1 ========================== 2 Trusted and Encrypted Keys 3 ========================== 4 5 Trusted and Encrypted Keys are two new key typ 6 key ring service. Both of these new types are 7 and in both cases all keys are created in the 8 stores, and loads only encrypted blobs. Trust 9 of a Trust Source for greater security, while 10 system. All user level blobs, are displayed an 11 convenience, and are integrity verified. 12 13 14 Trust Source 15 ============ 16 17 A trust source provides the source of security 18 section lists currently supported trust source 19 considerations. Whether or not a trust source 20 on the strength and correctness of its impleme 21 environment for a specific use case. Since th 22 environment is, and there is no metric of trus 23 consumer of the Trusted Keys to determine if t 24 safe. 25 26 * Root of trust for storage 27 28 (1) TPM (Trusted Platform Module: hardwar 29 30 Rooted to Storage Root Key (SRK) whic 31 provides crypto operation to establis 32 33 (2) TEE (Trusted Execution Environment: O 34 35 Rooted to Hardware Unique Key (HUK) w 36 fuses and is accessible to TEE only. 37 38 (3) CAAM (Cryptographic Acceleration and 39 40 When High Assurance Boot (HAB) is ena 41 mode, trust is rooted to the OTPMK, a 42 randomly generated and fused into eac 43 Otherwise, a common fixed test key is 44 45 (4) DCP (Data Co-Processor: crypto accele 46 47 Rooted to a one-time programmable key 48 in the on-chip fuses and is accessibl 49 DCP provides two keys that can be use 50 and the UNIQUE key. Default is to use 51 the OTP key can be done via a module 52 53 * Execution isolation 54 55 (1) TPM 56 57 Fixed set of operations running in is 58 59 (2) TEE 60 61 Customizable set of operations runnin 62 environment verified via Secure/Trust 63 64 (3) CAAM 65 66 Fixed set of operations running in is 67 68 (4) DCP 69 70 Fixed set of cryptographic operations 71 environment. Only basic blob key encr 72 The actual key sealing/unsealing is d 73 74 * Optional binding to platform integrity sta 75 76 (1) TPM 77 78 Keys can be optionally sealed to spec 79 values, and only unsealed by the TPM, 80 verifications match. A loaded Trusted 81 (future) PCR values, so keys are easi 82 such as when the kernel and initramfs 83 have many saved blobs under different 84 easily supported. 85 86 (2) TEE 87 88 Relies on Secure/Trusted boot process 89 be extended with TEE based measured b 90 91 (3) CAAM 92 93 Relies on the High Assurance Boot (HA 94 for platform integrity. 95 96 (4) DCP 97 98 Relies on Secure/Trusted boot process 99 platform integrity. 100 101 * Interfaces and APIs 102 103 (1) TPM 104 105 TPMs have well-documented, standardiz 106 107 (2) TEE 108 109 TEEs have well-documented, standardiz 110 more details refer to ``Documentation 111 112 (3) CAAM 113 114 Interface is specific to silicon vend 115 116 (4) DCP 117 118 Vendor-specific API that is implement 119 ``drivers/crypto/mxs-dcp.c``. 120 121 * Threat model 122 123 The strength and appropriateness of a par 124 purpose must be assessed when using them 125 126 127 Key Generation 128 ============== 129 130 Trusted Keys 131 ------------ 132 133 New keys are created from random numbers. They 134 a child key in the storage key hierarchy. Encr 135 child key must be protected by a strong access 136 trust source. The random number generator in u 137 selected trust source: 138 139 * TPM: hardware device based RNG 140 141 Keys are generated within the TPM. Streng 142 from one device manufacturer to another. 143 144 * TEE: OP-TEE based on Arm TrustZone based 145 146 RNG is customizable as per platform needs 147 from platform specific hardware RNG or a 148 which can be seeded via multiple entropy 149 150 * CAAM: Kernel RNG 151 152 The normal kernel random number generator 153 CAAM HWRNG, enable CRYPTO_DEV_FSL_CAAM_RN 154 is probed. 155 156 * DCP (Data Co-Processor: crypto accelerato 157 158 The DCP hardware device itself does not p 159 so the kernel default RNG is used. SoCs w 160 a dedicated hardware RNG that is independ 161 to back the kernel RNG. 162 163 Users may override this by specifying ``truste 164 command-line to override the used RNG with the 165 166 Encrypted Keys 167 -------------- 168 169 Encrypted keys do not depend on a trust source 170 for encryption/decryption. New keys are create 171 random numbers or user-provided decrypted data 172 using a specified ‘master’ key. The ‘mas 173 user-key type. The main disadvantage of encryp 174 rooted in a trusted key, they are only as secu 175 them. The master user key should therefore be 176 possible, preferably early in boot. 177 178 179 Usage 180 ===== 181 182 Trusted Keys usage: TPM 183 ----------------------- 184 185 TPM 1.2: By default, trusted keys are sealed u 186 default authorization value (20 bytes of 0s). 187 time with the TrouSerS utility: "tpm_takeowner 188 189 TPM 2.0: The user must first create a storage 190 key is available after reboot. This can be don 191 192 With the IBM TSS 2 stack:: 193 194 #> tsscreateprimary -hi o -st 195 Handle 80000000 196 #> tssevictcontrol -hi o -ho 80000000 -hp 81 197 198 Or with the Intel TSS 2 stack:: 199 200 #> tpm2_createprimary --hierarchy o -G rsa20 201 [...] 202 #> tpm2_evictcontrol -c key.ctxt 0x81000001 203 persistentHandle: 0x81000001 204 205 Usage:: 206 207 keyctl add trusted name "new keylen [optio 208 keyctl add trusted name "load hex_blob [pc 209 keyctl update key "update [options]" 210 keyctl print keyid 211 212 options: 213 keyhandle= ascii hex value of sealin 214 TPM 1.2: default 0x4000 215 TPM 2.0: no default; mu 216 keyauth= ascii hex auth for sealin 217 (40 ascii zeros) 218 blobauth= ascii hex auth for sealed 219 (40 ascii zeros) 220 pcrinfo= ascii hex of PCR_INFO or 221 pcrlock= pcr number to be extended 222 migratable= 0|1 indicating permission 223 default 1 (resealing allo 224 hash= hash algorithm name as a 225 allowed value is sha1. Fo 226 are sha1, sha256, sha384, 227 policydigest= digest for the authorizat 228 with the same hash algori 229 option. 230 policyhandle= handle to an authorizatio 231 same policy and with the 232 seal the key. 233 234 "keyctl print" returns an ascii hex copy of th 235 TPM_STORED_DATA format. The key length for ne 236 Trusted Keys can be 32 - 128 bytes (256 - 1024 237 within the 2048 bit SRK (RSA) keylength, with 238 239 Trusted Keys usage: TEE 240 ----------------------- 241 242 Usage:: 243 244 keyctl add trusted name "new keylen" ring 245 keyctl add trusted name "load hex_blob" ri 246 keyctl print keyid 247 248 "keyctl print" returns an ASCII hex copy of th 249 specific to TEE device implementation. The ke 250 in bytes. Trusted Keys can be 32 - 128 bytes ( 251 252 Trusted Keys usage: CAAM 253 ------------------------ 254 255 Usage:: 256 257 keyctl add trusted name "new keylen" ring 258 keyctl add trusted name "load hex_blob" ri 259 keyctl print keyid 260 261 "keyctl print" returns an ASCII hex copy of th 262 CAAM-specific format. The key length for new 263 Trusted Keys can be 32 - 128 bytes (256 - 1024 264 265 Trusted Keys usage: DCP 266 ----------------------- 267 268 Usage:: 269 270 keyctl add trusted name "new keylen" ring 271 keyctl add trusted name "load hex_blob" ri 272 keyctl print keyid 273 274 "keyctl print" returns an ASCII hex copy of th 275 specific to this DCP key-blob implementation. 276 always in bytes. Trusted Keys can be 32 - 128 277 278 Encrypted Keys usage 279 -------------------- 280 281 The decrypted portion of encrypted keys can co 282 key or a more complex structure. The format of 283 application specific, which is identified by ' 284 285 Usage:: 286 287 keyctl add encrypted name "new [format] ke 288 ring 289 keyctl add encrypted name "new [format] ke 290 decrypted-data" ring 291 keyctl add encrypted name "load hex_blob" 292 keyctl update keyid "update key-type:maste 293 294 Where:: 295 296 format:= 'default | ecryptfs | enc32' 297 key-type:= 'trusted' | 'user' 298 299 Examples of trusted and encrypted key usage 300 ------------------------------------------- 301 302 Create and save a trusted key named "kmk" of l 303 304 Note: When using a TPM 2.0 with a persistent k 305 append 'keyhandle=0x81000001' to statements be 306 "new 32 keyhandle=0x81000001". 307 308 :: 309 310 $ keyctl add trusted kmk "new 32" @u 311 440502848 312 313 $ keyctl show 314 Session Keyring 315 -3 --alswrv 500 500 keyring: 316 97833714 --alswrv 500 -1 \_ keyri 317 440502848 --alswrv 500 500 \_ t 318 319 $ keyctl print 440502848 320 0101000000000000000001005d01b7e3f4a6be5709 321 3f60da455bbf1144ad12e4f92b452f966929f6105f 322 27351119f822911b0a11ba3d3498ba6a32e50dac7f 323 a52e56a097e6a68b3f56f7a52ece0cdccba1eb62ca 324 d568bd4a706cb60bb37be6d8f1240661199d640b66 325 dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471 326 f1f8fff03ad0acb083725535636addb08d73dedb98 327 e4a8aea2b607ec96931e6f4d4fe563ba 328 329 $ keyctl pipe 440502848 > kmk.blob 330 331 Load a trusted key from the saved blob:: 332 333 $ keyctl add trusted kmk "load `cat kmk.bl 334 268728824 335 336 $ keyctl print 268728824 337 0101000000000000000001005d01b7e3f4a6be5709 338 3f60da455bbf1144ad12e4f92b452f966929f6105f 339 27351119f822911b0a11ba3d3498ba6a32e50dac7f 340 a52e56a097e6a68b3f56f7a52ece0cdccba1eb62ca 341 d568bd4a706cb60bb37be6d8f1240661199d640b66 342 dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471 343 f1f8fff03ad0acb083725535636addb08d73dedb98 344 e4a8aea2b607ec96931e6f4d4fe563ba 345 346 Reseal (TPM specific) a trusted key under new 347 348 $ keyctl update 268728824 "update pcrinfo= 349 $ keyctl print 268728824 350 010100000000002c0002800093c35a09b70fff26e7 351 77c8a6377aed9d3219c6dfec4b23ffe3000001005d 352 d3a076c0858f6f1dcaa39ea0f119911ff03f5406df 353 df449f266253aa3f52e55c53de147773e00f0f9aca 354 9638c5ae99c89de1e0997242edfb0b501744e11ff9 355 e782c29435c7ec2edafaa2f4c1fe6e7a781b59549f 356 94bc67ede19e43ddb9dc2baacad374a36feaf0314d 357 7ef6a24defe4846104209bf0c3eced7fa1a672ed5b 358 df8ae9a178e9f83ba9f08d10fa47e4226b98b0702f 359 360 361 The initial consumer of trusted keys is EVM, w 362 quality symmetric key for HMAC protection of f 363 trusted key provides strong guarantees that th 364 compromised by a user level problem, and when 365 state, protects against boot and offline attac 366 encrypted key "evm" using the above trusted ke 367 368 option 1: omitting 'format':: 369 370 $ keyctl add encrypted evm "new trusted:km 371 159771175 372 373 option 2: explicitly defining 'format' as 'def 374 375 $ keyctl add encrypted evm "new default tr 376 159771175 377 378 $ keyctl print 159771175 379 default trusted:kmk 32 2375725ad57798846a9 380 82dbbc55be2a44616e4959430436dc4f2a7a9659aa 381 24717c64 5972dcb82ab2dde83376d82b2e3c09ffc 382 383 $ keyctl pipe 159771175 > evm.blob 384 385 Load an encrypted key "evm" from saved blob:: 386 387 $ keyctl add encrypted evm "load `cat evm. 388 831684262 389 390 $ keyctl print 831684262 391 default trusted:kmk 32 2375725ad57798846a9 392 82dbbc55be2a44616e4959430436dc4f2a7a9659aa 393 24717c64 5972dcb82ab2dde83376d82b2e3c09ffc 394 395 Instantiate an encrypted key "evm" using user- 396 397 $ evmkey=$(dd if=/dev/urandom bs=1 count=3 398 $ keyctl add encrypted evm "new default us 399 794890253 400 401 $ keyctl print 794890253 402 default user:kmk 32 2375725ad57798846a9bbd 403 bbc55be2a44616e4959430436dc4f2a7a9659aa60b 404 17c64 5972dcb82ab2dde83376d82b2e3c09ffc 405 406 Other uses for trusted and encrypted keys, suc 407 are anticipated. In particular the new format 408 in order to use encrypted keys to mount an eCr 409 about the usage can be found in the file 410 ``Documentation/security/keys/ecryptfs.rst``. 411 412 Another new format 'enc32' has been defined in 413 with payload size of 32 bytes. This will initi 414 but may expand to other usages that require 32 415 416 417 TPM 2.0 ASN.1 Key Format 418 ------------------------ 419 420 The TPM 2.0 ASN.1 key format is designed to be 421 even in binary form (fixing a problem we had w 422 format) and to be extensible for additions lik 423 policy:: 424 425 TPMKey ::= SEQUENCE { 426 type OBJECT IDENTIFIER 427 emptyAuth [0] EXPLICIT BOOLEAN O 428 parent INTEGER 429 pubkey OCTET STRING 430 privkey OCTET STRING 431 } 432 433 type is what distinguishes the key even in bin 434 is provided by the TCG to be unique and thus f 435 binary pattern at offset 3 in the key. The OI 436 available are:: 437 438 2.23.133.10.1.3 TPM Loadable key. This is 439 RSA2048 or Elliptic Curve) 440 TPM2_Load() operation. 441 442 2.23.133.10.1.4 TPM Importable Key. This 443 RSA2048 or Elliptic Curve) 444 TPM2_Import() operation. 445 446 2.23.133.10.1.5 TPM Sealed Data. This is 447 bytes) which is sealed by 448 represents a symmetric key 449 use. 450 451 The trusted key code only uses the TPM Sealed 452 453 emptyAuth is true if the key has well known au 454 is false or not present, the key requires an e 455 phrase. This is used by most user space consu 456 to prompt for a password. 457 458 parent represents the parent key handle, eithe 459 like 0x81000001 for the RSA primary storage ke 460 also support specifying the primary handle in 461 this happens the Elliptic Curve variant of the 462 TCG defined template will be generated on the 463 object and used as the parent. The current ke 464 the 0x81 MSO form. 465 466 pubkey is the binary representation of TPM2B_P 467 initial TPM2B header, which can be reconstruct 468 string length. 469 470 privkey is the binary representation of TPM2B_ 471 initial TPM2B header which can be reconstructe 472 string length. 473 474 DCP Blob Format 475 --------------- 476 477 .. kernel-doc:: security/keys/trusted-keys/tru 478 :doc: dcp blob format 479 480 .. kernel-doc:: security/keys/trusted-keys/tru 481 :identifiers: struct dcp_blob_fmt
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.