1 .. SPDX-License-Identifier: GPL-2.0 2 3 ======================= 4 Energy Model of devices 5 ======================= 6 7 1. Overview 8 ----------- 9 10 The Energy Model (EM) framework serves as an i 11 the power consumed by devices at various perfo 12 subsystems willing to use that information to 13 14 The source of the information about the power 15 from one platform to another. These power cost 16 devicetree data in some cases. In others, the 17 Alternatively, userspace might be best positio 18 each and every client subsystem to re-implemen 19 possible source of information on its own, the 20 abstraction layer which standardizes the forma 21 kernel, hence enabling to avoid redundant work 22 23 The power values might be expressed in micro-W 24 Multiple subsystems might use the EM and it is 25 check that the requirements for the power valu 26 can be found in the Energy-Aware Scheduler doc 27 Documentation/scheduler/sched-energy.rst. For 28 powercap power values expressed in an 'abstrac 29 These subsystems are more interested in estima 30 thus the real micro-Watts might be needed. An 31 be found in the Intelligent Power Allocation i 32 Documentation/driver-api/thermal/power_allocat 33 Kernel subsystems might implement automatic de 34 registered devices have inconsistent scale (ba 35 Important thing to keep in mind is that when t 36 an 'abstract scale' deriving real energy in mi 37 38 The figure below depicts an example of drivers 39 approach is applicable to any architecture) pr 40 framework, and interested clients reading the 41 42 +---------------+ +-----------------+ 43 | Thermal (IPA) | | Scheduler (EAS) | 44 +---------------+ +-----------------+ 45 | | em_cpu_en 46 | | em_cpu_ge 47 +---------+ | + 48 | | | 49 v v v 50 +--------------------- 51 | Energy Model 52 | Framework 53 +--------------------- 54 ^ ^ ^ 55 | | | e 56 +----------+ | +-- 57 | | 58 +---------------+ +---------------+ 59 | cpufreq-dt | | arm_scmi | 60 +---------------+ +---------------+ 61 ^ ^ 62 | | 63 +--------------+ +---------------+ 64 | Device Tree | | Firmware | 65 +--------------+ +---------------+ 66 67 In case of CPU devices the EM framework manage 68 'performance domain' in the system. A performa 69 whose performance is scaled together. Performa 70 1-to-1 mapping with CPUFreq policies. All CPUs 71 required to have the same micro-architecture. 72 domains can have different micro-architectures 73 74 To better reflect power variation due to stati 75 supports runtime modifications of the power va 76 RCU to free the modifiable EM perf_state table 77 scheduler, also uses RCU to access this memory 78 API for allocating/freeing the new memory for 79 The old memory is freed automatically using RC 80 are no owners anymore for the given EM runtime 81 using kref mechanism. The device driver which 82 should call EM API to free it safely when it's 83 framework will handle the clean-up when it's p 84 85 The kernel code which want to modify the EM va 86 access using a mutex. Therefore, the device dr 87 context when it tries to modify the EM. 88 89 With the runtime modifiable EM we switch from 90 runtime static EM' (system property) design to 91 changed during runtime according e.g. to the w 92 property) design. 93 94 It is possible also to modify the CPU performa 95 performance state. Thus, the full power and pe 96 is an exponential curve) can be changed accord 97 or system property. 98 99 100 2. Core APIs 101 ------------ 102 103 2.1 Config options 104 ^^^^^^^^^^^^^^^^^^ 105 106 CONFIG_ENERGY_MODEL must be enabled to use the 107 108 109 2.2 Registration of performance domains 110 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 111 112 Registration of 'advanced' EM 113 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 114 115 The 'advanced' EM gets its name due to the fac 116 to provide more precised power model. It's not 117 formula in the framework (like it is in 'simpl 118 the real power measurements performed for each 119 registration method should be preferred in cas 120 (leakage) is important. 121 122 Drivers are expected to register performance d 123 calling the following API:: 124 125 int em_dev_register_perf_domain(struct devic 126 struct em_data_callback *cb, c 127 128 Drivers must provide a callback function retur 129 for each performance state. The callback funct 130 to fetch data from any relevant location (DT, 131 deemed necessary. Only for CPU devices, driver 132 performance domains using cpumask. For other d 133 argument must be set to NULL. 134 The last argument 'microwatts' is important to 135 subsystems which use EM might rely on this fla 136 the same scale. If there are different scales, 137 to return warning/error, stop working or panic 138 See Section 3. for an example of driver implem 139 callback, or Section 2.4 for further documenta 140 141 Registration of EM using DT 142 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 143 144 The EM can also be registered using OPP frame 145 "operating-points-v2". Each OPP entry in DT ca 146 "opp-microwatt" containing micro-Watts power v 147 allows a platform to register EM power values 148 (static + dynamic). These power values might b 149 experiments and measurements. 150 151 Registration of 'artificial' EM 152 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 153 154 There is an option to provide a custom callbac 155 knowledge about power value for each performan 156 .get_cost() is optional and provides the 'cost 157 This is useful for platforms that only provide 158 efficiency between CPU types, where one could 159 create an abstract power model. But even an ab 160 sometimes be hard to fit in, given the input p 161 The .get_cost() allows to provide the 'cost' v 162 efficiency of the CPUs. This would allow to pr 163 has different relation than what would be forc 164 formulas calculating 'cost' values. To registe 165 driver must set the flag 'microwatts' to 0, pr 166 and provide .get_cost() callback. The EM frame 167 properly during registration. A flag EM_PERF_D 168 platform. Special care should be taken by othe 169 to test and treat this flag properly. 170 171 Registration of 'simple' EM 172 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 173 174 The 'simple' EM is registered using the framew 175 cpufreq_register_em_with_opp(). It implements 176 math formula:: 177 178 Power = C * V^2 * f 179 180 The EM which is registered using this method m 181 physics of a real device, e.g. when static pow 182 183 184 2.3 Accessing performance domains 185 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 186 187 There are two API functions which provide the 188 em_cpu_get() which takes CPU id as an argument 189 pointer as an argument. It depends on the subs 190 going to use, but in case of CPU devices both 191 performance domain. 192 193 Subsystems interested in the energy model of a 194 em_cpu_get() API. The energy model tables are 195 the performance domains, and kept in memory un 196 197 The energy consumed by a performance domain ca 198 em_cpu_energy() API. The estimation is perform 199 CPUfreq governor is in use in case of CPU devi 200 not provided for other type of devices. 201 202 More details about the above APIs can be found 203 or in Section 2.5 204 205 206 2.4 Runtime modifications 207 ^^^^^^^^^^^^^^^^^^^^^^^^^ 208 209 Drivers willing to update the EM at runtime sh 210 function to allocate a new instance of the mod 211 below:: 212 213 struct em_perf_table __rcu *em_table_alloc(s 214 215 This allows to allocate a structure which cont 216 also RCU and kref needed by the EM framework. 217 contains array 'struct em_perf_state state[]' 218 states in ascending order. That list must be p 219 which wants to update the EM. The list of freq 220 existing EM (created during boot). The content 221 must be populated by the driver as well. 222 223 This is the API which does the EM update, usin 224 225 int em_dev_update_perf_domain(struct device 226 struct em_perf_table _ 227 228 Drivers must provide a pointer to the allocate 229 'struct em_perf_table'. That new EM will be sa 230 and will be visible to other sub-systems in th 231 The main design goal for this API is to be fas 232 or memory allocations at runtime. When pre-com 233 device driver, than it should be possible to s 234 performance overhead. 235 236 In order to free the EM, provided earlier by t 237 is unloaded), there is a need to call the API: 238 239 void em_table_free(struct em_perf_table __rc 240 241 It will allow the EM framework to safely remov 242 no other sub-system using it, e.g. EAS. 243 244 To use the power values in other sub-systems ( 245 a need to call API which protects the reader a 246 table data:: 247 248 struct em_perf_state *em_perf_state_from_pd( 249 250 It returns the 'struct em_perf_state' pointer 251 states in ascending order. 252 This function must be called in the RCU read l 253 rcu_read_lock()). When the EM table is not nee 254 call rcu_real_unlock(). In this way the EM saf 255 and protects the users. It also allows the EM 256 and free it. More details how to use it can be 257 example driver. 258 259 There is dedicated API for device drivers to c 260 values:: 261 262 int em_dev_compute_costs(struct device *dev, 263 int nr_states); 264 265 These 'cost' values from EM are used in EAS. T 266 together with the number of entries and device 267 of the cost values is done properly the return 268 The function takes care for right setting of i 269 state as well. It updates em_perf_state::flags 270 Then such prepared new EM can be passed to the 271 function, which will allow to use it. 272 273 More details about the above APIs can be found 274 or in Section 3.2 with an example code showing 275 updating mechanism in a device driver. 276 277 278 2.5 Description details of this API 279 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 280 .. kernel-doc:: include/linux/energy_model.h 281 :internal: 282 283 .. kernel-doc:: kernel/power/energy_model.c 284 :export: 285 286 287 3. Examples 288 ----------- 289 290 3.1 Example driver with EM registration 291 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 292 293 The CPUFreq framework supports dedicated callb 294 the EM for a given CPU(s) 'policy' object: cpu 295 That callback has to be implemented properly f 296 because the framework would call it at the rig 297 This section provides a simple example of a CP 298 performance domain in the Energy Model framewo 299 protocol. The driver implements an est_power() 300 EM framework:: 301 302 -> drivers/cpufreq/foo_cpufreq.c 303 304 01 static int est_power(struct device *de 305 02 unsigned long *KHz) 306 03 { 307 04 long freq, power; 308 05 309 06 /* Use the 'foo' protocol to c 310 07 freq = foo_get_freq_ceil(dev, 311 08 if (freq < 0); 312 09 return freq; 313 10 314 11 /* Estimate the power cost for 315 12 power = foo_estimate_power(dev 316 13 if (power < 0); 317 14 return power; 318 15 319 16 /* Return the values to the EM 320 17 *mW = power; 321 18 *KHz = freq; 322 19 323 20 return 0; 324 21 } 325 22 326 23 static void foo_cpufreq_register_em(st 327 24 { 328 25 struct em_data_callback em_cb 329 26 struct device *cpu_dev; 330 27 int nr_opp; 331 28 332 29 cpu_dev = get_cpu_device(cpuma 333 30 334 31 /* Find the number of OPPs for 335 32 nr_opp = foo_get_nr_opp(policy 336 33 337 34 /* And register the new perfor 338 35 em_dev_register_perf_domain(cp 339 36 tr 340 37 } 341 38 342 39 static struct cpufreq_driver foo_cpufr 343 40 .register_em = foo_cpufreq_reg 344 41 }; 345 346 347 3.2 Example driver with EM modification 348 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 349 350 This section provides a simple example of a th 351 The driver implements a foo_thermal_em_update( 352 up periodically to check the temperature and m 353 354 -> drivers/soc/example/example_em_mod.c 355 356 01 static void foo_get_new_em(struct foo_ 357 02 { 358 03 struct em_perf_table __rcu *em 359 04 struct em_perf_state *table, * 360 05 struct device *dev = ctx->dev; 361 06 struct em_perf_domain *pd; 362 07 unsigned long freq; 363 08 int i, ret; 364 09 365 10 pd = em_pd_get(dev); 366 11 if (!pd) 367 12 return; 368 13 369 14 em_table = em_table_alloc(pd); 370 15 if (!em_table) 371 16 return; 372 17 373 18 new_table = em_table->state; 374 19 375 20 rcu_read_lock(); 376 21 table = em_perf_state_from_pd( 377 22 for (i = 0; i < pd->nr_perf_st 378 23 freq = table[i].freque 379 24 foo_get_power_perf_val 380 25 } 381 26 rcu_read_unlock(); 382 27 383 28 /* Calculate 'cost' values for 384 29 ret = em_dev_compute_costs(dev 385 30 if (ret) { 386 31 dev_warn(dev, "EM: com 387 32 em_free_table(em_table 388 33 return; 389 34 } 390 35 391 36 ret = em_dev_update_perf_domai 392 37 if (ret) { 393 38 dev_warn(dev, "EM: upd 394 39 em_free_table(em_table 395 40 return; 396 41 } 397 42 398 43 /* 399 44 * Since it's one-time-update 400 45 * The EM framework will later 401 46 */ 402 47 em_table_free(em_table); 403 48 } 404 49 405 50 /* 406 51 * Function called periodically to che 407 52 * update the EM if needed 408 53 */ 409 54 static void foo_thermal_em_update(stru 410 55 { 411 56 struct device *dev = ctx->dev; 412 57 int cpu; 413 58 414 59 ctx->temperature = foo_get_tem 415 60 if (ctx->temperature < FOO_EM_ 416 61 return; 417 62 418 63 foo_get_new_em(ctx); 419 64 }
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.