1 .. SPDX-License-Identifier: GPL-2.0 2 3 ============================== 4 drm/komeda Arm display driver 5 ============================== 6 7 The drm/komeda driver supports the Arm display 8 this document gives a brief overview of driver 9 design it like that. 10 11 Overview of D71 like display IPs 12 ================================ 13 14 From D71, Arm display IP begins to adopt a fle 15 architecture. A display pipeline is made up of 16 functional pipeline stages called components, 17 specific capabilities that can give the flowed 18 particular processing. 19 20 Typical D71 components: 21 22 Layer 23 ----- 24 Layer is the first pipeline stage, which prepa 25 stage. It fetches the pixel from memory, decod 26 source image, unpacks or converts YUV pixels t 27 then adjusts the color_space of pixels if need 28 29 Scaler 30 ------ 31 As its name suggests, scaler takes responsibil 32 supports image enhancements by scaler. 33 The usage of scaler is very flexible and can b 34 for layer scaling, or connected to compositor 35 frame and then feed the output data into wb_la 36 into memory. 37 38 Compositor (compiz) 39 ------------------- 40 Compositor blends multiple layers or pixel dat 41 frame. its output frame can be fed into post i 42 the monitor or fed into wb_layer and written t 43 user can also insert a scaler between composit 44 the display frame first and then write to memo 45 46 Writeback Layer (wb_layer) 47 -------------------------- 48 Writeback layer does the opposite things of La 49 and writes the composition result to memory. 50 51 Post image processor (improc) 52 ----------------------------- 53 Post image processor adjusts frame data like g 54 requirements of the monitor. 55 56 Timing controller (timing_ctrlr) 57 -------------------------------- 58 Final stage of display pipeline, Timing contro 59 handling, but only for controlling the display 60 61 Merger 62 ------ 63 D71 scaler mostly only has the half horizontal 64 compared with Layer, like if Layer supports 4K 65 support 2K input/output in the same time. To a 66 introduces Layer Split, which splits the whole 67 them to two Layers A and B, and does the scali 68 the result need to be fed to merger to merge t 69 output merged result to compiz. 70 71 Splitter 72 -------- 73 Similar to Layer Split, but Splitter is used f 74 compiz result to two parts and then feed them 75 76 Possible D71 Pipeline usage 77 =========================== 78 79 Benefitting from the modularized architecture, 80 adjusted to fit different usages. And D71 has 81 types of working mode: 82 83 - Dual display mode 84 Two pipelines work independently and separ 85 86 - Single display mode 87 Two pipelines work together to drive only 88 89 On this mode, pipeline_B doesn't work inde 90 composition result into pipeline_A, and it 91 pipeline_A.timing_ctrlr. The pipeline_B wo 92 pipeline_A(master) 93 94 Single pipeline data flow 95 ------------------------- 96 97 .. kernel-render:: DOT 98 :alt: Single pipeline digraph 99 :caption: Single pipeline data flow 100 101 digraph single_ppl { 102 rankdir=LR; 103 104 subgraph { 105 "Memory"; 106 "Monitor"; 107 } 108 109 subgraph cluster_pipeline { 110 style=dashed 111 node [shape=box] 112 { 113 node [bgcolor=grey style=dashed] 114 "Scaler-0"; 115 "Scaler-1"; 116 "Scaler-0/1" 117 } 118 119 node [bgcolor=grey style=filled] 120 "Layer-0" -> "Scaler-0" 121 "Layer-1" -> "Scaler-0" 122 "Layer-2" -> "Scaler-1" 123 "Layer-3" -> "Scaler-1" 124 125 "Layer-0" -> "Compiz" 126 "Layer-1" -> "Compiz" 127 "Layer-2" -> "Compiz" 128 "Layer-3" -> "Compiz" 129 "Scaler-0" -> "Compiz" 130 "Scaler-1" -> "Compiz" 131 132 "Compiz" -> "Scaler-0/1" -> "Wb_layer 133 "Compiz" -> "Improc" -> "Timing Contr 134 } 135 136 "Wb_layer" -> "Memory" 137 "Timing Controller" -> "Monitor" 138 } 139 140 Dual pipeline with Slave enabled 141 -------------------------------- 142 143 .. kernel-render:: DOT 144 :alt: Slave pipeline digraph 145 :caption: Slave pipeline enabled data flow 146 147 digraph slave_ppl { 148 rankdir=LR; 149 150 subgraph { 151 "Memory"; 152 "Monitor"; 153 } 154 node [shape=box] 155 subgraph cluster_pipeline_slave { 156 style=dashed 157 label="Slave Pipeline_B" 158 node [shape=box] 159 { 160 node [bgcolor=grey style=dashed] 161 "Slave.Scaler-0"; 162 "Slave.Scaler-1"; 163 } 164 165 node [bgcolor=grey style=filled] 166 "Slave.Layer-0" -> "Slave.Scaler-0" 167 "Slave.Layer-1" -> "Slave.Scaler-0" 168 "Slave.Layer-2" -> "Slave.Scaler-1" 169 "Slave.Layer-3" -> "Slave.Scaler-1" 170 171 "Slave.Layer-0" -> "Slave.Compiz" 172 "Slave.Layer-1" -> "Slave.Compiz" 173 "Slave.Layer-2" -> "Slave.Compiz" 174 "Slave.Layer-3" -> "Slave.Compiz" 175 "Slave.Scaler-0" -> "Slave.Compiz" 176 "Slave.Scaler-1" -> "Slave.Compiz" 177 } 178 179 subgraph cluster_pipeline_master { 180 style=dashed 181 label="Master Pipeline_A" 182 node [shape=box] 183 { 184 node [bgcolor=grey style=dashed] 185 "Scaler-0"; 186 "Scaler-1"; 187 "Scaler-0/1" 188 } 189 190 node [bgcolor=grey style=filled] 191 "Layer-0" -> "Scaler-0" 192 "Layer-1" -> "Scaler-0" 193 "Layer-2" -> "Scaler-1" 194 "Layer-3" -> "Scaler-1" 195 196 "Slave.Compiz" -> "Compiz" 197 "Layer-0" -> "Compiz" 198 "Layer-1" -> "Compiz" 199 "Layer-2" -> "Compiz" 200 "Layer-3" -> "Compiz" 201 "Scaler-0" -> "Compiz" 202 "Scaler-1" -> "Compiz" 203 204 "Compiz" -> "Scaler-0/1" -> "Wb_layer 205 "Compiz" -> "Improc" -> "Timing Contr 206 } 207 208 "Wb_layer" -> "Memory" 209 "Timing Controller" -> "Monitor" 210 } 211 212 Sub-pipelines for input and output 213 ---------------------------------- 214 215 A complete display pipeline can be easily divi 216 according to the in/out usage. 217 218 Layer(input) pipeline 219 ~~~~~~~~~~~~~~~~~~~~~ 220 221 .. kernel-render:: DOT 222 :alt: Layer data digraph 223 :caption: Layer (input) data flow 224 225 digraph layer_data_flow { 226 rankdir=LR; 227 node [shape=box] 228 229 { 230 node [bgcolor=grey style=dashed] 231 "Scaler-n"; 232 } 233 234 "Layer-n" -> "Scaler-n" -> "Compiz" 235 } 236 237 .. kernel-render:: DOT 238 :alt: Layer Split digraph 239 :caption: Layer Split pipeline 240 241 digraph layer_data_flow { 242 rankdir=LR; 243 node [shape=box] 244 245 "Layer-0/1" -> "Scaler-0" -> "Merger" 246 "Layer-2/3" -> "Scaler-1" -> "Merger" 247 "Merger" -> "Compiz" 248 } 249 250 Writeback(output) pipeline 251 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 252 .. kernel-render:: DOT 253 :alt: writeback digraph 254 :caption: Writeback(output) data flow 255 256 digraph writeback_data_flow { 257 rankdir=LR; 258 node [shape=box] 259 260 { 261 node [bgcolor=grey style=dashed] 262 "Scaler-n"; 263 } 264 265 "Compiz" -> "Scaler-n" -> "Wb_layer" 266 } 267 268 .. kernel-render:: DOT 269 :alt: split writeback digraph 270 :caption: Writeback(output) Split data flow 271 272 digraph writeback_data_flow { 273 rankdir=LR; 274 node [shape=box] 275 276 "Compiz" -> "Splitter" 277 "Splitter" -> "Scaler-0" -> "Merger" 278 "Splitter" -> "Scaler-1" -> "Merger" 279 "Merger" -> "Wb_layer" 280 } 281 282 Display output pipeline 283 ~~~~~~~~~~~~~~~~~~~~~~~ 284 .. kernel-render:: DOT 285 :alt: display digraph 286 :caption: display output data flow 287 288 digraph single_ppl { 289 rankdir=LR; 290 node [shape=box] 291 292 "Compiz" -> "Improc" -> "Timing Controll 293 } 294 295 In the following section we'll see these three 296 by KMS-plane/wb_conn/crtc respectively. 297 298 Komeda Resource abstraction 299 =========================== 300 301 struct komeda_pipeline/component 302 -------------------------------- 303 304 To fully utilize and easily access/configure t 305 a similar architecture: Pipeline/Component to 306 capabilities, and a specific component include 307 308 - Data flow controlling. 309 - Specific component capabilities and feature 310 311 So the driver defines a common header struct k 312 data flow control and all specific components 313 structure. 314 315 .. kernel-doc:: drivers/gpu/drm/arm/display/ko 316 :internal: 317 318 Resource discovery and initialization 319 ===================================== 320 321 Pipeline and component are used to describe ho 322 still need a @struct komeda_dev to describe th 323 the control-abilites of device. 324 325 We have &komeda_dev, &komeda_pipeline, &komeda 326 pipelines. Since komeda is not for D71 only bu 327 of course we’d better share as much as possi 328 achieve this, split the komeda device into two 329 330 - CORE: for common features and capabilities 331 - CHIP: for register programming and HW spec 332 333 CORE can access CHIP by three chip function st 334 335 - struct komeda_dev_funcs 336 - struct komeda_pipeline_funcs 337 - struct komeda_component_funcs 338 339 .. kernel-doc:: drivers/gpu/drm/arm/display/ko 340 :internal: 341 342 Format handling 343 =============== 344 345 .. kernel-doc:: drivers/gpu/drm/arm/display/ko 346 :internal: 347 .. kernel-doc:: drivers/gpu/drm/arm/display/ko 348 :internal: 349 350 Attach komeda_dev to DRM-KMS 351 ============================ 352 353 Komeda abstracts resources by pipeline/compone 354 crtc/plane/connector. One KMS-obj cannot repre 355 since the requirements of a single KMS object 356 single component, usually that needs multiple 357 Like set mode, gamma, ctm for KMS all target o 358 compiz, improc and timing_ctrlr to work togeth 359 And a KMS-Plane may require multiple komeda re 360 361 So, one KMS-Obj represents a sub-pipeline of k 362 363 - Plane: `Layer(input) pipeline`_ 364 - Wb_connector: `Writeback(output) pipeline` 365 - Crtc: `Display output pipeline`_ 366 367 So, for komeda, we treat KMS crtc/plane/connec 368 component, and at any one time a pipeline/comp 369 user. And pipeline/component will be treated a 370 state will be managed by drm_atomic_state as w 371 372 How to map plane to Layer(input) pipeline 373 ----------------------------------------- 374 375 Komeda has multiple Layer input pipelines, see 376 - `Single pipeline data flow`_ 377 - `Dual pipeline with Slave enabled`_ 378 379 The easiest way is binding a plane to a fixed 380 komeda capabilities: 381 382 - Layer Split, See `Layer(input) pipeline`_ 383 384 Layer_Split is quite complicated feature, 385 parts and handles it by two layers and two 386 imports an edge problem or effect in the m 387 To avoid such a problem, it needs a compli 388 special configurations to the layer and sc 389 related complexity to user mode. 390 391 - Slave pipeline, See `Dual pipeline with Sl 392 393 Since the compiz component doesn't output 394 only can be used for bottom layers composi 395 hide this limitation to the user. The way 396 Layer according to plane_state->zpos. 397 398 So for komeda, the KMS-plane doesn't represent 399 but multiple Layers with same capabilities. Ko 400 Layers to fit the requirement of one KMS-plane 401 402 Make component/pipeline to be drm_private_obj 403 --------------------------------------------- 404 405 Add :c:type:`drm_private_obj` to :c:type:`kome 406 407 .. code-block:: c 408 409 struct komeda_component { 410 struct drm_private_obj obj; 411 ... 412 } 413 414 struct komeda_pipeline { 415 struct drm_private_obj obj; 416 ... 417 } 418 419 Tracking component_state/pipeline_state by drm 420 ---------------------------------------------- 421 422 Add :c:type:`drm_private_state` and user to :c 423 :c:type:`komeda_pipeline_state` 424 425 .. code-block:: c 426 427 struct komeda_component_state { 428 struct drm_private_state obj; 429 void *binding_user; 430 ... 431 } 432 433 struct komeda_pipeline_state { 434 struct drm_private_state obj; 435 struct drm_crtc *crtc; 436 ... 437 } 438 439 komeda component validation 440 --------------------------- 441 442 Komeda has multiple types of components, but t 443 similar, usually including the following steps 444 445 .. code-block:: c 446 447 int komeda_xxxx_validate(struct komeda_com 448 struct komeda_component_output 449 struct drm_plane/crtc/connecto 450 struct drm_plane/crtc/connecto 451 { 452 setup 1: check if component is needed 453 on the user_state; if unneed 454 put the data flow into next 455 Setup 2: check user_state with compon 456 if requirements can be met; 457 Setup 3: get component_state from drm 458 user to component; fail if c 459 user already. 460 Setup 3: configure the component_stat 461 convert user_state to compon 462 Setup 4: adjust the input_dflow and p 463 } 464 465 komeda_kms Abstraction 466 ---------------------- 467 468 .. kernel-doc:: drivers/gpu/drm/arm/display/ko 469 :internal: 470 471 komde_kms Functions 472 ------------------- 473 .. kernel-doc:: drivers/gpu/drm/arm/display/ko 474 :internal: 475 .. kernel-doc:: drivers/gpu/drm/arm/display/ko 476 :internal: 477 478 Build komeda to be a Linux module driver 479 ======================================== 480 481 Now we have two level devices: 482 483 - komeda_dev: describes the real display har 484 - komeda_kms_dev: attaches or connects komed 485 486 All komeda operations are supplied or operated 487 the module driver is only a simple wrapper to 488 (probe/remove/pm) into komeda_dev or komeda_km
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.