~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/sound/kernel-api/writing-an-alsa-driver.rst

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /Documentation/sound/kernel-api/writing-an-alsa-driver.rst (Architecture m68k) and /Documentation/sound/kernel-api/writing-an-alsa-driver.rst (Architecture alpha)


  1 ======================                              1 ======================
  2 Writing an ALSA Driver                              2 Writing an ALSA Driver
  3 ======================                              3 ======================
  4                                                     4 
  5 :Author: Takashi Iwai <tiwai@suse.de>                5 :Author: Takashi Iwai <tiwai@suse.de>
  6                                                     6 
  7 Preface                                             7 Preface
  8 =======                                             8 =======
  9                                                     9 
 10 This document describes how to write an `ALSA      10 This document describes how to write an `ALSA (Advanced Linux Sound
 11 Architecture) <http://www.alsa-project.org/>`_     11 Architecture) <http://www.alsa-project.org/>`__ driver. The document
 12 focuses mainly on PCI soundcards. In the case      12 focuses mainly on PCI soundcards. In the case of other device types, the
 13 API might be different, too. However, at least     13 API might be different, too. However, at least the ALSA kernel API is
 14 consistent, and therefore it would be still a      14 consistent, and therefore it would be still a bit help for writing them.
 15                                                    15 
 16 This document targets people who already have      16 This document targets people who already have enough C language skills
 17 and have basic linux kernel programming knowle     17 and have basic linux kernel programming knowledge. This document doesn't
 18 explain the general topic of linux kernel codi     18 explain the general topic of linux kernel coding and doesn't cover
 19 low-level driver implementation details. It on     19 low-level driver implementation details. It only describes the standard
 20 way to write a PCI sound driver on ALSA.           20 way to write a PCI sound driver on ALSA.
 21                                                    21 
 22 File Tree Structure                                22 File Tree Structure
 23 ===================                                23 ===================
 24                                                    24 
 25 General                                            25 General
 26 -------                                            26 -------
 27                                                    27 
 28 The file tree structure of ALSA driver is depi     28 The file tree structure of ALSA driver is depicted below::
 29                                                    29 
 30             sound                                  30             sound
 31                     /core                          31                     /core
 32                             /oss                   32                             /oss
 33                             /seq                   33                             /seq
 34                                     /oss           34                                     /oss
 35                     /include                       35                     /include
 36                     /drivers                       36                     /drivers
 37                             /mpu401                37                             /mpu401
 38                             /opl3                  38                             /opl3
 39                     /i2c                           39                     /i2c
 40                     /synth                         40                     /synth
 41                             /emux                  41                             /emux
 42                     /pci                           42                     /pci
 43                             /(cards)               43                             /(cards)
 44                     /isa                           44                     /isa
 45                             /(cards)               45                             /(cards)
 46                     /arm                           46                     /arm
 47                     /ppc                           47                     /ppc
 48                     /sparc                         48                     /sparc
 49                     /usb                           49                     /usb
 50                     /pcmcia /(cards)               50                     /pcmcia /(cards)
 51                     /soc                           51                     /soc
 52                     /oss                           52                     /oss
 53                                                    53 
 54                                                    54 
 55 core directory                                     55 core directory
 56 --------------                                     56 --------------
 57                                                    57 
 58 This directory contains the middle layer which     58 This directory contains the middle layer which is the heart of ALSA
 59 drivers. In this directory, the native ALSA mo     59 drivers. In this directory, the native ALSA modules are stored. The
 60 sub-directories contain different modules and      60 sub-directories contain different modules and are dependent upon the
 61 kernel config.                                     61 kernel config.
 62                                                    62 
 63 core/oss                                           63 core/oss
 64 ~~~~~~~~                                           64 ~~~~~~~~
 65                                                    65 
 66 The code for OSS PCM and mixer emulation modul     66 The code for OSS PCM and mixer emulation modules is stored in this
 67 directory. The OSS rawmidi emulation is includ     67 directory. The OSS rawmidi emulation is included in the ALSA rawmidi
 68 code since it's quite small. The sequencer cod     68 code since it's quite small. The sequencer code is stored in
 69 ``core/seq/oss`` directory (see `below <core/s     69 ``core/seq/oss`` directory (see `below <core/seq/oss_>`__).
 70                                                    70 
 71 core/seq                                           71 core/seq
 72 ~~~~~~~~                                           72 ~~~~~~~~
 73                                                    73 
 74 This directory and its sub-directories are for     74 This directory and its sub-directories are for the ALSA sequencer. This
 75 directory contains the sequencer core and prim     75 directory contains the sequencer core and primary sequencer modules such
 76 as snd-seq-midi, snd-seq-virmidi, etc. They ar     76 as snd-seq-midi, snd-seq-virmidi, etc. They are compiled only when
 77 ``CONFIG_SND_SEQUENCER`` is set in the kernel      77 ``CONFIG_SND_SEQUENCER`` is set in the kernel config.
 78                                                    78 
 79 core/seq/oss                                       79 core/seq/oss
 80 ~~~~~~~~~~~~                                       80 ~~~~~~~~~~~~
 81                                                    81 
 82 This contains the OSS sequencer emulation code     82 This contains the OSS sequencer emulation code.
 83                                                    83 
 84 include directory                                  84 include directory
 85 -----------------                                  85 -----------------
 86                                                    86 
 87 This is the place for the public header files      87 This is the place for the public header files of ALSA drivers, which are
 88 to be exported to user-space, or included by s     88 to be exported to user-space, or included by several files in different
 89 directories. Basically, the private header fil     89 directories. Basically, the private header files should not be placed in
 90 this directory, but you may still find files t     90 this directory, but you may still find files there, due to historical
 91 reasons :)                                         91 reasons :)
 92                                                    92 
 93 drivers directory                                  93 drivers directory
 94 -----------------                                  94 -----------------
 95                                                    95 
 96 This directory contains code shared among diff     96 This directory contains code shared among different drivers on different
 97 architectures. They are hence supposed not to      97 architectures. They are hence supposed not to be architecture-specific.
 98 For example, the dummy PCM driver and the seri     98 For example, the dummy PCM driver and the serial MIDI driver are found
 99 in this directory. In the sub-directories, the     99 in this directory. In the sub-directories, there is code for components
100 which are independent from bus and cpu archite    100 which are independent from bus and cpu architectures.
101                                                   101 
102 drivers/mpu401                                    102 drivers/mpu401
103 ~~~~~~~~~~~~~~                                    103 ~~~~~~~~~~~~~~
104                                                   104 
105 The MPU401 and MPU401-UART modules are stored     105 The MPU401 and MPU401-UART modules are stored here.
106                                                   106 
107 drivers/opl3 and opl4                             107 drivers/opl3 and opl4
108 ~~~~~~~~~~~~~~~~~~~~~                             108 ~~~~~~~~~~~~~~~~~~~~~
109                                                   109 
110 The OPL3 and OPL4 FM-synth stuff is found here    110 The OPL3 and OPL4 FM-synth stuff is found here.
111                                                   111 
112 i2c directory                                     112 i2c directory
113 -------------                                     113 -------------
114                                                   114 
115 This contains the ALSA i2c components.            115 This contains the ALSA i2c components.
116                                                   116 
117 Although there is a standard i2c layer on Linu    117 Although there is a standard i2c layer on Linux, ALSA has its own i2c
118 code for some cards, because the soundcard nee    118 code for some cards, because the soundcard needs only a simple operation
119 and the standard i2c API is too complicated fo    119 and the standard i2c API is too complicated for such a purpose.
120                                                   120 
121 synth directory                                   121 synth directory
122 ---------------                                   122 ---------------
123                                                   123 
124 This contains the synth middle-level modules.     124 This contains the synth middle-level modules.
125                                                   125 
126 So far, there is only Emu8000/Emu10k1 synth dr    126 So far, there is only Emu8000/Emu10k1 synth driver under the
127 ``synth/emux`` sub-directory.                     127 ``synth/emux`` sub-directory.
128                                                   128 
129 pci directory                                     129 pci directory
130 -------------                                     130 -------------
131                                                   131 
132 This directory and its sub-directories hold th    132 This directory and its sub-directories hold the top-level card modules
133 for PCI soundcards and the code specific to th    133 for PCI soundcards and the code specific to the PCI BUS.
134                                                   134 
135 The drivers compiled from a single file are st    135 The drivers compiled from a single file are stored directly in the pci
136 directory, while the drivers with several sour    136 directory, while the drivers with several source files are stored on
137 their own sub-directory (e.g. emu10k1, ice1712    137 their own sub-directory (e.g. emu10k1, ice1712).
138                                                   138 
139 isa directory                                     139 isa directory
140 -------------                                     140 -------------
141                                                   141 
142 This directory and its sub-directories hold th    142 This directory and its sub-directories hold the top-level card modules
143 for ISA soundcards.                               143 for ISA soundcards.
144                                                   144 
145 arm, ppc, and sparc directories                   145 arm, ppc, and sparc directories
146 -------------------------------                   146 -------------------------------
147                                                   147 
148 They are used for top-level card modules which    148 They are used for top-level card modules which are specific to one of
149 these architectures.                              149 these architectures.
150                                                   150 
151 usb directory                                     151 usb directory
152 -------------                                     152 -------------
153                                                   153 
154 This directory contains the USB-audio driver.     154 This directory contains the USB-audio driver.
155 The USB MIDI driver is integrated in the usb-a    155 The USB MIDI driver is integrated in the usb-audio driver.
156                                                   156 
157 pcmcia directory                                  157 pcmcia directory
158 ----------------                                  158 ----------------
159                                                   159 
160 The PCMCIA, especially PCCard drivers will go     160 The PCMCIA, especially PCCard drivers will go here. CardBus drivers will
161 be in the pci directory, because their API is     161 be in the pci directory, because their API is identical to that of
162 standard PCI cards.                               162 standard PCI cards.
163                                                   163 
164 soc directory                                     164 soc directory
165 -------------                                     165 -------------
166                                                   166 
167 This directory contains the codes for ASoC (AL    167 This directory contains the codes for ASoC (ALSA System on Chip)
168 layer including ASoC core, codec and machine d    168 layer including ASoC core, codec and machine drivers.
169                                                   169 
170 oss directory                                     170 oss directory
171 -------------                                     171 -------------
172                                                   172 
173 This contains OSS/Lite code.                      173 This contains OSS/Lite code.
174 At the time of writing, all code has been remo    174 At the time of writing, all code has been removed except for dmasound
175 on m68k.                                          175 on m68k.
176                                                   176 
177                                                   177 
178 Basic Flow for PCI Drivers                        178 Basic Flow for PCI Drivers
179 ==========================                        179 ==========================
180                                                   180 
181 Outline                                           181 Outline
182 -------                                           182 -------
183                                                   183 
184 The minimum flow for PCI soundcards is as foll    184 The minimum flow for PCI soundcards is as follows:
185                                                   185 
186 -  define the PCI ID table (see the section `P    186 -  define the PCI ID table (see the section `PCI Entries`_).
187                                                   187 
188 -  create ``probe`` callback.                     188 -  create ``probe`` callback.
189                                                   189 
190 -  create ``remove`` callback.                    190 -  create ``remove`` callback.
191                                                   191 
192 -  create a struct pci_driver structure           192 -  create a struct pci_driver structure
193    containing the three pointers above.           193    containing the three pointers above.
194                                                   194 
195 -  create an ``init`` function just calling th    195 -  create an ``init`` function just calling the
196    :c:func:`pci_register_driver()` to register    196    :c:func:`pci_register_driver()` to register the pci_driver
197    table defined above.                           197    table defined above.
198                                                   198 
199 -  create an ``exit`` function to call the        199 -  create an ``exit`` function to call the
200    :c:func:`pci_unregister_driver()` function.    200    :c:func:`pci_unregister_driver()` function.
201                                                   201 
202 Full Code Example                                 202 Full Code Example
203 -----------------                                 203 -----------------
204                                                   204 
205 The code example is shown below. Some parts ar    205 The code example is shown below. Some parts are kept unimplemented at
206 this moment but will be filled in the next sec    206 this moment but will be filled in the next sections. The numbers in the
207 comment lines of the :c:func:`snd_mychip_probe    207 comment lines of the :c:func:`snd_mychip_probe()` function refer
208 to details explained in the following section.    208 to details explained in the following section.
209                                                   209 
210 ::                                                210 ::
211                                                   211 
212       #include <linux/init.h>                     212       #include <linux/init.h>
213       #include <linux/pci.h>                      213       #include <linux/pci.h>
214       #include <linux/slab.h>                     214       #include <linux/slab.h>
215       #include <sound/core.h>                     215       #include <sound/core.h>
216       #include <sound/initval.h>                  216       #include <sound/initval.h>
217                                                   217 
218       /* module parameters (see "Module Parame    218       /* module parameters (see "Module Parameters") */
219       /* SNDRV_CARDS: maximum number of cards     219       /* SNDRV_CARDS: maximum number of cards supported by this module */
220       static int index[SNDRV_CARDS] = SNDRV_DE    220       static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
221       static char *id[SNDRV_CARDS] = SNDRV_DEF    221       static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
222       static bool enable[SNDRV_CARDS] = SNDRV_    222       static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
223                                                   223 
224       /* definition of the chip-specific recor    224       /* definition of the chip-specific record */
225       struct mychip {                             225       struct mychip {
226               struct snd_card *card;              226               struct snd_card *card;
227               /* the rest of the implementatio    227               /* the rest of the implementation will be in section
228                * "PCI Resource Management"        228                * "PCI Resource Management"
229                */                                 229                */
230       };                                          230       };
231                                                   231 
232       /* chip-specific destructor                 232       /* chip-specific destructor
233        * (see "PCI Resource Management")          233        * (see "PCI Resource Management")
234        */                                         234        */
235       static int snd_mychip_free(struct mychip    235       static int snd_mychip_free(struct mychip *chip)
236       {                                           236       {
237               .... /* will be implemented late    237               .... /* will be implemented later... */
238       }                                           238       }
239                                                   239 
240       /* component-destructor                     240       /* component-destructor
241        * (see "Management of Cards and Compone    241        * (see "Management of Cards and Components")
242        */                                         242        */
243       static int snd_mychip_dev_free(struct sn    243       static int snd_mychip_dev_free(struct snd_device *device)
244       {                                           244       {
245               return snd_mychip_free(device->d    245               return snd_mychip_free(device->device_data);
246       }                                           246       }
247                                                   247 
248       /* chip-specific constructor                248       /* chip-specific constructor
249        * (see "Management of Cards and Compone    249        * (see "Management of Cards and Components")
250        */                                         250        */
251       static int snd_mychip_create(struct snd_    251       static int snd_mychip_create(struct snd_card *card,
252                                    struct pci_    252                                    struct pci_dev *pci,
253                                    struct mych    253                                    struct mychip **rchip)
254       {                                           254       {
255               struct mychip *chip;                255               struct mychip *chip;
256               int err;                            256               int err;
257               static const struct snd_device_o    257               static const struct snd_device_ops ops = {
258                      .dev_free = snd_mychip_de    258                      .dev_free = snd_mychip_dev_free,
259               };                                  259               };
260                                                   260 
261               *rchip = NULL;                      261               *rchip = NULL;
262                                                   262 
263               /* check PCI availability here      263               /* check PCI availability here
264                * (see "PCI Resource Management    264                * (see "PCI Resource Management")
265                */                                 265                */
266               ....                                266               ....
267                                                   267 
268               /* allocate a chip-specific data    268               /* allocate a chip-specific data with zero filled */
269               chip = kzalloc(sizeof(*chip), GF    269               chip = kzalloc(sizeof(*chip), GFP_KERNEL);
270               if (chip == NULL)                   270               if (chip == NULL)
271                       return -ENOMEM;             271                       return -ENOMEM;
272                                                   272 
273               chip->card = card;                  273               chip->card = card;
274                                                   274 
275               /* rest of initialization here;     275               /* rest of initialization here; will be implemented
276                * later, see "PCI Resource Mana    276                * later, see "PCI Resource Management"
277                */                                 277                */
278               ....                                278               ....
279                                                   279 
280               err = snd_device_new(card, SNDRV    280               err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
281               if (err < 0) {                      281               if (err < 0) {
282                       snd_mychip_free(chip);      282                       snd_mychip_free(chip);
283                       return err;                 283                       return err;
284               }                                   284               }
285                                                   285 
286               *rchip = chip;                      286               *rchip = chip;
287               return 0;                           287               return 0;
288       }                                           288       }
289                                                   289 
290       /* constructor -- see "Driver Constructo    290       /* constructor -- see "Driver Constructor" sub-section */
291       static int snd_mychip_probe(struct pci_d    291       static int snd_mychip_probe(struct pci_dev *pci,
292                                   const struct    292                                   const struct pci_device_id *pci_id)
293       {                                           293       {
294               static int dev;                     294               static int dev;
295               struct snd_card *card;              295               struct snd_card *card;
296               struct mychip *chip;                296               struct mychip *chip;
297               int err;                            297               int err;
298                                                   298 
299               /* (1) */                           299               /* (1) */
300               if (dev >= SNDRV_CARDS)             300               if (dev >= SNDRV_CARDS)
301                       return -ENODEV;             301                       return -ENODEV;
302               if (!enable[dev]) {                 302               if (!enable[dev]) {
303                       dev++;                      303                       dev++;
304                       return -ENOENT;             304                       return -ENOENT;
305               }                                   305               }
306                                                   306 
307               /* (2) */                           307               /* (2) */
308               err = snd_card_new(&pci->dev, in    308               err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
309                                  0, &card);       309                                  0, &card);
310               if (err < 0)                        310               if (err < 0)
311                       return err;                 311                       return err;
312                                                   312 
313               /* (3) */                           313               /* (3) */
314               err = snd_mychip_create(card, pc    314               err = snd_mychip_create(card, pci, &chip);
315               if (err < 0)                        315               if (err < 0)
316                       goto error;                 316                       goto error;
317                                                   317 
318               /* (4) */                           318               /* (4) */
319               strcpy(card->driver, "My Chip");    319               strcpy(card->driver, "My Chip");
320               strcpy(card->shortname, "My Own     320               strcpy(card->shortname, "My Own Chip 123");
321               sprintf(card->longname, "%s at 0    321               sprintf(card->longname, "%s at 0x%lx irq %i",
322                       card->shortname, chip->p    322                       card->shortname, chip->port, chip->irq);
323                                                   323 
324               /* (5) */                           324               /* (5) */
325               .... /* implemented later */        325               .... /* implemented later */
326                                                   326 
327               /* (6) */                           327               /* (6) */
328               err = snd_card_register(card);      328               err = snd_card_register(card);
329               if (err < 0)                        329               if (err < 0)
330                       goto error;                 330                       goto error;
331                                                   331 
332               /* (7) */                           332               /* (7) */
333               pci_set_drvdata(pci, card);         333               pci_set_drvdata(pci, card);
334               dev++;                              334               dev++;
335               return 0;                           335               return 0;
336                                                   336 
337       error:                                      337       error:
338               snd_card_free(card);                338               snd_card_free(card);
339               return err;                         339               return err;
340       }                                           340       }
341                                                   341 
342       /* destructor -- see the "Destructor" su    342       /* destructor -- see the "Destructor" sub-section */
343       static void snd_mychip_remove(struct pci    343       static void snd_mychip_remove(struct pci_dev *pci)
344       {                                           344       {
345               snd_card_free(pci_get_drvdata(pc    345               snd_card_free(pci_get_drvdata(pci));
346       }                                           346       }
347                                                   347 
348                                                   348 
349                                                   349 
350 Driver Constructor                                350 Driver Constructor
351 ------------------                                351 ------------------
352                                                   352 
353 The real constructor of PCI drivers is the ``p    353 The real constructor of PCI drivers is the ``probe`` callback. The
354 ``probe`` callback and other component-constru    354 ``probe`` callback and other component-constructors which are called
355 from the ``probe`` callback cannot be used wit    355 from the ``probe`` callback cannot be used with the ``__init`` prefix
356 because any PCI device could be a hotplug devi    356 because any PCI device could be a hotplug device.
357                                                   357 
358 In the ``probe`` callback, the following schem    358 In the ``probe`` callback, the following scheme is often used.
359                                                   359 
360 1) Check and increment the device index.          360 1) Check and increment the device index.
361 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~          361 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
362                                                   362 
363 ::                                                363 ::
364                                                   364 
365   static int dev;                                 365   static int dev;
366   ....                                            366   ....
367   if (dev >= SNDRV_CARDS)                         367   if (dev >= SNDRV_CARDS)
368           return -ENODEV;                         368           return -ENODEV;
369   if (!enable[dev]) {                             369   if (!enable[dev]) {
370           dev++;                                  370           dev++;
371           return -ENOENT;                         371           return -ENOENT;
372   }                                               372   }
373                                                   373 
374                                                   374 
375 where ``enable[dev]`` is the module option.       375 where ``enable[dev]`` is the module option.
376                                                   376 
377 Each time the ``probe`` callback is called, ch    377 Each time the ``probe`` callback is called, check the availability of
378 the device. If not available, simply increment    378 the device. If not available, simply increment the device index and
379 return. dev will be incremented also later (`s    379 return. dev will be incremented also later (`step 7
380 <7) Set the PCI driver data and return zero._>    380 <7) Set the PCI driver data and return zero._>`__).
381                                                   381 
382 2) Create a card instance                         382 2) Create a card instance
383 ~~~~~~~~~~~~~~~~~~~~~~~~~                         383 ~~~~~~~~~~~~~~~~~~~~~~~~~
384                                                   384 
385 ::                                                385 ::
386                                                   386 
387   struct snd_card *card;                          387   struct snd_card *card;
388   int err;                                        388   int err;
389   ....                                            389   ....
390   err = snd_card_new(&pci->dev, index[dev], id    390   err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
391                      0, &card);                   391                      0, &card);
392                                                   392 
393                                                   393 
394 The details will be explained in the section `    394 The details will be explained in the section `Management of Cards and
395 Components`_.                                     395 Components`_.
396                                                   396 
397 3) Create a main component                        397 3) Create a main component
398 ~~~~~~~~~~~~~~~~~~~~~~~~~~                        398 ~~~~~~~~~~~~~~~~~~~~~~~~~~
399                                                   399 
400 In this part, the PCI resources are allocated:    400 In this part, the PCI resources are allocated::
401                                                   401 
402   struct mychip *chip;                            402   struct mychip *chip;
403   ....                                            403   ....
404   err = snd_mychip_create(card, pci, &chip);      404   err = snd_mychip_create(card, pci, &chip);
405   if (err < 0)                                    405   if (err < 0)
406           goto error;                             406           goto error;
407                                                   407 
408 The details will be explained in the section `    408 The details will be explained in the section `PCI Resource
409 Management`_.                                     409 Management`_.
410                                                   410 
411 When something goes wrong, the probe function     411 When something goes wrong, the probe function needs to deal with the
412 error.  In this example, we have a single erro    412 error.  In this example, we have a single error handling path placed
413 at the end of the function::                      413 at the end of the function::
414                                                   414 
415   error:                                          415   error:
416           snd_card_free(card);                    416           snd_card_free(card);
417           return err;                             417           return err;
418                                                   418 
419 Since each component can be properly freed, th    419 Since each component can be properly freed, the single
420 :c:func:`snd_card_free()` call should suffice     420 :c:func:`snd_card_free()` call should suffice in most cases.
421                                                   421 
422                                                   422 
423 4) Set the driver ID and name strings.            423 4) Set the driver ID and name strings.
424 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~            424 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
425                                                   425 
426 ::                                                426 ::
427                                                   427 
428   strcpy(card->driver, "My Chip");                428   strcpy(card->driver, "My Chip");
429   strcpy(card->shortname, "My Own Chip 123");     429   strcpy(card->shortname, "My Own Chip 123");
430   sprintf(card->longname, "%s at 0x%lx irq %i"    430   sprintf(card->longname, "%s at 0x%lx irq %i",
431           card->shortname, chip->port, chip->i    431           card->shortname, chip->port, chip->irq);
432                                                   432 
433 The driver field holds the minimal ID string o    433 The driver field holds the minimal ID string of the chip. This is used
434 by alsa-lib's configurator, so keep it simple     434 by alsa-lib's configurator, so keep it simple but unique. Even the
435 same driver can have different driver IDs to d    435 same driver can have different driver IDs to distinguish the
436 functionality of each chip type.                  436 functionality of each chip type.
437                                                   437 
438 The shortname field is a string shown as more     438 The shortname field is a string shown as more verbose name. The longname
439 field contains the information shown in ``/pro    439 field contains the information shown in ``/proc/asound/cards``.
440                                                   440 
441 5) Create other components, such as mixer, MID    441 5) Create other components, such as mixer, MIDI, etc.
442 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    442 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
443                                                   443 
444 Here you define the basic components such as `    444 Here you define the basic components such as `PCM <PCM Interface_>`__,
445 mixer (e.g. `AC97 <API for AC97 Codec_>`__), M    445 mixer (e.g. `AC97 <API for AC97 Codec_>`__), MIDI (e.g.
446 `MPU-401 <MIDI (MPU401-UART) Interface_>`__),     446 `MPU-401 <MIDI (MPU401-UART) Interface_>`__), and other interfaces.
447 Also, if you want a `proc file <Proc Interface    447 Also, if you want a `proc file <Proc Interface_>`__, define it here,
448 too.                                              448 too.
449                                                   449 
450 6) Register the card instance.                    450 6) Register the card instance.
451 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                    451 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
452                                                   452 
453 ::                                                453 ::
454                                                   454 
455   err = snd_card_register(card);                  455   err = snd_card_register(card);
456   if (err < 0)                                    456   if (err < 0)
457           goto error;                             457           goto error;
458                                                   458 
459 Will be explained in the section `Management o    459 Will be explained in the section `Management of Cards and
460 Components`_, too.                                460 Components`_, too.
461                                                   461 
462 7) Set the PCI driver data and return zero.       462 7) Set the PCI driver data and return zero.
463 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~       463 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
464                                                   464 
465 ::                                                465 ::
466                                                   466 
467   pci_set_drvdata(pci, card);                     467   pci_set_drvdata(pci, card);
468   dev++;                                          468   dev++;
469   return 0;                                       469   return 0;
470                                                   470 
471 In the above, the card record is stored. This     471 In the above, the card record is stored. This pointer is used in the
472 remove callback and power-management callbacks    472 remove callback and power-management callbacks, too.
473                                                   473 
474 Destructor                                        474 Destructor
475 ----------                                        475 ----------
476                                                   476 
477 The destructor, the remove callback, simply re    477 The destructor, the remove callback, simply releases the card instance.
478 Then the ALSA middle layer will release all th    478 Then the ALSA middle layer will release all the attached components
479 automatically.                                    479 automatically.
480                                                   480 
481 It would be typically just calling :c:func:`sn    481 It would be typically just calling :c:func:`snd_card_free()`::
482                                                   482 
483   static void snd_mychip_remove(struct pci_dev    483   static void snd_mychip_remove(struct pci_dev *pci)
484   {                                               484   {
485           snd_card_free(pci_get_drvdata(pci));    485           snd_card_free(pci_get_drvdata(pci));
486   }                                               486   }
487                                                   487 
488                                                   488 
489 The above code assumes that the card pointer i    489 The above code assumes that the card pointer is set to the PCI driver
490 data.                                             490 data.
491                                                   491 
492 Header Files                                      492 Header Files
493 ------------                                      493 ------------
494                                                   494 
495 For the above example, at least the following     495 For the above example, at least the following include files are
496 necessary::                                       496 necessary::
497                                                   497 
498   #include <linux/init.h>                         498   #include <linux/init.h>
499   #include <linux/pci.h>                          499   #include <linux/pci.h>
500   #include <linux/slab.h>                         500   #include <linux/slab.h>
501   #include <sound/core.h>                         501   #include <sound/core.h>
502   #include <sound/initval.h>                      502   #include <sound/initval.h>
503                                                   503 
504 where the last one is necessary only when modu    504 where the last one is necessary only when module options are defined
505 in the source file. If the code is split into     505 in the source file. If the code is split into several files, the files
506 without module options don't need them.           506 without module options don't need them.
507                                                   507 
508 In addition to these headers, you'll need ``<l    508 In addition to these headers, you'll need ``<linux/interrupt.h>`` for
509 interrupt handling, and ``<linux/io.h>`` for I    509 interrupt handling, and ``<linux/io.h>`` for I/O access. If you use the
510 :c:func:`mdelay()` or :c:func:`udelay()` funct    510 :c:func:`mdelay()` or :c:func:`udelay()` functions, you'll need
511 to include ``<linux/delay.h>`` too.               511 to include ``<linux/delay.h>`` too.
512                                                   512 
513 The ALSA interfaces like the PCM and control A    513 The ALSA interfaces like the PCM and control APIs are defined in other
514 ``<sound/xxx.h>`` header files. They have to b    514 ``<sound/xxx.h>`` header files. They have to be included after
515 ``<sound/core.h>``.                               515 ``<sound/core.h>``.
516                                                   516 
517 Management of Cards and Components                517 Management of Cards and Components
518 ==================================                518 ==================================
519                                                   519 
520 Card Instance                                     520 Card Instance
521 -------------                                     521 -------------
522                                                   522 
523 For each soundcard, a “card” record must b    523 For each soundcard, a “card” record must be allocated.
524                                                   524 
525 A card record is the headquarters of the sound    525 A card record is the headquarters of the soundcard. It manages the whole
526 list of devices (components) on the soundcard,    526 list of devices (components) on the soundcard, such as PCM, mixers,
527 MIDI, synthesizer, and so on. Also, the card r    527 MIDI, synthesizer, and so on. Also, the card record holds the ID and the
528 name strings of the card, manages the root of     528 name strings of the card, manages the root of proc files, and controls
529 the power-management states and hotplug discon    529 the power-management states and hotplug disconnections. The component
530 list on the card record is used to manage the     530 list on the card record is used to manage the correct release of
531 resources at destruction.                         531 resources at destruction.
532                                                   532 
533 As mentioned above, to create a card instance,    533 As mentioned above, to create a card instance, call
534 :c:func:`snd_card_new()`::                        534 :c:func:`snd_card_new()`::
535                                                   535 
536   struct snd_card *card;                          536   struct snd_card *card;
537   int err;                                        537   int err;
538   err = snd_card_new(&pci->dev, index, id, mod    538   err = snd_card_new(&pci->dev, index, id, module, extra_size, &card);
539                                                   539 
540                                                   540 
541 The function takes six arguments: the parent d    541 The function takes six arguments: the parent device pointer, the
542 card-index number, the id string, the module p    542 card-index number, the id string, the module pointer (usually
543 ``THIS_MODULE``), the size of extra-data space    543 ``THIS_MODULE``), the size of extra-data space, and the pointer to
544 return the card instance. The extra_size argum    544 return the card instance. The extra_size argument is used to allocate
545 card->private_data for the chip-specific data.    545 card->private_data for the chip-specific data. Note that these data are
546 allocated by :c:func:`snd_card_new()`.            546 allocated by :c:func:`snd_card_new()`.
547                                                   547 
548 The first argument, the pointer of struct devi    548 The first argument, the pointer of struct device, specifies the parent
549 device. For PCI devices, typically ``&pci->``     549 device. For PCI devices, typically ``&pci->`` is passed there.
550                                                   550 
551 Components                                        551 Components
552 ----------                                        552 ----------
553                                                   553 
554 After the card is created, you can attach the     554 After the card is created, you can attach the components (devices) to
555 the card instance. In an ALSA driver, a compon    555 the card instance. In an ALSA driver, a component is represented as a
556 struct snd_device object. A component             556 struct snd_device object. A component
557 can be a PCM instance, a control interface, a     557 can be a PCM instance, a control interface, a raw MIDI interface, etc.
558 Each such instance has one component entry.       558 Each such instance has one component entry.
559                                                   559 
560 A component can be created via the :c:func:`sn    560 A component can be created via the :c:func:`snd_device_new()`
561 function::                                        561 function::
562                                                   562 
563   snd_device_new(card, SNDRV_DEV_XXX, chip, &o    563   snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
564                                                   564 
565 This takes the card pointer, the device-level     565 This takes the card pointer, the device-level (``SNDRV_DEV_XXX``), the
566 data pointer, and the callback pointers (``&op    566 data pointer, and the callback pointers (``&ops``). The device-level
567 defines the type of components and the order o    567 defines the type of components and the order of registration and
568 de-registration. For most components, the devi    568 de-registration. For most components, the device-level is already
569 defined. For a user-defined component, you can    569 defined. For a user-defined component, you can use
570 ``SNDRV_DEV_LOWLEVEL``.                           570 ``SNDRV_DEV_LOWLEVEL``.
571                                                   571 
572 This function itself doesn't allocate the data    572 This function itself doesn't allocate the data space. The data must be
573 allocated manually beforehand, and its pointer    573 allocated manually beforehand, and its pointer is passed as the
574 argument. This pointer (``chip`` in the above     574 argument. This pointer (``chip`` in the above example) is used as the
575 identifier for the instance.                      575 identifier for the instance.
576                                                   576 
577 Each pre-defined ALSA component such as AC97 a    577 Each pre-defined ALSA component such as AC97 and PCM calls
578 :c:func:`snd_device_new()` inside its construc    578 :c:func:`snd_device_new()` inside its constructor. The destructor
579 for each component is defined in the callback     579 for each component is defined in the callback pointers. Hence, you don't
580 need to take care of calling a destructor for     580 need to take care of calling a destructor for such a component.
581                                                   581 
582 If you wish to create your own component, you     582 If you wish to create your own component, you need to set the destructor
583 function to the dev_free callback in the ``ops    583 function to the dev_free callback in the ``ops``, so that it can be
584 released automatically via :c:func:`snd_card_f    584 released automatically via :c:func:`snd_card_free()`. The next
585 example will show an implementation of chip-sp    585 example will show an implementation of chip-specific data.
586                                                   586 
587 Chip-Specific Data                                587 Chip-Specific Data
588 ------------------                                588 ------------------
589                                                   589 
590 Chip-specific information, e.g. the I/O port a    590 Chip-specific information, e.g. the I/O port address, its resource
591 pointer, or the irq number, is stored in the c    591 pointer, or the irq number, is stored in the chip-specific record::
592                                                   592 
593   struct mychip {                                 593   struct mychip {
594           ....                                    594           ....
595   };                                              595   };
596                                                   596 
597                                                   597 
598 In general, there are two ways of allocating t    598 In general, there are two ways of allocating the chip record.
599                                                   599 
600 1. Allocating via :c:func:`snd_card_new()`.       600 1. Allocating via :c:func:`snd_card_new()`.
601 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    601 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
602                                                   602 
603 As mentioned above, you can pass the extra-dat    603 As mentioned above, you can pass the extra-data-length to the 5th
604 argument of :c:func:`snd_card_new()`, e.g.::      604 argument of :c:func:`snd_card_new()`, e.g.::
605                                                   605 
606   err = snd_card_new(&pci->dev, index[dev], id    606   err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
607                      sizeof(struct mychip), &c    607                      sizeof(struct mychip), &card);
608                                                   608 
609 struct mychip is the type of the chip record.     609 struct mychip is the type of the chip record.
610                                                   610 
611 In return, the allocated record can be accesse    611 In return, the allocated record can be accessed as
612                                                   612 
613 ::                                                613 ::
614                                                   614 
615   struct mychip *chip = card->private_data;       615   struct mychip *chip = card->private_data;
616                                                   616 
617 With this method, you don't have to allocate t    617 With this method, you don't have to allocate twice. The record is
618 released together with the card instance.         618 released together with the card instance.
619                                                   619 
620 2. Allocating an extra device.                    620 2. Allocating an extra device.
621 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                    621 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
622                                                   622 
623 After allocating a card instance via :c:func:`    623 After allocating a card instance via :c:func:`snd_card_new()`
624 (with ``0`` on the 4th arg), call :c:func:`kza    624 (with ``0`` on the 4th arg), call :c:func:`kzalloc()`::
625                                                   625 
626   struct snd_card *card;                          626   struct snd_card *card;
627   struct mychip *chip;                            627   struct mychip *chip;
628   err = snd_card_new(&pci->dev, index[dev], id    628   err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
629                      0, &card);                   629                      0, &card);
630   .....                                           630   .....
631   chip = kzalloc(sizeof(*chip), GFP_KERNEL);      631   chip = kzalloc(sizeof(*chip), GFP_KERNEL);
632                                                   632 
633 The chip record should have the field to hold     633 The chip record should have the field to hold the card pointer at least,
634                                                   634 
635 ::                                                635 ::
636                                                   636 
637   struct mychip {                                 637   struct mychip {
638           struct snd_card *card;                  638           struct snd_card *card;
639           ....                                    639           ....
640   };                                              640   };
641                                                   641 
642                                                   642 
643 Then, set the card pointer in the returned chi    643 Then, set the card pointer in the returned chip instance::
644                                                   644 
645   chip->card = card;                              645   chip->card = card;
646                                                   646 
647 Next, initialize the fields, and register this    647 Next, initialize the fields, and register this chip record as a
648 low-level device with a specified ``ops``::       648 low-level device with a specified ``ops``::
649                                                   649 
650   static const struct snd_device_ops ops = {      650   static const struct snd_device_ops ops = {
651           .dev_free =        snd_mychip_dev_fr    651           .dev_free =        snd_mychip_dev_free,
652   };                                              652   };
653   ....                                            653   ....
654   snd_device_new(card, SNDRV_DEV_LOWLEVEL, chi    654   snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
655                                                   655 
656 :c:func:`snd_mychip_dev_free()` is the device-    656 :c:func:`snd_mychip_dev_free()` is the device-destructor
657 function, which will call the real destructor:    657 function, which will call the real destructor::
658                                                   658 
659   static int snd_mychip_dev_free(struct snd_de    659   static int snd_mychip_dev_free(struct snd_device *device)
660   {                                               660   {
661           return snd_mychip_free(device->devic    661           return snd_mychip_free(device->device_data);
662   }                                               662   }
663                                                   663 
664 where :c:func:`snd_mychip_free()` is the real     664 where :c:func:`snd_mychip_free()` is the real destructor.
665                                                   665 
666 The demerit of this method is the obviously la    666 The demerit of this method is the obviously larger amount of code.
667 The merit is, however, that you can trigger yo    667 The merit is, however, that you can trigger your own callback at
668 registering and disconnecting the card via a s    668 registering and disconnecting the card via a setting in snd_device_ops.
669 About registering and disconnecting the card,     669 About registering and disconnecting the card, see the subsections
670 below.                                            670 below.
671                                                   671 
672                                                   672 
673 Registration and Release                          673 Registration and Release
674 ------------------------                          674 ------------------------
675                                                   675 
676 After all components are assigned, register th    676 After all components are assigned, register the card instance by calling
677 :c:func:`snd_card_register()`. Access to the d    677 :c:func:`snd_card_register()`. Access to the device files is
678 enabled at this point. That is, before            678 enabled at this point. That is, before
679 :c:func:`snd_card_register()` is called, the c    679 :c:func:`snd_card_register()` is called, the components are safely
680 inaccessible from external side. If this call     680 inaccessible from external side. If this call fails, exit the probe
681 function after releasing the card via :c:func:    681 function after releasing the card via :c:func:`snd_card_free()`.
682                                                   682 
683 For releasing the card instance, you can call     683 For releasing the card instance, you can call simply
684 :c:func:`snd_card_free()`. As mentioned earlie    684 :c:func:`snd_card_free()`. As mentioned earlier, all components
685 are released automatically by this call.          685 are released automatically by this call.
686                                                   686 
687 For a device which allows hotplugging, you can    687 For a device which allows hotplugging, you can use
688 :c:func:`snd_card_free_when_closed()`. This on    688 :c:func:`snd_card_free_when_closed()`. This one will postpone
689 the destruction until all devices are closed.     689 the destruction until all devices are closed.
690                                                   690 
691 PCI Resource Management                           691 PCI Resource Management
692 =======================                           692 =======================
693                                                   693 
694 Full Code Example                                 694 Full Code Example
695 -----------------                                 695 -----------------
696                                                   696 
697 In this section, we'll complete the chip-speci    697 In this section, we'll complete the chip-specific constructor,
698 destructor and PCI entries. Example code is sh    698 destructor and PCI entries. Example code is shown first, below::
699                                                   699 
700       struct mychip {                             700       struct mychip {
701               struct snd_card *card;              701               struct snd_card *card;
702               struct pci_dev *pci;                702               struct pci_dev *pci;
703                                                   703 
704               unsigned long port;                 704               unsigned long port;
705               int irq;                            705               int irq;
706       };                                          706       };
707                                                   707 
708       static int snd_mychip_free(struct mychip    708       static int snd_mychip_free(struct mychip *chip)
709       {                                           709       {
710               /* disable hardware here if any     710               /* disable hardware here if any */
711               .... /* (not implemented in this    711               .... /* (not implemented in this document) */
712                                                   712 
713               /* release the irq */               713               /* release the irq */
714               if (chip->irq >= 0)                 714               if (chip->irq >= 0)
715                       free_irq(chip->irq, chip    715                       free_irq(chip->irq, chip);
716               /* release the I/O ports & memor    716               /* release the I/O ports & memory */
717               pci_release_regions(chip->pci);     717               pci_release_regions(chip->pci);
718               /* disable the PCI entry */         718               /* disable the PCI entry */
719               pci_disable_device(chip->pci);      719               pci_disable_device(chip->pci);
720               /* release the data */              720               /* release the data */
721               kfree(chip);                        721               kfree(chip);
722               return 0;                           722               return 0;
723       }                                           723       }
724                                                   724 
725       /* chip-specific constructor */             725       /* chip-specific constructor */
726       static int snd_mychip_create(struct snd_    726       static int snd_mychip_create(struct snd_card *card,
727                                    struct pci_    727                                    struct pci_dev *pci,
728                                    struct mych    728                                    struct mychip **rchip)
729       {                                           729       {
730               struct mychip *chip;                730               struct mychip *chip;
731               int err;                            731               int err;
732               static const struct snd_device_o    732               static const struct snd_device_ops ops = {
733                      .dev_free = snd_mychip_de    733                      .dev_free = snd_mychip_dev_free,
734               };                                  734               };
735                                                   735 
736               *rchip = NULL;                      736               *rchip = NULL;
737                                                   737 
738               /* initialize the PCI entry */      738               /* initialize the PCI entry */
739               err = pci_enable_device(pci);       739               err = pci_enable_device(pci);
740               if (err < 0)                        740               if (err < 0)
741                       return err;                 741                       return err;
742               /* check PCI availability (28bit    742               /* check PCI availability (28bit DMA) */
743               if (pci_set_dma_mask(pci, DMA_BI    743               if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
744                   pci_set_consistent_dma_mask(    744                   pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
745                       printk(KERN_ERR "error t    745                       printk(KERN_ERR "error to set 28bit mask DMA\n");
746                       pci_disable_device(pci);    746                       pci_disable_device(pci);
747                       return -ENXIO;              747                       return -ENXIO;
748               }                                   748               }
749                                                   749 
750               chip = kzalloc(sizeof(*chip), GF    750               chip = kzalloc(sizeof(*chip), GFP_KERNEL);
751               if (chip == NULL) {                 751               if (chip == NULL) {
752                       pci_disable_device(pci);    752                       pci_disable_device(pci);
753                       return -ENOMEM;             753                       return -ENOMEM;
754               }                                   754               }
755                                                   755 
756               /* initialize the stuff */          756               /* initialize the stuff */
757               chip->card = card;                  757               chip->card = card;
758               chip->pci = pci;                    758               chip->pci = pci;
759               chip->irq = -1;                     759               chip->irq = -1;
760                                                   760 
761               /* (1) PCI resource allocation *    761               /* (1) PCI resource allocation */
762               err = pci_request_regions(pci, "    762               err = pci_request_regions(pci, "My Chip");
763               if (err < 0) {                      763               if (err < 0) {
764                       kfree(chip);                764                       kfree(chip);
765                       pci_disable_device(pci);    765                       pci_disable_device(pci);
766                       return err;                 766                       return err;
767               }                                   767               }
768               chip->port = pci_resource_start(    768               chip->port = pci_resource_start(pci, 0);
769               if (request_irq(pci->irq, snd_my    769               if (request_irq(pci->irq, snd_mychip_interrupt,
770                               IRQF_SHARED, KBU    770                               IRQF_SHARED, KBUILD_MODNAME, chip)) {
771                       printk(KERN_ERR "cannot     771                       printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
772                       snd_mychip_free(chip);      772                       snd_mychip_free(chip);
773                       return -EBUSY;              773                       return -EBUSY;
774               }                                   774               }
775               chip->irq = pci->irq;               775               chip->irq = pci->irq;
776               card->sync_irq = chip->irq;         776               card->sync_irq = chip->irq;
777                                                   777 
778               /* (2) initialization of the chi    778               /* (2) initialization of the chip hardware */
779               .... /*   (not implemented in th    779               .... /*   (not implemented in this document) */
780                                                   780 
781               err = snd_device_new(card, SNDRV    781               err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
782               if (err < 0) {                      782               if (err < 0) {
783                       snd_mychip_free(chip);      783                       snd_mychip_free(chip);
784                       return err;                 784                       return err;
785               }                                   785               }
786                                                   786 
787               *rchip = chip;                      787               *rchip = chip;
788               return 0;                           788               return 0;
789       }                                           789       }
790                                                   790 
791       /* PCI IDs */                               791       /* PCI IDs */
792       static struct pci_device_id snd_mychip_i    792       static struct pci_device_id snd_mychip_ids[] = {
793               { PCI_VENDOR_ID_FOO, PCI_DEVICE_    793               { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
794                 PCI_ANY_ID, PCI_ANY_ID, 0, 0,     794                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
795               ....                                795               ....
796               { 0, }                              796               { 0, }
797       };                                          797       };
798       MODULE_DEVICE_TABLE(pci, snd_mychip_ids)    798       MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
799                                                   799 
800       /* pci_driver definition */                 800       /* pci_driver definition */
801       static struct pci_driver driver = {         801       static struct pci_driver driver = {
802               .name = KBUILD_MODNAME,             802               .name = KBUILD_MODNAME,
803               .id_table = snd_mychip_ids,         803               .id_table = snd_mychip_ids,
804               .probe = snd_mychip_probe,          804               .probe = snd_mychip_probe,
805               .remove = snd_mychip_remove,        805               .remove = snd_mychip_remove,
806       };                                          806       };
807                                                   807 
808       /* module initialization */                 808       /* module initialization */
809       static int __init alsa_card_mychip_init(    809       static int __init alsa_card_mychip_init(void)
810       {                                           810       {
811               return pci_register_driver(&driv    811               return pci_register_driver(&driver);
812       }                                           812       }
813                                                   813 
814       /* module clean up */                       814       /* module clean up */
815       static void __exit alsa_card_mychip_exit    815       static void __exit alsa_card_mychip_exit(void)
816       {                                           816       {
817               pci_unregister_driver(&driver);     817               pci_unregister_driver(&driver);
818       }                                           818       }
819                                                   819 
820       module_init(alsa_card_mychip_init)          820       module_init(alsa_card_mychip_init)
821       module_exit(alsa_card_mychip_exit)          821       module_exit(alsa_card_mychip_exit)
822                                                   822 
823       EXPORT_NO_SYMBOLS; /* for old kernels on    823       EXPORT_NO_SYMBOLS; /* for old kernels only */
824                                                   824 
825 Some Hafta's                                      825 Some Hafta's
826 ------------                                      826 ------------
827                                                   827 
828 The allocation of PCI resources is done in the    828 The allocation of PCI resources is done in the ``probe`` function, and
829 usually an extra :c:func:`xxx_create()` functi    829 usually an extra :c:func:`xxx_create()` function is written for this
830 purpose.                                          830 purpose.
831                                                   831 
832 In the case of PCI devices, you first have to     832 In the case of PCI devices, you first have to call the
833 :c:func:`pci_enable_device()` function before     833 :c:func:`pci_enable_device()` function before allocating
834 resources. Also, you need to set the proper PC    834 resources. Also, you need to set the proper PCI DMA mask to limit the
835 accessed I/O range. In some cases, you might n    835 accessed I/O range. In some cases, you might need to call
836 :c:func:`pci_set_master()` function, too.         836 :c:func:`pci_set_master()` function, too.
837                                                   837 
838 Suppose a 28bit mask, the code to be added wou    838 Suppose a 28bit mask, the code to be added would look like::
839                                                   839 
840   err = pci_enable_device(pci);                   840   err = pci_enable_device(pci);
841   if (err < 0)                                    841   if (err < 0)
842           return err;                             842           return err;
843   if (pci_set_dma_mask(pci, DMA_BIT_MASK(28))     843   if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
844       pci_set_consistent_dma_mask(pci, DMA_BIT    844       pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
845           printk(KERN_ERR "error to set 28bit     845           printk(KERN_ERR "error to set 28bit mask DMA\n");
846           pci_disable_device(pci);                846           pci_disable_device(pci);
847           return -ENXIO;                          847           return -ENXIO;
848   }                                               848   }
849                                                   849   
850                                                   850 
851 Resource Allocation                               851 Resource Allocation
852 -------------------                               852 -------------------
853                                                   853 
854 The allocation of I/O ports and irqs is done v    854 The allocation of I/O ports and irqs is done via standard kernel
855 functions.  These resources must be released i    855 functions.  These resources must be released in the destructor
856 function (see below).                             856 function (see below).
857                                                   857 
858 Now assume that the PCI device has an I/O port    858 Now assume that the PCI device has an I/O port with 8 bytes and an
859 interrupt. Then struct mychip will have the       859 interrupt. Then struct mychip will have the
860 following fields::                                860 following fields::
861                                                   861 
862   struct mychip {                                 862   struct mychip {
863           struct snd_card *card;                  863           struct snd_card *card;
864                                                   864 
865           unsigned long port;                     865           unsigned long port;
866           int irq;                                866           int irq;
867   };                                              867   };
868                                                   868 
869                                                   869 
870 For an I/O port (and also a memory region), yo    870 For an I/O port (and also a memory region), you need to have the
871 resource pointer for the standard resource man    871 resource pointer for the standard resource management. For an irq, you
872 have to keep only the irq number (integer). Bu    872 have to keep only the irq number (integer). But you need to initialize
873 this number to -1 before actual allocation, si    873 this number to -1 before actual allocation, since irq 0 is valid. The
874 port address and its resource pointer can be i    874 port address and its resource pointer can be initialized as null by
875 :c:func:`kzalloc()` automatically, so you don'    875 :c:func:`kzalloc()` automatically, so you don't have to take care of
876 resetting them.                                   876 resetting them.
877                                                   877 
878 The allocation of an I/O port is done like thi    878 The allocation of an I/O port is done like this::
879                                                   879 
880   err = pci_request_regions(pci, "My Chip");      880   err = pci_request_regions(pci, "My Chip");
881   if (err < 0) {                                  881   if (err < 0) { 
882           kfree(chip);                            882           kfree(chip);
883           pci_disable_device(pci);                883           pci_disable_device(pci);
884           return err;                             884           return err;
885   }                                               885   }
886   chip->port = pci_resource_start(pci, 0);        886   chip->port = pci_resource_start(pci, 0);
887                                                   887 
888 It will reserve the I/O port region of 8 bytes    888 It will reserve the I/O port region of 8 bytes of the given PCI device.
889 The returned value, ``chip->res_port``, is all    889 The returned value, ``chip->res_port``, is allocated via
890 :c:func:`kmalloc()` by :c:func:`request_region    890 :c:func:`kmalloc()` by :c:func:`request_region()`. The pointer
891 must be released via :c:func:`kfree()`, but th    891 must be released via :c:func:`kfree()`, but there is a problem with
892 this. This issue will be explained later.         892 this. This issue will be explained later.
893                                                   893 
894 The allocation of an interrupt source is done     894 The allocation of an interrupt source is done like this::
895                                                   895 
896   if (request_irq(pci->irq, snd_mychip_interru    896   if (request_irq(pci->irq, snd_mychip_interrupt,
897                   IRQF_SHARED, KBUILD_MODNAME,    897                   IRQF_SHARED, KBUILD_MODNAME, chip)) {
898           printk(KERN_ERR "cannot grab irq %d\    898           printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
899           snd_mychip_free(chip);                  899           snd_mychip_free(chip);
900           return -EBUSY;                          900           return -EBUSY;
901   }                                               901   }
902   chip->irq = pci->irq;                           902   chip->irq = pci->irq;
903                                                   903 
904 where :c:func:`snd_mychip_interrupt()` is the     904 where :c:func:`snd_mychip_interrupt()` is the interrupt handler
905 defined `later <PCM Interrupt Handler_>`__. No    905 defined `later <PCM Interrupt Handler_>`__. Note that
906 ``chip->irq`` should be defined only when :c:f    906 ``chip->irq`` should be defined only when :c:func:`request_irq()`
907 succeeded.                                        907 succeeded.
908                                                   908 
909 On the PCI bus, interrupts can be shared. Thus    909 On the PCI bus, interrupts can be shared. Thus, ``IRQF_SHARED`` is used
910 as the interrupt flag of :c:func:`request_irq(    910 as the interrupt flag of :c:func:`request_irq()`.
911                                                   911 
912 The last argument of :c:func:`request_irq()` i    912 The last argument of :c:func:`request_irq()` is the data pointer
913 passed to the interrupt handler. Usually, the     913 passed to the interrupt handler. Usually, the chip-specific record is
914 used for that, but you can use what you like,     914 used for that, but you can use what you like, too.
915                                                   915 
916 I won't give details about the interrupt handl    916 I won't give details about the interrupt handler at this point, but at
917 least its appearance can be explained now. The    917 least its appearance can be explained now. The interrupt handler looks
918 usually as follows::                              918 usually as follows::
919                                                   919 
920   static irqreturn_t snd_mychip_interrupt(int     920   static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
921   {                                               921   {
922           struct mychip *chip = dev_id;           922           struct mychip *chip = dev_id;
923           ....                                    923           ....
924           return IRQ_HANDLED;                     924           return IRQ_HANDLED;
925   }                                               925   }
926                                                   926 
927 After requesting the IRQ, you can passed it to    927 After requesting the IRQ, you can passed it to ``card->sync_irq``
928 field::                                           928 field::
929                                                   929 
930           card->irq = chip->irq;                  930           card->irq = chip->irq;
931                                                   931 
932 This allows the PCM core to automatically call    932 This allows the PCM core to automatically call
933 :c:func:`synchronize_irq()` at the right time,    933 :c:func:`synchronize_irq()` at the right time, like before ``hw_free``.
934 See the later section `sync_stop callback`_ fo    934 See the later section `sync_stop callback`_ for details.
935                                                   935 
936 Now let's write the corresponding destructor f    936 Now let's write the corresponding destructor for the resources above.
937 The role of destructor is simple: disable the     937 The role of destructor is simple: disable the hardware (if already
938 activated) and release the resources. So far,     938 activated) and release the resources. So far, we have no hardware part,
939 so the disabling code is not written here.        939 so the disabling code is not written here.
940                                                   940 
941 To release the resources, the “check-and-rel    941 To release the resources, the “check-and-release” method is a safer way.
942 For the interrupt, do like this::                 942 For the interrupt, do like this::
943                                                   943 
944   if (chip->irq >= 0)                             944   if (chip->irq >= 0)
945           free_irq(chip->irq, chip);              945           free_irq(chip->irq, chip);
946                                                   946 
947 Since the irq number can start from 0, you sho    947 Since the irq number can start from 0, you should initialize
948 ``chip->irq`` with a negative value (e.g. -1),    948 ``chip->irq`` with a negative value (e.g. -1), so that you can check
949 the validity of the irq number as above.          949 the validity of the irq number as above.
950                                                   950 
951 When you requested I/O ports or memory regions    951 When you requested I/O ports or memory regions via
952 :c:func:`pci_request_region()` or                 952 :c:func:`pci_request_region()` or
953 :c:func:`pci_request_regions()` like in this e    953 :c:func:`pci_request_regions()` like in this example, release the
954 resource(s) using the corresponding function,     954 resource(s) using the corresponding function,
955 :c:func:`pci_release_region()` or                 955 :c:func:`pci_release_region()` or
956 :c:func:`pci_release_regions()`::                 956 :c:func:`pci_release_regions()`::
957                                                   957 
958   pci_release_regions(chip->pci);                 958   pci_release_regions(chip->pci);
959                                                   959 
960 When you requested manually via :c:func:`reque    960 When you requested manually via :c:func:`request_region()` or
961 :c:func:`request_mem_region()`, you can releas    961 :c:func:`request_mem_region()`, you can release it via
962 :c:func:`release_resource()`. Suppose that you    962 :c:func:`release_resource()`. Suppose that you keep the resource
963 pointer returned from :c:func:`request_region(    963 pointer returned from :c:func:`request_region()` in
964 chip->res_port, the release procedure looks li    964 chip->res_port, the release procedure looks like::
965                                                   965 
966   release_and_free_resource(chip->res_port);      966   release_and_free_resource(chip->res_port);
967                                                   967 
968 Don't forget to call :c:func:`pci_disable_devi    968 Don't forget to call :c:func:`pci_disable_device()` before the
969 end.                                              969 end.
970                                                   970 
971 And finally, release the chip-specific record:    971 And finally, release the chip-specific record::
972                                                   972 
973   kfree(chip);                                    973   kfree(chip);
974                                                   974 
975 We didn't implement the hardware disabling par    975 We didn't implement the hardware disabling part above. If you
976 need to do this, please note that the destruct    976 need to do this, please note that the destructor may be called even
977 before the initialization of the chip is compl    977 before the initialization of the chip is completed. It would be better
978 to have a flag to skip hardware disabling if t    978 to have a flag to skip hardware disabling if the hardware was not
979 initialized yet.                                  979 initialized yet.
980                                                   980 
981 When the chip-data is assigned to the card usi    981 When the chip-data is assigned to the card using
982 :c:func:`snd_device_new()` with ``SNDRV_DEV_LO    982 :c:func:`snd_device_new()` with ``SNDRV_DEV_LOWLELVEL``, its
983 destructor is called last. That is, it is assu    983 destructor is called last. That is, it is assured that all other
984 components like PCMs and controls have already    984 components like PCMs and controls have already been released. You don't
985 have to stop PCMs, etc. explicitly, but just c    985 have to stop PCMs, etc. explicitly, but just call low-level hardware
986 stopping.                                         986 stopping.
987                                                   987 
988 The management of a memory-mapped region is al    988 The management of a memory-mapped region is almost as same as the
989 management of an I/O port. You'll need two fie    989 management of an I/O port. You'll need two fields as follows::
990                                                   990 
991   struct mychip {                                 991   struct mychip {
992           ....                                    992           ....
993           unsigned long iobase_phys;              993           unsigned long iobase_phys;
994           void __iomem *iobase_virt;              994           void __iomem *iobase_virt;
995   };                                              995   };
996                                                   996 
997 and the allocation would look like below::        997 and the allocation would look like below::
998                                                   998 
999   err = pci_request_regions(pci, "My Chip");      999   err = pci_request_regions(pci, "My Chip");
1000   if (err < 0) {                                 1000   if (err < 0) {
1001           kfree(chip);                           1001           kfree(chip);
1002           return err;                            1002           return err;
1003   }                                              1003   }
1004   chip->iobase_phys = pci_resource_start(pci,    1004   chip->iobase_phys = pci_resource_start(pci, 0);
1005   chip->iobase_virt = ioremap(chip->iobase_ph    1005   chip->iobase_virt = ioremap(chip->iobase_phys,
1006                                       pci_res    1006                                       pci_resource_len(pci, 0));
1007                                                  1007 
1008 and the corresponding destructor would be::      1008 and the corresponding destructor would be::
1009                                                  1009 
1010   static int snd_mychip_free(struct mychip *c    1010   static int snd_mychip_free(struct mychip *chip)
1011   {                                              1011   {
1012           ....                                   1012           ....
1013           if (chip->iobase_virt)                 1013           if (chip->iobase_virt)
1014                   iounmap(chip->iobase_virt);    1014                   iounmap(chip->iobase_virt);
1015           ....                                   1015           ....
1016           pci_release_regions(chip->pci);        1016           pci_release_regions(chip->pci);
1017           ....                                   1017           ....
1018   }                                              1018   }
1019                                                  1019 
1020 Of course, a modern way with :c:func:`pci_iom    1020 Of course, a modern way with :c:func:`pci_iomap()` will make things a
1021 bit easier, too::                                1021 bit easier, too::
1022                                                  1022 
1023   err = pci_request_regions(pci, "My Chip");     1023   err = pci_request_regions(pci, "My Chip");
1024   if (err < 0) {                                 1024   if (err < 0) {
1025           kfree(chip);                           1025           kfree(chip);
1026           return err;                            1026           return err;
1027   }                                              1027   }
1028   chip->iobase_virt = pci_iomap(pci, 0, 0);      1028   chip->iobase_virt = pci_iomap(pci, 0, 0);
1029                                                  1029 
1030 which is paired with :c:func:`pci_iounmap()`     1030 which is paired with :c:func:`pci_iounmap()` at destructor.
1031                                                  1031 
1032                                                  1032 
1033 PCI Entries                                      1033 PCI Entries
1034 -----------                                      1034 -----------
1035                                                  1035 
1036 So far, so good. Let's finish the missing PCI    1036 So far, so good. Let's finish the missing PCI stuff. At first, we need a
1037 struct pci_device_id table for                   1037 struct pci_device_id table for
1038 this chipset. It's a table of PCI vendor/devi    1038 this chipset. It's a table of PCI vendor/device ID number, and some
1039 masks.                                           1039 masks.
1040                                                  1040 
1041 For example::                                    1041 For example::
1042                                                  1042 
1043   static struct pci_device_id snd_mychip_ids[    1043   static struct pci_device_id snd_mychip_ids[] = {
1044           { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_    1044           { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1045             PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,     1045             PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1046           ....                                   1046           ....
1047           { 0, }                                 1047           { 0, }
1048   };                                             1048   };
1049   MODULE_DEVICE_TABLE(pci, snd_mychip_ids);      1049   MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1050                                                  1050 
1051 The first and second fields of the struct pci    1051 The first and second fields of the struct pci_device_id are the vendor
1052 and device IDs. If you have no reason to filt    1052 and device IDs. If you have no reason to filter the matching devices, you can
1053 leave the remaining fields as above. The last    1053 leave the remaining fields as above. The last field of the
1054 struct pci_device_id contains private data fo    1054 struct pci_device_id contains private data for this entry. You can specify
1055 any value here, for example, to define specif    1055 any value here, for example, to define specific operations for supported
1056 device IDs. Such an example is found in the i    1056 device IDs. Such an example is found in the intel8x0 driver.
1057                                                  1057 
1058 The last entry of this list is the terminator    1058 The last entry of this list is the terminator. You must specify this
1059 all-zero entry.                                  1059 all-zero entry.
1060                                                  1060 
1061 Then, prepare the struct pci_driver              1061 Then, prepare the struct pci_driver
1062 record::                                         1062 record::
1063                                                  1063 
1064   static struct pci_driver driver = {            1064   static struct pci_driver driver = {
1065           .name = KBUILD_MODNAME,                1065           .name = KBUILD_MODNAME,
1066           .id_table = snd_mychip_ids,            1066           .id_table = snd_mychip_ids,
1067           .probe = snd_mychip_probe,             1067           .probe = snd_mychip_probe,
1068           .remove = snd_mychip_remove,           1068           .remove = snd_mychip_remove,
1069   };                                             1069   };
1070                                                  1070 
1071 The ``probe`` and ``remove`` functions have a    1071 The ``probe`` and ``remove`` functions have already been defined in
1072 the previous sections. The ``name`` field is     1072 the previous sections. The ``name`` field is the name string of this
1073 device. Note that you must not use slashes (    1073 device. Note that you must not use slashes (“/”) in this string.
1074                                                  1074 
1075 And at last, the module entries::                1075 And at last, the module entries::
1076                                                  1076 
1077   static int __init alsa_card_mychip_init(voi    1077   static int __init alsa_card_mychip_init(void)
1078   {                                              1078   {
1079           return pci_register_driver(&driver)    1079           return pci_register_driver(&driver);
1080   }                                              1080   }
1081                                                  1081 
1082   static void __exit alsa_card_mychip_exit(vo    1082   static void __exit alsa_card_mychip_exit(void)
1083   {                                              1083   {
1084           pci_unregister_driver(&driver);        1084           pci_unregister_driver(&driver);
1085   }                                              1085   }
1086                                                  1086 
1087   module_init(alsa_card_mychip_init)             1087   module_init(alsa_card_mychip_init)
1088   module_exit(alsa_card_mychip_exit)             1088   module_exit(alsa_card_mychip_exit)
1089                                                  1089 
1090 Note that these module entries are tagged wit    1090 Note that these module entries are tagged with ``__init`` and ``__exit``
1091 prefixes.                                        1091 prefixes.
1092                                                  1092 
1093 That's all!                                      1093 That's all!
1094                                                  1094 
1095 PCM Interface                                    1095 PCM Interface
1096 =============                                    1096 =============
1097                                                  1097 
1098 General                                          1098 General
1099 -------                                          1099 -------
1100                                                  1100 
1101 The PCM middle layer of ALSA is quite powerfu    1101 The PCM middle layer of ALSA is quite powerful and it is only necessary
1102 for each driver to implement the low-level fu    1102 for each driver to implement the low-level functions to access its
1103 hardware.                                        1103 hardware.
1104                                                  1104 
1105 To access the PCM layer, you need to include     1105 To access the PCM layer, you need to include ``<sound/pcm.h>``
1106 first. In addition, ``<sound/pcm_params.h>``     1106 first. In addition, ``<sound/pcm_params.h>`` might be needed if you
1107 access some functions related with hw_param.     1107 access some functions related with hw_param.
1108                                                  1108 
1109 Each card device can have up to four PCM inst    1109 Each card device can have up to four PCM instances. A PCM instance
1110 corresponds to a PCM device file. The limitat    1110 corresponds to a PCM device file. The limitation of number of instances
1111 comes only from the available bit size of Lin    1111 comes only from the available bit size of Linux' device numbers.
1112 Once 64bit device numbers are used, we'll hav    1112 Once 64bit device numbers are used, we'll have more PCM instances
1113 available.                                       1113 available.
1114                                                  1114 
1115 A PCM instance consists of PCM playback and c    1115 A PCM instance consists of PCM playback and capture streams, and each
1116 PCM stream consists of one or more PCM substr    1116 PCM stream consists of one or more PCM substreams. Some soundcards
1117 support multiple playback functions. For exam    1117 support multiple playback functions. For example, emu10k1 has a PCM
1118 playback of 32 stereo substreams. In this cas    1118 playback of 32 stereo substreams. In this case, at each open, a free
1119 substream is (usually) automatically chosen a    1119 substream is (usually) automatically chosen and opened. Meanwhile, when
1120 only one substream exists and it was already     1120 only one substream exists and it was already opened, a subsequent open
1121 will either block or error with ``EAGAIN`` ac    1121 will either block or error with ``EAGAIN`` according to the file open
1122 mode. But you don't have to care about such d    1122 mode. But you don't have to care about such details in your driver. The
1123 PCM middle layer will take care of such work.    1123 PCM middle layer will take care of such work.
1124                                                  1124 
1125 Full Code Example                                1125 Full Code Example
1126 -----------------                                1126 -----------------
1127                                                  1127 
1128 The example code below does not include any h    1128 The example code below does not include any hardware access routines but
1129 shows only the skeleton, how to build up the     1129 shows only the skeleton, how to build up the PCM interfaces::
1130                                                  1130 
1131       #include <sound/pcm.h>                     1131       #include <sound/pcm.h>
1132       ....                                       1132       ....
1133                                                  1133 
1134       /* hardware definition */                  1134       /* hardware definition */
1135       static struct snd_pcm_hardware snd_mych    1135       static struct snd_pcm_hardware snd_mychip_playback_hw = {
1136               .info = (SNDRV_PCM_INFO_MMAP |     1136               .info = (SNDRV_PCM_INFO_MMAP |
1137                        SNDRV_PCM_INFO_INTERLE    1137                        SNDRV_PCM_INFO_INTERLEAVED |
1138                        SNDRV_PCM_INFO_BLOCK_T    1138                        SNDRV_PCM_INFO_BLOCK_TRANSFER |
1139                        SNDRV_PCM_INFO_MMAP_VA    1139                        SNDRV_PCM_INFO_MMAP_VALID),
1140               .formats =          SNDRV_PCM_F    1140               .formats =          SNDRV_PCM_FMTBIT_S16_LE,
1141               .rates =            SNDRV_PCM_R    1141               .rates =            SNDRV_PCM_RATE_8000_48000,
1142               .rate_min =         8000,          1142               .rate_min =         8000,
1143               .rate_max =         48000,         1143               .rate_max =         48000,
1144               .channels_min =     2,             1144               .channels_min =     2,
1145               .channels_max =     2,             1145               .channels_max =     2,
1146               .buffer_bytes_max = 32768,         1146               .buffer_bytes_max = 32768,
1147               .period_bytes_min = 4096,          1147               .period_bytes_min = 4096,
1148               .period_bytes_max = 32768,         1148               .period_bytes_max = 32768,
1149               .periods_min =      1,             1149               .periods_min =      1,
1150               .periods_max =      1024,          1150               .periods_max =      1024,
1151       };                                         1151       };
1152                                                  1152 
1153       /* hardware definition */                  1153       /* hardware definition */
1154       static struct snd_pcm_hardware snd_mych    1154       static struct snd_pcm_hardware snd_mychip_capture_hw = {
1155               .info = (SNDRV_PCM_INFO_MMAP |     1155               .info = (SNDRV_PCM_INFO_MMAP |
1156                        SNDRV_PCM_INFO_INTERLE    1156                        SNDRV_PCM_INFO_INTERLEAVED |
1157                        SNDRV_PCM_INFO_BLOCK_T    1157                        SNDRV_PCM_INFO_BLOCK_TRANSFER |
1158                        SNDRV_PCM_INFO_MMAP_VA    1158                        SNDRV_PCM_INFO_MMAP_VALID),
1159               .formats =          SNDRV_PCM_F    1159               .formats =          SNDRV_PCM_FMTBIT_S16_LE,
1160               .rates =            SNDRV_PCM_R    1160               .rates =            SNDRV_PCM_RATE_8000_48000,
1161               .rate_min =         8000,          1161               .rate_min =         8000,
1162               .rate_max =         48000,         1162               .rate_max =         48000,
1163               .channels_min =     2,             1163               .channels_min =     2,
1164               .channels_max =     2,             1164               .channels_max =     2,
1165               .buffer_bytes_max = 32768,         1165               .buffer_bytes_max = 32768,
1166               .period_bytes_min = 4096,          1166               .period_bytes_min = 4096,
1167               .period_bytes_max = 32768,         1167               .period_bytes_max = 32768,
1168               .periods_min =      1,             1168               .periods_min =      1,
1169               .periods_max =      1024,          1169               .periods_max =      1024,
1170       };                                         1170       };
1171                                                  1171 
1172       /* open callback */                        1172       /* open callback */
1173       static int snd_mychip_playback_open(str    1173       static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
1174       {                                          1174       {
1175               struct mychip *chip = snd_pcm_s    1175               struct mychip *chip = snd_pcm_substream_chip(substream);
1176               struct snd_pcm_runtime *runtime    1176               struct snd_pcm_runtime *runtime = substream->runtime;
1177                                                  1177 
1178               runtime->hw = snd_mychip_playba    1178               runtime->hw = snd_mychip_playback_hw;
1179               /* more hardware-initialization    1179               /* more hardware-initialization will be done here */
1180               ....                               1180               ....
1181               return 0;                          1181               return 0;
1182       }                                          1182       }
1183                                                  1183 
1184       /* close callback */                       1184       /* close callback */
1185       static int snd_mychip_playback_close(st    1185       static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
1186       {                                          1186       {
1187               struct mychip *chip = snd_pcm_s    1187               struct mychip *chip = snd_pcm_substream_chip(substream);
1188               /* the hardware-specific codes     1188               /* the hardware-specific codes will be here */
1189               ....                               1189               ....
1190               return 0;                          1190               return 0;
1191                                                  1191 
1192       }                                          1192       }
1193                                                  1193 
1194       /* open callback */                        1194       /* open callback */
1195       static int snd_mychip_capture_open(stru    1195       static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
1196       {                                          1196       {
1197               struct mychip *chip = snd_pcm_s    1197               struct mychip *chip = snd_pcm_substream_chip(substream);
1198               struct snd_pcm_runtime *runtime    1198               struct snd_pcm_runtime *runtime = substream->runtime;
1199                                                  1199 
1200               runtime->hw = snd_mychip_captur    1200               runtime->hw = snd_mychip_capture_hw;
1201               /* more hardware-initialization    1201               /* more hardware-initialization will be done here */
1202               ....                               1202               ....
1203               return 0;                          1203               return 0;
1204       }                                          1204       }
1205                                                  1205 
1206       /* close callback */                       1206       /* close callback */
1207       static int snd_mychip_capture_close(str    1207       static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
1208       {                                          1208       {
1209               struct mychip *chip = snd_pcm_s    1209               struct mychip *chip = snd_pcm_substream_chip(substream);
1210               /* the hardware-specific codes     1210               /* the hardware-specific codes will be here */
1211               ....                               1211               ....
1212               return 0;                          1212               return 0;
1213       }                                          1213       }
1214                                                  1214 
1215       /* hw_params callback */                   1215       /* hw_params callback */
1216       static int snd_mychip_pcm_hw_params(str    1216       static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
1217                                    struct snd    1217                                    struct snd_pcm_hw_params *hw_params)
1218       {                                          1218       {
1219               /* the hardware-specific codes     1219               /* the hardware-specific codes will be here */
1220               ....                               1220               ....
1221               return 0;                          1221               return 0;
1222       }                                          1222       }
1223                                                  1223 
1224       /* hw_free callback */                     1224       /* hw_free callback */
1225       static int snd_mychip_pcm_hw_free(struc    1225       static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
1226       {                                          1226       {
1227               /* the hardware-specific codes     1227               /* the hardware-specific codes will be here */
1228               ....                               1228               ....
1229               return 0;                          1229               return 0;
1230       }                                          1230       }
1231                                                  1231 
1232       /* prepare callback */                     1232       /* prepare callback */
1233       static int snd_mychip_pcm_prepare(struc    1233       static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
1234       {                                          1234       {
1235               struct mychip *chip = snd_pcm_s    1235               struct mychip *chip = snd_pcm_substream_chip(substream);
1236               struct snd_pcm_runtime *runtime    1236               struct snd_pcm_runtime *runtime = substream->runtime;
1237                                                  1237 
1238               /* set up the hardware with the    1238               /* set up the hardware with the current configuration
1239                * for example...                  1239                * for example...
1240                */                                1240                */
1241               mychip_set_sample_format(chip,     1241               mychip_set_sample_format(chip, runtime->format);
1242               mychip_set_sample_rate(chip, ru    1242               mychip_set_sample_rate(chip, runtime->rate);
1243               mychip_set_channels(chip, runti    1243               mychip_set_channels(chip, runtime->channels);
1244               mychip_set_dma_setup(chip, runt    1244               mychip_set_dma_setup(chip, runtime->dma_addr,
1245                                    chip->buff    1245                                    chip->buffer_size,
1246                                    chip->peri    1246                                    chip->period_size);
1247               return 0;                          1247               return 0;
1248       }                                          1248       }
1249                                                  1249 
1250       /* trigger callback */                     1250       /* trigger callback */
1251       static int snd_mychip_pcm_trigger(struc    1251       static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
1252                                         int c    1252                                         int cmd)
1253       {                                          1253       {
1254               switch (cmd) {                     1254               switch (cmd) {
1255               case SNDRV_PCM_TRIGGER_START:      1255               case SNDRV_PCM_TRIGGER_START:
1256                       /* do something to star    1256                       /* do something to start the PCM engine */
1257                       ....                       1257                       ....
1258                       break;                     1258                       break;
1259               case SNDRV_PCM_TRIGGER_STOP:       1259               case SNDRV_PCM_TRIGGER_STOP:
1260                       /* do something to stop    1260                       /* do something to stop the PCM engine */
1261                       ....                       1261                       ....
1262                       break;                     1262                       break;
1263               default:                           1263               default:
1264                       return -EINVAL;            1264                       return -EINVAL;
1265               }                                  1265               }
1266       }                                          1266       }
1267                                                  1267 
1268       /* pointer callback */                     1268       /* pointer callback */
1269       static snd_pcm_uframes_t                   1269       static snd_pcm_uframes_t
1270       snd_mychip_pcm_pointer(struct snd_pcm_s    1270       snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
1271       {                                          1271       {
1272               struct mychip *chip = snd_pcm_s    1272               struct mychip *chip = snd_pcm_substream_chip(substream);
1273               unsigned int current_ptr;          1273               unsigned int current_ptr;
1274                                                  1274 
1275               /* get the current hardware poi    1275               /* get the current hardware pointer */
1276               current_ptr = mychip_get_hw_poi    1276               current_ptr = mychip_get_hw_pointer(chip);
1277               return current_ptr;                1277               return current_ptr;
1278       }                                          1278       }
1279                                                  1279 
1280       /* operators */                            1280       /* operators */
1281       static struct snd_pcm_ops snd_mychip_pl    1281       static struct snd_pcm_ops snd_mychip_playback_ops = {
1282               .open =        snd_mychip_playb    1282               .open =        snd_mychip_playback_open,
1283               .close =       snd_mychip_playb    1283               .close =       snd_mychip_playback_close,
1284               .hw_params =   snd_mychip_pcm_h    1284               .hw_params =   snd_mychip_pcm_hw_params,
1285               .hw_free =     snd_mychip_pcm_h    1285               .hw_free =     snd_mychip_pcm_hw_free,
1286               .prepare =     snd_mychip_pcm_p    1286               .prepare =     snd_mychip_pcm_prepare,
1287               .trigger =     snd_mychip_pcm_t    1287               .trigger =     snd_mychip_pcm_trigger,
1288               .pointer =     snd_mychip_pcm_p    1288               .pointer =     snd_mychip_pcm_pointer,
1289       };                                         1289       };
1290                                                  1290 
1291       /* operators */                            1291       /* operators */
1292       static struct snd_pcm_ops snd_mychip_ca    1292       static struct snd_pcm_ops snd_mychip_capture_ops = {
1293               .open =        snd_mychip_captu    1293               .open =        snd_mychip_capture_open,
1294               .close =       snd_mychip_captu    1294               .close =       snd_mychip_capture_close,
1295               .hw_params =   snd_mychip_pcm_h    1295               .hw_params =   snd_mychip_pcm_hw_params,
1296               .hw_free =     snd_mychip_pcm_h    1296               .hw_free =     snd_mychip_pcm_hw_free,
1297               .prepare =     snd_mychip_pcm_p    1297               .prepare =     snd_mychip_pcm_prepare,
1298               .trigger =     snd_mychip_pcm_t    1298               .trigger =     snd_mychip_pcm_trigger,
1299               .pointer =     snd_mychip_pcm_p    1299               .pointer =     snd_mychip_pcm_pointer,
1300       };                                         1300       };
1301                                                  1301 
1302       /*                                         1302       /*
1303        *  definitions of capture are omitted     1303        *  definitions of capture are omitted here...
1304        */                                        1304        */
1305                                                  1305 
1306       /* create a pcm device */                  1306       /* create a pcm device */
1307       static int snd_mychip_new_pcm(struct my    1307       static int snd_mychip_new_pcm(struct mychip *chip)
1308       {                                          1308       {
1309               struct snd_pcm *pcm;               1309               struct snd_pcm *pcm;
1310               int err;                           1310               int err;
1311                                                  1311 
1312               err = snd_pcm_new(chip->card, "    1312               err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
1313               if (err < 0)                       1313               if (err < 0)
1314                       return err;                1314                       return err;
1315               pcm->private_data = chip;          1315               pcm->private_data = chip;
1316               strcpy(pcm->name, "My Chip");      1316               strcpy(pcm->name, "My Chip");
1317               chip->pcm = pcm;                   1317               chip->pcm = pcm;
1318               /* set operators */                1318               /* set operators */
1319               snd_pcm_set_ops(pcm, SNDRV_PCM_    1319               snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1320                               &snd_mychip_pla    1320                               &snd_mychip_playback_ops);
1321               snd_pcm_set_ops(pcm, SNDRV_PCM_    1321               snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1322                               &snd_mychip_cap    1322                               &snd_mychip_capture_ops);
1323               /* pre-allocation of buffers */    1323               /* pre-allocation of buffers */
1324               /* NOTE: this may fail */          1324               /* NOTE: this may fail */
1325               snd_pcm_set_managed_buffer_all(    1325               snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1326                                                  1326                                              &chip->pci->dev,
1327                                                  1327                                              64*1024, 64*1024);
1328               return 0;                          1328               return 0;
1329       }                                          1329       }
1330                                                  1330 
1331                                                  1331 
1332 PCM Constructor                                  1332 PCM Constructor
1333 ---------------                                  1333 ---------------
1334                                                  1334 
1335 A PCM instance is allocated by the :c:func:`s    1335 A PCM instance is allocated by the :c:func:`snd_pcm_new()`
1336 function. It would be better to create a cons    1336 function. It would be better to create a constructor for the PCM, namely::
1337                                                  1337 
1338   static int snd_mychip_new_pcm(struct mychip    1338   static int snd_mychip_new_pcm(struct mychip *chip)
1339   {                                              1339   {
1340           struct snd_pcm *pcm;                   1340           struct snd_pcm *pcm;
1341           int err;                               1341           int err;
1342                                                  1342 
1343           err = snd_pcm_new(chip->card, "My C    1343           err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
1344           if (err < 0)                           1344           if (err < 0) 
1345                   return err;                    1345                   return err;
1346           pcm->private_data = chip;              1346           pcm->private_data = chip;
1347           strcpy(pcm->name, "My Chip");          1347           strcpy(pcm->name, "My Chip");
1348           chip->pcm = pcm;                       1348           chip->pcm = pcm;
1349           ...                                    1349           ...
1350           return 0;                              1350           return 0;
1351   }                                              1351   }
1352                                                  1352 
1353 The :c:func:`snd_pcm_new()` function takes si    1353 The :c:func:`snd_pcm_new()` function takes six arguments. The
1354 first argument is the card pointer to which t    1354 first argument is the card pointer to which this PCM is assigned, and
1355 the second is the ID string.                     1355 the second is the ID string.
1356                                                  1356 
1357 The third argument (``index``, 0 in the above    1357 The third argument (``index``, 0 in the above) is the index of this new
1358 PCM. It begins from zero. If you create more     1358 PCM. It begins from zero. If you create more than one PCM instances,
1359 specify the different numbers in this argumen    1359 specify the different numbers in this argument. For example, ``index =
1360 1`` for the second PCM device.                   1360 1`` for the second PCM device.
1361                                                  1361 
1362 The fourth and fifth arguments are the number    1362 The fourth and fifth arguments are the number of substreams for playback
1363 and capture, respectively. Here 1 is used for    1363 and capture, respectively. Here 1 is used for both arguments. When no
1364 playback or capture substreams are available,    1364 playback or capture substreams are available, pass 0 to the
1365 corresponding argument.                          1365 corresponding argument.
1366                                                  1366 
1367 If a chip supports multiple playbacks or capt    1367 If a chip supports multiple playbacks or captures, you can specify more
1368 numbers, but they must be handled properly in    1368 numbers, but they must be handled properly in open/close, etc.
1369 callbacks. When you need to know which substr    1369 callbacks. When you need to know which substream you are referring to,
1370 then it can be obtained from struct snd_pcm_s    1370 then it can be obtained from struct snd_pcm_substream data passed to each
1371 callback as follows::                            1371 callback as follows::
1372                                                  1372 
1373   struct snd_pcm_substream *substream;           1373   struct snd_pcm_substream *substream;
1374   int index = substream->number;                 1374   int index = substream->number;
1375                                                  1375 
1376                                                  1376 
1377 After the PCM is created, you need to set ope    1377 After the PCM is created, you need to set operators for each PCM stream::
1378                                                  1378 
1379   snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYB    1379   snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1380                   &snd_mychip_playback_ops);     1380                   &snd_mychip_playback_ops);
1381   snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTU    1381   snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1382                   &snd_mychip_capture_ops);      1382                   &snd_mychip_capture_ops);
1383                                                  1383 
1384 The operators are defined typically like this    1384 The operators are defined typically like this::
1385                                                  1385 
1386   static struct snd_pcm_ops snd_mychip_playba    1386   static struct snd_pcm_ops snd_mychip_playback_ops = {
1387           .open =        snd_mychip_pcm_open,    1387           .open =        snd_mychip_pcm_open,
1388           .close =       snd_mychip_pcm_close    1388           .close =       snd_mychip_pcm_close,
1389           .hw_params =   snd_mychip_pcm_hw_pa    1389           .hw_params =   snd_mychip_pcm_hw_params,
1390           .hw_free =     snd_mychip_pcm_hw_fr    1390           .hw_free =     snd_mychip_pcm_hw_free,
1391           .prepare =     snd_mychip_pcm_prepa    1391           .prepare =     snd_mychip_pcm_prepare,
1392           .trigger =     snd_mychip_pcm_trigg    1392           .trigger =     snd_mychip_pcm_trigger,
1393           .pointer =     snd_mychip_pcm_point    1393           .pointer =     snd_mychip_pcm_pointer,
1394   };                                             1394   };
1395                                                  1395 
1396 All the callbacks are described in the Operat    1396 All the callbacks are described in the Operators_ subsection.
1397                                                  1397 
1398 After setting the operators, you probably wil    1398 After setting the operators, you probably will want to pre-allocate the
1399 buffer and set up the managed allocation mode    1399 buffer and set up the managed allocation mode.
1400 For that, simply call the following::            1400 For that, simply call the following::
1401                                                  1401 
1402   snd_pcm_set_managed_buffer_all(pcm, SNDRV_D    1402   snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1403                                  &chip->pci->    1403                                  &chip->pci->dev,
1404                                  64*1024, 64*    1404                                  64*1024, 64*1024);
1405                                                  1405 
1406 It will allocate a buffer up to 64kB by defau    1406 It will allocate a buffer up to 64kB by default. Buffer management
1407 details will be described in the later sectio    1407 details will be described in the later section `Buffer and Memory
1408 Management`_.                                    1408 Management`_.
1409                                                  1409 
1410 Additionally, you can set some extra informat    1410 Additionally, you can set some extra information for this PCM in
1411 ``pcm->info_flags``. The available values are    1411 ``pcm->info_flags``. The available values are defined as
1412 ``SNDRV_PCM_INFO_XXX`` in ``<sound/asound.h>`    1412 ``SNDRV_PCM_INFO_XXX`` in ``<sound/asound.h>``, which is used for the
1413 hardware definition (described later). When y    1413 hardware definition (described later). When your soundchip supports only
1414 half-duplex, specify it like this::              1414 half-duplex, specify it like this::
1415                                                  1415 
1416   pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLE    1416   pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1417                                                  1417 
1418                                                  1418 
1419 ... And the Destructor?                          1419 ... And the Destructor?
1420 -----------------------                          1420 -----------------------
1421                                                  1421 
1422 The destructor for a PCM instance is not alwa    1422 The destructor for a PCM instance is not always necessary. Since the PCM
1423 device will be released by the middle layer c    1423 device will be released by the middle layer code automatically, you
1424 don't have to call the destructor explicitly.    1424 don't have to call the destructor explicitly.
1425                                                  1425 
1426 The destructor would be necessary if you crea    1426 The destructor would be necessary if you created special records
1427 internally and needed to release them. In suc    1427 internally and needed to release them. In such a case, set the
1428 destructor function to ``pcm->private_free``:    1428 destructor function to ``pcm->private_free``::
1429                                                  1429 
1430       static void mychip_pcm_free(struct snd_    1430       static void mychip_pcm_free(struct snd_pcm *pcm)
1431       {                                          1431       {
1432               struct mychip *chip = snd_pcm_c    1432               struct mychip *chip = snd_pcm_chip(pcm);
1433               /* free your own data */           1433               /* free your own data */
1434               kfree(chip->my_private_pcm_data    1434               kfree(chip->my_private_pcm_data);
1435               /* do what you like else */        1435               /* do what you like else */
1436               ....                               1436               ....
1437       }                                          1437       }
1438                                                  1438 
1439       static int snd_mychip_new_pcm(struct my    1439       static int snd_mychip_new_pcm(struct mychip *chip)
1440       {                                          1440       {
1441               struct snd_pcm *pcm;               1441               struct snd_pcm *pcm;
1442               ....                               1442               ....
1443               /* allocate your own data */       1443               /* allocate your own data */
1444               chip->my_private_pcm_data = kma    1444               chip->my_private_pcm_data = kmalloc(...);
1445               /* set the destructor */           1445               /* set the destructor */
1446               pcm->private_data = chip;          1446               pcm->private_data = chip;
1447               pcm->private_free = mychip_pcm_    1447               pcm->private_free = mychip_pcm_free;
1448               ....                               1448               ....
1449       }                                          1449       }
1450                                                  1450 
1451                                                  1451 
1452                                                  1452 
1453 Runtime Pointer - The Chest of PCM Informatio    1453 Runtime Pointer - The Chest of PCM Information
1454 ---------------------------------------------    1454 ----------------------------------------------
1455                                                  1455 
1456 When the PCM substream is opened, a PCM runti    1456 When the PCM substream is opened, a PCM runtime instance is allocated
1457 and assigned to the substream. This pointer i    1457 and assigned to the substream. This pointer is accessible via
1458 ``substream->runtime``. This runtime pointer     1458 ``substream->runtime``. This runtime pointer holds most information you
1459 need to control the PCM: a copy of hw_params     1459 need to control the PCM: a copy of hw_params and sw_params
1460 configurations, the buffer pointers, mmap rec    1460 configurations, the buffer pointers, mmap records, spinlocks, etc.
1461                                                  1461 
1462 The definition of runtime instance is found i    1462 The definition of runtime instance is found in ``<sound/pcm.h>``. Here
1463 is the relevant part of this file::              1463 is the relevant part of this file::
1464                                                  1464 
1465   struct _snd_pcm_runtime {                      1465   struct _snd_pcm_runtime {
1466           /* -- Status -- */                     1466           /* -- Status -- */
1467           struct snd_pcm_substream *trigger_m    1467           struct snd_pcm_substream *trigger_master;
1468           snd_timestamp_t trigger_tstamp;        1468           snd_timestamp_t trigger_tstamp;       /* trigger timestamp */
1469           int overrange;                         1469           int overrange;
1470           snd_pcm_uframes_t avail_max;           1470           snd_pcm_uframes_t avail_max;
1471           snd_pcm_uframes_t hw_ptr_base;         1471           snd_pcm_uframes_t hw_ptr_base;        /* Position at buffer restart */
1472           snd_pcm_uframes_t hw_ptr_interrupt;    1472           snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
1473                                                  1473   
1474           /* -- HW params -- */                  1474           /* -- HW params -- */
1475           snd_pcm_access_t access;      /* ac    1475           snd_pcm_access_t access;      /* access mode */
1476           snd_pcm_format_t format;      /* SN    1476           snd_pcm_format_t format;      /* SNDRV_PCM_FORMAT_* */
1477           snd_pcm_subformat_t subformat;         1477           snd_pcm_subformat_t subformat;        /* subformat */
1478           unsigned int rate;            /* ra    1478           unsigned int rate;            /* rate in Hz */
1479           unsigned int channels;                 1479           unsigned int channels;                /* channels */
1480           snd_pcm_uframes_t period_size;         1480           snd_pcm_uframes_t period_size;        /* period size */
1481           unsigned int periods;         /* pe    1481           unsigned int periods;         /* periods */
1482           snd_pcm_uframes_t buffer_size;         1482           snd_pcm_uframes_t buffer_size;        /* buffer size */
1483           unsigned int tick_time;                1483           unsigned int tick_time;               /* tick time */
1484           snd_pcm_uframes_t min_align;  /* Mi    1484           snd_pcm_uframes_t min_align;  /* Min alignment for the format */
1485           size_t byte_align;                     1485           size_t byte_align;
1486           unsigned int frame_bits;               1486           unsigned int frame_bits;
1487           unsigned int sample_bits;              1487           unsigned int sample_bits;
1488           unsigned int info;                     1488           unsigned int info;
1489           unsigned int rate_num;                 1489           unsigned int rate_num;
1490           unsigned int rate_den;                 1490           unsigned int rate_den;
1491                                                  1491   
1492           /* -- SW params -- */                  1492           /* -- SW params -- */
1493           struct timespec tstamp_mode;  /* mm    1493           struct timespec tstamp_mode;  /* mmap timestamp is updated */
1494           unsigned int period_step;              1494           unsigned int period_step;
1495           unsigned int sleep_min;                1495           unsigned int sleep_min;               /* min ticks to sleep */
1496           snd_pcm_uframes_t start_threshold;     1496           snd_pcm_uframes_t start_threshold;
1497           /*                                     1497           /*
1498            * The following two thresholds all    1498            * The following two thresholds alleviate playback buffer underruns; when
1499            * hw_avail drops below the thresho    1499            * hw_avail drops below the threshold, the respective action is triggered:
1500            */                                    1500            */
1501           snd_pcm_uframes_t stop_threshold;      1501           snd_pcm_uframes_t stop_threshold;     /* - stop playback */
1502           snd_pcm_uframes_t silence_threshold    1502           snd_pcm_uframes_t silence_threshold;  /* - pre-fill buffer with silence */
1503           snd_pcm_uframes_t silence_size;        1503           snd_pcm_uframes_t silence_size;       /* max size of silence pre-fill; when >= boundary,
1504                                                  1504                                                  * fill played area with silence immediately */
1505           snd_pcm_uframes_t boundary;   /* po    1505           snd_pcm_uframes_t boundary;   /* pointers wrap point */
1506                                                  1506   
1507           /* internal data of auto-silencer *    1507           /* internal data of auto-silencer */
1508           snd_pcm_uframes_t silence_start; /*    1508           snd_pcm_uframes_t silence_start; /* starting pointer to silence area */
1509           snd_pcm_uframes_t silence_filled; /    1509           snd_pcm_uframes_t silence_filled; /* size filled with silence */
1510                                                  1510   
1511           snd_pcm_sync_id_t sync;                1511           snd_pcm_sync_id_t sync;               /* hardware synchronization ID */
1512                                                  1512   
1513           /* -- mmap -- */                       1513           /* -- mmap -- */
1514           volatile struct snd_pcm_mmap_status    1514           volatile struct snd_pcm_mmap_status *status;
1515           volatile struct snd_pcm_mmap_contro    1515           volatile struct snd_pcm_mmap_control *control;
1516           atomic_t mmap_count;                   1516           atomic_t mmap_count;
1517                                                  1517   
1518           /* -- locking / scheduling -- */       1518           /* -- locking / scheduling -- */
1519           spinlock_t lock;                       1519           spinlock_t lock;
1520           wait_queue_head_t sleep;               1520           wait_queue_head_t sleep;
1521           struct timer_list tick_timer;          1521           struct timer_list tick_timer;
1522           struct fasync_struct *fasync;          1522           struct fasync_struct *fasync;
1523                                                  1523 
1524           /* -- private section -- */            1524           /* -- private section -- */
1525           void *private_data;                    1525           void *private_data;
1526           void (*private_free)(struct snd_pcm    1526           void (*private_free)(struct snd_pcm_runtime *runtime);
1527                                                  1527   
1528           /* -- hardware description -- */       1528           /* -- hardware description -- */
1529           struct snd_pcm_hardware hw;            1529           struct snd_pcm_hardware hw;
1530           struct snd_pcm_hw_constraints hw_co    1530           struct snd_pcm_hw_constraints hw_constraints;
1531                                                  1531   
1532           /* -- timer -- */                      1532           /* -- timer -- */
1533           unsigned int timer_resolution;         1533           unsigned int timer_resolution;        /* timer resolution */
1534                                                  1534   
1535           /* -- DMA -- */                        1535           /* -- DMA -- */           
1536           unsigned char *dma_area;      /* DM    1536           unsigned char *dma_area;      /* DMA area */
1537           dma_addr_t dma_addr;          /* ph    1537           dma_addr_t dma_addr;          /* physical bus address (not accessible from main CPU) */
1538           size_t dma_bytes;             /* si    1538           size_t dma_bytes;             /* size of DMA area */
1539                                                  1539   
1540           struct snd_dma_buffer *dma_buffer_p    1540           struct snd_dma_buffer *dma_buffer_p;  /* allocated buffer */
1541                                                  1541   
1542   #if defined(CONFIG_SND_PCM_OSS) || defined(    1542   #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
1543           /* -- OSS things -- */                 1543           /* -- OSS things -- */
1544           struct snd_pcm_oss_runtime oss;        1544           struct snd_pcm_oss_runtime oss;
1545   #endif                                         1545   #endif
1546   };                                             1546   };
1547                                                  1547 
1548                                                  1548 
1549 For the operators (callbacks) of each sound d    1549 For the operators (callbacks) of each sound driver, most of these
1550 records are supposed to be read-only. Only th    1550 records are supposed to be read-only. Only the PCM middle-layer changes
1551 / updates them. The exceptions are the hardwa    1551 / updates them. The exceptions are the hardware description (hw) DMA
1552 buffer information and the private data. Besi    1552 buffer information and the private data. Besides, if you use the
1553 standard managed buffer allocation mode, you     1553 standard managed buffer allocation mode, you don't need to set the
1554 DMA buffer information by yourself.              1554 DMA buffer information by yourself.
1555                                                  1555 
1556 In the sections below, important records are     1556 In the sections below, important records are explained.
1557                                                  1557 
1558 Hardware Description                             1558 Hardware Description
1559 ~~~~~~~~~~~~~~~~~~~~                             1559 ~~~~~~~~~~~~~~~~~~~~
1560                                                  1560 
1561 The hardware descriptor (struct snd_pcm_hardw    1561 The hardware descriptor (struct snd_pcm_hardware) contains the definitions of
1562 the fundamental hardware configuration. Above    1562 the fundamental hardware configuration. Above all, you'll need to define this
1563 in the `PCM open callback`_. Note that the ru    1563 in the `PCM open callback`_. Note that the runtime instance holds a copy of
1564 the descriptor, not a pointer to the existing    1564 the descriptor, not a pointer to the existing descriptor. That is,
1565 in the open callback, you can modify the copi    1565 in the open callback, you can modify the copied descriptor
1566 (``runtime->hw``) as you need. For example, i    1566 (``runtime->hw``) as you need. For example, if the maximum number of
1567 channels is 1 only on some chip models, you c    1567 channels is 1 only on some chip models, you can still use the same
1568 hardware descriptor and change the channels_m    1568 hardware descriptor and change the channels_max later::
1569                                                  1569 
1570           struct snd_pcm_runtime *runtime = s    1570           struct snd_pcm_runtime *runtime = substream->runtime;
1571           ...                                    1571           ...
1572           runtime->hw = snd_mychip_playback_h    1572           runtime->hw = snd_mychip_playback_hw; /* common definition */
1573           if (chip->model == VERY_OLD_ONE)       1573           if (chip->model == VERY_OLD_ONE)
1574                   runtime->hw.channels_max =     1574                   runtime->hw.channels_max = 1;
1575                                                  1575 
1576 Typically, you'll have a hardware descriptor     1576 Typically, you'll have a hardware descriptor as below::
1577                                                  1577 
1578   static struct snd_pcm_hardware snd_mychip_p    1578   static struct snd_pcm_hardware snd_mychip_playback_hw = {
1579           .info = (SNDRV_PCM_INFO_MMAP |         1579           .info = (SNDRV_PCM_INFO_MMAP |
1580                    SNDRV_PCM_INFO_INTERLEAVED    1580                    SNDRV_PCM_INFO_INTERLEAVED |
1581                    SNDRV_PCM_INFO_BLOCK_TRANS    1581                    SNDRV_PCM_INFO_BLOCK_TRANSFER |
1582                    SNDRV_PCM_INFO_MMAP_VALID)    1582                    SNDRV_PCM_INFO_MMAP_VALID),
1583           .formats =          SNDRV_PCM_FMTBI    1583           .formats =          SNDRV_PCM_FMTBIT_S16_LE,
1584           .rates =            SNDRV_PCM_RATE_    1584           .rates =            SNDRV_PCM_RATE_8000_48000,
1585           .rate_min =         8000,              1585           .rate_min =         8000,
1586           .rate_max =         48000,             1586           .rate_max =         48000,
1587           .channels_min =     2,                 1587           .channels_min =     2,
1588           .channels_max =     2,                 1588           .channels_max =     2,
1589           .buffer_bytes_max = 32768,             1589           .buffer_bytes_max = 32768,
1590           .period_bytes_min = 4096,              1590           .period_bytes_min = 4096,
1591           .period_bytes_max = 32768,             1591           .period_bytes_max = 32768,
1592           .periods_min =      1,                 1592           .periods_min =      1,
1593           .periods_max =      1024,              1593           .periods_max =      1024,
1594   };                                             1594   };
1595                                                  1595 
1596 -  The ``info`` field contains the type and c    1596 -  The ``info`` field contains the type and capabilities of this
1597    PCM. The bit flags are defined in ``<sound    1597    PCM. The bit flags are defined in ``<sound/asound.h>`` as
1598    ``SNDRV_PCM_INFO_XXX``. Here, at least, yo    1598    ``SNDRV_PCM_INFO_XXX``. Here, at least, you have to specify whether
1599    mmap is supported and which interleaving f    1599    mmap is supported and which interleaving formats are
1600    supported. When the hardware supports mmap    1600    supported. When the hardware supports mmap, add the
1601    ``SNDRV_PCM_INFO_MMAP`` flag here. When th    1601    ``SNDRV_PCM_INFO_MMAP`` flag here. When the hardware supports the
1602    interleaved or the non-interleaved formats    1602    interleaved or the non-interleaved formats, the
1603    ``SNDRV_PCM_INFO_INTERLEAVED`` or ``SNDRV_    1603    ``SNDRV_PCM_INFO_INTERLEAVED`` or ``SNDRV_PCM_INFO_NONINTERLEAVED``
1604    flag must be set, respectively. If both ar    1604    flag must be set, respectively. If both are supported, you can set
1605    both, too.                                    1605    both, too.
1606                                                  1606 
1607    In the above example, ``MMAP_VALID`` and `    1607    In the above example, ``MMAP_VALID`` and ``BLOCK_TRANSFER`` are
1608    specified for the OSS mmap mode. Usually b    1608    specified for the OSS mmap mode. Usually both are set. Of course,
1609    ``MMAP_VALID`` is set only if mmap is real    1609    ``MMAP_VALID`` is set only if mmap is really supported.
1610                                                  1610 
1611    The other possible flags are ``SNDRV_PCM_I    1611    The other possible flags are ``SNDRV_PCM_INFO_PAUSE`` and
1612    ``SNDRV_PCM_INFO_RESUME``. The ``PAUSE`` b    1612    ``SNDRV_PCM_INFO_RESUME``. The ``PAUSE`` bit means that the PCM
1613    supports the “pause” operation, while     1613    supports the “pause” operation, while the ``RESUME`` bit means that
1614    the PCM supports the full “suspend/resum    1614    the PCM supports the full “suspend/resume” operation. If the
1615    ``PAUSE`` flag is set, the ``trigger`` cal    1615    ``PAUSE`` flag is set, the ``trigger`` callback below must handle
1616    the corresponding (pause push/release) com    1616    the corresponding (pause push/release) commands. The suspend/resume
1617    trigger commands can be defined even witho    1617    trigger commands can be defined even without the ``RESUME``
1618    flag. See the `Power Management`_ section     1618    flag. See the `Power Management`_ section for details.
1619                                                  1619 
1620    When the PCM substreams can be synchronize    1620    When the PCM substreams can be synchronized (typically,
1621    synchronized start/stop of a playback and     1621    synchronized start/stop of a playback and a capture stream), you
1622    can give ``SNDRV_PCM_INFO_SYNC_START``, to    1622    can give ``SNDRV_PCM_INFO_SYNC_START``, too. In this case, you'll
1623    need to check the linked-list of PCM subst    1623    need to check the linked-list of PCM substreams in the trigger
1624    callback. This will be described in a late    1624    callback. This will be described in a later section.
1625                                                  1625 
1626 -  The ``formats`` field contains the bit-fla    1626 -  The ``formats`` field contains the bit-flags of supported formats
1627    (``SNDRV_PCM_FMTBIT_XXX``). If the hardwar    1627    (``SNDRV_PCM_FMTBIT_XXX``). If the hardware supports more than one
1628    format, give all or'ed bits. In the exampl    1628    format, give all or'ed bits. In the example above, the signed 16bit
1629    little-endian format is specified.            1629    little-endian format is specified.
1630                                                  1630 
1631 -  The ``rates`` field contains the bit-flags    1631 -  The ``rates`` field contains the bit-flags of supported rates
1632    (``SNDRV_PCM_RATE_XXX``). When the chip su    1632    (``SNDRV_PCM_RATE_XXX``). When the chip supports continuous rates,
1633    pass the ``CONTINUOUS`` bit additionally.     1633    pass the ``CONTINUOUS`` bit additionally. The pre-defined rate bits
1634    are provided only for typical rates. If yo    1634    are provided only for typical rates. If your chip supports
1635    unconventional rates, you need to add the     1635    unconventional rates, you need to add the ``KNOT`` bit and set up
1636    the hardware constraint manually (explaine    1636    the hardware constraint manually (explained later).
1637                                                  1637 
1638 -  ``rate_min`` and ``rate_max`` define the m    1638 -  ``rate_min`` and ``rate_max`` define the minimum and maximum sample
1639    rate. This should correspond somehow to ``    1639    rate. This should correspond somehow to ``rates`` bits.
1640                                                  1640 
1641 -  ``channels_min`` and ``channels_max`` defi    1641 -  ``channels_min`` and ``channels_max`` define, as you might have already
1642    expected, the minimum and maximum number o    1642    expected, the minimum and maximum number of channels.
1643                                                  1643 
1644 -  ``buffer_bytes_max`` defines the maximum b    1644 -  ``buffer_bytes_max`` defines the maximum buffer size in
1645    bytes. There is no ``buffer_bytes_min`` fi    1645    bytes. There is no ``buffer_bytes_min`` field, since it can be
1646    calculated from the minimum period size an    1646    calculated from the minimum period size and the minimum number of
1647    periods. Meanwhile, ``period_bytes_min`` a    1647    periods. Meanwhile, ``period_bytes_min`` and ``period_bytes_max``
1648    define the minimum and maximum size of the    1648    define the minimum and maximum size of the period in bytes.
1649    ``periods_max`` and ``periods_min`` define    1649    ``periods_max`` and ``periods_min`` define the maximum and minimum
1650    number of periods in the buffer.              1650    number of periods in the buffer.
1651                                                  1651 
1652    The “period” is a term that correspond    1652    The “period” is a term that corresponds to a fragment in the OSS
1653    world. The period defines the point at whi    1653    world. The period defines the point at which a PCM interrupt is
1654    generated. This point strongly depends on     1654    generated. This point strongly depends on the hardware. Generally,
1655    a smaller period size will give you more i    1655    a smaller period size will give you more interrupts, which results
1656    in being able to fill/drain the buffer mor    1656    in being able to fill/drain the buffer more timely. In the case of
1657    capture, this size defines the input laten    1657    capture, this size defines the input latency. On the other hand,
1658    the whole buffer size defines the output l    1658    the whole buffer size defines the output latency for the playback
1659    direction.                                    1659    direction.
1660                                                  1660 
1661 -  There is also a field ``fifo_size``. This     1661 -  There is also a field ``fifo_size``. This specifies the size of the
1662    hardware FIFO, but currently it is neither    1662    hardware FIFO, but currently it is neither used by the drivers nor
1663    in the alsa-lib. So, you can ignore this f    1663    in the alsa-lib. So, you can ignore this field.
1664                                                  1664 
1665 PCM Configurations                               1665 PCM Configurations
1666 ~~~~~~~~~~~~~~~~~~                               1666 ~~~~~~~~~~~~~~~~~~
1667                                                  1667 
1668 Ok, let's go back again to the PCM runtime re    1668 Ok, let's go back again to the PCM runtime records. The most
1669 frequently referred records in the runtime in    1669 frequently referred records in the runtime instance are the PCM
1670 configurations. The PCM configurations are st    1670 configurations. The PCM configurations are stored in the runtime
1671 instance after the application sends ``hw_par    1671 instance after the application sends ``hw_params`` data via
1672 alsa-lib. There are many fields copied from h    1672 alsa-lib. There are many fields copied from hw_params and sw_params
1673 structs. For example, ``format`` holds the fo    1673 structs. For example, ``format`` holds the format type chosen by the
1674 application. This field contains the enum val    1674 application. This field contains the enum value
1675 ``SNDRV_PCM_FORMAT_XXX``.                        1675 ``SNDRV_PCM_FORMAT_XXX``.
1676                                                  1676 
1677 One thing to be noted is that the configured     1677 One thing to be noted is that the configured buffer and period sizes
1678 are stored in “frames” in the runtime. In    1678 are stored in “frames” in the runtime. In the ALSA world, ``1 frame =
1679 channels \* samples-size``. For conversion be    1679 channels \* samples-size``. For conversion between frames and bytes,
1680 you can use the :c:func:`frames_to_bytes()` a    1680 you can use the :c:func:`frames_to_bytes()` and
1681 :c:func:`bytes_to_frames()` helper functions:    1681 :c:func:`bytes_to_frames()` helper functions::
1682                                                  1682 
1683   period_bytes = frames_to_bytes(runtime, run    1683   period_bytes = frames_to_bytes(runtime, runtime->period_size);
1684                                                  1684 
1685 Also, many software parameters (sw_params) ar    1685 Also, many software parameters (sw_params) are stored in frames, too.
1686 Please check the type of the field. ``snd_pcm    1686 Please check the type of the field. ``snd_pcm_uframes_t`` is for
1687 frames as unsigned integer while ``snd_pcm_sf    1687 frames as unsigned integer while ``snd_pcm_sframes_t`` is for
1688 frames as signed integer.                        1688 frames as signed integer.
1689                                                  1689 
1690 DMA Buffer Information                           1690 DMA Buffer Information
1691 ~~~~~~~~~~~~~~~~~~~~~~                           1691 ~~~~~~~~~~~~~~~~~~~~~~
1692                                                  1692 
1693 The DMA buffer is defined by the following fo    1693 The DMA buffer is defined by the following four fields: ``dma_area``,
1694 ``dma_addr``, ``dma_bytes`` and ``dma_private    1694 ``dma_addr``, ``dma_bytes`` and ``dma_private``. ``dma_area``
1695 holds the buffer pointer (the logical address    1695 holds the buffer pointer (the logical address). You can call
1696 :c:func:`memcpy()` from/to this pointer. Mean    1696 :c:func:`memcpy()` from/to this pointer. Meanwhile, ``dma_addr`` holds
1697 the physical address of the buffer. This fiel    1697 the physical address of the buffer. This field is specified only when
1698 the buffer is a linear buffer. ``dma_bytes``     1698 the buffer is a linear buffer. ``dma_bytes`` holds the size of the
1699 buffer in bytes. ``dma_private`` is used for     1699 buffer in bytes. ``dma_private`` is used for the ALSA DMA allocator.
1700                                                  1700 
1701 If you use either the managed buffer allocati    1701 If you use either the managed buffer allocation mode or the standard
1702 API function :c:func:`snd_pcm_lib_malloc_page    1702 API function :c:func:`snd_pcm_lib_malloc_pages()` for allocating the buffer,
1703 these fields are set by the ALSA middle layer    1703 these fields are set by the ALSA middle layer, and you should *not*
1704 change them by yourself. You can read them bu    1704 change them by yourself. You can read them but not write them. On the
1705 other hand, if you want to allocate the buffe    1705 other hand, if you want to allocate the buffer by yourself, you'll
1706 need to manage it in the hw_params callback.     1706 need to manage it in the hw_params callback. At least, ``dma_bytes`` is
1707 mandatory. ``dma_area`` is necessary when the    1707 mandatory. ``dma_area`` is necessary when the buffer is mmapped. If
1708 your driver doesn't support mmap, this field     1708 your driver doesn't support mmap, this field is not
1709 necessary. ``dma_addr`` is also optional. You    1709 necessary. ``dma_addr`` is also optional. You can use dma_private as
1710 you like, too.                                   1710 you like, too.
1711                                                  1711 
1712 Running Status                                   1712 Running Status
1713 ~~~~~~~~~~~~~~                                   1713 ~~~~~~~~~~~~~~
1714                                                  1714 
1715 The running status can be referred via ``runt    1715 The running status can be referred via ``runtime->status``. This is
1716 a pointer to a struct snd_pcm_mmap_status rec    1716 a pointer to a struct snd_pcm_mmap_status record.
1717 For example, you can get the current             1717 For example, you can get the current
1718 DMA hardware pointer via ``runtime->status->h    1718 DMA hardware pointer via ``runtime->status->hw_ptr``.
1719                                                  1719 
1720 The DMA application pointer can be referred v    1720 The DMA application pointer can be referred via ``runtime->control``,
1721 which points to a struct snd_pcm_mmap_control    1721 which points to a struct snd_pcm_mmap_control record.
1722 However, accessing this value directly is not    1722 However, accessing this value directly is not recommended.
1723                                                  1723 
1724 Private Data                                     1724 Private Data
1725 ~~~~~~~~~~~~                                     1725 ~~~~~~~~~~~~
1726                                                  1726 
1727 You can allocate a record for the substream a    1727 You can allocate a record for the substream and store it in
1728 ``runtime->private_data``. Usually, this is d    1728 ``runtime->private_data``. Usually, this is done in the `PCM open
1729 callback`_. Don't mix this with ``pcm->privat    1729 callback`_. Don't mix this with ``pcm->private_data``. The
1730 ``pcm->private_data`` usually points to the c    1730 ``pcm->private_data`` usually points to the chip instance assigned
1731 statically at creation time of the PCM device    1731 statically at creation time of the PCM device, while
1732 ``runtime->private_data``                        1732 ``runtime->private_data``
1733 points to a dynamic data structure created in    1733 points to a dynamic data structure created in the PCM open
1734 callback::                                       1734 callback::
1735                                                  1735 
1736   static int snd_xxx_open(struct snd_pcm_subs    1736   static int snd_xxx_open(struct snd_pcm_substream *substream)
1737   {                                              1737   {
1738           struct my_pcm_data *data;              1738           struct my_pcm_data *data;
1739           ....                                   1739           ....
1740           data = kmalloc(sizeof(*data), GFP_K    1740           data = kmalloc(sizeof(*data), GFP_KERNEL);
1741           substream->runtime->private_data =     1741           substream->runtime->private_data = data;
1742           ....                                   1742           ....
1743   }                                              1743   }
1744                                                  1744 
1745                                                  1745 
1746 The allocated object must be released in the     1746 The allocated object must be released in the `close callback`_.
1747                                                  1747 
1748 Operators                                        1748 Operators
1749 ---------                                        1749 ---------
1750                                                  1750 
1751 OK, now let me give details about each PCM ca    1751 OK, now let me give details about each PCM callback (``ops``). In
1752 general, every callback must return 0 if succ    1752 general, every callback must return 0 if successful, or a negative
1753 error number such as ``-EINVAL``. To choose a    1753 error number such as ``-EINVAL``. To choose an appropriate error
1754 number, it is advised to check what value oth    1754 number, it is advised to check what value other parts of the kernel
1755 return when the same kind of request fails.      1755 return when the same kind of request fails.
1756                                                  1756 
1757 Each callback function takes at least one arg    1757 Each callback function takes at least one argument containing a
1758 struct snd_pcm_substream pointer. To retrieve    1758 struct snd_pcm_substream pointer. To retrieve the chip
1759 record from the given substream instance, you    1759 record from the given substream instance, you can use the following
1760 macro::                                          1760 macro::
1761                                                  1761 
1762   int xxx(...) {                                 1762   int xxx(...) {
1763           struct mychip *chip = snd_pcm_subst    1763           struct mychip *chip = snd_pcm_substream_chip(substream);
1764           ....                                   1764           ....
1765   }                                              1765   }
1766                                                  1766 
1767 The macro reads ``substream->private_data``,     1767 The macro reads ``substream->private_data``, which is a copy of
1768 ``pcm->private_data``. You can override the f    1768 ``pcm->private_data``. You can override the former if you need to
1769 assign different data records per PCM substre    1769 assign different data records per PCM substream. For example, the
1770 cmi8330 driver assigns different ``private_da    1770 cmi8330 driver assigns different ``private_data`` for playback and
1771 capture directions, because it uses two diffe    1771 capture directions, because it uses two different codecs (SB- and
1772 AD-compatible) for different directions.         1772 AD-compatible) for different directions.
1773                                                  1773 
1774 PCM open callback                                1774 PCM open callback
1775 ~~~~~~~~~~~~~~~~~                                1775 ~~~~~~~~~~~~~~~~~
1776                                                  1776 
1777 ::                                               1777 ::
1778                                                  1778 
1779   static int snd_xxx_open(struct snd_pcm_subs    1779   static int snd_xxx_open(struct snd_pcm_substream *substream);
1780                                                  1780 
1781 This is called when a PCM substream is opened    1781 This is called when a PCM substream is opened.
1782                                                  1782 
1783 At least, here you have to initialize the ``r    1783 At least, here you have to initialize the ``runtime->hw``
1784 record. Typically, this is done like this::      1784 record. Typically, this is done like this::
1785                                                  1785 
1786   static int snd_xxx_open(struct snd_pcm_subs    1786   static int snd_xxx_open(struct snd_pcm_substream *substream)
1787   {                                              1787   {
1788           struct mychip *chip = snd_pcm_subst    1788           struct mychip *chip = snd_pcm_substream_chip(substream);
1789           struct snd_pcm_runtime *runtime = s    1789           struct snd_pcm_runtime *runtime = substream->runtime;
1790                                                  1790 
1791           runtime->hw = snd_mychip_playback_h    1791           runtime->hw = snd_mychip_playback_hw;
1792           return 0;                              1792           return 0;
1793   }                                              1793   }
1794                                                  1794 
1795 where ``snd_mychip_playback_hw`` is the pre-d    1795 where ``snd_mychip_playback_hw`` is the pre-defined hardware
1796 description.                                     1796 description.
1797                                                  1797 
1798 You can allocate private data in this callbac    1798 You can allocate private data in this callback, as described in the
1799 `Private Data`_ section.                         1799 `Private Data`_ section.
1800                                                  1800 
1801 If the hardware configuration needs more cons    1801 If the hardware configuration needs more constraints, set the hardware
1802 constraints here, too. See Constraints_ for m    1802 constraints here, too. See Constraints_ for more details.
1803                                                  1803 
1804 close callback                                   1804 close callback
1805 ~~~~~~~~~~~~~~                                   1805 ~~~~~~~~~~~~~~
1806                                                  1806 
1807 ::                                               1807 ::
1808                                                  1808 
1809   static int snd_xxx_close(struct snd_pcm_sub    1809   static int snd_xxx_close(struct snd_pcm_substream *substream);
1810                                                  1810 
1811                                                  1811 
1812 Obviously, this is called when a PCM substrea    1812 Obviously, this is called when a PCM substream is closed.
1813                                                  1813 
1814 Any private instance for a PCM substream allo    1814 Any private instance for a PCM substream allocated in the ``open``
1815 callback will be released here::                 1815 callback will be released here::
1816                                                  1816 
1817   static int snd_xxx_close(struct snd_pcm_sub    1817   static int snd_xxx_close(struct snd_pcm_substream *substream)
1818   {                                              1818   {
1819           ....                                   1819           ....
1820           kfree(substream->runtime->private_d    1820           kfree(substream->runtime->private_data);
1821           ....                                   1821           ....
1822   }                                              1822   }
1823                                                  1823 
1824 ioctl callback                                   1824 ioctl callback
1825 ~~~~~~~~~~~~~~                                   1825 ~~~~~~~~~~~~~~
1826                                                  1826 
1827 This is used for any special call to PCM ioct    1827 This is used for any special call to PCM ioctls. But usually you can
1828 leave it NULL, then the PCM core calls the ge    1828 leave it NULL, then the PCM core calls the generic ioctl callback
1829 function :c:func:`snd_pcm_lib_ioctl()`.  If y    1829 function :c:func:`snd_pcm_lib_ioctl()`.  If you need to deal with a
1830 unique setup of channel info or reset procedu    1830 unique setup of channel info or reset procedure, you can pass your own
1831 callback function here.                          1831 callback function here.
1832                                                  1832 
1833 hw_params callback                               1833 hw_params callback
1834 ~~~~~~~~~~~~~~~~~~~                              1834 ~~~~~~~~~~~~~~~~~~~
1835                                                  1835 
1836 ::                                               1836 ::
1837                                                  1837 
1838   static int snd_xxx_hw_params(struct snd_pcm    1838   static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
1839                                struct snd_pcm    1839                                struct snd_pcm_hw_params *hw_params);
1840                                                  1840 
1841 This is called when the hardware parameters (    1841 This is called when the hardware parameters (``hw_params``) are set up
1842 by the application, that is, once when the bu    1842 by the application, that is, once when the buffer size, the period
1843 size, the format, etc. are defined for the PC    1843 size, the format, etc. are defined for the PCM substream.
1844                                                  1844 
1845 Many hardware setups should be done in this c    1845 Many hardware setups should be done in this callback, including the
1846 allocation of buffers.                           1846 allocation of buffers.
1847                                                  1847 
1848 Parameters to be initialized are retrieved by    1848 Parameters to be initialized are retrieved by the
1849 :c:func:`params_xxx()` macros.                   1849 :c:func:`params_xxx()` macros.
1850                                                  1850 
1851 When you choose managed buffer allocation mod    1851 When you choose managed buffer allocation mode for the substream,
1852 a buffer is already allocated before this cal    1852 a buffer is already allocated before this callback gets
1853 called. Alternatively, you can call a helper     1853 called. Alternatively, you can call a helper function below for
1854 allocating the buffer::                          1854 allocating the buffer::
1855                                                  1855 
1856   snd_pcm_lib_malloc_pages(substream, params_    1856   snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
1857                                                  1857 
1858 :c:func:`snd_pcm_lib_malloc_pages()` is avail    1858 :c:func:`snd_pcm_lib_malloc_pages()` is available only when the
1859 DMA buffers have been pre-allocated. See the     1859 DMA buffers have been pre-allocated. See the section `Buffer Types`_
1860 for more details.                                1860 for more details.
1861                                                  1861 
1862 Note that this one and the ``prepare`` callba    1862 Note that this one and the ``prepare`` callback may be called multiple
1863 times per initialization. For example, the OS    1863 times per initialization. For example, the OSS emulation may call these
1864 callbacks at each change via its ioctl.          1864 callbacks at each change via its ioctl.
1865                                                  1865 
1866 Thus, you need to be careful not to allocate     1866 Thus, you need to be careful not to allocate the same buffers many
1867 times, which will lead to memory leaks! Calli    1867 times, which will lead to memory leaks! Calling the helper function
1868 above many times is OK. It will release the p    1868 above many times is OK. It will release the previous buffer
1869 automatically when it was already allocated.     1869 automatically when it was already allocated.
1870                                                  1870 
1871 Another note is that this callback is non-ato    1871 Another note is that this callback is non-atomic (schedulable) by
1872 default, i.e. when no ``nonatomic`` flag set.    1872 default, i.e. when no ``nonatomic`` flag set. This is important,
1873 because the ``trigger`` callback is atomic (n    1873 because the ``trigger`` callback is atomic (non-schedulable). That is,
1874 mutexes or any schedule-related functions are    1874 mutexes or any schedule-related functions are not available in the
1875 ``trigger`` callback. Please see the subsecti    1875 ``trigger`` callback. Please see the subsection Atomicity_ for
1876 details.                                         1876 details.
1877                                                  1877 
1878 hw_free callback                                 1878 hw_free callback
1879 ~~~~~~~~~~~~~~~~~                                1879 ~~~~~~~~~~~~~~~~~
1880                                                  1880 
1881 ::                                               1881 ::
1882                                                  1882 
1883   static int snd_xxx_hw_free(struct snd_pcm_s    1883   static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
1884                                                  1884 
1885 This is called to release the resources alloc    1885 This is called to release the resources allocated via
1886 ``hw_params``.                                   1886 ``hw_params``.
1887                                                  1887 
1888 This function is always called before the clo    1888 This function is always called before the close callback is called.
1889 Also, the callback may be called multiple tim    1889 Also, the callback may be called multiple times, too. Keep track
1890 whether each resource was already released.      1890 whether each resource was already released.
1891                                                  1891 
1892 When you have chosen managed buffer allocatio    1892 When you have chosen managed buffer allocation mode for the PCM
1893 substream, the allocated PCM buffer will be a    1893 substream, the allocated PCM buffer will be automatically released
1894 after this callback gets called.  Otherwise y    1894 after this callback gets called.  Otherwise you'll have to release the
1895 buffer manually.  Typically, when the buffer     1895 buffer manually.  Typically, when the buffer was allocated from the
1896 pre-allocated pool, you can use the standard     1896 pre-allocated pool, you can use the standard API function
1897 :c:func:`snd_pcm_lib_malloc_pages()` like::      1897 :c:func:`snd_pcm_lib_malloc_pages()` like::
1898                                                  1898 
1899   snd_pcm_lib_free_pages(substream);             1899   snd_pcm_lib_free_pages(substream);
1900                                                  1900 
1901 prepare callback                                 1901 prepare callback
1902 ~~~~~~~~~~~~~~~~                                 1902 ~~~~~~~~~~~~~~~~
1903                                                  1903 
1904 ::                                               1904 ::
1905                                                  1905 
1906   static int snd_xxx_prepare(struct snd_pcm_s    1906   static int snd_xxx_prepare(struct snd_pcm_substream *substream);
1907                                                  1907 
1908 This callback is called when the PCM is “pr    1908 This callback is called when the PCM is “prepared”. You can set the
1909 format type, sample rate, etc. here. The diff    1909 format type, sample rate, etc. here. The difference from ``hw_params``
1910 is that the ``prepare`` callback will be call    1910 is that the ``prepare`` callback will be called each time
1911 :c:func:`snd_pcm_prepare()` is called, i.e. w    1911 :c:func:`snd_pcm_prepare()` is called, i.e. when recovering after
1912 underruns, etc.                                  1912 underruns, etc.
1913                                                  1913 
1914 Note that this callback is non-atomic. You ca    1914 Note that this callback is non-atomic. You can use
1915 schedule-related functions safely in this cal    1915 schedule-related functions safely in this callback.
1916                                                  1916 
1917 In this and the following callbacks, you can     1917 In this and the following callbacks, you can refer to the values via
1918 the runtime record, ``substream->runtime``. F    1918 the runtime record, ``substream->runtime``. For example, to get the
1919 current rate, format or channels, access to `    1919 current rate, format or channels, access to ``runtime->rate``,
1920 ``runtime->format`` or ``runtime->channels``,    1920 ``runtime->format`` or ``runtime->channels``, respectively. The
1921 physical address of the allocated buffer is s    1921 physical address of the allocated buffer is set to
1922 ``runtime->dma_area``. The buffer and period     1922 ``runtime->dma_area``. The buffer and period sizes are in
1923 ``runtime->buffer_size`` and ``runtime->perio    1923 ``runtime->buffer_size`` and ``runtime->period_size``, respectively.
1924                                                  1924 
1925 Be careful that this callback will be called     1925 Be careful that this callback will be called many times at each setup,
1926 too.                                             1926 too.
1927                                                  1927 
1928 trigger callback                                 1928 trigger callback
1929 ~~~~~~~~~~~~~~~~                                 1929 ~~~~~~~~~~~~~~~~
1930                                                  1930 
1931 ::                                               1931 ::
1932                                                  1932 
1933   static int snd_xxx_trigger(struct snd_pcm_s    1933   static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
1934                                                  1934 
1935 This is called when the PCM is started, stopp    1935 This is called when the PCM is started, stopped or paused.
1936                                                  1936 
1937 The action is specified in the second argumen    1937 The action is specified in the second argument, ``SNDRV_PCM_TRIGGER_XXX``
1938 defined in ``<sound/pcm.h>``. At least, the `    1938 defined in ``<sound/pcm.h>``. At least, the ``START``
1939 and ``STOP`` commands must be defined in this    1939 and ``STOP`` commands must be defined in this callback::
1940                                                  1940 
1941   switch (cmd) {                                 1941   switch (cmd) {
1942   case SNDRV_PCM_TRIGGER_START:                  1942   case SNDRV_PCM_TRIGGER_START:
1943           /* do something to start the PCM en    1943           /* do something to start the PCM engine */
1944           break;                                 1944           break;
1945   case SNDRV_PCM_TRIGGER_STOP:                   1945   case SNDRV_PCM_TRIGGER_STOP:
1946           /* do something to stop the PCM eng    1946           /* do something to stop the PCM engine */
1947           break;                                 1947           break;
1948   default:                                       1948   default:
1949           return -EINVAL;                        1949           return -EINVAL;
1950   }                                              1950   }
1951                                                  1951 
1952 When the PCM supports the pause operation (gi    1952 When the PCM supports the pause operation (given in the info field of
1953 the hardware table), the ``PAUSE_PUSH`` and `    1953 the hardware table), the ``PAUSE_PUSH`` and ``PAUSE_RELEASE`` commands
1954 must be handled here, too. The former is the     1954 must be handled here, too. The former is the command to pause the PCM,
1955 and the latter to restart the PCM again.         1955 and the latter to restart the PCM again.
1956                                                  1956 
1957 When the PCM supports the suspend/resume oper    1957 When the PCM supports the suspend/resume operation, regardless of full
1958 or partial suspend/resume support, the ``SUSP    1958 or partial suspend/resume support, the ``SUSPEND`` and ``RESUME``
1959 commands must be handled, too. These commands    1959 commands must be handled, too. These commands are issued when the
1960 power-management status is changed. Obviously    1960 power-management status is changed. Obviously, the ``SUSPEND`` and
1961 ``RESUME`` commands suspend and resume the PC    1961 ``RESUME`` commands suspend and resume the PCM substream, and usually,
1962 they are identical to the ``STOP`` and ``STAR    1962 they are identical to the ``STOP`` and ``START`` commands, respectively.
1963 See the `Power Management`_ section for detai    1963 See the `Power Management`_ section for details.
1964                                                  1964 
1965 As mentioned, this callback is atomic by defa    1965 As mentioned, this callback is atomic by default unless the ``nonatomic``
1966 flag set, and you cannot call functions which    1966 flag set, and you cannot call functions which may sleep. The
1967 ``trigger`` callback should be as minimal as     1967 ``trigger`` callback should be as minimal as possible, just really
1968 triggering the DMA. The other stuff should be    1968 triggering the DMA. The other stuff should be initialized in
1969 ``hw_params`` and ``prepare`` callbacks prope    1969 ``hw_params`` and ``prepare`` callbacks properly beforehand.
1970                                                  1970 
1971 sync_stop callback                               1971 sync_stop callback
1972 ~~~~~~~~~~~~~~~~~~                               1972 ~~~~~~~~~~~~~~~~~~
1973                                                  1973 
1974 ::                                               1974 ::
1975                                                  1975 
1976   static int snd_xxx_sync_stop(struct snd_pcm    1976   static int snd_xxx_sync_stop(struct snd_pcm_substream *substream);
1977                                                  1977 
1978 This callback is optional, and NULL can be pa    1978 This callback is optional, and NULL can be passed.  It's called after
1979 the PCM core stops the stream, before it chan    1979 the PCM core stops the stream, before it changes the stream state via
1980 ``prepare``, ``hw_params`` or ``hw_free``.       1980 ``prepare``, ``hw_params`` or ``hw_free``.
1981 Since the IRQ handler might be still pending,    1981 Since the IRQ handler might be still pending, we need to wait until
1982 the pending task finishes before moving to th    1982 the pending task finishes before moving to the next step; otherwise it
1983 might lead to a crash due to resource conflic    1983 might lead to a crash due to resource conflicts or access to freed
1984 resources.  A typical behavior is to call a s    1984 resources.  A typical behavior is to call a synchronization function
1985 like :c:func:`synchronize_irq()` here.           1985 like :c:func:`synchronize_irq()` here.
1986                                                  1986 
1987 For the majority of drivers that need only a     1987 For the majority of drivers that need only a call of
1988 :c:func:`synchronize_irq()`, there is a simpl    1988 :c:func:`synchronize_irq()`, there is a simpler setup, too.
1989 While keeping the ``sync_stop`` PCM callback     1989 While keeping the ``sync_stop`` PCM callback NULL, the driver can set
1990 the ``card->sync_irq`` field to the returned     1990 the ``card->sync_irq`` field to the returned interrupt number after
1991 requesting an IRQ, instead.   Then PCM core w    1991 requesting an IRQ, instead.   Then PCM core will call
1992 :c:func:`synchronize_irq()` with the given IR    1992 :c:func:`synchronize_irq()` with the given IRQ appropriately.
1993                                                  1993 
1994 If the IRQ handler is released by the card de    1994 If the IRQ handler is released by the card destructor, you don't need
1995 to clear ``card->sync_irq``, as the card itse    1995 to clear ``card->sync_irq``, as the card itself is being released.
1996 So, usually you'll need to add just a single     1996 So, usually you'll need to add just a single line for assigning
1997 ``card->sync_irq`` in the driver code unless     1997 ``card->sync_irq`` in the driver code unless the driver re-acquires
1998 the IRQ.  When the driver frees and re-acquir    1998 the IRQ.  When the driver frees and re-acquires the IRQ dynamically
1999 (e.g. for suspend/resume), it needs to clear     1999 (e.g. for suspend/resume), it needs to clear and re-set
2000 ``card->sync_irq`` again appropriately.          2000 ``card->sync_irq`` again appropriately.
2001                                                  2001 
2002 pointer callback                                 2002 pointer callback
2003 ~~~~~~~~~~~~~~~~                                 2003 ~~~~~~~~~~~~~~~~
2004                                                  2004 
2005 ::                                               2005 ::
2006                                                  2006 
2007   static snd_pcm_uframes_t snd_xxx_pointer(st    2007   static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
2008                                                  2008 
2009 This callback is called when the PCM middle l    2009 This callback is called when the PCM middle layer inquires the current
2010 hardware position in the buffer. The position    2010 hardware position in the buffer. The position must be returned in
2011 frames, ranging from 0 to ``buffer_size - 1``    2011 frames, ranging from 0 to ``buffer_size - 1``. 
2012                                                  2012 
2013 This is usually called from the buffer-update    2013 This is usually called from the buffer-update routine in the PCM
2014 middle layer, which is invoked when :c:func:`    2014 middle layer, which is invoked when :c:func:`snd_pcm_period_elapsed()`
2015 is called by the interrupt routine. Then the     2015 is called by the interrupt routine. Then the PCM middle layer updates
2016 the position and calculates the available spa    2016 the position and calculates the available space, and wakes up the
2017 sleeping poll threads, etc.                      2017 sleeping poll threads, etc.
2018                                                  2018 
2019 This callback is also atomic by default.         2019 This callback is also atomic by default.
2020                                                  2020 
2021 copy and fill_silence ops                        2021 copy and fill_silence ops
2022 ~~~~~~~~~~~~~~~~~~~~~~~~~                        2022 ~~~~~~~~~~~~~~~~~~~~~~~~~
2023                                                  2023 
2024 These callbacks are not mandatory, and can be    2024 These callbacks are not mandatory, and can be omitted in most cases.
2025 These callbacks are used when the hardware bu    2025 These callbacks are used when the hardware buffer cannot be in the
2026 normal memory space. Some chips have their ow    2026 normal memory space. Some chips have their own buffer in the hardware
2027 which is not mappable. In such a case, you ha    2027 which is not mappable. In such a case, you have to transfer the data
2028 manually from the memory buffer to the hardwa    2028 manually from the memory buffer to the hardware buffer. Or, if the
2029 buffer is non-contiguous on both physical and    2029 buffer is non-contiguous on both physical and virtual memory spaces,
2030 these callbacks must be defined, too.            2030 these callbacks must be defined, too.
2031                                                  2031 
2032 If these two callbacks are defined, copy and     2032 If these two callbacks are defined, copy and set-silence operations
2033 are done by them. The details will be describ    2033 are done by them. The details will be described in the later section
2034 `Buffer and Memory Management`_.                 2034 `Buffer and Memory Management`_.
2035                                                  2035 
2036 ack callback                                     2036 ack callback
2037 ~~~~~~~~~~~~                                     2037 ~~~~~~~~~~~~
2038                                                  2038 
2039 This callback is also not mandatory. This cal    2039 This callback is also not mandatory. This callback is called when the
2040 ``appl_ptr`` is updated in read or write oper    2040 ``appl_ptr`` is updated in read or write operations. Some drivers like
2041 emu10k1-fx and cs46xx need to track the curre    2041 emu10k1-fx and cs46xx need to track the current ``appl_ptr`` for the
2042 internal buffer, and this callback is useful     2042 internal buffer, and this callback is useful only for such a purpose.
2043                                                  2043 
2044 The callback function may return 0 or a negat    2044 The callback function may return 0 or a negative error. When the
2045 return value is ``-EPIPE``, PCM core treats t    2045 return value is ``-EPIPE``, PCM core treats that as a buffer XRUN,
2046 and changes the state to ``SNDRV_PCM_STATE_XR    2046 and changes the state to ``SNDRV_PCM_STATE_XRUN`` automatically.
2047                                                  2047 
2048 This callback is atomic by default.              2048 This callback is atomic by default.
2049                                                  2049 
2050 page callback                                    2050 page callback
2051 ~~~~~~~~~~~~~                                    2051 ~~~~~~~~~~~~~
2052                                                  2052 
2053 This callback is optional too. The mmap calls    2053 This callback is optional too. The mmap calls this callback to get the
2054 page fault address.                              2054 page fault address.
2055                                                  2055 
2056 You need no special callback for the standard    2056 You need no special callback for the standard SG-buffer or vmalloc-
2057 buffer. Hence this callback should be rarely     2057 buffer. Hence this callback should be rarely used.
2058                                                  2058 
2059 mmap callback                                    2059 mmap callback
2060 ~~~~~~~~~~~~~                                    2060 ~~~~~~~~~~~~~
2061                                                  2061 
2062 This is another optional callback for control    2062 This is another optional callback for controlling mmap behavior.
2063 When defined, the PCM core calls this callbac    2063 When defined, the PCM core calls this callback when a page is
2064 memory-mapped, instead of using the standard     2064 memory-mapped, instead of using the standard helper.
2065 If you need special handling (due to some arc    2065 If you need special handling (due to some architecture or
2066 device-specific issues), implement everything    2066 device-specific issues), implement everything here as you like.
2067                                                  2067 
2068                                                  2068 
2069 PCM Interrupt Handler                            2069 PCM Interrupt Handler
2070 ---------------------                            2070 ---------------------
2071                                                  2071 
2072 The remainder of the PCM stuff is the PCM int    2072 The remainder of the PCM stuff is the PCM interrupt handler. The role
2073 of the PCM                                       2073 of the PCM
2074 interrupt handler in the sound driver is to u    2074 interrupt handler in the sound driver is to update the buffer position
2075 and to tell the PCM middle layer when the buf    2075 and to tell the PCM middle layer when the buffer position goes across
2076 the specified period boundary. To inform abou    2076 the specified period boundary. To inform about this, call the
2077 :c:func:`snd_pcm_period_elapsed()` function.     2077 :c:func:`snd_pcm_period_elapsed()` function.
2078                                                  2078 
2079 There are several ways sound chips can genera    2079 There are several ways sound chips can generate interrupts.
2080                                                  2080 
2081 Interrupts at the period (fragment) boundary     2081 Interrupts at the period (fragment) boundary
2082 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~     2082 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2083                                                  2083 
2084 This is the most frequently found type: the h    2084 This is the most frequently found type: the hardware generates an
2085 interrupt at each period boundary. In this ca    2085 interrupt at each period boundary. In this case, you can call
2086 :c:func:`snd_pcm_period_elapsed()` at each in    2086 :c:func:`snd_pcm_period_elapsed()` at each interrupt.
2087                                                  2087 
2088 :c:func:`snd_pcm_period_elapsed()` takes the     2088 :c:func:`snd_pcm_period_elapsed()` takes the substream pointer as
2089 its argument. Thus, you need to keep the subs    2089 its argument. Thus, you need to keep the substream pointer accessible
2090 from the chip instance. For example, define `    2090 from the chip instance. For example, define ``substream`` field in the
2091 chip record to hold the current running subst    2091 chip record to hold the current running substream pointer, and set the
2092 pointer value at ``open`` callback (and reset    2092 pointer value at ``open`` callback (and reset at ``close`` callback).
2093                                                  2093 
2094 If you acquire a spinlock in the interrupt ha    2094 If you acquire a spinlock in the interrupt handler, and the lock is used
2095 in other PCM callbacks, too, then you have to    2095 in other PCM callbacks, too, then you have to release the lock before
2096 calling :c:func:`snd_pcm_period_elapsed()`, b    2096 calling :c:func:`snd_pcm_period_elapsed()`, because
2097 :c:func:`snd_pcm_period_elapsed()` calls othe    2097 :c:func:`snd_pcm_period_elapsed()` calls other PCM callbacks
2098 inside.                                          2098 inside.
2099                                                  2099 
2100 Typical code would look like::                   2100 Typical code would look like::
2101                                                  2101 
2102                                                  2102 
2103       static irqreturn_t snd_mychip_interrupt    2103       static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
2104       {                                          2104       {
2105               struct mychip *chip = dev_id;      2105               struct mychip *chip = dev_id;
2106               spin_lock(&chip->lock);            2106               spin_lock(&chip->lock);
2107               ....                               2107               ....
2108               if (pcm_irq_invoked(chip)) {       2108               if (pcm_irq_invoked(chip)) {
2109                       /* call updater, unlock    2109                       /* call updater, unlock before it */
2110                       spin_unlock(&chip->lock    2110                       spin_unlock(&chip->lock);
2111                       snd_pcm_period_elapsed(    2111                       snd_pcm_period_elapsed(chip->substream);
2112                       spin_lock(&chip->lock);    2112                       spin_lock(&chip->lock);
2113                       /* acknowledge the inte    2113                       /* acknowledge the interrupt if necessary */
2114               }                                  2114               }
2115               ....                               2115               ....
2116               spin_unlock(&chip->lock);          2116               spin_unlock(&chip->lock);
2117               return IRQ_HANDLED;                2117               return IRQ_HANDLED;
2118       }                                          2118       }
2119                                                  2119 
2120 Also, when the device can detect a buffer und    2120 Also, when the device can detect a buffer underrun/overrun, the driver
2121 can notify the XRUN status to the PCM core by    2121 can notify the XRUN status to the PCM core by calling
2122 :c:func:`snd_pcm_stop_xrun()`. This function     2122 :c:func:`snd_pcm_stop_xrun()`. This function stops the stream and sets
2123 the PCM state to ``SNDRV_PCM_STATE_XRUN``. No    2123 the PCM state to ``SNDRV_PCM_STATE_XRUN``. Note that it must be called
2124 outside the PCM stream lock, hence it can't b    2124 outside the PCM stream lock, hence it can't be called from the atomic
2125 callback.                                        2125 callback.
2126                                                  2126 
2127                                                  2127 
2128 High frequency timer interrupts                  2128 High frequency timer interrupts
2129 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                  2129 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2130                                                  2130 
2131 This happens when the hardware doesn't genera    2131 This happens when the hardware doesn't generate interrupts at the period
2132 boundary but issues timer interrupts at a fix    2132 boundary but issues timer interrupts at a fixed timer rate (e.g. es1968
2133 or ymfpci drivers). In this case, you need to    2133 or ymfpci drivers). In this case, you need to check the current hardware
2134 position and accumulate the processed sample     2134 position and accumulate the processed sample length at each interrupt.
2135 When the accumulated size exceeds the period     2135 When the accumulated size exceeds the period size, call
2136 :c:func:`snd_pcm_period_elapsed()` and reset     2136 :c:func:`snd_pcm_period_elapsed()` and reset the accumulator.
2137                                                  2137 
2138 Typical code would look as follows::             2138 Typical code would look as follows::
2139                                                  2139 
2140                                                  2140 
2141       static irqreturn_t snd_mychip_interrupt    2141       static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
2142       {                                          2142       {
2143               struct mychip *chip = dev_id;      2143               struct mychip *chip = dev_id;
2144               spin_lock(&chip->lock);            2144               spin_lock(&chip->lock);
2145               ....                               2145               ....
2146               if (pcm_irq_invoked(chip)) {       2146               if (pcm_irq_invoked(chip)) {
2147                       unsigned int last_ptr,     2147                       unsigned int last_ptr, size;
2148                       /* get the current hard    2148                       /* get the current hardware pointer (in frames) */
2149                       last_ptr = get_hw_ptr(c    2149                       last_ptr = get_hw_ptr(chip);
2150                       /* calculate the proces    2150                       /* calculate the processed frames since the
2151                        * last update             2151                        * last update
2152                        */                        2152                        */
2153                       if (last_ptr < chip->la    2153                       if (last_ptr < chip->last_ptr)
2154                               size = runtime-    2154                               size = runtime->buffer_size + last_ptr
2155                                        - chip    2155                                        - chip->last_ptr;
2156                       else                       2156                       else
2157                               size = last_ptr    2157                               size = last_ptr - chip->last_ptr;
2158                       /* remember the last up    2158                       /* remember the last updated point */
2159                       chip->last_ptr = last_p    2159                       chip->last_ptr = last_ptr;
2160                       /* accumulate the size     2160                       /* accumulate the size */
2161                       chip->size += size;        2161                       chip->size += size;
2162                       /* over the period boun    2162                       /* over the period boundary? */
2163                       if (chip->size >= runti    2163                       if (chip->size >= runtime->period_size) {
2164                               /* reset the ac    2164                               /* reset the accumulator */
2165                               chip->size %= r    2165                               chip->size %= runtime->period_size;
2166                               /* call updater    2166                               /* call updater */
2167                               spin_unlock(&ch    2167                               spin_unlock(&chip->lock);
2168                               snd_pcm_period_    2168                               snd_pcm_period_elapsed(substream);
2169                               spin_lock(&chip    2169                               spin_lock(&chip->lock);
2170                       }                          2170                       }
2171                       /* acknowledge the inte    2171                       /* acknowledge the interrupt if necessary */
2172               }                                  2172               }
2173               ....                               2173               ....
2174               spin_unlock(&chip->lock);          2174               spin_unlock(&chip->lock);
2175               return IRQ_HANDLED;                2175               return IRQ_HANDLED;
2176       }                                          2176       }
2177                                                  2177 
2178                                                  2178 
2179                                                  2179 
2180 On calling :c:func:`snd_pcm_period_elapsed()`    2180 On calling :c:func:`snd_pcm_period_elapsed()`
2181 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    2181 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2182                                                  2182 
2183 In both cases, even if more than one period h    2183 In both cases, even if more than one period has elapsed, you don't have
2184 to call :c:func:`snd_pcm_period_elapsed()` ma    2184 to call :c:func:`snd_pcm_period_elapsed()` many times. Call only
2185 once. And the PCM layer will check the curren    2185 once. And the PCM layer will check the current hardware pointer and
2186 update to the latest status.                     2186 update to the latest status.
2187                                                  2187 
2188 Atomicity                                        2188 Atomicity
2189 ---------                                        2189 ---------
2190                                                  2190 
2191 One of the most important (and thus difficult    2191 One of the most important (and thus difficult to debug) problems in
2192 kernel programming are race conditions. In th    2192 kernel programming are race conditions. In the Linux kernel, they are
2193 usually avoided via spin-locks, mutexes or se    2193 usually avoided via spin-locks, mutexes or semaphores. In general, if a
2194 race condition can happen in an interrupt han    2194 race condition can happen in an interrupt handler, it has to be managed
2195 atomically, and you have to use a spinlock to    2195 atomically, and you have to use a spinlock to protect the critical
2196 section. If the critical section is not in in    2196 section. If the critical section is not in interrupt handler code and if
2197 taking a relatively long time to execute is a    2197 taking a relatively long time to execute is acceptable, you should use
2198 mutexes or semaphores instead.                   2198 mutexes or semaphores instead.
2199                                                  2199 
2200 As already seen, some PCM callbacks are atomi    2200 As already seen, some PCM callbacks are atomic and some are not. For
2201 example, the ``hw_params`` callback is non-at    2201 example, the ``hw_params`` callback is non-atomic, while the ``trigger``
2202 callback is atomic. This means, the latter is    2202 callback is atomic. This means, the latter is called already in a
2203 spinlock held by the PCM middle layer, the PC    2203 spinlock held by the PCM middle layer, the PCM stream lock. Please
2204 take this atomicity into account when you cho    2204 take this atomicity into account when you choose a locking scheme in
2205 the callbacks.                                   2205 the callbacks.
2206                                                  2206 
2207 In the atomic callbacks, you cannot use funct    2207 In the atomic callbacks, you cannot use functions which may call
2208 :c:func:`schedule()` or go to :c:func:`sleep(    2208 :c:func:`schedule()` or go to :c:func:`sleep()`. Semaphores and
2209 mutexes can sleep, and hence they cannot be u    2209 mutexes can sleep, and hence they cannot be used inside the atomic
2210 callbacks (e.g. ``trigger`` callback). To imp    2210 callbacks (e.g. ``trigger`` callback). To implement some delay in such a
2211 callback, please use :c:func:`udelay()` or :c    2211 callback, please use :c:func:`udelay()` or :c:func:`mdelay()`.
2212                                                  2212 
2213 All three atomic callbacks (trigger, pointer,    2213 All three atomic callbacks (trigger, pointer, and ack) are called with
2214 local interrupts disabled.                       2214 local interrupts disabled.
2215                                                  2215 
2216 However, it is possible to request all PCM op    2216 However, it is possible to request all PCM operations to be non-atomic.
2217 This assumes that all call sites are in          2217 This assumes that all call sites are in
2218 non-atomic contexts. For example, the functio    2218 non-atomic contexts. For example, the function
2219 :c:func:`snd_pcm_period_elapsed()` is called     2219 :c:func:`snd_pcm_period_elapsed()` is called typically from the
2220 interrupt handler. But, if you set up the dri    2220 interrupt handler. But, if you set up the driver to use a threaded
2221 interrupt handler, this call can be in non-at    2221 interrupt handler, this call can be in non-atomic context, too. In such
2222 a case, you can set the ``nonatomic`` field o    2222 a case, you can set the ``nonatomic`` field of the struct snd_pcm object
2223 after creating it. When this flag is set, mut    2223 after creating it. When this flag is set, mutex and rwsem are used internally
2224 in the PCM core instead of spin and rwlocks,     2224 in the PCM core instead of spin and rwlocks, so that you can call all PCM
2225 functions safely in a non-atomic                 2225 functions safely in a non-atomic
2226 context.                                         2226 context.
2227                                                  2227 
2228 Also, in some cases, you might need to call      2228 Also, in some cases, you might need to call
2229 :c:func:`snd_pcm_period_elapsed()` in the ato    2229 :c:func:`snd_pcm_period_elapsed()` in the atomic context (e.g. the
2230 period gets elapsed during ``ack`` or other c    2230 period gets elapsed during ``ack`` or other callback). There is a
2231 variant that can be called inside the PCM str    2231 variant that can be called inside the PCM stream lock
2232 :c:func:`snd_pcm_period_elapsed_under_stream_    2232 :c:func:`snd_pcm_period_elapsed_under_stream_lock()` for that purpose,
2233 too.                                             2233 too.
2234                                                  2234 
2235 Constraints                                      2235 Constraints
2236 -----------                                      2236 -----------
2237                                                  2237 
2238 Due to physical limitations, hardware is not     2238 Due to physical limitations, hardware is not infinitely configurable.
2239 These limitations are expressed by setting co    2239 These limitations are expressed by setting constraints.
2240                                                  2240 
2241 For example, in order to restrict the sample     2241 For example, in order to restrict the sample rates to some supported
2242 values, use :c:func:`snd_pcm_hw_constraint_li    2242 values, use :c:func:`snd_pcm_hw_constraint_list()`. You need to
2243 call this function in the open callback::        2243 call this function in the open callback::
2244                                                  2244 
2245       static unsigned int rates[] =              2245       static unsigned int rates[] =
2246               {4000, 10000, 22050, 44100};       2246               {4000, 10000, 22050, 44100};
2247       static struct snd_pcm_hw_constraint_lis    2247       static struct snd_pcm_hw_constraint_list constraints_rates = {
2248               .count = ARRAY_SIZE(rates),        2248               .count = ARRAY_SIZE(rates),
2249               .list = rates,                     2249               .list = rates,
2250               .mask = 0,                         2250               .mask = 0,
2251       };                                         2251       };
2252                                                  2252 
2253       static int snd_mychip_pcm_open(struct s    2253       static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
2254       {                                          2254       {
2255               int err;                           2255               int err;
2256               ....                               2256               ....
2257               err = snd_pcm_hw_constraint_lis    2257               err = snd_pcm_hw_constraint_list(substream->runtime, 0,
2258                                                  2258                                                SNDRV_PCM_HW_PARAM_RATE,
2259                                                  2259                                                &constraints_rates);
2260               if (err < 0)                       2260               if (err < 0)
2261                       return err;                2261                       return err;
2262               ....                               2262               ....
2263       }                                          2263       }
2264                                                  2264 
2265 There are many different constraints. Look at    2265 There are many different constraints. Look at ``sound/pcm.h`` for a
2266 complete list. You can even define your own c    2266 complete list. You can even define your own constraint rules. For
2267 example, let's suppose my_chip can manage a s    2267 example, let's suppose my_chip can manage a substream of 1 channel if
2268 and only if the format is ``S16_LE``, otherwi    2268 and only if the format is ``S16_LE``, otherwise it supports any format
2269 specified in struct snd_pcm_hardware (or in a    2269 specified in struct snd_pcm_hardware (or in any other
2270 constraint_list). You can build a rule like t    2270 constraint_list). You can build a rule like this::
2271                                                  2271 
2272       static int hw_rule_channels_by_format(s    2272       static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
2273                                             s    2273                                             struct snd_pcm_hw_rule *rule)
2274       {                                          2274       {
2275               struct snd_interval *c = hw_par    2275               struct snd_interval *c = hw_param_interval(params,
2276                             SNDRV_PCM_HW_PARA    2276                             SNDRV_PCM_HW_PARAM_CHANNELS);
2277               struct snd_mask *f = hw_param_m    2277               struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2278               struct snd_interval ch;            2278               struct snd_interval ch;
2279                                                  2279 
2280               snd_interval_any(&ch);             2280               snd_interval_any(&ch);
2281               if (f->bits[0] == SNDRV_PCM_FMT    2281               if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
2282                       ch.min = ch.max = 1;       2282                       ch.min = ch.max = 1;
2283                       ch.integer = 1;            2283                       ch.integer = 1;
2284                       return snd_interval_ref    2284                       return snd_interval_refine(c, &ch);
2285               }                                  2285               }
2286               return 0;                          2286               return 0;
2287       }                                          2287       }
2288                                                  2288 
2289                                                  2289 
2290 Then you need to call this function to add yo    2290 Then you need to call this function to add your rule::
2291                                                  2291 
2292   snd_pcm_hw_rule_add(substream->runtime, 0,     2292   snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2293                       hw_rule_channels_by_for    2293                       hw_rule_channels_by_format, NULL,
2294                       SNDRV_PCM_HW_PARAM_FORM    2294                       SNDRV_PCM_HW_PARAM_FORMAT, -1);
2295                                                  2295 
2296 The rule function is called when an applicati    2296 The rule function is called when an application sets the PCM format, and
2297 it refines the number of channels accordingly    2297 it refines the number of channels accordingly. But an application may
2298 set the number of channels before setting the    2298 set the number of channels before setting the format. Thus you also need
2299 to define the inverse rule::                     2299 to define the inverse rule::
2300                                                  2300 
2301       static int hw_rule_format_by_channels(s    2301       static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
2302                                             s    2302                                             struct snd_pcm_hw_rule *rule)
2303       {                                          2303       {
2304               struct snd_interval *c = hw_par    2304               struct snd_interval *c = hw_param_interval(params,
2305                     SNDRV_PCM_HW_PARAM_CHANNE    2305                     SNDRV_PCM_HW_PARAM_CHANNELS);
2306               struct snd_mask *f = hw_param_m    2306               struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2307               struct snd_mask fmt;               2307               struct snd_mask fmt;
2308                                                  2308 
2309               snd_mask_any(&fmt);    /* Init     2309               snd_mask_any(&fmt);    /* Init the struct */
2310               if (c->min < 2) {                  2310               if (c->min < 2) {
2311                       fmt.bits[0] &= SNDRV_PC    2311                       fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
2312                       return snd_mask_refine(    2312                       return snd_mask_refine(f, &fmt);
2313               }                                  2313               }
2314               return 0;                          2314               return 0;
2315       }                                          2315       }
2316                                                  2316 
2317                                                  2317 
2318 ... and in the open callback::                   2318 ... and in the open callback::
2319                                                  2319 
2320   snd_pcm_hw_rule_add(substream->runtime, 0,     2320   snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2321                       hw_rule_format_by_chann    2321                       hw_rule_format_by_channels, NULL,
2322                       SNDRV_PCM_HW_PARAM_CHAN    2322                       SNDRV_PCM_HW_PARAM_CHANNELS, -1);
2323                                                  2323 
2324 One typical usage of the hw constraints is to    2324 One typical usage of the hw constraints is to align the buffer size
2325 with the period size.  By default, ALSA PCM c    2325 with the period size.  By default, ALSA PCM core doesn't enforce the
2326 buffer size to be aligned with the period siz    2326 buffer size to be aligned with the period size.  For example, it'd be
2327 possible to have a combination like 256 perio    2327 possible to have a combination like 256 period bytes with 999 buffer
2328 bytes.                                           2328 bytes.
2329                                                  2329 
2330 Many device chips, however, require the buffe    2330 Many device chips, however, require the buffer to be a multiple of
2331 periods.  In such a case, call                   2331 periods.  In such a case, call
2332 :c:func:`snd_pcm_hw_constraint_integer()` for    2332 :c:func:`snd_pcm_hw_constraint_integer()` for
2333 ``SNDRV_PCM_HW_PARAM_PERIODS``::                 2333 ``SNDRV_PCM_HW_PARAM_PERIODS``::
2334                                                  2334 
2335   snd_pcm_hw_constraint_integer(substream->ru    2335   snd_pcm_hw_constraint_integer(substream->runtime,
2336                                 SNDRV_PCM_HW_    2336                                 SNDRV_PCM_HW_PARAM_PERIODS);
2337                                                  2337 
2338 This assures that the number of periods is in    2338 This assures that the number of periods is integer, hence the buffer
2339 size is aligned with the period size.            2339 size is aligned with the period size.
2340                                                  2340 
2341 The hw constraint is a very powerful mechanis    2341 The hw constraint is a very powerful mechanism to define the
2342 preferred PCM configuration, and there are re    2342 preferred PCM configuration, and there are relevant helpers.
2343 I won't give more details here, rather I woul    2343 I won't give more details here, rather I would like to say, “Luke, use
2344 the source.”                                   2344 the source.”
2345                                                  2345 
2346 Control Interface                                2346 Control Interface
2347 =================                                2347 =================
2348                                                  2348 
2349 General                                          2349 General
2350 -------                                          2350 -------
2351                                                  2351 
2352 The control interface is used widely for many    2352 The control interface is used widely for many switches, sliders, etc.
2353 which are accessed from user-space. Its most     2353 which are accessed from user-space. Its most important use is the mixer
2354 interface. In other words, since ALSA 0.9.x,     2354 interface. In other words, since ALSA 0.9.x, all the mixer stuff is
2355 implemented on the control kernel API.           2355 implemented on the control kernel API.
2356                                                  2356 
2357 ALSA has a well-defined AC97 control module.     2357 ALSA has a well-defined AC97 control module. If your chip supports only
2358 the AC97 and nothing else, you can skip this     2358 the AC97 and nothing else, you can skip this section.
2359                                                  2359 
2360 The control API is defined in ``<sound/contro    2360 The control API is defined in ``<sound/control.h>``. Include this file
2361 if you want to add your own controls.            2361 if you want to add your own controls.
2362                                                  2362 
2363 Definition of Controls                           2363 Definition of Controls
2364 ----------------------                           2364 ----------------------
2365                                                  2365 
2366 To create a new control, you need to define t    2366 To create a new control, you need to define the following three
2367 callbacks: ``info``, ``get`` and ``put``. The    2367 callbacks: ``info``, ``get`` and ``put``. Then, define a
2368 struct snd_kcontrol_new record, such as::        2368 struct snd_kcontrol_new record, such as::
2369                                                  2369 
2370                                                  2370 
2371       static struct snd_kcontrol_new my_contr    2371       static struct snd_kcontrol_new my_control = {
2372               .iface = SNDRV_CTL_ELEM_IFACE_M    2372               .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2373               .name = "PCM Playback Switch",     2373               .name = "PCM Playback Switch",
2374               .index = 0,                        2374               .index = 0,
2375               .access = SNDRV_CTL_ELEM_ACCESS    2375               .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
2376               .private_value = 0xffff,           2376               .private_value = 0xffff,
2377               .info = my_control_info,           2377               .info = my_control_info,
2378               .get = my_control_get,             2378               .get = my_control_get,
2379               .put = my_control_put              2379               .put = my_control_put
2380       };                                         2380       };
2381                                                  2381 
2382                                                  2382 
2383 The ``iface`` field specifies the control typ    2383 The ``iface`` field specifies the control type,
2384 ``SNDRV_CTL_ELEM_IFACE_XXX``, which is usuall    2384 ``SNDRV_CTL_ELEM_IFACE_XXX``, which is usually ``MIXER``. Use ``CARD``
2385 for global controls that are not logically pa    2385 for global controls that are not logically part of the mixer. If the
2386 control is closely associated with some speci    2386 control is closely associated with some specific device on the sound
2387 card, use ``HWDEP``, ``PCM``, ``RAWMIDI``, ``    2387 card, use ``HWDEP``, ``PCM``, ``RAWMIDI``, ``TIMER``, or ``SEQUENCER``,
2388 and specify the device number with the ``devi    2388 and specify the device number with the ``device`` and ``subdevice``
2389 fields.                                          2389 fields.
2390                                                  2390 
2391 The ``name`` is the name identifier string. S    2391 The ``name`` is the name identifier string. Since ALSA 0.9.x, the
2392 control name is very important, because its r    2392 control name is very important, because its role is classified from
2393 its name. There are pre-defined standard cont    2393 its name. There are pre-defined standard control names. The details
2394 are described in the `Control Names`_ subsect    2394 are described in the `Control Names`_ subsection.
2395                                                  2395 
2396 The ``index`` field holds the index number of    2396 The ``index`` field holds the index number of this control. If there
2397 are several different controls with the same     2397 are several different controls with the same name, they can be
2398 distinguished by the index number. This is th    2398 distinguished by the index number. This is the case when several
2399 codecs exist on the card. If the index is zer    2399 codecs exist on the card. If the index is zero, you can omit the
2400 definition above.                                2400 definition above. 
2401                                                  2401 
2402 The ``access`` field contains the access type    2402 The ``access`` field contains the access type of this control. Give
2403 the combination of bit masks, ``SNDRV_CTL_ELE    2403 the combination of bit masks, ``SNDRV_CTL_ELEM_ACCESS_XXX``,
2404 there. The details will be explained in the `    2404 there. The details will be explained in the `Access Flags`_
2405 subsection.                                      2405 subsection.
2406                                                  2406 
2407 The ``private_value`` field contains an arbit    2407 The ``private_value`` field contains an arbitrary long integer value
2408 for this record. When using the generic ``inf    2408 for this record. When using the generic ``info``, ``get`` and ``put``
2409 callbacks, you can pass a value through this     2409 callbacks, you can pass a value through this field. If several small
2410 numbers are necessary, you can combine them i    2410 numbers are necessary, you can combine them in bitwise. Or, it's
2411 possible to store a pointer (casted to unsign    2411 possible to store a pointer (casted to unsigned long) of some record in
2412 this field, too.                                 2412 this field, too. 
2413                                                  2413 
2414 The ``tlv`` field can be used to provide meta    2414 The ``tlv`` field can be used to provide metadata about the control;
2415 see the `Metadata`_ subsection.                  2415 see the `Metadata`_ subsection.
2416                                                  2416 
2417 The other three are `Control Callbacks`_.        2417 The other three are `Control Callbacks`_.
2418                                                  2418 
2419 Control Names                                    2419 Control Names
2420 -------------                                    2420 -------------
2421                                                  2421 
2422 There are some standards to define the contro    2422 There are some standards to define the control names. A control is
2423 usually defined from the three parts as “SO    2423 usually defined from the three parts as “SOURCE DIRECTION FUNCTION”.
2424                                                  2424 
2425 The first, ``SOURCE``, specifies the source o    2425 The first, ``SOURCE``, specifies the source of the control, and is a
2426 string such as “Master”, “PCM”, “CD    2426 string such as “Master”, “PCM”, “CD” and “Line”. There are many
2427 pre-defined sources.                             2427 pre-defined sources.
2428                                                  2428 
2429 The second, ``DIRECTION``, is one of the foll    2429 The second, ``DIRECTION``, is one of the following strings according to
2430 the direction of the control: “Playback”,    2430 the direction of the control: “Playback”, “Capture”, “Bypass Playback”
2431 and “Bypass Capture”. Or, it can be omitt    2431 and “Bypass Capture”. Or, it can be omitted, meaning both playback and
2432 capture directions.                              2432 capture directions.
2433                                                  2433 
2434 The third, ``FUNCTION``, is one of the follow    2434 The third, ``FUNCTION``, is one of the following strings according to
2435 the function of the control: “Switch”,     2435 the function of the control: “Switch”, “Volume” and “Route”.
2436                                                  2436 
2437 The example of control names are, thus, “Ma    2437 The example of control names are, thus, “Master Capture Switch” or “PCM
2438 Playback Volume”.                              2438 Playback Volume”.
2439                                                  2439 
2440 There are some exceptions:                       2440 There are some exceptions:
2441                                                  2441 
2442 Global capture and playback                      2442 Global capture and playback
2443 ~~~~~~~~~~~~~~~~~~~~~~~~~~~                      2443 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
2444                                                  2444 
2445 “Capture Source”, “Capture Switch” an    2445 “Capture Source”, “Capture Switch” and “Capture Volume” are used for the
2446 global capture (input) source, switch and vol    2446 global capture (input) source, switch and volume. Similarly, “Playback
2447 Switch” and “Playback Volume” are used     2447 Switch” and “Playback Volume” are used for the global output gain switch
2448 and volume.                                      2448 and volume.
2449                                                  2449 
2450 Tone-controls                                    2450 Tone-controls
2451 ~~~~~~~~~~~~~                                    2451 ~~~~~~~~~~~~~
2452                                                  2452 
2453 tone-control switch and volumes are specified    2453 tone-control switch and volumes are specified like “Tone Control - XXX”,
2454 e.g. “Tone Control - Switch”, “Tone Con    2454 e.g. “Tone Control - Switch”, “Tone Control - Bass”, “Tone Control -
2455 Center”.                                       2455 Center”.
2456                                                  2456 
2457 3D controls                                      2457 3D controls
2458 ~~~~~~~~~~~                                      2458 ~~~~~~~~~~~
2459                                                  2459 
2460 3D-control switches and volumes are specified    2460 3D-control switches and volumes are specified like “3D Control - XXX”,
2461 e.g. “3D Control - Switch”, “3D Control    2461 e.g. “3D Control - Switch”, “3D Control - Center”, “3D Control - Space”.
2462                                                  2462 
2463 Mic boost                                        2463 Mic boost
2464 ~~~~~~~~~                                        2464 ~~~~~~~~~
2465                                                  2465 
2466 Mic-boost switch is set as “Mic Boost” or    2466 Mic-boost switch is set as “Mic Boost” or “Mic Boost (6dB)”.
2467                                                  2467 
2468 More precise information can be found in         2468 More precise information can be found in
2469 ``Documentation/sound/designs/control-names.r    2469 ``Documentation/sound/designs/control-names.rst``.
2470                                                  2470 
2471 Access Flags                                     2471 Access Flags
2472 ------------                                     2472 ------------
2473                                                  2473 
2474 The access flag is the bitmask which specifie    2474 The access flag is the bitmask which specifies the access type of the
2475 given control. The default access type is        2475 given control. The default access type is
2476 ``SNDRV_CTL_ELEM_ACCESS_READWRITE``, which me    2476 ``SNDRV_CTL_ELEM_ACCESS_READWRITE``, which means both read and write are
2477 allowed to this control. When the access flag    2477 allowed to this control. When the access flag is omitted (i.e. = 0), it
2478 is considered as ``READWRITE`` access by defa    2478 is considered as ``READWRITE`` access by default.
2479                                                  2479 
2480 When the control is read-only, pass ``SNDRV_C    2480 When the control is read-only, pass ``SNDRV_CTL_ELEM_ACCESS_READ``
2481 instead. In this case, you don't have to defi    2481 instead. In this case, you don't have to define the ``put`` callback.
2482 Similarly, when the control is write-only (al    2482 Similarly, when the control is write-only (although it's a rare case),
2483 you can use the ``WRITE`` flag instead, and y    2483 you can use the ``WRITE`` flag instead, and you don't need the ``get``
2484 callback.                                        2484 callback.
2485                                                  2485 
2486 If the control value changes frequently (e.g.    2486 If the control value changes frequently (e.g. the VU meter),
2487 ``VOLATILE`` flag should be given. This means    2487 ``VOLATILE`` flag should be given. This means that the control may be
2488 changed without `Change notification`_. Appli    2488 changed without `Change notification`_. Applications should poll such
2489 a control constantly.                            2489 a control constantly.
2490                                                  2490 
2491 When the control may be updated, but currentl    2491 When the control may be updated, but currently has no effect on anything,
2492 setting the ``INACTIVE`` flag may be appropri    2492 setting the ``INACTIVE`` flag may be appropriate. For example, PCM
2493 controls should be inactive while no PCM devi    2493 controls should be inactive while no PCM device is open.
2494                                                  2494 
2495 There are ``LOCK`` and ``OWNER`` flags to cha    2495 There are ``LOCK`` and ``OWNER`` flags to change the write permissions.
2496                                                  2496 
2497 Control Callbacks                                2497 Control Callbacks
2498 -----------------                                2498 -----------------
2499                                                  2499 
2500 info callback                                    2500 info callback
2501 ~~~~~~~~~~~~~                                    2501 ~~~~~~~~~~~~~
2502                                                  2502 
2503 The ``info`` callback is used to get detailed    2503 The ``info`` callback is used to get detailed information on this
2504 control. This must store the values of the gi    2504 control. This must store the values of the given
2505 struct snd_ctl_elem_info object. For example,    2505 struct snd_ctl_elem_info object. For example,
2506 for a boolean control with a single element::    2506 for a boolean control with a single element::
2507                                                  2507 
2508                                                  2508 
2509       static int snd_myctl_mono_info(struct s    2509       static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol,
2510                               struct snd_ctl_    2510                               struct snd_ctl_elem_info *uinfo)
2511       {                                          2511       {
2512               uinfo->type = SNDRV_CTL_ELEM_TY    2512               uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2513               uinfo->count = 1;                  2513               uinfo->count = 1;
2514               uinfo->value.integer.min = 0;      2514               uinfo->value.integer.min = 0;
2515               uinfo->value.integer.max = 1;      2515               uinfo->value.integer.max = 1;
2516               return 0;                          2516               return 0;
2517       }                                          2517       }
2518                                                  2518 
2519                                                  2519 
2520                                                  2520 
2521 The ``type`` field specifies the type of the     2521 The ``type`` field specifies the type of the control. There are
2522 ``BOOLEAN``, ``INTEGER``, ``ENUMERATED``, ``B    2522 ``BOOLEAN``, ``INTEGER``, ``ENUMERATED``, ``BYTES``, ``IEC958`` and
2523 ``INTEGER64``. The ``count`` field specifies     2523 ``INTEGER64``. The ``count`` field specifies the number of elements in
2524 this control. For example, a stereo volume wo    2524 this control. For example, a stereo volume would have count = 2. The
2525 ``value`` field is a union, and the values st    2525 ``value`` field is a union, and the values stored depend on the
2526 type. The boolean and integer types are ident    2526 type. The boolean and integer types are identical.
2527                                                  2527 
2528 The enumerated type is a bit different from t    2528 The enumerated type is a bit different from the others. You'll need to
2529 set the string for the selectec item index::     2529 set the string for the selectec item index::
2530                                                  2530 
2531   static int snd_myctl_enum_info(struct snd_k    2531   static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
2532                           struct snd_ctl_elem    2532                           struct snd_ctl_elem_info *uinfo)
2533   {                                              2533   {
2534           static char *texts[4] = {              2534           static char *texts[4] = {
2535                   "First", "Second", "Third",    2535                   "First", "Second", "Third", "Fourth"
2536           };                                     2536           };
2537           uinfo->type = SNDRV_CTL_ELEM_TYPE_E    2537           uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2538           uinfo->count = 1;                      2538           uinfo->count = 1;
2539           uinfo->value.enumerated.items = 4;     2539           uinfo->value.enumerated.items = 4;
2540           if (uinfo->value.enumerated.item >     2540           if (uinfo->value.enumerated.item > 3)
2541                   uinfo->value.enumerated.ite    2541                   uinfo->value.enumerated.item = 3;
2542           strcpy(uinfo->value.enumerated.name    2542           strcpy(uinfo->value.enumerated.name,
2543                  texts[uinfo->value.enumerate    2543                  texts[uinfo->value.enumerated.item]);
2544           return 0;                              2544           return 0;
2545   }                                              2545   }
2546                                                  2546 
2547 The above callback can be simplified with a h    2547 The above callback can be simplified with a helper function,
2548 :c:func:`snd_ctl_enum_info()`. The final code    2548 :c:func:`snd_ctl_enum_info()`. The final code looks like below.
2549 (You can pass ``ARRAY_SIZE(texts)`` instead o    2549 (You can pass ``ARRAY_SIZE(texts)`` instead of 4 in the third argument;
2550 it's a matter of taste.)                         2550 it's a matter of taste.)
2551                                                  2551 
2552 ::                                               2552 ::
2553                                                  2553 
2554   static int snd_myctl_enum_info(struct snd_k    2554   static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
2555                           struct snd_ctl_elem    2555                           struct snd_ctl_elem_info *uinfo)
2556   {                                              2556   {
2557           static char *texts[4] = {              2557           static char *texts[4] = {
2558                   "First", "Second", "Third",    2558                   "First", "Second", "Third", "Fourth"
2559           };                                     2559           };
2560           return snd_ctl_enum_info(uinfo, 1,     2560           return snd_ctl_enum_info(uinfo, 1, 4, texts);
2561   }                                              2561   }
2562                                                  2562 
2563                                                  2563 
2564 Some common info callbacks are available for     2564 Some common info callbacks are available for your convenience:
2565 :c:func:`snd_ctl_boolean_mono_info()` and        2565 :c:func:`snd_ctl_boolean_mono_info()` and
2566 :c:func:`snd_ctl_boolean_stereo_info()`. Obvi    2566 :c:func:`snd_ctl_boolean_stereo_info()`. Obviously, the former
2567 is an info callback for a mono channel boolea    2567 is an info callback for a mono channel boolean item, just like
2568 :c:func:`snd_myctl_mono_info()` above, and th    2568 :c:func:`snd_myctl_mono_info()` above, and the latter is for a
2569 stereo channel boolean item.                     2569 stereo channel boolean item.
2570                                                  2570 
2571 get callback                                     2571 get callback
2572 ~~~~~~~~~~~~                                     2572 ~~~~~~~~~~~~
2573                                                  2573 
2574 This callback is used to read the current val    2574 This callback is used to read the current value of the control, so it
2575 can be returned to user-space.                   2575 can be returned to user-space.
2576                                                  2576 
2577 For example::                                    2577 For example::
2578                                                  2578 
2579       static int snd_myctl_get(struct snd_kco    2579       static int snd_myctl_get(struct snd_kcontrol *kcontrol,
2580                                struct snd_ctl    2580                                struct snd_ctl_elem_value *ucontrol)
2581       {                                          2581       {
2582               struct mychip *chip = snd_kcont    2582               struct mychip *chip = snd_kcontrol_chip(kcontrol);
2583               ucontrol->value.integer.value[0    2583               ucontrol->value.integer.value[0] = get_some_value(chip);
2584               return 0;                          2584               return 0;
2585       }                                          2585       }
2586                                                  2586 
2587                                                  2587 
2588                                                  2588 
2589 The ``value`` field depends on the type of co    2589 The ``value`` field depends on the type of control as well as on the
2590 info callback. For example, the sb driver use    2590 info callback. For example, the sb driver uses this field to store the
2591 register offset, the bit-shift and the bit-ma    2591 register offset, the bit-shift and the bit-mask. The ``private_value``
2592 field is set as follows::                        2592 field is set as follows::
2593                                                  2593 
2594   .private_value = reg | (shift << 16) | (mas    2594   .private_value = reg | (shift << 16) | (mask << 24)
2595                                                  2595 
2596 and is retrieved in callbacks like::             2596 and is retrieved in callbacks like::
2597                                                  2597 
2598   static int snd_sbmixer_get_single(struct sn    2598   static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
2599                                     struct sn    2599                                     struct snd_ctl_elem_value *ucontrol)
2600   {                                              2600   {
2601           int reg = kcontrol->private_value &    2601           int reg = kcontrol->private_value & 0xff;
2602           int shift = (kcontrol->private_valu    2602           int shift = (kcontrol->private_value >> 16) & 0xff;
2603           int mask = (kcontrol->private_value    2603           int mask = (kcontrol->private_value >> 24) & 0xff;
2604           ....                                   2604           ....
2605   }                                              2605   }
2606                                                  2606 
2607 In the ``get`` callback, you have to fill all    2607 In the ``get`` callback, you have to fill all the elements if the
2608 control has more than one element, i.e. ``cou    2608 control has more than one element, i.e. ``count > 1``. In the example
2609 above, we filled only one element (``value.in    2609 above, we filled only one element (``value.integer.value[0]``) since
2610 ``count = 1`` is assumed.                        2610 ``count = 1`` is assumed.
2611                                                  2611 
2612 put callback                                     2612 put callback
2613 ~~~~~~~~~~~~                                     2613 ~~~~~~~~~~~~
2614                                                  2614 
2615 This callback is used to write a value coming    2615 This callback is used to write a value coming from user-space.
2616                                                  2616 
2617 For example::                                    2617 For example::
2618                                                  2618 
2619       static int snd_myctl_put(struct snd_kco    2619       static int snd_myctl_put(struct snd_kcontrol *kcontrol,
2620                                struct snd_ctl    2620                                struct snd_ctl_elem_value *ucontrol)
2621       {                                          2621       {
2622               struct mychip *chip = snd_kcont    2622               struct mychip *chip = snd_kcontrol_chip(kcontrol);
2623               int changed = 0;                   2623               int changed = 0;
2624               if (chip->current_value !=         2624               if (chip->current_value !=
2625                    ucontrol->value.integer.va    2625                    ucontrol->value.integer.value[0]) {
2626                       change_current_value(ch    2626                       change_current_value(chip,
2627                                   ucontrol->v    2627                                   ucontrol->value.integer.value[0]);
2628                       changed = 1;               2628                       changed = 1;
2629               }                                  2629               }
2630               return changed;                    2630               return changed;
2631       }                                          2631       }
2632                                                  2632 
2633                                                  2633 
2634                                                  2634 
2635 As seen above, you have to return 1 if the va    2635 As seen above, you have to return 1 if the value is changed. If the
2636 value is not changed, return 0 instead. If an    2636 value is not changed, return 0 instead. If any fatal error happens,
2637 return a negative error code as usual.           2637 return a negative error code as usual.
2638                                                  2638 
2639 As in the ``get`` callback, when the control     2639 As in the ``get`` callback, when the control has more than one
2640 element, all elements must be evaluated in th    2640 element, all elements must be evaluated in this callback, too.
2641                                                  2641 
2642 Callbacks are not atomic                         2642 Callbacks are not atomic
2643 ~~~~~~~~~~~~~~~~~~~~~~~~                         2643 ~~~~~~~~~~~~~~~~~~~~~~~~
2644                                                  2644 
2645 All these three callbacks are not-atomic.        2645 All these three callbacks are not-atomic.
2646                                                  2646 
2647 Control Constructor                              2647 Control Constructor
2648 -------------------                              2648 -------------------
2649                                                  2649 
2650 When everything is ready, finally we can crea    2650 When everything is ready, finally we can create a new control. To create
2651 a control, there are two functions to be call    2651 a control, there are two functions to be called,
2652 :c:func:`snd_ctl_new1()` and :c:func:`snd_ctl    2652 :c:func:`snd_ctl_new1()` and :c:func:`snd_ctl_add()`.
2653                                                  2653 
2654 In the simplest way, you can do it like this:    2654 In the simplest way, you can do it like this::
2655                                                  2655 
2656   err = snd_ctl_add(card, snd_ctl_new1(&my_co    2656   err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip));
2657   if (err < 0)                                   2657   if (err < 0)
2658           return err;                            2658           return err;
2659                                                  2659 
2660 where ``my_control`` is the struct snd_kcontr    2660 where ``my_control`` is the struct snd_kcontrol_new object defined above,
2661 and chip is the object pointer to be passed t    2661 and chip is the object pointer to be passed to kcontrol->private_data which
2662 can be referred to in callbacks.                 2662 can be referred to in callbacks.
2663                                                  2663 
2664 :c:func:`snd_ctl_new1()` allocates a new stru    2664 :c:func:`snd_ctl_new1()` allocates a new struct snd_kcontrol instance, and
2665 :c:func:`snd_ctl_add()` assigns the given con    2665 :c:func:`snd_ctl_add()` assigns the given control component to the
2666 card.                                            2666 card.
2667                                                  2667 
2668 Change Notification                              2668 Change Notification
2669 -------------------                              2669 -------------------
2670                                                  2670 
2671 If you need to change and update a control in    2671 If you need to change and update a control in the interrupt routine, you
2672 can call :c:func:`snd_ctl_notify()`. For exam    2672 can call :c:func:`snd_ctl_notify()`. For example::
2673                                                  2673 
2674   snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_V    2674   snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
2675                                                  2675 
2676 This function takes the card pointer, the eve    2676 This function takes the card pointer, the event-mask, and the control id
2677 pointer for the notification. The event-mask     2677 pointer for the notification. The event-mask specifies the types of
2678 notification, for example, in the above examp    2678 notification, for example, in the above example, the change of control
2679 values is notified. The id pointer is the poi    2679 values is notified. The id pointer is the pointer of struct snd_ctl_elem_id
2680 to be notified. You can find some examples in    2680 to be notified. You can find some examples in ``es1938.c`` or ``es1968.c``
2681 for hardware volume interrupts.                  2681 for hardware volume interrupts.
2682                                                  2682 
2683 Metadata                                         2683 Metadata
2684 --------                                         2684 --------
2685                                                  2685 
2686 To provide information about the dB values of    2686 To provide information about the dB values of a mixer control, use one of
2687 the ``DECLARE_TLV_xxx`` macros from ``<sound/    2687 the ``DECLARE_TLV_xxx`` macros from ``<sound/tlv.h>`` to define a
2688 variable containing this information, set the    2688 variable containing this information, set the ``tlv.p`` field to point to
2689 this variable, and include the ``SNDRV_CTL_EL    2689 this variable, and include the ``SNDRV_CTL_ELEM_ACCESS_TLV_READ`` flag
2690 in the ``access`` field; like this::             2690 in the ``access`` field; like this::
2691                                                  2691 
2692   static DECLARE_TLV_DB_SCALE(db_scale_my_con    2692   static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0);
2693                                                  2693 
2694   static struct snd_kcontrol_new my_control =    2694   static struct snd_kcontrol_new my_control = {
2695           ...                                    2695           ...
2696           .access = SNDRV_CTL_ELEM_ACCESS_REA    2696           .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
2697                     SNDRV_CTL_ELEM_ACCESS_TLV    2697                     SNDRV_CTL_ELEM_ACCESS_TLV_READ,
2698           ...                                    2698           ...
2699           .tlv.p = db_scale_my_control,          2699           .tlv.p = db_scale_my_control,
2700   };                                             2700   };
2701                                                  2701 
2702                                                  2702 
2703 The :c:func:`DECLARE_TLV_DB_SCALE()` macro de    2703 The :c:func:`DECLARE_TLV_DB_SCALE()` macro defines information
2704 about a mixer control where each step in the     2704 about a mixer control where each step in the control's value changes the
2705 dB value by a constant dB amount. The first p    2705 dB value by a constant dB amount. The first parameter is the name of the
2706 variable to be defined. The second parameter     2706 variable to be defined. The second parameter is the minimum value, in
2707 units of 0.01 dB. The third parameter is the     2707 units of 0.01 dB. The third parameter is the step size, in units of 0.01
2708 dB. Set the fourth parameter to 1 if the mini    2708 dB. Set the fourth parameter to 1 if the minimum value actually mutes
2709 the control.                                     2709 the control.
2710                                                  2710 
2711 The :c:func:`DECLARE_TLV_DB_LINEAR()` macro d    2711 The :c:func:`DECLARE_TLV_DB_LINEAR()` macro defines information
2712 about a mixer control where the control's val    2712 about a mixer control where the control's value affects the output
2713 linearly. The first parameter is the name of     2713 linearly. The first parameter is the name of the variable to be defined.
2714 The second parameter is the minimum value, in    2714 The second parameter is the minimum value, in units of 0.01 dB. The
2715 third parameter is the maximum value, in unit    2715 third parameter is the maximum value, in units of 0.01 dB. If the
2716 minimum value mutes the control, set the seco    2716 minimum value mutes the control, set the second parameter to
2717 ``TLV_DB_GAIN_MUTE``.                            2717 ``TLV_DB_GAIN_MUTE``.
2718                                                  2718 
2719 API for AC97 Codec                               2719 API for AC97 Codec
2720 ==================                               2720 ==================
2721                                                  2721 
2722 General                                          2722 General
2723 -------                                          2723 -------
2724                                                  2724 
2725 The ALSA AC97 codec layer is a well-defined o    2725 The ALSA AC97 codec layer is a well-defined one, and you don't have to
2726 write much code to control it. Only low-level    2726 write much code to control it. Only low-level control routines are
2727 necessary. The AC97 codec API is defined in `    2727 necessary. The AC97 codec API is defined in ``<sound/ac97_codec.h>``.
2728                                                  2728 
2729 Full Code Example                                2729 Full Code Example
2730 -----------------                                2730 -----------------
2731                                                  2731 
2732 ::                                               2732 ::
2733                                                  2733 
2734       struct mychip {                            2734       struct mychip {
2735               ....                               2735               ....
2736               struct snd_ac97 *ac97;             2736               struct snd_ac97 *ac97;
2737               ....                               2737               ....
2738       };                                         2738       };
2739                                                  2739 
2740       static unsigned short snd_mychip_ac97_r    2740       static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
2741                                                  2741                                                  unsigned short reg)
2742       {                                          2742       {
2743               struct mychip *chip = ac97->pri    2743               struct mychip *chip = ac97->private_data;
2744               ....                               2744               ....
2745               /* read a register value here f    2745               /* read a register value here from the codec */
2746               return the_register_value;         2746               return the_register_value;
2747       }                                          2747       }
2748                                                  2748 
2749       static void snd_mychip_ac97_write(struc    2749       static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
2750                                        unsign    2750                                        unsigned short reg, unsigned short val)
2751       {                                          2751       {
2752               struct mychip *chip = ac97->pri    2752               struct mychip *chip = ac97->private_data;
2753               ....                               2753               ....
2754               /* write the given register val    2754               /* write the given register value to the codec */
2755       }                                          2755       }
2756                                                  2756 
2757       static int snd_mychip_ac97(struct mychi    2757       static int snd_mychip_ac97(struct mychip *chip)
2758       {                                          2758       {
2759               struct snd_ac97_bus *bus;          2759               struct snd_ac97_bus *bus;
2760               struct snd_ac97_template ac97;     2760               struct snd_ac97_template ac97;
2761               int err;                           2761               int err;
2762               static struct snd_ac97_bus_ops     2762               static struct snd_ac97_bus_ops ops = {
2763                       .write = snd_mychip_ac9    2763                       .write = snd_mychip_ac97_write,
2764                       .read = snd_mychip_ac97    2764                       .read = snd_mychip_ac97_read,
2765               };                                 2765               };
2766                                                  2766 
2767               err = snd_ac97_bus(chip->card,     2767               err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus);
2768               if (err < 0)                       2768               if (err < 0)
2769                       return err;                2769                       return err;
2770               memset(&ac97, 0, sizeof(ac97));    2770               memset(&ac97, 0, sizeof(ac97));
2771               ac97.private_data = chip;          2771               ac97.private_data = chip;
2772               return snd_ac97_mixer(bus, &ac9    2772               return snd_ac97_mixer(bus, &ac97, &chip->ac97);
2773       }                                          2773       }
2774                                                  2774 
2775                                                  2775 
2776 AC97 Constructor                                 2776 AC97 Constructor
2777 ----------------                                 2777 ----------------
2778                                                  2778 
2779 To create an ac97 instance, first call :c:fun    2779 To create an ac97 instance, first call :c:func:`snd_ac97_bus()`
2780 with an ``ac97_bus_ops_t`` record with callba    2780 with an ``ac97_bus_ops_t`` record with callback functions::
2781                                                  2781 
2782   struct snd_ac97_bus *bus;                      2782   struct snd_ac97_bus *bus;
2783   static struct snd_ac97_bus_ops ops = {         2783   static struct snd_ac97_bus_ops ops = {
2784         .write = snd_mychip_ac97_write,          2784         .write = snd_mychip_ac97_write,
2785         .read = snd_mychip_ac97_read,            2785         .read = snd_mychip_ac97_read,
2786   };                                             2786   };
2787                                                  2787 
2788   snd_ac97_bus(card, 0, &ops, NULL, &pbus);      2788   snd_ac97_bus(card, 0, &ops, NULL, &pbus);
2789                                                  2789 
2790 The bus record is shared among all belonging     2790 The bus record is shared among all belonging ac97 instances.
2791                                                  2791 
2792 And then call :c:func:`snd_ac97_mixer()` with    2792 And then call :c:func:`snd_ac97_mixer()` with a struct snd_ac97_template
2793 record together with the bus pointer created     2793 record together with the bus pointer created above::
2794                                                  2794 
2795   struct snd_ac97_template ac97;                 2795   struct snd_ac97_template ac97;
2796   int err;                                       2796   int err;
2797                                                  2797 
2798   memset(&ac97, 0, sizeof(ac97));                2798   memset(&ac97, 0, sizeof(ac97));
2799   ac97.private_data = chip;                      2799   ac97.private_data = chip;
2800   snd_ac97_mixer(bus, &ac97, &chip->ac97);       2800   snd_ac97_mixer(bus, &ac97, &chip->ac97);
2801                                                  2801 
2802 where chip->ac97 is a pointer to a newly crea    2802 where chip->ac97 is a pointer to a newly created ``ac97_t``
2803 instance. In this case, the chip pointer is s    2803 instance. In this case, the chip pointer is set as the private data,
2804 so that the read/write callback functions can    2804 so that the read/write callback functions can refer to this chip
2805 instance. This instance is not necessarily st    2805 instance. This instance is not necessarily stored in the chip
2806 record. If you need to change the register va    2806 record. If you need to change the register values from the driver, or
2807 need the suspend/resume of ac97 codecs, keep     2807 need the suspend/resume of ac97 codecs, keep this pointer to pass to
2808 the corresponding functions.                     2808 the corresponding functions.
2809                                                  2809 
2810 AC97 Callbacks                                   2810 AC97 Callbacks
2811 --------------                                   2811 --------------
2812                                                  2812 
2813 The standard callbacks are ``read`` and ``wri    2813 The standard callbacks are ``read`` and ``write``. Obviously they
2814 correspond to the functions for read and writ    2814 correspond to the functions for read and write accesses to the
2815 hardware low-level codes.                        2815 hardware low-level codes.
2816                                                  2816 
2817 The ``read`` callback returns the register va    2817 The ``read`` callback returns the register value specified in the
2818 argument::                                       2818 argument::
2819                                                  2819 
2820   static unsigned short snd_mychip_ac97_read(    2820   static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
2821                                                  2821                                              unsigned short reg)
2822   {                                              2822   {
2823           struct mychip *chip = ac97->private    2823           struct mychip *chip = ac97->private_data;
2824           ....                                   2824           ....
2825           return the_register_value;             2825           return the_register_value;
2826   }                                              2826   }
2827                                                  2827 
2828 Here, the chip can be cast from ``ac97->priva    2828 Here, the chip can be cast from ``ac97->private_data``.
2829                                                  2829 
2830 Meanwhile, the ``write`` callback is used to     2830 Meanwhile, the ``write`` callback is used to set the register
2831 value::                                          2831 value::
2832                                                  2832 
2833   static void snd_mychip_ac97_write(struct sn    2833   static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
2834                        unsigned short reg, un    2834                        unsigned short reg, unsigned short val)
2835                                                  2835 
2836                                                  2836 
2837 These callbacks are non-atomic like the contr    2837 These callbacks are non-atomic like the control API callbacks.
2838                                                  2838 
2839 There are also other callbacks: ``reset``, ``    2839 There are also other callbacks: ``reset``, ``wait`` and ``init``.
2840                                                  2840 
2841 The ``reset`` callback is used to reset the c    2841 The ``reset`` callback is used to reset the codec. If the chip
2842 requires a special kind of reset, you can def    2842 requires a special kind of reset, you can define this callback.
2843                                                  2843 
2844 The ``wait`` callback is used to add some wai    2844 The ``wait`` callback is used to add some waiting time in the standard
2845 initialization of the codec. If the chip requ    2845 initialization of the codec. If the chip requires the extra waiting
2846 time, define this callback.                      2846 time, define this callback.
2847                                                  2847 
2848 The ``init`` callback is used for additional     2848 The ``init`` callback is used for additional initialization of the
2849 codec.                                           2849 codec.
2850                                                  2850 
2851 Updating Registers in The Driver                 2851 Updating Registers in The Driver
2852 --------------------------------                 2852 --------------------------------
2853                                                  2853 
2854 If you need to access to the codec from the d    2854 If you need to access to the codec from the driver, you can call the
2855 following functions: :c:func:`snd_ac97_write(    2855 following functions: :c:func:`snd_ac97_write()`,
2856 :c:func:`snd_ac97_read()`, :c:func:`snd_ac97_    2856 :c:func:`snd_ac97_read()`, :c:func:`snd_ac97_update()` and
2857 :c:func:`snd_ac97_update_bits()`.                2857 :c:func:`snd_ac97_update_bits()`.
2858                                                  2858 
2859 Both :c:func:`snd_ac97_write()` and              2859 Both :c:func:`snd_ac97_write()` and
2860 :c:func:`snd_ac97_update()` functions are use    2860 :c:func:`snd_ac97_update()` functions are used to set a value to
2861 the given register (``AC97_XXX``). The differ    2861 the given register (``AC97_XXX``). The difference between them is that
2862 :c:func:`snd_ac97_update()` doesn't write a v    2862 :c:func:`snd_ac97_update()` doesn't write a value if the given
2863 value has been already set, while :c:func:`sn    2863 value has been already set, while :c:func:`snd_ac97_write()`
2864 always rewrites the value::                      2864 always rewrites the value::
2865                                                  2865 
2866   snd_ac97_write(ac97, AC97_MASTER, 0x8080);     2866   snd_ac97_write(ac97, AC97_MASTER, 0x8080);
2867   snd_ac97_update(ac97, AC97_MASTER, 0x8080);    2867   snd_ac97_update(ac97, AC97_MASTER, 0x8080);
2868                                                  2868 
2869 :c:func:`snd_ac97_read()` is used to read the    2869 :c:func:`snd_ac97_read()` is used to read the value of the given
2870 register. For example::                          2870 register. For example::
2871                                                  2871 
2872   value = snd_ac97_read(ac97, AC97_MASTER);      2872   value = snd_ac97_read(ac97, AC97_MASTER);
2873                                                  2873 
2874 :c:func:`snd_ac97_update_bits()` is used to u    2874 :c:func:`snd_ac97_update_bits()` is used to update some bits in
2875 the given register::                             2875 the given register::
2876                                                  2876 
2877   snd_ac97_update_bits(ac97, reg, mask, value    2877   snd_ac97_update_bits(ac97, reg, mask, value);
2878                                                  2878 
2879 Also, there is a function to change the sampl    2879 Also, there is a function to change the sample rate (of a given register
2880 such as ``AC97_PCM_FRONT_DAC_RATE``) when VRA    2880 such as ``AC97_PCM_FRONT_DAC_RATE``) when VRA or DRA is supported by the
2881 codec: :c:func:`snd_ac97_set_rate()`::           2881 codec: :c:func:`snd_ac97_set_rate()`::
2882                                                  2882 
2883   snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_    2883   snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
2884                                                  2884 
2885                                                  2885 
2886 The following registers are available to set     2886 The following registers are available to set the rate:
2887 ``AC97_PCM_MIC_ADC_RATE``, ``AC97_PCM_FRONT_D    2887 ``AC97_PCM_MIC_ADC_RATE``, ``AC97_PCM_FRONT_DAC_RATE``,
2888 ``AC97_PCM_LR_ADC_RATE``, ``AC97_SPDIF``. Whe    2888 ``AC97_PCM_LR_ADC_RATE``, ``AC97_SPDIF``. When ``AC97_SPDIF`` is
2889 specified, the register is not really changed    2889 specified, the register is not really changed but the corresponding
2890 IEC958 status bits will be updated.              2890 IEC958 status bits will be updated.
2891                                                  2891 
2892 Clock Adjustment                                 2892 Clock Adjustment
2893 ----------------                                 2893 ----------------
2894                                                  2894 
2895 In some chips, the clock of the codec isn't 4    2895 In some chips, the clock of the codec isn't 48000 but using a PCI clock
2896 (to save a quartz!). In this case, change the    2896 (to save a quartz!). In this case, change the field ``bus->clock`` to
2897 the corresponding value. For example, intel8x    2897 the corresponding value. For example, intel8x0 and es1968 drivers have
2898 their own function to read from the clock.       2898 their own function to read from the clock.
2899                                                  2899 
2900 Proc Files                                       2900 Proc Files
2901 ----------                                       2901 ----------
2902                                                  2902 
2903 The ALSA AC97 interface will create a proc fi    2903 The ALSA AC97 interface will create a proc file such as
2904 ``/proc/asound/card0/codec97#0/ac97#0-0`` and    2904 ``/proc/asound/card0/codec97#0/ac97#0-0`` and ``ac97#0-0+regs``. You
2905 can refer to these files to see the current s    2905 can refer to these files to see the current status and registers of
2906 the codec.                                       2906 the codec.
2907                                                  2907 
2908 Multiple Codecs                                  2908 Multiple Codecs
2909 ---------------                                  2909 ---------------
2910                                                  2910 
2911 When there are several codecs on the same car    2911 When there are several codecs on the same card, you need to call
2912 :c:func:`snd_ac97_mixer()` multiple times wit    2912 :c:func:`snd_ac97_mixer()` multiple times with ``ac97.num=1`` or
2913 greater. The ``num`` field specifies the code    2913 greater. The ``num`` field specifies the codec number.
2914                                                  2914 
2915 If you set up multiple codecs, you either nee    2915 If you set up multiple codecs, you either need to write different
2916 callbacks for each codec or check ``ac97->num    2916 callbacks for each codec or check ``ac97->num`` in the callback
2917 routines.                                        2917 routines.
2918                                                  2918 
2919 MIDI (MPU401-UART) Interface                     2919 MIDI (MPU401-UART) Interface
2920 ============================                     2920 ============================
2921                                                  2921 
2922 General                                          2922 General
2923 -------                                          2923 -------
2924                                                  2924 
2925 Many soundcards have built-in MIDI (MPU401-UA    2925 Many soundcards have built-in MIDI (MPU401-UART) interfaces. When the
2926 soundcard supports the standard MPU401-UART i    2926 soundcard supports the standard MPU401-UART interface, most likely you
2927 can use the ALSA MPU401-UART API. The MPU401-    2927 can use the ALSA MPU401-UART API. The MPU401-UART API is defined in
2928 ``<sound/mpu401.h>``.                            2928 ``<sound/mpu401.h>``.
2929                                                  2929 
2930 Some soundchips have a similar but slightly d    2930 Some soundchips have a similar but slightly different implementation of
2931 mpu401 stuff. For example, emu10k1 has its ow    2931 mpu401 stuff. For example, emu10k1 has its own mpu401 routines.
2932                                                  2932 
2933 MIDI Constructor                                 2933 MIDI Constructor
2934 ----------------                                 2934 ----------------
2935                                                  2935 
2936 To create a rawmidi object, call :c:func:`snd    2936 To create a rawmidi object, call :c:func:`snd_mpu401_uart_new()`::
2937                                                  2937 
2938   struct snd_rawmidi *rmidi;                     2938   struct snd_rawmidi *rmidi;
2939   snd_mpu401_uart_new(card, 0, MPU401_HW_MPU4    2939   snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,
2940                       irq, &rmidi);              2940                       irq, &rmidi);
2941                                                  2941 
2942                                                  2942 
2943 The first argument is the card pointer, and t    2943 The first argument is the card pointer, and the second is the index of
2944 this component. You can create up to 8 rawmid    2944 this component. You can create up to 8 rawmidi devices.
2945                                                  2945 
2946 The third argument is the type of the hardwar    2946 The third argument is the type of the hardware, ``MPU401_HW_XXX``. If
2947 it's not a special one, you can use ``MPU401_    2947 it's not a special one, you can use ``MPU401_HW_MPU401``.
2948                                                  2948 
2949 The 4th argument is the I/O port address. Man    2949 The 4th argument is the I/O port address. Many backward-compatible
2950 MPU401 have an I/O port such as 0x330. Or, it    2950 MPU401 have an I/O port such as 0x330. Or, it might be a part of its own
2951 PCI I/O region. It depends on the chip design    2951 PCI I/O region. It depends on the chip design.
2952                                                  2952 
2953 The 5th argument is a bitflag for additional     2953 The 5th argument is a bitflag for additional information. When the I/O
2954 port address above is part of the PCI I/O reg    2954 port address above is part of the PCI I/O region, the MPU401 I/O port
2955 might have been already allocated (reserved)     2955 might have been already allocated (reserved) by the driver itself. In
2956 such a case, pass a bit flag ``MPU401_INFO_IN    2956 such a case, pass a bit flag ``MPU401_INFO_INTEGRATED``, and the
2957 mpu401-uart layer will allocate the I/O ports    2957 mpu401-uart layer will allocate the I/O ports by itself.
2958                                                  2958 
2959 When the controller supports only the input o    2959 When the controller supports only the input or output MIDI stream, pass
2960 the ``MPU401_INFO_INPUT`` or ``MPU401_INFO_OU    2960 the ``MPU401_INFO_INPUT`` or ``MPU401_INFO_OUTPUT`` bitflag,
2961 respectively. Then the rawmidi instance is cr    2961 respectively. Then the rawmidi instance is created as a single stream.
2962                                                  2962 
2963 ``MPU401_INFO_MMIO`` bitflag is used to chang    2963 ``MPU401_INFO_MMIO`` bitflag is used to change the access method to MMIO
2964 (via readb and writeb) instead of iob and out    2964 (via readb and writeb) instead of iob and outb. In this case, you have
2965 to pass the iomapped address to :c:func:`snd_    2965 to pass the iomapped address to :c:func:`snd_mpu401_uart_new()`.
2966                                                  2966 
2967 When ``MPU401_INFO_TX_IRQ`` is set, the outpu    2967 When ``MPU401_INFO_TX_IRQ`` is set, the output stream isn't checked in
2968 the default interrupt handler. The driver nee    2968 the default interrupt handler. The driver needs to call
2969 :c:func:`snd_mpu401_uart_interrupt_tx()` by i    2969 :c:func:`snd_mpu401_uart_interrupt_tx()` by itself to start
2970 processing the output stream in the irq handl    2970 processing the output stream in the irq handler.
2971                                                  2971 
2972 If the MPU-401 interface shares its interrupt    2972 If the MPU-401 interface shares its interrupt with the other logical
2973 devices on the card, set ``MPU401_INFO_IRQ_HO    2973 devices on the card, set ``MPU401_INFO_IRQ_HOOK`` (see
2974 `below <MIDI Interrupt Handler_>`__).            2974 `below <MIDI Interrupt Handler_>`__).
2975                                                  2975 
2976 Usually, the port address corresponds to the     2976 Usually, the port address corresponds to the command port and port + 1
2977 corresponds to the data port. If not, you may    2977 corresponds to the data port. If not, you may change the ``cport``
2978 field of struct snd_mpu401 manually afterward    2978 field of struct snd_mpu401 manually afterward.
2979 However, struct snd_mpu401 pointer is            2979 However, struct snd_mpu401 pointer is
2980 not returned explicitly by :c:func:`snd_mpu40    2980 not returned explicitly by :c:func:`snd_mpu401_uart_new()`. You
2981 need to cast ``rmidi->private_data`` to struc    2981 need to cast ``rmidi->private_data`` to struct snd_mpu401 explicitly::
2982                                                  2982 
2983   struct snd_mpu401 *mpu;                        2983   struct snd_mpu401 *mpu;
2984   mpu = rmidi->private_data;                     2984   mpu = rmidi->private_data;
2985                                                  2985 
2986 and reset the ``cport`` as you like::            2986 and reset the ``cport`` as you like::
2987                                                  2987 
2988   mpu->cport = my_own_control_port;              2988   mpu->cport = my_own_control_port;
2989                                                  2989 
2990 The 6th argument specifies the ISA irq number    2990 The 6th argument specifies the ISA irq number that will be allocated. If
2991 no interrupt is to be allocated (because your    2991 no interrupt is to be allocated (because your code is already allocating
2992 a shared interrupt, or because the device doe    2992 a shared interrupt, or because the device does not use interrupts), pass
2993 -1 instead. For a MPU-401 device without an i    2993 -1 instead. For a MPU-401 device without an interrupt, a polling timer
2994 will be used instead.                            2994 will be used instead.
2995                                                  2995 
2996 MIDI Interrupt Handler                           2996 MIDI Interrupt Handler
2997 ----------------------                           2997 ----------------------
2998                                                  2998 
2999 When the interrupt is allocated in               2999 When the interrupt is allocated in
3000 :c:func:`snd_mpu401_uart_new()`, an exclusive    3000 :c:func:`snd_mpu401_uart_new()`, an exclusive ISA interrupt
3001 handler is automatically used, hence you don'    3001 handler is automatically used, hence you don't have anything else to do
3002 than creating the mpu401 stuff. Otherwise, yo    3002 than creating the mpu401 stuff. Otherwise, you have to set
3003 ``MPU401_INFO_IRQ_HOOK``, and call               3003 ``MPU401_INFO_IRQ_HOOK``, and call
3004 :c:func:`snd_mpu401_uart_interrupt()` explici    3004 :c:func:`snd_mpu401_uart_interrupt()` explicitly from your own
3005 interrupt handler when it has determined that    3005 interrupt handler when it has determined that a UART interrupt has
3006 occurred.                                        3006 occurred.
3007                                                  3007 
3008 In this case, you need to pass the private_da    3008 In this case, you need to pass the private_data of the returned rawmidi
3009 object from :c:func:`snd_mpu401_uart_new()` a    3009 object from :c:func:`snd_mpu401_uart_new()` as the second
3010 argument of :c:func:`snd_mpu401_uart_interrup    3010 argument of :c:func:`snd_mpu401_uart_interrupt()`::
3011                                                  3011 
3012   snd_mpu401_uart_interrupt(irq, rmidi->priva    3012   snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
3013                                                  3013 
3014                                                  3014 
3015 RawMIDI Interface                                3015 RawMIDI Interface
3016 =================                                3016 =================
3017                                                  3017 
3018 Overview                                         3018 Overview
3019 --------                                         3019 --------
3020                                                  3020 
3021 The raw MIDI interface is used for hardware M    3021 The raw MIDI interface is used for hardware MIDI ports that can be
3022 accessed as a byte stream. It is not used for    3022 accessed as a byte stream. It is not used for synthesizer chips that do
3023 not directly understand MIDI.                    3023 not directly understand MIDI.
3024                                                  3024 
3025 ALSA handles file and buffer management. All     3025 ALSA handles file and buffer management. All you have to do is to write
3026 some code to move data between the buffer and    3026 some code to move data between the buffer and the hardware.
3027                                                  3027 
3028 The rawmidi API is defined in ``<sound/rawmid    3028 The rawmidi API is defined in ``<sound/rawmidi.h>``.
3029                                                  3029 
3030 RawMIDI Constructor                              3030 RawMIDI Constructor
3031 -------------------                              3031 -------------------
3032                                                  3032 
3033 To create a rawmidi device, call the :c:func:    3033 To create a rawmidi device, call the :c:func:`snd_rawmidi_new()`
3034 function::                                       3034 function::
3035                                                  3035 
3036   struct snd_rawmidi *rmidi;                     3036   struct snd_rawmidi *rmidi;
3037   err = snd_rawmidi_new(chip->card, "MyMIDI",    3037   err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
3038   if (err < 0)                                   3038   if (err < 0)
3039           return err;                            3039           return err;
3040   rmidi->private_data = chip;                    3040   rmidi->private_data = chip;
3041   strcpy(rmidi->name, "My MIDI");                3041   strcpy(rmidi->name, "My MIDI");
3042   rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTP    3042   rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
3043                       SNDRV_RAWMIDI_INFO_INPU    3043                       SNDRV_RAWMIDI_INFO_INPUT |
3044                       SNDRV_RAWMIDI_INFO_DUPL    3044                       SNDRV_RAWMIDI_INFO_DUPLEX;
3045                                                  3045 
3046 The first argument is the card pointer, the s    3046 The first argument is the card pointer, the second argument is the ID
3047 string.                                          3047 string.
3048                                                  3048 
3049 The third argument is the index of this compo    3049 The third argument is the index of this component. You can create up to
3050 8 rawmidi devices.                               3050 8 rawmidi devices.
3051                                                  3051 
3052 The fourth and fifth arguments are the number    3052 The fourth and fifth arguments are the number of output and input
3053 substreams, respectively, of this device (a s    3053 substreams, respectively, of this device (a substream is the equivalent
3054 of a MIDI port).                                 3054 of a MIDI port).
3055                                                  3055 
3056 Set the ``info_flags`` field to specify the c    3056 Set the ``info_flags`` field to specify the capabilities of the
3057 device. Set ``SNDRV_RAWMIDI_INFO_OUTPUT`` if     3057 device. Set ``SNDRV_RAWMIDI_INFO_OUTPUT`` if there is at least one
3058 output port, ``SNDRV_RAWMIDI_INFO_INPUT`` if     3058 output port, ``SNDRV_RAWMIDI_INFO_INPUT`` if there is at least one
3059 input port, and ``SNDRV_RAWMIDI_INFO_DUPLEX``    3059 input port, and ``SNDRV_RAWMIDI_INFO_DUPLEX`` if the device can handle
3060 output and input at the same time.               3060 output and input at the same time.
3061                                                  3061 
3062 After the rawmidi device is created, you need    3062 After the rawmidi device is created, you need to set the operators
3063 (callbacks) for each substream. There are hel    3063 (callbacks) for each substream. There are helper functions to set the
3064 operators for all the substreams of a device:    3064 operators for all the substreams of a device::
3065                                                  3065 
3066   snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_ST    3066   snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
3067   snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_ST    3067   snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
3068                                                  3068 
3069 The operators are usually defined like this::    3069 The operators are usually defined like this::
3070                                                  3070 
3071   static struct snd_rawmidi_ops snd_mymidi_ou    3071   static struct snd_rawmidi_ops snd_mymidi_output_ops = {
3072           .open =    snd_mymidi_output_open,     3072           .open =    snd_mymidi_output_open,
3073           .close =   snd_mymidi_output_close,    3073           .close =   snd_mymidi_output_close,
3074           .trigger = snd_mymidi_output_trigge    3074           .trigger = snd_mymidi_output_trigger,
3075   };                                             3075   };
3076                                                  3076 
3077 These callbacks are explained in the `RawMIDI    3077 These callbacks are explained in the `RawMIDI Callbacks`_ section.
3078                                                  3078 
3079 If there are more than one substream, you sho    3079 If there are more than one substream, you should give a unique name to
3080 each of them::                                   3080 each of them::
3081                                                  3081 
3082   struct snd_rawmidi_substream *substream;       3082   struct snd_rawmidi_substream *substream;
3083   list_for_each_entry(substream,                 3083   list_for_each_entry(substream,
3084                       &rmidi->streams[SNDRV_R    3084                       &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams,
3085                       list {                     3085                       list {
3086           sprintf(substream->name, "My MIDI P    3086           sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
3087   }                                              3087   }
3088   /* same for SNDRV_RAWMIDI_STREAM_INPUT */      3088   /* same for SNDRV_RAWMIDI_STREAM_INPUT */
3089                                                  3089 
3090 RawMIDI Callbacks                                3090 RawMIDI Callbacks
3091 -----------------                                3091 -----------------
3092                                                  3092 
3093 In all the callbacks, the private data that y    3093 In all the callbacks, the private data that you've set for the rawmidi
3094 device can be accessed as ``substream->rmidi-    3094 device can be accessed as ``substream->rmidi->private_data``.
3095                                                  3095 
3096 If there is more than one port, your callback    3096 If there is more than one port, your callbacks can determine the port
3097 index from the struct snd_rawmidi_substream d    3097 index from the struct snd_rawmidi_substream data passed to each
3098 callback::                                       3098 callback::
3099                                                  3099 
3100   struct snd_rawmidi_substream *substream;       3100   struct snd_rawmidi_substream *substream;
3101   int index = substream->number;                 3101   int index = substream->number;
3102                                                  3102 
3103 RawMIDI open callback                            3103 RawMIDI open callback
3104 ~~~~~~~~~~~~~~~~~~~~~                            3104 ~~~~~~~~~~~~~~~~~~~~~
3105                                                  3105 
3106 ::                                               3106 ::
3107                                                  3107 
3108       static int snd_xxx_open(struct snd_rawm    3108       static int snd_xxx_open(struct snd_rawmidi_substream *substream);
3109                                                  3109 
3110                                                  3110 
3111 This is called when a substream is opened. Yo    3111 This is called when a substream is opened. You can initialize the
3112 hardware here, but you shouldn't start transm    3112 hardware here, but you shouldn't start transmitting/receiving data yet.
3113                                                  3113 
3114 RawMIDI close callback                           3114 RawMIDI close callback
3115 ~~~~~~~~~~~~~~~~~~~~~~                           3115 ~~~~~~~~~~~~~~~~~~~~~~
3116                                                  3116 
3117 ::                                               3117 ::
3118                                                  3118 
3119       static int snd_xxx_close(struct snd_raw    3119       static int snd_xxx_close(struct snd_rawmidi_substream *substream);
3120                                                  3120 
3121 Guess what.                                      3121 Guess what.
3122                                                  3122 
3123 The ``open`` and ``close`` callbacks of a raw    3123 The ``open`` and ``close`` callbacks of a rawmidi device are
3124 serialized with a mutex, and can sleep.          3124 serialized with a mutex, and can sleep.
3125                                                  3125 
3126 Rawmidi trigger callback for output substream    3126 Rawmidi trigger callback for output substreams
3127 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    3127 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3128                                                  3128 
3129 ::                                               3129 ::
3130                                                  3130 
3131       static void snd_xxx_output_trigger(stru    3131       static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
3132                                                  3132 
3133                                                  3133 
3134 This is called with a nonzero ``up`` paramete    3134 This is called with a nonzero ``up`` parameter when there is some data
3135 in the substream buffer that must be transmit    3135 in the substream buffer that must be transmitted.
3136                                                  3136 
3137 To read data from the buffer, call               3137 To read data from the buffer, call
3138 :c:func:`snd_rawmidi_transmit_peek()`. It wil    3138 :c:func:`snd_rawmidi_transmit_peek()`. It will return the number
3139 of bytes that have been read; this will be le    3139 of bytes that have been read; this will be less than the number of bytes
3140 requested when there are no more data in the     3140 requested when there are no more data in the buffer. After the data have
3141 been transmitted successfully, call              3141 been transmitted successfully, call
3142 :c:func:`snd_rawmidi_transmit_ack()` to remov    3142 :c:func:`snd_rawmidi_transmit_ack()` to remove the data from the
3143 substream buffer::                               3143 substream buffer::
3144                                                  3144 
3145   unsigned char data;                            3145   unsigned char data;
3146   while (snd_rawmidi_transmit_peek(substream,    3146   while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
3147           if (snd_mychip_try_to_transmit(data    3147           if (snd_mychip_try_to_transmit(data))
3148                   snd_rawmidi_transmit_ack(su    3148                   snd_rawmidi_transmit_ack(substream, 1);
3149           else                                   3149           else
3150                   break; /* hardware FIFO ful    3150                   break; /* hardware FIFO full */
3151   }                                              3151   }
3152                                                  3152 
3153 If you know beforehand that the hardware will    3153 If you know beforehand that the hardware will accept data, you can use
3154 the :c:func:`snd_rawmidi_transmit()` function    3154 the :c:func:`snd_rawmidi_transmit()` function which reads some
3155 data and removes them from the buffer at once    3155 data and removes them from the buffer at once::
3156                                                  3156 
3157   while (snd_mychip_transmit_possible()) {       3157   while (snd_mychip_transmit_possible()) {
3158           unsigned char data;                    3158           unsigned char data;
3159           if (snd_rawmidi_transmit(substream,    3159           if (snd_rawmidi_transmit(substream, &data, 1) != 1)
3160                   break; /* no more data */      3160                   break; /* no more data */
3161           snd_mychip_transmit(data);             3161           snd_mychip_transmit(data);
3162   }                                              3162   }
3163                                                  3163 
3164 If you know beforehand how many bytes you can    3164 If you know beforehand how many bytes you can accept, you can use a
3165 buffer size greater than one with the ``snd_r    3165 buffer size greater than one with the ``snd_rawmidi_transmit*()`` functions.
3166                                                  3166 
3167 The ``trigger`` callback must not sleep. If t    3167 The ``trigger`` callback must not sleep. If the hardware FIFO is full
3168 before the substream buffer has been emptied,    3168 before the substream buffer has been emptied, you have to continue
3169 transmitting data later, either in an interru    3169 transmitting data later, either in an interrupt handler, or with a
3170 timer if the hardware doesn't have a MIDI tra    3170 timer if the hardware doesn't have a MIDI transmit interrupt.
3171                                                  3171 
3172 The ``trigger`` callback is called with a zer    3172 The ``trigger`` callback is called with a zero ``up`` parameter when
3173 the transmission of data should be aborted.      3173 the transmission of data should be aborted.
3174                                                  3174 
3175 RawMIDI trigger callback for input substreams    3175 RawMIDI trigger callback for input substreams
3176 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    3176 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3177                                                  3177 
3178 ::                                               3178 ::
3179                                                  3179 
3180       static void snd_xxx_input_trigger(struc    3180       static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
3181                                                  3181 
3182                                                  3182 
3183 This is called with a nonzero ``up`` paramete    3183 This is called with a nonzero ``up`` parameter to enable receiving data,
3184 or with a zero ``up`` parameter do disable re    3184 or with a zero ``up`` parameter do disable receiving data.
3185                                                  3185 
3186 The ``trigger`` callback must not sleep; the     3186 The ``trigger`` callback must not sleep; the actual reading of data
3187 from the device is usually done in an interru    3187 from the device is usually done in an interrupt handler.
3188                                                  3188 
3189 When data reception is enabled, your interrup    3189 When data reception is enabled, your interrupt handler should call
3190 :c:func:`snd_rawmidi_receive()` for all recei    3190 :c:func:`snd_rawmidi_receive()` for all received data::
3191                                                  3191 
3192   void snd_mychip_midi_interrupt(...)            3192   void snd_mychip_midi_interrupt(...)
3193   {                                              3193   {
3194           while (mychip_midi_available()) {      3194           while (mychip_midi_available()) {
3195                   unsigned char data;            3195                   unsigned char data;
3196                   data = mychip_midi_read();     3196                   data = mychip_midi_read();
3197                   snd_rawmidi_receive(substre    3197                   snd_rawmidi_receive(substream, &data, 1);
3198           }                                      3198           }
3199   }                                              3199   }
3200                                                  3200 
3201                                                  3201 
3202 drain callback                                   3202 drain callback
3203 ~~~~~~~~~~~~~~                                   3203 ~~~~~~~~~~~~~~
3204                                                  3204 
3205 ::                                               3205 ::
3206                                                  3206 
3207       static void snd_xxx_drain(struct snd_ra    3207       static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
3208                                                  3208 
3209                                                  3209 
3210 This is only used with output substreams. Thi    3210 This is only used with output substreams. This function should wait
3211 until all data read from the substream buffer    3211 until all data read from the substream buffer have been transmitted.
3212 This ensures that the device can be closed an    3212 This ensures that the device can be closed and the driver unloaded
3213 without losing data.                             3213 without losing data.
3214                                                  3214 
3215 This callback is optional. If you do not set     3215 This callback is optional. If you do not set ``drain`` in the struct
3216 snd_rawmidi_ops structure, ALSA will simply w    3216 snd_rawmidi_ops structure, ALSA will simply wait for 50 milliseconds
3217 instead.                                         3217 instead.
3218                                                  3218 
3219 Miscellaneous Devices                            3219 Miscellaneous Devices
3220 =====================                            3220 =====================
3221                                                  3221 
3222 FM OPL3                                          3222 FM OPL3
3223 -------                                          3223 -------
3224                                                  3224 
3225 The FM OPL3 is still used in many chips (main    3225 The FM OPL3 is still used in many chips (mainly for backward
3226 compatibility). ALSA has a nice OPL3 FM contr    3226 compatibility). ALSA has a nice OPL3 FM control layer, too. The OPL3 API
3227 is defined in ``<sound/opl3.h>``.                3227 is defined in ``<sound/opl3.h>``.
3228                                                  3228 
3229 FM registers can be directly accessed through    3229 FM registers can be directly accessed through the direct-FM API, defined
3230 in ``<sound/asound_fm.h>``. In ALSA native mo    3230 in ``<sound/asound_fm.h>``. In ALSA native mode, FM registers are
3231 accessed through the Hardware-Dependent Devic    3231 accessed through the Hardware-Dependent Device direct-FM extension API,
3232 whereas in OSS compatible mode, FM registers     3232 whereas in OSS compatible mode, FM registers can be accessed with the
3233 OSS direct-FM compatible API in ``/dev/dmfmX`    3233 OSS direct-FM compatible API in ``/dev/dmfmX`` device.
3234                                                  3234 
3235 To create the OPL3 component, you have two fu    3235 To create the OPL3 component, you have two functions to call. The first
3236 one is a constructor for the ``opl3_t`` insta    3236 one is a constructor for the ``opl3_t`` instance::
3237                                                  3237 
3238   struct snd_opl3 *opl3;                         3238   struct snd_opl3 *opl3;
3239   snd_opl3_create(card, lport, rport, OPL3_HW    3239   snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
3240                   integrated, &opl3);            3240                   integrated, &opl3);
3241                                                  3241 
3242 The first argument is the card pointer, the s    3242 The first argument is the card pointer, the second one is the left port
3243 address, and the third is the right port addr    3243 address, and the third is the right port address. In most cases, the
3244 right port is placed at the left port + 2.       3244 right port is placed at the left port + 2.
3245                                                  3245 
3246 The fourth argument is the hardware type.        3246 The fourth argument is the hardware type.
3247                                                  3247 
3248 When the left and right ports have been alrea    3248 When the left and right ports have been already allocated by the card
3249 driver, pass non-zero to the fifth argument (    3249 driver, pass non-zero to the fifth argument (``integrated``). Otherwise,
3250 the opl3 module will allocate the specified p    3250 the opl3 module will allocate the specified ports by itself.
3251                                                  3251 
3252 When the accessing the hardware requires spec    3252 When the accessing the hardware requires special method instead of the
3253 standard I/O access, you can create opl3 inst    3253 standard I/O access, you can create opl3 instance separately with
3254 :c:func:`snd_opl3_new()`::                       3254 :c:func:`snd_opl3_new()`::
3255                                                  3255 
3256   struct snd_opl3 *opl3;                         3256   struct snd_opl3 *opl3;
3257   snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3)    3257   snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
3258                                                  3258 
3259 Then set ``command``, ``private_data`` and ``    3259 Then set ``command``, ``private_data`` and ``private_free`` for the
3260 private access function, the private data and    3260 private access function, the private data and the destructor. The
3261 ``l_port`` and ``r_port`` are not necessarily    3261 ``l_port`` and ``r_port`` are not necessarily set. Only the command
3262 must be set properly. You can retrieve the da    3262 must be set properly. You can retrieve the data from the
3263 ``opl3->private_data`` field.                    3263 ``opl3->private_data`` field. 
3264                                                  3264 
3265 After creating the opl3 instance via :c:func:    3265 After creating the opl3 instance via :c:func:`snd_opl3_new()`,
3266 call :c:func:`snd_opl3_init()` to initialize     3266 call :c:func:`snd_opl3_init()` to initialize the chip to the
3267 proper state. Note that :c:func:`snd_opl3_cre    3267 proper state. Note that :c:func:`snd_opl3_create()` always calls
3268 it internally.                                   3268 it internally.
3269                                                  3269 
3270 If the opl3 instance is created successfully,    3270 If the opl3 instance is created successfully, then create a hwdep device
3271 for this opl3::                                  3271 for this opl3::
3272                                                  3272 
3273   struct snd_hwdep *opl3hwdep;                   3273   struct snd_hwdep *opl3hwdep;
3274   snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);    3274   snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
3275                                                  3275 
3276 The first argument is the ``opl3_t`` instance    3276 The first argument is the ``opl3_t`` instance you created, and the
3277 second is the index number, usually 0.           3277 second is the index number, usually 0.
3278                                                  3278 
3279 The third argument is the index-offset for th    3279 The third argument is the index-offset for the sequencer client assigned
3280 to the OPL3 port. When there is an MPU401-UAR    3280 to the OPL3 port. When there is an MPU401-UART, give 1 for here (UART
3281 always takes 0).                                 3281 always takes 0).
3282                                                  3282 
3283 Hardware-Dependent Devices                       3283 Hardware-Dependent Devices
3284 --------------------------                       3284 --------------------------
3285                                                  3285 
3286 Some chips need user-space access for special    3286 Some chips need user-space access for special controls or for loading
3287 the micro code. In such a case, you can creat    3287 the micro code. In such a case, you can create a hwdep
3288 (hardware-dependent) device. The hwdep API is    3288 (hardware-dependent) device. The hwdep API is defined in
3289 ``<sound/hwdep.h>``. You can find examples in    3289 ``<sound/hwdep.h>``. You can find examples in opl3 driver or
3290 ``isa/sb/sb16_csp.c``.                           3290 ``isa/sb/sb16_csp.c``.
3291                                                  3291 
3292 The creation of the ``hwdep`` instance is don    3292 The creation of the ``hwdep`` instance is done via
3293 :c:func:`snd_hwdep_new()`::                      3293 :c:func:`snd_hwdep_new()`::
3294                                                  3294 
3295   struct snd_hwdep *hw;                          3295   struct snd_hwdep *hw;
3296   snd_hwdep_new(card, "My HWDEP", 0, &hw);       3296   snd_hwdep_new(card, "My HWDEP", 0, &hw);
3297                                                  3297 
3298 where the third argument is the index number.    3298 where the third argument is the index number.
3299                                                  3299 
3300 You can then pass any pointer value to the ``    3300 You can then pass any pointer value to the ``private_data``. If you
3301 assign private data, you should define a dest    3301 assign private data, you should define a destructor, too. The
3302 destructor function is set in the ``private_f    3302 destructor function is set in the ``private_free`` field::
3303                                                  3303 
3304   struct mydata *p = kmalloc(sizeof(*p), GFP_    3304   struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
3305   hw->private_data = p;                          3305   hw->private_data = p;
3306   hw->private_free = mydata_free;                3306   hw->private_free = mydata_free;
3307                                                  3307 
3308 and the implementation of the destructor woul    3308 and the implementation of the destructor would be::
3309                                                  3309 
3310   static void mydata_free(struct snd_hwdep *h    3310   static void mydata_free(struct snd_hwdep *hw)
3311   {                                              3311   {
3312           struct mydata *p = hw->private_data    3312           struct mydata *p = hw->private_data;
3313           kfree(p);                              3313           kfree(p);
3314   }                                              3314   }
3315                                                  3315 
3316 The arbitrary file operations can be defined     3316 The arbitrary file operations can be defined for this instance. The file
3317 operators are defined in the ``ops`` table. F    3317 operators are defined in the ``ops`` table. For example, assume that
3318 this chip needs an ioctl::                       3318 this chip needs an ioctl::
3319                                                  3319 
3320   hw->ops.open = mydata_open;                    3320   hw->ops.open = mydata_open;
3321   hw->ops.ioctl = mydata_ioctl;                  3321   hw->ops.ioctl = mydata_ioctl;
3322   hw->ops.release = mydata_release;              3322   hw->ops.release = mydata_release;
3323                                                  3323 
3324 And implement the callback functions as you l    3324 And implement the callback functions as you like.
3325                                                  3325 
3326 IEC958 (S/PDIF)                                  3326 IEC958 (S/PDIF)
3327 ---------------                                  3327 ---------------
3328                                                  3328 
3329 Usually the controls for IEC958 devices are i    3329 Usually the controls for IEC958 devices are implemented via the control
3330 interface. There is a macro to compose a name    3330 interface. There is a macro to compose a name string for IEC958
3331 controls, :c:func:`SNDRV_CTL_NAME_IEC958()` d    3331 controls, :c:func:`SNDRV_CTL_NAME_IEC958()` defined in
3332 ``<include/asound.h>``.                          3332 ``<include/asound.h>``.
3333                                                  3333 
3334 There are some standard controls for IEC958 s    3334 There are some standard controls for IEC958 status bits. These controls
3335 use the type ``SNDRV_CTL_ELEM_TYPE_IEC958``,     3335 use the type ``SNDRV_CTL_ELEM_TYPE_IEC958``, and the size of element is
3336 fixed as 4 bytes array (value.iec958.status[x    3336 fixed as 4 bytes array (value.iec958.status[x]). For the ``info``
3337 callback, you don't specify the value field f    3337 callback, you don't specify the value field for this type (the count
3338 field must be set, though).                      3338 field must be set, though).
3339                                                  3339 
3340 “IEC958 Playback Con Mask” is used to ret    3340 “IEC958 Playback Con Mask” is used to return the bit-mask for the IEC958
3341 status bits of consumer mode. Similarly, “I    3341 status bits of consumer mode. Similarly, “IEC958 Playback Pro Mask”
3342 returns the bitmask for professional mode. Th    3342 returns the bitmask for professional mode. They are read-only controls.
3343                                                  3343 
3344 Meanwhile, “IEC958 Playback Default” cont    3344 Meanwhile, “IEC958 Playback Default” control is defined for getting and
3345 setting the current default IEC958 bits.         3345 setting the current default IEC958 bits.
3346                                                  3346 
3347 Due to historical reasons, both variants of t    3347 Due to historical reasons, both variants of the Playback Mask and the
3348 Playback Default controls can be implemented     3348 Playback Default controls can be implemented on either a
3349 ``SNDRV_CTL_ELEM_IFACE_PCM`` or a ``SNDRV_CTL    3349 ``SNDRV_CTL_ELEM_IFACE_PCM`` or a ``SNDRV_CTL_ELEM_IFACE_MIXER`` iface.
3350 Drivers should expose the mask and default on    3350 Drivers should expose the mask and default on the same iface though.
3351                                                  3351 
3352 In addition, you can define the control switc    3352 In addition, you can define the control switches to enable/disable or to
3353 set the raw bit mode. The implementation will    3353 set the raw bit mode. The implementation will depend on the chip, but
3354 the control should be named as “IEC958 xxx    3354 the control should be named as “IEC958 xxx”, preferably using the
3355 :c:func:`SNDRV_CTL_NAME_IEC958()` macro.         3355 :c:func:`SNDRV_CTL_NAME_IEC958()` macro.
3356                                                  3356 
3357 You can find several cases, for example, ``pc    3357 You can find several cases, for example, ``pci/emu10k1``,
3358 ``pci/ice1712``, or ``pci/cmipci.c``.            3358 ``pci/ice1712``, or ``pci/cmipci.c``.
3359                                                  3359 
3360 Buffer and Memory Management                     3360 Buffer and Memory Management
3361 ============================                     3361 ============================
3362                                                  3362 
3363 Buffer Types                                     3363 Buffer Types
3364 ------------                                     3364 ------------
3365                                                  3365 
3366 ALSA provides several different buffer alloca    3366 ALSA provides several different buffer allocation functions depending on
3367 the bus and the architecture. All these have     3367 the bus and the architecture. All these have a consistent API. The
3368 allocation of physically-contiguous pages is     3368 allocation of physically-contiguous pages is done via the
3369 :c:func:`snd_malloc_xxx_pages()` function, wh    3369 :c:func:`snd_malloc_xxx_pages()` function, where xxx is the bus
3370 type.                                            3370 type.
3371                                                  3371 
3372 The allocation of pages with fallback is done    3372 The allocation of pages with fallback is done via
3373 :c:func:`snd_dma_alloc_pages_fallback()`. Thi    3373 :c:func:`snd_dma_alloc_pages_fallback()`. This function tries
3374 to allocate the specified number of pages, bu    3374 to allocate the specified number of pages, but if not enough pages are
3375 available, it tries to reduce the request siz    3375 available, it tries to reduce the request size until enough space
3376 is found, down to one page.                      3376 is found, down to one page.
3377                                                  3377 
3378 To release the pages, call the :c:func:`snd_d    3378 To release the pages, call the :c:func:`snd_dma_free_pages()`
3379 function.                                        3379 function.
3380                                                  3380 
3381 Usually, ALSA drivers try to allocate and res    3381 Usually, ALSA drivers try to allocate and reserve a large contiguous
3382 physical space at the time the module is load    3382 physical space at the time the module is loaded for later use. This
3383 is called “pre-allocation”. As already wr    3383 is called “pre-allocation”. As already written, you can call the
3384 following function at PCM instance constructi    3384 following function at PCM instance construction time (in the case of PCI
3385 bus)::                                           3385 bus)::
3386                                                  3386 
3387   snd_pcm_lib_preallocate_pages_for_all(pcm,     3387   snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
3388                                         &pci-    3388                                         &pci->dev, size, max);
3389                                                  3389 
3390 where ``size`` is the byte size to be pre-all    3390 where ``size`` is the byte size to be pre-allocated and ``max`` is
3391 the maximum size settable via the ``prealloc`    3391 the maximum size settable via the ``prealloc`` proc file. The
3392 allocator will try to get an area as large as    3392 allocator will try to get an area as large as possible within the
3393 given size.                                      3393 given size.
3394                                                  3394 
3395 The second argument (type) and the third argu    3395 The second argument (type) and the third argument (device pointer) are
3396 dependent on the bus. For normal devices, pas    3396 dependent on the bus. For normal devices, pass the device pointer
3397 (typically identical as ``card->dev``) to the    3397 (typically identical as ``card->dev``) to the third argument with
3398 ``SNDRV_DMA_TYPE_DEV`` type.                     3398 ``SNDRV_DMA_TYPE_DEV`` type.
3399                                                  3399 
3400 A continuous buffer unrelated to the             3400 A continuous buffer unrelated to the
3401 bus can be pre-allocated with ``SNDRV_DMA_TYP    3401 bus can be pre-allocated with ``SNDRV_DMA_TYPE_CONTINUOUS`` type.
3402 You can pass NULL to the device pointer in th    3402 You can pass NULL to the device pointer in that case, which is the
3403 default mode implying to allocate with the ``    3403 default mode implying to allocate with the ``GFP_KERNEL`` flag.
3404 If you need a restricted (lower) address, set    3404 If you need a restricted (lower) address, set up the coherent DMA mask
3405 bits for the device, and pass the device poin    3405 bits for the device, and pass the device pointer, like the normal
3406 device memory allocations.  For this type, it    3406 device memory allocations.  For this type, it's still allowed to pass
3407 NULL to the device pointer, too, if no addres    3407 NULL to the device pointer, too, if no address restriction is needed.
3408                                                  3408 
3409 For the scatter-gather buffers, use ``SNDRV_D    3409 For the scatter-gather buffers, use ``SNDRV_DMA_TYPE_DEV_SG`` with the
3410 device pointer (see the `Non-Contiguous Buffe    3410 device pointer (see the `Non-Contiguous Buffers`_ section).
3411                                                  3411 
3412 Once the buffer is pre-allocated, you can use    3412 Once the buffer is pre-allocated, you can use the allocator in the
3413 ``hw_params`` callback::                         3413 ``hw_params`` callback::
3414                                                  3414 
3415   snd_pcm_lib_malloc_pages(substream, size);     3415   snd_pcm_lib_malloc_pages(substream, size);
3416                                                  3416 
3417 Note that you have to pre-allocate to use thi    3417 Note that you have to pre-allocate to use this function.
3418                                                  3418 
3419 But most drivers use the "managed buffer allo    3419 But most drivers use the "managed buffer allocation mode" instead
3420 of manual allocation and release.                3420 of manual allocation and release.
3421 This is done by calling :c:func:`snd_pcm_set_    3421 This is done by calling :c:func:`snd_pcm_set_managed_buffer_all()`
3422 instead of :c:func:`snd_pcm_lib_preallocate_p    3422 instead of :c:func:`snd_pcm_lib_preallocate_pages_for_all()`::
3423                                                  3423 
3424   snd_pcm_set_managed_buffer_all(pcm, SNDRV_D    3424   snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
3425                                  &pci->dev, s    3425                                  &pci->dev, size, max);
3426                                                  3426 
3427 where the passed arguments are identical for     3427 where the passed arguments are identical for both functions.
3428 The difference in the managed mode is that PC    3428 The difference in the managed mode is that PCM core will call
3429 :c:func:`snd_pcm_lib_malloc_pages()` internal    3429 :c:func:`snd_pcm_lib_malloc_pages()` internally already before calling
3430 the PCM ``hw_params`` callback, and call :c:f    3430 the PCM ``hw_params`` callback, and call :c:func:`snd_pcm_lib_free_pages()`
3431 after the PCM ``hw_free`` callback automatica    3431 after the PCM ``hw_free`` callback automatically.  So the driver
3432 doesn't have to call these functions explicit    3432 doesn't have to call these functions explicitly in its callback any
3433 longer.  This allows many drivers to have NUL    3433 longer.  This allows many drivers to have NULL ``hw_params`` and
3434 ``hw_free`` entries.                             3434 ``hw_free`` entries.
3435                                                  3435 
3436 External Hardware Buffers                        3436 External Hardware Buffers
3437 -------------------------                        3437 -------------------------
3438                                                  3438 
3439 Some chips have their own hardware buffers an    3439 Some chips have their own hardware buffers and DMA transfer from the
3440 host memory is not available. In such a case,    3440 host memory is not available. In such a case, you need to either 1)
3441 copy/set the audio data directly to the exter    3441 copy/set the audio data directly to the external hardware buffer, or 2)
3442 make an intermediate buffer and copy/set the     3442 make an intermediate buffer and copy/set the data from it to the
3443 external hardware buffer in interrupts (or in    3443 external hardware buffer in interrupts (or in tasklets, preferably).
3444                                                  3444 
3445 The first case works fine if the external har    3445 The first case works fine if the external hardware buffer is large
3446 enough. This method doesn't need any extra bu    3446 enough. This method doesn't need any extra buffers and thus is more
3447 efficient. You need to define the ``copy`` ca    3447 efficient. You need to define the ``copy`` callback
3448 for the data transfer, in addition to the ``f    3448 for the data transfer, in addition to the ``fill_silence``
3449 callback for playback. However, there is a dr    3449 callback for playback. However, there is a drawback: it cannot be
3450 mmapped. The examples are GUS's GF1 PCM or em    3450 mmapped. The examples are GUS's GF1 PCM or emu8000's wavetable PCM.
3451                                                  3451 
3452 The second case allows for mmap on the buffer    3452 The second case allows for mmap on the buffer, although you have to
3453 handle an interrupt or a tasklet to transfer     3453 handle an interrupt or a tasklet to transfer the data from the
3454 intermediate buffer to the hardware buffer. Y    3454 intermediate buffer to the hardware buffer. You can find an example in
3455 the vxpocket driver.                             3455 the vxpocket driver.
3456                                                  3456 
3457 Another case is when the chip uses a PCI memo    3457 Another case is when the chip uses a PCI memory-map region for the
3458 buffer instead of the host memory. In this ca    3458 buffer instead of the host memory. In this case, mmap is available only
3459 on certain architectures like the Intel one.     3459 on certain architectures like the Intel one. In non-mmap mode, the data
3460 cannot be transferred as in the normal way. T    3460 cannot be transferred as in the normal way. Thus you need to define the
3461 ``copy`` and ``fill_silence`` callbacks as we    3461 ``copy`` and ``fill_silence`` callbacks as well,
3462 as in the cases above. Examples are found in     3462 as in the cases above. Examples are found in ``rme32.c`` and
3463 ``rme96.c``.                                     3463 ``rme96.c``.
3464                                                  3464 
3465 The implementation of the ``copy`` and           3465 The implementation of the ``copy`` and
3466 ``silence`` callbacks depends upon whether th    3466 ``silence`` callbacks depends upon whether the hardware supports
3467 interleaved or non-interleaved samples. The `    3467 interleaved or non-interleaved samples. The ``copy`` callback is
3468 defined like below, a bit differently dependi    3468 defined like below, a bit differently depending on whether the direction
3469 is playback or capture::                         3469 is playback or capture::
3470                                                  3470 
3471   static int playback_copy(struct snd_pcm_sub    3471   static int playback_copy(struct snd_pcm_substream *substream,
3472                int channel, unsigned long pos    3472                int channel, unsigned long pos,
3473                struct iov_iter *src, unsigned    3473                struct iov_iter *src, unsigned long count);
3474   static int capture_copy(struct snd_pcm_subs    3474   static int capture_copy(struct snd_pcm_substream *substream,
3475                int channel, unsigned long pos    3475                int channel, unsigned long pos,
3476                struct iov_iter *dst, unsigned    3476                struct iov_iter *dst, unsigned long count);
3477                                                  3477 
3478 In the case of interleaved samples, the secon    3478 In the case of interleaved samples, the second argument (``channel``) is
3479 not used. The third argument (``pos``) specif    3479 not used. The third argument (``pos``) specifies the position in bytes.
3480                                                  3480 
3481 The meaning of the fourth argument is differe    3481 The meaning of the fourth argument is different between playback and
3482 capture. For playback, it holds the source da    3482 capture. For playback, it holds the source data pointer, and for
3483 capture, it's the destination data pointer.      3483 capture, it's the destination data pointer.
3484                                                  3484 
3485 The last argument is the number of bytes to b    3485 The last argument is the number of bytes to be copied.
3486                                                  3486 
3487 What you have to do in this callback is again    3487 What you have to do in this callback is again different between playback
3488 and capture directions. In the playback case,    3488 and capture directions. In the playback case, you copy the given amount
3489 of data (``count``) at the specified pointer     3489 of data (``count``) at the specified pointer (``src``) to the specified
3490 offset (``pos``) in the hardware buffer. When    3490 offset (``pos``) in the hardware buffer. When coded like memcpy-like
3491 way, the copy would look like::                  3491 way, the copy would look like::
3492                                                  3492 
3493   my_memcpy_from_iter(my_buffer + pos, src, c    3493   my_memcpy_from_iter(my_buffer + pos, src, count);
3494                                                  3494 
3495 For the capture direction, you copy the given    3495 For the capture direction, you copy the given amount of data (``count``)
3496 at the specified offset (``pos``) in the hard    3496 at the specified offset (``pos``) in the hardware buffer to the
3497 specified pointer (``dst``)::                    3497 specified pointer (``dst``)::
3498                                                  3498 
3499   my_memcpy_to_iter(dst, my_buffer + pos, cou    3499   my_memcpy_to_iter(dst, my_buffer + pos, count);
3500                                                  3500 
3501 The given ``src`` or ``dst`` a struct iov_ite    3501 The given ``src`` or ``dst`` a struct iov_iter pointer containing the
3502 pointer and the size.  Use the existing helpe    3502 pointer and the size.  Use the existing helpers to copy or access the
3503 data as defined in ``linux/uio.h``.              3503 data as defined in ``linux/uio.h``.
3504                                                  3504 
3505 Careful readers might notice that these callb    3505 Careful readers might notice that these callbacks receive the
3506 arguments in bytes, not in frames like other     3506 arguments in bytes, not in frames like other callbacks.  It's because
3507 this makes coding easier like in the examples    3507 this makes coding easier like in the examples above, and also it makes
3508 it easier to unify both the interleaved and n    3508 it easier to unify both the interleaved and non-interleaved cases, as
3509 explained below.                                 3509 explained below.
3510                                                  3510 
3511 In the case of non-interleaved samples, the i    3511 In the case of non-interleaved samples, the implementation will be a bit
3512 more complicated.  The callback is called for    3512 more complicated.  The callback is called for each channel, passed in
3513 the second argument, so in total it's called     3513 the second argument, so in total it's called N times per transfer.
3514                                                  3514 
3515 The meaning of the other arguments are almost    3515 The meaning of the other arguments are almost the same as in the
3516 interleaved case.  The callback is supposed t    3516 interleaved case.  The callback is supposed to copy the data from/to
3517 the given user-space buffer, but only for the    3517 the given user-space buffer, but only for the given channel. For
3518 details, please check ``isa/gus/gus_pcm.c`` o    3518 details, please check ``isa/gus/gus_pcm.c`` or ``pci/rme9652/rme9652.c``
3519 as examples.                                     3519 as examples.
3520                                                  3520 
3521 Usually for the playback, another callback ``    3521 Usually for the playback, another callback ``fill_silence`` is
3522 defined.  It's implemented in a similar way a    3522 defined.  It's implemented in a similar way as the copy callbacks
3523 above::                                          3523 above::
3524                                                  3524 
3525   static int silence(struct snd_pcm_substream    3525   static int silence(struct snd_pcm_substream *substream, int channel,
3526                      unsigned long pos, unsig    3526                      unsigned long pos, unsigned long count);
3527                                                  3527 
3528 The meanings of arguments are the same as in     3528 The meanings of arguments are the same as in the ``copy`` callback,
3529 although there is no buffer pointer              3529 although there is no buffer pointer
3530 argument. In the case of interleaved samples,    3530 argument. In the case of interleaved samples, the channel argument has
3531 no meaning, as for the ``copy`` callback.        3531 no meaning, as for the ``copy`` callback.
3532                                                  3532 
3533 The role of the ``fill_silence`` callback is     3533 The role of the ``fill_silence`` callback is to set the given amount
3534 (``count``) of silence data at the specified     3534 (``count``) of silence data at the specified offset (``pos``) in the
3535 hardware buffer. Suppose that the data format    3535 hardware buffer. Suppose that the data format is signed (that is, the
3536 silent-data is 0), and the implementation usi    3536 silent-data is 0), and the implementation using a memset-like function
3537 would look like::                                3537 would look like::
3538                                                  3538 
3539   my_memset(my_buffer + pos, 0, count);          3539   my_memset(my_buffer + pos, 0, count);
3540                                                  3540 
3541 In the case of non-interleaved samples, again    3541 In the case of non-interleaved samples, again, the implementation
3542 becomes a bit more complicated, as it's calle    3542 becomes a bit more complicated, as it's called N times per transfer
3543 for each channel. See, for example, ``isa/gus    3543 for each channel. See, for example, ``isa/gus/gus_pcm.c``.
3544                                                  3544 
3545 Non-Contiguous Buffers                           3545 Non-Contiguous Buffers
3546 ----------------------                           3546 ----------------------
3547                                                  3547 
3548 If your hardware supports a page table as in     3548 If your hardware supports a page table as in emu10k1 or buffer
3549 descriptors as in via82xx, you can use scatte    3549 descriptors as in via82xx, you can use scatter-gather (SG) DMA. ALSA
3550 provides an interface for handling SG-buffers    3550 provides an interface for handling SG-buffers. The API is provided in
3551 ``<sound/pcm.h>``.                               3551 ``<sound/pcm.h>``.
3552                                                  3552 
3553 For creating the SG-buffer handler, call         3553 For creating the SG-buffer handler, call
3554 :c:func:`snd_pcm_set_managed_buffer()` or        3554 :c:func:`snd_pcm_set_managed_buffer()` or
3555 :c:func:`snd_pcm_set_managed_buffer_all()` wi    3555 :c:func:`snd_pcm_set_managed_buffer_all()` with
3556 ``SNDRV_DMA_TYPE_DEV_SG`` in the PCM construc    3556 ``SNDRV_DMA_TYPE_DEV_SG`` in the PCM constructor like for other PCI
3557 pre-allocations. You need to pass ``&pci->dev    3557 pre-allocations. You need to pass ``&pci->dev``, where pci is
3558 the struct pci_dev pointer of the chip as wel    3558 the struct pci_dev pointer of the chip as well::
3559                                                  3559 
3560   snd_pcm_set_managed_buffer_all(pcm, SNDRV_D    3560   snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
3561                                  &pci->dev, s    3561                                  &pci->dev, size, max);
3562                                                  3562 
3563 The ``struct snd_sg_buf`` instance is created    3563 The ``struct snd_sg_buf`` instance is created as
3564 ``substream->dma_private`` in turn. You can c    3564 ``substream->dma_private`` in turn. You can cast the pointer like::
3565                                                  3565 
3566   struct snd_sg_buf *sgbuf = (struct snd_sg_b    3566   struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private;
3567                                                  3567 
3568 Then in the :c:func:`snd_pcm_lib_malloc_pages    3568 Then in the :c:func:`snd_pcm_lib_malloc_pages()` call, the common SG-buffer
3569 handler will allocate the non-contiguous kern    3569 handler will allocate the non-contiguous kernel pages of the given size
3570 and map them as virtually contiguous memory.     3570 and map them as virtually contiguous memory. The virtual pointer
3571 is addressed via runtime->dma_area. The physi    3571 is addressed via runtime->dma_area. The physical address
3572 (``runtime->dma_addr``) is set to zero, becau    3572 (``runtime->dma_addr``) is set to zero, because the buffer is
3573 physically non-contiguous. The physical addre    3573 physically non-contiguous. The physical address table is set up in
3574 ``sgbuf->table``. You can get the physical ad    3574 ``sgbuf->table``. You can get the physical address at a certain offset
3575 via :c:func:`snd_pcm_sgbuf_get_addr()`.          3575 via :c:func:`snd_pcm_sgbuf_get_addr()`.
3576                                                  3576 
3577 If you need to release the SG-buffer data exp    3577 If you need to release the SG-buffer data explicitly, call the
3578 standard API function :c:func:`snd_pcm_lib_fr    3578 standard API function :c:func:`snd_pcm_lib_free_pages()` as usual.
3579                                                  3579 
3580 Vmalloc'ed Buffers                               3580 Vmalloc'ed Buffers
3581 ------------------                               3581 ------------------
3582                                                  3582 
3583 It's possible to use a buffer allocated via :    3583 It's possible to use a buffer allocated via :c:func:`vmalloc()`, for
3584 example, for an intermediate buffer.             3584 example, for an intermediate buffer.
3585 You can simply allocate it via the standard      3585 You can simply allocate it via the standard
3586 :c:func:`snd_pcm_lib_malloc_pages()` and co.     3586 :c:func:`snd_pcm_lib_malloc_pages()` and co. after setting up the
3587 buffer preallocation with ``SNDRV_DMA_TYPE_VM    3587 buffer preallocation with ``SNDRV_DMA_TYPE_VMALLOC`` type::
3588                                                  3588 
3589   snd_pcm_set_managed_buffer_all(pcm, SNDRV_D    3589   snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC,
3590                                  NULL, 0, 0);    3590                                  NULL, 0, 0);
3591                                                  3591 
3592 NULL is passed as the device pointer argument    3592 NULL is passed as the device pointer argument, which indicates
3593 that default pages (GFP_KERNEL and GFP_HIGHME    3593 that default pages (GFP_KERNEL and GFP_HIGHMEM) will be
3594 allocated.                                       3594 allocated.
3595                                                  3595 
3596 Also, note that zero is passed as both the si    3596 Also, note that zero is passed as both the size and the max size
3597 argument here.  Since each vmalloc call shoul    3597 argument here.  Since each vmalloc call should succeed at any time,
3598 we don't need to pre-allocate the buffers lik    3598 we don't need to pre-allocate the buffers like other continuous
3599 pages.                                           3599 pages.
3600                                                  3600 
3601 Proc Interface                                   3601 Proc Interface
3602 ==============                                   3602 ==============
3603                                                  3603 
3604 ALSA provides an easy interface for procfs. T    3604 ALSA provides an easy interface for procfs. The proc files are very
3605 useful for debugging. I recommend you set up     3605 useful for debugging. I recommend you set up proc files if you write a
3606 driver and want to get a running status or re    3606 driver and want to get a running status or register dumps. The API is
3607 found in ``<sound/info.h>``.                     3607 found in ``<sound/info.h>``.
3608                                                  3608 
3609 To create a proc file, call :c:func:`snd_card    3609 To create a proc file, call :c:func:`snd_card_proc_new()`::
3610                                                  3610 
3611   struct snd_info_entry *entry;                  3611   struct snd_info_entry *entry;
3612   int err = snd_card_proc_new(card, "my-file"    3612   int err = snd_card_proc_new(card, "my-file", &entry);
3613                                                  3613 
3614 where the second argument specifies the name     3614 where the second argument specifies the name of the proc file to be
3615 created. The above example will create a file    3615 created. The above example will create a file ``my-file`` under the
3616 card directory, e.g. ``/proc/asound/card0/my-    3616 card directory, e.g. ``/proc/asound/card0/my-file``.
3617                                                  3617 
3618 Like other components, the proc entry created    3618 Like other components, the proc entry created via
3619 :c:func:`snd_card_proc_new()` will be registe    3619 :c:func:`snd_card_proc_new()` will be registered and released
3620 automatically in the card registration and re    3620 automatically in the card registration and release functions.
3621                                                  3621 
3622 When the creation is successful, the function    3622 When the creation is successful, the function stores a new instance in
3623 the pointer given in the third argument. It i    3623 the pointer given in the third argument. It is initialized as a text
3624 proc file for read only. To use this proc fil    3624 proc file for read only. To use this proc file as a read-only text file
3625 as-is, set the read callback with private dat    3625 as-is, set the read callback with private data via
3626 :c:func:`snd_info_set_text_ops()`::              3626 :c:func:`snd_info_set_text_ops()`::
3627                                                  3627 
3628   snd_info_set_text_ops(entry, chip, my_proc_    3628   snd_info_set_text_ops(entry, chip, my_proc_read);
3629                                                  3629 
3630 where the second argument (``chip``) is the p    3630 where the second argument (``chip``) is the private data to be used in
3631 the callback. The third parameter specifies t    3631 the callback. The third parameter specifies the read buffer size and
3632 the fourth (``my_proc_read``) is the callback    3632 the fourth (``my_proc_read``) is the callback function, which is
3633 defined like::                                   3633 defined like::
3634                                                  3634 
3635   static void my_proc_read(struct snd_info_en    3635   static void my_proc_read(struct snd_info_entry *entry,
3636                            struct snd_info_bu    3636                            struct snd_info_buffer *buffer);
3637                                                  3637 
3638 In the read callback, use :c:func:`snd_iprint    3638 In the read callback, use :c:func:`snd_iprintf()` for output
3639 strings, which works just like normal :c:func    3639 strings, which works just like normal :c:func:`printf()`. For
3640 example::                                        3640 example::
3641                                                  3641 
3642   static void my_proc_read(struct snd_info_en    3642   static void my_proc_read(struct snd_info_entry *entry,
3643                            struct snd_info_bu    3643                            struct snd_info_buffer *buffer)
3644   {                                              3644   {
3645           struct my_chip *chip = entry->priva    3645           struct my_chip *chip = entry->private_data;
3646                                                  3646 
3647           snd_iprintf(buffer, "This is my chi    3647           snd_iprintf(buffer, "This is my chip!\n");
3648           snd_iprintf(buffer, "Port = %ld\n",    3648           snd_iprintf(buffer, "Port = %ld\n", chip->port);
3649   }                                              3649   }
3650                                                  3650 
3651 The file permissions can be changed afterward    3651 The file permissions can be changed afterwards. By default, they are
3652 read only for all users. If you want to add w    3652 read only for all users. If you want to add write permission for the
3653 user (root by default), do as follows::          3653 user (root by default), do as follows::
3654                                                  3654 
3655  entry->mode = S_IFREG | S_IRUGO | S_IWUSR;      3655  entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
3656                                                  3656 
3657 and set the write buffer size and the callbac    3657 and set the write buffer size and the callback::
3658                                                  3658 
3659   entry->c.text.write = my_proc_write;           3659   entry->c.text.write = my_proc_write;
3660                                                  3660 
3661 In the write callback, you can use :c:func:`s    3661 In the write callback, you can use :c:func:`snd_info_get_line()`
3662 to get a text line, and :c:func:`snd_info_get    3662 to get a text line, and :c:func:`snd_info_get_str()` to retrieve
3663 a string from the line. Some examples are fou    3663 a string from the line. Some examples are found in
3664 ``core/oss/mixer_oss.c``, core/oss/and ``pcm_    3664 ``core/oss/mixer_oss.c``, core/oss/and ``pcm_oss.c``.
3665                                                  3665 
3666 For a raw-data proc-file, set the attributes     3666 For a raw-data proc-file, set the attributes as follows::
3667                                                  3667 
3668   static const struct snd_info_entry_ops my_f    3668   static const struct snd_info_entry_ops my_file_io_ops = {
3669           .read = my_file_io_read,               3669           .read = my_file_io_read,
3670   };                                             3670   };
3671                                                  3671 
3672   entry->content = SNDRV_INFO_CONTENT_DATA;      3672   entry->content = SNDRV_INFO_CONTENT_DATA;
3673   entry->private_data = chip;                    3673   entry->private_data = chip;
3674   entry->c.ops = &my_file_io_ops;                3674   entry->c.ops = &my_file_io_ops;
3675   entry->size = 4096;                            3675   entry->size = 4096;
3676   entry->mode = S_IFREG | S_IRUGO;               3676   entry->mode = S_IFREG | S_IRUGO;
3677                                                  3677 
3678 For raw data, ``size`` field must be set prop    3678 For raw data, ``size`` field must be set properly. This specifies
3679 the maximum size of the proc file access.        3679 the maximum size of the proc file access.
3680                                                  3680 
3681 The read/write callbacks of raw mode are more    3681 The read/write callbacks of raw mode are more direct than the text mode.
3682 You need to use a low-level I/O functions suc    3682 You need to use a low-level I/O functions such as
3683 :c:func:`copy_from_user()` and :c:func:`copy_    3683 :c:func:`copy_from_user()` and :c:func:`copy_to_user()` to transfer the
3684 data::                                           3684 data::
3685                                                  3685 
3686   static ssize_t my_file_io_read(struct snd_i    3686   static ssize_t my_file_io_read(struct snd_info_entry *entry,
3687                               void *file_priv    3687                               void *file_private_data,
3688                               struct file *fi    3688                               struct file *file,
3689                               char *buf,         3689                               char *buf,
3690                               size_t count,      3690                               size_t count,
3691                               loff_t pos)        3691                               loff_t pos)
3692   {                                              3692   {
3693           if (copy_to_user(buf, local_data +     3693           if (copy_to_user(buf, local_data + pos, count))
3694                   return -EFAULT;                3694                   return -EFAULT;
3695           return count;                          3695           return count;
3696   }                                              3696   }
3697                                                  3697 
3698 If the size of the info entry has been set up    3698 If the size of the info entry has been set up properly, ``count`` and
3699 ``pos`` are guaranteed to fit within 0 and th    3699 ``pos`` are guaranteed to fit within 0 and the given size. You don't
3700 have to check the range in the callbacks unle    3700 have to check the range in the callbacks unless any other condition is
3701 required.                                        3701 required.
3702                                                  3702 
3703 Power Management                                 3703 Power Management
3704 ================                                 3704 ================
3705                                                  3705 
3706 If the chip is supposed to work with suspend/    3706 If the chip is supposed to work with suspend/resume functions, you need
3707 to add power-management code to the driver. T    3707 to add power-management code to the driver. The additional code for
3708 power-management should be ifdef-ed with ``CO    3708 power-management should be ifdef-ed with ``CONFIG_PM``, or annotated
3709 with __maybe_unused attribute; otherwise the     3709 with __maybe_unused attribute; otherwise the compiler will complain.
3710                                                  3710 
3711 If the driver *fully* supports suspend/resume    3711 If the driver *fully* supports suspend/resume that is, the device can be
3712 properly resumed to its state when suspend wa    3712 properly resumed to its state when suspend was called, you can set the
3713 ``SNDRV_PCM_INFO_RESUME`` flag in the PCM inf    3713 ``SNDRV_PCM_INFO_RESUME`` flag in the PCM info field. Usually, this is
3714 possible when the registers of the chip can b    3714 possible when the registers of the chip can be safely saved and restored
3715 to RAM. If this is set, the trigger callback     3715 to RAM. If this is set, the trigger callback is called with
3716 ``SNDRV_PCM_TRIGGER_RESUME`` after the resume    3716 ``SNDRV_PCM_TRIGGER_RESUME`` after the resume callback completes.
3717                                                  3717 
3718 Even if the driver doesn't support PM fully b    3718 Even if the driver doesn't support PM fully but partial suspend/resume
3719 is still possible, it's still worthy to imple    3719 is still possible, it's still worthy to implement suspend/resume
3720 callbacks. In such a case, applications would    3720 callbacks. In such a case, applications would reset the status by
3721 calling :c:func:`snd_pcm_prepare()` and resta    3721 calling :c:func:`snd_pcm_prepare()` and restart the stream
3722 appropriately. Hence, you can define suspend/    3722 appropriately. Hence, you can define suspend/resume callbacks below but
3723 don't set the ``SNDRV_PCM_INFO_RESUME`` info     3723 don't set the ``SNDRV_PCM_INFO_RESUME`` info flag to the PCM.
3724                                                  3724 
3725 Note that the trigger with SUSPEND can always    3725 Note that the trigger with SUSPEND can always be called when
3726 :c:func:`snd_pcm_suspend_all()` is called, re    3726 :c:func:`snd_pcm_suspend_all()` is called, regardless of the
3727 ``SNDRV_PCM_INFO_RESUME`` flag. The ``RESUME`    3727 ``SNDRV_PCM_INFO_RESUME`` flag. The ``RESUME`` flag affects only the
3728 behavior of :c:func:`snd_pcm_resume()`. (Thus    3728 behavior of :c:func:`snd_pcm_resume()`. (Thus, in theory,
3729 ``SNDRV_PCM_TRIGGER_RESUME`` isn't needed to     3729 ``SNDRV_PCM_TRIGGER_RESUME`` isn't needed to be handled in the trigger
3730 callback when no ``SNDRV_PCM_INFO_RESUME`` fl    3730 callback when no ``SNDRV_PCM_INFO_RESUME`` flag is set. But, it's better
3731 to keep it for compatibility reasons.)           3731 to keep it for compatibility reasons.)
3732                                                  3732 
3733 The driver needs to define the                   3733 The driver needs to define the
3734 suspend/resume hooks according to the bus the    3734 suspend/resume hooks according to the bus the device is connected to. In
3735 the case of PCI drivers, the callbacks look l    3735 the case of PCI drivers, the callbacks look like below::
3736                                                  3736 
3737   static int __maybe_unused snd_my_suspend(st    3737   static int __maybe_unused snd_my_suspend(struct device *dev)
3738   {                                              3738   {
3739           .... /* do things for suspend */       3739           .... /* do things for suspend */
3740           return 0;                              3740           return 0;
3741   }                                              3741   }
3742   static int __maybe_unused snd_my_resume(str    3742   static int __maybe_unused snd_my_resume(struct device *dev)
3743   {                                              3743   {
3744           .... /* do things for suspend */       3744           .... /* do things for suspend */
3745           return 0;                              3745           return 0;
3746   }                                              3746   }
3747                                                  3747 
3748 The scheme of the real suspend job is as foll    3748 The scheme of the real suspend job is as follows:
3749                                                  3749 
3750 1. Retrieve the card and the chip data.          3750 1. Retrieve the card and the chip data.
3751                                                  3751 
3752 2. Call :c:func:`snd_power_change_state()` wi    3752 2. Call :c:func:`snd_power_change_state()` with
3753    ``SNDRV_CTL_POWER_D3hot`` to change the po    3753    ``SNDRV_CTL_POWER_D3hot`` to change the power status.
3754                                                  3754 
3755 3. If AC97 codecs are used, call :c:func:`snd    3755 3. If AC97 codecs are used, call :c:func:`snd_ac97_suspend()` for
3756    each codec.                                   3756    each codec.
3757                                                  3757 
3758 4. Save the register values if necessary.        3758 4. Save the register values if necessary.
3759                                                  3759 
3760 5. Stop the hardware if necessary.               3760 5. Stop the hardware if necessary.
3761                                                  3761 
3762 Typical code would look like::                   3762 Typical code would look like::
3763                                                  3763 
3764   static int __maybe_unused mychip_suspend(st    3764   static int __maybe_unused mychip_suspend(struct device *dev)
3765   {                                              3765   {
3766           /* (1) */                              3766           /* (1) */
3767           struct snd_card *card = dev_get_drv    3767           struct snd_card *card = dev_get_drvdata(dev);
3768           struct mychip *chip = card->private    3768           struct mychip *chip = card->private_data;
3769           /* (2) */                              3769           /* (2) */
3770           snd_power_change_state(card, SNDRV_    3770           snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3771           /* (3) */                              3771           /* (3) */
3772           snd_ac97_suspend(chip->ac97);          3772           snd_ac97_suspend(chip->ac97);
3773           /* (4) */                              3773           /* (4) */
3774           snd_mychip_save_registers(chip);       3774           snd_mychip_save_registers(chip);
3775           /* (5) */                              3775           /* (5) */
3776           snd_mychip_stop_hardware(chip);        3776           snd_mychip_stop_hardware(chip);
3777           return 0;                              3777           return 0;
3778   }                                              3778   }
3779                                                  3779 
3780                                                  3780 
3781 The scheme of the real resume job is as follo    3781 The scheme of the real resume job is as follows:
3782                                                  3782 
3783 1. Retrieve the card and the chip data.          3783 1. Retrieve the card and the chip data.
3784                                                  3784 
3785 2. Re-initialize the chip.                       3785 2. Re-initialize the chip.
3786                                                  3786 
3787 3. Restore the saved registers if necessary.     3787 3. Restore the saved registers if necessary.
3788                                                  3788 
3789 4. Resume the mixer, e.g. by calling :c:func:    3789 4. Resume the mixer, e.g. by calling :c:func:`snd_ac97_resume()`.
3790                                                  3790 
3791 5. Restart the hardware (if any).                3791 5. Restart the hardware (if any).
3792                                                  3792 
3793 6. Call :c:func:`snd_power_change_state()` wi    3793 6. Call :c:func:`snd_power_change_state()` with
3794    ``SNDRV_CTL_POWER_D0`` to notify the proce    3794    ``SNDRV_CTL_POWER_D0`` to notify the processes.
3795                                                  3795 
3796 Typical code would look like::                   3796 Typical code would look like::
3797                                                  3797 
3798   static int __maybe_unused mychip_resume(str    3798   static int __maybe_unused mychip_resume(struct pci_dev *pci)
3799   {                                              3799   {
3800           /* (1) */                              3800           /* (1) */
3801           struct snd_card *card = dev_get_drv    3801           struct snd_card *card = dev_get_drvdata(dev);
3802           struct mychip *chip = card->private    3802           struct mychip *chip = card->private_data;
3803           /* (2) */                              3803           /* (2) */
3804           snd_mychip_reinit_chip(chip);          3804           snd_mychip_reinit_chip(chip);
3805           /* (3) */                              3805           /* (3) */
3806           snd_mychip_restore_registers(chip);    3806           snd_mychip_restore_registers(chip);
3807           /* (4) */                              3807           /* (4) */
3808           snd_ac97_resume(chip->ac97);           3808           snd_ac97_resume(chip->ac97);
3809           /* (5) */                              3809           /* (5) */
3810           snd_mychip_restart_chip(chip);         3810           snd_mychip_restart_chip(chip);
3811           /* (6) */                              3811           /* (6) */
3812           snd_power_change_state(card, SNDRV_    3812           snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3813           return 0;                              3813           return 0;
3814   }                                              3814   }
3815                                                  3815 
3816 Note that, at the time this callback gets cal    3816 Note that, at the time this callback gets called, the PCM stream has
3817 been already suspended via its own PM ops cal    3817 been already suspended via its own PM ops calling
3818 :c:func:`snd_pcm_suspend_all()` internally.      3818 :c:func:`snd_pcm_suspend_all()` internally.
3819                                                  3819 
3820 OK, we have all callbacks now. Let's set them    3820 OK, we have all callbacks now. Let's set them up. In the initialization
3821 of the card, make sure that you can get the c    3821 of the card, make sure that you can get the chip data from the card
3822 instance, typically via ``private_data`` fiel    3822 instance, typically via ``private_data`` field, in case you created the
3823 chip data individually::                         3823 chip data individually::
3824                                                  3824 
3825   static int snd_mychip_probe(struct pci_dev     3825   static int snd_mychip_probe(struct pci_dev *pci,
3826                               const struct pc    3826                               const struct pci_device_id *pci_id)
3827   {                                              3827   {
3828           ....                                   3828           ....
3829           struct snd_card *card;                 3829           struct snd_card *card;
3830           struct mychip *chip;                   3830           struct mychip *chip;
3831           int err;                               3831           int err;
3832           ....                                   3832           ....
3833           err = snd_card_new(&pci->dev, index    3833           err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3834                              0, &card);          3834                              0, &card);
3835           ....                                   3835           ....
3836           chip = kzalloc(sizeof(*chip), GFP_K    3836           chip = kzalloc(sizeof(*chip), GFP_KERNEL);
3837           ....                                   3837           ....
3838           card->private_data = chip;             3838           card->private_data = chip;
3839           ....                                   3839           ....
3840   }                                              3840   }
3841                                                  3841 
3842 When you created the chip data with :c:func:`    3842 When you created the chip data with :c:func:`snd_card_new()`, it's
3843 anyway accessible via ``private_data`` field:    3843 anyway accessible via ``private_data`` field::
3844                                                  3844 
3845   static int snd_mychip_probe(struct pci_dev     3845   static int snd_mychip_probe(struct pci_dev *pci,
3846                               const struct pc    3846                               const struct pci_device_id *pci_id)
3847   {                                              3847   {
3848           ....                                   3848           ....
3849           struct snd_card *card;                 3849           struct snd_card *card;
3850           struct mychip *chip;                   3850           struct mychip *chip;
3851           int err;                               3851           int err;
3852           ....                                   3852           ....
3853           err = snd_card_new(&pci->dev, index    3853           err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3854                              sizeof(struct my    3854                              sizeof(struct mychip), &card);
3855           ....                                   3855           ....
3856           chip = card->private_data;             3856           chip = card->private_data;
3857           ....                                   3857           ....
3858   }                                              3858   }
3859                                                  3859 
3860 If you need space to save the registers, allo    3860 If you need space to save the registers, allocate the buffer for it
3861 here, too, since it would be fatal if you can    3861 here, too, since it would be fatal if you cannot allocate a memory in
3862 the suspend phase. The allocated buffer shoul    3862 the suspend phase. The allocated buffer should be released in the
3863 corresponding destructor.                        3863 corresponding destructor.
3864                                                  3864 
3865 And next, set suspend/resume callbacks to the    3865 And next, set suspend/resume callbacks to the pci_driver::
3866                                                  3866 
3867   static DEFINE_SIMPLE_DEV_PM_OPS(snd_my_pm_o    3867   static DEFINE_SIMPLE_DEV_PM_OPS(snd_my_pm_ops, mychip_suspend, mychip_resume);
3868                                                  3868 
3869   static struct pci_driver driver = {            3869   static struct pci_driver driver = {
3870           .name = KBUILD_MODNAME,                3870           .name = KBUILD_MODNAME,
3871           .id_table = snd_my_ids,                3871           .id_table = snd_my_ids,
3872           .probe = snd_my_probe,                 3872           .probe = snd_my_probe,
3873           .remove = snd_my_remove,               3873           .remove = snd_my_remove,
3874           .driver = {                            3874           .driver = {
3875                   .pm = &snd_my_pm_ops,          3875                   .pm = &snd_my_pm_ops,
3876           },                                     3876           },
3877   };                                             3877   };
3878                                                  3878 
3879 Module Parameters                                3879 Module Parameters
3880 =================                                3880 =================
3881                                                  3881 
3882 There are standard module options for ALSA. A    3882 There are standard module options for ALSA. At least, each module should
3883 have the ``index``, ``id`` and ``enable`` opt    3883 have the ``index``, ``id`` and ``enable`` options.
3884                                                  3884 
3885 If the module supports multiple cards (usuall    3885 If the module supports multiple cards (usually up to 8 = ``SNDRV_CARDS``
3886 cards), they should be arrays. The default in    3886 cards), they should be arrays. The default initial values are defined
3887 already as constants for easier programming::    3887 already as constants for easier programming::
3888                                                  3888 
3889   static int index[SNDRV_CARDS] = SNDRV_DEFAU    3889   static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
3890   static char *id[SNDRV_CARDS] = SNDRV_DEFAUL    3890   static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
3891   static int enable[SNDRV_CARDS] = SNDRV_DEFA    3891   static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
3892                                                  3892 
3893 If the module supports only a single card, th    3893 If the module supports only a single card, they could be single
3894 variables, instead. ``enable`` option is not     3894 variables, instead. ``enable`` option is not always necessary in this
3895 case, but it would be better to have a dummy     3895 case, but it would be better to have a dummy option for compatibility.
3896                                                  3896 
3897 The module parameters must be declared with t    3897 The module parameters must be declared with the standard
3898 ``module_param()``, ``module_param_array()``     3898 ``module_param()``, ``module_param_array()`` and
3899 :c:func:`MODULE_PARM_DESC()` macros.             3899 :c:func:`MODULE_PARM_DESC()` macros.
3900                                                  3900 
3901 Typical code would look as below::               3901 Typical code would look as below::
3902                                                  3902 
3903   #define CARD_NAME "My Chip"                    3903   #define CARD_NAME "My Chip"
3904                                                  3904 
3905   module_param_array(index, int, NULL, 0444);    3905   module_param_array(index, int, NULL, 0444);
3906   MODULE_PARM_DESC(index, "Index value for "     3906   MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
3907   module_param_array(id, charp, NULL, 0444);     3907   module_param_array(id, charp, NULL, 0444);
3908   MODULE_PARM_DESC(id, "ID string for " CARD_    3908   MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
3909   module_param_array(enable, bool, NULL, 0444    3909   module_param_array(enable, bool, NULL, 0444);
3910   MODULE_PARM_DESC(enable, "Enable " CARD_NAM    3910   MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
3911                                                  3911 
3912 Also, don't forget to define the module descr    3912 Also, don't forget to define the module description and the license.
3913 Especially, the recent modprobe requires to d    3913 Especially, the recent modprobe requires to define the
3914 module license as GPL, etc., otherwise the sy    3914 module license as GPL, etc., otherwise the system is shown as “tainted”::
3915                                                  3915 
3916   MODULE_DESCRIPTION("Sound driver for My Chi    3916   MODULE_DESCRIPTION("Sound driver for My Chip");
3917   MODULE_LICENSE("GPL");                         3917   MODULE_LICENSE("GPL");
3918                                                  3918 
3919                                                  3919 
3920 Device-Managed Resources                         3920 Device-Managed Resources
3921 ========================                         3921 ========================
3922                                                  3922 
3923 In the examples above, all resources are allo    3923 In the examples above, all resources are allocated and released
3924 manually.  But human beings are lazy in natur    3924 manually.  But human beings are lazy in nature, especially developers
3925 are lazier.  So there are some ways to automa    3925 are lazier.  So there are some ways to automate the release part; it's
3926 the (device-)managed resources aka devres or     3926 the (device-)managed resources aka devres or devm family.  For
3927 example, an object allocated via :c:func:`dev    3927 example, an object allocated via :c:func:`devm_kmalloc()` will be
3928 freed automatically at unbinding the device.     3928 freed automatically at unbinding the device.
3929                                                  3929 
3930 ALSA core provides also the device-managed he    3930 ALSA core provides also the device-managed helper, namely,
3931 :c:func:`snd_devm_card_new()` for creating a     3931 :c:func:`snd_devm_card_new()` for creating a card object.
3932 Call this functions instead of the normal :c:    3932 Call this functions instead of the normal :c:func:`snd_card_new()`,
3933 and you can forget the explicit :c:func:`snd_    3933 and you can forget the explicit :c:func:`snd_card_free()` call, as
3934 it's called automagically at error and remova    3934 it's called automagically at error and removal paths.
3935                                                  3935 
3936 One caveat is that the call of :c:func:`snd_c    3936 One caveat is that the call of :c:func:`snd_card_free()` would be put
3937 at the beginning of the call chain only after    3937 at the beginning of the call chain only after you call
3938 :c:func:`snd_card_register()`.                   3938 :c:func:`snd_card_register()`.
3939                                                  3939 
3940 Also, the ``private_free`` callback is always    3940 Also, the ``private_free`` callback is always called at the card free,
3941 so be careful to put the hardware clean-up pr    3941 so be careful to put the hardware clean-up procedure in
3942 ``private_free`` callback.  It might be calle    3942 ``private_free`` callback.  It might be called even before you
3943 actually set up at an earlier error path.  Fo    3943 actually set up at an earlier error path.  For avoiding such an
3944 invalid initialization, you can set ``private    3944 invalid initialization, you can set ``private_free`` callback after
3945 :c:func:`snd_card_register()` call succeeds.     3945 :c:func:`snd_card_register()` call succeeds.
3946                                                  3946 
3947 Another thing to be remarked is that you shou    3947 Another thing to be remarked is that you should use device-managed
3948 helpers for each component as much as possibl    3948 helpers for each component as much as possible once when you manage
3949 the card in that way.  Mixing up with the nor    3949 the card in that way.  Mixing up with the normal and the managed
3950 resources may screw up the release order.        3950 resources may screw up the release order.
3951                                                  3951 
3952                                                  3952 
3953 How To Put Your Driver Into ALSA Tree            3953 How To Put Your Driver Into ALSA Tree
3954 =====================================            3954 =====================================
3955                                                  3955 
3956 General                                          3956 General
3957 -------                                          3957 -------
3958                                                  3958 
3959 So far, you've learned how to write the drive    3959 So far, you've learned how to write the driver codes. And you might have
3960 a question now: how to put my own driver into    3960 a question now: how to put my own driver into the ALSA driver tree? Here
3961 (finally :) the standard procedure is describ    3961 (finally :) the standard procedure is described briefly.
3962                                                  3962 
3963 Suppose that you create a new PCI driver for     3963 Suppose that you create a new PCI driver for the card “xyz”. The card
3964 module name would be snd-xyz. The new driver     3964 module name would be snd-xyz. The new driver is usually put into the
3965 alsa-driver tree, ``sound/pci`` directory in     3965 alsa-driver tree, ``sound/pci`` directory in the case of PCI
3966 cards.                                           3966 cards.
3967                                                  3967 
3968 In the following sections, the driver code is    3968 In the following sections, the driver code is supposed to be put into
3969 Linux kernel tree. The two cases are covered:    3969 Linux kernel tree. The two cases are covered: a driver consisting of a
3970 single source file and one consisting of seve    3970 single source file and one consisting of several source files.
3971                                                  3971 
3972 Driver with A Single Source File                 3972 Driver with A Single Source File
3973 --------------------------------                 3973 --------------------------------
3974                                                  3974 
3975 1. Modify sound/pci/Makefile                     3975 1. Modify sound/pci/Makefile
3976                                                  3976 
3977    Suppose you have a file xyz.c. Add the fol    3977    Suppose you have a file xyz.c. Add the following two lines::
3978                                                  3978 
3979      snd-xyz-y := xyz.o                          3979      snd-xyz-y := xyz.o
3980      obj-$(CONFIG_SND_XYZ) += snd-xyz.o          3980      obj-$(CONFIG_SND_XYZ) += snd-xyz.o
3981                                                  3981 
3982 2. Create the Kconfig entry                      3982 2. Create the Kconfig entry
3983                                                  3983 
3984    Add the new entry of Kconfig for your xyz     3984    Add the new entry of Kconfig for your xyz driver::
3985                                                  3985 
3986      config SND_XYZ                              3986      config SND_XYZ
3987        tristate "Foobar XYZ"                     3987        tristate "Foobar XYZ"
3988        depends on SND                            3988        depends on SND
3989        select SND_PCM                            3989        select SND_PCM
3990        help                                      3990        help
3991          Say Y here to include support for Fo    3991          Say Y here to include support for Foobar XYZ soundcard.
3992          To compile this driver as a module,     3992          To compile this driver as a module, choose M here:
3993          the module will be called snd-xyz.      3993          the module will be called snd-xyz.
3994                                                  3994 
3995 The line ``select SND_PCM`` specifies that th    3995 The line ``select SND_PCM`` specifies that the driver xyz supports PCM.
3996 In addition to SND_PCM, the following compone    3996 In addition to SND_PCM, the following components are supported for
3997 select command: SND_RAWMIDI, SND_TIMER, SND_H    3997 select command: SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
3998 SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_A    3998 SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
3999 Add the select command for each supported com    3999 Add the select command for each supported component.
4000                                                  4000 
4001 Note that some selections imply the lowlevel     4001 Note that some selections imply the lowlevel selections. For example,
4002 PCM includes TIMER, MPU401_UART includes RAWM    4002 PCM includes TIMER, MPU401_UART includes RAWMIDI, AC97_CODEC
4003 includes PCM, and OPL3_LIB includes HWDEP. Yo    4003 includes PCM, and OPL3_LIB includes HWDEP. You don't need to give
4004 the lowlevel selections again.                   4004 the lowlevel selections again.
4005                                                  4005 
4006 For the details of Kconfig script, refer to t    4006 For the details of Kconfig script, refer to the kbuild documentation.
4007                                                  4007 
4008 Drivers with Several Source Files                4008 Drivers with Several Source Files
4009 ---------------------------------                4009 ---------------------------------
4010                                                  4010 
4011 Suppose that the driver snd-xyz have several     4011 Suppose that the driver snd-xyz have several source files. They are
4012 located in the new subdirectory, sound/pci/xy    4012 located in the new subdirectory, sound/pci/xyz.
4013                                                  4013 
4014 1. Add a new directory (``sound/pci/xyz``) in    4014 1. Add a new directory (``sound/pci/xyz``) in ``sound/pci/Makefile``
4015    as below::                                    4015    as below::
4016                                                  4016 
4017      obj-$(CONFIG_SND) += sound/pci/xyz/         4017      obj-$(CONFIG_SND) += sound/pci/xyz/
4018                                                  4018 
4019                                                  4019 
4020 2. Under the directory ``sound/pci/xyz``, cre    4020 2. Under the directory ``sound/pci/xyz``, create a Makefile::
4021                                                  4021 
4022          snd-xyz-y := xyz.o abc.o def.o          4022          snd-xyz-y := xyz.o abc.o def.o
4023          obj-$(CONFIG_SND_XYZ) += snd-xyz.o      4023          obj-$(CONFIG_SND_XYZ) += snd-xyz.o
4024                                                  4024 
4025 3. Create the Kconfig entry                      4025 3. Create the Kconfig entry
4026                                                  4026 
4027    This procedure is as same as in the last s    4027    This procedure is as same as in the last section.
4028                                                  4028 
4029                                                  4029 
4030 Useful Functions                                 4030 Useful Functions
4031 ================                                 4031 ================
4032                                                  4032 
4033 :c:func:`snd_BUG()`                              4033 :c:func:`snd_BUG()`
4034 -------------------                              4034 -------------------
4035                                                  4035 
4036 It shows the ``BUG?`` message and stack trace    4036 It shows the ``BUG?`` message and stack trace as well as
4037 :c:func:`snd_BUG_ON()` at the point. It's use    4037 :c:func:`snd_BUG_ON()` at the point. It's useful to show that a
4038 fatal error happens there.                       4038 fatal error happens there.
4039                                                  4039 
4040 When no debug flag is set, this macro is igno    4040 When no debug flag is set, this macro is ignored.
4041                                                  4041 
4042 :c:func:`snd_BUG_ON()`                           4042 :c:func:`snd_BUG_ON()`
4043 ----------------------                           4043 ----------------------
4044                                                  4044 
4045 :c:func:`snd_BUG_ON()` macro is similar with     4045 :c:func:`snd_BUG_ON()` macro is similar with
4046 :c:func:`WARN_ON()` macro. For example, snd_B    4046 :c:func:`WARN_ON()` macro. For example, snd_BUG_ON(!pointer); or
4047 it can be used as the condition, if (snd_BUG_    4047 it can be used as the condition, if (snd_BUG_ON(non_zero_is_bug))
4048 return -EINVAL;                                  4048 return -EINVAL;
4049                                                  4049 
4050 The macro takes an conditional expression to     4050 The macro takes an conditional expression to evaluate. When
4051 ``CONFIG_SND_DEBUG``, is set, if the expressi    4051 ``CONFIG_SND_DEBUG``, is set, if the expression is non-zero, it shows
4052 the warning message such as ``BUG? (xxx)`` no    4052 the warning message such as ``BUG? (xxx)`` normally followed by stack
4053 trace. In both cases it returns the evaluated    4053 trace. In both cases it returns the evaluated value.
4054                                                  4054 
4055 Acknowledgments                                  4055 Acknowledgments
4056 ===============                                  4056 ===============
4057                                                  4057 
4058 I would like to thank Phil Kerr for his help     4058 I would like to thank Phil Kerr for his help for improvement and
4059 corrections of this document.                    4059 corrections of this document.
4060                                                  4060 
4061 Kevin Conder reformatted the original plain-t    4061 Kevin Conder reformatted the original plain-text to the DocBook format.
4062                                                  4062 
4063 Giuliano Pochini corrected typos and contribu    4063 Giuliano Pochini corrected typos and contributed the example codes in
4064 the hardware constraints section.                4064 the hardware constraints section.
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php