~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/dev-tools/kunit/usage.rst

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /Documentation/dev-tools/kunit/usage.rst (Version linux-6.12-rc7) and /Documentation/dev-tools/kunit/usage.rst (Version linux-5.5.19)


  1 .. SPDX-License-Identifier: GPL-2.0                 1 .. SPDX-License-Identifier: GPL-2.0
  2                                                     2 
                                                   >>   3 ===========
                                                   >>   4 Using KUnit
                                                   >>   5 ===========
                                                   >>   6 
                                                   >>   7 The purpose of this document is to describe what KUnit is, how it works, how it
                                                   >>   8 is intended to be used, and all the concepts and terminology that are needed to
                                                   >>   9 understand it. This guide assumes a working knowledge of the Linux kernel and
                                                   >>  10 some basic knowledge of testing.
                                                   >>  11 
                                                   >>  12 For a high level introduction to KUnit, including setting up KUnit for your
                                                   >>  13 project, see :doc:`start`.
                                                   >>  14 
                                                   >>  15 Organization of this document
                                                   >>  16 =============================
                                                   >>  17 
                                                   >>  18 This document is organized into two main sections: Testing and Isolating
                                                   >>  19 Behavior. The first covers what unit tests are and how to use KUnit to write
                                                   >>  20 them. The second covers how to use KUnit to isolate code and make it possible
                                                   >>  21 to unit test code that was otherwise un-unit-testable.
                                                   >>  22 
                                                   >>  23 Testing
                                                   >>  24 =======
                                                   >>  25 
                                                   >>  26 What is KUnit?
                                                   >>  27 --------------
                                                   >>  28 
                                                   >>  29 "K" is short for "kernel" so "KUnit" is the "(Linux) Kernel Unit Testing
                                                   >>  30 Framework." KUnit is intended first and foremost for writing unit tests; it is
                                                   >>  31 general enough that it can be used to write integration tests; however, this is
                                                   >>  32 a secondary goal. KUnit has no ambition of being the only testing framework for
                                                   >>  33 the kernel; for example, it does not intend to be an end-to-end testing
                                                   >>  34 framework.
                                                   >>  35 
                                                   >>  36 What is Unit Testing?
                                                   >>  37 ---------------------
                                                   >>  38 
                                                   >>  39 A `unit test <https://martinfowler.com/bliki/UnitTest.html>`_ is a test that
                                                   >>  40 tests code at the smallest possible scope, a *unit* of code. In the C
                                                   >>  41 programming language that's a function.
                                                   >>  42 
                                                   >>  43 Unit tests should be written for all the publicly exposed functions in a
                                                   >>  44 compilation unit; so that is all the functions that are exported in either a
                                                   >>  45 *class* (defined below) or all functions which are **not** static.
                                                   >>  46 
  3 Writing Tests                                      47 Writing Tests
  4 =============                                  !!  48 -------------
  5                                                    49 
  6 Test Cases                                         50 Test Cases
  7 ----------                                     !!  51 ~~~~~~~~~~
  8                                                    52 
  9 The fundamental unit in KUnit is the test case     53 The fundamental unit in KUnit is the test case. A test case is a function with
 10 the signature ``void (*)(struct kunit *test)`` !!  54 the signature ``void (*)(struct kunit *test)``. It calls a function to be tested
 11 and then sets *expectations* for what should h     55 and then sets *expectations* for what should happen. For example:
 12                                                    56 
 13 .. code-block:: c                                  57 .. code-block:: c
 14                                                    58 
 15         void example_test_success(struct kunit     59         void example_test_success(struct kunit *test)
 16         {                                          60         {
 17         }                                          61         }
 18                                                    62 
 19         void example_test_failure(struct kunit     63         void example_test_failure(struct kunit *test)
 20         {                                          64         {
 21                 KUNIT_FAIL(test, "This test ne     65                 KUNIT_FAIL(test, "This test never passes.");
 22         }                                          66         }
 23                                                    67 
 24 In the above example, ``example_test_success`` !!  68 In the above example ``example_test_success`` always passes because it does
 25 nothing; no expectations are set, and therefor !!  69 nothing; no expectations are set, so all expectations pass. On the other hand
 26 other hand ``example_test_failure`` always fai !!  70 ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``, which is
 27 which is a special expectation that logs a mes !!  71 a special expectation that logs a message and causes the test case to fail.
 28 fail.                                          << 
 29                                                    72 
 30 Expectations                                       73 Expectations
 31 ~~~~~~~~~~~~                                       74 ~~~~~~~~~~~~
 32 An *expectation* specifies that we expect a pi !!  75 An *expectation* is a way to specify that you expect a piece of code to do
 33 test. An expectation is called like a function !!  76 something in a test. An expectation is called like a function. A test is made
 34 expectations about the behavior of a piece of  !!  77 by setting expectations about the behavior of a piece of code under test; when
 35 expectations fail, the test case fails and inf !!  78 one or more of the expectations fail, the test case fails and information about
 36 logged. For example:                           !!  79 the failure is logged. For example:
 37                                                    80 
 38 .. code-block:: c                                  81 .. code-block:: c
 39                                                    82 
 40         void add_test_basic(struct kunit *test     83         void add_test_basic(struct kunit *test)
 41         {                                          84         {
 42                 KUNIT_EXPECT_EQ(test, 1, add(1     85                 KUNIT_EXPECT_EQ(test, 1, add(1, 0));
 43                 KUNIT_EXPECT_EQ(test, 2, add(1     86                 KUNIT_EXPECT_EQ(test, 2, add(1, 1));
 44         }                                          87         }
 45                                                    88 
 46 In the above example, ``add_test_basic`` makes !!  89 In the above example ``add_test_basic`` makes a number of assertions about the
 47 behavior of a function called ``add``. The fir !!  90 behavior of a function called ``add``; the first parameter is always of type
 48 ``struct kunit *``, which contains information !!  91 ``struct kunit *``, which contains information about the current test context;
 49 The second parameter, in this case, is what th !!  92 the second parameter, in this case, is what the value is expected to be; the
 50 last value is what the value actually is. If `     93 last value is what the value actually is. If ``add`` passes all of these
 51 expectations, the test case, ``add_test_basic`     94 expectations, the test case, ``add_test_basic`` will pass; if any one of these
 52 expectations fails, the test case will fail.   !!  95 expectations fail, the test case will fail.
 53                                                    96 
 54 A test case *fails* when any expectation is vi !!  97 It is important to understand that a test case *fails* when any expectation is
 55 continue to run, and try other expectations un !!  98 violated; however, the test will continue running, potentially trying other
 56 otherwise terminated. This is as opposed to *a !!  99 expectations until the test case ends or is otherwise terminated. This is as
 57 later.                                         !! 100 opposed to *assertions* which are discussed later.
 58                                                   101 
 59 To learn about more KUnit expectations, see Do !! 102 To learn about more expectations supported by KUnit, see :doc:`api/test`.
 60                                                   103 
 61 .. note::                                         104 .. note::
 62    A single test case should be short, easy to !! 105    A single test case should be pretty short, pretty easy to understand,
 63    single behavior.                            !! 106    focused on a single behavior.
 64                                                   107 
 65 For example, if we want to rigorously test the !! 108 For example, if we wanted to properly test the add function above, we would
 66 additional tests cases which would test each p !! 109 create additional tests cases which would each test a different property that an
 67 should have as shown below:                    !! 110 add function should have like this:
 68                                                   111 
 69 .. code-block:: c                                 112 .. code-block:: c
 70                                                   113 
 71         void add_test_basic(struct kunit *test    114         void add_test_basic(struct kunit *test)
 72         {                                         115         {
 73                 KUNIT_EXPECT_EQ(test, 1, add(1    116                 KUNIT_EXPECT_EQ(test, 1, add(1, 0));
 74                 KUNIT_EXPECT_EQ(test, 2, add(1    117                 KUNIT_EXPECT_EQ(test, 2, add(1, 1));
 75         }                                         118         }
 76                                                   119 
 77         void add_test_negative(struct kunit *t    120         void add_test_negative(struct kunit *test)
 78         {                                         121         {
 79                 KUNIT_EXPECT_EQ(test, 0, add(-    122                 KUNIT_EXPECT_EQ(test, 0, add(-1, 1));
 80         }                                         123         }
 81                                                   124 
 82         void add_test_max(struct kunit *test)     125         void add_test_max(struct kunit *test)
 83         {                                         126         {
 84                 KUNIT_EXPECT_EQ(test, INT_MAX,    127                 KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX));
 85                 KUNIT_EXPECT_EQ(test, -1, add(    128                 KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN));
 86         }                                         129         }
 87                                                   130 
 88         void add_test_overflow(struct kunit *t    131         void add_test_overflow(struct kunit *test)
 89         {                                         132         {
 90                 KUNIT_EXPECT_EQ(test, INT_MIN,    133                 KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1));
 91         }                                         134         }
 92                                                   135 
                                                   >> 136 Notice how it is immediately obvious what all the properties that we are testing
                                                   >> 137 for are.
                                                   >> 138 
 93 Assertions                                        139 Assertions
 94 ~~~~~~~~~~                                        140 ~~~~~~~~~~
 95                                                   141 
 96 An assertion is like an expectation, except th !! 142 KUnit also has the concept of an *assertion*. An assertion is just like an
 97 terminates the test case if the condition is n !! 143 expectation except the assertion immediately terminates the test case if it is
 98                                                !! 144 not satisfied.
 99 .. code-block:: c                              << 
100                                                << 
101         static void test_sort(struct kunit *te << 
102         {                                      << 
103                 int *a, i, r = 1;              << 
104                 a = kunit_kmalloc_array(test,  << 
105                 KUNIT_ASSERT_NOT_ERR_OR_NULL(t << 
106                 for (i = 0; i < TEST_LEN; i++) << 
107                         r = (r * 725861) % 659 << 
108                         a[i] = r;              << 
109                 }                              << 
110                 sort(a, TEST_LEN, sizeof(*a),  << 
111                 for (i = 0; i < TEST_LEN-1; i+ << 
112                         KUNIT_EXPECT_LE(test,  << 
113         }                                      << 
114                                                << 
115 In this example, we need to be able to allocat << 
116 function. So we use ``KUNIT_ASSERT_NOT_ERR_OR_ << 
117 there's an allocation error.                   << 
118                                                << 
119 .. note::                                      << 
120    In other test frameworks, ``ASSERT`` macros << 
121    ``return`` so they only work from the test  << 
122    current kthread on failure, so you can call << 
123                                                << 
124 .. note::                                      << 
125    Warning: There is an exception to the above << 
126    in the suite's exit() function, or in the f << 
127    run when a test is shutting down, and an as << 
128    cleanup code from running, potentially lead << 
129                                                << 
130 Customizing error messages                     << 
131 --------------------------                     << 
132                                                << 
133 Each of the ``KUNIT_EXPECT`` and ``KUNIT_ASSER << 
134 variant.  These take a format string and argum << 
135 context to the automatically generated error m << 
136                                                << 
137 .. code-block:: c                              << 
138                                                << 
139         char some_str[41];                     << 
140         generate_sha1_hex_string(some_str);    << 
141                                                << 
142         /* Before. Not easy to tell why the te << 
143         KUNIT_EXPECT_EQ(test, strlen(some_str) << 
144                                                << 
145         /* After. Now we see the offending str << 
146         KUNIT_EXPECT_EQ_MSG(test, strlen(some_ << 
147                                                   145 
148 Alternatively, one can take full control over  !! 146 For example:
149 ``KUNIT_FAIL()``, e.g.                         << 
150                                                   147 
151 .. code-block:: c                                 148 .. code-block:: c
152                                                   149 
153         /* Before */                           !! 150         static void mock_test_do_expect_default_return(struct kunit *test)
154         KUNIT_EXPECT_EQ(test, some_setup_funct !! 151         {
155                                                !! 152                 struct mock_test_context *ctx = test->priv;
156         /* After: full control over the failur !! 153                 struct mock *mock = ctx->mock;
157         if (some_setup_function())             !! 154                 int param0 = 5, param1 = -5;
158                 KUNIT_FAIL(test, "Failed to se !! 155                 const char *two_param_types[] = {"int", "int"};
159                                                !! 156                 const void *two_params[] = {&param0, &param1};
                                                   >> 157                 const void *ret;
                                                   >> 158 
                                                   >> 159                 ret = mock->do_expect(mock,
                                                   >> 160                                       "test_printk", test_printk,
                                                   >> 161                                       two_param_types, two_params,
                                                   >> 162                                       ARRAY_SIZE(two_params));
                                                   >> 163                 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ret);
                                                   >> 164                 KUNIT_EXPECT_EQ(test, -4, *((int *) ret));
                                                   >> 165         }
                                                   >> 166 
                                                   >> 167 In this example, the method under test should return a pointer to a value, so
                                                   >> 168 if the pointer returned by the method is null or an errno, we don't want to
                                                   >> 169 bother continuing the test since the following expectation could crash the test
                                                   >> 170 case. `ASSERT_NOT_ERR_OR_NULL(...)` allows us to bail out of the test case if
                                                   >> 171 the appropriate conditions have not been satisfied to complete the test.
160                                                   172 
161 Test Suites                                       173 Test Suites
162 ~~~~~~~~~~~                                       174 ~~~~~~~~~~~
163                                                   175 
164 We need many test cases covering all the unit' !! 176 Now obviously one unit test isn't very helpful; the power comes from having
165 many similar tests. In order to reduce duplica !! 177 many test cases covering all of a unit's behaviors. Consequently it is common
166 tests, most unit testing frameworks (including !! 178 to have many *similar* tests; in order to reduce duplication in these closely
167 *test suite*. A test suite is a collection of  !! 179 related tests most unit testing frameworks - including KUnit - provide the
168 with optional setup and teardown functions tha !! 180 concept of a *test suite*. A *test suite* is just a collection of test cases
169 suite and/or every test case.                  !! 181 for a unit of code with a set up function that gets invoked before every test
                                                   >> 182 case and then a tear down function that gets invoked after every test case
                                                   >> 183 completes.
170                                                   184 
171 .. note::                                      !! 185 Example:
172    A test case will only run if it is associat << 
173                                                << 
174 For example:                                   << 
175                                                   186 
176 .. code-block:: c                                 187 .. code-block:: c
177                                                   188 
178         static struct kunit_case example_test_    189         static struct kunit_case example_test_cases[] = {
179                 KUNIT_CASE(example_test_foo),     190                 KUNIT_CASE(example_test_foo),
180                 KUNIT_CASE(example_test_bar),     191                 KUNIT_CASE(example_test_bar),
181                 KUNIT_CASE(example_test_baz),     192                 KUNIT_CASE(example_test_baz),
182                 {}                                193                 {}
183         };                                        194         };
184                                                   195 
185         static struct kunit_suite example_test    196         static struct kunit_suite example_test_suite = {
186                 .name = "example",                197                 .name = "example",
187                 .init = example_test_init,        198                 .init = example_test_init,
188                 .exit = example_test_exit,        199                 .exit = example_test_exit,
189                 .suite_init = example_suite_in << 
190                 .suite_exit = example_suite_ex << 
191                 .test_cases = example_test_cas    200                 .test_cases = example_test_cases,
192         };                                        201         };
193         kunit_test_suite(example_test_suite);     202         kunit_test_suite(example_test_suite);
194                                                   203 
195 In the above example, the test suite ``example !! 204 In the above example the test suite, ``example_test_suite``, would run the test
196 ``example_suite_init``, then run the test case !! 205 cases ``example_test_foo``, ``example_test_bar``, and ``example_test_baz``,
197 ``example_test_bar``, and ``example_test_baz`` !! 206 each would have ``example_test_init`` called immediately before it and would
198 ``example_test_init`` called immediately befor !! 207 have ``example_test_exit`` called immediately after it.
199 called immediately after it. Finally, ``exampl !! 208 ``kunit_test_suite(example_test_suite)`` registers the test suite with the
200 after everything else. ``kunit_test_suite(exam !! 209 KUnit test framework.
201 test suite with the KUnit test framework.      << 
202                                                   210 
203 .. note::                                         211 .. note::
204    The ``exit`` and ``suite_exit`` functions w !! 212    A test case will only be run if it is associated with a test suite.
205    ``suite_init`` fail. Make sure that they ca << 
206    state which may result from ``init`` or ``s << 
207    or exiting early.                           << 
208                                                << 
209 ``kunit_test_suite(...)`` is a macro which tel << 
210 specified test suite in a special linker secti << 
211 either after ``late_init``, or when the test m << 
212 built as a module).                            << 
213                                                << 
214 For more information, see Documentation/dev-to << 
215                                                << 
216 .. _kunit-on-non-uml:                          << 
217                                                << 
218 Writing Tests For Other Architectures          << 
219 -------------------------------------          << 
220                                                << 
221 It is better to write tests that run on UML to << 
222 particular architecture. It is better to write << 
223 another easy to obtain (and monetarily free) s << 
224 piece of hardware.                             << 
225                                                << 
226 Nevertheless, there are still valid reasons to << 
227 or hardware specific. For example, we might wa << 
228 belongs in ``arch/some-arch/*``. Even so, try  << 
229 not depend on physical hardware. Some of our t << 
230 only few tests actually require the hardware t << 
231 available, instead of disabling tests, we can  << 
232                                                << 
233 Now that we have narrowed down exactly what bi << 
234 actual procedure for writing and running the t << 
235 KUnit tests.                                   << 
236                                                << 
237 .. important::                                 << 
238    We may have to reset hardware state. If thi << 
239    be able to run one test case per invocation << 
240                                                << 
241 .. TODO(brendanhiggins@google.com): Add an act << 
242    dependent KUnit test.                       << 
243                                                   213 
244 Common Patterns                                !! 214 For more information on these types of things see the :doc:`api/test`.
245 ===============                                << 
246                                                   215 
247 Isolating Behavior                                216 Isolating Behavior
248 ------------------                             !! 217 ==================
249                                                   218 
250 Unit testing limits the amount of code under t !! 219 The most important aspect of unit testing that other forms of testing do not
251 what code gets run when the unit under test ca !! 220 provide is the ability to limit the amount of code under test to a single unit.
252 is exposed as part of an API such that the def !! 221 In practice, this is only possible by being able to control what code gets run
253 changed without affecting the rest of the code !! 222 when the unit under test calls a function and this is usually accomplished
254 from two constructs: classes, which are struct !! 223 through some sort of indirection where a function is exposed as part of an API
255 provided by the implementer, and architecture- !! 224 such that the definition of that function can be changed without affecting the
256 definitions selected at compile time.          !! 225 rest of the code base. In the kernel this primarily comes from two constructs,
                                                   >> 226 classes, structs that contain function pointers that are provided by the
                                                   >> 227 implementer, and architecture specific functions which have definitions selected
                                                   >> 228 at compile time.
257                                                   229 
258 Classes                                           230 Classes
259 ~~~~~~~                                        !! 231 -------
260                                                   232 
261 Classes are not a construct that is built into    233 Classes are not a construct that is built into the C programming language;
262 however, it is an easily derived concept. Acco !! 234 however, it is an easily derived concept. Accordingly, pretty much every project
263 project that does not use a standardized objec !! 235 that does not use a standardized object oriented library (like GNOME's GObject)
264 GObject) has their own slightly different way  !! 236 has their own slightly different way of doing object oriented programming; the
265 programming; the Linux kernel is no exception. !! 237 Linux kernel is no exception.
266                                                   238 
267 The central concept in kernel object oriented     239 The central concept in kernel object oriented programming is the class. In the
268 kernel, a *class* is a struct that contains fu    240 kernel, a *class* is a struct that contains function pointers. This creates a
269 contract between *implementers* and *users* si    241 contract between *implementers* and *users* since it forces them to use the
270 same function signature without having to call !! 242 same function signature without having to call the function directly. In order
271 class, the function pointers must specify that !! 243 for it to truly be a class, the function pointers must specify that a pointer
272 a *class handle*, be one of the parameters. Th !! 244 to the class, known as a *class handle*, be one of the parameters; this makes
273 known as *methods*) have access to member vari !! 245 it possible for the member functions (also known as *methods*) to have access
274 allowing the same implementation to have multi !! 246 to member variables (more commonly known as *fields*) allowing the same
275                                                !! 247 implementation to have multiple *instances*.
276 A class can be *overridden* by *child classes* !! 248 
277 in the child class. Then when the child class  !! 249 Typically a class can be *overridden* by *child classes* by embedding the
278 implementation knows that the pointer passed t !! 250 *parent class* in the child class. Then when a method provided by the child
279 within the child. Thus, the child can compute  !! 251 class is called, the child implementation knows that the pointer passed to it is
280 pointer to the parent is always a fixed offset !! 252 of a parent contained within the child; because of this, the child can compute
281 This offset is the offset of the parent contai !! 253 the pointer to itself because the pointer to the parent is always a fixed offset
282 example:                                       !! 254 from the pointer to the child; this offset is the offset of the parent contained
                                                   >> 255 in the child struct. For example:
283                                                   256 
284 .. code-block:: c                                 257 .. code-block:: c
285                                                   258 
286         struct shape {                            259         struct shape {
287                 int (*area)(struct shape *this    260                 int (*area)(struct shape *this);
288         };                                        261         };
289                                                   262 
290         struct rectangle {                        263         struct rectangle {
291                 struct shape parent;              264                 struct shape parent;
292                 int length;                       265                 int length;
293                 int width;                        266                 int width;
294         };                                        267         };
295                                                   268 
296         int rectangle_area(struct shape *this)    269         int rectangle_area(struct shape *this)
297         {                                         270         {
298                 struct rectangle *self = conta !! 271                 struct rectangle *self = container_of(this, struct shape, parent);
299                                                   272 
300                 return self->length * self->wi    273                 return self->length * self->width;
301         };                                        274         };
302                                                   275 
303         void rectangle_new(struct rectangle *s    276         void rectangle_new(struct rectangle *self, int length, int width)
304         {                                         277         {
305                 self->parent.area = rectangle_    278                 self->parent.area = rectangle_area;
306                 self->length = length;            279                 self->length = length;
307                 self->width = width;              280                 self->width = width;
308         }                                         281         }
309                                                   282 
310 In this example, computing the pointer to the  !! 283 In this example (as in most kernel code) the operation of computing the pointer
311 parent is done by ``container_of``.            !! 284 to the child from the pointer to the parent is done by ``container_of``.
312                                                   285 
313 Faking Classes                                    286 Faking Classes
314 ~~~~~~~~~~~~~~                                    287 ~~~~~~~~~~~~~~
315                                                   288 
316 In order to unit test a piece of code that cal    289 In order to unit test a piece of code that calls a method in a class, the
317 behavior of the method must be controllable, o    290 behavior of the method must be controllable, otherwise the test ceases to be a
318 unit test and becomes an integration test.        291 unit test and becomes an integration test.
319                                                   292 
320 A fake class implements a piece of code that i !! 293 A fake just provides an implementation of a piece of code that is different than
321 production instance, but behaves identical fro !! 294 what runs in a production instance, but behaves identically from the standpoint
322 This is done to replace a dependency that is h !! 295 of the callers; this is usually done to replace a dependency that is hard to
323 example, implementing a fake EEPROM that store !! 296 deal with, or is slow.
324 internal buffer. Assume we have a class that r !! 297 
                                                   >> 298 A good example for this might be implementing a fake EEPROM that just stores the
                                                   >> 299 "contents" in an internal buffer. For example, let's assume we have a class that
                                                   >> 300 represents an EEPROM:
325                                                   301 
326 .. code-block:: c                                 302 .. code-block:: c
327                                                   303 
328         struct eeprom {                           304         struct eeprom {
329                 ssize_t (*read)(struct eeprom     305                 ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count);
330                 ssize_t (*write)(struct eeprom    306                 ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count);
331         };                                        307         };
332                                                   308 
333 And we want to test code that buffers writes t !! 309 And we want to test some code that buffers writes to the EEPROM:
334                                                   310 
335 .. code-block:: c                                 311 .. code-block:: c
336                                                   312 
337         struct eeprom_buffer {                    313         struct eeprom_buffer {
338                 ssize_t (*write)(struct eeprom    314                 ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count);
339                 int flush(struct eeprom_buffer    315                 int flush(struct eeprom_buffer *this);
340                 size_t flush_count; /* Flushes    316                 size_t flush_count; /* Flushes when buffer exceeds flush_count. */
341         };                                        317         };
342                                                   318 
343         struct eeprom_buffer *new_eeprom_buffe    319         struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom);
344         void destroy_eeprom_buffer(struct eepr    320         void destroy_eeprom_buffer(struct eeprom *eeprom);
345                                                   321 
346 We can test this code by *faking out* the unde !! 322 We can easily test this code by *faking out* the underlying EEPROM:
347                                                   323 
348 .. code-block:: c                                 324 .. code-block:: c
349                                                   325 
350         struct fake_eeprom {                      326         struct fake_eeprom {
351                 struct eeprom parent;             327                 struct eeprom parent;
352                 char contents[FAKE_EEPROM_CONT    328                 char contents[FAKE_EEPROM_CONTENTS_SIZE];
353         };                                        329         };
354                                                   330 
355         ssize_t fake_eeprom_read(struct eeprom    331         ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count)
356         {                                         332         {
357                 struct fake_eeprom *this = con    333                 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
358                                                   334 
359                 count = min(count, FAKE_EEPROM    335                 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
360                 memcpy(buffer, this->contents     336                 memcpy(buffer, this->contents + offset, count);
361                                                   337 
362                 return count;                     338                 return count;
363         }                                         339         }
364                                                   340 
365         ssize_t fake_eeprom_write(struct eepro    341         ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count)
366         {                                         342         {
367                 struct fake_eeprom *this = con    343                 struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
368                                                   344 
369                 count = min(count, FAKE_EEPROM    345                 count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
370                 memcpy(this->contents + offset    346                 memcpy(this->contents + offset, buffer, count);
371                                                   347 
372                 return count;                     348                 return count;
373         }                                         349         }
374                                                   350 
375         void fake_eeprom_init(struct fake_eepr    351         void fake_eeprom_init(struct fake_eeprom *this)
376         {                                         352         {
377                 this->parent.read = fake_eepro    353                 this->parent.read = fake_eeprom_read;
378                 this->parent.write = fake_eepr    354                 this->parent.write = fake_eeprom_write;
379                 memset(this->contents, 0, FAKE    355                 memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE);
380         }                                         356         }
381                                                   357 
382 We can now use it to test ``struct eeprom_buff    358 We can now use it to test ``struct eeprom_buffer``:
383                                                   359 
384 .. code-block:: c                                 360 .. code-block:: c
385                                                   361 
386         struct eeprom_buffer_test {               362         struct eeprom_buffer_test {
387                 struct fake_eeprom *fake_eepro    363                 struct fake_eeprom *fake_eeprom;
388                 struct eeprom_buffer *eeprom_b    364                 struct eeprom_buffer *eeprom_buffer;
389         };                                        365         };
390                                                   366 
391         static void eeprom_buffer_test_does_no    367         static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test)
392         {                                         368         {
393                 struct eeprom_buffer_test *ctx    369                 struct eeprom_buffer_test *ctx = test->priv;
394                 struct eeprom_buffer *eeprom_b    370                 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
395                 struct fake_eeprom *fake_eepro    371                 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
396                 char buffer[] = {0xff};           372                 char buffer[] = {0xff};
397                                                   373 
398                 eeprom_buffer->flush_count = S    374                 eeprom_buffer->flush_count = SIZE_MAX;
399                                                   375 
400                 eeprom_buffer->write(eeprom_bu    376                 eeprom_buffer->write(eeprom_buffer, buffer, 1);
401                 KUNIT_EXPECT_EQ(test, fake_eep    377                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
402                                                   378 
403                 eeprom_buffer->write(eeprom_bu    379                 eeprom_buffer->write(eeprom_buffer, buffer, 1);
404                 KUNIT_EXPECT_EQ(test, fake_eep    380                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0);
405                                                   381 
406                 eeprom_buffer->flush(eeprom_bu    382                 eeprom_buffer->flush(eeprom_buffer);
407                 KUNIT_EXPECT_EQ(test, fake_eep    383                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
408                 KUNIT_EXPECT_EQ(test, fake_eep    384                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
409         }                                         385         }
410                                                   386 
411         static void eeprom_buffer_test_flushes    387         static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test)
412         {                                         388         {
413                 struct eeprom_buffer_test *ctx    389                 struct eeprom_buffer_test *ctx = test->priv;
414                 struct eeprom_buffer *eeprom_b    390                 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
415                 struct fake_eeprom *fake_eepro    391                 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
416                 char buffer[] = {0xff};           392                 char buffer[] = {0xff};
417                                                   393 
418                 eeprom_buffer->flush_count = 2    394                 eeprom_buffer->flush_count = 2;
419                                                   395 
420                 eeprom_buffer->write(eeprom_bu    396                 eeprom_buffer->write(eeprom_buffer, buffer, 1);
421                 KUNIT_EXPECT_EQ(test, fake_eep    397                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
422                                                   398 
423                 eeprom_buffer->write(eeprom_bu    399                 eeprom_buffer->write(eeprom_buffer, buffer, 1);
424                 KUNIT_EXPECT_EQ(test, fake_eep    400                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
425                 KUNIT_EXPECT_EQ(test, fake_eep    401                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
426         }                                         402         }
427                                                   403 
428         static void eeprom_buffer_test_flushes    404         static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test)
429         {                                         405         {
430                 struct eeprom_buffer_test *ctx    406                 struct eeprom_buffer_test *ctx = test->priv;
431                 struct eeprom_buffer *eeprom_b    407                 struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
432                 struct fake_eeprom *fake_eepro    408                 struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
433                 char buffer[] = {0xff, 0xff};     409                 char buffer[] = {0xff, 0xff};
434                                                   410 
435                 eeprom_buffer->flush_count = 2    411                 eeprom_buffer->flush_count = 2;
436                                                   412 
437                 eeprom_buffer->write(eeprom_bu    413                 eeprom_buffer->write(eeprom_buffer, buffer, 1);
438                 KUNIT_EXPECT_EQ(test, fake_eep    414                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
439                                                   415 
440                 eeprom_buffer->write(eeprom_bu    416                 eeprom_buffer->write(eeprom_buffer, buffer, 2);
441                 KUNIT_EXPECT_EQ(test, fake_eep    417                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
442                 KUNIT_EXPECT_EQ(test, fake_eep    418                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
443                 /* Should have only flushed th    419                 /* Should have only flushed the first two bytes. */
444                 KUNIT_EXPECT_EQ(test, fake_eep    420                 KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0);
445         }                                         421         }
446                                                   422 
447         static int eeprom_buffer_test_init(str    423         static int eeprom_buffer_test_init(struct kunit *test)
448         {                                         424         {
449                 struct eeprom_buffer_test *ctx    425                 struct eeprom_buffer_test *ctx;
450                                                   426 
451                 ctx = kunit_kzalloc(test, size    427                 ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL);
452                 KUNIT_ASSERT_NOT_ERR_OR_NULL(t    428                 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx);
453                                                   429 
454                 ctx->fake_eeprom = kunit_kzall    430                 ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL);
455                 KUNIT_ASSERT_NOT_ERR_OR_NULL(t    431                 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom);
456                 fake_eeprom_init(ctx->fake_eep    432                 fake_eeprom_init(ctx->fake_eeprom);
457                                                   433 
458                 ctx->eeprom_buffer = new_eepro    434                 ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent);
459                 KUNIT_ASSERT_NOT_ERR_OR_NULL(t    435                 KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer);
460                                                   436 
461                 test->priv = ctx;                 437                 test->priv = ctx;
462                                                   438 
463                 return 0;                         439                 return 0;
464         }                                         440         }
465                                                   441 
466         static void eeprom_buffer_test_exit(st    442         static void eeprom_buffer_test_exit(struct kunit *test)
467         {                                         443         {
468                 struct eeprom_buffer_test *ctx    444                 struct eeprom_buffer_test *ctx = test->priv;
469                                                   445 
470                 destroy_eeprom_buffer(ctx->eep    446                 destroy_eeprom_buffer(ctx->eeprom_buffer);
471         }                                         447         }
472                                                   448 
473 Testing Against Multiple Inputs                !! 449 .. _kunit-on-non-uml:
474 -------------------------------                << 
475                                                << 
476 Testing just a few inputs is not enough to ens << 
477 for example: testing a hash function.          << 
478                                                << 
479 We can write a helper macro or function. The f << 
480 For example, to test ``sha1sum(1)``, we can wr << 
481                                                << 
482 .. code-block:: c                              << 
483                                                << 
484         #define TEST_SHA1(in, want) \          << 
485                 sha1sum(in, out); \            << 
486                 KUNIT_EXPECT_STREQ_MSG(test, o << 
487                                                << 
488         char out[40];                          << 
489         TEST_SHA1("hello world",  "2aae6c35c94 << 
490         TEST_SHA1("hello world!", "430ce34d020 << 
491                                                << 
492 Note the use of the ``_MSG`` version of ``KUNI << 
493 detailed error and make the assertions clearer << 
494                                                << 
495 The ``_MSG`` variants are useful when the same << 
496 times (in a loop or helper function) and thus  << 
497 identify what failed, as shown below.          << 
498                                                << 
499 In complicated cases, we recommend using a *ta << 
500 helper macro variation, for example:           << 
501                                                << 
502 .. code-block:: c                              << 
503                                                << 
504         int i;                                 << 
505         char out[40];                          << 
506                                                << 
507         struct sha1_test_case {                << 
508                 const char *str;               << 
509                 const char *sha1;              << 
510         };                                     << 
511                                                << 
512         struct sha1_test_case cases[] = {      << 
513                 {                              << 
514                         .str = "hello world",  << 
515                         .sha1 = "2aae6c35c94fc << 
516                 },                             << 
517                 {                              << 
518                         .str = "hello world!", << 
519                         .sha1 = "430ce34d02072 << 
520                 },                             << 
521         };                                     << 
522         for (i = 0; i < ARRAY_SIZE(cases); ++i << 
523                 sha1sum(cases[i].str, out);    << 
524                 KUNIT_EXPECT_STREQ_MSG(test, o << 
525                                       "sha1sum << 
526         }                                      << 
527                                                << 
528                                                << 
529 There is more boilerplate code involved, but i << 
530                                                << 
531 * be more readable when there are multiple inp << 
532                                                << 
533   * For example, see ``fs/ext4/inode-test.c``. << 
534                                                << 
535 * reduce duplication if test cases are shared  << 
536                                                << 
537   * For example: if we want to test ``sha256su << 
538     field and reuse ``cases``.                 << 
539                                                << 
540 * be converted to a "parameterized test".      << 
541                                                << 
542 Parameterized Testing                          << 
543 ~~~~~~~~~~~~~~~~~~~~~                          << 
544                                                << 
545 The table-driven testing pattern is common eno << 
546 support for it.                                << 
547                                                << 
548 By reusing the same ``cases`` array from above << 
549 "parameterized test" with the following.       << 
550                                                << 
551 .. code-block:: c                              << 
552                                                << 
553         // This is copy-pasted from above.     << 
554         struct sha1_test_case {                << 
555                 const char *str;               << 
556                 const char *sha1;              << 
557         };                                     << 
558         const struct sha1_test_case cases[] =  << 
559                 {                              << 
560                         .str = "hello world",  << 
561                         .sha1 = "2aae6c35c94fc << 
562                 },                             << 
563                 {                              << 
564                         .str = "hello world!", << 
565                         .sha1 = "430ce34d02072 << 
566                 },                             << 
567         };                                     << 
568                                                << 
569         // Creates `sha1_gen_params()` to iter << 
570         // the struct member `str` for the cas << 
571         KUNIT_ARRAY_PARAM_DESC(sha1, cases, st << 
572                                                << 
573         // Looks no different from a normal te << 
574         static void sha1_test(struct kunit *te << 
575         {                                      << 
576                 // This function can just cont << 
577                 // The former `cases[i]` is ac << 
578                 char out[40];                  << 
579                 struct sha1_test_case *test_pa << 
580                                                << 
581                 sha1sum(test_param->str, out); << 
582                 KUNIT_EXPECT_STREQ_MSG(test, o << 
583                                       "sha1sum << 
584         }                                      << 
585                                                << 
586         // Instead of KUNIT_CASE, we use KUNIT << 
587         // function declared by KUNIT_ARRAY_PA << 
588         static struct kunit_case sha1_test_cas << 
589                 KUNIT_CASE_PARAM(sha1_test, sh << 
590                 {}                             << 
591         };                                     << 
592                                                << 
593 Allocating Memory                              << 
594 -----------------                              << 
595                                                << 
596 Where you might use ``kzalloc``, you can inste << 
597 will then ensure that the memory is freed once << 
598                                                << 
599 This is useful because it lets us use the ``KU << 
600 early from a test without having to worry abou << 
601 For example:                                   << 
602                                                << 
603 .. code-block:: c                              << 
604                                                << 
605         void example_test_allocation(struct ku << 
606         {                                      << 
607                 char *buffer = kunit_kzalloc(t << 
608                 /* Ensure allocation succeeded << 
609                 KUNIT_ASSERT_NOT_ERR_OR_NULL(t << 
610                                                << 
611                 KUNIT_ASSERT_STREQ(test, buffe << 
612         }                                      << 
613                                                << 
614 Registering Cleanup Actions                    << 
615 ---------------------------                    << 
616                                                << 
617 If you need to perform some cleanup beyond sim << 
618 you can register a custom "deferred action", w << 
619 run when the test exits (whether cleanly, or v << 
620                                                << 
621 Actions are simple functions with no return va << 
622 context argument, and fulfill the same role as << 
623 and Go tests, "defer" statements in languages  << 
624 (in some cases) destructors in RAII languages. << 
625                                                << 
626 These are very useful for unregistering things << 
627 files or other resources, or freeing resources << 
628                                                << 
629 For example:                                   << 
630                                                << 
631 .. code-block:: C                              << 
632                                                << 
633         static void cleanup_device(void *ctx)  << 
634         {                                      << 
635                 struct device *dev = (struct d << 
636                                                << 
637                 device_unregister(dev);        << 
638         }                                      << 
639                                                << 
640         void example_device_test(struct kunit  << 
641         {                                      << 
642                 struct my_device dev;          << 
643                                                << 
644                 device_register(&dev);         << 
645                                                << 
646                 kunit_add_action(test, &cleanu << 
647         }                                      << 
648                                                << 
649 Note that, for functions like device_unregiste << 
650 pointer-sized argument, it's possible to autom << 
651 with the ``KUNIT_DEFINE_ACTION_WRAPPER()`` mac << 
652                                                << 
653 .. code-block:: C                              << 
654                                                << 
655         KUNIT_DEFINE_ACTION_WRAPPER(device_unr << 
656         kunit_add_action(test, &device_unregis << 
657                                                << 
658 You should do this in preference to manually c << 
659 as casting function pointers will break Contro << 
660                                                << 
661 ``kunit_add_action`` can fail if, for example, << 
662 You can use ``kunit_add_action_or_reset`` inst << 
663 immediately if it cannot be deferred.          << 
664                                                << 
665 If you need more control over when the cleanup << 
666 can trigger it early using ``kunit_release_act << 
667 with ``kunit_remove_action``.                  << 
668                                                << 
669                                                << 
670 Testing Static Functions                       << 
671 ------------------------                       << 
672                                                << 
673 If we do not want to expose functions or varia << 
674 conditionally export the used symbol. For exam << 
675                                                << 
676 .. code-block:: c                              << 
677                                                << 
678         /* In my_file.c */                     << 
679                                                << 
680         VISIBLE_IF_KUNIT int do_interesting_th << 
681         EXPORT_SYMBOL_IF_KUNIT(do_interesting_ << 
682                                                << 
683         /* In my_file.h */                     << 
684                                                << 
685         #if IS_ENABLED(CONFIG_KUNIT)           << 
686                 int do_interesting_thing(void) << 
687         #endif                                 << 
688                                                << 
689 Alternatively, you could conditionally ``#incl << 
690 your .c file. For example:                     << 
691                                                << 
692 .. code-block:: c                              << 
693                                                << 
694         /* In my_file.c */                     << 
695                                                   450 
696         static int do_interesting_thing();     !! 451 KUnit on non-UML architectures
                                                   >> 452 ==============================
697                                                   453 
698         #ifdef CONFIG_MY_KUNIT_TEST            !! 454 By default KUnit uses UML as a way to provide dependencies for code under test.
699         #include "my_kunit_test.c"             !! 455 Under most circumstances KUnit's usage of UML should be treated as an
700         #endif                                 !! 456 implementation detail of how KUnit works under the hood. Nevertheless, there
                                                   >> 457 are instances where being able to run architecture specific code or test
                                                   >> 458 against real hardware is desirable. For these reasons KUnit supports running on
                                                   >> 459 other architectures.
701                                                   460 
702 Injecting Test-Only Code                       !! 461 Running existing KUnit tests on non-UML architectures
703 ------------------------                       !! 462 -----------------------------------------------------
704                                                   463 
705 Similar to as shown above, we can add test-spe !! 464 There are some special considerations when running existing KUnit tests on
                                                   >> 465 non-UML architectures:
706                                                   466 
707 .. code-block:: c                              !! 467 *   Hardware may not be deterministic, so a test that always passes or fails
                                                   >> 468     when run under UML may not always do so on real hardware.
                                                   >> 469 *   Hardware and VM environments may not be hermetic. KUnit tries its best to
                                                   >> 470     provide a hermetic environment to run tests; however, it cannot manage state
                                                   >> 471     that it doesn't know about outside of the kernel. Consequently, tests that
                                                   >> 472     may be hermetic on UML may not be hermetic on other architectures.
                                                   >> 473 *   Some features and tooling may not be supported outside of UML.
                                                   >> 474 *   Hardware and VMs are slower than UML.
708                                                   475 
709         /* In my_file.h */                     !! 476 None of these are reasons not to run your KUnit tests on real hardware; they are
                                                   >> 477 only things to be aware of when doing so.
710                                                   478 
711         #ifdef CONFIG_MY_KUNIT_TEST            !! 479 The biggest impediment will likely be that certain KUnit features and
712         /* Defined in my_kunit_test.c */       !! 480 infrastructure may not support your target environment. For example, at this
713         void test_only_hook(void);             !! 481 time the KUnit Wrapper (``tools/testing/kunit/kunit.py``) does not work outside
714         #else                                  !! 482 of UML. Unfortunately, there is no way around this. Using UML (or even just a
715         void test_only_hook(void) { }          !! 483 particular architecture) allows us to make a lot of assumptions that make it
716         #endif                                 !! 484 possible to do things which might otherwise be impossible.
717                                                << 
718 This test-only code can be made more useful by << 
719 as shown in next section: *Accessing The Curre << 
720                                                << 
721 Accessing The Current Test                     << 
722 --------------------------                     << 
723                                                << 
724 In some cases, we need to call test-only code  << 
725 is helpful, for example, when providing a fake << 
726 to fail any current test from within an error  << 
727 We can do this via the ``kunit_test`` field in << 
728 access using the ``kunit_get_current_test()``  << 
729                                                << 
730 ``kunit_get_current_test()`` is safe to call e << 
731 KUnit is not enabled, or if no test is running << 
732 return ``NULL``. This compiles down to either  << 
733 so will have a negligible performance impact w << 
734                                                   485 
735 The example below uses this to implement a "mo !! 486 Nevertheless, all core KUnit framework features are fully supported on all
                                                   >> 487 architectures, and using them is straightforward: all you need to do is to take
                                                   >> 488 your kunitconfig, your Kconfig options for the tests you would like to run, and
                                                   >> 489 merge them into whatever config your are using for your platform. That's it!
736                                                   490 
737 .. code-block:: c                              !! 491 For example, let's say you have the following kunitconfig:
738                                                   492 
739         #include <kunit/test-bug.h> /* for kun !! 493 .. code-block:: none
740                                                   494 
741         struct test_data {                     !! 495         CONFIG_KUNIT=y
742                 int foo_result;                !! 496         CONFIG_KUNIT_EXAMPLE_TEST=y
743                 int want_foo_called_with;      << 
744         };                                     << 
745                                                   497 
746         static int fake_foo(int arg)           !! 498 If you wanted to run this test on an x86 VM, you might add the following config
747         {                                      !! 499 options to your ``.config``:
748                 struct kunit *test = kunit_get << 
749                 struct test_data *test_data =  << 
750                                                   500 
751                 KUNIT_EXPECT_EQ(test, test_dat !! 501 .. code-block:: none
752                 return test_data->foo_result;  << 
753         }                                      << 
754                                                   502 
755         static void example_simple_test(struct !! 503         CONFIG_KUNIT=y
756         {                                      !! 504         CONFIG_KUNIT_EXAMPLE_TEST=y
757                 /* Assume priv (private, a mem !! 505         CONFIG_SERIAL_8250=y
758                  * the init function) is alloc !! 506         CONFIG_SERIAL_8250_CONSOLE=y
759                 struct test_data *test_data =  << 
760                                                   507 
761                 test_data->foo_result = 42;    !! 508 All these new options do is enable support for a common serial console needed
762                 test_data->want_foo_called_wit !! 509 for logging.
763                                                   510 
764                 /* In a real test, we'd probab !! 511 Next, you could build a kernel with these tests as follows:
765                  * like an ops struct, etc. in << 
766                 KUNIT_EXPECT_EQ(test, fake_foo << 
767         }                                      << 
768                                                   512 
769 In this example, we are using the ``priv`` mem << 
770 of passing data to the test from the init func << 
771 pointer that can be used for any user data. Th << 
772 variables, as it avoids concurrency issues.    << 
773                                                   513 
774 Had we wanted something more flexible, we coul !! 514 .. code-block:: bash
775 Each test can have multiple resources which ha << 
776 flexibility as a ``priv`` member, but also, fo << 
777 functions to create resources without conflict << 
778 possible to define a clean up function for eac << 
779 avoid resource leaks. For more information, se << 
780                                                   515 
781 Failing The Current Test                       !! 516         make ARCH=x86 olddefconfig
782 ------------------------                       !! 517         make ARCH=x86
783                                                   518 
784 If we want to fail the current test, we can us !! 519 Once you have built a kernel, you could run it on QEMU as follows:
785 which is defined in ``<kunit/test-bug.h>`` and << 
786 For example, we have an option to enable some  << 
787 structures as shown below:                     << 
788                                                   520 
789 .. code-block:: c                              !! 521 .. code-block:: bash
790                                                   522 
791         #include <kunit/test-bug.h>            !! 523         qemu-system-x86_64 -enable-kvm \
                                                   >> 524                            -m 1024 \
                                                   >> 525                            -kernel arch/x86_64/boot/bzImage \
                                                   >> 526                            -append 'console=ttyS0' \
                                                   >> 527                            --nographic
792                                                   528 
793         #ifdef CONFIG_EXTRA_DEBUG_CHECKS       !! 529 Interspersed in the kernel logs you might see the following:
794         static void validate_my_data(struct da << 
795         {                                      << 
796                 if (is_valid(data))            << 
797                         return;                << 
798                                                   530 
799                 kunit_fail_current_test("data  !! 531 .. code-block:: none
800                                                << 
801                 /* Normal, non-KUnit, error re << 
802         }                                      << 
803         #else                                  << 
804         static void my_debug_function(void) {  << 
805         #endif                                 << 
806                                                << 
807 ``kunit_fail_current_test()`` is safe to call  << 
808 KUnit is not enabled, or if no test is running << 
809 nothing. This compiles down to either a no-op  << 
810 have a negligible performance impact when no t << 
811                                                << 
812 Managing Fake Devices and Drivers              << 
813 ---------------------------------              << 
814                                                << 
815 When testing drivers or code which interacts w << 
816 require a ``struct device`` or ``struct device << 
817 up a real device is not required to test any g << 
818 can be used instead.                           << 
819                                                << 
820 KUnit provides helper functions to create and  << 
821 are internally of type ``struct kunit_device`` << 
822 ``kunit_bus``. These devices support managed d << 
823 described in Documentation/driver-api/driver-m << 
824                                                << 
825 To create a KUnit-managed ``struct device_driv << 
826 which will create a driver with the given name << 
827 will automatically be destroyed when the corre << 
828 be manually destroyed with ``driver_unregister << 
829                                                << 
830 To create a fake device, use the ``kunit_devic << 
831 and register a device, using a new KUnit-manag << 
832 To provide a specific, non-KUnit-managed drive << 
833 instead. Like with managed drivers, KUnit-mana << 
834 cleaned up when the test finishes, but can be  << 
835 ``kunit_device_unregister()``.                 << 
836                                                << 
837 The KUnit devices should be used in preference << 
838 instead of ``platform_device_register()`` in c << 
839 a platform device.                             << 
840                                                   532 
841 For example:                                   !! 533         TAP version 14
                                                   >> 534                 # Subtest: example
                                                   >> 535                 1..1
                                                   >> 536                 # example_simple_test: initializing
                                                   >> 537                 ok 1 - example_simple_test
                                                   >> 538         ok 1 - example
842                                                   539 
843 .. code-block:: c                              !! 540 Congratulations, you just ran a KUnit test on the x86 architecture!
844                                                   541 
845         #include <kunit/device.h>              !! 542 Writing new tests for other architectures
                                                   >> 543 -----------------------------------------
846                                                   544 
847         static void test_my_device(struct kuni !! 545 The first thing you must do is ask yourself whether it is necessary to write a
848         {                                      !! 546 KUnit test for a specific architecture, and then whether it is necessary to
849                 struct device *fake_device;    !! 547 write that test for a particular piece of hardware. In general, writing a test
850                 const char *dev_managed_string !! 548 that depends on having access to a particular piece of hardware or software (not
                                                   >> 549 included in the Linux source repo) should be avoided at all costs.
851                                                   550 
852                 // Create a fake device.       !! 551 Even if you only ever plan on running your KUnit test on your hardware
853                 fake_device = kunit_device_reg !! 552 configuration, other people may want to run your tests and may not have access
854                 KUNIT_ASSERT_NOT_ERR_OR_NULL(t !! 553 to your hardware. If you write your test to run on UML, then anyone can run your
                                                   >> 554 tests without knowing anything about your particular setup, and you can still
                                                   >> 555 run your tests on your hardware setup just by compiling for your architecture.
855                                                   556 
856                 // Pass it to functions which  !! 557 .. important::
857                 dev_managed_string = devm_kstr !! 558    Always prefer tests that run on UML to tests that only run under a particular
                                                   >> 559    architecture, and always prefer tests that run under QEMU or another easy
                                                   >> 560    (and monetarily free) to obtain software environment to a specific piece of
                                                   >> 561    hardware.
                                                   >> 562 
                                                   >> 563 Nevertheless, there are still valid reasons to write an architecture or hardware
                                                   >> 564 specific test: for example, you might want to test some code that really belongs
                                                   >> 565 in ``arch/some-arch/*``. Even so, try your best to write the test so that it
                                                   >> 566 does not depend on physical hardware: if some of your test cases don't need the
                                                   >> 567 hardware, only require the hardware for tests that actually need it.
                                                   >> 568 
                                                   >> 569 Now that you have narrowed down exactly what bits are hardware specific, the
                                                   >> 570 actual procedure for writing and running the tests is pretty much the same as
                                                   >> 571 writing normal KUnit tests. One special caveat is that you have to reset
                                                   >> 572 hardware state in between test cases; if this is not possible, you may only be
                                                   >> 573 able to run one test case per invocation.
858                                                   574 
859                 // Everything is cleaned up au !! 575 .. TODO(brendanhiggins@google.com): Add an actual example of an architecture
860         }                                      !! 576    dependent KUnit test.
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php