~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/devicetree/bindings/common-properties.txt

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /Documentation/devicetree/bindings/common-properties.txt (Architecture ppc) and /Documentation/devicetree/bindings/common-properties.txt (Architecture sparc64)


  1 Common properties                                   1 Common properties
  2 =================                                   2 =================
  3                                                     3 
  4 Endianness                                          4 Endianness
  5 ----------                                          5 ----------
  6                                                     6 
  7 The Devicetree Specification does not define a      7 The Devicetree Specification does not define any properties related to hardware
  8 byte swapping, but endianness issues show up f      8 byte swapping, but endianness issues show up frequently in porting drivers to
  9 different machine types.  This document attemp      9 different machine types.  This document attempts to provide a consistent
 10 way of handling byte swapping across drivers.      10 way of handling byte swapping across drivers.
 11                                                    11 
 12 Optional properties:                               12 Optional properties:
 13  - big-endian: Boolean; force big endian regis     13  - big-endian: Boolean; force big endian register accesses
 14    unconditionally (e.g. ioread32be/iowrite32b     14    unconditionally (e.g. ioread32be/iowrite32be).  Use this if you
 15    know the peripheral always needs to be acce     15    know the peripheral always needs to be accessed in big endian (BE) mode.
 16  - little-endian: Boolean; force little endian     16  - little-endian: Boolean; force little endian register accesses
 17    unconditionally (e.g. readl/writel).  Use t     17    unconditionally (e.g. readl/writel).  Use this if you know the
 18    peripheral always needs to be accessed in l     18    peripheral always needs to be accessed in little endian (LE) mode.
 19  - native-endian: Boolean; always use register     19  - native-endian: Boolean; always use register accesses matched to the
 20    endianness of the kernel binary (e.g. LE vm     20    endianness of the kernel binary (e.g. LE vmlinux -> readl/writel,
 21    BE vmlinux -> ioread32be/iowrite32be).  In      21    BE vmlinux -> ioread32be/iowrite32be).  In this case no byte swaps
 22    will ever be performed.  Use this if the ha     22    will ever be performed.  Use this if the hardware "self-adjusts"
 23    register endianness based on the CPU's conf     23    register endianness based on the CPU's configured endianness.
 24                                                    24 
 25 If a binding supports these properties, then t     25 If a binding supports these properties, then the binding should also
 26 specify the default behavior if none of these      26 specify the default behavior if none of these properties are present.
 27 In such cases, little-endian is the preferred      27 In such cases, little-endian is the preferred default, but it is not
 28 a requirement.  Some implementations assume th     28 a requirement.  Some implementations assume that little-endian is
 29 the default, because most existing (PCI-based)     29 the default, because most existing (PCI-based) drivers implicitly
 30 default to LE for their MMIO accesses.             30 default to LE for their MMIO accesses.
 31                                                    31 
 32 Examples:                                          32 Examples:
 33 Scenario 1 : CPU in LE mode & device in LE mod     33 Scenario 1 : CPU in LE mode & device in LE mode.
 34 dev: dev@40031000 {                                34 dev: dev@40031000 {
 35               compatible = "name";                 35               compatible = "name";
 36               reg = <0x40031000 0x1000>;           36               reg = <0x40031000 0x1000>;
 37               ...                                  37               ...
 38               native-endian;                       38               native-endian;
 39 };                                                 39 };
 40                                                    40 
 41 Scenario 2 : CPU in LE mode & device in BE mod     41 Scenario 2 : CPU in LE mode & device in BE mode.
 42 dev: dev@40031000 {                                42 dev: dev@40031000 {
 43               compatible = "name";                 43               compatible = "name";
 44               reg = <0x40031000 0x1000>;           44               reg = <0x40031000 0x1000>;
 45               ...                                  45               ...
 46               big-endian;                          46               big-endian;
 47 };                                                 47 };
 48                                                    48 
 49 Scenario 3 : CPU in BE mode & device in BE mod     49 Scenario 3 : CPU in BE mode & device in BE mode.
 50 dev: dev@40031000 {                                50 dev: dev@40031000 {
 51               compatible = "name";                 51               compatible = "name";
 52               reg = <0x40031000 0x1000>;           52               reg = <0x40031000 0x1000>;
 53               ...                                  53               ...
 54               native-endian;                       54               native-endian;
 55 };                                                 55 };
 56                                                    56 
 57 Scenario 4 : CPU in BE mode & device in LE mod     57 Scenario 4 : CPU in BE mode & device in LE mode.
 58 dev: dev@40031000 {                                58 dev: dev@40031000 {
 59               compatible = "name";                 59               compatible = "name";
 60               reg = <0x40031000 0x1000>;           60               reg = <0x40031000 0x1000>;
 61               ...                                  61               ...
 62               little-endian;                       62               little-endian;
 63 };                                                 63 };
 64                                                    64 
 65 Daisy-chained devices                              65 Daisy-chained devices
 66 ---------------------                              66 ---------------------
 67                                                    67 
 68 Many serially-attached GPIO and IIO devices ar     68 Many serially-attached GPIO and IIO devices are daisy-chainable.  To the
 69 host controller, a daisy-chain appears as a si     69 host controller, a daisy-chain appears as a single device, but the number
 70 of inputs and outputs it provides is the sum o     70 of inputs and outputs it provides is the sum of inputs and outputs provided
 71 by all of its devices.  The driver needs to kn     71 by all of its devices.  The driver needs to know how many devices the
 72 daisy-chain comprises to determine the amount      72 daisy-chain comprises to determine the amount of data exchanged, how many
 73 inputs and outputs to register and so on.          73 inputs and outputs to register and so on.
 74                                                    74 
 75 Optional properties:                               75 Optional properties:
 76  - #daisy-chained-devices: Number of devices i     76  - #daisy-chained-devices: Number of devices in the daisy-chain (default is 1).
 77                                                    77 
 78 Example:                                           78 Example:
 79 gpio@0 {                                           79 gpio@0 {
 80               compatible = "name";                 80               compatible = "name";
 81               reg = <0>;                           81               reg = <0>;
 82               gpio-controller;                     82               gpio-controller;
 83               #gpio-cells = <2>;                   83               #gpio-cells = <2>;
 84               #daisy-chained-devices = <3>;        84               #daisy-chained-devices = <3>;
 85 };                                                 85 };
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php