~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/power/energy-model.rst

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /Documentation/power/energy-model.rst (Version linux-6.12-rc7) and /Documentation/power/energy-model.rst (Version linux-6.3.13)


  1 .. SPDX-License-Identifier: GPL-2.0                 1 .. SPDX-License-Identifier: GPL-2.0
  2                                                     2 
  3 =======================                             3 =======================
  4 Energy Model of devices                             4 Energy Model of devices
  5 =======================                             5 =======================
  6                                                     6 
  7 1. Overview                                         7 1. Overview
  8 -----------                                         8 -----------
  9                                                     9 
 10 The Energy Model (EM) framework serves as an i     10 The Energy Model (EM) framework serves as an interface between drivers knowing
 11 the power consumed by devices at various perfo     11 the power consumed by devices at various performance levels, and the kernel
 12 subsystems willing to use that information to      12 subsystems willing to use that information to make energy-aware decisions.
 13                                                    13 
 14 The source of the information about the power      14 The source of the information about the power consumed by devices can vary greatly
 15 from one platform to another. These power cost     15 from one platform to another. These power costs can be estimated using
 16 devicetree data in some cases. In others, the      16 devicetree data in some cases. In others, the firmware will know better.
 17 Alternatively, userspace might be best positio     17 Alternatively, userspace might be best positioned. And so on. In order to avoid
 18 each and every client subsystem to re-implemen     18 each and every client subsystem to re-implement support for each and every
 19 possible source of information on its own, the     19 possible source of information on its own, the EM framework intervenes as an
 20 abstraction layer which standardizes the forma     20 abstraction layer which standardizes the format of power cost tables in the
 21 kernel, hence enabling to avoid redundant work     21 kernel, hence enabling to avoid redundant work.
 22                                                    22 
 23 The power values might be expressed in micro-W     23 The power values might be expressed in micro-Watts or in an 'abstract scale'.
 24 Multiple subsystems might use the EM and it is     24 Multiple subsystems might use the EM and it is up to the system integrator to
 25 check that the requirements for the power valu     25 check that the requirements for the power value scale types are met. An example
 26 can be found in the Energy-Aware Scheduler doc     26 can be found in the Energy-Aware Scheduler documentation
 27 Documentation/scheduler/sched-energy.rst. For      27 Documentation/scheduler/sched-energy.rst. For some subsystems like thermal or
 28 powercap power values expressed in an 'abstrac     28 powercap power values expressed in an 'abstract scale' might cause issues.
 29 These subsystems are more interested in estima     29 These subsystems are more interested in estimation of power used in the past,
 30 thus the real micro-Watts might be needed. An      30 thus the real micro-Watts might be needed. An example of these requirements can
 31 be found in the Intelligent Power Allocation i     31 be found in the Intelligent Power Allocation in
 32 Documentation/driver-api/thermal/power_allocat     32 Documentation/driver-api/thermal/power_allocator.rst.
 33 Kernel subsystems might implement automatic de     33 Kernel subsystems might implement automatic detection to check whether EM
 34 registered devices have inconsistent scale (ba     34 registered devices have inconsistent scale (based on EM internal flag).
 35 Important thing to keep in mind is that when t     35 Important thing to keep in mind is that when the power values are expressed in
 36 an 'abstract scale' deriving real energy in mi     36 an 'abstract scale' deriving real energy in micro-Joules would not be possible.
 37                                                    37 
 38 The figure below depicts an example of drivers     38 The figure below depicts an example of drivers (Arm-specific here, but the
 39 approach is applicable to any architecture) pr     39 approach is applicable to any architecture) providing power costs to the EM
 40 framework, and interested clients reading the      40 framework, and interested clients reading the data from it::
 41                                                    41 
 42        +---------------+  +-----------------+      42        +---------------+  +-----------------+  +---------------+
 43        | Thermal (IPA) |  | Scheduler (EAS) |      43        | Thermal (IPA) |  | Scheduler (EAS) |  |     Other     |
 44        +---------------+  +-----------------+      44        +---------------+  +-----------------+  +---------------+
 45                |                   | em_cpu_en     45                |                   | em_cpu_energy()   |
 46                |                   | em_cpu_ge     46                |                   | em_cpu_get()      |
 47                +---------+         |         +     47                +---------+         |         +---------+
 48                          |         |         |     48                          |         |         |
 49                          v         v         v     49                          v         v         v
 50                         +---------------------     50                         +---------------------+
 51                         |    Energy Model          51                         |    Energy Model     |
 52                         |     Framework            52                         |     Framework       |
 53                         +---------------------     53                         +---------------------+
 54                            ^       ^       ^       54                            ^       ^       ^
 55                            |       |       | e     55                            |       |       | em_dev_register_perf_domain()
 56                 +----------+       |       +--     56                 +----------+       |       +---------+
 57                 |                  |               57                 |                  |                 |
 58         +---------------+  +---------------+       58         +---------------+  +---------------+  +--------------+
 59         |  cpufreq-dt   |  |   arm_scmi    |       59         |  cpufreq-dt   |  |   arm_scmi    |  |    Other     |
 60         +---------------+  +---------------+       60         +---------------+  +---------------+  +--------------+
 61                 ^                  ^               61                 ^                  ^                 ^
 62                 |                  |               62                 |                  |                 |
 63         +--------------+   +---------------+       63         +--------------+   +---------------+  +--------------+
 64         | Device Tree  |   |   Firmware    |       64         | Device Tree  |   |   Firmware    |  |      ?       |
 65         +--------------+   +---------------+       65         +--------------+   +---------------+  +--------------+
 66                                                    66 
 67 In case of CPU devices the EM framework manage     67 In case of CPU devices the EM framework manages power cost tables per
 68 'performance domain' in the system. A performa     68 'performance domain' in the system. A performance domain is a group of CPUs
 69 whose performance is scaled together. Performa     69 whose performance is scaled together. Performance domains generally have a
 70 1-to-1 mapping with CPUFreq policies. All CPUs     70 1-to-1 mapping with CPUFreq policies. All CPUs in a performance domain are
 71 required to have the same micro-architecture.      71 required to have the same micro-architecture. CPUs in different performance
 72 domains can have different micro-architectures     72 domains can have different micro-architectures.
 73                                                    73 
 74 To better reflect power variation due to stati << 
 75 supports runtime modifications of the power va << 
 76 RCU to free the modifiable EM perf_state table << 
 77 scheduler, also uses RCU to access this memory << 
 78 API for allocating/freeing the new memory for  << 
 79 The old memory is freed automatically using RC << 
 80 are no owners anymore for the given EM runtime << 
 81 using kref mechanism. The device driver which  << 
 82 should call EM API to free it safely when it's << 
 83 framework will handle the clean-up when it's p << 
 84                                                << 
 85 The kernel code which want to modify the EM va << 
 86 access using a mutex. Therefore, the device dr << 
 87 context when it tries to modify the EM.        << 
 88                                                << 
 89 With the runtime modifiable EM we switch from  << 
 90 runtime static EM' (system property) design to << 
 91 changed during runtime according e.g. to the w << 
 92 property) design.                              << 
 93                                                << 
 94 It is possible also to modify the CPU performa << 
 95 performance state. Thus, the full power and pe << 
 96 is an exponential curve) can be changed accord << 
 97 or system property.                            << 
 98                                                << 
 99                                                    74 
100 2. Core APIs                                       75 2. Core APIs
101 ------------                                       76 ------------
102                                                    77 
103 2.1 Config options                                 78 2.1 Config options
104 ^^^^^^^^^^^^^^^^^^                                 79 ^^^^^^^^^^^^^^^^^^
105                                                    80 
106 CONFIG_ENERGY_MODEL must be enabled to use the     81 CONFIG_ENERGY_MODEL must be enabled to use the EM framework.
107                                                    82 
108                                                    83 
109 2.2 Registration of performance domains            84 2.2 Registration of performance domains
110 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^            85 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
111                                                    86 
112 Registration of 'advanced' EM                      87 Registration of 'advanced' EM
113 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                      88 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
114                                                    89 
115 The 'advanced' EM gets its name due to the fac !!  90 The 'advanced' EM gets it's name due to the fact that the driver is allowed
116 to provide more precised power model. It's not     91 to provide more precised power model. It's not limited to some implemented math
117 formula in the framework (like it is in 'simpl !!  92 formula in the framework (like it's in 'simple' EM case). It can better reflect
118 the real power measurements performed for each     93 the real power measurements performed for each performance state. Thus, this
119 registration method should be preferred in cas     94 registration method should be preferred in case considering EM static power
120 (leakage) is important.                            95 (leakage) is important.
121                                                    96 
122 Drivers are expected to register performance d     97 Drivers are expected to register performance domains into the EM framework by
123 calling the following API::                        98 calling the following API::
124                                                    99 
125   int em_dev_register_perf_domain(struct devic    100   int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
126                 struct em_data_callback *cb, c    101                 struct em_data_callback *cb, cpumask_t *cpus, bool microwatts);
127                                                   102 
128 Drivers must provide a callback function retur    103 Drivers must provide a callback function returning <frequency, power> tuples
129 for each performance state. The callback funct    104 for each performance state. The callback function provided by the driver is free
130 to fetch data from any relevant location (DT,     105 to fetch data from any relevant location (DT, firmware, ...), and by any mean
131 deemed necessary. Only for CPU devices, driver    106 deemed necessary. Only for CPU devices, drivers must specify the CPUs of the
132 performance domains using cpumask. For other d    107 performance domains using cpumask. For other devices than CPUs the last
133 argument must be set to NULL.                     108 argument must be set to NULL.
134 The last argument 'microwatts' is important to    109 The last argument 'microwatts' is important to set with correct value. Kernel
135 subsystems which use EM might rely on this fla    110 subsystems which use EM might rely on this flag to check if all EM devices use
136 the same scale. If there are different scales,    111 the same scale. If there are different scales, these subsystems might decide
137 to return warning/error, stop working or panic    112 to return warning/error, stop working or panic.
138 See Section 3. for an example of driver implem    113 See Section 3. for an example of driver implementing this
139 callback, or Section 2.4 for further documenta    114 callback, or Section 2.4 for further documentation on this API
140                                                   115 
141 Registration of EM using DT                       116 Registration of EM using DT
142 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~            117 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
143                                                   118 
144 The  EM can also be registered using OPP frame    119 The  EM can also be registered using OPP framework and information in DT
145 "operating-points-v2". Each OPP entry in DT ca    120 "operating-points-v2". Each OPP entry in DT can be extended with a property
146 "opp-microwatt" containing micro-Watts power v    121 "opp-microwatt" containing micro-Watts power value. This OPP DT property
147 allows a platform to register EM power values     122 allows a platform to register EM power values which are reflecting total power
148 (static + dynamic). These power values might b    123 (static + dynamic). These power values might be coming directly from
149 experiments and measurements.                     124 experiments and measurements.
150                                                   125 
151 Registration of 'artificial' EM                   126 Registration of 'artificial' EM
152 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                   127 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
153                                                   128 
154 There is an option to provide a custom callbac    129 There is an option to provide a custom callback for drivers missing detailed
155 knowledge about power value for each performan    130 knowledge about power value for each performance state. The callback
156 .get_cost() is optional and provides the 'cost    131 .get_cost() is optional and provides the 'cost' values used by the EAS.
157 This is useful for platforms that only provide    132 This is useful for platforms that only provide information on relative
158 efficiency between CPU types, where one could     133 efficiency between CPU types, where one could use the information to
159 create an abstract power model. But even an ab    134 create an abstract power model. But even an abstract power model can
160 sometimes be hard to fit in, given the input p    135 sometimes be hard to fit in, given the input power value size restrictions.
161 The .get_cost() allows to provide the 'cost' v    136 The .get_cost() allows to provide the 'cost' values which reflect the
162 efficiency of the CPUs. This would allow to pr    137 efficiency of the CPUs. This would allow to provide EAS information which
163 has different relation than what would be forc    138 has different relation than what would be forced by the EM internal
164 formulas calculating 'cost' values. To registe    139 formulas calculating 'cost' values. To register an EM for such platform, the
165 driver must set the flag 'microwatts' to 0, pr    140 driver must set the flag 'microwatts' to 0, provide .get_power() callback
166 and provide .get_cost() callback. The EM frame    141 and provide .get_cost() callback. The EM framework would handle such platform
167 properly during registration. A flag EM_PERF_D    142 properly during registration. A flag EM_PERF_DOMAIN_ARTIFICIAL is set for such
168 platform. Special care should be taken by othe    143 platform. Special care should be taken by other frameworks which are using EM
169 to test and treat this flag properly.             144 to test and treat this flag properly.
170                                                   145 
171 Registration of 'simple' EM                       146 Registration of 'simple' EM
172 ~~~~~~~~~~~~~~~~~~~~~~~~~~~                       147 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
173                                                   148 
174 The 'simple' EM is registered using the framew    149 The 'simple' EM is registered using the framework helper function
175 cpufreq_register_em_with_opp(). It implements     150 cpufreq_register_em_with_opp(). It implements a power model which is tight to
176 math formula::                                    151 math formula::
177                                                   152 
178         Power = C * V^2 * f                       153         Power = C * V^2 * f
179                                                   154 
180 The EM which is registered using this method m    155 The EM which is registered using this method might not reflect correctly the
181 physics of a real device, e.g. when static pow    156 physics of a real device, e.g. when static power (leakage) is important.
182                                                   157 
183                                                   158 
184 2.3 Accessing performance domains                 159 2.3 Accessing performance domains
185 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^                 160 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
186                                                   161 
187 There are two API functions which provide the     162 There are two API functions which provide the access to the energy model:
188 em_cpu_get() which takes CPU id as an argument    163 em_cpu_get() which takes CPU id as an argument and em_pd_get() with device
189 pointer as an argument. It depends on the subs    164 pointer as an argument. It depends on the subsystem which interface it is
190 going to use, but in case of CPU devices both     165 going to use, but in case of CPU devices both functions return the same
191 performance domain.                               166 performance domain.
192                                                   167 
193 Subsystems interested in the energy model of a    168 Subsystems interested in the energy model of a CPU can retrieve it using the
194 em_cpu_get() API. The energy model tables are     169 em_cpu_get() API. The energy model tables are allocated once upon creation of
195 the performance domains, and kept in memory un    170 the performance domains, and kept in memory untouched.
196                                                   171 
197 The energy consumed by a performance domain ca    172 The energy consumed by a performance domain can be estimated using the
198 em_cpu_energy() API. The estimation is perform    173 em_cpu_energy() API. The estimation is performed assuming that the schedutil
199 CPUfreq governor is in use in case of CPU devi    174 CPUfreq governor is in use in case of CPU device. Currently this calculation is
200 not provided for other type of devices.           175 not provided for other type of devices.
201                                                   176 
202 More details about the above APIs can be found    177 More details about the above APIs can be found in ``<linux/energy_model.h>``
203 or in Section 2.5                              !! 178 or in Section 2.4
204                                                << 
205                                                   179 
206 2.4 Runtime modifications                      << 
207 ^^^^^^^^^^^^^^^^^^^^^^^^^                      << 
208                                                   180 
209 Drivers willing to update the EM at runtime sh !! 181 2.4 Description details of this API
210 function to allocate a new instance of the mod << 
211 below::                                        << 
212                                                << 
213   struct em_perf_table __rcu *em_table_alloc(s << 
214                                                << 
215 This allows to allocate a structure which cont << 
216 also RCU and kref needed by the EM framework.  << 
217 contains array 'struct em_perf_state state[]'  << 
218 states in ascending order. That list must be p << 
219 which wants to update the EM. The list of freq << 
220 existing EM (created during boot). The content << 
221 must be populated by the driver as well.       << 
222                                                << 
223 This is the API which does the EM update, usin << 
224                                                << 
225   int em_dev_update_perf_domain(struct device  << 
226                         struct em_perf_table _ << 
227                                                << 
228 Drivers must provide a pointer to the allocate << 
229 'struct em_perf_table'. That new EM will be sa << 
230 and will be visible to other sub-systems in th << 
231 The main design goal for this API is to be fas << 
232 or memory allocations at runtime. When pre-com << 
233 device driver, than it should be possible to s << 
234 performance overhead.                          << 
235                                                << 
236 In order to free the EM, provided earlier by t << 
237 is unloaded), there is a need to call the API: << 
238                                                << 
239   void em_table_free(struct em_perf_table __rc << 
240                                                << 
241 It will allow the EM framework to safely remov << 
242 no other sub-system using it, e.g. EAS.        << 
243                                                << 
244 To use the power values in other sub-systems ( << 
245 a need to call API which protects the reader a << 
246 table data::                                   << 
247                                                << 
248   struct em_perf_state *em_perf_state_from_pd( << 
249                                                << 
250 It returns the 'struct em_perf_state' pointer  << 
251 states in ascending order.                     << 
252 This function must be called in the RCU read l << 
253 rcu_read_lock()). When the EM table is not nee << 
254 call rcu_real_unlock(). In this way the EM saf << 
255 and protects the users. It also allows the EM  << 
256 and free it. More details how to use it can be << 
257 example driver.                                << 
258                                                << 
259 There is dedicated API for device drivers to c << 
260 values::                                       << 
261                                                << 
262   int em_dev_compute_costs(struct device *dev, << 
263                            int nr_states);     << 
264                                                << 
265 These 'cost' values from EM are used in EAS. T << 
266 together with the number of entries and device << 
267 of the cost values is done properly the return << 
268 The function takes care for right setting of i << 
269 state as well. It updates em_perf_state::flags << 
270 Then such prepared new EM can be passed to the << 
271 function, which will allow to use it.          << 
272                                                << 
273 More details about the above APIs can be found << 
274 or in Section 3.2 with an example code showing << 
275 updating mechanism in a device driver.         << 
276                                                << 
277                                                << 
278 2.5 Description details of this API            << 
279 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^               182 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
280 .. kernel-doc:: include/linux/energy_model.h      183 .. kernel-doc:: include/linux/energy_model.h
281    :internal:                                     184    :internal:
282                                                   185 
283 .. kernel-doc:: kernel/power/energy_model.c       186 .. kernel-doc:: kernel/power/energy_model.c
284    :export:                                       187    :export:
285                                                   188 
286                                                   189 
287 3. Examples                                    !! 190 3. Example driver
288 -----------                                    !! 191 -----------------
289                                                << 
290 3.1 Example driver with EM registration        << 
291 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^        << 
292                                                   192 
293 The CPUFreq framework supports dedicated callb    193 The CPUFreq framework supports dedicated callback for registering
294 the EM for a given CPU(s) 'policy' object: cpu    194 the EM for a given CPU(s) 'policy' object: cpufreq_driver::register_em().
295 That callback has to be implemented properly f    195 That callback has to be implemented properly for a given driver,
296 because the framework would call it at the rig    196 because the framework would call it at the right time during setup.
297 This section provides a simple example of a CP    197 This section provides a simple example of a CPUFreq driver registering a
298 performance domain in the Energy Model framewo    198 performance domain in the Energy Model framework using the (fake) 'foo'
299 protocol. The driver implements an est_power()    199 protocol. The driver implements an est_power() function to be provided to the
300 EM framework::                                    200 EM framework::
301                                                   201 
302   -> drivers/cpufreq/foo_cpufreq.c                202   -> drivers/cpufreq/foo_cpufreq.c
303                                                   203 
304   01    static int est_power(struct device *de    204   01    static int est_power(struct device *dev, unsigned long *mW,
305   02                    unsigned long *KHz)       205   02                    unsigned long *KHz)
306   03    {                                         206   03    {
307   04            long freq, power;                 207   04            long freq, power;
308   05                                              208   05
309   06            /* Use the 'foo' protocol to c    209   06            /* Use the 'foo' protocol to ceil the frequency */
310   07            freq = foo_get_freq_ceil(dev,     210   07            freq = foo_get_freq_ceil(dev, *KHz);
311   08            if (freq < 0);                    211   08            if (freq < 0);
312   09                    return freq;              212   09                    return freq;
313   10                                              213   10
314   11            /* Estimate the power cost for    214   11            /* Estimate the power cost for the dev at the relevant freq. */
315   12            power = foo_estimate_power(dev    215   12            power = foo_estimate_power(dev, freq);
316   13            if (power < 0);                   216   13            if (power < 0);
317   14                    return power;             217   14                    return power;
318   15                                              218   15
319   16            /* Return the values to the EM    219   16            /* Return the values to the EM framework */
320   17            *mW = power;                      220   17            *mW = power;
321   18            *KHz = freq;                      221   18            *KHz = freq;
322   19                                              222   19
323   20            return 0;                         223   20            return 0;
324   21    }                                         224   21    }
325   22                                              225   22
326   23    static void foo_cpufreq_register_em(st    226   23    static void foo_cpufreq_register_em(struct cpufreq_policy *policy)
327   24    {                                         227   24    {
328   25            struct em_data_callback em_cb     228   25            struct em_data_callback em_cb = EM_DATA_CB(est_power);
329   26            struct device *cpu_dev;           229   26            struct device *cpu_dev;
330   27            int nr_opp;                       230   27            int nr_opp;
331   28                                              231   28
332   29            cpu_dev = get_cpu_device(cpuma    232   29            cpu_dev = get_cpu_device(cpumask_first(policy->cpus));
333   30                                              233   30
334   31            /* Find the number of OPPs for    234   31            /* Find the number of OPPs for this policy */
335   32            nr_opp = foo_get_nr_opp(policy    235   32            nr_opp = foo_get_nr_opp(policy);
336   33                                              236   33
337   34            /* And register the new perfor    237   34            /* And register the new performance domain */
338   35            em_dev_register_perf_domain(cp    238   35            em_dev_register_perf_domain(cpu_dev, nr_opp, &em_cb, policy->cpus,
339   36                                        tr    239   36                                        true);
340   37    }                                         240   37    }
341   38                                              241   38
342   39    static struct cpufreq_driver foo_cpufr    242   39    static struct cpufreq_driver foo_cpufreq_driver = {
343   40            .register_em = foo_cpufreq_reg    243   40            .register_em = foo_cpufreq_register_em,
344   41    };                                        244   41    };
345                                                << 
346                                                << 
347 3.2 Example driver with EM modification        << 
348 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^        << 
349                                                << 
350 This section provides a simple example of a th << 
351 The driver implements a foo_thermal_em_update( << 
352 up periodically to check the temperature and m << 
353                                                << 
354   -> drivers/soc/example/example_em_mod.c      << 
355                                                << 
356   01    static void foo_get_new_em(struct foo_ << 
357   02    {                                      << 
358   03            struct em_perf_table __rcu *em << 
359   04            struct em_perf_state *table, * << 
360   05            struct device *dev = ctx->dev; << 
361   06            struct em_perf_domain *pd;     << 
362   07            unsigned long freq;            << 
363   08            int i, ret;                    << 
364   09                                           << 
365   10            pd = em_pd_get(dev);           << 
366   11            if (!pd)                       << 
367   12                    return;                << 
368   13                                           << 
369   14            em_table = em_table_alloc(pd); << 
370   15            if (!em_table)                 << 
371   16                    return;                << 
372   17                                           << 
373   18            new_table = em_table->state;   << 
374   19                                           << 
375   20            rcu_read_lock();               << 
376   21            table = em_perf_state_from_pd( << 
377   22            for (i = 0; i < pd->nr_perf_st << 
378   23                    freq = table[i].freque << 
379   24                    foo_get_power_perf_val << 
380   25            }                              << 
381   26            rcu_read_unlock();             << 
382   27                                           << 
383   28            /* Calculate 'cost' values for << 
384   29            ret = em_dev_compute_costs(dev << 
385   30            if (ret) {                     << 
386   31                    dev_warn(dev, "EM: com << 
387   32                    em_free_table(em_table << 
388   33                    return;                << 
389   34            }                              << 
390   35                                           << 
391   36            ret = em_dev_update_perf_domai << 
392   37            if (ret) {                     << 
393   38                    dev_warn(dev, "EM: upd << 
394   39                    em_free_table(em_table << 
395   40                    return;                << 
396   41            }                              << 
397   42                                           << 
398   43            /*                             << 
399   44             * Since it's one-time-update  << 
400   45             * The EM framework will later << 
401   46             */                            << 
402   47            em_table_free(em_table);       << 
403   48    }                                      << 
404   49                                           << 
405   50    /*                                     << 
406   51     * Function called periodically to che << 
407   52     * update the EM if needed             << 
408   53     */                                    << 
409   54    static void foo_thermal_em_update(stru << 
410   55    {                                      << 
411   56            struct device *dev = ctx->dev; << 
412   57            int cpu;                       << 
413   58                                           << 
414   59            ctx->temperature = foo_get_tem << 
415   60            if (ctx->temperature < FOO_EM_ << 
416   61                    return;                << 
417   62                                           << 
418   63            foo_get_new_em(ctx);           << 
419   64    }                                      << 
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php