------------- 429 397 430 The byte swap instructions use instruction cla 398 The byte swap instructions use instruction classes of ``ALU`` and ``ALU64`` 431 and a 4-bit 'code' field of ``END``. 399 and a 4-bit 'code' field of ``END``. 432 400 433 The byte swap instructions operate on the dest 401 The byte swap instructions operate on the destination register 434 only and do not use a separate source register 402 only and do not use a separate source register or immediate value. 435 403 436 For ``ALU``, the 1-bit source operand field in 404 For ``ALU``, the 1-bit source operand field in the opcode is used to 437 select what byte order the operation converts 405 select what byte order the operation converts from or to. For 438 ``ALU64``, the 1-bit source operand field in t 406 ``ALU64``, the 1-bit source operand field in the opcode is reserved 439 and MUST be set to 0. !! 407 and must be set to 0. 440 << 441 .. table:: Byte swap instructions << 442 408 443 ===== ======== ===== ==================== !! 409 ===== ======== ===== ================================================= 444 class source value description !! 410 class source value description 445 ===== ======== ===== ==================== !! 411 ===== ======== ===== ================================================= 446 ALU LE 0 convert between host !! 412 ALU TO_LE 0 convert between host byte order and little endian 447 ALU BE 1 convert between host !! 413 ALU TO_BE 1 convert between host byte order and big endian 448 ALU64 Reserved 0 do byte swap uncondi !! 414 ALU64 Reserved 0 do byte swap unconditionally 449 ===== ======== ===== ==================== !! 415 ===== ======== ===== ================================================= 450 416 451 The 'imm' field encodes the width of the swap 417 The 'imm' field encodes the width of the swap operations. The following widths 452 are supported: 16, 32 and 64. Width 64 operat 418 are supported: 16, 32 and 64. Width 64 operations belong to the base64 453 conformance group and other swap operations be 419 conformance group and other swap operations belong to the base32 454 conformance group. 420 conformance group. 455 421 456 Examples: 422 Examples: 457 423 458 ``{END, LE, ALU}`` with 'imm' = 16/32/64 means !! 424 ``{END, TO_LE, ALU}`` with 'imm' = 16/32/64 means:: 459 425 460 dst = le16(dst) !! 426 dst = htole16(dst) 461 dst = le32(dst) !! 427 dst = htole32(dst) 462 dst = le64(dst) !! 428 dst = htole64(dst) 463 429 464 ``{END, BE, ALU}`` with 'imm' = 16/32/64 means !! 430 ``{END, TO_BE, ALU}`` with 'imm' = 16/32/64 means:: 465 431 466 dst = be16(dst) !! 432 dst = htobe16(dst) 467 dst = be32(dst) !! 433 dst = htobe32(dst) 468 dst = be64(dst) !! 434 dst = htobe64(dst) 469 435 470 ``{END, TO, ALU64}`` with 'imm' = 16/32/64 mea !! 436 ``{END, TO_LE, ALU64}`` with 'imm' = 16/32/64 means:: 471 437 472 dst = bswap16(dst) 438 dst = bswap16(dst) 473 dst = bswap32(dst) 439 dst = bswap32(dst) 474 dst = bswap64(dst) 440 dst = bswap64(dst) 475 441 476 Jump instructions 442 Jump instructions 477 ----------------- 443 ----------------- 478 444 479 ``JMP32`` uses 32-bit wide operands and indica 445 ``JMP32`` uses 32-bit wide operands and indicates the base32 480 conformance group, while ``JMP`` uses 64-bit w 446 conformance group, while ``JMP`` uses 64-bit wide operands for 481 otherwise identical operations, and indicates 447 otherwise identical operations, and indicates the base64 conformance 482 group unless otherwise specified. 448 group unless otherwise specified. 483 The 'code' field encodes the operation as belo 449 The 'code' field encodes the operation as below: 484 450 485 .. table:: Jump instructions !! 451 ======== ===== ======= ================================= =================================================== 486 !! 452 code value src_reg description notes 487 ======== ===== ======= ================== !! 453 ======== ===== ======= ================================= =================================================== 488 code value src_reg description !! 454 JA 0x0 0x0 PC += offset {JA, K, JMP} only 489 ======== ===== ======= ================== !! 455 JA 0x0 0x0 PC += imm {JA, K, JMP32} only 490 JA 0x0 0x0 PC += offset !! 456 JEQ 0x1 any PC += offset if dst == src 491 JA 0x0 0x0 PC += imm !! 457 JGT 0x2 any PC += offset if dst > src unsigned 492 JEQ 0x1 any PC += offset if ds !! 458 JGE 0x3 any PC += offset if dst >= src unsigned 493 JGT 0x2 any PC += offset if ds !! 459 JSET 0x4 any PC += offset if dst & src 494 JGE 0x3 any PC += offset if ds !! 460 JNE 0x5 any PC += offset if dst != src 495 JSET 0x4 any PC += offset if ds !! 461 JSGT 0x6 any PC += offset if dst > src signed 496 JNE 0x5 any PC += offset if ds !! 462 JSGE 0x7 any PC += offset if dst >= src signed 497 JSGT 0x6 any PC += offset if ds !! 463 CALL 0x8 0x0 call helper function by static ID {CALL, K, JMP} only, see `Helper functions`_ 498 JSGE 0x7 any PC += offset if ds !! 464 CALL 0x8 0x1 call PC += imm {CALL, K, JMP} only, see `Program-local functions`_ 499 CALL 0x8 0x0 call helper functi !! 465 CALL 0x8 0x2 call helper function by BTF ID {CALL, K, JMP} only, see `Helper functions`_ 500 CALL 0x8 0x1 call PC += imm !! 466 EXIT 0x9 0x0 return {CALL, K, JMP} only 501 CALL 0x8 0x2 call helper functi !! 467 JLT 0xa any PC += offset if dst < src unsigned 502 EXIT 0x9 0x0 return !! 468 JLE 0xb any PC += offset if dst <= src unsigned 503 JLT 0xa any PC += offset if ds !! 469 JSLT 0xc any PC += offset if dst < src signed 504 JLE 0xb any PC += offset if ds !! 470 JSLE 0xd any PC += offset if dst <= src signed 505 JSLT 0xc any PC += offset if ds !! 471 ======== ===== ======= ================================= =================================================== 506 JSLE 0xd any PC += offset if ds << 507 ======== ===== ======= ================== << 508 472 509 where 'PC' denotes the program counter, and th 473 where 'PC' denotes the program counter, and the offset to increment by 510 is in units of 64-bit instructions relative to 474 is in units of 64-bit instructions relative to the instruction following 511 the jump instruction. Thus 'PC += 1' skips ex 475 the jump instruction. Thus 'PC += 1' skips execution of the next 512 instruction if it's a basic instruction or res 476 instruction if it's a basic instruction or results in undefined behavior 513 if the next instruction is a 128-bit wide inst 477 if the next instruction is a 128-bit wide instruction. 514 478 >> 479 The BPF program needs to store the return value into register R0 before doing an >> 480 ``EXIT``. >> 481 515 Example: 482 Example: 516 483 517 ``{JSGE, X, JMP32}`` means:: 484 ``{JSGE, X, JMP32}`` means:: 518 485 519 if (s32)dst s>= (s32)src goto +offset 486 if (s32)dst s>= (s32)src goto +offset 520 487 521 where 's>=' indicates a signed '>=' comparison 488 where 's>=' indicates a signed '>=' comparison. 522 489 523 ``{JLE, K, JMP}`` means:: << 524 << 525 if dst <= (u64)(s64)imm goto +offset << 526 << 527 ``{JA, K, JMP32}`` means:: 490 ``{JA, K, JMP32}`` means:: 528 491 529 gotol +imm 492 gotol +imm 530 493 531 where 'imm' means the branch offset comes from 494 where 'imm' means the branch offset comes from the 'imm' field. 532 495 533 Note that there are two flavors of ``JA`` inst 496 Note that there are two flavors of ``JA`` instructions. The 534 ``JMP`` class permits a 16-bit jump offset spe 497 ``JMP`` class permits a 16-bit jump offset specified by the 'offset' 535 field, whereas the ``JMP32`` class permits a 3 498 field, whereas the ``JMP32`` class permits a 32-bit jump offset 536 specified by the 'imm' field. A > 16-bit condi 499 specified by the 'imm' field. A > 16-bit conditional jump may be 537 converted to a < 16-bit conditional jump plus 500 converted to a < 16-bit conditional jump plus a 32-bit unconditional 538 jump. 501 jump. 539 502 540 All ``CALL`` and ``JA`` instructions belong to 503 All ``CALL`` and ``JA`` instructions belong to the 541 base32 conformance group. 504 base32 conformance group. 542 505 543 Helper functions 506 Helper functions 544 ~~~~~~~~~~~~~~~~ 507 ~~~~~~~~~~~~~~~~ 545 508 546 Helper functions are a concept whereby BPF pro 509 Helper functions are a concept whereby BPF programs can call into a 547 set of function calls exposed by the underlyin 510 set of function calls exposed by the underlying platform. 548 511 549 Historically, each helper function was identif 512 Historically, each helper function was identified by a static ID 550 encoded in the 'imm' field. Further documenta !! 513 encoded in the 'imm' field. The available helper functions may differ 551 is outside the scope of this document and stan !! 514 for each program type, but static IDs are unique across all program types. 552 future work, but use is widely deployed and mo << 553 found in platform-specific documentation (e.g. << 554 515 555 Platforms that support the BPF Type Format (BT 516 Platforms that support the BPF Type Format (BTF) support identifying 556 a helper function by a BTF ID encoded in the ' 517 a helper function by a BTF ID encoded in the 'imm' field, where the BTF ID 557 identifies the helper name and type. Further !! 518 identifies the helper name and type. 558 is outside the scope of this document and stan << 559 future work, but use is widely deployed and mo << 560 found in platform-specific documentation (e.g. << 561 519 562 Program-local functions 520 Program-local functions 563 ~~~~~~~~~~~~~~~~~~~~~~~ 521 ~~~~~~~~~~~~~~~~~~~~~~~ 564 Program-local functions are functions exposed 522 Program-local functions are functions exposed by the same BPF program as the 565 caller, and are referenced by offset from the !! 523 caller, and are referenced by offset from the call instruction, similar to 566 instruction, similar to ``JA``. The offset is !! 524 ``JA``. The offset is encoded in the 'imm' field of the call instruction. 567 the call instruction. An ``EXIT`` within the p !! 525 An ``EXIT`` within the program-local function will return to the caller. 568 return to the caller. << 569 526 570 Load and store instructions 527 Load and store instructions 571 =========================== 528 =========================== 572 529 573 For load and store instructions (``LD``, ``LDX 530 For load and store instructions (``LD``, ``LDX``, ``ST``, and ``STX``), the 574 8-bit 'opcode' field is divided as follows:: 531 8-bit 'opcode' field is divided as follows:: 575 532 576 +-+-+-+-+-+-+-+-+ 533 +-+-+-+-+-+-+-+-+ 577 |mode |sz |class| 534 |mode |sz |class| 578 +-+-+-+-+-+-+-+-+ 535 +-+-+-+-+-+-+-+-+ 579 536 580 **mode** 537 **mode** 581 The mode modifier is one of: 538 The mode modifier is one of: 582 539 583 .. table:: Mode modifier << 584 << 585 ============= ===== ==================== 540 ============= ===== ==================================== ============= 586 mode modifier value description 541 mode modifier value description reference 587 ============= ===== ==================== 542 ============= ===== ==================================== ============= 588 IMM 0 64-bit immediate ins 543 IMM 0 64-bit immediate instructions `64-bit immediate instructions`_ 589 ABS 1 legacy BPF packet ac 544 ABS 1 legacy BPF packet access (absolute) `Legacy BPF Packet access instructions`_ 590 IND 2 legacy BPF packet ac 545 IND 2 legacy BPF packet access (indirect) `Legacy BPF Packet access instructions`_ 591 MEM 3 regular load and sto 546 MEM 3 regular load and store operations `Regular load and store operations`_ 592 MEMSX 4 sign-extension load 547 MEMSX 4 sign-extension load operations `Sign-extension load operations`_ 593 ATOMIC 6 atomic operations 548 ATOMIC 6 atomic operations `Atomic operations`_ 594 ============= ===== ==================== 549 ============= ===== ==================================== ============= 595 550 596 **sz (size)** 551 **sz (size)** 597 The size modifier is one of: 552 The size modifier is one of: 598 553 599 .. table:: Size modifier << 600 << 601 ==== ===== ===================== 554 ==== ===== ===================== 602 size value description 555 size value description 603 ==== ===== ===================== 556 ==== ===== ===================== 604 W 0 word (4 bytes) 557 W 0 word (4 bytes) 605 H 1 half word (2 bytes) 558 H 1 half word (2 bytes) 606 B 2 byte 559 B 2 byte 607 DW 3 double word (8 bytes) 560 DW 3 double word (8 bytes) 608 ==== ===== ===================== 561 ==== ===== ===================== 609 562 610 Instructions using ``DW`` belong to the base 563 Instructions using ``DW`` belong to the base64 conformance group. 611 564 612 **class** 565 **class** 613 The instruction class (see `Instruction clas 566 The instruction class (see `Instruction classes`_) 614 567 615 Regular load and store operations 568 Regular load and store operations 616 --------------------------------- 569 --------------------------------- 617 570 618 The ``MEM`` mode modifier is used to encode re 571 The ``MEM`` mode modifier is used to encode regular load and store 619 instructions that transfer data between a regi 572 instructions that transfer data between a register and memory. 620 573 621 ``{MEM, <size>, STX}`` means:: 574 ``{MEM, <size>, STX}`` means:: 622 575 623 *(size *) (dst + offset) = src 576 *(size *) (dst + offset) = src 624 577 625 ``{MEM, <size>, ST}`` means:: 578 ``{MEM, <size>, ST}`` means:: 626 579 627 *(size *) (dst + offset) = imm 580 *(size *) (dst + offset) = imm 628 581 629 ``{MEM, <size>, LDX}`` means:: 582 ``{MEM, <size>, LDX}`` means:: 630 583 631 dst = *(unsigned size *) (src + offset) 584 dst = *(unsigned size *) (src + offset) 632 585 633 Where '<size>' is one of: ``B``, ``H``, ``W``, 586 Where '<size>' is one of: ``B``, ``H``, ``W``, or ``DW``, and 634 'unsigned size' is one of: u8, u16, u32, or u6 587 'unsigned size' is one of: u8, u16, u32, or u64. 635 588 636 Sign-extension load operations 589 Sign-extension load operations 637 ------------------------------ 590 ------------------------------ 638 591 639 The ``MEMSX`` mode modifier is used to encode 592 The ``MEMSX`` mode modifier is used to encode :term:`sign-extension<Sign Extend>` load 640 instructions that transfer data between a regi 593 instructions that transfer data between a register and memory. 641 594 642 ``{MEMSX, <size>, LDX}`` means:: 595 ``{MEMSX, <size>, LDX}`` means:: 643 596 644 dst = *(signed size *) (src + offset) 597 dst = *(signed size *) (src + offset) 645 598 646 Where '<size>' is one of: ``B``, ``H``, or ``W 599 Where '<size>' is one of: ``B``, ``H``, or ``W``, and 647 'signed size' is one of: s8, s16, or s32. 600 'signed size' is one of: s8, s16, or s32. 648 601 649 Atomic operations 602 Atomic operations 650 ----------------- 603 ----------------- 651 604 652 Atomic operations are operations that operate 605 Atomic operations are operations that operate on memory and can not be 653 interrupted or corrupted by other access to th 606 interrupted or corrupted by other access to the same memory region 654 by other BPF programs or means outside of this 607 by other BPF programs or means outside of this specification. 655 608 656 All atomic operations supported by BPF are enc 609 All atomic operations supported by BPF are encoded as store operations 657 that use the ``ATOMIC`` mode modifier as follo 610 that use the ``ATOMIC`` mode modifier as follows: 658 611 659 * ``{ATOMIC, W, STX}`` for 32-bit operations, 612 * ``{ATOMIC, W, STX}`` for 32-bit operations, which are 660 part of the "atomic32" conformance group. 613 part of the "atomic32" conformance group. 661 * ``{ATOMIC, DW, STX}`` for 64-bit operations, 614 * ``{ATOMIC, DW, STX}`` for 64-bit operations, which are 662 part of the "atomic64" conformance group. 615 part of the "atomic64" conformance group. 663 * 8-bit and 16-bit wide atomic operations are 616 * 8-bit and 16-bit wide atomic operations are not supported. 664 617 665 The 'imm' field is used to encode the actual a 618 The 'imm' field is used to encode the actual atomic operation. 666 Simple atomic operation use a subset of the va 619 Simple atomic operation use a subset of the values defined to encode 667 arithmetic operations in the 'imm' field to en 620 arithmetic operations in the 'imm' field to encode the atomic operation: 668 621 669 .. table:: Simple atomic operations !! 622 ======== ===== =========== 670 !! 623 imm value description 671 ======== ===== =========== !! 624 ======== ===== =========== 672 imm value description !! 625 ADD 0x00 atomic add 673 ======== ===== =========== !! 626 OR 0x40 atomic or 674 ADD 0x00 atomic add !! 627 AND 0x50 atomic and 675 OR 0x40 atomic or !! 628 XOR 0xa0 atomic xor 676 AND 0x50 atomic and !! 629 ======== ===== =========== 677 XOR 0xa0 atomic xor << 678 ======== ===== =========== << 679 630 680 631 681 ``{ATOMIC, W, STX}`` with 'imm' = ADD means:: 632 ``{ATOMIC, W, STX}`` with 'imm' = ADD means:: 682 633 683 *(u32 *)(dst + offset) += src 634 *(u32 *)(dst + offset) += src 684 635 685 ``{ATOMIC, DW, STX}`` with 'imm' = ADD means:: 636 ``{ATOMIC, DW, STX}`` with 'imm' = ADD means:: 686 637 687 *(u64 *)(dst + offset) += src 638 *(u64 *)(dst + offset) += src 688 639 689 In addition to the simple atomic operations, t 640 In addition to the simple atomic operations, there also is a modifier and 690 two complex atomic operations: 641 two complex atomic operations: 691 642 692 .. table:: Complex atomic operations !! 643 =========== ================ =========================== 693 !! 644 imm value description 694 =========== ================ ============= !! 645 =========== ================ =========================== 695 imm value description !! 646 FETCH 0x01 modifier: return old value 696 =========== ================ ============= !! 647 XCHG 0xe0 | FETCH atomic exchange 697 FETCH 0x01 modifier: ret !! 648 CMPXCHG 0xf0 | FETCH atomic compare and exchange 698 XCHG 0xe0 | FETCH atomic exchan !! 649 =========== ================ =========================== 699 CMPXCHG 0xf0 | FETCH atomic compar << 700 =========== ================ ============= << 701 650 702 The ``FETCH`` modifier is optional for simple 651 The ``FETCH`` modifier is optional for simple atomic operations, and 703 always set for the complex atomic operations. 652 always set for the complex atomic operations. If the ``FETCH`` flag 704 is set, then the operation also overwrites ``s 653 is set, then the operation also overwrites ``src`` with the value that 705 was in memory before it was modified. 654 was in memory before it was modified. 706 655 707 The ``XCHG`` operation atomically exchanges `` 656 The ``XCHG`` operation atomically exchanges ``src`` with the value 708 addressed by ``dst + offset``. 657 addressed by ``dst + offset``. 709 658 710 The ``CMPXCHG`` operation atomically compares 659 The ``CMPXCHG`` operation atomically compares the value addressed by 711 ``dst + offset`` with ``R0``. If they match, t 660 ``dst + offset`` with ``R0``. If they match, the value addressed by 712 ``dst + offset`` is replaced with ``src``. In 661 ``dst + offset`` is replaced with ``src``. In either case, the 713 value that was at ``dst + offset`` before the 662 value that was at ``dst + offset`` before the operation is zero-extended 714 and loaded back to ``R0``. 663 and loaded back to ``R0``. 715 664 716 64-bit immediate instructions 665 64-bit immediate instructions 717 ----------------------------- 666 ----------------------------- 718 667 719 Instructions with the ``IMM`` 'mode' modifier 668 Instructions with the ``IMM`` 'mode' modifier use the wide instruction 720 encoding defined in `Instruction encoding`_, a 669 encoding defined in `Instruction encoding`_, and use the 'src_reg' field of the 721 basic instruction to hold an opcode subtype. 670 basic instruction to hold an opcode subtype. 722 671 723 The following table defines a set of ``{IMM, D 672 The following table defines a set of ``{IMM, DW, LD}`` instructions 724 with opcode subtypes in the 'src_reg' field, u 673 with opcode subtypes in the 'src_reg' field, using new terms such as "map" 725 defined further below: 674 defined further below: 726 675 727 .. table:: 64-bit immediate instructions !! 676 ======= ========================================= =========== ============== 728 !! 677 src_reg pseudocode imm type dst type 729 ======= =================================== !! 678 ======= ========================================= =========== ============== 730 src_reg pseudocode !! 679 0x0 dst = (next_imm << 32) | imm integer integer 731 ======= =================================== !! 680 0x1 dst = map_by_fd(imm) map fd map 732 0x0 dst = (next_imm << 32) | imm !! 681 0x2 dst = map_val(map_by_fd(imm)) + next_imm map fd data address 733 0x1 dst = map_by_fd(imm) !! 682 0x3 dst = var_addr(imm) variable id data address 734 0x2 dst = map_val(map_by_fd(imm)) + nex !! 683 0x4 dst = code_addr(imm) integer code address 735 0x3 dst = var_addr(imm) !! 684 0x5 dst = map_by_idx(imm) map index map 736 0x4 dst = code_addr(imm) !! 685 0x6 dst = map_val(map_by_idx(imm)) + next_imm map index data address 737 0x5 dst = map_by_idx(imm) !! 686 ======= ========================================= =========== ============== 738 0x6 dst = map_val(map_by_idx(imm)) + ne << 739 ======= =================================== << 740 687 741 where 688 where 742 689 743 * map_by_fd(imm) means to convert a 32-bit fil 690 * map_by_fd(imm) means to convert a 32-bit file descriptor into an address of a map (see `Maps`_) 744 * map_by_idx(imm) means to convert a 32-bit in 691 * map_by_idx(imm) means to convert a 32-bit index into an address of a map 745 * map_val(map) gets the address of the first v 692 * map_val(map) gets the address of the first value in a given map 746 * var_addr(imm) gets the address of a platform 693 * var_addr(imm) gets the address of a platform variable (see `Platform Variables`_) with a given id 747 * code_addr(imm) gets the address of the instr 694 * code_addr(imm) gets the address of the instruction at a specified relative offset in number of (64-bit) instructions 748 * the 'imm type' can be used by disassemblers 695 * the 'imm type' can be used by disassemblers for display 749 * the 'dst type' can be used for verification 696 * the 'dst type' can be used for verification and JIT compilation purposes 750 697 751 Maps 698 Maps 752 ~~~~ 699 ~~~~ 753 700 754 Maps are shared memory regions accessible by B 701 Maps are shared memory regions accessible by BPF programs on some platforms. 755 A map can have various semantics as defined in 702 A map can have various semantics as defined in a separate document, and may or 756 may not have a single contiguous memory region 703 may not have a single contiguous memory region, but the 'map_val(map)' is 757 currently only defined for maps that do have a 704 currently only defined for maps that do have a single contiguous memory region. 758 705 759 Each map can have a file descriptor (fd) if su 706 Each map can have a file descriptor (fd) if supported by the platform, where 760 'map_by_fd(imm)' means to get the map with the 707 'map_by_fd(imm)' means to get the map with the specified file descriptor. Each 761 BPF program can also be defined to use a set o 708 BPF program can also be defined to use a set of maps associated with the 762 program at load time, and 'map_by_idx(imm)' me 709 program at load time, and 'map_by_idx(imm)' means to get the map with the given 763 index in the set associated with the BPF progr 710 index in the set associated with the BPF program containing the instruction. 764 711 765 Platform Variables 712 Platform Variables 766 ~~~~~~~~~~~~~~~~~~ 713 ~~~~~~~~~~~~~~~~~~ 767 714 768 Platform variables are memory regions, identif 715 Platform variables are memory regions, identified by integer ids, exposed by 769 the runtime and accessible by BPF programs on 716 the runtime and accessible by BPF programs on some platforms. The 770 'var_addr(imm)' operation means to get the add 717 'var_addr(imm)' operation means to get the address of the memory region 771 identified by the given id. 718 identified by the given id. 772 719 773 Legacy BPF Packet access instructions 720 Legacy BPF Packet access instructions 774 ------------------------------------- 721 ------------------------------------- 775 722 776 BPF previously introduced special instructions 723 BPF previously introduced special instructions for access to packet data that were 777 carried over from classic BPF. These instructi 724 carried over from classic BPF. These instructions used an instruction 778 class of ``LD``, a size modifier of ``W``, ``H 725 class of ``LD``, a size modifier of ``W``, ``H``, or ``B``, and a 779 mode modifier of ``ABS`` or ``IND``. The 'dst 726 mode modifier of ``ABS`` or ``IND``. The 'dst_reg' and 'offset' fields were 780 set to zero, and 'src_reg' was set to zero for 727 set to zero, and 'src_reg' was set to zero for ``ABS``. However, these 781 instructions are deprecated and SHOULD no long !! 728 instructions are deprecated and should no longer be used. All legacy packet 782 access instructions belong to the "packet" con 729 access instructions belong to the "packet" conformance group.
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.