1 .. SPDX-License-Identifier: GPL-2.0 1 .. SPDX-License-Identifier: GPL-2.0 2 2 3 Writing Tests 3 Writing Tests 4 ============= 4 ============= 5 5 6 Test Cases 6 Test Cases 7 ---------- 7 ---------- 8 8 9 The fundamental unit in KUnit is the test case 9 The fundamental unit in KUnit is the test case. A test case is a function with 10 the signature ``void (*)(struct kunit *test)`` 10 the signature ``void (*)(struct kunit *test)``. It calls the function under test 11 and then sets *expectations* for what should h 11 and then sets *expectations* for what should happen. For example: 12 12 13 .. code-block:: c 13 .. code-block:: c 14 14 15 void example_test_success(struct kunit 15 void example_test_success(struct kunit *test) 16 { 16 { 17 } 17 } 18 18 19 void example_test_failure(struct kunit 19 void example_test_failure(struct kunit *test) 20 { 20 { 21 KUNIT_FAIL(test, "This test ne 21 KUNIT_FAIL(test, "This test never passes."); 22 } 22 } 23 23 24 In the above example, ``example_test_success`` 24 In the above example, ``example_test_success`` always passes because it does 25 nothing; no expectations are set, and therefor 25 nothing; no expectations are set, and therefore all expectations pass. On the 26 other hand ``example_test_failure`` always fai 26 other hand ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``, 27 which is a special expectation that logs a mes 27 which is a special expectation that logs a message and causes the test case to 28 fail. 28 fail. 29 29 30 Expectations 30 Expectations 31 ~~~~~~~~~~~~ 31 ~~~~~~~~~~~~ 32 An *expectation* specifies that we expect a pi 32 An *expectation* specifies that we expect a piece of code to do something in a 33 test. An expectation is called like a function 33 test. An expectation is called like a function. A test is made by setting 34 expectations about the behavior of a piece of 34 expectations about the behavior of a piece of code under test. When one or more 35 expectations fail, the test case fails and inf 35 expectations fail, the test case fails and information about the failure is 36 logged. For example: 36 logged. For example: 37 37 38 .. code-block:: c 38 .. code-block:: c 39 39 40 void add_test_basic(struct kunit *test 40 void add_test_basic(struct kunit *test) 41 { 41 { 42 KUNIT_EXPECT_EQ(test, 1, add(1 42 KUNIT_EXPECT_EQ(test, 1, add(1, 0)); 43 KUNIT_EXPECT_EQ(test, 2, add(1 43 KUNIT_EXPECT_EQ(test, 2, add(1, 1)); 44 } 44 } 45 45 46 In the above example, ``add_test_basic`` makes 46 In the above example, ``add_test_basic`` makes a number of assertions about the 47 behavior of a function called ``add``. The fir 47 behavior of a function called ``add``. The first parameter is always of type 48 ``struct kunit *``, which contains information 48 ``struct kunit *``, which contains information about the current test context. 49 The second parameter, in this case, is what th 49 The second parameter, in this case, is what the value is expected to be. The 50 last value is what the value actually is. If ` 50 last value is what the value actually is. If ``add`` passes all of these 51 expectations, the test case, ``add_test_basic` 51 expectations, the test case, ``add_test_basic`` will pass; if any one of these 52 expectations fails, the test case will fail. 52 expectations fails, the test case will fail. 53 53 54 A test case *fails* when any expectation is vi 54 A test case *fails* when any expectation is violated; however, the test will 55 continue to run, and try other expectations un 55 continue to run, and try other expectations until the test case ends or is 56 otherwise terminated. This is as opposed to *a 56 otherwise terminated. This is as opposed to *assertions* which are discussed 57 later. 57 later. 58 58 59 To learn about more KUnit expectations, see Do 59 To learn about more KUnit expectations, see Documentation/dev-tools/kunit/api/test.rst. 60 60 61 .. note:: 61 .. note:: 62 A single test case should be short, easy to 62 A single test case should be short, easy to understand, and focused on a 63 single behavior. 63 single behavior. 64 64 65 For example, if we want to rigorously test the 65 For example, if we want to rigorously test the ``add`` function above, create 66 additional tests cases which would test each p 66 additional tests cases which would test each property that an ``add`` function 67 should have as shown below: 67 should have as shown below: 68 68 69 .. code-block:: c 69 .. code-block:: c 70 70 71 void add_test_basic(struct kunit *test 71 void add_test_basic(struct kunit *test) 72 { 72 { 73 KUNIT_EXPECT_EQ(test, 1, add(1 73 KUNIT_EXPECT_EQ(test, 1, add(1, 0)); 74 KUNIT_EXPECT_EQ(test, 2, add(1 74 KUNIT_EXPECT_EQ(test, 2, add(1, 1)); 75 } 75 } 76 76 77 void add_test_negative(struct kunit *t 77 void add_test_negative(struct kunit *test) 78 { 78 { 79 KUNIT_EXPECT_EQ(test, 0, add(- 79 KUNIT_EXPECT_EQ(test, 0, add(-1, 1)); 80 } 80 } 81 81 82 void add_test_max(struct kunit *test) 82 void add_test_max(struct kunit *test) 83 { 83 { 84 KUNIT_EXPECT_EQ(test, INT_MAX, 84 KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX)); 85 KUNIT_EXPECT_EQ(test, -1, add( 85 KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN)); 86 } 86 } 87 87 88 void add_test_overflow(struct kunit *t 88 void add_test_overflow(struct kunit *test) 89 { 89 { 90 KUNIT_EXPECT_EQ(test, INT_MIN, 90 KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1)); 91 } 91 } 92 92 93 Assertions 93 Assertions 94 ~~~~~~~~~~ 94 ~~~~~~~~~~ 95 95 96 An assertion is like an expectation, except th 96 An assertion is like an expectation, except that the assertion immediately 97 terminates the test case if the condition is n 97 terminates the test case if the condition is not satisfied. For example: 98 98 99 .. code-block:: c 99 .. code-block:: c 100 100 101 static void test_sort(struct kunit *te 101 static void test_sort(struct kunit *test) 102 { 102 { 103 int *a, i, r = 1; 103 int *a, i, r = 1; 104 a = kunit_kmalloc_array(test, 104 a = kunit_kmalloc_array(test, TEST_LEN, sizeof(*a), GFP_KERNEL); 105 KUNIT_ASSERT_NOT_ERR_OR_NULL(t 105 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a); 106 for (i = 0; i < TEST_LEN; i++) 106 for (i = 0; i < TEST_LEN; i++) { 107 r = (r * 725861) % 659 107 r = (r * 725861) % 6599; 108 a[i] = r; 108 a[i] = r; 109 } 109 } 110 sort(a, TEST_LEN, sizeof(*a), 110 sort(a, TEST_LEN, sizeof(*a), cmpint, NULL); 111 for (i = 0; i < TEST_LEN-1; i+ 111 for (i = 0; i < TEST_LEN-1; i++) 112 KUNIT_EXPECT_LE(test, 112 KUNIT_EXPECT_LE(test, a[i], a[i + 1]); 113 } 113 } 114 114 115 In this example, we need to be able to allocat 115 In this example, we need to be able to allocate an array to test the ``sort()`` 116 function. So we use ``KUNIT_ASSERT_NOT_ERR_OR_ 116 function. So we use ``KUNIT_ASSERT_NOT_ERR_OR_NULL()`` to abort the test if 117 there's an allocation error. 117 there's an allocation error. 118 118 119 .. note:: 119 .. note:: 120 In other test frameworks, ``ASSERT`` macros 120 In other test frameworks, ``ASSERT`` macros are often implemented by calling 121 ``return`` so they only work from the test 121 ``return`` so they only work from the test function. In KUnit, we stop the 122 current kthread on failure, so you can call 122 current kthread on failure, so you can call them from anywhere. 123 123 124 .. note:: 124 .. note:: 125 Warning: There is an exception to the above 125 Warning: There is an exception to the above rule. You shouldn't use assertions 126 in the suite's exit() function, or in the f 126 in the suite's exit() function, or in the free function for a resource. These 127 run when a test is shutting down, and an as 127 run when a test is shutting down, and an assertion here prevents further 128 cleanup code from running, potentially lead 128 cleanup code from running, potentially leading to a memory leak. 129 129 130 Customizing error messages 130 Customizing error messages 131 -------------------------- 131 -------------------------- 132 132 133 Each of the ``KUNIT_EXPECT`` and ``KUNIT_ASSER 133 Each of the ``KUNIT_EXPECT`` and ``KUNIT_ASSERT`` macros have a ``_MSG`` 134 variant. These take a format string and argum 134 variant. These take a format string and arguments to provide additional 135 context to the automatically generated error m 135 context to the automatically generated error messages. 136 136 137 .. code-block:: c 137 .. code-block:: c 138 138 139 char some_str[41]; 139 char some_str[41]; 140 generate_sha1_hex_string(some_str); 140 generate_sha1_hex_string(some_str); 141 141 142 /* Before. Not easy to tell why the te 142 /* Before. Not easy to tell why the test failed. */ 143 KUNIT_EXPECT_EQ(test, strlen(some_str) 143 KUNIT_EXPECT_EQ(test, strlen(some_str), 40); 144 144 145 /* After. Now we see the offending str 145 /* After. Now we see the offending string. */ 146 KUNIT_EXPECT_EQ_MSG(test, strlen(some_ 146 KUNIT_EXPECT_EQ_MSG(test, strlen(some_str), 40, "some_str='%s'", some_str); 147 147 148 Alternatively, one can take full control over 148 Alternatively, one can take full control over the error message by using 149 ``KUNIT_FAIL()``, e.g. 149 ``KUNIT_FAIL()``, e.g. 150 150 151 .. code-block:: c 151 .. code-block:: c 152 152 153 /* Before */ 153 /* Before */ 154 KUNIT_EXPECT_EQ(test, some_setup_funct 154 KUNIT_EXPECT_EQ(test, some_setup_function(), 0); 155 155 156 /* After: full control over the failur 156 /* After: full control over the failure message. */ 157 if (some_setup_function()) 157 if (some_setup_function()) 158 KUNIT_FAIL(test, "Failed to se 158 KUNIT_FAIL(test, "Failed to setup thing for testing"); 159 159 160 160 161 Test Suites 161 Test Suites 162 ~~~~~~~~~~~ 162 ~~~~~~~~~~~ 163 163 164 We need many test cases covering all the unit' 164 We need many test cases covering all the unit's behaviors. It is common to have 165 many similar tests. In order to reduce duplica 165 many similar tests. In order to reduce duplication in these closely related 166 tests, most unit testing frameworks (including 166 tests, most unit testing frameworks (including KUnit) provide the concept of a 167 *test suite*. A test suite is a collection of 167 *test suite*. A test suite is a collection of test cases for a unit of code 168 with optional setup and teardown functions tha 168 with optional setup and teardown functions that run before/after the whole 169 suite and/or every test case. 169 suite and/or every test case. 170 170 171 .. note:: 171 .. note:: 172 A test case will only run if it is associat 172 A test case will only run if it is associated with a test suite. 173 173 174 For example: 174 For example: 175 175 176 .. code-block:: c 176 .. code-block:: c 177 177 178 static struct kunit_case example_test_ 178 static struct kunit_case example_test_cases[] = { 179 KUNIT_CASE(example_test_foo), 179 KUNIT_CASE(example_test_foo), 180 KUNIT_CASE(example_test_bar), 180 KUNIT_CASE(example_test_bar), 181 KUNIT_CASE(example_test_baz), 181 KUNIT_CASE(example_test_baz), 182 {} 182 {} 183 }; 183 }; 184 184 185 static struct kunit_suite example_test 185 static struct kunit_suite example_test_suite = { 186 .name = "example", 186 .name = "example", 187 .init = example_test_init, 187 .init = example_test_init, 188 .exit = example_test_exit, 188 .exit = example_test_exit, 189 .suite_init = example_suite_in 189 .suite_init = example_suite_init, 190 .suite_exit = example_suite_ex 190 .suite_exit = example_suite_exit, 191 .test_cases = example_test_cas 191 .test_cases = example_test_cases, 192 }; 192 }; 193 kunit_test_suite(example_test_suite); 193 kunit_test_suite(example_test_suite); 194 194 195 In the above example, the test suite ``example 195 In the above example, the test suite ``example_test_suite`` would first run 196 ``example_suite_init``, then run the test case 196 ``example_suite_init``, then run the test cases ``example_test_foo``, 197 ``example_test_bar``, and ``example_test_baz`` 197 ``example_test_bar``, and ``example_test_baz``. Each would have 198 ``example_test_init`` called immediately befor 198 ``example_test_init`` called immediately before it and ``example_test_exit`` 199 called immediately after it. Finally, ``exampl 199 called immediately after it. Finally, ``example_suite_exit`` would be called 200 after everything else. ``kunit_test_suite(exam 200 after everything else. ``kunit_test_suite(example_test_suite)`` registers the 201 test suite with the KUnit test framework. 201 test suite with the KUnit test framework. 202 202 203 .. note:: 203 .. note:: 204 The ``exit`` and ``suite_exit`` functions w 204 The ``exit`` and ``suite_exit`` functions will run even if ``init`` or 205 ``suite_init`` fail. Make sure that they ca 205 ``suite_init`` fail. Make sure that they can handle any inconsistent 206 state which may result from ``init`` or ``s 206 state which may result from ``init`` or ``suite_init`` encountering errors 207 or exiting early. 207 or exiting early. 208 208 209 ``kunit_test_suite(...)`` is a macro which tel 209 ``kunit_test_suite(...)`` is a macro which tells the linker to put the 210 specified test suite in a special linker secti 210 specified test suite in a special linker section so that it can be run by KUnit 211 either after ``late_init``, or when the test m 211 either after ``late_init``, or when the test module is loaded (if the test was 212 built as a module). 212 built as a module). 213 213 214 For more information, see Documentation/dev-to 214 For more information, see Documentation/dev-tools/kunit/api/test.rst. 215 215 216 .. _kunit-on-non-uml: 216 .. _kunit-on-non-uml: 217 217 218 Writing Tests For Other Architectures 218 Writing Tests For Other Architectures 219 ------------------------------------- 219 ------------------------------------- 220 220 221 It is better to write tests that run on UML to 221 It is better to write tests that run on UML to tests that only run under a 222 particular architecture. It is better to write 222 particular architecture. It is better to write tests that run under QEMU or 223 another easy to obtain (and monetarily free) s 223 another easy to obtain (and monetarily free) software environment to a specific 224 piece of hardware. 224 piece of hardware. 225 225 226 Nevertheless, there are still valid reasons to 226 Nevertheless, there are still valid reasons to write a test that is architecture 227 or hardware specific. For example, we might wa 227 or hardware specific. For example, we might want to test code that really 228 belongs in ``arch/some-arch/*``. Even so, try 228 belongs in ``arch/some-arch/*``. Even so, try to write the test so that it does 229 not depend on physical hardware. Some of our t 229 not depend on physical hardware. Some of our test cases may not need hardware, 230 only few tests actually require the hardware t 230 only few tests actually require the hardware to test it. When hardware is not 231 available, instead of disabling tests, we can 231 available, instead of disabling tests, we can skip them. 232 232 233 Now that we have narrowed down exactly what bi 233 Now that we have narrowed down exactly what bits are hardware specific, the 234 actual procedure for writing and running the t 234 actual procedure for writing and running the tests is same as writing normal 235 KUnit tests. 235 KUnit tests. 236 236 237 .. important:: 237 .. important:: 238 We may have to reset hardware state. If thi 238 We may have to reset hardware state. If this is not possible, we may only 239 be able to run one test case per invocation 239 be able to run one test case per invocation. 240 240 241 .. TODO(brendanhiggins@google.com): Add an act 241 .. TODO(brendanhiggins@google.com): Add an actual example of an architecture- 242 dependent KUnit test. 242 dependent KUnit test. 243 243 244 Common Patterns 244 Common Patterns 245 =============== 245 =============== 246 246 247 Isolating Behavior 247 Isolating Behavior 248 ------------------ 248 ------------------ 249 249 250 Unit testing limits the amount of code under t 250 Unit testing limits the amount of code under test to a single unit. It controls 251 what code gets run when the unit under test ca 251 what code gets run when the unit under test calls a function. Where a function 252 is exposed as part of an API such that the def 252 is exposed as part of an API such that the definition of that function can be 253 changed without affecting the rest of the code 253 changed without affecting the rest of the code base. In the kernel, this comes 254 from two constructs: classes, which are struct 254 from two constructs: classes, which are structs that contain function pointers 255 provided by the implementer, and architecture- 255 provided by the implementer, and architecture-specific functions, which have 256 definitions selected at compile time. 256 definitions selected at compile time. 257 257 258 Classes 258 Classes 259 ~~~~~~~ 259 ~~~~~~~ 260 260 261 Classes are not a construct that is built into 261 Classes are not a construct that is built into the C programming language; 262 however, it is an easily derived concept. Acco 262 however, it is an easily derived concept. Accordingly, in most cases, every 263 project that does not use a standardized objec 263 project that does not use a standardized object oriented library (like GNOME's 264 GObject) has their own slightly different way 264 GObject) has their own slightly different way of doing object oriented 265 programming; the Linux kernel is no exception. 265 programming; the Linux kernel is no exception. 266 266 267 The central concept in kernel object oriented 267 The central concept in kernel object oriented programming is the class. In the 268 kernel, a *class* is a struct that contains fu 268 kernel, a *class* is a struct that contains function pointers. This creates a 269 contract between *implementers* and *users* si 269 contract between *implementers* and *users* since it forces them to use the 270 same function signature without having to call 270 same function signature without having to call the function directly. To be a 271 class, the function pointers must specify that 271 class, the function pointers must specify that a pointer to the class, known as 272 a *class handle*, be one of the parameters. Th 272 a *class handle*, be one of the parameters. Thus the member functions (also 273 known as *methods*) have access to member vari 273 known as *methods*) have access to member variables (also known as *fields*) 274 allowing the same implementation to have multi 274 allowing the same implementation to have multiple *instances*. 275 275 276 A class can be *overridden* by *child classes* 276 A class can be *overridden* by *child classes* by embedding the *parent class* 277 in the child class. Then when the child class 277 in the child class. Then when the child class *method* is called, the child 278 implementation knows that the pointer passed t 278 implementation knows that the pointer passed to it is of a parent contained 279 within the child. Thus, the child can compute 279 within the child. Thus, the child can compute the pointer to itself because the 280 pointer to the parent is always a fixed offset 280 pointer to the parent is always a fixed offset from the pointer to the child. 281 This offset is the offset of the parent contai 281 This offset is the offset of the parent contained in the child struct. For 282 example: 282 example: 283 283 284 .. code-block:: c 284 .. code-block:: c 285 285 286 struct shape { 286 struct shape { 287 int (*area)(struct shape *this 287 int (*area)(struct shape *this); 288 }; 288 }; 289 289 290 struct rectangle { 290 struct rectangle { 291 struct shape parent; 291 struct shape parent; 292 int length; 292 int length; 293 int width; 293 int width; 294 }; 294 }; 295 295 296 int rectangle_area(struct shape *this) 296 int rectangle_area(struct shape *this) 297 { 297 { 298 struct rectangle *self = conta 298 struct rectangle *self = container_of(this, struct rectangle, parent); 299 299 300 return self->length * self->wi 300 return self->length * self->width; 301 }; 301 }; 302 302 303 void rectangle_new(struct rectangle *s 303 void rectangle_new(struct rectangle *self, int length, int width) 304 { 304 { 305 self->parent.area = rectangle_ 305 self->parent.area = rectangle_area; 306 self->length = length; 306 self->length = length; 307 self->width = width; 307 self->width = width; 308 } 308 } 309 309 310 In this example, computing the pointer to the 310 In this example, computing the pointer to the child from the pointer to the 311 parent is done by ``container_of``. 311 parent is done by ``container_of``. 312 312 313 Faking Classes 313 Faking Classes 314 ~~~~~~~~~~~~~~ 314 ~~~~~~~~~~~~~~ 315 315 316 In order to unit test a piece of code that cal 316 In order to unit test a piece of code that calls a method in a class, the 317 behavior of the method must be controllable, o 317 behavior of the method must be controllable, otherwise the test ceases to be a 318 unit test and becomes an integration test. 318 unit test and becomes an integration test. 319 319 320 A fake class implements a piece of code that i 320 A fake class implements a piece of code that is different than what runs in a 321 production instance, but behaves identical fro 321 production instance, but behaves identical from the standpoint of the callers. 322 This is done to replace a dependency that is h 322 This is done to replace a dependency that is hard to deal with, or is slow. For 323 example, implementing a fake EEPROM that store 323 example, implementing a fake EEPROM that stores the "contents" in an 324 internal buffer. Assume we have a class that r 324 internal buffer. Assume we have a class that represents an EEPROM: 325 325 326 .. code-block:: c 326 .. code-block:: c 327 327 328 struct eeprom { 328 struct eeprom { 329 ssize_t (*read)(struct eeprom 329 ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count); 330 ssize_t (*write)(struct eeprom 330 ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count); 331 }; 331 }; 332 332 333 And we want to test code that buffers writes t 333 And we want to test code that buffers writes to the EEPROM: 334 334 335 .. code-block:: c 335 .. code-block:: c 336 336 337 struct eeprom_buffer { 337 struct eeprom_buffer { 338 ssize_t (*write)(struct eeprom 338 ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count); 339 int flush(struct eeprom_buffer 339 int flush(struct eeprom_buffer *this); 340 size_t flush_count; /* Flushes 340 size_t flush_count; /* Flushes when buffer exceeds flush_count. */ 341 }; 341 }; 342 342 343 struct eeprom_buffer *new_eeprom_buffe 343 struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom); 344 void destroy_eeprom_buffer(struct eepr 344 void destroy_eeprom_buffer(struct eeprom *eeprom); 345 345 346 We can test this code by *faking out* the unde 346 We can test this code by *faking out* the underlying EEPROM: 347 347 348 .. code-block:: c 348 .. code-block:: c 349 349 350 struct fake_eeprom { 350 struct fake_eeprom { 351 struct eeprom parent; 351 struct eeprom parent; 352 char contents[FAKE_EEPROM_CONT 352 char contents[FAKE_EEPROM_CONTENTS_SIZE]; 353 }; 353 }; 354 354 355 ssize_t fake_eeprom_read(struct eeprom 355 ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count) 356 { 356 { 357 struct fake_eeprom *this = con 357 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); 358 358 359 count = min(count, FAKE_EEPROM 359 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); 360 memcpy(buffer, this->contents 360 memcpy(buffer, this->contents + offset, count); 361 361 362 return count; 362 return count; 363 } 363 } 364 364 365 ssize_t fake_eeprom_write(struct eepro 365 ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count) 366 { 366 { 367 struct fake_eeprom *this = con 367 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); 368 368 369 count = min(count, FAKE_EEPROM 369 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); 370 memcpy(this->contents + offset 370 memcpy(this->contents + offset, buffer, count); 371 371 372 return count; 372 return count; 373 } 373 } 374 374 375 void fake_eeprom_init(struct fake_eepr 375 void fake_eeprom_init(struct fake_eeprom *this) 376 { 376 { 377 this->parent.read = fake_eepro 377 this->parent.read = fake_eeprom_read; 378 this->parent.write = fake_eepr 378 this->parent.write = fake_eeprom_write; 379 memset(this->contents, 0, FAKE 379 memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE); 380 } 380 } 381 381 382 We can now use it to test ``struct eeprom_buff 382 We can now use it to test ``struct eeprom_buffer``: 383 383 384 .. code-block:: c 384 .. code-block:: c 385 385 386 struct eeprom_buffer_test { 386 struct eeprom_buffer_test { 387 struct fake_eeprom *fake_eepro 387 struct fake_eeprom *fake_eeprom; 388 struct eeprom_buffer *eeprom_b 388 struct eeprom_buffer *eeprom_buffer; 389 }; 389 }; 390 390 391 static void eeprom_buffer_test_does_no 391 static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test) 392 { 392 { 393 struct eeprom_buffer_test *ctx 393 struct eeprom_buffer_test *ctx = test->priv; 394 struct eeprom_buffer *eeprom_b 394 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 395 struct fake_eeprom *fake_eepro 395 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 396 char buffer[] = {0xff}; 396 char buffer[] = {0xff}; 397 397 398 eeprom_buffer->flush_count = S 398 eeprom_buffer->flush_count = SIZE_MAX; 399 399 400 eeprom_buffer->write(eeprom_bu 400 eeprom_buffer->write(eeprom_buffer, buffer, 1); 401 KUNIT_EXPECT_EQ(test, fake_eep 401 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 402 402 403 eeprom_buffer->write(eeprom_bu 403 eeprom_buffer->write(eeprom_buffer, buffer, 1); 404 KUNIT_EXPECT_EQ(test, fake_eep 404 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0); 405 405 406 eeprom_buffer->flush(eeprom_bu 406 eeprom_buffer->flush(eeprom_buffer); 407 KUNIT_EXPECT_EQ(test, fake_eep 407 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 408 KUNIT_EXPECT_EQ(test, fake_eep 408 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 409 } 409 } 410 410 411 static void eeprom_buffer_test_flushes 411 static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test) 412 { 412 { 413 struct eeprom_buffer_test *ctx 413 struct eeprom_buffer_test *ctx = test->priv; 414 struct eeprom_buffer *eeprom_b 414 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 415 struct fake_eeprom *fake_eepro 415 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 416 char buffer[] = {0xff}; 416 char buffer[] = {0xff}; 417 417 418 eeprom_buffer->flush_count = 2 418 eeprom_buffer->flush_count = 2; 419 419 420 eeprom_buffer->write(eeprom_bu 420 eeprom_buffer->write(eeprom_buffer, buffer, 1); 421 KUNIT_EXPECT_EQ(test, fake_eep 421 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 422 422 423 eeprom_buffer->write(eeprom_bu 423 eeprom_buffer->write(eeprom_buffer, buffer, 1); 424 KUNIT_EXPECT_EQ(test, fake_eep 424 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 425 KUNIT_EXPECT_EQ(test, fake_eep 425 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 426 } 426 } 427 427 428 static void eeprom_buffer_test_flushes 428 static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test) 429 { 429 { 430 struct eeprom_buffer_test *ctx 430 struct eeprom_buffer_test *ctx = test->priv; 431 struct eeprom_buffer *eeprom_b 431 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; 432 struct fake_eeprom *fake_eepro 432 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; 433 char buffer[] = {0xff, 0xff}; 433 char buffer[] = {0xff, 0xff}; 434 434 435 eeprom_buffer->flush_count = 2 435 eeprom_buffer->flush_count = 2; 436 436 437 eeprom_buffer->write(eeprom_bu 437 eeprom_buffer->write(eeprom_buffer, buffer, 1); 438 KUNIT_EXPECT_EQ(test, fake_eep 438 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); 439 439 440 eeprom_buffer->write(eeprom_bu 440 eeprom_buffer->write(eeprom_buffer, buffer, 2); 441 KUNIT_EXPECT_EQ(test, fake_eep 441 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); 442 KUNIT_EXPECT_EQ(test, fake_eep 442 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); 443 /* Should have only flushed th 443 /* Should have only flushed the first two bytes. */ 444 KUNIT_EXPECT_EQ(test, fake_eep 444 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0); 445 } 445 } 446 446 447 static int eeprom_buffer_test_init(str 447 static int eeprom_buffer_test_init(struct kunit *test) 448 { 448 { 449 struct eeprom_buffer_test *ctx 449 struct eeprom_buffer_test *ctx; 450 450 451 ctx = kunit_kzalloc(test, size 451 ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL); 452 KUNIT_ASSERT_NOT_ERR_OR_NULL(t 452 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx); 453 453 454 ctx->fake_eeprom = kunit_kzall 454 ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL); 455 KUNIT_ASSERT_NOT_ERR_OR_NULL(t 455 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom); 456 fake_eeprom_init(ctx->fake_eep 456 fake_eeprom_init(ctx->fake_eeprom); 457 457 458 ctx->eeprom_buffer = new_eepro 458 ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent); 459 KUNIT_ASSERT_NOT_ERR_OR_NULL(t 459 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer); 460 460 461 test->priv = ctx; 461 test->priv = ctx; 462 462 463 return 0; 463 return 0; 464 } 464 } 465 465 466 static void eeprom_buffer_test_exit(st 466 static void eeprom_buffer_test_exit(struct kunit *test) 467 { 467 { 468 struct eeprom_buffer_test *ctx 468 struct eeprom_buffer_test *ctx = test->priv; 469 469 470 destroy_eeprom_buffer(ctx->eep 470 destroy_eeprom_buffer(ctx->eeprom_buffer); 471 } 471 } 472 472 473 Testing Against Multiple Inputs 473 Testing Against Multiple Inputs 474 ------------------------------- 474 ------------------------------- 475 475 476 Testing just a few inputs is not enough to ens 476 Testing just a few inputs is not enough to ensure that the code works correctly, 477 for example: testing a hash function. 477 for example: testing a hash function. 478 478 479 We can write a helper macro or function. The f 479 We can write a helper macro or function. The function is called for each input. 480 For example, to test ``sha1sum(1)``, we can wr 480 For example, to test ``sha1sum(1)``, we can write: 481 481 482 .. code-block:: c 482 .. code-block:: c 483 483 484 #define TEST_SHA1(in, want) \ 484 #define TEST_SHA1(in, want) \ 485 sha1sum(in, out); \ 485 sha1sum(in, out); \ 486 KUNIT_EXPECT_STREQ_MSG(test, o 486 KUNIT_EXPECT_STREQ_MSG(test, out, want, "sha1sum(%s)", in); 487 487 488 char out[40]; 488 char out[40]; 489 TEST_SHA1("hello world", "2aae6c35c94 489 TEST_SHA1("hello world", "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed"); 490 TEST_SHA1("hello world!", "430ce34d020 490 TEST_SHA1("hello world!", "430ce34d020724ed75a196dfc2ad67c77772d169"); 491 491 492 Note the use of the ``_MSG`` version of ``KUNI 492 Note the use of the ``_MSG`` version of ``KUNIT_EXPECT_STREQ`` to print a more 493 detailed error and make the assertions clearer 493 detailed error and make the assertions clearer within the helper macros. 494 494 495 The ``_MSG`` variants are useful when the same 495 The ``_MSG`` variants are useful when the same expectation is called multiple 496 times (in a loop or helper function) and thus 496 times (in a loop or helper function) and thus the line number is not enough to 497 identify what failed, as shown below. 497 identify what failed, as shown below. 498 498 499 In complicated cases, we recommend using a *ta 499 In complicated cases, we recommend using a *table-driven test* compared to the 500 helper macro variation, for example: 500 helper macro variation, for example: 501 501 502 .. code-block:: c 502 .. code-block:: c 503 503 504 int i; 504 int i; 505 char out[40]; 505 char out[40]; 506 506 507 struct sha1_test_case { 507 struct sha1_test_case { 508 const char *str; 508 const char *str; 509 const char *sha1; 509 const char *sha1; 510 }; 510 }; 511 511 512 struct sha1_test_case cases[] = { 512 struct sha1_test_case cases[] = { 513 { 513 { 514 .str = "hello world", 514 .str = "hello world", 515 .sha1 = "2aae6c35c94fc 515 .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", 516 }, 516 }, 517 { 517 { 518 .str = "hello world!", 518 .str = "hello world!", 519 .sha1 = "430ce34d02072 519 .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", 520 }, 520 }, 521 }; 521 }; 522 for (i = 0; i < ARRAY_SIZE(cases); ++i 522 for (i = 0; i < ARRAY_SIZE(cases); ++i) { 523 sha1sum(cases[i].str, out); 523 sha1sum(cases[i].str, out); 524 KUNIT_EXPECT_STREQ_MSG(test, o 524 KUNIT_EXPECT_STREQ_MSG(test, out, cases[i].sha1, 525 "sha1sum 525 "sha1sum(%s)", cases[i].str); 526 } 526 } 527 527 528 528 529 There is more boilerplate code involved, but i 529 There is more boilerplate code involved, but it can: 530 530 531 * be more readable when there are multiple inp 531 * be more readable when there are multiple inputs/outputs (due to field names). 532 532 533 * For example, see ``fs/ext4/inode-test.c``. 533 * For example, see ``fs/ext4/inode-test.c``. 534 534 535 * reduce duplication if test cases are shared 535 * reduce duplication if test cases are shared across multiple tests. 536 536 537 * For example: if we want to test ``sha256su 537 * For example: if we want to test ``sha256sum``, we could add a ``sha256`` 538 field and reuse ``cases``. 538 field and reuse ``cases``. 539 539 540 * be converted to a "parameterized test". 540 * be converted to a "parameterized test". 541 541 542 Parameterized Testing 542 Parameterized Testing 543 ~~~~~~~~~~~~~~~~~~~~~ 543 ~~~~~~~~~~~~~~~~~~~~~ 544 544 545 The table-driven testing pattern is common eno 545 The table-driven testing pattern is common enough that KUnit has special 546 support for it. 546 support for it. 547 547 548 By reusing the same ``cases`` array from above 548 By reusing the same ``cases`` array from above, we can write the test as a 549 "parameterized test" with the following. 549 "parameterized test" with the following. 550 550 551 .. code-block:: c 551 .. code-block:: c 552 552 553 // This is copy-pasted from above. 553 // This is copy-pasted from above. 554 struct sha1_test_case { 554 struct sha1_test_case { 555 const char *str; 555 const char *str; 556 const char *sha1; 556 const char *sha1; 557 }; 557 }; 558 const struct sha1_test_case cases[] = 558 const struct sha1_test_case cases[] = { 559 { 559 { 560 .str = "hello world", 560 .str = "hello world", 561 .sha1 = "2aae6c35c94fc 561 .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", 562 }, 562 }, 563 { 563 { 564 .str = "hello world!", 564 .str = "hello world!", 565 .sha1 = "430ce34d02072 565 .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", 566 }, 566 }, 567 }; 567 }; 568 568 569 // Creates `sha1_gen_params()` to iter !! 569 // Need a helper function to generate a name for each test case. 570 // the struct member `str` for the cas !! 570 static void case_to_desc(const struct sha1_test_case *t, char *desc) 571 KUNIT_ARRAY_PARAM_DESC(sha1, cases, st !! 571 { >> 572 strcpy(desc, t->str); >> 573 } >> 574 // Creates `sha1_gen_params()` to iterate over `cases`. >> 575 KUNIT_ARRAY_PARAM(sha1, cases, case_to_desc); 572 576 573 // Looks no different from a normal te 577 // Looks no different from a normal test. 574 static void sha1_test(struct kunit *te 578 static void sha1_test(struct kunit *test) 575 { 579 { 576 // This function can just cont 580 // This function can just contain the body of the for-loop. 577 // The former `cases[i]` is ac 581 // The former `cases[i]` is accessible under test->param_value. 578 char out[40]; 582 char out[40]; 579 struct sha1_test_case *test_pa 583 struct sha1_test_case *test_param = (struct sha1_test_case *)(test->param_value); 580 584 581 sha1sum(test_param->str, out); 585 sha1sum(test_param->str, out); 582 KUNIT_EXPECT_STREQ_MSG(test, o 586 KUNIT_EXPECT_STREQ_MSG(test, out, test_param->sha1, 583 "sha1sum 587 "sha1sum(%s)", test_param->str); 584 } 588 } 585 589 586 // Instead of KUNIT_CASE, we use KUNIT 590 // Instead of KUNIT_CASE, we use KUNIT_CASE_PARAM and pass in the 587 // function declared by KUNIT_ARRAY_PA !! 591 // function declared by KUNIT_ARRAY_PARAM. 588 static struct kunit_case sha1_test_cas 592 static struct kunit_case sha1_test_cases[] = { 589 KUNIT_CASE_PARAM(sha1_test, sh 593 KUNIT_CASE_PARAM(sha1_test, sha1_gen_params), 590 {} 594 {} 591 }; 595 }; 592 596 593 Allocating Memory 597 Allocating Memory 594 ----------------- 598 ----------------- 595 599 596 Where you might use ``kzalloc``, you can inste 600 Where you might use ``kzalloc``, you can instead use ``kunit_kzalloc`` as KUnit 597 will then ensure that the memory is freed once 601 will then ensure that the memory is freed once the test completes. 598 602 599 This is useful because it lets us use the ``KU 603 This is useful because it lets us use the ``KUNIT_ASSERT_EQ`` macros to exit 600 early from a test without having to worry abou 604 early from a test without having to worry about remembering to call ``kfree``. 601 For example: 605 For example: 602 606 603 .. code-block:: c 607 .. code-block:: c 604 608 605 void example_test_allocation(struct ku 609 void example_test_allocation(struct kunit *test) 606 { 610 { 607 char *buffer = kunit_kzalloc(t 611 char *buffer = kunit_kzalloc(test, 16, GFP_KERNEL); 608 /* Ensure allocation succeeded 612 /* Ensure allocation succeeded. */ 609 KUNIT_ASSERT_NOT_ERR_OR_NULL(t 613 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buffer); 610 614 611 KUNIT_ASSERT_STREQ(test, buffe 615 KUNIT_ASSERT_STREQ(test, buffer, ""); 612 } 616 } 613 617 614 Registering Cleanup Actions 618 Registering Cleanup Actions 615 --------------------------- 619 --------------------------- 616 620 617 If you need to perform some cleanup beyond sim 621 If you need to perform some cleanup beyond simple use of ``kunit_kzalloc``, 618 you can register a custom "deferred action", w 622 you can register a custom "deferred action", which is a cleanup function 619 run when the test exits (whether cleanly, or v 623 run when the test exits (whether cleanly, or via a failed assertion). 620 624 621 Actions are simple functions with no return va 625 Actions are simple functions with no return value, and a single ``void*`` 622 context argument, and fulfill the same role as 626 context argument, and fulfill the same role as "cleanup" functions in Python 623 and Go tests, "defer" statements in languages 627 and Go tests, "defer" statements in languages which support them, and 624 (in some cases) destructors in RAII languages. 628 (in some cases) destructors in RAII languages. 625 629 626 These are very useful for unregistering things 630 These are very useful for unregistering things from global lists, closing 627 files or other resources, or freeing resources 631 files or other resources, or freeing resources. 628 632 629 For example: 633 For example: 630 634 631 .. code-block:: C 635 .. code-block:: C 632 636 633 static void cleanup_device(void *ctx) 637 static void cleanup_device(void *ctx) 634 { 638 { 635 struct device *dev = (struct d 639 struct device *dev = (struct device *)ctx; 636 640 637 device_unregister(dev); 641 device_unregister(dev); 638 } 642 } 639 643 640 void example_device_test(struct kunit 644 void example_device_test(struct kunit *test) 641 { 645 { 642 struct my_device dev; 646 struct my_device dev; 643 647 644 device_register(&dev); 648 device_register(&dev); 645 649 646 kunit_add_action(test, &cleanu 650 kunit_add_action(test, &cleanup_device, &dev); 647 } 651 } 648 652 649 Note that, for functions like device_unregiste 653 Note that, for functions like device_unregister which only accept a single 650 pointer-sized argument, it's possible to autom 654 pointer-sized argument, it's possible to automatically generate a wrapper 651 with the ``KUNIT_DEFINE_ACTION_WRAPPER()`` mac 655 with the ``KUNIT_DEFINE_ACTION_WRAPPER()`` macro, for example: 652 656 653 .. code-block:: C 657 .. code-block:: C 654 658 655 KUNIT_DEFINE_ACTION_WRAPPER(device_unr 659 KUNIT_DEFINE_ACTION_WRAPPER(device_unregister, device_unregister_wrapper, struct device *); 656 kunit_add_action(test, &device_unregis 660 kunit_add_action(test, &device_unregister_wrapper, &dev); 657 661 658 You should do this in preference to manually c 662 You should do this in preference to manually casting to the ``kunit_action_t`` type, 659 as casting function pointers will break Contro 663 as casting function pointers will break Control Flow Integrity (CFI). 660 664 661 ``kunit_add_action`` can fail if, for example, 665 ``kunit_add_action`` can fail if, for example, the system is out of memory. 662 You can use ``kunit_add_action_or_reset`` inst 666 You can use ``kunit_add_action_or_reset`` instead which runs the action 663 immediately if it cannot be deferred. 667 immediately if it cannot be deferred. 664 668 665 If you need more control over when the cleanup 669 If you need more control over when the cleanup function is called, you 666 can trigger it early using ``kunit_release_act 670 can trigger it early using ``kunit_release_action``, or cancel it entirely 667 with ``kunit_remove_action``. 671 with ``kunit_remove_action``. 668 672 669 673 670 Testing Static Functions 674 Testing Static Functions 671 ------------------------ 675 ------------------------ 672 676 673 If we do not want to expose functions or varia 677 If we do not want to expose functions or variables for testing, one option is to 674 conditionally export the used symbol. For exam !! 678 conditionally ``#include`` the test file at the end of your .c file. For 675 !! 679 example: 676 .. code-block:: c << 677 << 678 /* In my_file.c */ << 679 << 680 VISIBLE_IF_KUNIT int do_interesting_th << 681 EXPORT_SYMBOL_IF_KUNIT(do_interesting_ << 682 << 683 /* In my_file.h */ << 684 << 685 #if IS_ENABLED(CONFIG_KUNIT) << 686 int do_interesting_thing(void) << 687 #endif << 688 << 689 Alternatively, you could conditionally ``#incl << 690 your .c file. For example: << 691 680 692 .. code-block:: c 681 .. code-block:: c 693 682 694 /* In my_file.c */ 683 /* In my_file.c */ 695 684 696 static int do_interesting_thing(); 685 static int do_interesting_thing(); 697 686 698 #ifdef CONFIG_MY_KUNIT_TEST 687 #ifdef CONFIG_MY_KUNIT_TEST 699 #include "my_kunit_test.c" 688 #include "my_kunit_test.c" 700 #endif 689 #endif 701 690 702 Injecting Test-Only Code 691 Injecting Test-Only Code 703 ------------------------ 692 ------------------------ 704 693 705 Similar to as shown above, we can add test-spe 694 Similar to as shown above, we can add test-specific logic. For example: 706 695 707 .. code-block:: c 696 .. code-block:: c 708 697 709 /* In my_file.h */ 698 /* In my_file.h */ 710 699 711 #ifdef CONFIG_MY_KUNIT_TEST 700 #ifdef CONFIG_MY_KUNIT_TEST 712 /* Defined in my_kunit_test.c */ 701 /* Defined in my_kunit_test.c */ 713 void test_only_hook(void); 702 void test_only_hook(void); 714 #else 703 #else 715 void test_only_hook(void) { } 704 void test_only_hook(void) { } 716 #endif 705 #endif 717 706 718 This test-only code can be made more useful by 707 This test-only code can be made more useful by accessing the current ``kunit_test`` 719 as shown in next section: *Accessing The Curre 708 as shown in next section: *Accessing The Current Test*. 720 709 721 Accessing The Current Test 710 Accessing The Current Test 722 -------------------------- 711 -------------------------- 723 712 724 In some cases, we need to call test-only code 713 In some cases, we need to call test-only code from outside the test file. This 725 is helpful, for example, when providing a fake 714 is helpful, for example, when providing a fake implementation of a function, or 726 to fail any current test from within an error 715 to fail any current test from within an error handler. 727 We can do this via the ``kunit_test`` field in 716 We can do this via the ``kunit_test`` field in ``task_struct``, which we can 728 access using the ``kunit_get_current_test()`` 717 access using the ``kunit_get_current_test()`` function in ``kunit/test-bug.h``. 729 718 730 ``kunit_get_current_test()`` is safe to call e 719 ``kunit_get_current_test()`` is safe to call even if KUnit is not enabled. If 731 KUnit is not enabled, or if no test is running 720 KUnit is not enabled, or if no test is running in the current task, it will 732 return ``NULL``. This compiles down to either 721 return ``NULL``. This compiles down to either a no-op or a static key check, 733 so will have a negligible performance impact w 722 so will have a negligible performance impact when no test is running. 734 723 735 The example below uses this to implement a "mo 724 The example below uses this to implement a "mock" implementation of a function, ``foo``: 736 725 737 .. code-block:: c 726 .. code-block:: c 738 727 739 #include <kunit/test-bug.h> /* for kun 728 #include <kunit/test-bug.h> /* for kunit_get_current_test */ 740 729 741 struct test_data { 730 struct test_data { 742 int foo_result; 731 int foo_result; 743 int want_foo_called_with; 732 int want_foo_called_with; 744 }; 733 }; 745 734 746 static int fake_foo(int arg) 735 static int fake_foo(int arg) 747 { 736 { 748 struct kunit *test = kunit_get 737 struct kunit *test = kunit_get_current_test(); 749 struct test_data *test_data = 738 struct test_data *test_data = test->priv; 750 739 751 KUNIT_EXPECT_EQ(test, test_dat 740 KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg); 752 return test_data->foo_result; 741 return test_data->foo_result; 753 } 742 } 754 743 755 static void example_simple_test(struct 744 static void example_simple_test(struct kunit *test) 756 { 745 { 757 /* Assume priv (private, a mem 746 /* Assume priv (private, a member used to pass test data from 758 * the init function) is alloc 747 * the init function) is allocated in the suite's .init */ 759 struct test_data *test_data = 748 struct test_data *test_data = test->priv; 760 749 761 test_data->foo_result = 42; 750 test_data->foo_result = 42; 762 test_data->want_foo_called_wit 751 test_data->want_foo_called_with = 1; 763 752 764 /* In a real test, we'd probab 753 /* In a real test, we'd probably pass a pointer to fake_foo somewhere 765 * like an ops struct, etc. in 754 * like an ops struct, etc. instead of calling it directly. */ 766 KUNIT_EXPECT_EQ(test, fake_foo 755 KUNIT_EXPECT_EQ(test, fake_foo(1), 42); 767 } 756 } 768 757 769 In this example, we are using the ``priv`` mem 758 In this example, we are using the ``priv`` member of ``struct kunit`` as a way 770 of passing data to the test from the init func 759 of passing data to the test from the init function. In general ``priv`` is 771 pointer that can be used for any user data. Th 760 pointer that can be used for any user data. This is preferred over static 772 variables, as it avoids concurrency issues. 761 variables, as it avoids concurrency issues. 773 762 774 Had we wanted something more flexible, we coul 763 Had we wanted something more flexible, we could have used a named ``kunit_resource``. 775 Each test can have multiple resources which ha 764 Each test can have multiple resources which have string names providing the same 776 flexibility as a ``priv`` member, but also, fo 765 flexibility as a ``priv`` member, but also, for example, allowing helper 777 functions to create resources without conflict 766 functions to create resources without conflicting with each other. It is also 778 possible to define a clean up function for eac 767 possible to define a clean up function for each resource, making it easy to 779 avoid resource leaks. For more information, se 768 avoid resource leaks. For more information, see Documentation/dev-tools/kunit/api/resource.rst. 780 769 781 Failing The Current Test 770 Failing The Current Test 782 ------------------------ 771 ------------------------ 783 772 784 If we want to fail the current test, we can us 773 If we want to fail the current test, we can use ``kunit_fail_current_test(fmt, args...)`` 785 which is defined in ``<kunit/test-bug.h>`` and 774 which is defined in ``<kunit/test-bug.h>`` and does not require pulling in ``<kunit/test.h>``. 786 For example, we have an option to enable some 775 For example, we have an option to enable some extra debug checks on some data 787 structures as shown below: 776 structures as shown below: 788 777 789 .. code-block:: c 778 .. code-block:: c 790 779 791 #include <kunit/test-bug.h> 780 #include <kunit/test-bug.h> 792 781 793 #ifdef CONFIG_EXTRA_DEBUG_CHECKS 782 #ifdef CONFIG_EXTRA_DEBUG_CHECKS 794 static void validate_my_data(struct da 783 static void validate_my_data(struct data *data) 795 { 784 { 796 if (is_valid(data)) 785 if (is_valid(data)) 797 return; 786 return; 798 787 799 kunit_fail_current_test("data 788 kunit_fail_current_test("data %p is invalid", data); 800 789 801 /* Normal, non-KUnit, error re 790 /* Normal, non-KUnit, error reporting code here. */ 802 } 791 } 803 #else 792 #else 804 static void my_debug_function(void) { 793 static void my_debug_function(void) { } 805 #endif 794 #endif 806 795 807 ``kunit_fail_current_test()`` is safe to call 796 ``kunit_fail_current_test()`` is safe to call even if KUnit is not enabled. If 808 KUnit is not enabled, or if no test is running 797 KUnit is not enabled, or if no test is running in the current task, it will do 809 nothing. This compiles down to either a no-op 798 nothing. This compiles down to either a no-op or a static key check, so will 810 have a negligible performance impact when no t 799 have a negligible performance impact when no test is running. 811 << 812 Managing Fake Devices and Drivers << 813 --------------------------------- << 814 << 815 When testing drivers or code which interacts w << 816 require a ``struct device`` or ``struct device << 817 up a real device is not required to test any g << 818 can be used instead. << 819 << 820 KUnit provides helper functions to create and << 821 are internally of type ``struct kunit_device`` << 822 ``kunit_bus``. These devices support managed d << 823 described in Documentation/driver-api/driver-m << 824 << 825 To create a KUnit-managed ``struct device_driv << 826 which will create a driver with the given name << 827 will automatically be destroyed when the corre << 828 be manually destroyed with ``driver_unregister << 829 << 830 To create a fake device, use the ``kunit_devic << 831 and register a device, using a new KUnit-manag << 832 To provide a specific, non-KUnit-managed drive << 833 instead. Like with managed drivers, KUnit-mana << 834 cleaned up when the test finishes, but can be << 835 ``kunit_device_unregister()``. << 836 << 837 The KUnit devices should be used in preference << 838 instead of ``platform_device_register()`` in c << 839 a platform device. << 840 << 841 For example: << 842 << 843 .. code-block:: c << 844 << 845 #include <kunit/device.h> << 846 << 847 static void test_my_device(struct kuni << 848 { << 849 struct device *fake_device; << 850 const char *dev_managed_string << 851 << 852 // Create a fake device. << 853 fake_device = kunit_device_reg << 854 KUNIT_ASSERT_NOT_ERR_OR_NULL(t << 855 << 856 // Pass it to functions which << 857 dev_managed_string = devm_kstr << 858 << 859 // Everything is cleaned up au << 860 } <<
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.