1 ================================= 1 ================================= 2 Red-black Trees (rbtree) in Linux 2 Red-black Trees (rbtree) in Linux 3 ================================= 3 ================================= 4 4 5 5 6 :Date: January 18, 2007 6 :Date: January 18, 2007 7 :Author: Rob Landley <rob@landley.net> 7 :Author: Rob Landley <rob@landley.net> 8 8 9 What are red-black trees, and what are they fo 9 What are red-black trees, and what are they for? 10 ---------------------------------------------- 10 ------------------------------------------------ 11 11 12 Red-black trees are a type of self-balancing b 12 Red-black trees are a type of self-balancing binary search tree, used for 13 storing sortable key/value data pairs. This d 13 storing sortable key/value data pairs. This differs from radix trees (which 14 are used to efficiently store sparse arrays an 14 are used to efficiently store sparse arrays and thus use long integer indexes 15 to insert/access/delete nodes) and hash tables 15 to insert/access/delete nodes) and hash tables (which are not kept sorted to 16 be easily traversed in order, and must be tune 16 be easily traversed in order, and must be tuned for a specific size and 17 hash function where rbtrees scale gracefully s 17 hash function where rbtrees scale gracefully storing arbitrary keys). 18 18 19 Red-black trees are similar to AVL trees, but 19 Red-black trees are similar to AVL trees, but provide faster real-time bounded 20 worst case performance for insertion and delet 20 worst case performance for insertion and deletion (at most two rotations and 21 three rotations, respectively, to balance the 21 three rotations, respectively, to balance the tree), with slightly slower 22 (but still O(log n)) lookup time. 22 (but still O(log n)) lookup time. 23 23 24 To quote Linux Weekly News: 24 To quote Linux Weekly News: 25 25 26 There are a number of red-black trees in u 26 There are a number of red-black trees in use in the kernel. 27 The deadline and CFQ I/O schedulers employ 27 The deadline and CFQ I/O schedulers employ rbtrees to 28 track requests; the packet CD/DVD driver d 28 track requests; the packet CD/DVD driver does the same. 29 The high-resolution timer code uses an rbt 29 The high-resolution timer code uses an rbtree to organize outstanding 30 timer requests. The ext3 filesystem track 30 timer requests. The ext3 filesystem tracks directory entries in a 31 red-black tree. Virtual memory areas (VMA 31 red-black tree. Virtual memory areas (VMAs) are tracked with red-black 32 trees, as are epoll file descriptors, cryp 32 trees, as are epoll file descriptors, cryptographic keys, and network 33 packets in the "hierarchical token bucket" 33 packets in the "hierarchical token bucket" scheduler. 34 34 35 This document covers use of the Linux rbtree i 35 This document covers use of the Linux rbtree implementation. For more 36 information on the nature and implementation o 36 information on the nature and implementation of Red Black Trees, see: 37 37 38 Linux Weekly News article on red-black trees 38 Linux Weekly News article on red-black trees 39 https://lwn.net/Articles/184495/ 39 https://lwn.net/Articles/184495/ 40 40 41 Wikipedia entry on red-black trees 41 Wikipedia entry on red-black trees 42 https://en.wikipedia.org/wiki/Red-black_tr 42 https://en.wikipedia.org/wiki/Red-black_tree 43 43 44 Linux implementation of red-black trees 44 Linux implementation of red-black trees 45 --------------------------------------- 45 --------------------------------------- 46 46 47 Linux's rbtree implementation lives in the fil 47 Linux's rbtree implementation lives in the file "lib/rbtree.c". To use it, 48 "#include <linux/rbtree.h>". 48 "#include <linux/rbtree.h>". 49 49 50 The Linux rbtree implementation is optimized f 50 The Linux rbtree implementation is optimized for speed, and thus has one 51 less layer of indirection (and better cache lo 51 less layer of indirection (and better cache locality) than more traditional 52 tree implementations. Instead of using pointe 52 tree implementations. Instead of using pointers to separate rb_node and data 53 structures, each instance of struct rb_node is 53 structures, each instance of struct rb_node is embedded in the data structure 54 it organizes. And instead of using a comparis 54 it organizes. And instead of using a comparison callback function pointer, 55 users are expected to write their own tree sea 55 users are expected to write their own tree search and insert functions 56 which call the provided rbtree functions. Loc 56 which call the provided rbtree functions. Locking is also left up to the 57 user of the rbtree code. 57 user of the rbtree code. 58 58 59 Creating a new rbtree 59 Creating a new rbtree 60 --------------------- 60 --------------------- 61 61 62 Data nodes in an rbtree tree are structures co 62 Data nodes in an rbtree tree are structures containing a struct rb_node member:: 63 63 64 struct mytype { 64 struct mytype { 65 struct rb_node node; 65 struct rb_node node; 66 char *keystring; 66 char *keystring; 67 }; 67 }; 68 68 69 When dealing with a pointer to the embedded st 69 When dealing with a pointer to the embedded struct rb_node, the containing data 70 structure may be accessed with the standard co 70 structure may be accessed with the standard container_of() macro. In addition, 71 individual members may be accessed directly vi 71 individual members may be accessed directly via rb_entry(node, type, member). 72 72 73 At the root of each rbtree is an rb_root struc 73 At the root of each rbtree is an rb_root structure, which is initialized to be 74 empty via: 74 empty via: 75 75 76 struct rb_root mytree = RB_ROOT; 76 struct rb_root mytree = RB_ROOT; 77 77 78 Searching for a value in an rbtree 78 Searching for a value in an rbtree 79 ---------------------------------- 79 ---------------------------------- 80 80 81 Writing a search function for your tree is fai 81 Writing a search function for your tree is fairly straightforward: start at the 82 root, compare each value, and follow the left 82 root, compare each value, and follow the left or right branch as necessary. 83 83 84 Example:: 84 Example:: 85 85 86 struct mytype *my_search(struct rb_root *roo 86 struct mytype *my_search(struct rb_root *root, char *string) 87 { 87 { 88 struct rb_node *node = root->rb_node; 88 struct rb_node *node = root->rb_node; 89 89 90 while (node) { 90 while (node) { 91 struct mytype *data = containe 91 struct mytype *data = container_of(node, struct mytype, node); 92 int result; 92 int result; 93 93 94 result = strcmp(string, data-> 94 result = strcmp(string, data->keystring); 95 95 96 if (result < 0) 96 if (result < 0) 97 node = node->rb_left; 97 node = node->rb_left; 98 else if (result > 0) 98 else if (result > 0) 99 node = node->rb_right; 99 node = node->rb_right; 100 else 100 else 101 return data; 101 return data; 102 } 102 } 103 return NULL; 103 return NULL; 104 } 104 } 105 105 106 Inserting data into an rbtree 106 Inserting data into an rbtree 107 ----------------------------- 107 ----------------------------- 108 108 109 Inserting data in the tree involves first sear 109 Inserting data in the tree involves first searching for the place to insert the 110 new node, then inserting the node and rebalanc 110 new node, then inserting the node and rebalancing ("recoloring") the tree. 111 111 112 The search for insertion differs from the prev 112 The search for insertion differs from the previous search by finding the 113 location of the pointer on which to graft the 113 location of the pointer on which to graft the new node. The new node also 114 needs a link to its parent node for rebalancin 114 needs a link to its parent node for rebalancing purposes. 115 115 116 Example:: 116 Example:: 117 117 118 int my_insert(struct rb_root *root, struct m 118 int my_insert(struct rb_root *root, struct mytype *data) 119 { 119 { 120 struct rb_node **new = &(root->rb_node 120 struct rb_node **new = &(root->rb_node), *parent = NULL; 121 121 122 /* Figure out where to put new node */ 122 /* Figure out where to put new node */ 123 while (*new) { 123 while (*new) { 124 struct mytype *this = containe 124 struct mytype *this = container_of(*new, struct mytype, node); 125 int result = strcmp(data->keys 125 int result = strcmp(data->keystring, this->keystring); 126 126 127 parent = *new; 127 parent = *new; 128 if (result < 0) 128 if (result < 0) 129 new = &((*new)->rb_lef 129 new = &((*new)->rb_left); 130 else if (result > 0) 130 else if (result > 0) 131 new = &((*new)->rb_rig 131 new = &((*new)->rb_right); 132 else 132 else 133 return FALSE; 133 return FALSE; 134 } 134 } 135 135 136 /* Add new node and rebalance tree. */ 136 /* Add new node and rebalance tree. */ 137 rb_link_node(&data->node, parent, new) 137 rb_link_node(&data->node, parent, new); 138 rb_insert_color(&data->node, root); 138 rb_insert_color(&data->node, root); 139 139 140 return TRUE; 140 return TRUE; 141 } 141 } 142 142 143 Removing or replacing existing data in an rbtr 143 Removing or replacing existing data in an rbtree 144 ---------------------------------------------- 144 ------------------------------------------------ 145 145 146 To remove an existing node from a tree, call:: 146 To remove an existing node from a tree, call:: 147 147 148 void rb_erase(struct rb_node *victim, struct 148 void rb_erase(struct rb_node *victim, struct rb_root *tree); 149 149 150 Example:: 150 Example:: 151 151 152 struct mytype *data = mysearch(&mytree, "wal 152 struct mytype *data = mysearch(&mytree, "walrus"); 153 153 154 if (data) { 154 if (data) { 155 rb_erase(&data->node, &mytree); 155 rb_erase(&data->node, &mytree); 156 myfree(data); 156 myfree(data); 157 } 157 } 158 158 159 To replace an existing node in a tree with a n 159 To replace an existing node in a tree with a new one with the same key, call:: 160 160 161 void rb_replace_node(struct rb_node *old, st 161 void rb_replace_node(struct rb_node *old, struct rb_node *new, 162 struct rb_root *tree); 162 struct rb_root *tree); 163 163 164 Replacing a node this way does not re-sort the 164 Replacing a node this way does not re-sort the tree: If the new node doesn't 165 have the same key as the old node, the rbtree 165 have the same key as the old node, the rbtree will probably become corrupted. 166 166 167 Iterating through the elements stored in an rb 167 Iterating through the elements stored in an rbtree (in sort order) 168 ---------------------------------------------- 168 ------------------------------------------------------------------ 169 169 170 Four functions are provided for iterating thro 170 Four functions are provided for iterating through an rbtree's contents in 171 sorted order. These work on arbitrary trees, 171 sorted order. These work on arbitrary trees, and should not need to be 172 modified or wrapped (except for locking purpos 172 modified or wrapped (except for locking purposes):: 173 173 174 struct rb_node *rb_first(struct rb_root *tre 174 struct rb_node *rb_first(struct rb_root *tree); 175 struct rb_node *rb_last(struct rb_root *tree 175 struct rb_node *rb_last(struct rb_root *tree); 176 struct rb_node *rb_next(struct rb_node *node 176 struct rb_node *rb_next(struct rb_node *node); 177 struct rb_node *rb_prev(struct rb_node *node 177 struct rb_node *rb_prev(struct rb_node *node); 178 178 179 To start iterating, call rb_first() or rb_last 179 To start iterating, call rb_first() or rb_last() with a pointer to the root 180 of the tree, which will return a pointer to th 180 of the tree, which will return a pointer to the node structure contained in 181 the first or last element in the tree. To con 181 the first or last element in the tree. To continue, fetch the next or previous 182 node by calling rb_next() or rb_prev() on the 182 node by calling rb_next() or rb_prev() on the current node. This will return 183 NULL when there are no more nodes left. 183 NULL when there are no more nodes left. 184 184 185 The iterator functions return a pointer to the 185 The iterator functions return a pointer to the embedded struct rb_node, from 186 which the containing data structure may be acc 186 which the containing data structure may be accessed with the container_of() 187 macro, and individual members may be accessed 187 macro, and individual members may be accessed directly via 188 rb_entry(node, type, member). 188 rb_entry(node, type, member). 189 189 190 Example:: 190 Example:: 191 191 192 struct rb_node *node; 192 struct rb_node *node; 193 for (node = rb_first(&mytree); node; node = 193 for (node = rb_first(&mytree); node; node = rb_next(node)) 194 printk("key=%s\n", rb_entry(node, stru 194 printk("key=%s\n", rb_entry(node, struct mytype, node)->keystring); 195 195 196 Cached rbtrees 196 Cached rbtrees 197 -------------- 197 -------------- 198 198 199 Computing the leftmost (smallest) node is quit 199 Computing the leftmost (smallest) node is quite a common task for binary 200 search trees, such as for traversals or users 200 search trees, such as for traversals or users relying on a the particular 201 order for their own logic. To this end, users 201 order for their own logic. To this end, users can use 'struct rb_root_cached' 202 to optimize O(logN) rb_first() calls to a simp 202 to optimize O(logN) rb_first() calls to a simple pointer fetch avoiding 203 potentially expensive tree iterations. This is 203 potentially expensive tree iterations. This is done at negligible runtime 204 overhead for maintenance; albeit larger memory !! 204 overhead for maintanence; albeit larger memory footprint. 205 205 206 Similar to the rb_root structure, cached rbtre 206 Similar to the rb_root structure, cached rbtrees are initialized to be 207 empty via:: 207 empty via:: 208 208 209 struct rb_root_cached mytree = RB_ROOT_CACHE 209 struct rb_root_cached mytree = RB_ROOT_CACHED; 210 210 211 Cached rbtree is simply a regular rb_root with 211 Cached rbtree is simply a regular rb_root with an extra pointer to cache the 212 leftmost node. This allows rb_root_cached to e 212 leftmost node. This allows rb_root_cached to exist wherever rb_root does, 213 which permits augmented trees to be supported 213 which permits augmented trees to be supported as well as only a few extra 214 interfaces:: 214 interfaces:: 215 215 216 struct rb_node *rb_first_cached(struct rb_ro 216 struct rb_node *rb_first_cached(struct rb_root_cached *tree); 217 void rb_insert_color_cached(struct rb_node * 217 void rb_insert_color_cached(struct rb_node *, struct rb_root_cached *, bool); 218 void rb_erase_cached(struct rb_node *node, s 218 void rb_erase_cached(struct rb_node *node, struct rb_root_cached *); 219 219 220 Both insert and erase calls have their respect 220 Both insert and erase calls have their respective counterpart of augmented 221 trees:: 221 trees:: 222 222 223 void rb_insert_augmented_cached(struct rb_no 223 void rb_insert_augmented_cached(struct rb_node *node, struct rb_root_cached *, 224 bool, struct 224 bool, struct rb_augment_callbacks *); 225 void rb_erase_augmented_cached(struct rb_nod 225 void rb_erase_augmented_cached(struct rb_node *, struct rb_root_cached *, 226 struct rb_aug 226 struct rb_augment_callbacks *); 227 227 228 228 229 Support for Augmented rbtrees 229 Support for Augmented rbtrees 230 ----------------------------- 230 ----------------------------- 231 231 232 Augmented rbtree is an rbtree with "some" addi 232 Augmented rbtree is an rbtree with "some" additional data stored in 233 each node, where the additional data for node 233 each node, where the additional data for node N must be a function of 234 the contents of all nodes in the subtree roote 234 the contents of all nodes in the subtree rooted at N. This data can 235 be used to augment some new functionality to r 235 be used to augment some new functionality to rbtree. Augmented rbtree 236 is an optional feature built on top of basic r 236 is an optional feature built on top of basic rbtree infrastructure. 237 An rbtree user who wants this feature will hav 237 An rbtree user who wants this feature will have to call the augmentation 238 functions with the user provided augmentation 238 functions with the user provided augmentation callback when inserting 239 and erasing nodes. 239 and erasing nodes. 240 240 241 C files implementing augmented rbtree manipula 241 C files implementing augmented rbtree manipulation must include 242 <linux/rbtree_augmented.h> instead of <linux/r 242 <linux/rbtree_augmented.h> instead of <linux/rbtree.h>. Note that 243 linux/rbtree_augmented.h exposes some rbtree i 243 linux/rbtree_augmented.h exposes some rbtree implementations details 244 you are not expected to rely on; please stick 244 you are not expected to rely on; please stick to the documented APIs 245 there and do not include <linux/rbtree_augment 245 there and do not include <linux/rbtree_augmented.h> from header files 246 either so as to minimize chances of your users 246 either so as to minimize chances of your users accidentally relying on 247 such implementation details. 247 such implementation details. 248 248 249 On insertion, the user must update the augment 249 On insertion, the user must update the augmented information on the path 250 leading to the inserted node, then call rb_lin 250 leading to the inserted node, then call rb_link_node() as usual and 251 rb_augment_inserted() instead of the usual rb_ 251 rb_augment_inserted() instead of the usual rb_insert_color() call. 252 If rb_augment_inserted() rebalances the rbtree 252 If rb_augment_inserted() rebalances the rbtree, it will callback into 253 a user provided function to update the augment 253 a user provided function to update the augmented information on the 254 affected subtrees. 254 affected subtrees. 255 255 256 When erasing a node, the user must call rb_era 256 When erasing a node, the user must call rb_erase_augmented() instead of 257 rb_erase(). rb_erase_augmented() calls back in 257 rb_erase(). rb_erase_augmented() calls back into user provided functions 258 to updated the augmented information on affect 258 to updated the augmented information on affected subtrees. 259 259 260 In both cases, the callbacks are provided thro 260 In both cases, the callbacks are provided through struct rb_augment_callbacks. 261 3 callbacks must be defined: 261 3 callbacks must be defined: 262 262 263 - A propagation callback, which updates the au 263 - A propagation callback, which updates the augmented value for a given 264 node and its ancestors, up to a given stop p 264 node and its ancestors, up to a given stop point (or NULL to update 265 all the way to the root). 265 all the way to the root). 266 266 267 - A copy callback, which copies the augmented 267 - A copy callback, which copies the augmented value for a given subtree 268 to a newly assigned subtree root. 268 to a newly assigned subtree root. 269 269 270 - A tree rotation callback, which copies the a 270 - A tree rotation callback, which copies the augmented value for a given 271 subtree to a newly assigned subtree root AND 271 subtree to a newly assigned subtree root AND recomputes the augmented 272 information for the former subtree root. 272 information for the former subtree root. 273 273 274 The compiled code for rb_erase_augmented() may 274 The compiled code for rb_erase_augmented() may inline the propagation and 275 copy callbacks, which results in a large funct 275 copy callbacks, which results in a large function, so each augmented rbtree 276 user should have a single rb_erase_augmented() 276 user should have a single rb_erase_augmented() call site in order to limit 277 compiled code size. 277 compiled code size. 278 278 279 279 280 Sample usage 280 Sample usage 281 ^^^^^^^^^^^^ 281 ^^^^^^^^^^^^ 282 282 283 Interval tree is an example of augmented rb tr 283 Interval tree is an example of augmented rb tree. Reference - 284 "Introduction to Algorithms" by Cormen, Leiser 284 "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein. 285 More details about interval trees: 285 More details about interval trees: 286 286 287 Classical rbtree has a single key and it canno 287 Classical rbtree has a single key and it cannot be directly used to store 288 interval ranges like [lo:hi] and do a quick lo 288 interval ranges like [lo:hi] and do a quick lookup for any overlap with a new 289 lo:hi or to find whether there is an exact mat 289 lo:hi or to find whether there is an exact match for a new lo:hi. 290 290 291 However, rbtree can be augmented to store such 291 However, rbtree can be augmented to store such interval ranges in a structured 292 way making it possible to do efficient lookup 292 way making it possible to do efficient lookup and exact match. 293 293 294 This "extra information" stored in each node i 294 This "extra information" stored in each node is the maximum hi 295 (max_hi) value among all the nodes that are it 295 (max_hi) value among all the nodes that are its descendants. This 296 information can be maintained at each node jus 296 information can be maintained at each node just be looking at the node 297 and its immediate children. And this will be u 297 and its immediate children. And this will be used in O(log n) lookup 298 for lowest match (lowest start address among a 298 for lowest match (lowest start address among all possible matches) 299 with something like:: 299 with something like:: 300 300 301 struct interval_tree_node * 301 struct interval_tree_node * 302 interval_tree_first_match(struct rb_root *ro 302 interval_tree_first_match(struct rb_root *root, 303 unsigned long star 303 unsigned long start, unsigned long last) 304 { 304 { 305 struct interval_tree_node *node; 305 struct interval_tree_node *node; 306 306 307 if (!root->rb_node) 307 if (!root->rb_node) 308 return NULL; 308 return NULL; 309 node = rb_entry(root->rb_node, struct 309 node = rb_entry(root->rb_node, struct interval_tree_node, rb); 310 310 311 while (true) { 311 while (true) { 312 if (node->rb.rb_left) { 312 if (node->rb.rb_left) { 313 struct interval_tree_n 313 struct interval_tree_node *left = 314 rb_entry(node- 314 rb_entry(node->rb.rb_left, 315 struc 315 struct interval_tree_node, rb); 316 if (left->__subtree_la 316 if (left->__subtree_last >= start) { 317 /* 317 /* 318 * Some nodes 318 * Some nodes in left subtree satisfy Cond2. 319 * Iterate to 319 * Iterate to find the leftmost such node N. 320 * If it also 320 * If it also satisfies Cond1, that's the match 321 * we are look 321 * we are looking for. Otherwise, there is no 322 * matching in 322 * matching interval as nodes to the right of N 323 * can't satis 323 * can't satisfy Cond1 either. 324 */ 324 */ 325 node = left; 325 node = left; 326 continue; 326 continue; 327 } 327 } 328 } 328 } 329 if (node->start <= last) { 329 if (node->start <= last) { /* Cond1 */ 330 if (node->last >= star 330 if (node->last >= start) /* Cond2 */ 331 return node; 331 return node; /* node is leftmost match */ 332 if (node->rb.rb_right) 332 if (node->rb.rb_right) { 333 node = rb_entr 333 node = rb_entry(node->rb.rb_right, 334 struct 334 struct interval_tree_node, rb); 335 if (node->__su 335 if (node->__subtree_last >= start) 336 contin 336 continue; 337 } 337 } 338 } 338 } 339 return NULL; /* No match */ 339 return NULL; /* No match */ 340 } 340 } 341 } 341 } 342 342 343 Insertion/removal are defined using the follow 343 Insertion/removal are defined using the following augmented callbacks:: 344 344 345 static inline unsigned long 345 static inline unsigned long 346 compute_subtree_last(struct interval_tree_no 346 compute_subtree_last(struct interval_tree_node *node) 347 { 347 { 348 unsigned long max = node->last, subtre 348 unsigned long max = node->last, subtree_last; 349 if (node->rb.rb_left) { 349 if (node->rb.rb_left) { 350 subtree_last = rb_entry(node-> 350 subtree_last = rb_entry(node->rb.rb_left, 351 struct interval_tree_n 351 struct interval_tree_node, rb)->__subtree_last; 352 if (max < subtree_last) 352 if (max < subtree_last) 353 max = subtree_last; 353 max = subtree_last; 354 } 354 } 355 if (node->rb.rb_right) { 355 if (node->rb.rb_right) { 356 subtree_last = rb_entry(node-> 356 subtree_last = rb_entry(node->rb.rb_right, 357 struct interval_tree_n 357 struct interval_tree_node, rb)->__subtree_last; 358 if (max < subtree_last) 358 if (max < subtree_last) 359 max = subtree_last; 359 max = subtree_last; 360 } 360 } 361 return max; 361 return max; 362 } 362 } 363 363 364 static void augment_propagate(struct rb_node 364 static void augment_propagate(struct rb_node *rb, struct rb_node *stop) 365 { 365 { 366 while (rb != stop) { 366 while (rb != stop) { 367 struct interval_tree_node *nod 367 struct interval_tree_node *node = 368 rb_entry(rb, struct in 368 rb_entry(rb, struct interval_tree_node, rb); 369 unsigned long subtree_last = c 369 unsigned long subtree_last = compute_subtree_last(node); 370 if (node->__subtree_last == su 370 if (node->__subtree_last == subtree_last) 371 break; 371 break; 372 node->__subtree_last = subtree 372 node->__subtree_last = subtree_last; 373 rb = rb_parent(&node->rb); 373 rb = rb_parent(&node->rb); 374 } 374 } 375 } 375 } 376 376 377 static void augment_copy(struct rb_node *rb_ 377 static void augment_copy(struct rb_node *rb_old, struct rb_node *rb_new) 378 { 378 { 379 struct interval_tree_node *old = 379 struct interval_tree_node *old = 380 rb_entry(rb_old, struct interv 380 rb_entry(rb_old, struct interval_tree_node, rb); 381 struct interval_tree_node *new = 381 struct interval_tree_node *new = 382 rb_entry(rb_new, struct interv 382 rb_entry(rb_new, struct interval_tree_node, rb); 383 383 384 new->__subtree_last = old->__subtree_l 384 new->__subtree_last = old->__subtree_last; 385 } 385 } 386 386 387 static void augment_rotate(struct rb_node *r 387 static void augment_rotate(struct rb_node *rb_old, struct rb_node *rb_new) 388 { 388 { 389 struct interval_tree_node *old = 389 struct interval_tree_node *old = 390 rb_entry(rb_old, struct interv 390 rb_entry(rb_old, struct interval_tree_node, rb); 391 struct interval_tree_node *new = 391 struct interval_tree_node *new = 392 rb_entry(rb_new, struct interv 392 rb_entry(rb_new, struct interval_tree_node, rb); 393 393 394 new->__subtree_last = old->__subtree_l 394 new->__subtree_last = old->__subtree_last; 395 old->__subtree_last = compute_subtree_ 395 old->__subtree_last = compute_subtree_last(old); 396 } 396 } 397 397 398 static const struct rb_augment_callbacks aug 398 static const struct rb_augment_callbacks augment_callbacks = { 399 augment_propagate, augment_copy, augme 399 augment_propagate, augment_copy, augment_rotate 400 }; 400 }; 401 401 402 void interval_tree_insert(struct interval_tr 402 void interval_tree_insert(struct interval_tree_node *node, 403 struct rb_root *ro 403 struct rb_root *root) 404 { 404 { 405 struct rb_node **link = &root->rb_node 405 struct rb_node **link = &root->rb_node, *rb_parent = NULL; 406 unsigned long start = node->start, las 406 unsigned long start = node->start, last = node->last; 407 struct interval_tree_node *parent; 407 struct interval_tree_node *parent; 408 408 409 while (*link) { 409 while (*link) { 410 rb_parent = *link; 410 rb_parent = *link; 411 parent = rb_entry(rb_parent, s 411 parent = rb_entry(rb_parent, struct interval_tree_node, rb); 412 if (parent->__subtree_last < l 412 if (parent->__subtree_last < last) 413 parent->__subtree_last 413 parent->__subtree_last = last; 414 if (start < parent->start) 414 if (start < parent->start) 415 link = &parent->rb.rb_ 415 link = &parent->rb.rb_left; 416 else 416 else 417 link = &parent->rb.rb_ 417 link = &parent->rb.rb_right; 418 } 418 } 419 419 420 node->__subtree_last = last; 420 node->__subtree_last = last; 421 rb_link_node(&node->rb, rb_parent, lin 421 rb_link_node(&node->rb, rb_parent, link); 422 rb_insert_augmented(&node->rb, root, & 422 rb_insert_augmented(&node->rb, root, &augment_callbacks); 423 } 423 } 424 424 425 void interval_tree_remove(struct interval_tr 425 void interval_tree_remove(struct interval_tree_node *node, 426 struct rb_root *ro 426 struct rb_root *root) 427 { 427 { 428 rb_erase_augmented(&node->rb, root, &a 428 rb_erase_augmented(&node->rb, root, &augment_callbacks); 429 } 429 }
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.