~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/security/keys/trusted-encrypted.rst

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /Documentation/security/keys/trusted-encrypted.rst (Version linux-6.12-rc7) and /Documentation/security/keys/trusted-encrypted.rst (Version linux-4.18.20)


  1 ==========================                          1 ==========================
  2 Trusted and Encrypted Keys                          2 Trusted and Encrypted Keys
  3 ==========================                          3 ==========================
  4                                                     4 
  5 Trusted and Encrypted Keys are two new key typ      5 Trusted and Encrypted Keys are two new key types added to the existing kernel
  6 key ring service.  Both of these new types are      6 key ring service.  Both of these new types are variable length symmetric keys,
  7 and in both cases all keys are created in the       7 and in both cases all keys are created in the kernel, and user space sees,
  8 stores, and loads only encrypted blobs.  Trust      8 stores, and loads only encrypted blobs.  Trusted Keys require the availability
  9 of a Trust Source for greater security, while  !!   9 of a Trusted Platform Module (TPM) chip for greater security, while Encrypted
 10 system. All user level blobs, are displayed an !!  10 Keys can be used on any system.  All user level blobs, are displayed and loaded
 11 convenience, and are integrity verified.       !!  11 in hex ascii for convenience, and are integrity verified.
 12                                                !!  12 
 13                                                !!  13 Trusted Keys use a TPM both to generate and to seal the keys.  Keys are sealed
 14 Trust Source                                   !!  14 under a 2048 bit RSA key in the TPM, and optionally sealed to specified PCR
 15 ============                                   !!  15 (integrity measurement) values, and only unsealed by the TPM, if PCRs and blob
 16                                                !!  16 integrity verifications match.  A loaded Trusted Key can be updated with new
 17 A trust source provides the source of security !!  17 (future) PCR values, so keys are easily migrated to new pcr values, such as
 18 section lists currently supported trust source !!  18 when the kernel and initramfs are updated.  The same key can have many saved
 19 considerations.  Whether or not a trust source !!  19 blobs under different PCR values, so multiple boots are easily supported.
 20 on the strength and correctness of its impleme !!  20 
 21 environment for a specific use case.  Since th !!  21 By default, trusted keys are sealed under the SRK, which has the default
 22 environment is, and there is no metric of trus !!  22 authorization value (20 zeros).  This can be set at takeownership time with the
 23 consumer of the Trusted Keys to determine if t !!  23 trouser's utility: "tpm_takeownership -u -z".
 24 safe.                                          << 
 25                                                << 
 26   *  Root of trust for storage                 << 
 27                                                << 
 28      (1) TPM (Trusted Platform Module: hardwar << 
 29                                                << 
 30          Rooted to Storage Root Key (SRK) whic << 
 31          provides crypto operation to establis << 
 32                                                << 
 33      (2) TEE (Trusted Execution Environment: O << 
 34                                                << 
 35          Rooted to Hardware Unique Key (HUK) w << 
 36          fuses and is accessible to TEE only.  << 
 37                                                << 
 38      (3) CAAM (Cryptographic Acceleration and  << 
 39                                                << 
 40          When High Assurance Boot (HAB) is ena << 
 41          mode, trust is rooted to the OTPMK, a << 
 42          randomly generated and fused into eac << 
 43          Otherwise, a common fixed test key is << 
 44                                                << 
 45      (4) DCP (Data Co-Processor: crypto accele << 
 46                                                << 
 47          Rooted to a one-time programmable key << 
 48          in the on-chip fuses and is accessibl << 
 49          DCP provides two keys that can be use << 
 50          and the UNIQUE key. Default is to use << 
 51          the OTP key can be done via a module  << 
 52                                                << 
 53   *  Execution isolation                       << 
 54                                                << 
 55      (1) TPM                                   << 
 56                                                << 
 57          Fixed set of operations running in is << 
 58                                                << 
 59      (2) TEE                                   << 
 60                                                << 
 61          Customizable set of operations runnin << 
 62          environment verified via Secure/Trust << 
 63                                                << 
 64      (3) CAAM                                  << 
 65                                                << 
 66          Fixed set of operations running in is << 
 67                                                << 
 68      (4) DCP                                   << 
 69                                                << 
 70          Fixed set of cryptographic operations << 
 71          environment. Only basic blob key encr << 
 72          The actual key sealing/unsealing is d << 
 73                                                << 
 74   * Optional binding to platform integrity sta << 
 75                                                << 
 76      (1) TPM                                   << 
 77                                                << 
 78          Keys can be optionally sealed to spec << 
 79          values, and only unsealed by the TPM, << 
 80          verifications match. A loaded Trusted << 
 81          (future) PCR values, so keys are easi << 
 82          such as when the kernel and initramfs << 
 83          have many saved blobs under different << 
 84          easily supported.                     << 
 85                                                << 
 86      (2) TEE                                   << 
 87                                                << 
 88          Relies on Secure/Trusted boot process << 
 89          be extended with TEE based measured b << 
 90                                                << 
 91      (3) CAAM                                  << 
 92                                                << 
 93          Relies on the High Assurance Boot (HA << 
 94          for platform integrity.               << 
 95                                                << 
 96      (4) DCP                                   << 
 97                                                << 
 98          Relies on Secure/Trusted boot process << 
 99          platform integrity.                   << 
100                                                << 
101   *  Interfaces and APIs                       << 
102                                                << 
103      (1) TPM                                   << 
104                                                << 
105          TPMs have well-documented, standardiz << 
106                                                << 
107      (2) TEE                                   << 
108                                                << 
109          TEEs have well-documented, standardiz << 
110          more details refer to ``Documentation << 
111                                                << 
112      (3) CAAM                                  << 
113                                                << 
114          Interface is specific to silicon vend << 
115                                                << 
116      (4) DCP                                   << 
117                                                << 
118          Vendor-specific API that is implement << 
119          ``drivers/crypto/mxs-dcp.c``.         << 
120                                                << 
121   *  Threat model                              << 
122                                                << 
123      The strength and appropriateness of a par << 
124      purpose must be assessed when using them  << 
125                                                << 
126                                                << 
127 Key Generation                                 << 
128 ==============                                 << 
129                                                << 
130 Trusted Keys                                   << 
131 ------------                                   << 
132                                                << 
133 New keys are created from random numbers. They << 
134 a child key in the storage key hierarchy. Encr << 
135 child key must be protected by a strong access << 
136 trust source. The random number generator in u << 
137 selected trust source:                         << 
138                                                << 
139   *  TPM: hardware device based RNG            << 
140                                                << 
141      Keys are generated within the TPM. Streng << 
142      from one device manufacturer to another.  << 
143                                                << 
144   *  TEE: OP-TEE based on Arm TrustZone based  << 
145                                                << 
146      RNG is customizable as per platform needs << 
147      from platform specific hardware RNG or a  << 
148      which can be seeded via multiple entropy  << 
149                                                << 
150   *  CAAM: Kernel RNG                          << 
151                                                << 
152      The normal kernel random number generator << 
153      CAAM HWRNG, enable CRYPTO_DEV_FSL_CAAM_RN << 
154      is probed.                                << 
155                                                << 
156   *  DCP (Data Co-Processor: crypto accelerato << 
157                                                << 
158      The DCP hardware device itself does not p << 
159      so the kernel default RNG is used. SoCs w << 
160      a dedicated hardware RNG that is independ << 
161      to back the kernel RNG.                   << 
162                                                << 
163 Users may override this by specifying ``truste << 
164 command-line to override the used RNG with the << 
165                                                << 
166 Encrypted Keys                                 << 
167 --------------                                 << 
168                                                << 
169 Encrypted keys do not depend on a trust source << 
170 for encryption/decryption. New keys are create << 
171 random numbers or user-provided decrypted data << 
172 using a specified ‘master’ key. The ‘mas << 
173 user-key type. The main disadvantage of encryp << 
174 rooted in a trusted key, they are only as secu << 
175 them. The master user key should therefore be  << 
176 possible, preferably early in boot.            << 
177                                                << 
178                                                << 
179 Usage                                          << 
180 =====                                          << 
181                                                << 
182 Trusted Keys usage: TPM                        << 
183 -----------------------                        << 
184                                                << 
185 TPM 1.2: By default, trusted keys are sealed u << 
186 default authorization value (20 bytes of 0s).  << 
187 time with the TrouSerS utility: "tpm_takeowner << 
188                                                << 
189 TPM 2.0: The user must first create a storage  << 
190 key is available after reboot. This can be don << 
191                                                << 
192 With the IBM TSS 2 stack::                     << 
193                                                << 
194   #> tsscreateprimary -hi o -st                << 
195   Handle 80000000                              << 
196   #> tssevictcontrol -hi o -ho 80000000 -hp 81 << 
197                                                << 
198 Or with the Intel TSS 2 stack::                << 
199                                                << 
200   #> tpm2_createprimary --hierarchy o -G rsa20 << 
201   [...]                                        << 
202   #> tpm2_evictcontrol -c key.ctxt 0x81000001  << 
203   persistentHandle: 0x81000001                 << 
204                                                    24 
205 Usage::                                            25 Usage::
206                                                    26 
207     keyctl add trusted name "new keylen [optio     27     keyctl add trusted name "new keylen [options]" ring
208     keyctl add trusted name "load hex_blob [pc     28     keyctl add trusted name "load hex_blob [pcrlock=pcrnum]" ring
209     keyctl update key "update [options]"           29     keyctl update key "update [options]"
210     keyctl print keyid                             30     keyctl print keyid
211                                                    31 
212     options:                                       32     options:
213        keyhandle=    ascii hex value of sealin !!  33        keyhandle=    ascii hex value of sealing key default 0x40000000 (SRK)
214                        TPM 1.2: default 0x4000 << 
215                        TPM 2.0: no default; mu << 
216        keyauth=      ascii hex auth for sealin     34        keyauth=      ascii hex auth for sealing key default 0x00...i
217                      (40 ascii zeros)              35                      (40 ascii zeros)
218        blobauth=     ascii hex auth for sealed     36        blobauth=     ascii hex auth for sealed data default 0x00...
219                      (40 ascii zeros)              37                      (40 ascii zeros)
220        pcrinfo=      ascii hex of PCR_INFO or      38        pcrinfo=      ascii hex of PCR_INFO or PCR_INFO_LONG (no default)
221        pcrlock=      pcr number to be extended     39        pcrlock=      pcr number to be extended to "lock" blob
222        migratable=   0|1 indicating permission     40        migratable=   0|1 indicating permission to reseal to new PCR values,
223                      default 1 (resealing allo     41                      default 1 (resealing allowed)
224        hash=         hash algorithm name as a      42        hash=         hash algorithm name as a string. For TPM 1.x the only
225                      allowed value is sha1. Fo     43                      allowed value is sha1. For TPM 2.x the allowed values
226                      are sha1, sha256, sha384,     44                      are sha1, sha256, sha384, sha512 and sm3-256.
227        policydigest= digest for the authorizat     45        policydigest= digest for the authorization policy. must be calculated
228                      with the same hash algori     46                      with the same hash algorithm as specified by the 'hash='
229                      option.                       47                      option.
230        policyhandle= handle to an authorizatio     48        policyhandle= handle to an authorization policy session that defines the
231                      same policy and with the      49                      same policy and with the same hash algorithm as was used to
232                      seal the key.                 50                      seal the key.
233                                                    51 
234 "keyctl print" returns an ascii hex copy of th     52 "keyctl print" returns an ascii hex copy of the sealed key, which is in standard
235 TPM_STORED_DATA format.  The key length for ne     53 TPM_STORED_DATA format.  The key length for new keys are always in bytes.
236 Trusted Keys can be 32 - 128 bytes (256 - 1024     54 Trusted Keys can be 32 - 128 bytes (256 - 1024 bits), the upper limit is to fit
237 within the 2048 bit SRK (RSA) keylength, with      55 within the 2048 bit SRK (RSA) keylength, with all necessary structure/padding.
238                                                    56 
239 Trusted Keys usage: TEE                        !!  57 Encrypted keys do not depend on a TPM, and are faster, as they use AES for
240 -----------------------                        !!  58 encryption/decryption.  New keys are created from kernel generated random
241                                                !!  59 numbers, and are encrypted/decrypted using a specified 'master' key.  The
242 Usage::                                        !!  60 'master' key can either be a trusted-key or user-key type.  The main
243                                                !!  61 disadvantage of encrypted keys is that if they are not rooted in a trusted key,
244     keyctl add trusted name "new keylen" ring  !!  62 they are only as secure as the user key encrypting them.  The master user key
245     keyctl add trusted name "load hex_blob" ri !!  63 should therefore be loaded in as secure a way as possible, preferably early in
246     keyctl print keyid                         !!  64 boot.
247                                                << 
248 "keyctl print" returns an ASCII hex copy of th << 
249 specific to TEE device implementation.  The ke << 
250 in bytes. Trusted Keys can be 32 - 128 bytes ( << 
251                                                << 
252 Trusted Keys usage: CAAM                       << 
253 ------------------------                       << 
254                                                << 
255 Usage::                                        << 
256                                                << 
257     keyctl add trusted name "new keylen" ring  << 
258     keyctl add trusted name "load hex_blob" ri << 
259     keyctl print keyid                         << 
260                                                << 
261 "keyctl print" returns an ASCII hex copy of th << 
262 CAAM-specific format.  The key length for new  << 
263 Trusted Keys can be 32 - 128 bytes (256 - 1024 << 
264                                                << 
265 Trusted Keys usage: DCP                        << 
266 -----------------------                        << 
267                                                << 
268 Usage::                                        << 
269                                                << 
270     keyctl add trusted name "new keylen" ring  << 
271     keyctl add trusted name "load hex_blob" ri << 
272     keyctl print keyid                         << 
273                                                << 
274 "keyctl print" returns an ASCII hex copy of th << 
275 specific to this DCP key-blob implementation.  << 
276 always in bytes. Trusted Keys can be 32 - 128  << 
277                                                << 
278 Encrypted Keys usage                           << 
279 --------------------                           << 
280                                                    65 
281 The decrypted portion of encrypted keys can co     66 The decrypted portion of encrypted keys can contain either a simple symmetric
282 key or a more complex structure. The format of     67 key or a more complex structure. The format of the more complex structure is
283 application specific, which is identified by '     68 application specific, which is identified by 'format'.
284                                                    69 
285 Usage::                                            70 Usage::
286                                                    71 
287     keyctl add encrypted name "new [format] ke     72     keyctl add encrypted name "new [format] key-type:master-key-name keylen"
288         ring                                       73         ring
289     keyctl add encrypted name "new [format] ke << 
290         decrypted-data" ring                   << 
291     keyctl add encrypted name "load hex_blob"      74     keyctl add encrypted name "load hex_blob" ring
292     keyctl update keyid "update key-type:maste     75     keyctl update keyid "update key-type:master-key-name"
293                                                    76 
294 Where::                                            77 Where::
295                                                    78 
296         format:= 'default | ecryptfs | enc32'  !!  79         format:= 'default | ecryptfs'
297         key-type:= 'trusted' | 'user'              80         key-type:= 'trusted' | 'user'
298                                                    81 
299 Examples of trusted and encrypted key usage    << 
300 -------------------------------------------    << 
301                                                    82 
302 Create and save a trusted key named "kmk" of l !!  83 Examples of trusted and encrypted key usage:
303                                                    84 
304 Note: When using a TPM 2.0 with a persistent k !!  85 Create and save a trusted key named "kmk" of length 32 bytes::
305 append 'keyhandle=0x81000001' to statements be << 
306 "new 32 keyhandle=0x81000001".                 << 
307                                                << 
308 ::                                             << 
309                                                    86 
310     $ keyctl add trusted kmk "new 32" @u           87     $ keyctl add trusted kmk "new 32" @u
311     440502848                                      88     440502848
312                                                    89 
313     $ keyctl show                                  90     $ keyctl show
314     Session Keyring                                91     Session Keyring
315            -3 --alswrv    500   500  keyring:      92            -3 --alswrv    500   500  keyring: _ses
316      97833714 --alswrv    500    -1   \_ keyri     93      97833714 --alswrv    500    -1   \_ keyring: _uid.500
317     440502848 --alswrv    500   500       \_ t     94     440502848 --alswrv    500   500       \_ trusted: kmk
318                                                    95 
319     $ keyctl print 440502848                       96     $ keyctl print 440502848
320     0101000000000000000001005d01b7e3f4a6be5709     97     0101000000000000000001005d01b7e3f4a6be5709930f3b70a743cbb42e0cc95e18e915
321     3f60da455bbf1144ad12e4f92b452f966929f6105f     98     3f60da455bbf1144ad12e4f92b452f966929f6105fd29ca28e4d4d5a031d068478bacb0b
322     27351119f822911b0a11ba3d3498ba6a32e50dac7f     99     27351119f822911b0a11ba3d3498ba6a32e50dac7f32894dd890eb9ad578e4e292c83722
323     a52e56a097e6a68b3f56f7a52ece0cdccba1eb62ca    100     a52e56a097e6a68b3f56f7a52ece0cdccba1eb62cad7d817f6dc58898b3ac15f36026fec
324     d568bd4a706cb60bb37be6d8f1240661199d640b66    101     d568bd4a706cb60bb37be6d8f1240661199d640b66fb0fe3b079f97f450b9ef9c22c6d5d
325     dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471    102     dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471dc6d13ecf8298b946f65345faa5ef0
326     f1f8fff03ad0acb083725535636addb08d73dedb98    103     f1f8fff03ad0acb083725535636addb08d73dedb9832da198081e5deae84bfaf0409c22b
327     e4a8aea2b607ec96931e6f4d4fe563ba              104     e4a8aea2b607ec96931e6f4d4fe563ba
328                                                   105 
329     $ keyctl pipe 440502848 > kmk.blob            106     $ keyctl pipe 440502848 > kmk.blob
330                                                   107 
331 Load a trusted key from the saved blob::          108 Load a trusted key from the saved blob::
332                                                   109 
333     $ keyctl add trusted kmk "load `cat kmk.bl    110     $ keyctl add trusted kmk "load `cat kmk.blob`" @u
334     268728824                                     111     268728824
335                                                   112 
336     $ keyctl print 268728824                      113     $ keyctl print 268728824
337     0101000000000000000001005d01b7e3f4a6be5709    114     0101000000000000000001005d01b7e3f4a6be5709930f3b70a743cbb42e0cc95e18e915
338     3f60da455bbf1144ad12e4f92b452f966929f6105f    115     3f60da455bbf1144ad12e4f92b452f966929f6105fd29ca28e4d4d5a031d068478bacb0b
339     27351119f822911b0a11ba3d3498ba6a32e50dac7f    116     27351119f822911b0a11ba3d3498ba6a32e50dac7f32894dd890eb9ad578e4e292c83722
340     a52e56a097e6a68b3f56f7a52ece0cdccba1eb62ca    117     a52e56a097e6a68b3f56f7a52ece0cdccba1eb62cad7d817f6dc58898b3ac15f36026fec
341     d568bd4a706cb60bb37be6d8f1240661199d640b66    118     d568bd4a706cb60bb37be6d8f1240661199d640b66fb0fe3b079f97f450b9ef9c22c6d5d
342     dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471    119     dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471dc6d13ecf8298b946f65345faa5ef0
343     f1f8fff03ad0acb083725535636addb08d73dedb98    120     f1f8fff03ad0acb083725535636addb08d73dedb9832da198081e5deae84bfaf0409c22b
344     e4a8aea2b607ec96931e6f4d4fe563ba              121     e4a8aea2b607ec96931e6f4d4fe563ba
345                                                   122 
346 Reseal (TPM specific) a trusted key under new  !! 123 Reseal a trusted key under new pcr values::
347                                                   124 
348     $ keyctl update 268728824 "update pcrinfo=    125     $ keyctl update 268728824 "update pcrinfo=`cat pcr.blob`"
349     $ keyctl print 268728824                      126     $ keyctl print 268728824
350     010100000000002c0002800093c35a09b70fff26e7    127     010100000000002c0002800093c35a09b70fff26e7a98ae786c641e678ec6ffb6b46d805
351     77c8a6377aed9d3219c6dfec4b23ffe3000001005d    128     77c8a6377aed9d3219c6dfec4b23ffe3000001005d37d472ac8a44023fbb3d18583a4f73
352     d3a076c0858f6f1dcaa39ea0f119911ff03f5406df    129     d3a076c0858f6f1dcaa39ea0f119911ff03f5406df4f7f27f41da8d7194f45c9f4e00f2e
353     df449f266253aa3f52e55c53de147773e00f0f9aca    130     df449f266253aa3f52e55c53de147773e00f0f9aca86c64d94c95382265968c354c5eab4
354     9638c5ae99c89de1e0997242edfb0b501744e11ff9    131     9638c5ae99c89de1e0997242edfb0b501744e11ff9762dfd951cffd93227cc513384e7e6
355     e782c29435c7ec2edafaa2f4c1fe6e7a781b59549f    132     e782c29435c7ec2edafaa2f4c1fe6e7a781b59549ff5296371b42133777dcc5b8b971610
356     94bc67ede19e43ddb9dc2baacad374a36feaf0314d    133     94bc67ede19e43ddb9dc2baacad374a36feaf0314d700af0a65c164b7082401740e489c9
357     7ef6a24defe4846104209bf0c3eced7fa1a672ed5b    134     7ef6a24defe4846104209bf0c3eced7fa1a672ed5b125fc9d8cd88b476a658a4434644ef
358     df8ae9a178e9f83ba9f08d10fa47e4226b98b0702f    135     df8ae9a178e9f83ba9f08d10fa47e4226b98b0702f06b3b8
359                                                   136 
360                                                << 
361 The initial consumer of trusted keys is EVM, w    137 The initial consumer of trusted keys is EVM, which at boot time needs a high
362 quality symmetric key for HMAC protection of f !! 138 quality symmetric key for HMAC protection of file metadata.  The use of a
363 trusted key provides strong guarantees that th    139 trusted key provides strong guarantees that the EVM key has not been
364 compromised by a user level problem, and when  !! 140 compromised by a user level problem, and when sealed to specific boot PCR
365 state, protects against boot and offline attac !! 141 values, protects against boot and offline attacks.  Create and save an
366 encrypted key "evm" using the above trusted ke    142 encrypted key "evm" using the above trusted key "kmk":
367                                                   143 
368 option 1: omitting 'format'::                     144 option 1: omitting 'format'::
369                                                   145 
370     $ keyctl add encrypted evm "new trusted:km    146     $ keyctl add encrypted evm "new trusted:kmk 32" @u
371     159771175                                     147     159771175
372                                                   148 
373 option 2: explicitly defining 'format' as 'def    149 option 2: explicitly defining 'format' as 'default'::
374                                                   150 
375     $ keyctl add encrypted evm "new default tr    151     $ keyctl add encrypted evm "new default trusted:kmk 32" @u
376     159771175                                     152     159771175
377                                                   153 
378     $ keyctl print 159771175                      154     $ keyctl print 159771175
379     default trusted:kmk 32 2375725ad57798846a9    155     default trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b3
380     82dbbc55be2a44616e4959430436dc4f2a7a9659aa    156     82dbbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0
381     24717c64 5972dcb82ab2dde83376d82b2e3c09ffc    157     24717c64 5972dcb82ab2dde83376d82b2e3c09ffc
382                                                   158 
383     $ keyctl pipe 159771175 > evm.blob            159     $ keyctl pipe 159771175 > evm.blob
384                                                   160 
385 Load an encrypted key "evm" from saved blob::     161 Load an encrypted key "evm" from saved blob::
386                                                   162 
387     $ keyctl add encrypted evm "load `cat evm.    163     $ keyctl add encrypted evm "load `cat evm.blob`" @u
388     831684262                                     164     831684262
389                                                   165 
390     $ keyctl print 831684262                      166     $ keyctl print 831684262
391     default trusted:kmk 32 2375725ad57798846a9    167     default trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b3
392     82dbbc55be2a44616e4959430436dc4f2a7a9659aa    168     82dbbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0
393     24717c64 5972dcb82ab2dde83376d82b2e3c09ffc    169     24717c64 5972dcb82ab2dde83376d82b2e3c09ffc
394                                                   170 
395 Instantiate an encrypted key "evm" using user- << 
396                                                << 
397     $ evmkey=$(dd if=/dev/urandom bs=1 count=3 << 
398     $ keyctl add encrypted evm "new default us << 
399     794890253                                  << 
400                                                << 
401     $ keyctl print 794890253                   << 
402     default user:kmk 32 2375725ad57798846a9bbd << 
403     bbc55be2a44616e4959430436dc4f2a7a9659aa60b << 
404     17c64 5972dcb82ab2dde83376d82b2e3c09ffc    << 
405                                                << 
406 Other uses for trusted and encrypted keys, suc    171 Other uses for trusted and encrypted keys, such as for disk and file encryption
407 are anticipated.  In particular the new format !! 172 are anticipated.  In particular the new format 'ecryptfs' has been defined in
408 in order to use encrypted keys to mount an eCr    173 in order to use encrypted keys to mount an eCryptfs filesystem.  More details
409 about the usage can be found in the file          174 about the usage can be found in the file
410 ``Documentation/security/keys/ecryptfs.rst``.     175 ``Documentation/security/keys/ecryptfs.rst``.
411                                                << 
412 Another new format 'enc32' has been defined in << 
413 with payload size of 32 bytes. This will initi << 
414 but may expand to other usages that require 32 << 
415                                                << 
416                                                << 
417 TPM 2.0 ASN.1 Key Format                       << 
418 ------------------------                       << 
419                                                << 
420 The TPM 2.0 ASN.1 key format is designed to be << 
421 even in binary form (fixing a problem we had w << 
422 format) and to be extensible for additions lik << 
423 policy::                                       << 
424                                                << 
425     TPMKey ::= SEQUENCE {                      << 
426         type            OBJECT IDENTIFIER      << 
427         emptyAuth       [0] EXPLICIT BOOLEAN O << 
428         parent          INTEGER                << 
429         pubkey          OCTET STRING           << 
430         privkey         OCTET STRING           << 
431     }                                          << 
432                                                << 
433 type is what distinguishes the key even in bin << 
434 is provided by the TCG to be unique and thus f << 
435 binary pattern at offset 3 in the key.  The OI << 
436 available are::                                << 
437                                                << 
438     2.23.133.10.1.3 TPM Loadable key.  This is << 
439                     RSA2048 or Elliptic Curve) << 
440                     TPM2_Load() operation.     << 
441                                                << 
442     2.23.133.10.1.4 TPM Importable Key.  This  << 
443                     RSA2048 or Elliptic Curve) << 
444                     TPM2_Import() operation.   << 
445                                                << 
446     2.23.133.10.1.5 TPM Sealed Data.  This is  << 
447                     bytes) which is sealed by  << 
448                     represents a symmetric key << 
449                     use.                       << 
450                                                << 
451 The trusted key code only uses the TPM Sealed  << 
452                                                << 
453 emptyAuth is true if the key has well known au << 
454 is false or not present, the key requires an e << 
455 phrase.  This is used by most user space consu << 
456 to prompt for a password.                      << 
457                                                << 
458 parent represents the parent key handle, eithe << 
459 like 0x81000001 for the RSA primary storage ke << 
460 also support specifying the primary handle in  << 
461 this happens the Elliptic Curve variant of the << 
462 TCG defined template will be generated on the  << 
463 object and used as the parent.  The current ke << 
464 the 0x81 MSO form.                             << 
465                                                << 
466 pubkey is the binary representation of TPM2B_P << 
467 initial TPM2B header, which can be reconstruct << 
468 string length.                                 << 
469                                                << 
470 privkey is the binary representation of TPM2B_ << 
471 initial TPM2B header which can be reconstructe << 
472 string length.                                 << 
473                                                << 
474 DCP Blob Format                                << 
475 ---------------                                << 
476                                                << 
477 .. kernel-doc:: security/keys/trusted-keys/tru << 
478    :doc: dcp blob format                       << 
479                                                << 
480 .. kernel-doc:: security/keys/trusted-keys/tru << 
481    :identifiers: struct dcp_blob_fmt           << 
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php