1 ====================== 1 ====================== 2 Writing an ALSA Driver 2 Writing an ALSA Driver 3 ====================== 3 ====================== 4 4 5 :Author: Takashi Iwai <tiwai@suse.de> 5 :Author: Takashi Iwai <tiwai@suse.de> >> 6 :Date: Oct 15, 2007 >> 7 :Edition: 0.3.7 6 8 7 Preface 9 Preface 8 ======= 10 ======= 9 11 10 This document describes how to write an `ALSA 12 This document describes how to write an `ALSA (Advanced Linux Sound 11 Architecture) <http://www.alsa-project.org/>`_ 13 Architecture) <http://www.alsa-project.org/>`__ driver. The document 12 focuses mainly on PCI soundcards. In the case 14 focuses mainly on PCI soundcards. In the case of other device types, the 13 API might be different, too. However, at least 15 API might be different, too. However, at least the ALSA kernel API is 14 consistent, and therefore it would be still a 16 consistent, and therefore it would be still a bit help for writing them. 15 17 16 This document targets people who already have 18 This document targets people who already have enough C language skills 17 and have basic linux kernel programming knowle 19 and have basic linux kernel programming knowledge. This document doesn't 18 explain the general topic of linux kernel codi 20 explain the general topic of linux kernel coding and doesn't cover 19 low-level driver implementation details. It on 21 low-level driver implementation details. It only describes the standard 20 way to write a PCI sound driver on ALSA. 22 way to write a PCI sound driver on ALSA. 21 23 >> 24 If you are already familiar with the older ALSA ver.0.5.x API, you can >> 25 check the drivers such as ``sound/pci/es1938.c`` or >> 26 ``sound/pci/maestro3.c`` which have also almost the same code-base in >> 27 the ALSA 0.5.x tree, so you can compare the differences. >> 28 >> 29 This document is still a draft version. Any feedback and corrections, >> 30 please!! >> 31 22 File Tree Structure 32 File Tree Structure 23 =================== 33 =================== 24 34 25 General 35 General 26 ------- 36 ------- 27 37 28 The file tree structure of ALSA driver is depi !! 38 The ALSA drivers are provided in two ways. >> 39 >> 40 One is the trees provided as a tarball or via cvs from the ALSA's ftp >> 41 site, and another is the 2.6 (or later) Linux kernel tree. To >> 42 synchronize both, the ALSA driver tree is split into two different >> 43 trees: alsa-kernel and alsa-driver. The former contains purely the >> 44 source code for the Linux 2.6 (or later) tree. This tree is designed >> 45 only for compilation on 2.6 or later environment. The latter, >> 46 alsa-driver, contains many subtle files for compiling ALSA drivers >> 47 outside of the Linux kernel tree, wrapper functions for older 2.2 and >> 48 2.4 kernels, to adapt the latest kernel API, and additional drivers >> 49 which are still in development or in tests. The drivers in alsa-driver >> 50 tree will be moved to alsa-kernel (and eventually to the 2.6 kernel >> 51 tree) when they are finished and confirmed to work fine. >> 52 >> 53 The file tree structure of ALSA driver is depicted below. Both >> 54 alsa-kernel and alsa-driver have almost the same file structure, except >> 55 for “core” directory. It's named as “acore” in alsa-driver tree. >> 56 >> 57 :: 29 58 30 sound 59 sound 31 /core 60 /core 32 /oss 61 /oss 33 /seq 62 /seq 34 /oss 63 /oss >> 64 /instr >> 65 /ioctl32 35 /include 66 /include 36 /drivers 67 /drivers 37 /mpu401 68 /mpu401 38 /opl3 69 /opl3 39 /i2c 70 /i2c >> 71 /l3 40 /synth 72 /synth 41 /emux 73 /emux 42 /pci 74 /pci 43 /(cards) 75 /(cards) 44 /isa 76 /isa 45 /(cards) 77 /(cards) 46 /arm 78 /arm 47 /ppc 79 /ppc 48 /sparc 80 /sparc 49 /usb 81 /usb 50 /pcmcia /(cards) 82 /pcmcia /(cards) 51 /soc << 52 /oss 83 /oss 53 84 54 85 55 core directory 86 core directory 56 -------------- 87 -------------- 57 88 58 This directory contains the middle layer which 89 This directory contains the middle layer which is the heart of ALSA 59 drivers. In this directory, the native ALSA mo 90 drivers. In this directory, the native ALSA modules are stored. The 60 sub-directories contain different modules and 91 sub-directories contain different modules and are dependent upon the 61 kernel config. 92 kernel config. 62 93 63 core/oss 94 core/oss 64 ~~~~~~~~ 95 ~~~~~~~~ 65 96 66 The code for OSS PCM and mixer emulation modul !! 97 The codes for PCM and mixer OSS emulation modules are stored in this 67 directory. The OSS rawmidi emulation is includ !! 98 directory. The rawmidi OSS emulation is included in the ALSA rawmidi 68 code since it's quite small. The sequencer cod 99 code since it's quite small. The sequencer code is stored in 69 ``core/seq/oss`` directory (see `below <core/s !! 100 ``core/seq/oss`` directory (see `below <#core-seq-oss>`__). >> 101 >> 102 core/ioctl32 >> 103 ~~~~~~~~~~~~ >> 104 >> 105 This directory contains the 32bit-ioctl wrappers for 64bit architectures >> 106 such like x86-64, ppc64 and sparc64. For 32bit and alpha architectures, >> 107 these are not compiled. 70 108 71 core/seq 109 core/seq 72 ~~~~~~~~ 110 ~~~~~~~~ 73 111 74 This directory and its sub-directories are for 112 This directory and its sub-directories are for the ALSA sequencer. This 75 directory contains the sequencer core and prim 113 directory contains the sequencer core and primary sequencer modules such 76 as snd-seq-midi, snd-seq-virmidi, etc. They ar !! 114 like snd-seq-midi, snd-seq-virmidi, etc. They are compiled only when 77 ``CONFIG_SND_SEQUENCER`` is set in the kernel 115 ``CONFIG_SND_SEQUENCER`` is set in the kernel config. 78 116 79 core/seq/oss 117 core/seq/oss 80 ~~~~~~~~~~~~ 118 ~~~~~~~~~~~~ 81 119 82 This contains the OSS sequencer emulation code !! 120 This contains the OSS sequencer emulation codes. >> 121 >> 122 core/seq/instr >> 123 ~~~~~~~~~~~~~~ >> 124 >> 125 This directory contains the modules for the sequencer instrument layer. 83 126 84 include directory 127 include directory 85 ----------------- 128 ----------------- 86 129 87 This is the place for the public header files 130 This is the place for the public header files of ALSA drivers, which are 88 to be exported to user-space, or included by s !! 131 to be exported to user-space, or included by several files at different 89 directories. Basically, the private header fil 132 directories. Basically, the private header files should not be placed in 90 this directory, but you may still find files t 133 this directory, but you may still find files there, due to historical 91 reasons :) 134 reasons :) 92 135 93 drivers directory 136 drivers directory 94 ----------------- 137 ----------------- 95 138 96 This directory contains code shared among diff 139 This directory contains code shared among different drivers on different 97 architectures. They are hence supposed not to 140 architectures. They are hence supposed not to be architecture-specific. 98 For example, the dummy PCM driver and the seri !! 141 For example, the dummy pcm driver and the serial MIDI driver are found 99 in this directory. In the sub-directories, the 142 in this directory. In the sub-directories, there is code for components 100 which are independent from bus and cpu archite 143 which are independent from bus and cpu architectures. 101 144 102 drivers/mpu401 145 drivers/mpu401 103 ~~~~~~~~~~~~~~ 146 ~~~~~~~~~~~~~~ 104 147 105 The MPU401 and MPU401-UART modules are stored 148 The MPU401 and MPU401-UART modules are stored here. 106 149 107 drivers/opl3 and opl4 150 drivers/opl3 and opl4 108 ~~~~~~~~~~~~~~~~~~~~~ 151 ~~~~~~~~~~~~~~~~~~~~~ 109 152 110 The OPL3 and OPL4 FM-synth stuff is found here 153 The OPL3 and OPL4 FM-synth stuff is found here. 111 154 112 i2c directory 155 i2c directory 113 ------------- 156 ------------- 114 157 115 This contains the ALSA i2c components. 158 This contains the ALSA i2c components. 116 159 117 Although there is a standard i2c layer on Linu 160 Although there is a standard i2c layer on Linux, ALSA has its own i2c 118 code for some cards, because the soundcard nee 161 code for some cards, because the soundcard needs only a simple operation 119 and the standard i2c API is too complicated fo 162 and the standard i2c API is too complicated for such a purpose. 120 163 >> 164 i2c/l3 >> 165 ~~~~~~ >> 166 >> 167 This is a sub-directory for ARM L3 i2c. >> 168 121 synth directory 169 synth directory 122 --------------- 170 --------------- 123 171 124 This contains the synth middle-level modules. 172 This contains the synth middle-level modules. 125 173 126 So far, there is only Emu8000/Emu10k1 synth dr 174 So far, there is only Emu8000/Emu10k1 synth driver under the 127 ``synth/emux`` sub-directory. 175 ``synth/emux`` sub-directory. 128 176 129 pci directory 177 pci directory 130 ------------- 178 ------------- 131 179 132 This directory and its sub-directories hold th 180 This directory and its sub-directories hold the top-level card modules 133 for PCI soundcards and the code specific to th 181 for PCI soundcards and the code specific to the PCI BUS. 134 182 135 The drivers compiled from a single file are st 183 The drivers compiled from a single file are stored directly in the pci 136 directory, while the drivers with several sour 184 directory, while the drivers with several source files are stored on 137 their own sub-directory (e.g. emu10k1, ice1712 185 their own sub-directory (e.g. emu10k1, ice1712). 138 186 139 isa directory 187 isa directory 140 ------------- 188 ------------- 141 189 142 This directory and its sub-directories hold th 190 This directory and its sub-directories hold the top-level card modules 143 for ISA soundcards. 191 for ISA soundcards. 144 192 145 arm, ppc, and sparc directories 193 arm, ppc, and sparc directories 146 ------------------------------- 194 ------------------------------- 147 195 148 They are used for top-level card modules which 196 They are used for top-level card modules which are specific to one of 149 these architectures. 197 these architectures. 150 198 151 usb directory 199 usb directory 152 ------------- 200 ------------- 153 201 154 This directory contains the USB-audio driver. !! 202 This directory contains the USB-audio driver. In the latest version, the 155 The USB MIDI driver is integrated in the usb-a !! 203 USB MIDI driver is integrated in the usb-audio driver. 156 204 157 pcmcia directory 205 pcmcia directory 158 ---------------- 206 ---------------- 159 207 160 The PCMCIA, especially PCCard drivers will go 208 The PCMCIA, especially PCCard drivers will go here. CardBus drivers will 161 be in the pci directory, because their API is 209 be in the pci directory, because their API is identical to that of 162 standard PCI cards. 210 standard PCI cards. 163 211 164 soc directory << 165 ------------- << 166 << 167 This directory contains the codes for ASoC (AL << 168 layer including ASoC core, codec and machine d << 169 << 170 oss directory 212 oss directory 171 ------------- 213 ------------- 172 214 173 This contains OSS/Lite code. !! 215 The OSS/Lite source files are stored here in Linux 2.6 (or later) tree. 174 At the time of writing, all code has been remo !! 216 In the ALSA driver tarball, this directory is empty, of course :) 175 on m68k. << 176 << 177 217 178 Basic Flow for PCI Drivers 218 Basic Flow for PCI Drivers 179 ========================== 219 ========================== 180 220 181 Outline 221 Outline 182 ------- 222 ------- 183 223 184 The minimum flow for PCI soundcards is as foll 224 The minimum flow for PCI soundcards is as follows: 185 225 186 - define the PCI ID table (see the section `P 226 - define the PCI ID table (see the section `PCI Entries`_). 187 227 188 - create ``probe`` callback. 228 - create ``probe`` callback. 189 229 190 - create ``remove`` callback. 230 - create ``remove`` callback. 191 231 192 - create a struct pci_driver structure !! 232 - create a :c:type:`struct pci_driver <pci_driver>` structure 193 containing the three pointers above. 233 containing the three pointers above. 194 234 195 - create an ``init`` function just calling th 235 - create an ``init`` function just calling the 196 :c:func:`pci_register_driver()` to register 236 :c:func:`pci_register_driver()` to register the pci_driver 197 table defined above. 237 table defined above. 198 238 199 - create an ``exit`` function to call the 239 - create an ``exit`` function to call the 200 :c:func:`pci_unregister_driver()` function. 240 :c:func:`pci_unregister_driver()` function. 201 241 202 Full Code Example 242 Full Code Example 203 ----------------- 243 ----------------- 204 244 205 The code example is shown below. Some parts ar 245 The code example is shown below. Some parts are kept unimplemented at 206 this moment but will be filled in the next sec 246 this moment but will be filled in the next sections. The numbers in the 207 comment lines of the :c:func:`snd_mychip_probe 247 comment lines of the :c:func:`snd_mychip_probe()` function refer 208 to details explained in the following section. 248 to details explained in the following section. 209 249 210 :: 250 :: 211 251 212 #include <linux/init.h> 252 #include <linux/init.h> 213 #include <linux/pci.h> 253 #include <linux/pci.h> 214 #include <linux/slab.h> 254 #include <linux/slab.h> 215 #include <sound/core.h> 255 #include <sound/core.h> 216 #include <sound/initval.h> 256 #include <sound/initval.h> 217 257 218 /* module parameters (see "Module Parame 258 /* module parameters (see "Module Parameters") */ 219 /* SNDRV_CARDS: maximum number of cards 259 /* SNDRV_CARDS: maximum number of cards supported by this module */ 220 static int index[SNDRV_CARDS] = SNDRV_DE 260 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; 221 static char *id[SNDRV_CARDS] = SNDRV_DEF 261 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; 222 static bool enable[SNDRV_CARDS] = SNDRV_ 262 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; 223 263 224 /* definition of the chip-specific recor 264 /* definition of the chip-specific record */ 225 struct mychip { 265 struct mychip { 226 struct snd_card *card; 266 struct snd_card *card; 227 /* the rest of the implementatio 267 /* the rest of the implementation will be in section 228 * "PCI Resource Management" 268 * "PCI Resource Management" 229 */ 269 */ 230 }; 270 }; 231 271 232 /* chip-specific destructor 272 /* chip-specific destructor 233 * (see "PCI Resource Management") 273 * (see "PCI Resource Management") 234 */ 274 */ 235 static int snd_mychip_free(struct mychip 275 static int snd_mychip_free(struct mychip *chip) 236 { 276 { 237 .... /* will be implemented late 277 .... /* will be implemented later... */ 238 } 278 } 239 279 240 /* component-destructor 280 /* component-destructor 241 * (see "Management of Cards and Compone 281 * (see "Management of Cards and Components") 242 */ 282 */ 243 static int snd_mychip_dev_free(struct sn 283 static int snd_mychip_dev_free(struct snd_device *device) 244 { 284 { 245 return snd_mychip_free(device->d 285 return snd_mychip_free(device->device_data); 246 } 286 } 247 287 248 /* chip-specific constructor 288 /* chip-specific constructor 249 * (see "Management of Cards and Compone 289 * (see "Management of Cards and Components") 250 */ 290 */ 251 static int snd_mychip_create(struct snd_ 291 static int snd_mychip_create(struct snd_card *card, 252 struct pci_ 292 struct pci_dev *pci, 253 struct mych 293 struct mychip **rchip) 254 { 294 { 255 struct mychip *chip; 295 struct mychip *chip; 256 int err; 296 int err; 257 static const struct snd_device_o !! 297 static struct snd_device_ops ops = { 258 .dev_free = snd_mychip_de 298 .dev_free = snd_mychip_dev_free, 259 }; 299 }; 260 300 261 *rchip = NULL; 301 *rchip = NULL; 262 302 263 /* check PCI availability here 303 /* check PCI availability here 264 * (see "PCI Resource Management 304 * (see "PCI Resource Management") 265 */ 305 */ 266 .... 306 .... 267 307 268 /* allocate a chip-specific data 308 /* allocate a chip-specific data with zero filled */ 269 chip = kzalloc(sizeof(*chip), GF 309 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 270 if (chip == NULL) 310 if (chip == NULL) 271 return -ENOMEM; 311 return -ENOMEM; 272 312 273 chip->card = card; 313 chip->card = card; 274 314 275 /* rest of initialization here; 315 /* rest of initialization here; will be implemented 276 * later, see "PCI Resource Mana 316 * later, see "PCI Resource Management" 277 */ 317 */ 278 .... 318 .... 279 319 280 err = snd_device_new(card, SNDRV 320 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); 281 if (err < 0) { 321 if (err < 0) { 282 snd_mychip_free(chip); 322 snd_mychip_free(chip); 283 return err; 323 return err; 284 } 324 } 285 325 286 *rchip = chip; 326 *rchip = chip; 287 return 0; 327 return 0; 288 } 328 } 289 329 290 /* constructor -- see "Driver Constructo 330 /* constructor -- see "Driver Constructor" sub-section */ 291 static int snd_mychip_probe(struct pci_d 331 static int snd_mychip_probe(struct pci_dev *pci, 292 const struct 332 const struct pci_device_id *pci_id) 293 { 333 { 294 static int dev; 334 static int dev; 295 struct snd_card *card; 335 struct snd_card *card; 296 struct mychip *chip; 336 struct mychip *chip; 297 int err; 337 int err; 298 338 299 /* (1) */ 339 /* (1) */ 300 if (dev >= SNDRV_CARDS) 340 if (dev >= SNDRV_CARDS) 301 return -ENODEV; 341 return -ENODEV; 302 if (!enable[dev]) { 342 if (!enable[dev]) { 303 dev++; 343 dev++; 304 return -ENOENT; 344 return -ENOENT; 305 } 345 } 306 346 307 /* (2) */ 347 /* (2) */ 308 err = snd_card_new(&pci->dev, in 348 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 309 0, &card); 349 0, &card); 310 if (err < 0) 350 if (err < 0) 311 return err; 351 return err; 312 352 313 /* (3) */ 353 /* (3) */ 314 err = snd_mychip_create(card, pc 354 err = snd_mychip_create(card, pci, &chip); 315 if (err < 0) !! 355 if (err < 0) { 316 goto error; !! 356 snd_card_free(card); >> 357 return err; >> 358 } 317 359 318 /* (4) */ 360 /* (4) */ 319 strcpy(card->driver, "My Chip"); 361 strcpy(card->driver, "My Chip"); 320 strcpy(card->shortname, "My Own 362 strcpy(card->shortname, "My Own Chip 123"); 321 sprintf(card->longname, "%s at 0 363 sprintf(card->longname, "%s at 0x%lx irq %i", 322 card->shortname, chip->p !! 364 card->shortname, chip->ioport, chip->irq); 323 365 324 /* (5) */ 366 /* (5) */ 325 .... /* implemented later */ 367 .... /* implemented later */ 326 368 327 /* (6) */ 369 /* (6) */ 328 err = snd_card_register(card); 370 err = snd_card_register(card); 329 if (err < 0) !! 371 if (err < 0) { 330 goto error; !! 372 snd_card_free(card); >> 373 return err; >> 374 } 331 375 332 /* (7) */ 376 /* (7) */ 333 pci_set_drvdata(pci, card); 377 pci_set_drvdata(pci, card); 334 dev++; 378 dev++; 335 return 0; 379 return 0; 336 << 337 error: << 338 snd_card_free(card); << 339 return err; << 340 } 380 } 341 381 342 /* destructor -- see the "Destructor" su 382 /* destructor -- see the "Destructor" sub-section */ 343 static void snd_mychip_remove(struct pci 383 static void snd_mychip_remove(struct pci_dev *pci) 344 { 384 { 345 snd_card_free(pci_get_drvdata(pc 385 snd_card_free(pci_get_drvdata(pci)); >> 386 pci_set_drvdata(pci, NULL); 346 } 387 } 347 388 348 389 349 390 350 Driver Constructor 391 Driver Constructor 351 ------------------ 392 ------------------ 352 393 353 The real constructor of PCI drivers is the ``p 394 The real constructor of PCI drivers is the ``probe`` callback. The 354 ``probe`` callback and other component-constru 395 ``probe`` callback and other component-constructors which are called 355 from the ``probe`` callback cannot be used wit 396 from the ``probe`` callback cannot be used with the ``__init`` prefix 356 because any PCI device could be a hotplug devi 397 because any PCI device could be a hotplug device. 357 398 358 In the ``probe`` callback, the following schem 399 In the ``probe`` callback, the following scheme is often used. 359 400 360 1) Check and increment the device index. 401 1) Check and increment the device index. 361 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 402 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 362 403 363 :: 404 :: 364 405 365 static int dev; 406 static int dev; 366 .... 407 .... 367 if (dev >= SNDRV_CARDS) 408 if (dev >= SNDRV_CARDS) 368 return -ENODEV; 409 return -ENODEV; 369 if (!enable[dev]) { 410 if (!enable[dev]) { 370 dev++; 411 dev++; 371 return -ENOENT; 412 return -ENOENT; 372 } 413 } 373 414 374 415 375 where ``enable[dev]`` is the module option. 416 where ``enable[dev]`` is the module option. 376 417 377 Each time the ``probe`` callback is called, ch 418 Each time the ``probe`` callback is called, check the availability of 378 the device. If not available, simply increment 419 the device. If not available, simply increment the device index and 379 return. dev will be incremented also later (`s !! 420 returns. dev will be incremented also later (`step 7 380 <7) Set the PCI driver data and return zero._> !! 421 <#set-the-pci-driver-data-and-return-zero>`__). 381 422 382 2) Create a card instance 423 2) Create a card instance 383 ~~~~~~~~~~~~~~~~~~~~~~~~~ 424 ~~~~~~~~~~~~~~~~~~~~~~~~~ 384 425 385 :: 426 :: 386 427 387 struct snd_card *card; 428 struct snd_card *card; 388 int err; 429 int err; 389 .... 430 .... 390 err = snd_card_new(&pci->dev, index[dev], id 431 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 391 0, &card); 432 0, &card); 392 433 393 434 394 The details will be explained in the section ` 435 The details will be explained in the section `Management of Cards and 395 Components`_. 436 Components`_. 396 437 397 3) Create a main component 438 3) Create a main component 398 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 439 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 399 440 400 In this part, the PCI resources are allocated: !! 441 In this part, the PCI resources are allocated. >> 442 >> 443 :: 401 444 402 struct mychip *chip; 445 struct mychip *chip; 403 .... 446 .... 404 err = snd_mychip_create(card, pci, &chip); 447 err = snd_mychip_create(card, pci, &chip); 405 if (err < 0) !! 448 if (err < 0) { 406 goto error; << 407 << 408 The details will be explained in the section ` << 409 Management`_. << 410 << 411 When something goes wrong, the probe function << 412 error. In this example, we have a single erro << 413 at the end of the function:: << 414 << 415 error: << 416 snd_card_free(card); 449 snd_card_free(card); 417 return err; 450 return err; >> 451 } 418 452 419 Since each component can be properly freed, th !! 453 The details will be explained in the section `PCI Resource 420 :c:func:`snd_card_free()` call should suffice !! 454 Management`_. 421 << 422 455 423 4) Set the driver ID and name strings. 456 4) Set the driver ID and name strings. 424 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 457 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 425 458 426 :: 459 :: 427 460 428 strcpy(card->driver, "My Chip"); 461 strcpy(card->driver, "My Chip"); 429 strcpy(card->shortname, "My Own Chip 123"); 462 strcpy(card->shortname, "My Own Chip 123"); 430 sprintf(card->longname, "%s at 0x%lx irq %i" 463 sprintf(card->longname, "%s at 0x%lx irq %i", 431 card->shortname, chip->port, chip->i !! 464 card->shortname, chip->ioport, chip->irq); 432 465 433 The driver field holds the minimal ID string o 466 The driver field holds the minimal ID string of the chip. This is used 434 by alsa-lib's configurator, so keep it simple 467 by alsa-lib's configurator, so keep it simple but unique. Even the 435 same driver can have different driver IDs to d 468 same driver can have different driver IDs to distinguish the 436 functionality of each chip type. 469 functionality of each chip type. 437 470 438 The shortname field is a string shown as more 471 The shortname field is a string shown as more verbose name. The longname 439 field contains the information shown in ``/pro 472 field contains the information shown in ``/proc/asound/cards``. 440 473 441 5) Create other components, such as mixer, MID 474 5) Create other components, such as mixer, MIDI, etc. 442 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 475 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 443 476 444 Here you define the basic components such as ` !! 477 Here you define the basic components such as `PCM <#PCM-Interface>`__, 445 mixer (e.g. `AC97 <API for AC97 Codec_>`__), M !! 478 mixer (e.g. `AC97 <#API-for-AC97-Codec>`__), MIDI (e.g. 446 `MPU-401 <MIDI (MPU401-UART) Interface_>`__), !! 479 `MPU-401 <#MIDI-MPU401-UART-Interface>`__), and other interfaces. 447 Also, if you want a `proc file <Proc Interface !! 480 Also, if you want a `proc file <#Proc-Interface>`__, define it here, 448 too. 481 too. 449 482 450 6) Register the card instance. 483 6) Register the card instance. 451 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 484 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 452 485 453 :: 486 :: 454 487 455 err = snd_card_register(card); 488 err = snd_card_register(card); 456 if (err < 0) !! 489 if (err < 0) { 457 goto error; !! 490 snd_card_free(card); >> 491 return err; >> 492 } 458 493 459 Will be explained in the section `Management o 494 Will be explained in the section `Management of Cards and 460 Components`_, too. 495 Components`_, too. 461 496 462 7) Set the PCI driver data and return zero. 497 7) Set the PCI driver data and return zero. 463 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 498 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 464 499 465 :: 500 :: 466 501 467 pci_set_drvdata(pci, card); 502 pci_set_drvdata(pci, card); 468 dev++; 503 dev++; 469 return 0; 504 return 0; 470 505 471 In the above, the card record is stored. This 506 In the above, the card record is stored. This pointer is used in the 472 remove callback and power-management callbacks 507 remove callback and power-management callbacks, too. 473 508 474 Destructor 509 Destructor 475 ---------- 510 ---------- 476 511 477 The destructor, the remove callback, simply re !! 512 The destructor, remove callback, simply releases the card instance. Then 478 Then the ALSA middle layer will release all th !! 513 the ALSA middle layer will release all the attached components 479 automatically. 514 automatically. 480 515 481 It would be typically just calling :c:func:`sn !! 516 It would be typically like the following: >> 517 >> 518 :: 482 519 483 static void snd_mychip_remove(struct pci_dev 520 static void snd_mychip_remove(struct pci_dev *pci) 484 { 521 { 485 snd_card_free(pci_get_drvdata(pci)); 522 snd_card_free(pci_get_drvdata(pci)); >> 523 pci_set_drvdata(pci, NULL); 486 } 524 } 487 525 488 526 489 The above code assumes that the card pointer i 527 The above code assumes that the card pointer is set to the PCI driver 490 data. 528 data. 491 529 492 Header Files 530 Header Files 493 ------------ 531 ------------ 494 532 495 For the above example, at least the following 533 For the above example, at least the following include files are 496 necessary:: !! 534 necessary. >> 535 >> 536 :: 497 537 498 #include <linux/init.h> 538 #include <linux/init.h> 499 #include <linux/pci.h> 539 #include <linux/pci.h> 500 #include <linux/slab.h> 540 #include <linux/slab.h> 501 #include <sound/core.h> 541 #include <sound/core.h> 502 #include <sound/initval.h> 542 #include <sound/initval.h> 503 543 504 where the last one is necessary only when modu 544 where the last one is necessary only when module options are defined 505 in the source file. If the code is split into 545 in the source file. If the code is split into several files, the files 506 without module options don't need them. 546 without module options don't need them. 507 547 508 In addition to these headers, you'll need ``<l 548 In addition to these headers, you'll need ``<linux/interrupt.h>`` for 509 interrupt handling, and ``<linux/io.h>`` for I !! 549 interrupt handling, and ``<asm/io.h>`` for I/O access. If you use the 510 :c:func:`mdelay()` or :c:func:`udelay()` funct 550 :c:func:`mdelay()` or :c:func:`udelay()` functions, you'll need 511 to include ``<linux/delay.h>`` too. 551 to include ``<linux/delay.h>`` too. 512 552 513 The ALSA interfaces like the PCM and control A 553 The ALSA interfaces like the PCM and control APIs are defined in other 514 ``<sound/xxx.h>`` header files. They have to b 554 ``<sound/xxx.h>`` header files. They have to be included after 515 ``<sound/core.h>``. 555 ``<sound/core.h>``. 516 556 517 Management of Cards and Components 557 Management of Cards and Components 518 ================================== 558 ================================== 519 559 520 Card Instance 560 Card Instance 521 ------------- 561 ------------- 522 562 523 For each soundcard, a “card” record must b 563 For each soundcard, a “card” record must be allocated. 524 564 525 A card record is the headquarters of the sound 565 A card record is the headquarters of the soundcard. It manages the whole 526 list of devices (components) on the soundcard, 566 list of devices (components) on the soundcard, such as PCM, mixers, 527 MIDI, synthesizer, and so on. Also, the card r 567 MIDI, synthesizer, and so on. Also, the card record holds the ID and the 528 name strings of the card, manages the root of 568 name strings of the card, manages the root of proc files, and controls 529 the power-management states and hotplug discon 569 the power-management states and hotplug disconnections. The component 530 list on the card record is used to manage the 570 list on the card record is used to manage the correct release of 531 resources at destruction. 571 resources at destruction. 532 572 533 As mentioned above, to create a card instance, 573 As mentioned above, to create a card instance, call 534 :c:func:`snd_card_new()`:: !! 574 :c:func:`snd_card_new()`. >> 575 >> 576 :: 535 577 536 struct snd_card *card; 578 struct snd_card *card; 537 int err; 579 int err; 538 err = snd_card_new(&pci->dev, index, id, mod 580 err = snd_card_new(&pci->dev, index, id, module, extra_size, &card); 539 581 540 582 541 The function takes six arguments: the parent d 583 The function takes six arguments: the parent device pointer, the 542 card-index number, the id string, the module p 584 card-index number, the id string, the module pointer (usually 543 ``THIS_MODULE``), the size of extra-data space 585 ``THIS_MODULE``), the size of extra-data space, and the pointer to 544 return the card instance. The extra_size argum 586 return the card instance. The extra_size argument is used to allocate 545 card->private_data for the chip-specific data. 587 card->private_data for the chip-specific data. Note that these data are 546 allocated by :c:func:`snd_card_new()`. 588 allocated by :c:func:`snd_card_new()`. 547 589 548 The first argument, the pointer of struct devi !! 590 The first argument, the pointer of struct :c:type:`struct device 549 device. For PCI devices, typically ``&pci->`` !! 591 <device>`, specifies the parent device. For PCI devices, typically >> 592 ``&pci->`` is passed there. 550 593 551 Components 594 Components 552 ---------- 595 ---------- 553 596 554 After the card is created, you can attach the 597 After the card is created, you can attach the components (devices) to 555 the card instance. In an ALSA driver, a compon 598 the card instance. In an ALSA driver, a component is represented as a 556 struct snd_device object. A component !! 599 :c:type:`struct snd_device <snd_device>` object. A component 557 can be a PCM instance, a control interface, a 600 can be a PCM instance, a control interface, a raw MIDI interface, etc. 558 Each such instance has one component entry. 601 Each such instance has one component entry. 559 602 560 A component can be created via the :c:func:`sn !! 603 A component can be created via :c:func:`snd_device_new()` 561 function:: !! 604 function. >> 605 >> 606 :: 562 607 563 snd_device_new(card, SNDRV_DEV_XXX, chip, &o 608 snd_device_new(card, SNDRV_DEV_XXX, chip, &ops); 564 609 565 This takes the card pointer, the device-level 610 This takes the card pointer, the device-level (``SNDRV_DEV_XXX``), the 566 data pointer, and the callback pointers (``&op 611 data pointer, and the callback pointers (``&ops``). The device-level 567 defines the type of components and the order o 612 defines the type of components and the order of registration and 568 de-registration. For most components, the devi 613 de-registration. For most components, the device-level is already 569 defined. For a user-defined component, you can 614 defined. For a user-defined component, you can use 570 ``SNDRV_DEV_LOWLEVEL``. 615 ``SNDRV_DEV_LOWLEVEL``. 571 616 572 This function itself doesn't allocate the data 617 This function itself doesn't allocate the data space. The data must be 573 allocated manually beforehand, and its pointer 618 allocated manually beforehand, and its pointer is passed as the 574 argument. This pointer (``chip`` in the above 619 argument. This pointer (``chip`` in the above example) is used as the 575 identifier for the instance. 620 identifier for the instance. 576 621 577 Each pre-defined ALSA component such as AC97 a !! 622 Each pre-defined ALSA component such as ac97 and pcm calls 578 :c:func:`snd_device_new()` inside its construc 623 :c:func:`snd_device_new()` inside its constructor. The destructor 579 for each component is defined in the callback 624 for each component is defined in the callback pointers. Hence, you don't 580 need to take care of calling a destructor for 625 need to take care of calling a destructor for such a component. 581 626 582 If you wish to create your own component, you 627 If you wish to create your own component, you need to set the destructor 583 function to the dev_free callback in the ``ops 628 function to the dev_free callback in the ``ops``, so that it can be 584 released automatically via :c:func:`snd_card_f 629 released automatically via :c:func:`snd_card_free()`. The next 585 example will show an implementation of chip-sp 630 example will show an implementation of chip-specific data. 586 631 587 Chip-Specific Data 632 Chip-Specific Data 588 ------------------ 633 ------------------ 589 634 590 Chip-specific information, e.g. the I/O port a 635 Chip-specific information, e.g. the I/O port address, its resource 591 pointer, or the irq number, is stored in the c !! 636 pointer, or the irq number, is stored in the chip-specific record. >> 637 >> 638 :: 592 639 593 struct mychip { 640 struct mychip { 594 .... 641 .... 595 }; 642 }; 596 643 597 644 598 In general, there are two ways of allocating t 645 In general, there are two ways of allocating the chip record. 599 646 600 1. Allocating via :c:func:`snd_card_new()`. 647 1. Allocating via :c:func:`snd_card_new()`. 601 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 648 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 602 649 603 As mentioned above, you can pass the extra-dat 650 As mentioned above, you can pass the extra-data-length to the 5th 604 argument of :c:func:`snd_card_new()`, e.g.:: !! 651 argument of :c:func:`snd_card_new()`, i.e. >> 652 >> 653 :: 605 654 606 err = snd_card_new(&pci->dev, index[dev], id 655 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 607 sizeof(struct mychip), &c 656 sizeof(struct mychip), &card); 608 657 609 struct mychip is the type of the chip record. !! 658 :c:type:`struct mychip <mychip>` is the type of the chip record. 610 659 611 In return, the allocated record can be accesse 660 In return, the allocated record can be accessed as 612 661 613 :: 662 :: 614 663 615 struct mychip *chip = card->private_data; 664 struct mychip *chip = card->private_data; 616 665 617 With this method, you don't have to allocate t 666 With this method, you don't have to allocate twice. The record is 618 released together with the card instance. 667 released together with the card instance. 619 668 620 2. Allocating an extra device. 669 2. Allocating an extra device. 621 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 670 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 622 671 623 After allocating a card instance via :c:func:` 672 After allocating a card instance via :c:func:`snd_card_new()` 624 (with ``0`` on the 4th arg), call :c:func:`kza !! 673 (with ``0`` on the 4th arg), call :c:func:`kzalloc()`. >> 674 >> 675 :: 625 676 626 struct snd_card *card; 677 struct snd_card *card; 627 struct mychip *chip; 678 struct mychip *chip; 628 err = snd_card_new(&pci->dev, index[dev], id 679 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 629 0, &card); 680 0, &card); 630 ..... 681 ..... 631 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 682 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 632 683 633 The chip record should have the field to hold 684 The chip record should have the field to hold the card pointer at least, 634 685 635 :: 686 :: 636 687 637 struct mychip { 688 struct mychip { 638 struct snd_card *card; 689 struct snd_card *card; 639 .... 690 .... 640 }; 691 }; 641 692 642 693 643 Then, set the card pointer in the returned chi !! 694 Then, set the card pointer in the returned chip instance. >> 695 >> 696 :: 644 697 645 chip->card = card; 698 chip->card = card; 646 699 647 Next, initialize the fields, and register this 700 Next, initialize the fields, and register this chip record as a 648 low-level device with a specified ``ops``:: !! 701 low-level device with a specified ``ops``, >> 702 >> 703 :: 649 704 650 static const struct snd_device_ops ops = { !! 705 static struct snd_device_ops ops = { 651 .dev_free = snd_mychip_dev_fr 706 .dev_free = snd_mychip_dev_free, 652 }; 707 }; 653 .... 708 .... 654 snd_device_new(card, SNDRV_DEV_LOWLEVEL, chi 709 snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); 655 710 656 :c:func:`snd_mychip_dev_free()` is the device- 711 :c:func:`snd_mychip_dev_free()` is the device-destructor 657 function, which will call the real destructor: !! 712 function, which will call the real destructor. >> 713 >> 714 :: 658 715 659 static int snd_mychip_dev_free(struct snd_de 716 static int snd_mychip_dev_free(struct snd_device *device) 660 { 717 { 661 return snd_mychip_free(device->devic 718 return snd_mychip_free(device->device_data); 662 } 719 } 663 720 664 where :c:func:`snd_mychip_free()` is the real 721 where :c:func:`snd_mychip_free()` is the real destructor. 665 722 666 The demerit of this method is the obviously la << 667 The merit is, however, that you can trigger yo << 668 registering and disconnecting the card via a s << 669 About registering and disconnecting the card, << 670 below. << 671 << 672 << 673 Registration and Release 723 Registration and Release 674 ------------------------ 724 ------------------------ 675 725 676 After all components are assigned, register th 726 After all components are assigned, register the card instance by calling 677 :c:func:`snd_card_register()`. Access to the d 727 :c:func:`snd_card_register()`. Access to the device files is 678 enabled at this point. That is, before 728 enabled at this point. That is, before 679 :c:func:`snd_card_register()` is called, the c 729 :c:func:`snd_card_register()` is called, the components are safely 680 inaccessible from external side. If this call 730 inaccessible from external side. If this call fails, exit the probe 681 function after releasing the card via :c:func: 731 function after releasing the card via :c:func:`snd_card_free()`. 682 732 683 For releasing the card instance, you can call 733 For releasing the card instance, you can call simply 684 :c:func:`snd_card_free()`. As mentioned earlie 734 :c:func:`snd_card_free()`. As mentioned earlier, all components 685 are released automatically by this call. 735 are released automatically by this call. 686 736 687 For a device which allows hotplugging, you can 737 For a device which allows hotplugging, you can use 688 :c:func:`snd_card_free_when_closed()`. This on 738 :c:func:`snd_card_free_when_closed()`. This one will postpone 689 the destruction until all devices are closed. 739 the destruction until all devices are closed. 690 740 691 PCI Resource Management 741 PCI Resource Management 692 ======================= 742 ======================= 693 743 694 Full Code Example 744 Full Code Example 695 ----------------- 745 ----------------- 696 746 697 In this section, we'll complete the chip-speci 747 In this section, we'll complete the chip-specific constructor, 698 destructor and PCI entries. Example code is sh !! 748 destructor and PCI entries. Example code is shown first, below. >> 749 >> 750 :: 699 751 700 struct mychip { 752 struct mychip { 701 struct snd_card *card; 753 struct snd_card *card; 702 struct pci_dev *pci; 754 struct pci_dev *pci; 703 755 704 unsigned long port; 756 unsigned long port; 705 int irq; 757 int irq; 706 }; 758 }; 707 759 708 static int snd_mychip_free(struct mychip 760 static int snd_mychip_free(struct mychip *chip) 709 { 761 { 710 /* disable hardware here if any 762 /* disable hardware here if any */ 711 .... /* (not implemented in this 763 .... /* (not implemented in this document) */ 712 764 713 /* release the irq */ 765 /* release the irq */ 714 if (chip->irq >= 0) 766 if (chip->irq >= 0) 715 free_irq(chip->irq, chip 767 free_irq(chip->irq, chip); 716 /* release the I/O ports & memor 768 /* release the I/O ports & memory */ 717 pci_release_regions(chip->pci); 769 pci_release_regions(chip->pci); 718 /* disable the PCI entry */ 770 /* disable the PCI entry */ 719 pci_disable_device(chip->pci); 771 pci_disable_device(chip->pci); 720 /* release the data */ 772 /* release the data */ 721 kfree(chip); 773 kfree(chip); 722 return 0; 774 return 0; 723 } 775 } 724 776 725 /* chip-specific constructor */ 777 /* chip-specific constructor */ 726 static int snd_mychip_create(struct snd_ 778 static int snd_mychip_create(struct snd_card *card, 727 struct pci_ 779 struct pci_dev *pci, 728 struct mych 780 struct mychip **rchip) 729 { 781 { 730 struct mychip *chip; 782 struct mychip *chip; 731 int err; 783 int err; 732 static const struct snd_device_o !! 784 static struct snd_device_ops ops = { 733 .dev_free = snd_mychip_de 785 .dev_free = snd_mychip_dev_free, 734 }; 786 }; 735 787 736 *rchip = NULL; 788 *rchip = NULL; 737 789 738 /* initialize the PCI entry */ 790 /* initialize the PCI entry */ 739 err = pci_enable_device(pci); 791 err = pci_enable_device(pci); 740 if (err < 0) 792 if (err < 0) 741 return err; 793 return err; 742 /* check PCI availability (28bit 794 /* check PCI availability (28bit DMA) */ 743 if (pci_set_dma_mask(pci, DMA_BI 795 if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 || 744 pci_set_consistent_dma_mask( 796 pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) { 745 printk(KERN_ERR "error t 797 printk(KERN_ERR "error to set 28bit mask DMA\n"); 746 pci_disable_device(pci); 798 pci_disable_device(pci); 747 return -ENXIO; 799 return -ENXIO; 748 } 800 } 749 801 750 chip = kzalloc(sizeof(*chip), GF 802 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 751 if (chip == NULL) { 803 if (chip == NULL) { 752 pci_disable_device(pci); 804 pci_disable_device(pci); 753 return -ENOMEM; 805 return -ENOMEM; 754 } 806 } 755 807 756 /* initialize the stuff */ 808 /* initialize the stuff */ 757 chip->card = card; 809 chip->card = card; 758 chip->pci = pci; 810 chip->pci = pci; 759 chip->irq = -1; 811 chip->irq = -1; 760 812 761 /* (1) PCI resource allocation * 813 /* (1) PCI resource allocation */ 762 err = pci_request_regions(pci, " 814 err = pci_request_regions(pci, "My Chip"); 763 if (err < 0) { 815 if (err < 0) { 764 kfree(chip); 816 kfree(chip); 765 pci_disable_device(pci); 817 pci_disable_device(pci); 766 return err; 818 return err; 767 } 819 } 768 chip->port = pci_resource_start( 820 chip->port = pci_resource_start(pci, 0); 769 if (request_irq(pci->irq, snd_my 821 if (request_irq(pci->irq, snd_mychip_interrupt, 770 IRQF_SHARED, KBU 822 IRQF_SHARED, KBUILD_MODNAME, chip)) { 771 printk(KERN_ERR "cannot 823 printk(KERN_ERR "cannot grab irq %d\n", pci->irq); 772 snd_mychip_free(chip); 824 snd_mychip_free(chip); 773 return -EBUSY; 825 return -EBUSY; 774 } 826 } 775 chip->irq = pci->irq; 827 chip->irq = pci->irq; 776 card->sync_irq = chip->irq; << 777 828 778 /* (2) initialization of the chi 829 /* (2) initialization of the chip hardware */ 779 .... /* (not implemented in th 830 .... /* (not implemented in this document) */ 780 831 781 err = snd_device_new(card, SNDRV 832 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); 782 if (err < 0) { 833 if (err < 0) { 783 snd_mychip_free(chip); 834 snd_mychip_free(chip); 784 return err; 835 return err; 785 } 836 } 786 837 787 *rchip = chip; 838 *rchip = chip; 788 return 0; 839 return 0; 789 } 840 } 790 841 791 /* PCI IDs */ 842 /* PCI IDs */ 792 static struct pci_device_id snd_mychip_i 843 static struct pci_device_id snd_mychip_ids[] = { 793 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ 844 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR, 794 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 845 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, 795 .... 846 .... 796 { 0, } 847 { 0, } 797 }; 848 }; 798 MODULE_DEVICE_TABLE(pci, snd_mychip_ids) 849 MODULE_DEVICE_TABLE(pci, snd_mychip_ids); 799 850 800 /* pci_driver definition */ 851 /* pci_driver definition */ 801 static struct pci_driver driver = { 852 static struct pci_driver driver = { 802 .name = KBUILD_MODNAME, 853 .name = KBUILD_MODNAME, 803 .id_table = snd_mychip_ids, 854 .id_table = snd_mychip_ids, 804 .probe = snd_mychip_probe, 855 .probe = snd_mychip_probe, 805 .remove = snd_mychip_remove, 856 .remove = snd_mychip_remove, 806 }; 857 }; 807 858 808 /* module initialization */ 859 /* module initialization */ 809 static int __init alsa_card_mychip_init( 860 static int __init alsa_card_mychip_init(void) 810 { 861 { 811 return pci_register_driver(&driv 862 return pci_register_driver(&driver); 812 } 863 } 813 864 814 /* module clean up */ 865 /* module clean up */ 815 static void __exit alsa_card_mychip_exit 866 static void __exit alsa_card_mychip_exit(void) 816 { 867 { 817 pci_unregister_driver(&driver); 868 pci_unregister_driver(&driver); 818 } 869 } 819 870 820 module_init(alsa_card_mychip_init) 871 module_init(alsa_card_mychip_init) 821 module_exit(alsa_card_mychip_exit) 872 module_exit(alsa_card_mychip_exit) 822 873 823 EXPORT_NO_SYMBOLS; /* for old kernels on 874 EXPORT_NO_SYMBOLS; /* for old kernels only */ 824 875 825 Some Hafta's 876 Some Hafta's 826 ------------ 877 ------------ 827 878 828 The allocation of PCI resources is done in the 879 The allocation of PCI resources is done in the ``probe`` function, and 829 usually an extra :c:func:`xxx_create()` functi 880 usually an extra :c:func:`xxx_create()` function is written for this 830 purpose. 881 purpose. 831 882 832 In the case of PCI devices, you first have to 883 In the case of PCI devices, you first have to call the 833 :c:func:`pci_enable_device()` function before 884 :c:func:`pci_enable_device()` function before allocating 834 resources. Also, you need to set the proper PC 885 resources. Also, you need to set the proper PCI DMA mask to limit the 835 accessed I/O range. In some cases, you might n 886 accessed I/O range. In some cases, you might need to call 836 :c:func:`pci_set_master()` function, too. 887 :c:func:`pci_set_master()` function, too. 837 888 838 Suppose a 28bit mask, the code to be added wou !! 889 Suppose the 28bit mask, and the code to be added would be like: >> 890 >> 891 :: 839 892 840 err = pci_enable_device(pci); 893 err = pci_enable_device(pci); 841 if (err < 0) 894 if (err < 0) 842 return err; 895 return err; 843 if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) 896 if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 || 844 pci_set_consistent_dma_mask(pci, DMA_BIT 897 pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) { 845 printk(KERN_ERR "error to set 28bit 898 printk(KERN_ERR "error to set 28bit mask DMA\n"); 846 pci_disable_device(pci); 899 pci_disable_device(pci); 847 return -ENXIO; 900 return -ENXIO; 848 } 901 } 849 902 850 903 851 Resource Allocation 904 Resource Allocation 852 ------------------- 905 ------------------- 853 906 854 The allocation of I/O ports and irqs is done v 907 The allocation of I/O ports and irqs is done via standard kernel 855 functions. These resources must be released i !! 908 functions. Unlike ALSA ver.0.5.x., there are no helpers for that. And 856 function (see below). !! 909 these resources must be released in the destructor function (see below). >> 910 Also, on ALSA 0.9.x, you don't need to allocate (pseudo-)DMA for PCI >> 911 like in ALSA 0.5.x. 857 912 858 Now assume that the PCI device has an I/O port 913 Now assume that the PCI device has an I/O port with 8 bytes and an 859 interrupt. Then struct mychip will have the !! 914 interrupt. Then :c:type:`struct mychip <mychip>` will have the 860 following fields:: !! 915 following fields: >> 916 >> 917 :: 861 918 862 struct mychip { 919 struct mychip { 863 struct snd_card *card; 920 struct snd_card *card; 864 921 865 unsigned long port; 922 unsigned long port; 866 int irq; 923 int irq; 867 }; 924 }; 868 925 869 926 870 For an I/O port (and also a memory region), yo 927 For an I/O port (and also a memory region), you need to have the 871 resource pointer for the standard resource man 928 resource pointer for the standard resource management. For an irq, you 872 have to keep only the irq number (integer). Bu 929 have to keep only the irq number (integer). But you need to initialize 873 this number to -1 before actual allocation, si !! 930 this number as -1 before actual allocation, since irq 0 is valid. The 874 port address and its resource pointer can be i 931 port address and its resource pointer can be initialized as null by 875 :c:func:`kzalloc()` automatically, so you don' 932 :c:func:`kzalloc()` automatically, so you don't have to take care of 876 resetting them. 933 resetting them. 877 934 878 The allocation of an I/O port is done like thi !! 935 The allocation of an I/O port is done like this: >> 936 >> 937 :: 879 938 880 err = pci_request_regions(pci, "My Chip"); 939 err = pci_request_regions(pci, "My Chip"); 881 if (err < 0) { 940 if (err < 0) { 882 kfree(chip); 941 kfree(chip); 883 pci_disable_device(pci); 942 pci_disable_device(pci); 884 return err; 943 return err; 885 } 944 } 886 chip->port = pci_resource_start(pci, 0); 945 chip->port = pci_resource_start(pci, 0); 887 946 888 It will reserve the I/O port region of 8 bytes 947 It will reserve the I/O port region of 8 bytes of the given PCI device. 889 The returned value, ``chip->res_port``, is all 948 The returned value, ``chip->res_port``, is allocated via 890 :c:func:`kmalloc()` by :c:func:`request_region 949 :c:func:`kmalloc()` by :c:func:`request_region()`. The pointer 891 must be released via :c:func:`kfree()`, but th 950 must be released via :c:func:`kfree()`, but there is a problem with 892 this. This issue will be explained later. 951 this. This issue will be explained later. 893 952 894 The allocation of an interrupt source is done !! 953 The allocation of an interrupt source is done like this: >> 954 >> 955 :: 895 956 896 if (request_irq(pci->irq, snd_mychip_interru 957 if (request_irq(pci->irq, snd_mychip_interrupt, 897 IRQF_SHARED, KBUILD_MODNAME, 958 IRQF_SHARED, KBUILD_MODNAME, chip)) { 898 printk(KERN_ERR "cannot grab irq %d\ 959 printk(KERN_ERR "cannot grab irq %d\n", pci->irq); 899 snd_mychip_free(chip); 960 snd_mychip_free(chip); 900 return -EBUSY; 961 return -EBUSY; 901 } 962 } 902 chip->irq = pci->irq; 963 chip->irq = pci->irq; 903 964 904 where :c:func:`snd_mychip_interrupt()` is the 965 where :c:func:`snd_mychip_interrupt()` is the interrupt handler 905 defined `later <PCM Interrupt Handler_>`__. No !! 966 defined `later <#pcm-interface-interrupt-handler>`__. Note that 906 ``chip->irq`` should be defined only when :c:f 967 ``chip->irq`` should be defined only when :c:func:`request_irq()` 907 succeeded. 968 succeeded. 908 969 909 On the PCI bus, interrupts can be shared. Thus 970 On the PCI bus, interrupts can be shared. Thus, ``IRQF_SHARED`` is used 910 as the interrupt flag of :c:func:`request_irq( 971 as the interrupt flag of :c:func:`request_irq()`. 911 972 912 The last argument of :c:func:`request_irq()` i 973 The last argument of :c:func:`request_irq()` is the data pointer 913 passed to the interrupt handler. Usually, the 974 passed to the interrupt handler. Usually, the chip-specific record is 914 used for that, but you can use what you like, 975 used for that, but you can use what you like, too. 915 976 916 I won't give details about the interrupt handl 977 I won't give details about the interrupt handler at this point, but at 917 least its appearance can be explained now. The 978 least its appearance can be explained now. The interrupt handler looks 918 usually as follows:: !! 979 usually like the following: >> 980 >> 981 :: 919 982 920 static irqreturn_t snd_mychip_interrupt(int 983 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) 921 { 984 { 922 struct mychip *chip = dev_id; 985 struct mychip *chip = dev_id; 923 .... 986 .... 924 return IRQ_HANDLED; 987 return IRQ_HANDLED; 925 } 988 } 926 989 927 After requesting the IRQ, you can passed it to << 928 field:: << 929 << 930 card->irq = chip->irq; << 931 << 932 This allows the PCM core to automatically call << 933 :c:func:`synchronize_irq()` at the right time, << 934 See the later section `sync_stop callback`_ fo << 935 990 936 Now let's write the corresponding destructor f 991 Now let's write the corresponding destructor for the resources above. 937 The role of destructor is simple: disable the 992 The role of destructor is simple: disable the hardware (if already 938 activated) and release the resources. So far, 993 activated) and release the resources. So far, we have no hardware part, 939 so the disabling code is not written here. 994 so the disabling code is not written here. 940 995 941 To release the resources, the “check-and-rel 996 To release the resources, the “check-and-release” method is a safer way. 942 For the interrupt, do like this:: !! 997 For the interrupt, do like this: >> 998 >> 999 :: 943 1000 944 if (chip->irq >= 0) 1001 if (chip->irq >= 0) 945 free_irq(chip->irq, chip); 1002 free_irq(chip->irq, chip); 946 1003 947 Since the irq number can start from 0, you sho 1004 Since the irq number can start from 0, you should initialize 948 ``chip->irq`` with a negative value (e.g. -1), 1005 ``chip->irq`` with a negative value (e.g. -1), so that you can check 949 the validity of the irq number as above. 1006 the validity of the irq number as above. 950 1007 951 When you requested I/O ports or memory regions 1008 When you requested I/O ports or memory regions via 952 :c:func:`pci_request_region()` or 1009 :c:func:`pci_request_region()` or 953 :c:func:`pci_request_regions()` like in this e 1010 :c:func:`pci_request_regions()` like in this example, release the 954 resource(s) using the corresponding function, 1011 resource(s) using the corresponding function, 955 :c:func:`pci_release_region()` or 1012 :c:func:`pci_release_region()` or 956 :c:func:`pci_release_regions()`:: !! 1013 :c:func:`pci_release_regions()`. >> 1014 >> 1015 :: 957 1016 958 pci_release_regions(chip->pci); 1017 pci_release_regions(chip->pci); 959 1018 960 When you requested manually via :c:func:`reque 1019 When you requested manually via :c:func:`request_region()` or 961 :c:func:`request_mem_region()`, you can releas 1020 :c:func:`request_mem_region()`, you can release it via 962 :c:func:`release_resource()`. Suppose that you 1021 :c:func:`release_resource()`. Suppose that you keep the resource 963 pointer returned from :c:func:`request_region( 1022 pointer returned from :c:func:`request_region()` in 964 chip->res_port, the release procedure looks li !! 1023 chip->res_port, the release procedure looks like: >> 1024 >> 1025 :: 965 1026 966 release_and_free_resource(chip->res_port); 1027 release_and_free_resource(chip->res_port); 967 1028 968 Don't forget to call :c:func:`pci_disable_devi 1029 Don't forget to call :c:func:`pci_disable_device()` before the 969 end. 1030 end. 970 1031 971 And finally, release the chip-specific record: !! 1032 And finally, release the chip-specific record. >> 1033 >> 1034 :: 972 1035 973 kfree(chip); 1036 kfree(chip); 974 1037 975 We didn't implement the hardware disabling par !! 1038 We didn't implement the hardware disabling part in the above. If you 976 need to do this, please note that the destruct 1039 need to do this, please note that the destructor may be called even 977 before the initialization of the chip is compl 1040 before the initialization of the chip is completed. It would be better 978 to have a flag to skip hardware disabling if t 1041 to have a flag to skip hardware disabling if the hardware was not 979 initialized yet. 1042 initialized yet. 980 1043 981 When the chip-data is assigned to the card usi 1044 When the chip-data is assigned to the card using 982 :c:func:`snd_device_new()` with ``SNDRV_DEV_LO !! 1045 :c:func:`snd_device_new()` with ``SNDRV_DEV_LOWLELVEL`` , its 983 destructor is called last. That is, it is assu !! 1046 destructor is called at the last. That is, it is assured that all other 984 components like PCMs and controls have already 1047 components like PCMs and controls have already been released. You don't 985 have to stop PCMs, etc. explicitly, but just c 1048 have to stop PCMs, etc. explicitly, but just call low-level hardware 986 stopping. 1049 stopping. 987 1050 988 The management of a memory-mapped region is al 1051 The management of a memory-mapped region is almost as same as the 989 management of an I/O port. You'll need two fie !! 1052 management of an I/O port. You'll need three fields like the >> 1053 following: >> 1054 >> 1055 :: 990 1056 991 struct mychip { 1057 struct mychip { 992 .... 1058 .... 993 unsigned long iobase_phys; 1059 unsigned long iobase_phys; 994 void __iomem *iobase_virt; 1060 void __iomem *iobase_virt; 995 }; 1061 }; 996 1062 997 and the allocation would look like below:: !! 1063 and the allocation would be like below: 998 1064 999 err = pci_request_regions(pci, "My Chip"); !! 1065 :: 1000 if (err < 0) { !! 1066 >> 1067 if ((err = pci_request_regions(pci, "My Chip")) < 0) { 1001 kfree(chip); 1068 kfree(chip); 1002 return err; 1069 return err; 1003 } 1070 } 1004 chip->iobase_phys = pci_resource_start(pci, 1071 chip->iobase_phys = pci_resource_start(pci, 0); 1005 chip->iobase_virt = ioremap(chip->iobase_ph !! 1072 chip->iobase_virt = ioremap_nocache(chip->iobase_phys, 1006 pci_res 1073 pci_resource_len(pci, 0)); 1007 1074 1008 and the corresponding destructor would be:: !! 1075 and the corresponding destructor would be: >> 1076 >> 1077 :: 1009 1078 1010 static int snd_mychip_free(struct mychip *c 1079 static int snd_mychip_free(struct mychip *chip) 1011 { 1080 { 1012 .... 1081 .... 1013 if (chip->iobase_virt) 1082 if (chip->iobase_virt) 1014 iounmap(chip->iobase_virt); 1083 iounmap(chip->iobase_virt); 1015 .... 1084 .... 1016 pci_release_regions(chip->pci); 1085 pci_release_regions(chip->pci); 1017 .... 1086 .... 1018 } 1087 } 1019 1088 1020 Of course, a modern way with :c:func:`pci_iom << 1021 bit easier, too:: << 1022 << 1023 err = pci_request_regions(pci, "My Chip"); << 1024 if (err < 0) { << 1025 kfree(chip); << 1026 return err; << 1027 } << 1028 chip->iobase_virt = pci_iomap(pci, 0, 0); << 1029 << 1030 which is paired with :c:func:`pci_iounmap()` << 1031 << 1032 << 1033 PCI Entries 1089 PCI Entries 1034 ----------- 1090 ----------- 1035 1091 1036 So far, so good. Let's finish the missing PCI 1092 So far, so good. Let's finish the missing PCI stuff. At first, we need a 1037 struct pci_device_id table for !! 1093 :c:type:`struct pci_device_id <pci_device_id>` table for 1038 this chipset. It's a table of PCI vendor/devi 1094 this chipset. It's a table of PCI vendor/device ID number, and some 1039 masks. 1095 masks. 1040 1096 1041 For example:: !! 1097 For example, >> 1098 >> 1099 :: 1042 1100 1043 static struct pci_device_id snd_mychip_ids[ 1101 static struct pci_device_id snd_mychip_ids[] = { 1044 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_ 1102 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR, 1045 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, 1103 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, 1046 .... 1104 .... 1047 { 0, } 1105 { 0, } 1048 }; 1106 }; 1049 MODULE_DEVICE_TABLE(pci, snd_mychip_ids); 1107 MODULE_DEVICE_TABLE(pci, snd_mychip_ids); 1050 1108 1051 The first and second fields of the struct pci !! 1109 The first and second fields of the :c:type:`struct pci_device_id 1052 and device IDs. If you have no reason to filt !! 1110 <pci_device_id>` structure are the vendor and device IDs. If you 1053 leave the remaining fields as above. The last !! 1111 have no reason to filter the matching devices, you can leave the 1054 struct pci_device_id contains private data fo !! 1112 remaining fields as above. The last field of the :c:type:`struct 1055 any value here, for example, to define specif !! 1113 pci_device_id <pci_device_id>` struct contains private data 1056 device IDs. Such an example is found in the i !! 1114 for this entry. You can specify any value here, for example, to define >> 1115 specific operations for supported device IDs. Such an example is found >> 1116 in the intel8x0 driver. 1057 1117 1058 The last entry of this list is the terminator 1118 The last entry of this list is the terminator. You must specify this 1059 all-zero entry. 1119 all-zero entry. 1060 1120 1061 Then, prepare the struct pci_driver !! 1121 Then, prepare the :c:type:`struct pci_driver <pci_driver>` 1062 record:: !! 1122 record: >> 1123 >> 1124 :: 1063 1125 1064 static struct pci_driver driver = { 1126 static struct pci_driver driver = { 1065 .name = KBUILD_MODNAME, 1127 .name = KBUILD_MODNAME, 1066 .id_table = snd_mychip_ids, 1128 .id_table = snd_mychip_ids, 1067 .probe = snd_mychip_probe, 1129 .probe = snd_mychip_probe, 1068 .remove = snd_mychip_remove, 1130 .remove = snd_mychip_remove, 1069 }; 1131 }; 1070 1132 1071 The ``probe`` and ``remove`` functions have a 1133 The ``probe`` and ``remove`` functions have already been defined in 1072 the previous sections. The ``name`` field is 1134 the previous sections. The ``name`` field is the name string of this 1073 device. Note that you must not use slashes ( !! 1135 device. Note that you must not use a slash “/” in this string. >> 1136 >> 1137 And at last, the module entries: 1074 1138 1075 And at last, the module entries:: !! 1139 :: 1076 1140 1077 static int __init alsa_card_mychip_init(voi 1141 static int __init alsa_card_mychip_init(void) 1078 { 1142 { 1079 return pci_register_driver(&driver) 1143 return pci_register_driver(&driver); 1080 } 1144 } 1081 1145 1082 static void __exit alsa_card_mychip_exit(vo 1146 static void __exit alsa_card_mychip_exit(void) 1083 { 1147 { 1084 pci_unregister_driver(&driver); 1148 pci_unregister_driver(&driver); 1085 } 1149 } 1086 1150 1087 module_init(alsa_card_mychip_init) 1151 module_init(alsa_card_mychip_init) 1088 module_exit(alsa_card_mychip_exit) 1152 module_exit(alsa_card_mychip_exit) 1089 1153 1090 Note that these module entries are tagged wit 1154 Note that these module entries are tagged with ``__init`` and ``__exit`` 1091 prefixes. 1155 prefixes. 1092 1156 >> 1157 Oh, one thing was forgotten. If you have no exported symbols, you need >> 1158 to declare it in 2.2 or 2.4 kernels (it's not necessary in 2.6 kernels). >> 1159 >> 1160 :: >> 1161 >> 1162 EXPORT_NO_SYMBOLS; >> 1163 1093 That's all! 1164 That's all! 1094 1165 1095 PCM Interface 1166 PCM Interface 1096 ============= 1167 ============= 1097 1168 1098 General 1169 General 1099 ------- 1170 ------- 1100 1171 1101 The PCM middle layer of ALSA is quite powerfu 1172 The PCM middle layer of ALSA is quite powerful and it is only necessary 1102 for each driver to implement the low-level fu 1173 for each driver to implement the low-level functions to access its 1103 hardware. 1174 hardware. 1104 1175 1105 To access the PCM layer, you need to include !! 1176 For accessing to the PCM layer, you need to include ``<sound/pcm.h>`` 1106 first. In addition, ``<sound/pcm_params.h>`` 1177 first. In addition, ``<sound/pcm_params.h>`` might be needed if you 1107 access some functions related with hw_param. !! 1178 access to some functions related with hw_param. 1108 1179 1109 Each card device can have up to four PCM inst !! 1180 Each card device can have up to four pcm instances. A pcm instance 1110 corresponds to a PCM device file. The limitat !! 1181 corresponds to a pcm device file. The limitation of number of instances 1111 comes only from the available bit size of Lin !! 1182 comes only from the available bit size of the Linux's device numbers. 1112 Once 64bit device numbers are used, we'll hav !! 1183 Once when 64bit device number is used, we'll have more pcm instances 1113 available. 1184 available. 1114 1185 1115 A PCM instance consists of PCM playback and c !! 1186 A pcm instance consists of pcm playback and capture streams, and each 1116 PCM stream consists of one or more PCM substr !! 1187 pcm stream consists of one or more pcm substreams. Some soundcards 1117 support multiple playback functions. For exam 1188 support multiple playback functions. For example, emu10k1 has a PCM 1118 playback of 32 stereo substreams. In this cas 1189 playback of 32 stereo substreams. In this case, at each open, a free 1119 substream is (usually) automatically chosen a 1190 substream is (usually) automatically chosen and opened. Meanwhile, when 1120 only one substream exists and it was already !! 1191 only one substream exists and it was already opened, the successful open 1121 will either block or error with ``EAGAIN`` ac 1192 will either block or error with ``EAGAIN`` according to the file open 1122 mode. But you don't have to care about such d 1193 mode. But you don't have to care about such details in your driver. The 1123 PCM middle layer will take care of such work. 1194 PCM middle layer will take care of such work. 1124 1195 1125 Full Code Example 1196 Full Code Example 1126 ----------------- 1197 ----------------- 1127 1198 1128 The example code below does not include any h 1199 The example code below does not include any hardware access routines but 1129 shows only the skeleton, how to build up the !! 1200 shows only the skeleton, how to build up the PCM interfaces. >> 1201 >> 1202 :: 1130 1203 1131 #include <sound/pcm.h> 1204 #include <sound/pcm.h> 1132 .... 1205 .... 1133 1206 1134 /* hardware definition */ 1207 /* hardware definition */ 1135 static struct snd_pcm_hardware snd_mych 1208 static struct snd_pcm_hardware snd_mychip_playback_hw = { 1136 .info = (SNDRV_PCM_INFO_MMAP | 1209 .info = (SNDRV_PCM_INFO_MMAP | 1137 SNDRV_PCM_INFO_INTERLE 1210 SNDRV_PCM_INFO_INTERLEAVED | 1138 SNDRV_PCM_INFO_BLOCK_T 1211 SNDRV_PCM_INFO_BLOCK_TRANSFER | 1139 SNDRV_PCM_INFO_MMAP_VA 1212 SNDRV_PCM_INFO_MMAP_VALID), 1140 .formats = SNDRV_PCM_F 1213 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1141 .rates = SNDRV_PCM_R 1214 .rates = SNDRV_PCM_RATE_8000_48000, 1142 .rate_min = 8000, 1215 .rate_min = 8000, 1143 .rate_max = 48000, 1216 .rate_max = 48000, 1144 .channels_min = 2, 1217 .channels_min = 2, 1145 .channels_max = 2, 1218 .channels_max = 2, 1146 .buffer_bytes_max = 32768, 1219 .buffer_bytes_max = 32768, 1147 .period_bytes_min = 4096, 1220 .period_bytes_min = 4096, 1148 .period_bytes_max = 32768, 1221 .period_bytes_max = 32768, 1149 .periods_min = 1, 1222 .periods_min = 1, 1150 .periods_max = 1024, 1223 .periods_max = 1024, 1151 }; 1224 }; 1152 1225 1153 /* hardware definition */ 1226 /* hardware definition */ 1154 static struct snd_pcm_hardware snd_mych 1227 static struct snd_pcm_hardware snd_mychip_capture_hw = { 1155 .info = (SNDRV_PCM_INFO_MMAP | 1228 .info = (SNDRV_PCM_INFO_MMAP | 1156 SNDRV_PCM_INFO_INTERLE 1229 SNDRV_PCM_INFO_INTERLEAVED | 1157 SNDRV_PCM_INFO_BLOCK_T 1230 SNDRV_PCM_INFO_BLOCK_TRANSFER | 1158 SNDRV_PCM_INFO_MMAP_VA 1231 SNDRV_PCM_INFO_MMAP_VALID), 1159 .formats = SNDRV_PCM_F 1232 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1160 .rates = SNDRV_PCM_R 1233 .rates = SNDRV_PCM_RATE_8000_48000, 1161 .rate_min = 8000, 1234 .rate_min = 8000, 1162 .rate_max = 48000, 1235 .rate_max = 48000, 1163 .channels_min = 2, 1236 .channels_min = 2, 1164 .channels_max = 2, 1237 .channels_max = 2, 1165 .buffer_bytes_max = 32768, 1238 .buffer_bytes_max = 32768, 1166 .period_bytes_min = 4096, 1239 .period_bytes_min = 4096, 1167 .period_bytes_max = 32768, 1240 .period_bytes_max = 32768, 1168 .periods_min = 1, 1241 .periods_min = 1, 1169 .periods_max = 1024, 1242 .periods_max = 1024, 1170 }; 1243 }; 1171 1244 1172 /* open callback */ 1245 /* open callback */ 1173 static int snd_mychip_playback_open(str 1246 static int snd_mychip_playback_open(struct snd_pcm_substream *substream) 1174 { 1247 { 1175 struct mychip *chip = snd_pcm_s 1248 struct mychip *chip = snd_pcm_substream_chip(substream); 1176 struct snd_pcm_runtime *runtime 1249 struct snd_pcm_runtime *runtime = substream->runtime; 1177 1250 1178 runtime->hw = snd_mychip_playba 1251 runtime->hw = snd_mychip_playback_hw; 1179 /* more hardware-initialization 1252 /* more hardware-initialization will be done here */ 1180 .... 1253 .... 1181 return 0; 1254 return 0; 1182 } 1255 } 1183 1256 1184 /* close callback */ 1257 /* close callback */ 1185 static int snd_mychip_playback_close(st 1258 static int snd_mychip_playback_close(struct snd_pcm_substream *substream) 1186 { 1259 { 1187 struct mychip *chip = snd_pcm_s 1260 struct mychip *chip = snd_pcm_substream_chip(substream); 1188 /* the hardware-specific codes 1261 /* the hardware-specific codes will be here */ 1189 .... 1262 .... 1190 return 0; 1263 return 0; 1191 1264 1192 } 1265 } 1193 1266 1194 /* open callback */ 1267 /* open callback */ 1195 static int snd_mychip_capture_open(stru 1268 static int snd_mychip_capture_open(struct snd_pcm_substream *substream) 1196 { 1269 { 1197 struct mychip *chip = snd_pcm_s 1270 struct mychip *chip = snd_pcm_substream_chip(substream); 1198 struct snd_pcm_runtime *runtime 1271 struct snd_pcm_runtime *runtime = substream->runtime; 1199 1272 1200 runtime->hw = snd_mychip_captur 1273 runtime->hw = snd_mychip_capture_hw; 1201 /* more hardware-initialization 1274 /* more hardware-initialization will be done here */ 1202 .... 1275 .... 1203 return 0; 1276 return 0; 1204 } 1277 } 1205 1278 1206 /* close callback */ 1279 /* close callback */ 1207 static int snd_mychip_capture_close(str 1280 static int snd_mychip_capture_close(struct snd_pcm_substream *substream) 1208 { 1281 { 1209 struct mychip *chip = snd_pcm_s 1282 struct mychip *chip = snd_pcm_substream_chip(substream); 1210 /* the hardware-specific codes 1283 /* the hardware-specific codes will be here */ 1211 .... 1284 .... 1212 return 0; 1285 return 0; >> 1286 1213 } 1287 } 1214 1288 1215 /* hw_params callback */ 1289 /* hw_params callback */ 1216 static int snd_mychip_pcm_hw_params(str 1290 static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream, 1217 struct snd 1291 struct snd_pcm_hw_params *hw_params) 1218 { 1292 { 1219 /* the hardware-specific codes !! 1293 return snd_pcm_lib_malloc_pages(substream, 1220 .... !! 1294 params_buffer_bytes(hw_params)); 1221 return 0; << 1222 } 1295 } 1223 1296 1224 /* hw_free callback */ 1297 /* hw_free callback */ 1225 static int snd_mychip_pcm_hw_free(struc 1298 static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream) 1226 { 1299 { 1227 /* the hardware-specific codes !! 1300 return snd_pcm_lib_free_pages(substream); 1228 .... << 1229 return 0; << 1230 } 1301 } 1231 1302 1232 /* prepare callback */ 1303 /* prepare callback */ 1233 static int snd_mychip_pcm_prepare(struc 1304 static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream) 1234 { 1305 { 1235 struct mychip *chip = snd_pcm_s 1306 struct mychip *chip = snd_pcm_substream_chip(substream); 1236 struct snd_pcm_runtime *runtime 1307 struct snd_pcm_runtime *runtime = substream->runtime; 1237 1308 1238 /* set up the hardware with the 1309 /* set up the hardware with the current configuration 1239 * for example... 1310 * for example... 1240 */ 1311 */ 1241 mychip_set_sample_format(chip, 1312 mychip_set_sample_format(chip, runtime->format); 1242 mychip_set_sample_rate(chip, ru 1313 mychip_set_sample_rate(chip, runtime->rate); 1243 mychip_set_channels(chip, runti 1314 mychip_set_channels(chip, runtime->channels); 1244 mychip_set_dma_setup(chip, runt 1315 mychip_set_dma_setup(chip, runtime->dma_addr, 1245 chip->buff 1316 chip->buffer_size, 1246 chip->peri 1317 chip->period_size); 1247 return 0; 1318 return 0; 1248 } 1319 } 1249 1320 1250 /* trigger callback */ 1321 /* trigger callback */ 1251 static int snd_mychip_pcm_trigger(struc 1322 static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream, 1252 int c 1323 int cmd) 1253 { 1324 { 1254 switch (cmd) { 1325 switch (cmd) { 1255 case SNDRV_PCM_TRIGGER_START: 1326 case SNDRV_PCM_TRIGGER_START: 1256 /* do something to star 1327 /* do something to start the PCM engine */ 1257 .... 1328 .... 1258 break; 1329 break; 1259 case SNDRV_PCM_TRIGGER_STOP: 1330 case SNDRV_PCM_TRIGGER_STOP: 1260 /* do something to stop 1331 /* do something to stop the PCM engine */ 1261 .... 1332 .... 1262 break; 1333 break; 1263 default: 1334 default: 1264 return -EINVAL; 1335 return -EINVAL; 1265 } 1336 } 1266 } 1337 } 1267 1338 1268 /* pointer callback */ 1339 /* pointer callback */ 1269 static snd_pcm_uframes_t 1340 static snd_pcm_uframes_t 1270 snd_mychip_pcm_pointer(struct snd_pcm_s 1341 snd_mychip_pcm_pointer(struct snd_pcm_substream *substream) 1271 { 1342 { 1272 struct mychip *chip = snd_pcm_s 1343 struct mychip *chip = snd_pcm_substream_chip(substream); 1273 unsigned int current_ptr; 1344 unsigned int current_ptr; 1274 1345 1275 /* get the current hardware poi 1346 /* get the current hardware pointer */ 1276 current_ptr = mychip_get_hw_poi 1347 current_ptr = mychip_get_hw_pointer(chip); 1277 return current_ptr; 1348 return current_ptr; 1278 } 1349 } 1279 1350 1280 /* operators */ 1351 /* operators */ 1281 static struct snd_pcm_ops snd_mychip_pl 1352 static struct snd_pcm_ops snd_mychip_playback_ops = { 1282 .open = snd_mychip_playb 1353 .open = snd_mychip_playback_open, 1283 .close = snd_mychip_playb 1354 .close = snd_mychip_playback_close, >> 1355 .ioctl = snd_pcm_lib_ioctl, 1284 .hw_params = snd_mychip_pcm_h 1356 .hw_params = snd_mychip_pcm_hw_params, 1285 .hw_free = snd_mychip_pcm_h 1357 .hw_free = snd_mychip_pcm_hw_free, 1286 .prepare = snd_mychip_pcm_p 1358 .prepare = snd_mychip_pcm_prepare, 1287 .trigger = snd_mychip_pcm_t 1359 .trigger = snd_mychip_pcm_trigger, 1288 .pointer = snd_mychip_pcm_p 1360 .pointer = snd_mychip_pcm_pointer, 1289 }; 1361 }; 1290 1362 1291 /* operators */ 1363 /* operators */ 1292 static struct snd_pcm_ops snd_mychip_ca 1364 static struct snd_pcm_ops snd_mychip_capture_ops = { 1293 .open = snd_mychip_captu 1365 .open = snd_mychip_capture_open, 1294 .close = snd_mychip_captu 1366 .close = snd_mychip_capture_close, >> 1367 .ioctl = snd_pcm_lib_ioctl, 1295 .hw_params = snd_mychip_pcm_h 1368 .hw_params = snd_mychip_pcm_hw_params, 1296 .hw_free = snd_mychip_pcm_h 1369 .hw_free = snd_mychip_pcm_hw_free, 1297 .prepare = snd_mychip_pcm_p 1370 .prepare = snd_mychip_pcm_prepare, 1298 .trigger = snd_mychip_pcm_t 1371 .trigger = snd_mychip_pcm_trigger, 1299 .pointer = snd_mychip_pcm_p 1372 .pointer = snd_mychip_pcm_pointer, 1300 }; 1373 }; 1301 1374 1302 /* 1375 /* 1303 * definitions of capture are omitted 1376 * definitions of capture are omitted here... 1304 */ 1377 */ 1305 1378 1306 /* create a pcm device */ 1379 /* create a pcm device */ 1307 static int snd_mychip_new_pcm(struct my 1380 static int snd_mychip_new_pcm(struct mychip *chip) 1308 { 1381 { 1309 struct snd_pcm *pcm; 1382 struct snd_pcm *pcm; 1310 int err; 1383 int err; 1311 1384 1312 err = snd_pcm_new(chip->card, " 1385 err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm); 1313 if (err < 0) 1386 if (err < 0) 1314 return err; 1387 return err; 1315 pcm->private_data = chip; 1388 pcm->private_data = chip; 1316 strcpy(pcm->name, "My Chip"); 1389 strcpy(pcm->name, "My Chip"); 1317 chip->pcm = pcm; 1390 chip->pcm = pcm; 1318 /* set operators */ 1391 /* set operators */ 1319 snd_pcm_set_ops(pcm, SNDRV_PCM_ 1392 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1320 &snd_mychip_pla 1393 &snd_mychip_playback_ops); 1321 snd_pcm_set_ops(pcm, SNDRV_PCM_ 1394 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, 1322 &snd_mychip_cap 1395 &snd_mychip_capture_ops); 1323 /* pre-allocation of buffers */ 1396 /* pre-allocation of buffers */ 1324 /* NOTE: this may fail */ 1397 /* NOTE: this may fail */ 1325 snd_pcm_set_managed_buffer_all( !! 1398 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1326 !! 1399 snd_dma_pci_data(chip->pci), 1327 !! 1400 64*1024, 64*1024); 1328 return 0; 1401 return 0; 1329 } 1402 } 1330 1403 1331 1404 1332 PCM Constructor 1405 PCM Constructor 1333 --------------- 1406 --------------- 1334 1407 1335 A PCM instance is allocated by the :c:func:`s !! 1408 A pcm instance is allocated by the :c:func:`snd_pcm_new()` 1336 function. It would be better to create a cons !! 1409 function. It would be better to create a constructor for pcm, namely, >> 1410 >> 1411 :: 1337 1412 1338 static int snd_mychip_new_pcm(struct mychip 1413 static int snd_mychip_new_pcm(struct mychip *chip) 1339 { 1414 { 1340 struct snd_pcm *pcm; 1415 struct snd_pcm *pcm; 1341 int err; 1416 int err; 1342 1417 1343 err = snd_pcm_new(chip->card, "My C 1418 err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm); 1344 if (err < 0) 1419 if (err < 0) 1345 return err; 1420 return err; 1346 pcm->private_data = chip; 1421 pcm->private_data = chip; 1347 strcpy(pcm->name, "My Chip"); 1422 strcpy(pcm->name, "My Chip"); 1348 chip->pcm = pcm; 1423 chip->pcm = pcm; 1349 ... !! 1424 .... 1350 return 0; 1425 return 0; 1351 } 1426 } 1352 1427 1353 The :c:func:`snd_pcm_new()` function takes si !! 1428 The :c:func:`snd_pcm_new()` function takes four arguments. The 1354 first argument is the card pointer to which t !! 1429 first argument is the card pointer to which this pcm is assigned, and 1355 the second is the ID string. 1430 the second is the ID string. 1356 1431 1357 The third argument (``index``, 0 in the above 1432 The third argument (``index``, 0 in the above) is the index of this new 1358 PCM. It begins from zero. If you create more !! 1433 pcm. It begins from zero. If you create more than one pcm instances, 1359 specify the different numbers in this argumen 1434 specify the different numbers in this argument. For example, ``index = 1360 1`` for the second PCM device. 1435 1`` for the second PCM device. 1361 1436 1362 The fourth and fifth arguments are the number 1437 The fourth and fifth arguments are the number of substreams for playback 1363 and capture, respectively. Here 1 is used for 1438 and capture, respectively. Here 1 is used for both arguments. When no 1364 playback or capture substreams are available, 1439 playback or capture substreams are available, pass 0 to the 1365 corresponding argument. 1440 corresponding argument. 1366 1441 1367 If a chip supports multiple playbacks or capt 1442 If a chip supports multiple playbacks or captures, you can specify more 1368 numbers, but they must be handled properly in 1443 numbers, but they must be handled properly in open/close, etc. 1369 callbacks. When you need to know which substr 1444 callbacks. When you need to know which substream you are referring to, 1370 then it can be obtained from struct snd_pcm_s !! 1445 then it can be obtained from :c:type:`struct snd_pcm_substream 1371 callback as follows:: !! 1446 <snd_pcm_substream>` data passed to each callback as follows: >> 1447 >> 1448 :: 1372 1449 1373 struct snd_pcm_substream *substream; 1450 struct snd_pcm_substream *substream; 1374 int index = substream->number; 1451 int index = substream->number; 1375 1452 1376 1453 1377 After the PCM is created, you need to set ope !! 1454 After the pcm is created, you need to set operators for each pcm stream. >> 1455 >> 1456 :: 1378 1457 1379 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYB 1458 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1380 &snd_mychip_playback_ops); 1459 &snd_mychip_playback_ops); 1381 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTU 1460 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, 1382 &snd_mychip_capture_ops); 1461 &snd_mychip_capture_ops); 1383 1462 1384 The operators are defined typically like this !! 1463 The operators are defined typically like this: >> 1464 >> 1465 :: 1385 1466 1386 static struct snd_pcm_ops snd_mychip_playba 1467 static struct snd_pcm_ops snd_mychip_playback_ops = { 1387 .open = snd_mychip_pcm_open, 1468 .open = snd_mychip_pcm_open, 1388 .close = snd_mychip_pcm_close 1469 .close = snd_mychip_pcm_close, >> 1470 .ioctl = snd_pcm_lib_ioctl, 1389 .hw_params = snd_mychip_pcm_hw_pa 1471 .hw_params = snd_mychip_pcm_hw_params, 1390 .hw_free = snd_mychip_pcm_hw_fr 1472 .hw_free = snd_mychip_pcm_hw_free, 1391 .prepare = snd_mychip_pcm_prepa 1473 .prepare = snd_mychip_pcm_prepare, 1392 .trigger = snd_mychip_pcm_trigg 1474 .trigger = snd_mychip_pcm_trigger, 1393 .pointer = snd_mychip_pcm_point 1475 .pointer = snd_mychip_pcm_pointer, 1394 }; 1476 }; 1395 1477 1396 All the callbacks are described in the Operat 1478 All the callbacks are described in the Operators_ subsection. 1397 1479 1398 After setting the operators, you probably wil 1480 After setting the operators, you probably will want to pre-allocate the 1399 buffer and set up the managed allocation mode !! 1481 buffer. For the pre-allocation, simply call the following: 1400 For that, simply call the following:: !! 1482 >> 1483 :: 1401 1484 1402 snd_pcm_set_managed_buffer_all(pcm, SNDRV_D !! 1485 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1403 &chip->pci-> !! 1486 snd_dma_pci_data(chip->pci), 1404 64*1024, 64* !! 1487 64*1024, 64*1024); 1405 1488 1406 It will allocate a buffer up to 64kB by defau !! 1489 It will allocate a buffer up to 64kB as default. Buffer management 1407 details will be described in the later sectio 1490 details will be described in the later section `Buffer and Memory 1408 Management`_. 1491 Management`_. 1409 1492 1410 Additionally, you can set some extra informat !! 1493 Additionally, you can set some extra information for this pcm in 1411 ``pcm->info_flags``. The available values are 1494 ``pcm->info_flags``. The available values are defined as 1412 ``SNDRV_PCM_INFO_XXX`` in ``<sound/asound.h>` 1495 ``SNDRV_PCM_INFO_XXX`` in ``<sound/asound.h>``, which is used for the 1413 hardware definition (described later). When y 1496 hardware definition (described later). When your soundchip supports only 1414 half-duplex, specify it like this:: !! 1497 half-duplex, specify like this: >> 1498 >> 1499 :: 1415 1500 1416 pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLE 1501 pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; 1417 1502 1418 1503 1419 ... And the Destructor? 1504 ... And the Destructor? 1420 ----------------------- 1505 ----------------------- 1421 1506 1422 The destructor for a PCM instance is not alwa !! 1507 The destructor for a pcm instance is not always necessary. Since the pcm 1423 device will be released by the middle layer c 1508 device will be released by the middle layer code automatically, you 1424 don't have to call the destructor explicitly. 1509 don't have to call the destructor explicitly. 1425 1510 1426 The destructor would be necessary if you crea 1511 The destructor would be necessary if you created special records 1427 internally and needed to release them. In suc 1512 internally and needed to release them. In such a case, set the 1428 destructor function to ``pcm->private_free``: !! 1513 destructor function to ``pcm->private_free``: >> 1514 >> 1515 :: 1429 1516 1430 static void mychip_pcm_free(struct snd_ 1517 static void mychip_pcm_free(struct snd_pcm *pcm) 1431 { 1518 { 1432 struct mychip *chip = snd_pcm_c 1519 struct mychip *chip = snd_pcm_chip(pcm); 1433 /* free your own data */ 1520 /* free your own data */ 1434 kfree(chip->my_private_pcm_data 1521 kfree(chip->my_private_pcm_data); 1435 /* do what you like else */ 1522 /* do what you like else */ 1436 .... 1523 .... 1437 } 1524 } 1438 1525 1439 static int snd_mychip_new_pcm(struct my 1526 static int snd_mychip_new_pcm(struct mychip *chip) 1440 { 1527 { 1441 struct snd_pcm *pcm; 1528 struct snd_pcm *pcm; 1442 .... 1529 .... 1443 /* allocate your own data */ 1530 /* allocate your own data */ 1444 chip->my_private_pcm_data = kma 1531 chip->my_private_pcm_data = kmalloc(...); 1445 /* set the destructor */ 1532 /* set the destructor */ 1446 pcm->private_data = chip; 1533 pcm->private_data = chip; 1447 pcm->private_free = mychip_pcm_ 1534 pcm->private_free = mychip_pcm_free; 1448 .... 1535 .... 1449 } 1536 } 1450 1537 1451 1538 1452 1539 1453 Runtime Pointer - The Chest of PCM Informatio 1540 Runtime Pointer - The Chest of PCM Information 1454 --------------------------------------------- 1541 ---------------------------------------------- 1455 1542 1456 When the PCM substream is opened, a PCM runti 1543 When the PCM substream is opened, a PCM runtime instance is allocated 1457 and assigned to the substream. This pointer i 1544 and assigned to the substream. This pointer is accessible via 1458 ``substream->runtime``. This runtime pointer 1545 ``substream->runtime``. This runtime pointer holds most information you 1459 need to control the PCM: a copy of hw_params !! 1546 need to control the PCM: the copy of hw_params and sw_params 1460 configurations, the buffer pointers, mmap rec 1547 configurations, the buffer pointers, mmap records, spinlocks, etc. 1461 1548 1462 The definition of runtime instance is found i 1549 The definition of runtime instance is found in ``<sound/pcm.h>``. Here 1463 is the relevant part of this file:: !! 1550 are the contents of this file: >> 1551 >> 1552 :: 1464 1553 1465 struct _snd_pcm_runtime { 1554 struct _snd_pcm_runtime { 1466 /* -- Status -- */ 1555 /* -- Status -- */ 1467 struct snd_pcm_substream *trigger_m 1556 struct snd_pcm_substream *trigger_master; 1468 snd_timestamp_t trigger_tstamp; 1557 snd_timestamp_t trigger_tstamp; /* trigger timestamp */ 1469 int overrange; 1558 int overrange; 1470 snd_pcm_uframes_t avail_max; 1559 snd_pcm_uframes_t avail_max; 1471 snd_pcm_uframes_t hw_ptr_base; 1560 snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */ 1472 snd_pcm_uframes_t hw_ptr_interrupt; 1561 snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/ 1473 1562 1474 /* -- HW params -- */ 1563 /* -- HW params -- */ 1475 snd_pcm_access_t access; /* ac 1564 snd_pcm_access_t access; /* access mode */ 1476 snd_pcm_format_t format; /* SN 1565 snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */ 1477 snd_pcm_subformat_t subformat; 1566 snd_pcm_subformat_t subformat; /* subformat */ 1478 unsigned int rate; /* ra 1567 unsigned int rate; /* rate in Hz */ 1479 unsigned int channels; 1568 unsigned int channels; /* channels */ 1480 snd_pcm_uframes_t period_size; 1569 snd_pcm_uframes_t period_size; /* period size */ 1481 unsigned int periods; /* pe 1570 unsigned int periods; /* periods */ 1482 snd_pcm_uframes_t buffer_size; 1571 snd_pcm_uframes_t buffer_size; /* buffer size */ 1483 unsigned int tick_time; 1572 unsigned int tick_time; /* tick time */ 1484 snd_pcm_uframes_t min_align; /* Mi 1573 snd_pcm_uframes_t min_align; /* Min alignment for the format */ 1485 size_t byte_align; 1574 size_t byte_align; 1486 unsigned int frame_bits; 1575 unsigned int frame_bits; 1487 unsigned int sample_bits; 1576 unsigned int sample_bits; 1488 unsigned int info; 1577 unsigned int info; 1489 unsigned int rate_num; 1578 unsigned int rate_num; 1490 unsigned int rate_den; 1579 unsigned int rate_den; 1491 1580 1492 /* -- SW params -- */ 1581 /* -- SW params -- */ 1493 struct timespec tstamp_mode; /* mm 1582 struct timespec tstamp_mode; /* mmap timestamp is updated */ 1494 unsigned int period_step; 1583 unsigned int period_step; 1495 unsigned int sleep_min; 1584 unsigned int sleep_min; /* min ticks to sleep */ 1496 snd_pcm_uframes_t start_threshold; 1585 snd_pcm_uframes_t start_threshold; 1497 /* !! 1586 snd_pcm_uframes_t stop_threshold; 1498 * The following two thresholds all !! 1587 snd_pcm_uframes_t silence_threshold; /* Silence filling happens when 1499 * hw_avail drops below the thresho !! 1588 noise is nearest than this */ 1500 */ !! 1589 snd_pcm_uframes_t silence_size; /* Silence filling size */ 1501 snd_pcm_uframes_t stop_threshold; << 1502 snd_pcm_uframes_t silence_threshold << 1503 snd_pcm_uframes_t silence_size; << 1504 << 1505 snd_pcm_uframes_t boundary; /* po 1590 snd_pcm_uframes_t boundary; /* pointers wrap point */ 1506 1591 1507 /* internal data of auto-silencer * !! 1592 snd_pcm_uframes_t silenced_start; 1508 snd_pcm_uframes_t silence_start; /* !! 1593 snd_pcm_uframes_t silenced_size; 1509 snd_pcm_uframes_t silence_filled; / << 1510 1594 1511 snd_pcm_sync_id_t sync; 1595 snd_pcm_sync_id_t sync; /* hardware synchronization ID */ 1512 1596 1513 /* -- mmap -- */ 1597 /* -- mmap -- */ 1514 volatile struct snd_pcm_mmap_status 1598 volatile struct snd_pcm_mmap_status *status; 1515 volatile struct snd_pcm_mmap_contro 1599 volatile struct snd_pcm_mmap_control *control; 1516 atomic_t mmap_count; 1600 atomic_t mmap_count; 1517 1601 1518 /* -- locking / scheduling -- */ 1602 /* -- locking / scheduling -- */ 1519 spinlock_t lock; 1603 spinlock_t lock; 1520 wait_queue_head_t sleep; 1604 wait_queue_head_t sleep; 1521 struct timer_list tick_timer; 1605 struct timer_list tick_timer; 1522 struct fasync_struct *fasync; 1606 struct fasync_struct *fasync; 1523 1607 1524 /* -- private section -- */ 1608 /* -- private section -- */ 1525 void *private_data; 1609 void *private_data; 1526 void (*private_free)(struct snd_pcm 1610 void (*private_free)(struct snd_pcm_runtime *runtime); 1527 1611 1528 /* -- hardware description -- */ 1612 /* -- hardware description -- */ 1529 struct snd_pcm_hardware hw; 1613 struct snd_pcm_hardware hw; 1530 struct snd_pcm_hw_constraints hw_co 1614 struct snd_pcm_hw_constraints hw_constraints; 1531 1615 1532 /* -- timer -- */ 1616 /* -- timer -- */ 1533 unsigned int timer_resolution; 1617 unsigned int timer_resolution; /* timer resolution */ 1534 1618 1535 /* -- DMA -- */ 1619 /* -- DMA -- */ 1536 unsigned char *dma_area; /* DM 1620 unsigned char *dma_area; /* DMA area */ 1537 dma_addr_t dma_addr; /* ph 1621 dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */ 1538 size_t dma_bytes; /* si 1622 size_t dma_bytes; /* size of DMA area */ 1539 1623 1540 struct snd_dma_buffer *dma_buffer_p 1624 struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */ 1541 1625 1542 #if defined(CONFIG_SND_PCM_OSS) || defined( 1626 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) 1543 /* -- OSS things -- */ 1627 /* -- OSS things -- */ 1544 struct snd_pcm_oss_runtime oss; 1628 struct snd_pcm_oss_runtime oss; 1545 #endif 1629 #endif 1546 }; 1630 }; 1547 1631 1548 1632 1549 For the operators (callbacks) of each sound d 1633 For the operators (callbacks) of each sound driver, most of these 1550 records are supposed to be read-only. Only th 1634 records are supposed to be read-only. Only the PCM middle-layer changes 1551 / updates them. The exceptions are the hardwa 1635 / updates them. The exceptions are the hardware description (hw) DMA 1552 buffer information and the private data. Besi 1636 buffer information and the private data. Besides, if you use the 1553 standard managed buffer allocation mode, you !! 1637 standard buffer allocation method via >> 1638 :c:func:`snd_pcm_lib_malloc_pages()`, you don't need to set the 1554 DMA buffer information by yourself. 1639 DMA buffer information by yourself. 1555 1640 1556 In the sections below, important records are 1641 In the sections below, important records are explained. 1557 1642 1558 Hardware Description 1643 Hardware Description 1559 ~~~~~~~~~~~~~~~~~~~~ 1644 ~~~~~~~~~~~~~~~~~~~~ 1560 1645 1561 The hardware descriptor (struct snd_pcm_hardw !! 1646 The hardware descriptor (:c:type:`struct snd_pcm_hardware 1562 the fundamental hardware configuration. Above !! 1647 <snd_pcm_hardware>`) contains the definitions of the fundamental 1563 in the `PCM open callback`_. Note that the ru !! 1648 hardware configuration. Above all, you'll need to define this in the 1564 the descriptor, not a pointer to the existing !! 1649 `PCM open callback`_. Note that the runtime instance holds the copy of >> 1650 the descriptor, not the pointer to the existing descriptor. That is, 1565 in the open callback, you can modify the copi 1651 in the open callback, you can modify the copied descriptor 1566 (``runtime->hw``) as you need. For example, i 1652 (``runtime->hw``) as you need. For example, if the maximum number of 1567 channels is 1 only on some chip models, you c 1653 channels is 1 only on some chip models, you can still use the same 1568 hardware descriptor and change the channels_m !! 1654 hardware descriptor and change the channels_max later: >> 1655 >> 1656 :: 1569 1657 1570 struct snd_pcm_runtime *runtime = s 1658 struct snd_pcm_runtime *runtime = substream->runtime; 1571 ... 1659 ... 1572 runtime->hw = snd_mychip_playback_h 1660 runtime->hw = snd_mychip_playback_hw; /* common definition */ 1573 if (chip->model == VERY_OLD_ONE) 1661 if (chip->model == VERY_OLD_ONE) 1574 runtime->hw.channels_max = 1662 runtime->hw.channels_max = 1; 1575 1663 1576 Typically, you'll have a hardware descriptor !! 1664 Typically, you'll have a hardware descriptor as below: >> 1665 >> 1666 :: 1577 1667 1578 static struct snd_pcm_hardware snd_mychip_p 1668 static struct snd_pcm_hardware snd_mychip_playback_hw = { 1579 .info = (SNDRV_PCM_INFO_MMAP | 1669 .info = (SNDRV_PCM_INFO_MMAP | 1580 SNDRV_PCM_INFO_INTERLEAVED 1670 SNDRV_PCM_INFO_INTERLEAVED | 1581 SNDRV_PCM_INFO_BLOCK_TRANS 1671 SNDRV_PCM_INFO_BLOCK_TRANSFER | 1582 SNDRV_PCM_INFO_MMAP_VALID) 1672 SNDRV_PCM_INFO_MMAP_VALID), 1583 .formats = SNDRV_PCM_FMTBI 1673 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1584 .rates = SNDRV_PCM_RATE_ 1674 .rates = SNDRV_PCM_RATE_8000_48000, 1585 .rate_min = 8000, 1675 .rate_min = 8000, 1586 .rate_max = 48000, 1676 .rate_max = 48000, 1587 .channels_min = 2, 1677 .channels_min = 2, 1588 .channels_max = 2, 1678 .channels_max = 2, 1589 .buffer_bytes_max = 32768, 1679 .buffer_bytes_max = 32768, 1590 .period_bytes_min = 4096, 1680 .period_bytes_min = 4096, 1591 .period_bytes_max = 32768, 1681 .period_bytes_max = 32768, 1592 .periods_min = 1, 1682 .periods_min = 1, 1593 .periods_max = 1024, 1683 .periods_max = 1024, 1594 }; 1684 }; 1595 1685 1596 - The ``info`` field contains the type and c 1686 - The ``info`` field contains the type and capabilities of this 1597 PCM. The bit flags are defined in ``<sound !! 1687 pcm. The bit flags are defined in ``<sound/asound.h>`` as 1598 ``SNDRV_PCM_INFO_XXX``. Here, at least, yo 1688 ``SNDRV_PCM_INFO_XXX``. Here, at least, you have to specify whether 1599 mmap is supported and which interleaving f !! 1689 the mmap is supported and which interleaved format is 1600 supported. When the hardware supports mmap 1690 supported. When the hardware supports mmap, add the 1601 ``SNDRV_PCM_INFO_MMAP`` flag here. When th 1691 ``SNDRV_PCM_INFO_MMAP`` flag here. When the hardware supports the 1602 interleaved or the non-interleaved formats !! 1692 interleaved or the non-interleaved formats, 1603 ``SNDRV_PCM_INFO_INTERLEAVED`` or ``SNDRV_ 1693 ``SNDRV_PCM_INFO_INTERLEAVED`` or ``SNDRV_PCM_INFO_NONINTERLEAVED`` 1604 flag must be set, respectively. If both ar 1694 flag must be set, respectively. If both are supported, you can set 1605 both, too. 1695 both, too. 1606 1696 1607 In the above example, ``MMAP_VALID`` and ` 1697 In the above example, ``MMAP_VALID`` and ``BLOCK_TRANSFER`` are 1608 specified for the OSS mmap mode. Usually b 1698 specified for the OSS mmap mode. Usually both are set. Of course, 1609 ``MMAP_VALID`` is set only if mmap is real !! 1699 ``MMAP_VALID`` is set only if the mmap is really supported. 1610 1700 1611 The other possible flags are ``SNDRV_PCM_I 1701 The other possible flags are ``SNDRV_PCM_INFO_PAUSE`` and 1612 ``SNDRV_PCM_INFO_RESUME``. The ``PAUSE`` b !! 1702 ``SNDRV_PCM_INFO_RESUME``. The ``PAUSE`` bit means that the pcm 1613 supports the “pause” operation, while 1703 supports the “pause” operation, while the ``RESUME`` bit means that 1614 the PCM supports the full “suspend/resum !! 1704 the pcm supports the full “suspend/resume” operation. If the 1615 ``PAUSE`` flag is set, the ``trigger`` cal 1705 ``PAUSE`` flag is set, the ``trigger`` callback below must handle 1616 the corresponding (pause push/release) com 1706 the corresponding (pause push/release) commands. The suspend/resume 1617 trigger commands can be defined even witho 1707 trigger commands can be defined even without the ``RESUME`` 1618 flag. See the `Power Management`_ section !! 1708 flag. See `Power Management`_ section for details. 1619 1709 1620 When the PCM substreams can be synchronize 1710 When the PCM substreams can be synchronized (typically, 1621 synchronized start/stop of a playback and !! 1711 synchronized start/stop of a playback and a capture streams), you 1622 can give ``SNDRV_PCM_INFO_SYNC_START``, to 1712 can give ``SNDRV_PCM_INFO_SYNC_START``, too. In this case, you'll 1623 need to check the linked-list of PCM subst 1713 need to check the linked-list of PCM substreams in the trigger 1624 callback. This will be described in a late !! 1714 callback. This will be described in the later section. 1625 1715 1626 - The ``formats`` field contains the bit-fla !! 1716 - ``formats`` field contains the bit-flags of supported formats 1627 (``SNDRV_PCM_FMTBIT_XXX``). If the hardwar 1717 (``SNDRV_PCM_FMTBIT_XXX``). If the hardware supports more than one 1628 format, give all or'ed bits. In the exampl 1718 format, give all or'ed bits. In the example above, the signed 16bit 1629 little-endian format is specified. 1719 little-endian format is specified. 1630 1720 1631 - The ``rates`` field contains the bit-flags !! 1721 - ``rates`` field contains the bit-flags of supported rates 1632 (``SNDRV_PCM_RATE_XXX``). When the chip su 1722 (``SNDRV_PCM_RATE_XXX``). When the chip supports continuous rates, 1633 pass the ``CONTINUOUS`` bit additionally. !! 1723 pass ``CONTINUOUS`` bit additionally. The pre-defined rate bits are 1634 are provided only for typical rates. If yo !! 1724 provided only for typical rates. If your chip supports 1635 unconventional rates, you need to add the 1725 unconventional rates, you need to add the ``KNOT`` bit and set up 1636 the hardware constraint manually (explaine 1726 the hardware constraint manually (explained later). 1637 1727 1638 - ``rate_min`` and ``rate_max`` define the m 1728 - ``rate_min`` and ``rate_max`` define the minimum and maximum sample 1639 rate. This should correspond somehow to `` 1729 rate. This should correspond somehow to ``rates`` bits. 1640 1730 1641 - ``channels_min`` and ``channels_max`` defi !! 1731 - ``channel_min`` and ``channel_max`` define, as you might already 1642 expected, the minimum and maximum number o 1732 expected, the minimum and maximum number of channels. 1643 1733 1644 - ``buffer_bytes_max`` defines the maximum b 1734 - ``buffer_bytes_max`` defines the maximum buffer size in 1645 bytes. There is no ``buffer_bytes_min`` fi 1735 bytes. There is no ``buffer_bytes_min`` field, since it can be 1646 calculated from the minimum period size an 1736 calculated from the minimum period size and the minimum number of 1647 periods. Meanwhile, ``period_bytes_min`` a !! 1737 periods. Meanwhile, ``period_bytes_min`` and define the minimum and 1648 define the minimum and maximum size of the !! 1738 maximum size of the period in bytes. ``periods_max`` and 1649 ``periods_max`` and ``periods_min`` define !! 1739 ``periods_min`` define the maximum and minimum number of periods in 1650 number of periods in the buffer. !! 1740 the buffer. 1651 1741 1652 The “period” is a term that correspond 1742 The “period” is a term that corresponds to a fragment in the OSS 1653 world. The period defines the point at whi !! 1743 world. The period defines the size at which a PCM interrupt is 1654 generated. This point strongly depends on !! 1744 generated. This size strongly depends on the hardware. Generally, 1655 a smaller period size will give you more i !! 1745 the smaller period size will give you more interrupts, that is, 1656 in being able to fill/drain the buffer mor !! 1746 more controls. In the case of capture, this size defines the input 1657 capture, this size defines the input laten !! 1747 latency. On the other hand, the whole buffer size defines the 1658 the whole buffer size defines the output l !! 1748 output latency for the playback direction. 1659 direction. << 1660 1749 1661 - There is also a field ``fifo_size``. This 1750 - There is also a field ``fifo_size``. This specifies the size of the 1662 hardware FIFO, but currently it is neither !! 1751 hardware FIFO, but currently it is neither used in the driver nor 1663 in the alsa-lib. So, you can ignore this f 1752 in the alsa-lib. So, you can ignore this field. 1664 1753 1665 PCM Configurations 1754 PCM Configurations 1666 ~~~~~~~~~~~~~~~~~~ 1755 ~~~~~~~~~~~~~~~~~~ 1667 1756 1668 Ok, let's go back again to the PCM runtime re 1757 Ok, let's go back again to the PCM runtime records. The most 1669 frequently referred records in the runtime in 1758 frequently referred records in the runtime instance are the PCM 1670 configurations. The PCM configurations are st 1759 configurations. The PCM configurations are stored in the runtime 1671 instance after the application sends ``hw_par 1760 instance after the application sends ``hw_params`` data via 1672 alsa-lib. There are many fields copied from h 1761 alsa-lib. There are many fields copied from hw_params and sw_params 1673 structs. For example, ``format`` holds the fo 1762 structs. For example, ``format`` holds the format type chosen by the 1674 application. This field contains the enum val 1763 application. This field contains the enum value 1675 ``SNDRV_PCM_FORMAT_XXX``. 1764 ``SNDRV_PCM_FORMAT_XXX``. 1676 1765 1677 One thing to be noted is that the configured 1766 One thing to be noted is that the configured buffer and period sizes 1678 are stored in “frames” in the runtime. In 1767 are stored in “frames” in the runtime. In the ALSA world, ``1 frame = 1679 channels \* samples-size``. For conversion be 1768 channels \* samples-size``. For conversion between frames and bytes, 1680 you can use the :c:func:`frames_to_bytes()` a 1769 you can use the :c:func:`frames_to_bytes()` and 1681 :c:func:`bytes_to_frames()` helper functions: !! 1770 :c:func:`bytes_to_frames()` helper functions. >> 1771 >> 1772 :: 1682 1773 1683 period_bytes = frames_to_bytes(runtime, run 1774 period_bytes = frames_to_bytes(runtime, runtime->period_size); 1684 1775 1685 Also, many software parameters (sw_params) ar 1776 Also, many software parameters (sw_params) are stored in frames, too. 1686 Please check the type of the field. ``snd_pcm !! 1777 Please check the type of the field. ``snd_pcm_uframes_t`` is for the 1687 frames as unsigned integer while ``snd_pcm_sf !! 1778 frames as unsigned integer while ``snd_pcm_sframes_t`` is for the 1688 frames as signed integer. 1779 frames as signed integer. 1689 1780 1690 DMA Buffer Information 1781 DMA Buffer Information 1691 ~~~~~~~~~~~~~~~~~~~~~~ 1782 ~~~~~~~~~~~~~~~~~~~~~~ 1692 1783 1693 The DMA buffer is defined by the following fo !! 1784 The DMA buffer is defined by the following four fields, ``dma_area``, 1694 ``dma_addr``, ``dma_bytes`` and ``dma_private !! 1785 ``dma_addr``, ``dma_bytes`` and ``dma_private``. The ``dma_area`` 1695 holds the buffer pointer (the logical address 1786 holds the buffer pointer (the logical address). You can call 1696 :c:func:`memcpy()` from/to this pointer. Mean 1787 :c:func:`memcpy()` from/to this pointer. Meanwhile, ``dma_addr`` holds 1697 the physical address of the buffer. This fiel 1788 the physical address of the buffer. This field is specified only when 1698 the buffer is a linear buffer. ``dma_bytes`` !! 1789 the buffer is a linear buffer. ``dma_bytes`` holds the size of buffer 1699 buffer in bytes. ``dma_private`` is used for !! 1790 in bytes. ``dma_private`` is used for the ALSA DMA allocator. 1700 1791 1701 If you use either the managed buffer allocati !! 1792 If you use a standard ALSA function, 1702 API function :c:func:`snd_pcm_lib_malloc_page !! 1793 :c:func:`snd_pcm_lib_malloc_pages()`, for allocating the buffer, 1703 these fields are set by the ALSA middle layer 1794 these fields are set by the ALSA middle layer, and you should *not* 1704 change them by yourself. You can read them bu 1795 change them by yourself. You can read them but not write them. On the 1705 other hand, if you want to allocate the buffe 1796 other hand, if you want to allocate the buffer by yourself, you'll 1706 need to manage it in the hw_params callback. !! 1797 need to manage it in hw_params callback. At least, ``dma_bytes`` is 1707 mandatory. ``dma_area`` is necessary when the 1798 mandatory. ``dma_area`` is necessary when the buffer is mmapped. If 1708 your driver doesn't support mmap, this field 1799 your driver doesn't support mmap, this field is not 1709 necessary. ``dma_addr`` is also optional. You 1800 necessary. ``dma_addr`` is also optional. You can use dma_private as 1710 you like, too. 1801 you like, too. 1711 1802 1712 Running Status 1803 Running Status 1713 ~~~~~~~~~~~~~~ 1804 ~~~~~~~~~~~~~~ 1714 1805 1715 The running status can be referred via ``runt 1806 The running status can be referred via ``runtime->status``. This is 1716 a pointer to a struct snd_pcm_mmap_status rec !! 1807 the pointer to the :c:type:`struct snd_pcm_mmap_status 1717 For example, you can get the current !! 1808 <snd_pcm_mmap_status>` record. For example, you can get the current 1718 DMA hardware pointer via ``runtime->status->h 1809 DMA hardware pointer via ``runtime->status->hw_ptr``. 1719 1810 1720 The DMA application pointer can be referred v 1811 The DMA application pointer can be referred via ``runtime->control``, 1721 which points to a struct snd_pcm_mmap_control !! 1812 which points to the :c:type:`struct snd_pcm_mmap_control 1722 However, accessing this value directly is not !! 1813 <snd_pcm_mmap_control>` record. However, accessing directly to >> 1814 this value is not recommended. 1723 1815 1724 Private Data 1816 Private Data 1725 ~~~~~~~~~~~~ 1817 ~~~~~~~~~~~~ 1726 1818 1727 You can allocate a record for the substream a 1819 You can allocate a record for the substream and store it in 1728 ``runtime->private_data``. Usually, this is d 1820 ``runtime->private_data``. Usually, this is done in the `PCM open 1729 callback`_. Don't mix this with ``pcm->privat 1821 callback`_. Don't mix this with ``pcm->private_data``. The 1730 ``pcm->private_data`` usually points to the c 1822 ``pcm->private_data`` usually points to the chip instance assigned 1731 statically at creation time of the PCM device !! 1823 statically at the creation of PCM, while the ``runtime->private_data`` 1732 ``runtime->private_data`` !! 1824 points to a dynamic data structure created at the PCM open 1733 points to a dynamic data structure created in !! 1825 callback. 1734 callback:: !! 1826 >> 1827 :: 1735 1828 1736 static int snd_xxx_open(struct snd_pcm_subs 1829 static int snd_xxx_open(struct snd_pcm_substream *substream) 1737 { 1830 { 1738 struct my_pcm_data *data; 1831 struct my_pcm_data *data; 1739 .... 1832 .... 1740 data = kmalloc(sizeof(*data), GFP_K 1833 data = kmalloc(sizeof(*data), GFP_KERNEL); 1741 substream->runtime->private_data = 1834 substream->runtime->private_data = data; 1742 .... 1835 .... 1743 } 1836 } 1744 1837 1745 1838 1746 The allocated object must be released in the 1839 The allocated object must be released in the `close callback`_. 1747 1840 1748 Operators 1841 Operators 1749 --------- 1842 --------- 1750 1843 1751 OK, now let me give details about each PCM ca !! 1844 OK, now let me give details about each pcm callback (``ops``). In 1752 general, every callback must return 0 if succ 1845 general, every callback must return 0 if successful, or a negative 1753 error number such as ``-EINVAL``. To choose a 1846 error number such as ``-EINVAL``. To choose an appropriate error 1754 number, it is advised to check what value oth 1847 number, it is advised to check what value other parts of the kernel 1755 return when the same kind of request fails. 1848 return when the same kind of request fails. 1756 1849 1757 Each callback function takes at least one arg !! 1850 The callback function takes at least the argument with :c:type:`struct 1758 struct snd_pcm_substream pointer. To retrieve !! 1851 snd_pcm_substream <snd_pcm_substream>` pointer. To retrieve the chip 1759 record from the given substream instance, you 1852 record from the given substream instance, you can use the following 1760 macro:: !! 1853 macro. >> 1854 >> 1855 :: 1761 1856 1762 int xxx(...) { !! 1857 int xxx() { 1763 struct mychip *chip = snd_pcm_subst 1858 struct mychip *chip = snd_pcm_substream_chip(substream); 1764 .... 1859 .... 1765 } 1860 } 1766 1861 1767 The macro reads ``substream->private_data``, 1862 The macro reads ``substream->private_data``, which is a copy of 1768 ``pcm->private_data``. You can override the f 1863 ``pcm->private_data``. You can override the former if you need to 1769 assign different data records per PCM substre 1864 assign different data records per PCM substream. For example, the 1770 cmi8330 driver assigns different ``private_da 1865 cmi8330 driver assigns different ``private_data`` for playback and 1771 capture directions, because it uses two diffe 1866 capture directions, because it uses two different codecs (SB- and 1772 AD-compatible) for different directions. 1867 AD-compatible) for different directions. 1773 1868 1774 PCM open callback 1869 PCM open callback 1775 ~~~~~~~~~~~~~~~~~ 1870 ~~~~~~~~~~~~~~~~~ 1776 1871 1777 :: 1872 :: 1778 1873 1779 static int snd_xxx_open(struct snd_pcm_subs 1874 static int snd_xxx_open(struct snd_pcm_substream *substream); 1780 1875 1781 This is called when a PCM substream is opened !! 1876 This is called when a pcm substream is opened. 1782 1877 1783 At least, here you have to initialize the ``r 1878 At least, here you have to initialize the ``runtime->hw`` 1784 record. Typically, this is done like this:: !! 1879 record. Typically, this is done by like this: >> 1880 >> 1881 :: 1785 1882 1786 static int snd_xxx_open(struct snd_pcm_subs 1883 static int snd_xxx_open(struct snd_pcm_substream *substream) 1787 { 1884 { 1788 struct mychip *chip = snd_pcm_subst 1885 struct mychip *chip = snd_pcm_substream_chip(substream); 1789 struct snd_pcm_runtime *runtime = s 1886 struct snd_pcm_runtime *runtime = substream->runtime; 1790 1887 1791 runtime->hw = snd_mychip_playback_h 1888 runtime->hw = snd_mychip_playback_hw; 1792 return 0; 1889 return 0; 1793 } 1890 } 1794 1891 1795 where ``snd_mychip_playback_hw`` is the pre-d 1892 where ``snd_mychip_playback_hw`` is the pre-defined hardware 1796 description. 1893 description. 1797 1894 1798 You can allocate private data in this callbac !! 1895 You can allocate a private data in this callback, as described in 1799 `Private Data`_ section. 1896 `Private Data`_ section. 1800 1897 1801 If the hardware configuration needs more cons 1898 If the hardware configuration needs more constraints, set the hardware 1802 constraints here, too. See Constraints_ for m 1899 constraints here, too. See Constraints_ for more details. 1803 1900 1804 close callback 1901 close callback 1805 ~~~~~~~~~~~~~~ 1902 ~~~~~~~~~~~~~~ 1806 1903 1807 :: 1904 :: 1808 1905 1809 static int snd_xxx_close(struct snd_pcm_sub 1906 static int snd_xxx_close(struct snd_pcm_substream *substream); 1810 1907 1811 1908 1812 Obviously, this is called when a PCM substrea !! 1909 Obviously, this is called when a pcm substream is closed. 1813 1910 1814 Any private instance for a PCM substream allo !! 1911 Any private instance for a pcm substream allocated in the ``open`` 1815 callback will be released here:: !! 1912 callback will be released here. >> 1913 >> 1914 :: 1816 1915 1817 static int snd_xxx_close(struct snd_pcm_sub 1916 static int snd_xxx_close(struct snd_pcm_substream *substream) 1818 { 1917 { 1819 .... 1918 .... 1820 kfree(substream->runtime->private_d 1919 kfree(substream->runtime->private_data); 1821 .... 1920 .... 1822 } 1921 } 1823 1922 1824 ioctl callback 1923 ioctl callback 1825 ~~~~~~~~~~~~~~ 1924 ~~~~~~~~~~~~~~ 1826 1925 1827 This is used for any special call to PCM ioct !! 1926 This is used for any special call to pcm ioctls. But usually you can 1828 leave it NULL, then the PCM core calls the ge !! 1927 pass a generic ioctl callback, :c:func:`snd_pcm_lib_ioctl()`. 1829 function :c:func:`snd_pcm_lib_ioctl()`. If y << 1830 unique setup of channel info or reset procedu << 1831 callback function here. << 1832 1928 1833 hw_params callback 1929 hw_params callback 1834 ~~~~~~~~~~~~~~~~~~~ 1930 ~~~~~~~~~~~~~~~~~~~ 1835 1931 1836 :: 1932 :: 1837 1933 1838 static int snd_xxx_hw_params(struct snd_pcm 1934 static int snd_xxx_hw_params(struct snd_pcm_substream *substream, 1839 struct snd_pcm 1935 struct snd_pcm_hw_params *hw_params); 1840 1936 1841 This is called when the hardware parameters ( !! 1937 This is called when the hardware parameter (``hw_params``) is set up 1842 by the application, that is, once when the bu 1938 by the application, that is, once when the buffer size, the period 1843 size, the format, etc. are defined for the PC !! 1939 size, the format, etc. are defined for the pcm substream. 1844 1940 1845 Many hardware setups should be done in this c 1941 Many hardware setups should be done in this callback, including the 1846 allocation of buffers. 1942 allocation of buffers. 1847 1943 1848 Parameters to be initialized are retrieved by !! 1944 Parameters to be initialized are retrieved by 1849 :c:func:`params_xxx()` macros. !! 1945 :c:func:`params_xxx()` macros. To allocate buffer, you can call a >> 1946 helper function, 1850 1947 1851 When you choose managed buffer allocation mod !! 1948 :: 1852 a buffer is already allocated before this cal << 1853 called. Alternatively, you can call a helper << 1854 allocating the buffer:: << 1855 1949 1856 snd_pcm_lib_malloc_pages(substream, params_ 1950 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 1857 1951 1858 :c:func:`snd_pcm_lib_malloc_pages()` is avail 1952 :c:func:`snd_pcm_lib_malloc_pages()` is available only when the 1859 DMA buffers have been pre-allocated. See the 1953 DMA buffers have been pre-allocated. See the section `Buffer Types`_ 1860 for more details. 1954 for more details. 1861 1955 1862 Note that this one and the ``prepare`` callba !! 1956 Note that this and ``prepare`` callbacks may be called multiple times 1863 times per initialization. For example, the OS !! 1957 per initialization. For example, the OSS emulation may call these 1864 callbacks at each change via its ioctl. 1958 callbacks at each change via its ioctl. 1865 1959 1866 Thus, you need to be careful not to allocate 1960 Thus, you need to be careful not to allocate the same buffers many 1867 times, which will lead to memory leaks! Calli 1961 times, which will lead to memory leaks! Calling the helper function 1868 above many times is OK. It will release the p 1962 above many times is OK. It will release the previous buffer 1869 automatically when it was already allocated. 1963 automatically when it was already allocated. 1870 1964 1871 Another note is that this callback is non-ato !! 1965 Another note is that this callback is non-atomic (schedulable) as 1872 default, i.e. when no ``nonatomic`` flag set. 1966 default, i.e. when no ``nonatomic`` flag set. This is important, 1873 because the ``trigger`` callback is atomic (n 1967 because the ``trigger`` callback is atomic (non-schedulable). That is, 1874 mutexes or any schedule-related functions are !! 1968 mutexes or any schedule-related functions are not available in 1875 ``trigger`` callback. Please see the subsecti 1969 ``trigger`` callback. Please see the subsection Atomicity_ for 1876 details. 1970 details. 1877 1971 1878 hw_free callback 1972 hw_free callback 1879 ~~~~~~~~~~~~~~~~~ 1973 ~~~~~~~~~~~~~~~~~ 1880 1974 1881 :: 1975 :: 1882 1976 1883 static int snd_xxx_hw_free(struct snd_pcm_s 1977 static int snd_xxx_hw_free(struct snd_pcm_substream *substream); 1884 1978 1885 This is called to release the resources alloc 1979 This is called to release the resources allocated via 1886 ``hw_params``. !! 1980 ``hw_params``. For example, releasing the buffer via 1887 !! 1981 :c:func:`snd_pcm_lib_malloc_pages()` is done by calling the 1888 This function is always called before the clo !! 1982 following: 1889 Also, the callback may be called multiple tim << 1890 whether each resource was already released. << 1891 1983 1892 When you have chosen managed buffer allocatio !! 1984 :: 1893 substream, the allocated PCM buffer will be a << 1894 after this callback gets called. Otherwise y << 1895 buffer manually. Typically, when the buffer << 1896 pre-allocated pool, you can use the standard << 1897 :c:func:`snd_pcm_lib_malloc_pages()` like:: << 1898 1985 1899 snd_pcm_lib_free_pages(substream); 1986 snd_pcm_lib_free_pages(substream); 1900 1987 >> 1988 This function is always called before the close callback is called. >> 1989 Also, the callback may be called multiple times, too. Keep track >> 1990 whether the resource was already released. >> 1991 1901 prepare callback 1992 prepare callback 1902 ~~~~~~~~~~~~~~~~ 1993 ~~~~~~~~~~~~~~~~ 1903 1994 1904 :: 1995 :: 1905 1996 1906 static int snd_xxx_prepare(struct snd_pcm_s 1997 static int snd_xxx_prepare(struct snd_pcm_substream *substream); 1907 1998 1908 This callback is called when the PCM is “pr !! 1999 This callback is called when the pcm is “prepared”. You can set the 1909 format type, sample rate, etc. here. The diff 2000 format type, sample rate, etc. here. The difference from ``hw_params`` 1910 is that the ``prepare`` callback will be call 2001 is that the ``prepare`` callback will be called each time 1911 :c:func:`snd_pcm_prepare()` is called, i.e. w 2002 :c:func:`snd_pcm_prepare()` is called, i.e. when recovering after 1912 underruns, etc. 2003 underruns, etc. 1913 2004 1914 Note that this callback is non-atomic. You ca !! 2005 Note that this callback is now non-atomic. You can use 1915 schedule-related functions safely in this cal 2006 schedule-related functions safely in this callback. 1916 2007 1917 In this and the following callbacks, you can 2008 In this and the following callbacks, you can refer to the values via 1918 the runtime record, ``substream->runtime``. F 2009 the runtime record, ``substream->runtime``. For example, to get the 1919 current rate, format or channels, access to ` 2010 current rate, format or channels, access to ``runtime->rate``, 1920 ``runtime->format`` or ``runtime->channels``, 2011 ``runtime->format`` or ``runtime->channels``, respectively. The 1921 physical address of the allocated buffer is s 2012 physical address of the allocated buffer is set to 1922 ``runtime->dma_area``. The buffer and period 2013 ``runtime->dma_area``. The buffer and period sizes are in 1923 ``runtime->buffer_size`` and ``runtime->perio 2014 ``runtime->buffer_size`` and ``runtime->period_size``, respectively. 1924 2015 1925 Be careful that this callback will be called 2016 Be careful that this callback will be called many times at each setup, 1926 too. 2017 too. 1927 2018 1928 trigger callback 2019 trigger callback 1929 ~~~~~~~~~~~~~~~~ 2020 ~~~~~~~~~~~~~~~~ 1930 2021 1931 :: 2022 :: 1932 2023 1933 static int snd_xxx_trigger(struct snd_pcm_s 2024 static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd); 1934 2025 1935 This is called when the PCM is started, stopp !! 2026 This is called when the pcm is started, stopped or paused. >> 2027 >> 2028 Which action is specified in the second argument, >> 2029 ``SNDRV_PCM_TRIGGER_XXX`` in ``<sound/pcm.h>``. At least, the ``START`` >> 2030 and ``STOP`` commands must be defined in this callback. 1936 2031 1937 The action is specified in the second argumen !! 2032 :: 1938 defined in ``<sound/pcm.h>``. At least, the ` << 1939 and ``STOP`` commands must be defined in this << 1940 2033 1941 switch (cmd) { 2034 switch (cmd) { 1942 case SNDRV_PCM_TRIGGER_START: 2035 case SNDRV_PCM_TRIGGER_START: 1943 /* do something to start the PCM en 2036 /* do something to start the PCM engine */ 1944 break; 2037 break; 1945 case SNDRV_PCM_TRIGGER_STOP: 2038 case SNDRV_PCM_TRIGGER_STOP: 1946 /* do something to stop the PCM eng 2039 /* do something to stop the PCM engine */ 1947 break; 2040 break; 1948 default: 2041 default: 1949 return -EINVAL; 2042 return -EINVAL; 1950 } 2043 } 1951 2044 1952 When the PCM supports the pause operation (gi !! 2045 When the pcm supports the pause operation (given in the info field of 1953 the hardware table), the ``PAUSE_PUSH`` and ` 2046 the hardware table), the ``PAUSE_PUSH`` and ``PAUSE_RELEASE`` commands 1954 must be handled here, too. The former is the !! 2047 must be handled here, too. The former is the command to pause the pcm, 1955 and the latter to restart the PCM again. !! 2048 and the latter to restart the pcm again. 1956 2049 1957 When the PCM supports the suspend/resume oper !! 2050 When the pcm supports the suspend/resume operation, regardless of full 1958 or partial suspend/resume support, the ``SUSP 2051 or partial suspend/resume support, the ``SUSPEND`` and ``RESUME`` 1959 commands must be handled, too. These commands 2052 commands must be handled, too. These commands are issued when the 1960 power-management status is changed. Obviously 2053 power-management status is changed. Obviously, the ``SUSPEND`` and 1961 ``RESUME`` commands suspend and resume the PC !! 2054 ``RESUME`` commands suspend and resume the pcm substream, and usually, 1962 they are identical to the ``STOP`` and ``STAR 2055 they are identical to the ``STOP`` and ``START`` commands, respectively. 1963 See the `Power Management`_ section for detai 2056 See the `Power Management`_ section for details. 1964 2057 1965 As mentioned, this callback is atomic by defa !! 2058 As mentioned, this callback is atomic as default unless ``nonatomic`` 1966 flag set, and you cannot call functions which 2059 flag set, and you cannot call functions which may sleep. The 1967 ``trigger`` callback should be as minimal as 2060 ``trigger`` callback should be as minimal as possible, just really 1968 triggering the DMA. The other stuff should be !! 2061 triggering the DMA. The other stuff should be initialized 1969 ``hw_params`` and ``prepare`` callbacks prope 2062 ``hw_params`` and ``prepare`` callbacks properly beforehand. 1970 2063 1971 sync_stop callback << 1972 ~~~~~~~~~~~~~~~~~~ << 1973 << 1974 :: << 1975 << 1976 static int snd_xxx_sync_stop(struct snd_pcm << 1977 << 1978 This callback is optional, and NULL can be pa << 1979 the PCM core stops the stream, before it chan << 1980 ``prepare``, ``hw_params`` or ``hw_free``. << 1981 Since the IRQ handler might be still pending, << 1982 the pending task finishes before moving to th << 1983 might lead to a crash due to resource conflic << 1984 resources. A typical behavior is to call a s << 1985 like :c:func:`synchronize_irq()` here. << 1986 << 1987 For the majority of drivers that need only a << 1988 :c:func:`synchronize_irq()`, there is a simpl << 1989 While keeping the ``sync_stop`` PCM callback << 1990 the ``card->sync_irq`` field to the returned << 1991 requesting an IRQ, instead. Then PCM core w << 1992 :c:func:`synchronize_irq()` with the given IR << 1993 << 1994 If the IRQ handler is released by the card de << 1995 to clear ``card->sync_irq``, as the card itse << 1996 So, usually you'll need to add just a single << 1997 ``card->sync_irq`` in the driver code unless << 1998 the IRQ. When the driver frees and re-acquir << 1999 (e.g. for suspend/resume), it needs to clear << 2000 ``card->sync_irq`` again appropriately. << 2001 << 2002 pointer callback 2064 pointer callback 2003 ~~~~~~~~~~~~~~~~ 2065 ~~~~~~~~~~~~~~~~ 2004 2066 2005 :: 2067 :: 2006 2068 2007 static snd_pcm_uframes_t snd_xxx_pointer(st 2069 static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream) 2008 2070 2009 This callback is called when the PCM middle l 2071 This callback is called when the PCM middle layer inquires the current 2010 hardware position in the buffer. The position !! 2072 hardware position on the buffer. The position must be returned in 2011 frames, ranging from 0 to ``buffer_size - 1`` 2073 frames, ranging from 0 to ``buffer_size - 1``. 2012 2074 2013 This is usually called from the buffer-update !! 2075 This is called usually from the buffer-update routine in the pcm 2014 middle layer, which is invoked when :c:func:` 2076 middle layer, which is invoked when :c:func:`snd_pcm_period_elapsed()` 2015 is called by the interrupt routine. Then the !! 2077 is called in the interrupt routine. Then the pcm middle layer updates 2016 the position and calculates the available spa 2078 the position and calculates the available space, and wakes up the 2017 sleeping poll threads, etc. 2079 sleeping poll threads, etc. 2018 2080 2019 This callback is also atomic by default. !! 2081 This callback is also atomic as default. 2020 2082 2021 copy and fill_silence ops !! 2083 copy and silence callbacks 2022 ~~~~~~~~~~~~~~~~~~~~~~~~~ !! 2084 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 2023 2085 2024 These callbacks are not mandatory, and can be 2086 These callbacks are not mandatory, and can be omitted in most cases. 2025 These callbacks are used when the hardware bu 2087 These callbacks are used when the hardware buffer cannot be in the 2026 normal memory space. Some chips have their ow !! 2088 normal memory space. Some chips have their own buffer on the hardware 2027 which is not mappable. In such a case, you ha 2089 which is not mappable. In such a case, you have to transfer the data 2028 manually from the memory buffer to the hardwa 2090 manually from the memory buffer to the hardware buffer. Or, if the 2029 buffer is non-contiguous on both physical and 2091 buffer is non-contiguous on both physical and virtual memory spaces, 2030 these callbacks must be defined, too. 2092 these callbacks must be defined, too. 2031 2093 2032 If these two callbacks are defined, copy and 2094 If these two callbacks are defined, copy and set-silence operations 2033 are done by them. The details will be describ !! 2095 are done by them. The detailed will be described in the later section 2034 `Buffer and Memory Management`_. 2096 `Buffer and Memory Management`_. 2035 2097 2036 ack callback 2098 ack callback 2037 ~~~~~~~~~~~~ 2099 ~~~~~~~~~~~~ 2038 2100 2039 This callback is also not mandatory. This cal 2101 This callback is also not mandatory. This callback is called when the 2040 ``appl_ptr`` is updated in read or write oper 2102 ``appl_ptr`` is updated in read or write operations. Some drivers like 2041 emu10k1-fx and cs46xx need to track the curre 2103 emu10k1-fx and cs46xx need to track the current ``appl_ptr`` for the 2042 internal buffer, and this callback is useful 2104 internal buffer, and this callback is useful only for such a purpose. 2043 2105 2044 The callback function may return 0 or a negat !! 2106 This callback is atomic as default. 2045 return value is ``-EPIPE``, PCM core treats t << 2046 and changes the state to ``SNDRV_PCM_STATE_XR << 2047 << 2048 This callback is atomic by default. << 2049 2107 2050 page callback 2108 page callback 2051 ~~~~~~~~~~~~~ 2109 ~~~~~~~~~~~~~ 2052 2110 2053 This callback is optional too. The mmap calls !! 2111 This callback is optional too. This callback is used mainly for 2054 page fault address. !! 2112 non-contiguous buffers. The mmap calls this callback to get the page 2055 !! 2113 address. Some examples will be explained in the later section `Buffer 2056 You need no special callback for the standard !! 2114 and Memory Management`_, too. 2057 buffer. Hence this callback should be rarely << 2058 << 2059 mmap callback << 2060 ~~~~~~~~~~~~~ << 2061 << 2062 This is another optional callback for control << 2063 When defined, the PCM core calls this callbac << 2064 memory-mapped, instead of using the standard << 2065 If you need special handling (due to some arc << 2066 device-specific issues), implement everything << 2067 << 2068 2115 2069 PCM Interrupt Handler 2116 PCM Interrupt Handler 2070 --------------------- 2117 --------------------- 2071 2118 2072 The remainder of the PCM stuff is the PCM int !! 2119 The rest of pcm stuff is the PCM interrupt handler. The role of PCM 2073 of the PCM << 2074 interrupt handler in the sound driver is to u 2120 interrupt handler in the sound driver is to update the buffer position 2075 and to tell the PCM middle layer when the buf 2121 and to tell the PCM middle layer when the buffer position goes across 2076 the specified period boundary. To inform abou !! 2122 the prescribed period size. To inform this, call the 2077 :c:func:`snd_pcm_period_elapsed()` function. 2123 :c:func:`snd_pcm_period_elapsed()` function. 2078 2124 2079 There are several ways sound chips can genera !! 2125 There are several types of sound chips to generate the interrupts. 2080 2126 2081 Interrupts at the period (fragment) boundary 2127 Interrupts at the period (fragment) boundary 2082 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2128 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2083 2129 2084 This is the most frequently found type: the h 2130 This is the most frequently found type: the hardware generates an 2085 interrupt at each period boundary. In this ca 2131 interrupt at each period boundary. In this case, you can call 2086 :c:func:`snd_pcm_period_elapsed()` at each in 2132 :c:func:`snd_pcm_period_elapsed()` at each interrupt. 2087 2133 2088 :c:func:`snd_pcm_period_elapsed()` takes the 2134 :c:func:`snd_pcm_period_elapsed()` takes the substream pointer as 2089 its argument. Thus, you need to keep the subs 2135 its argument. Thus, you need to keep the substream pointer accessible 2090 from the chip instance. For example, define ` 2136 from the chip instance. For example, define ``substream`` field in the 2091 chip record to hold the current running subst 2137 chip record to hold the current running substream pointer, and set the 2092 pointer value at ``open`` callback (and reset 2138 pointer value at ``open`` callback (and reset at ``close`` callback). 2093 2139 2094 If you acquire a spinlock in the interrupt ha 2140 If you acquire a spinlock in the interrupt handler, and the lock is used 2095 in other PCM callbacks, too, then you have to !! 2141 in other pcm callbacks, too, then you have to release the lock before 2096 calling :c:func:`snd_pcm_period_elapsed()`, b 2142 calling :c:func:`snd_pcm_period_elapsed()`, because 2097 :c:func:`snd_pcm_period_elapsed()` calls othe !! 2143 :c:func:`snd_pcm_period_elapsed()` calls other pcm callbacks 2098 inside. 2144 inside. 2099 2145 2100 Typical code would look like:: !! 2146 Typical code would be like: >> 2147 >> 2148 :: 2101 2149 2102 2150 2103 static irqreturn_t snd_mychip_interrupt 2151 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) 2104 { 2152 { 2105 struct mychip *chip = dev_id; 2153 struct mychip *chip = dev_id; 2106 spin_lock(&chip->lock); 2154 spin_lock(&chip->lock); 2107 .... 2155 .... 2108 if (pcm_irq_invoked(chip)) { 2156 if (pcm_irq_invoked(chip)) { 2109 /* call updater, unlock 2157 /* call updater, unlock before it */ 2110 spin_unlock(&chip->lock 2158 spin_unlock(&chip->lock); 2111 snd_pcm_period_elapsed( 2159 snd_pcm_period_elapsed(chip->substream); 2112 spin_lock(&chip->lock); 2160 spin_lock(&chip->lock); 2113 /* acknowledge the inte 2161 /* acknowledge the interrupt if necessary */ 2114 } 2162 } 2115 .... 2163 .... 2116 spin_unlock(&chip->lock); 2164 spin_unlock(&chip->lock); 2117 return IRQ_HANDLED; 2165 return IRQ_HANDLED; 2118 } 2166 } 2119 2167 2120 Also, when the device can detect a buffer und << 2121 can notify the XRUN status to the PCM core by << 2122 :c:func:`snd_pcm_stop_xrun()`. This function << 2123 the PCM state to ``SNDRV_PCM_STATE_XRUN``. No << 2124 outside the PCM stream lock, hence it can't b << 2125 callback. << 2126 2168 2127 2169 2128 High frequency timer interrupts 2170 High frequency timer interrupts 2129 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2171 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2130 2172 2131 This happens when the hardware doesn't genera 2173 This happens when the hardware doesn't generate interrupts at the period 2132 boundary but issues timer interrupts at a fix 2174 boundary but issues timer interrupts at a fixed timer rate (e.g. es1968 2133 or ymfpci drivers). In this case, you need to 2175 or ymfpci drivers). In this case, you need to check the current hardware 2134 position and accumulate the processed sample 2176 position and accumulate the processed sample length at each interrupt. 2135 When the accumulated size exceeds the period 2177 When the accumulated size exceeds the period size, call 2136 :c:func:`snd_pcm_period_elapsed()` and reset 2178 :c:func:`snd_pcm_period_elapsed()` and reset the accumulator. 2137 2179 2138 Typical code would look as follows:: !! 2180 Typical code would be like the following. >> 2181 >> 2182 :: 2139 2183 2140 2184 2141 static irqreturn_t snd_mychip_interrupt 2185 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) 2142 { 2186 { 2143 struct mychip *chip = dev_id; 2187 struct mychip *chip = dev_id; 2144 spin_lock(&chip->lock); 2188 spin_lock(&chip->lock); 2145 .... 2189 .... 2146 if (pcm_irq_invoked(chip)) { 2190 if (pcm_irq_invoked(chip)) { 2147 unsigned int last_ptr, 2191 unsigned int last_ptr, size; 2148 /* get the current hard 2192 /* get the current hardware pointer (in frames) */ 2149 last_ptr = get_hw_ptr(c 2193 last_ptr = get_hw_ptr(chip); 2150 /* calculate the proces 2194 /* calculate the processed frames since the 2151 * last update 2195 * last update 2152 */ 2196 */ 2153 if (last_ptr < chip->la 2197 if (last_ptr < chip->last_ptr) 2154 size = runtime- 2198 size = runtime->buffer_size + last_ptr 2155 - chip 2199 - chip->last_ptr; 2156 else 2200 else 2157 size = last_ptr 2201 size = last_ptr - chip->last_ptr; 2158 /* remember the last up 2202 /* remember the last updated point */ 2159 chip->last_ptr = last_p 2203 chip->last_ptr = last_ptr; 2160 /* accumulate the size 2204 /* accumulate the size */ 2161 chip->size += size; 2205 chip->size += size; 2162 /* over the period boun 2206 /* over the period boundary? */ 2163 if (chip->size >= runti 2207 if (chip->size >= runtime->period_size) { 2164 /* reset the ac 2208 /* reset the accumulator */ 2165 chip->size %= r 2209 chip->size %= runtime->period_size; 2166 /* call updater 2210 /* call updater */ 2167 spin_unlock(&ch 2211 spin_unlock(&chip->lock); 2168 snd_pcm_period_ 2212 snd_pcm_period_elapsed(substream); 2169 spin_lock(&chip 2213 spin_lock(&chip->lock); 2170 } 2214 } 2171 /* acknowledge the inte 2215 /* acknowledge the interrupt if necessary */ 2172 } 2216 } 2173 .... 2217 .... 2174 spin_unlock(&chip->lock); 2218 spin_unlock(&chip->lock); 2175 return IRQ_HANDLED; 2219 return IRQ_HANDLED; 2176 } 2220 } 2177 2221 2178 2222 2179 2223 2180 On calling :c:func:`snd_pcm_period_elapsed()` 2224 On calling :c:func:`snd_pcm_period_elapsed()` 2181 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2225 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2182 2226 2183 In both cases, even if more than one period h !! 2227 In both cases, even if more than one period are elapsed, you don't have 2184 to call :c:func:`snd_pcm_period_elapsed()` ma 2228 to call :c:func:`snd_pcm_period_elapsed()` many times. Call only 2185 once. And the PCM layer will check the curren !! 2229 once. And the pcm layer will check the current hardware pointer and 2186 update to the latest status. 2230 update to the latest status. 2187 2231 2188 Atomicity 2232 Atomicity 2189 --------- 2233 --------- 2190 2234 2191 One of the most important (and thus difficult 2235 One of the most important (and thus difficult to debug) problems in 2192 kernel programming are race conditions. In th 2236 kernel programming are race conditions. In the Linux kernel, they are 2193 usually avoided via spin-locks, mutexes or se 2237 usually avoided via spin-locks, mutexes or semaphores. In general, if a 2194 race condition can happen in an interrupt han 2238 race condition can happen in an interrupt handler, it has to be managed 2195 atomically, and you have to use a spinlock to 2239 atomically, and you have to use a spinlock to protect the critical 2196 section. If the critical section is not in in !! 2240 session. If the critical section is not in interrupt handler code and if 2197 taking a relatively long time to execute is a 2241 taking a relatively long time to execute is acceptable, you should use 2198 mutexes or semaphores instead. 2242 mutexes or semaphores instead. 2199 2243 2200 As already seen, some PCM callbacks are atomi !! 2244 As already seen, some pcm callbacks are atomic and some are not. For 2201 example, the ``hw_params`` callback is non-at !! 2245 example, the ``hw_params`` callback is non-atomic, while ``trigger`` 2202 callback is atomic. This means, the latter is 2246 callback is atomic. This means, the latter is called already in a 2203 spinlock held by the PCM middle layer, the PC !! 2247 spinlock held by the PCM middle layer. Please take this atomicity into 2204 take this atomicity into account when you cho !! 2248 account when you choose a locking scheme in the callbacks. 2205 the callbacks. << 2206 2249 2207 In the atomic callbacks, you cannot use funct 2250 In the atomic callbacks, you cannot use functions which may call 2208 :c:func:`schedule()` or go to :c:func:`sleep( 2251 :c:func:`schedule()` or go to :c:func:`sleep()`. Semaphores and 2209 mutexes can sleep, and hence they cannot be u 2252 mutexes can sleep, and hence they cannot be used inside the atomic 2210 callbacks (e.g. ``trigger`` callback). To imp 2253 callbacks (e.g. ``trigger`` callback). To implement some delay in such a 2211 callback, please use :c:func:`udelay()` or :c 2254 callback, please use :c:func:`udelay()` or :c:func:`mdelay()`. 2212 2255 2213 All three atomic callbacks (trigger, pointer, 2256 All three atomic callbacks (trigger, pointer, and ack) are called with 2214 local interrupts disabled. 2257 local interrupts disabled. 2215 2258 2216 However, it is possible to request all PCM op !! 2259 The recent changes in PCM core code, however, allow all PCM operations 2217 This assumes that all call sites are in !! 2260 to be non-atomic. This assumes that the all caller sides are in 2218 non-atomic contexts. For example, the functio 2261 non-atomic contexts. For example, the function 2219 :c:func:`snd_pcm_period_elapsed()` is called 2262 :c:func:`snd_pcm_period_elapsed()` is called typically from the 2220 interrupt handler. But, if you set up the dri 2263 interrupt handler. But, if you set up the driver to use a threaded 2221 interrupt handler, this call can be in non-at 2264 interrupt handler, this call can be in non-atomic context, too. In such 2222 a case, you can set the ``nonatomic`` field o !! 2265 a case, you can set ``nonatomic`` filed of :c:type:`struct snd_pcm 2223 after creating it. When this flag is set, mut !! 2266 <snd_pcm>` object after creating it. When this flag is set, mutex 2224 in the PCM core instead of spin and rwlocks, !! 2267 and rwsem are used internally in the PCM core instead of spin and 2225 functions safely in a non-atomic !! 2268 rwlocks, so that you can call all PCM functions safely in a non-atomic 2226 context. 2269 context. 2227 2270 2228 Also, in some cases, you might need to call << 2229 :c:func:`snd_pcm_period_elapsed()` in the ato << 2230 period gets elapsed during ``ack`` or other c << 2231 variant that can be called inside the PCM str << 2232 :c:func:`snd_pcm_period_elapsed_under_stream_ << 2233 too. << 2234 << 2235 Constraints 2271 Constraints 2236 ----------- 2272 ----------- 2237 2273 2238 Due to physical limitations, hardware is not !! 2274 If your chip supports unconventional sample rates, or only the limited 2239 These limitations are expressed by setting co !! 2275 samples, you need to set a constraint for the condition. 2240 2276 2241 For example, in order to restrict the sample !! 2277 For example, in order to restrict the sample rates in the some supported 2242 values, use :c:func:`snd_pcm_hw_constraint_li 2278 values, use :c:func:`snd_pcm_hw_constraint_list()`. You need to 2243 call this function in the open callback:: !! 2279 call this function in the open callback. >> 2280 >> 2281 :: 2244 2282 2245 static unsigned int rates[] = 2283 static unsigned int rates[] = 2246 {4000, 10000, 22050, 44100}; 2284 {4000, 10000, 22050, 44100}; 2247 static struct snd_pcm_hw_constraint_lis 2285 static struct snd_pcm_hw_constraint_list constraints_rates = { 2248 .count = ARRAY_SIZE(rates), 2286 .count = ARRAY_SIZE(rates), 2249 .list = rates, 2287 .list = rates, 2250 .mask = 0, 2288 .mask = 0, 2251 }; 2289 }; 2252 2290 2253 static int snd_mychip_pcm_open(struct s 2291 static int snd_mychip_pcm_open(struct snd_pcm_substream *substream) 2254 { 2292 { 2255 int err; 2293 int err; 2256 .... 2294 .... 2257 err = snd_pcm_hw_constraint_lis 2295 err = snd_pcm_hw_constraint_list(substream->runtime, 0, 2258 2296 SNDRV_PCM_HW_PARAM_RATE, 2259 2297 &constraints_rates); 2260 if (err < 0) 2298 if (err < 0) 2261 return err; 2299 return err; 2262 .... 2300 .... 2263 } 2301 } 2264 2302 >> 2303 >> 2304 2265 There are many different constraints. Look at 2305 There are many different constraints. Look at ``sound/pcm.h`` for a 2266 complete list. You can even define your own c 2306 complete list. You can even define your own constraint rules. For 2267 example, let's suppose my_chip can manage a s 2307 example, let's suppose my_chip can manage a substream of 1 channel if 2268 and only if the format is ``S16_LE``, otherwi 2308 and only if the format is ``S16_LE``, otherwise it supports any format 2269 specified in struct snd_pcm_hardware (or in a !! 2309 specified in the :c:type:`struct snd_pcm_hardware 2270 constraint_list). You can build a rule like t !! 2310 <snd_pcm_hardware>` structure (or in any other >> 2311 constraint_list). You can build a rule like this: >> 2312 >> 2313 :: 2271 2314 2272 static int hw_rule_channels_by_format(s 2315 static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params, 2273 s 2316 struct snd_pcm_hw_rule *rule) 2274 { 2317 { 2275 struct snd_interval *c = hw_par 2318 struct snd_interval *c = hw_param_interval(params, 2276 SNDRV_PCM_HW_PARA 2319 SNDRV_PCM_HW_PARAM_CHANNELS); 2277 struct snd_mask *f = hw_param_m 2320 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); 2278 struct snd_interval ch; 2321 struct snd_interval ch; 2279 2322 2280 snd_interval_any(&ch); 2323 snd_interval_any(&ch); 2281 if (f->bits[0] == SNDRV_PCM_FMT 2324 if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) { 2282 ch.min = ch.max = 1; 2325 ch.min = ch.max = 1; 2283 ch.integer = 1; 2326 ch.integer = 1; 2284 return snd_interval_ref 2327 return snd_interval_refine(c, &ch); 2285 } 2328 } 2286 return 0; 2329 return 0; 2287 } 2330 } 2288 2331 2289 2332 2290 Then you need to call this function to add yo !! 2333 Then you need to call this function to add your rule: >> 2334 >> 2335 :: 2291 2336 2292 snd_pcm_hw_rule_add(substream->runtime, 0, 2337 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 2293 hw_rule_channels_by_for 2338 hw_rule_channels_by_format, NULL, 2294 SNDRV_PCM_HW_PARAM_FORM 2339 SNDRV_PCM_HW_PARAM_FORMAT, -1); 2295 2340 2296 The rule function is called when an applicati 2341 The rule function is called when an application sets the PCM format, and 2297 it refines the number of channels accordingly 2342 it refines the number of channels accordingly. But an application may 2298 set the number of channels before setting the 2343 set the number of channels before setting the format. Thus you also need 2299 to define the inverse rule:: !! 2344 to define the inverse rule: >> 2345 >> 2346 :: 2300 2347 2301 static int hw_rule_format_by_channels(s 2348 static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params, 2302 s 2349 struct snd_pcm_hw_rule *rule) 2303 { 2350 { 2304 struct snd_interval *c = hw_par 2351 struct snd_interval *c = hw_param_interval(params, 2305 SNDRV_PCM_HW_PARAM_CHANNE 2352 SNDRV_PCM_HW_PARAM_CHANNELS); 2306 struct snd_mask *f = hw_param_m 2353 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); 2307 struct snd_mask fmt; 2354 struct snd_mask fmt; 2308 2355 2309 snd_mask_any(&fmt); /* Init 2356 snd_mask_any(&fmt); /* Init the struct */ 2310 if (c->min < 2) { 2357 if (c->min < 2) { 2311 fmt.bits[0] &= SNDRV_PC 2358 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE; 2312 return snd_mask_refine( 2359 return snd_mask_refine(f, &fmt); 2313 } 2360 } 2314 return 0; 2361 return 0; 2315 } 2362 } 2316 2363 2317 2364 2318 ... and in the open callback:: !! 2365 ... and in the open callback: >> 2366 >> 2367 :: 2319 2368 2320 snd_pcm_hw_rule_add(substream->runtime, 0, 2369 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, 2321 hw_rule_format_by_chann 2370 hw_rule_format_by_channels, NULL, 2322 SNDRV_PCM_HW_PARAM_CHAN 2371 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 2323 2372 2324 One typical usage of the hw constraints is to << 2325 with the period size. By default, ALSA PCM c << 2326 buffer size to be aligned with the period siz << 2327 possible to have a combination like 256 perio << 2328 bytes. << 2329 << 2330 Many device chips, however, require the buffe << 2331 periods. In such a case, call << 2332 :c:func:`snd_pcm_hw_constraint_integer()` for << 2333 ``SNDRV_PCM_HW_PARAM_PERIODS``:: << 2334 << 2335 snd_pcm_hw_constraint_integer(substream->ru << 2336 SNDRV_PCM_HW_ << 2337 << 2338 This assures that the number of periods is in << 2339 size is aligned with the period size. << 2340 << 2341 The hw constraint is a very powerful mechanis << 2342 preferred PCM configuration, and there are re << 2343 I won't give more details here, rather I woul 2373 I won't give more details here, rather I would like to say, “Luke, use 2344 the source.” 2374 the source.” 2345 2375 2346 Control Interface 2376 Control Interface 2347 ================= 2377 ================= 2348 2378 2349 General 2379 General 2350 ------- 2380 ------- 2351 2381 2352 The control interface is used widely for many 2382 The control interface is used widely for many switches, sliders, etc. 2353 which are accessed from user-space. Its most 2383 which are accessed from user-space. Its most important use is the mixer 2354 interface. In other words, since ALSA 0.9.x, 2384 interface. In other words, since ALSA 0.9.x, all the mixer stuff is 2355 implemented on the control kernel API. 2385 implemented on the control kernel API. 2356 2386 2357 ALSA has a well-defined AC97 control module. 2387 ALSA has a well-defined AC97 control module. If your chip supports only 2358 the AC97 and nothing else, you can skip this 2388 the AC97 and nothing else, you can skip this section. 2359 2389 2360 The control API is defined in ``<sound/contro 2390 The control API is defined in ``<sound/control.h>``. Include this file 2361 if you want to add your own controls. 2391 if you want to add your own controls. 2362 2392 2363 Definition of Controls 2393 Definition of Controls 2364 ---------------------- 2394 ---------------------- 2365 2395 2366 To create a new control, you need to define t 2396 To create a new control, you need to define the following three 2367 callbacks: ``info``, ``get`` and ``put``. The 2397 callbacks: ``info``, ``get`` and ``put``. Then, define a 2368 struct snd_kcontrol_new record, such as:: !! 2398 :c:type:`struct snd_kcontrol_new <snd_kcontrol_new>` record, such as: >> 2399 >> 2400 :: 2369 2401 2370 2402 2371 static struct snd_kcontrol_new my_contr 2403 static struct snd_kcontrol_new my_control = { 2372 .iface = SNDRV_CTL_ELEM_IFACE_M 2404 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2373 .name = "PCM Playback Switch", 2405 .name = "PCM Playback Switch", 2374 .index = 0, 2406 .index = 0, 2375 .access = SNDRV_CTL_ELEM_ACCESS 2407 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 2376 .private_value = 0xffff, 2408 .private_value = 0xffff, 2377 .info = my_control_info, 2409 .info = my_control_info, 2378 .get = my_control_get, 2410 .get = my_control_get, 2379 .put = my_control_put 2411 .put = my_control_put 2380 }; 2412 }; 2381 2413 2382 2414 2383 The ``iface`` field specifies the control typ 2415 The ``iface`` field specifies the control type, 2384 ``SNDRV_CTL_ELEM_IFACE_XXX``, which is usuall 2416 ``SNDRV_CTL_ELEM_IFACE_XXX``, which is usually ``MIXER``. Use ``CARD`` 2385 for global controls that are not logically pa 2417 for global controls that are not logically part of the mixer. If the 2386 control is closely associated with some speci 2418 control is closely associated with some specific device on the sound 2387 card, use ``HWDEP``, ``PCM``, ``RAWMIDI``, `` 2419 card, use ``HWDEP``, ``PCM``, ``RAWMIDI``, ``TIMER``, or ``SEQUENCER``, 2388 and specify the device number with the ``devi 2420 and specify the device number with the ``device`` and ``subdevice`` 2389 fields. 2421 fields. 2390 2422 2391 The ``name`` is the name identifier string. S 2423 The ``name`` is the name identifier string. Since ALSA 0.9.x, the 2392 control name is very important, because its r 2424 control name is very important, because its role is classified from 2393 its name. There are pre-defined standard cont 2425 its name. There are pre-defined standard control names. The details 2394 are described in the `Control Names`_ subsect 2426 are described in the `Control Names`_ subsection. 2395 2427 2396 The ``index`` field holds the index number of 2428 The ``index`` field holds the index number of this control. If there 2397 are several different controls with the same 2429 are several different controls with the same name, they can be 2398 distinguished by the index number. This is th 2430 distinguished by the index number. This is the case when several 2399 codecs exist on the card. If the index is zer 2431 codecs exist on the card. If the index is zero, you can omit the 2400 definition above. 2432 definition above. 2401 2433 2402 The ``access`` field contains the access type 2434 The ``access`` field contains the access type of this control. Give 2403 the combination of bit masks, ``SNDRV_CTL_ELE 2435 the combination of bit masks, ``SNDRV_CTL_ELEM_ACCESS_XXX``, 2404 there. The details will be explained in the ` 2436 there. The details will be explained in the `Access Flags`_ 2405 subsection. 2437 subsection. 2406 2438 2407 The ``private_value`` field contains an arbit 2439 The ``private_value`` field contains an arbitrary long integer value 2408 for this record. When using the generic ``inf 2440 for this record. When using the generic ``info``, ``get`` and ``put`` 2409 callbacks, you can pass a value through this 2441 callbacks, you can pass a value through this field. If several small 2410 numbers are necessary, you can combine them i 2442 numbers are necessary, you can combine them in bitwise. Or, it's 2411 possible to store a pointer (casted to unsign !! 2443 possible to give a pointer (casted to unsigned long) of some record to 2412 this field, too. 2444 this field, too. 2413 2445 2414 The ``tlv`` field can be used to provide meta 2446 The ``tlv`` field can be used to provide metadata about the control; 2415 see the `Metadata`_ subsection. 2447 see the `Metadata`_ subsection. 2416 2448 2417 The other three are `Control Callbacks`_. 2449 The other three are `Control Callbacks`_. 2418 2450 2419 Control Names 2451 Control Names 2420 ------------- 2452 ------------- 2421 2453 2422 There are some standards to define the contro 2454 There are some standards to define the control names. A control is 2423 usually defined from the three parts as “SO 2455 usually defined from the three parts as “SOURCE DIRECTION FUNCTION”. 2424 2456 2425 The first, ``SOURCE``, specifies the source o 2457 The first, ``SOURCE``, specifies the source of the control, and is a 2426 string such as “Master”, “PCM”, “CD 2458 string such as “Master”, “PCM”, “CD” and “Line”. There are many 2427 pre-defined sources. 2459 pre-defined sources. 2428 2460 2429 The second, ``DIRECTION``, is one of the foll 2461 The second, ``DIRECTION``, is one of the following strings according to 2430 the direction of the control: “Playback”, 2462 the direction of the control: “Playback”, “Capture”, “Bypass Playback” 2431 and “Bypass Capture”. Or, it can be omitt 2463 and “Bypass Capture”. Or, it can be omitted, meaning both playback and 2432 capture directions. 2464 capture directions. 2433 2465 2434 The third, ``FUNCTION``, is one of the follow 2466 The third, ``FUNCTION``, is one of the following strings according to 2435 the function of the control: “Switch”, 2467 the function of the control: “Switch”, “Volume” and “Route”. 2436 2468 2437 The example of control names are, thus, “Ma 2469 The example of control names are, thus, “Master Capture Switch” or “PCM 2438 Playback Volume”. 2470 Playback Volume”. 2439 2471 2440 There are some exceptions: 2472 There are some exceptions: 2441 2473 2442 Global capture and playback 2474 Global capture and playback 2443 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2475 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2444 2476 2445 “Capture Source”, “Capture Switch” an 2477 “Capture Source”, “Capture Switch” and “Capture Volume” are used for the 2446 global capture (input) source, switch and vol 2478 global capture (input) source, switch and volume. Similarly, “Playback 2447 Switch” and “Playback Volume” are used 2479 Switch” and “Playback Volume” are used for the global output gain switch 2448 and volume. 2480 and volume. 2449 2481 2450 Tone-controls 2482 Tone-controls 2451 ~~~~~~~~~~~~~ 2483 ~~~~~~~~~~~~~ 2452 2484 2453 tone-control switch and volumes are specified 2485 tone-control switch and volumes are specified like “Tone Control - XXX”, 2454 e.g. “Tone Control - Switch”, “Tone Con 2486 e.g. “Tone Control - Switch”, “Tone Control - Bass”, “Tone Control - 2455 Center”. 2487 Center”. 2456 2488 2457 3D controls 2489 3D controls 2458 ~~~~~~~~~~~ 2490 ~~~~~~~~~~~ 2459 2491 2460 3D-control switches and volumes are specified 2492 3D-control switches and volumes are specified like “3D Control - XXX”, 2461 e.g. “3D Control - Switch”, “3D Control 2493 e.g. “3D Control - Switch”, “3D Control - Center”, “3D Control - Space”. 2462 2494 2463 Mic boost 2495 Mic boost 2464 ~~~~~~~~~ 2496 ~~~~~~~~~ 2465 2497 2466 Mic-boost switch is set as “Mic Boost” or 2498 Mic-boost switch is set as “Mic Boost” or “Mic Boost (6dB)”. 2467 2499 2468 More precise information can be found in 2500 More precise information can be found in 2469 ``Documentation/sound/designs/control-names.r !! 2501 ``Documentation/sound/alsa/ControlNames.txt``. 2470 2502 2471 Access Flags 2503 Access Flags 2472 ------------ 2504 ------------ 2473 2505 2474 The access flag is the bitmask which specifie 2506 The access flag is the bitmask which specifies the access type of the 2475 given control. The default access type is 2507 given control. The default access type is 2476 ``SNDRV_CTL_ELEM_ACCESS_READWRITE``, which me 2508 ``SNDRV_CTL_ELEM_ACCESS_READWRITE``, which means both read and write are 2477 allowed to this control. When the access flag 2509 allowed to this control. When the access flag is omitted (i.e. = 0), it 2478 is considered as ``READWRITE`` access by defa !! 2510 is considered as ``READWRITE`` access as default. 2479 2511 2480 When the control is read-only, pass ``SNDRV_C 2512 When the control is read-only, pass ``SNDRV_CTL_ELEM_ACCESS_READ`` 2481 instead. In this case, you don't have to defi 2513 instead. In this case, you don't have to define the ``put`` callback. 2482 Similarly, when the control is write-only (al 2514 Similarly, when the control is write-only (although it's a rare case), 2483 you can use the ``WRITE`` flag instead, and y 2515 you can use the ``WRITE`` flag instead, and you don't need the ``get`` 2484 callback. 2516 callback. 2485 2517 2486 If the control value changes frequently (e.g. 2518 If the control value changes frequently (e.g. the VU meter), 2487 ``VOLATILE`` flag should be given. This means 2519 ``VOLATILE`` flag should be given. This means that the control may be 2488 changed without `Change notification`_. Appli 2520 changed without `Change notification`_. Applications should poll such 2489 a control constantly. 2521 a control constantly. 2490 2522 2491 When the control may be updated, but currentl !! 2523 When the control is inactive, set the ``INACTIVE`` flag, too. There are 2492 setting the ``INACTIVE`` flag may be appropri !! 2524 ``LOCK`` and ``OWNER`` flags to change the write permissions. 2493 controls should be inactive while no PCM devi << 2494 << 2495 There are ``LOCK`` and ``OWNER`` flags to cha << 2496 2525 2497 Control Callbacks 2526 Control Callbacks 2498 ----------------- 2527 ----------------- 2499 2528 2500 info callback 2529 info callback 2501 ~~~~~~~~~~~~~ 2530 ~~~~~~~~~~~~~ 2502 2531 2503 The ``info`` callback is used to get detailed 2532 The ``info`` callback is used to get detailed information on this 2504 control. This must store the values of the gi !! 2533 control. This must store the values of the given :c:type:`struct 2505 struct snd_ctl_elem_info object. For example, !! 2534 snd_ctl_elem_info <snd_ctl_elem_info>` object. For example, 2506 for a boolean control with a single element:: !! 2535 for a boolean control with a single element: >> 2536 >> 2537 :: 2507 2538 2508 2539 2509 static int snd_myctl_mono_info(struct s 2540 static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol, 2510 struct snd_ctl_ 2541 struct snd_ctl_elem_info *uinfo) 2511 { 2542 { 2512 uinfo->type = SNDRV_CTL_ELEM_TY 2543 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2513 uinfo->count = 1; 2544 uinfo->count = 1; 2514 uinfo->value.integer.min = 0; 2545 uinfo->value.integer.min = 0; 2515 uinfo->value.integer.max = 1; 2546 uinfo->value.integer.max = 1; 2516 return 0; 2547 return 0; 2517 } 2548 } 2518 2549 2519 2550 2520 2551 2521 The ``type`` field specifies the type of the 2552 The ``type`` field specifies the type of the control. There are 2522 ``BOOLEAN``, ``INTEGER``, ``ENUMERATED``, ``B 2553 ``BOOLEAN``, ``INTEGER``, ``ENUMERATED``, ``BYTES``, ``IEC958`` and 2523 ``INTEGER64``. The ``count`` field specifies 2554 ``INTEGER64``. The ``count`` field specifies the number of elements in 2524 this control. For example, a stereo volume wo 2555 this control. For example, a stereo volume would have count = 2. The 2525 ``value`` field is a union, and the values st !! 2556 ``value`` field is a union, and the values stored are depending on the 2526 type. The boolean and integer types are ident 2557 type. The boolean and integer types are identical. 2527 2558 2528 The enumerated type is a bit different from t !! 2559 The enumerated type is a bit different from others. You'll need to set 2529 set the string for the selectec item index:: !! 2560 the string for the currently given item index. >> 2561 >> 2562 :: 2530 2563 2531 static int snd_myctl_enum_info(struct snd_k 2564 static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol, 2532 struct snd_ctl_elem 2565 struct snd_ctl_elem_info *uinfo) 2533 { 2566 { 2534 static char *texts[4] = { 2567 static char *texts[4] = { 2535 "First", "Second", "Third", 2568 "First", "Second", "Third", "Fourth" 2536 }; 2569 }; 2537 uinfo->type = SNDRV_CTL_ELEM_TYPE_E 2570 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2538 uinfo->count = 1; 2571 uinfo->count = 1; 2539 uinfo->value.enumerated.items = 4; 2572 uinfo->value.enumerated.items = 4; 2540 if (uinfo->value.enumerated.item > 2573 if (uinfo->value.enumerated.item > 3) 2541 uinfo->value.enumerated.ite 2574 uinfo->value.enumerated.item = 3; 2542 strcpy(uinfo->value.enumerated.name 2575 strcpy(uinfo->value.enumerated.name, 2543 texts[uinfo->value.enumerate 2576 texts[uinfo->value.enumerated.item]); 2544 return 0; 2577 return 0; 2545 } 2578 } 2546 2579 2547 The above callback can be simplified with a h 2580 The above callback can be simplified with a helper function, 2548 :c:func:`snd_ctl_enum_info()`. The final code 2581 :c:func:`snd_ctl_enum_info()`. The final code looks like below. 2549 (You can pass ``ARRAY_SIZE(texts)`` instead o 2582 (You can pass ``ARRAY_SIZE(texts)`` instead of 4 in the third argument; 2550 it's a matter of taste.) 2583 it's a matter of taste.) 2551 2584 2552 :: 2585 :: 2553 2586 2554 static int snd_myctl_enum_info(struct snd_k 2587 static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol, 2555 struct snd_ctl_elem 2588 struct snd_ctl_elem_info *uinfo) 2556 { 2589 { 2557 static char *texts[4] = { 2590 static char *texts[4] = { 2558 "First", "Second", "Third", 2591 "First", "Second", "Third", "Fourth" 2559 }; 2592 }; 2560 return snd_ctl_enum_info(uinfo, 1, 2593 return snd_ctl_enum_info(uinfo, 1, 4, texts); 2561 } 2594 } 2562 2595 2563 2596 2564 Some common info callbacks are available for 2597 Some common info callbacks are available for your convenience: 2565 :c:func:`snd_ctl_boolean_mono_info()` and 2598 :c:func:`snd_ctl_boolean_mono_info()` and 2566 :c:func:`snd_ctl_boolean_stereo_info()`. Obvi 2599 :c:func:`snd_ctl_boolean_stereo_info()`. Obviously, the former 2567 is an info callback for a mono channel boolea 2600 is an info callback for a mono channel boolean item, just like 2568 :c:func:`snd_myctl_mono_info()` above, and th 2601 :c:func:`snd_myctl_mono_info()` above, and the latter is for a 2569 stereo channel boolean item. 2602 stereo channel boolean item. 2570 2603 2571 get callback 2604 get callback 2572 ~~~~~~~~~~~~ 2605 ~~~~~~~~~~~~ 2573 2606 2574 This callback is used to read the current val !! 2607 This callback is used to read the current value of the control and to 2575 can be returned to user-space. !! 2608 return to user-space. >> 2609 >> 2610 For example, >> 2611 >> 2612 :: 2576 2613 2577 For example:: << 2578 2614 2579 static int snd_myctl_get(struct snd_kco 2615 static int snd_myctl_get(struct snd_kcontrol *kcontrol, 2580 struct snd_ctl 2616 struct snd_ctl_elem_value *ucontrol) 2581 { 2617 { 2582 struct mychip *chip = snd_kcont 2618 struct mychip *chip = snd_kcontrol_chip(kcontrol); 2583 ucontrol->value.integer.value[0 2619 ucontrol->value.integer.value[0] = get_some_value(chip); 2584 return 0; 2620 return 0; 2585 } 2621 } 2586 2622 2587 2623 2588 2624 2589 The ``value`` field depends on the type of co 2625 The ``value`` field depends on the type of control as well as on the 2590 info callback. For example, the sb driver use 2626 info callback. For example, the sb driver uses this field to store the 2591 register offset, the bit-shift and the bit-ma 2627 register offset, the bit-shift and the bit-mask. The ``private_value`` 2592 field is set as follows:: !! 2628 field is set as follows: >> 2629 >> 2630 :: 2593 2631 2594 .private_value = reg | (shift << 16) | (mas 2632 .private_value = reg | (shift << 16) | (mask << 24) 2595 2633 2596 and is retrieved in callbacks like:: !! 2634 and is retrieved in callbacks like >> 2635 >> 2636 :: 2597 2637 2598 static int snd_sbmixer_get_single(struct sn 2638 static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol, 2599 struct sn 2639 struct snd_ctl_elem_value *ucontrol) 2600 { 2640 { 2601 int reg = kcontrol->private_value & 2641 int reg = kcontrol->private_value & 0xff; 2602 int shift = (kcontrol->private_valu 2642 int shift = (kcontrol->private_value >> 16) & 0xff; 2603 int mask = (kcontrol->private_value 2643 int mask = (kcontrol->private_value >> 24) & 0xff; 2604 .... 2644 .... 2605 } 2645 } 2606 2646 2607 In the ``get`` callback, you have to fill all 2647 In the ``get`` callback, you have to fill all the elements if the 2608 control has more than one element, i.e. ``cou !! 2648 control has more than one elements, i.e. ``count > 1``. In the example 2609 above, we filled only one element (``value.in 2649 above, we filled only one element (``value.integer.value[0]``) since 2610 ``count = 1`` is assumed. !! 2650 it's assumed as ``count = 1``. 2611 2651 2612 put callback 2652 put callback 2613 ~~~~~~~~~~~~ 2653 ~~~~~~~~~~~~ 2614 2654 2615 This callback is used to write a value coming !! 2655 This callback is used to write a value from user-space. >> 2656 >> 2657 For example, >> 2658 >> 2659 :: 2616 2660 2617 For example:: << 2618 2661 2619 static int snd_myctl_put(struct snd_kco 2662 static int snd_myctl_put(struct snd_kcontrol *kcontrol, 2620 struct snd_ctl 2663 struct snd_ctl_elem_value *ucontrol) 2621 { 2664 { 2622 struct mychip *chip = snd_kcont 2665 struct mychip *chip = snd_kcontrol_chip(kcontrol); 2623 int changed = 0; 2666 int changed = 0; 2624 if (chip->current_value != 2667 if (chip->current_value != 2625 ucontrol->value.integer.va 2668 ucontrol->value.integer.value[0]) { 2626 change_current_value(ch 2669 change_current_value(chip, 2627 ucontrol->v 2670 ucontrol->value.integer.value[0]); 2628 changed = 1; 2671 changed = 1; 2629 } 2672 } 2630 return changed; 2673 return changed; 2631 } 2674 } 2632 2675 2633 2676 2634 2677 2635 As seen above, you have to return 1 if the va 2678 As seen above, you have to return 1 if the value is changed. If the 2636 value is not changed, return 0 instead. If an 2679 value is not changed, return 0 instead. If any fatal error happens, 2637 return a negative error code as usual. 2680 return a negative error code as usual. 2638 2681 2639 As in the ``get`` callback, when the control 2682 As in the ``get`` callback, when the control has more than one 2640 element, all elements must be evaluated in th !! 2683 elements, all elements must be evaluated in this callback, too. 2641 2684 2642 Callbacks are not atomic 2685 Callbacks are not atomic 2643 ~~~~~~~~~~~~~~~~~~~~~~~~ 2686 ~~~~~~~~~~~~~~~~~~~~~~~~ 2644 2687 2645 All these three callbacks are not-atomic. !! 2688 All these three callbacks are basically not atomic. 2646 2689 2647 Control Constructor 2690 Control Constructor 2648 ------------------- 2691 ------------------- 2649 2692 2650 When everything is ready, finally we can crea 2693 When everything is ready, finally we can create a new control. To create 2651 a control, there are two functions to be call 2694 a control, there are two functions to be called, 2652 :c:func:`snd_ctl_new1()` and :c:func:`snd_ctl 2695 :c:func:`snd_ctl_new1()` and :c:func:`snd_ctl_add()`. 2653 2696 2654 In the simplest way, you can do it like this: !! 2697 In the simplest way, you can do like this: >> 2698 >> 2699 :: 2655 2700 2656 err = snd_ctl_add(card, snd_ctl_new1(&my_co 2701 err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip)); 2657 if (err < 0) 2702 if (err < 0) 2658 return err; 2703 return err; 2659 2704 2660 where ``my_control`` is the struct snd_kcontr !! 2705 where ``my_control`` is the :c:type:`struct snd_kcontrol_new 2661 and chip is the object pointer to be passed t !! 2706 <snd_kcontrol_new>` object defined above, and chip is the object 2662 can be referred to in callbacks. !! 2707 pointer to be passed to kcontrol->private_data which can be referred >> 2708 to in callbacks. 2663 2709 2664 :c:func:`snd_ctl_new1()` allocates a new stru !! 2710 :c:func:`snd_ctl_new1()` allocates a new :c:type:`struct >> 2711 snd_kcontrol <snd_kcontrol>` instance, and 2665 :c:func:`snd_ctl_add()` assigns the given con 2712 :c:func:`snd_ctl_add()` assigns the given control component to the 2666 card. 2713 card. 2667 2714 2668 Change Notification 2715 Change Notification 2669 ------------------- 2716 ------------------- 2670 2717 2671 If you need to change and update a control in 2718 If you need to change and update a control in the interrupt routine, you 2672 can call :c:func:`snd_ctl_notify()`. For exam !! 2719 can call :c:func:`snd_ctl_notify()`. For example, >> 2720 >> 2721 :: 2673 2722 2674 snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_V 2723 snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer); 2675 2724 2676 This function takes the card pointer, the eve 2725 This function takes the card pointer, the event-mask, and the control id 2677 pointer for the notification. The event-mask 2726 pointer for the notification. The event-mask specifies the types of 2678 notification, for example, in the above examp 2727 notification, for example, in the above example, the change of control 2679 values is notified. The id pointer is the poi !! 2728 values is notified. The id pointer is the pointer of :c:type:`struct 2680 to be notified. You can find some examples in !! 2729 snd_ctl_elem_id <snd_ctl_elem_id>` to be notified. You can 2681 for hardware volume interrupts. !! 2730 find some examples in ``es1938.c`` or ``es1968.c`` for hardware volume >> 2731 interrupts. 2682 2732 2683 Metadata 2733 Metadata 2684 -------- 2734 -------- 2685 2735 2686 To provide information about the dB values of !! 2736 To provide information about the dB values of a mixer control, use on of 2687 the ``DECLARE_TLV_xxx`` macros from ``<sound/ 2737 the ``DECLARE_TLV_xxx`` macros from ``<sound/tlv.h>`` to define a 2688 variable containing this information, set the 2738 variable containing this information, set the ``tlv.p`` field to point to 2689 this variable, and include the ``SNDRV_CTL_EL 2739 this variable, and include the ``SNDRV_CTL_ELEM_ACCESS_TLV_READ`` flag 2690 in the ``access`` field; like this:: !! 2740 in the ``access`` field; like this: >> 2741 >> 2742 :: 2691 2743 2692 static DECLARE_TLV_DB_SCALE(db_scale_my_con 2744 static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0); 2693 2745 2694 static struct snd_kcontrol_new my_control = 2746 static struct snd_kcontrol_new my_control = { 2695 ... 2747 ... 2696 .access = SNDRV_CTL_ELEM_ACCESS_REA 2748 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 2697 SNDRV_CTL_ELEM_ACCESS_TLV 2749 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 2698 ... 2750 ... 2699 .tlv.p = db_scale_my_control, 2751 .tlv.p = db_scale_my_control, 2700 }; 2752 }; 2701 2753 2702 2754 2703 The :c:func:`DECLARE_TLV_DB_SCALE()` macro de 2755 The :c:func:`DECLARE_TLV_DB_SCALE()` macro defines information 2704 about a mixer control where each step in the 2756 about a mixer control where each step in the control's value changes the 2705 dB value by a constant dB amount. The first p 2757 dB value by a constant dB amount. The first parameter is the name of the 2706 variable to be defined. The second parameter 2758 variable to be defined. The second parameter is the minimum value, in 2707 units of 0.01 dB. The third parameter is the 2759 units of 0.01 dB. The third parameter is the step size, in units of 0.01 2708 dB. Set the fourth parameter to 1 if the mini 2760 dB. Set the fourth parameter to 1 if the minimum value actually mutes 2709 the control. 2761 the control. 2710 2762 2711 The :c:func:`DECLARE_TLV_DB_LINEAR()` macro d 2763 The :c:func:`DECLARE_TLV_DB_LINEAR()` macro defines information 2712 about a mixer control where the control's val 2764 about a mixer control where the control's value affects the output 2713 linearly. The first parameter is the name of 2765 linearly. The first parameter is the name of the variable to be defined. 2714 The second parameter is the minimum value, in 2766 The second parameter is the minimum value, in units of 0.01 dB. The 2715 third parameter is the maximum value, in unit 2767 third parameter is the maximum value, in units of 0.01 dB. If the 2716 minimum value mutes the control, set the seco 2768 minimum value mutes the control, set the second parameter to 2717 ``TLV_DB_GAIN_MUTE``. 2769 ``TLV_DB_GAIN_MUTE``. 2718 2770 2719 API for AC97 Codec 2771 API for AC97 Codec 2720 ================== 2772 ================== 2721 2773 2722 General 2774 General 2723 ------- 2775 ------- 2724 2776 2725 The ALSA AC97 codec layer is a well-defined o 2777 The ALSA AC97 codec layer is a well-defined one, and you don't have to 2726 write much code to control it. Only low-level 2778 write much code to control it. Only low-level control routines are 2727 necessary. The AC97 codec API is defined in ` 2779 necessary. The AC97 codec API is defined in ``<sound/ac97_codec.h>``. 2728 2780 2729 Full Code Example 2781 Full Code Example 2730 ----------------- 2782 ----------------- 2731 2783 2732 :: 2784 :: 2733 2785 2734 struct mychip { 2786 struct mychip { 2735 .... 2787 .... 2736 struct snd_ac97 *ac97; 2788 struct snd_ac97 *ac97; 2737 .... 2789 .... 2738 }; 2790 }; 2739 2791 2740 static unsigned short snd_mychip_ac97_r 2792 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97, 2741 2793 unsigned short reg) 2742 { 2794 { 2743 struct mychip *chip = ac97->pri 2795 struct mychip *chip = ac97->private_data; 2744 .... 2796 .... 2745 /* read a register value here f 2797 /* read a register value here from the codec */ 2746 return the_register_value; 2798 return the_register_value; 2747 } 2799 } 2748 2800 2749 static void snd_mychip_ac97_write(struc 2801 static void snd_mychip_ac97_write(struct snd_ac97 *ac97, 2750 unsign 2802 unsigned short reg, unsigned short val) 2751 { 2803 { 2752 struct mychip *chip = ac97->pri 2804 struct mychip *chip = ac97->private_data; 2753 .... 2805 .... 2754 /* write the given register val 2806 /* write the given register value to the codec */ 2755 } 2807 } 2756 2808 2757 static int snd_mychip_ac97(struct mychi 2809 static int snd_mychip_ac97(struct mychip *chip) 2758 { 2810 { 2759 struct snd_ac97_bus *bus; 2811 struct snd_ac97_bus *bus; 2760 struct snd_ac97_template ac97; 2812 struct snd_ac97_template ac97; 2761 int err; 2813 int err; 2762 static struct snd_ac97_bus_ops 2814 static struct snd_ac97_bus_ops ops = { 2763 .write = snd_mychip_ac9 2815 .write = snd_mychip_ac97_write, 2764 .read = snd_mychip_ac97 2816 .read = snd_mychip_ac97_read, 2765 }; 2817 }; 2766 2818 2767 err = snd_ac97_bus(chip->card, 2819 err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus); 2768 if (err < 0) 2820 if (err < 0) 2769 return err; 2821 return err; 2770 memset(&ac97, 0, sizeof(ac97)); 2822 memset(&ac97, 0, sizeof(ac97)); 2771 ac97.private_data = chip; 2823 ac97.private_data = chip; 2772 return snd_ac97_mixer(bus, &ac9 2824 return snd_ac97_mixer(bus, &ac97, &chip->ac97); 2773 } 2825 } 2774 2826 2775 2827 2776 AC97 Constructor 2828 AC97 Constructor 2777 ---------------- 2829 ---------------- 2778 2830 2779 To create an ac97 instance, first call :c:fun 2831 To create an ac97 instance, first call :c:func:`snd_ac97_bus()` 2780 with an ``ac97_bus_ops_t`` record with callba !! 2832 with an ``ac97_bus_ops_t`` record with callback functions. >> 2833 >> 2834 :: 2781 2835 2782 struct snd_ac97_bus *bus; 2836 struct snd_ac97_bus *bus; 2783 static struct snd_ac97_bus_ops ops = { 2837 static struct snd_ac97_bus_ops ops = { 2784 .write = snd_mychip_ac97_write, 2838 .write = snd_mychip_ac97_write, 2785 .read = snd_mychip_ac97_read, 2839 .read = snd_mychip_ac97_read, 2786 }; 2840 }; 2787 2841 2788 snd_ac97_bus(card, 0, &ops, NULL, &pbus); 2842 snd_ac97_bus(card, 0, &ops, NULL, &pbus); 2789 2843 2790 The bus record is shared among all belonging 2844 The bus record is shared among all belonging ac97 instances. 2791 2845 2792 And then call :c:func:`snd_ac97_mixer()` with !! 2846 And then call :c:func:`snd_ac97_mixer()` with an :c:type:`struct 2793 record together with the bus pointer created !! 2847 snd_ac97_template <snd_ac97_template>` record together with >> 2848 the bus pointer created above. >> 2849 >> 2850 :: 2794 2851 2795 struct snd_ac97_template ac97; 2852 struct snd_ac97_template ac97; 2796 int err; 2853 int err; 2797 2854 2798 memset(&ac97, 0, sizeof(ac97)); 2855 memset(&ac97, 0, sizeof(ac97)); 2799 ac97.private_data = chip; 2856 ac97.private_data = chip; 2800 snd_ac97_mixer(bus, &ac97, &chip->ac97); 2857 snd_ac97_mixer(bus, &ac97, &chip->ac97); 2801 2858 2802 where chip->ac97 is a pointer to a newly crea 2859 where chip->ac97 is a pointer to a newly created ``ac97_t`` 2803 instance. In this case, the chip pointer is s 2860 instance. In this case, the chip pointer is set as the private data, 2804 so that the read/write callback functions can 2861 so that the read/write callback functions can refer to this chip 2805 instance. This instance is not necessarily st 2862 instance. This instance is not necessarily stored in the chip 2806 record. If you need to change the register va 2863 record. If you need to change the register values from the driver, or 2807 need the suspend/resume of ac97 codecs, keep 2864 need the suspend/resume of ac97 codecs, keep this pointer to pass to 2808 the corresponding functions. 2865 the corresponding functions. 2809 2866 2810 AC97 Callbacks 2867 AC97 Callbacks 2811 -------------- 2868 -------------- 2812 2869 2813 The standard callbacks are ``read`` and ``wri 2870 The standard callbacks are ``read`` and ``write``. Obviously they 2814 correspond to the functions for read and writ 2871 correspond to the functions for read and write accesses to the 2815 hardware low-level codes. 2872 hardware low-level codes. 2816 2873 2817 The ``read`` callback returns the register va 2874 The ``read`` callback returns the register value specified in the 2818 argument:: !! 2875 argument. >> 2876 >> 2877 :: 2819 2878 2820 static unsigned short snd_mychip_ac97_read( 2879 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97, 2821 2880 unsigned short reg) 2822 { 2881 { 2823 struct mychip *chip = ac97->private 2882 struct mychip *chip = ac97->private_data; 2824 .... 2883 .... 2825 return the_register_value; 2884 return the_register_value; 2826 } 2885 } 2827 2886 2828 Here, the chip can be cast from ``ac97->priva 2887 Here, the chip can be cast from ``ac97->private_data``. 2829 2888 2830 Meanwhile, the ``write`` callback is used to 2889 Meanwhile, the ``write`` callback is used to set the register 2831 value:: !! 2890 value >> 2891 >> 2892 :: 2832 2893 2833 static void snd_mychip_ac97_write(struct sn 2894 static void snd_mychip_ac97_write(struct snd_ac97 *ac97, 2834 unsigned short reg, un 2895 unsigned short reg, unsigned short val) 2835 2896 2836 2897 2837 These callbacks are non-atomic like the contr 2898 These callbacks are non-atomic like the control API callbacks. 2838 2899 2839 There are also other callbacks: ``reset``, `` 2900 There are also other callbacks: ``reset``, ``wait`` and ``init``. 2840 2901 2841 The ``reset`` callback is used to reset the c 2902 The ``reset`` callback is used to reset the codec. If the chip 2842 requires a special kind of reset, you can def 2903 requires a special kind of reset, you can define this callback. 2843 2904 2844 The ``wait`` callback is used to add some wai 2905 The ``wait`` callback is used to add some waiting time in the standard 2845 initialization of the codec. If the chip requ 2906 initialization of the codec. If the chip requires the extra waiting 2846 time, define this callback. 2907 time, define this callback. 2847 2908 2848 The ``init`` callback is used for additional 2909 The ``init`` callback is used for additional initialization of the 2849 codec. 2910 codec. 2850 2911 2851 Updating Registers in The Driver 2912 Updating Registers in The Driver 2852 -------------------------------- 2913 -------------------------------- 2853 2914 2854 If you need to access to the codec from the d 2915 If you need to access to the codec from the driver, you can call the 2855 following functions: :c:func:`snd_ac97_write( 2916 following functions: :c:func:`snd_ac97_write()`, 2856 :c:func:`snd_ac97_read()`, :c:func:`snd_ac97_ 2917 :c:func:`snd_ac97_read()`, :c:func:`snd_ac97_update()` and 2857 :c:func:`snd_ac97_update_bits()`. 2918 :c:func:`snd_ac97_update_bits()`. 2858 2919 2859 Both :c:func:`snd_ac97_write()` and 2920 Both :c:func:`snd_ac97_write()` and 2860 :c:func:`snd_ac97_update()` functions are use 2921 :c:func:`snd_ac97_update()` functions are used to set a value to 2861 the given register (``AC97_XXX``). The differ 2922 the given register (``AC97_XXX``). The difference between them is that 2862 :c:func:`snd_ac97_update()` doesn't write a v 2923 :c:func:`snd_ac97_update()` doesn't write a value if the given 2863 value has been already set, while :c:func:`sn 2924 value has been already set, while :c:func:`snd_ac97_write()` 2864 always rewrites the value:: !! 2925 always rewrites the value. >> 2926 >> 2927 :: 2865 2928 2866 snd_ac97_write(ac97, AC97_MASTER, 0x8080); 2929 snd_ac97_write(ac97, AC97_MASTER, 0x8080); 2867 snd_ac97_update(ac97, AC97_MASTER, 0x8080); 2930 snd_ac97_update(ac97, AC97_MASTER, 0x8080); 2868 2931 2869 :c:func:`snd_ac97_read()` is used to read the 2932 :c:func:`snd_ac97_read()` is used to read the value of the given 2870 register. For example:: !! 2933 register. For example, >> 2934 >> 2935 :: 2871 2936 2872 value = snd_ac97_read(ac97, AC97_MASTER); 2937 value = snd_ac97_read(ac97, AC97_MASTER); 2873 2938 2874 :c:func:`snd_ac97_update_bits()` is used to u 2939 :c:func:`snd_ac97_update_bits()` is used to update some bits in 2875 the given register:: !! 2940 the given register. >> 2941 >> 2942 :: 2876 2943 2877 snd_ac97_update_bits(ac97, reg, mask, value 2944 snd_ac97_update_bits(ac97, reg, mask, value); 2878 2945 2879 Also, there is a function to change the sampl 2946 Also, there is a function to change the sample rate (of a given register 2880 such as ``AC97_PCM_FRONT_DAC_RATE``) when VRA 2947 such as ``AC97_PCM_FRONT_DAC_RATE``) when VRA or DRA is supported by the 2881 codec: :c:func:`snd_ac97_set_rate()`:: !! 2948 codec: :c:func:`snd_ac97_set_rate()`. >> 2949 >> 2950 :: 2882 2951 2883 snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_ 2952 snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100); 2884 2953 2885 2954 2886 The following registers are available to set 2955 The following registers are available to set the rate: 2887 ``AC97_PCM_MIC_ADC_RATE``, ``AC97_PCM_FRONT_D 2956 ``AC97_PCM_MIC_ADC_RATE``, ``AC97_PCM_FRONT_DAC_RATE``, 2888 ``AC97_PCM_LR_ADC_RATE``, ``AC97_SPDIF``. Whe 2957 ``AC97_PCM_LR_ADC_RATE``, ``AC97_SPDIF``. When ``AC97_SPDIF`` is 2889 specified, the register is not really changed 2958 specified, the register is not really changed but the corresponding 2890 IEC958 status bits will be updated. 2959 IEC958 status bits will be updated. 2891 2960 2892 Clock Adjustment 2961 Clock Adjustment 2893 ---------------- 2962 ---------------- 2894 2963 2895 In some chips, the clock of the codec isn't 4 2964 In some chips, the clock of the codec isn't 48000 but using a PCI clock 2896 (to save a quartz!). In this case, change the 2965 (to save a quartz!). In this case, change the field ``bus->clock`` to 2897 the corresponding value. For example, intel8x 2966 the corresponding value. For example, intel8x0 and es1968 drivers have 2898 their own function to read from the clock. 2967 their own function to read from the clock. 2899 2968 2900 Proc Files 2969 Proc Files 2901 ---------- 2970 ---------- 2902 2971 2903 The ALSA AC97 interface will create a proc fi 2972 The ALSA AC97 interface will create a proc file such as 2904 ``/proc/asound/card0/codec97#0/ac97#0-0`` and 2973 ``/proc/asound/card0/codec97#0/ac97#0-0`` and ``ac97#0-0+regs``. You 2905 can refer to these files to see the current s 2974 can refer to these files to see the current status and registers of 2906 the codec. 2975 the codec. 2907 2976 2908 Multiple Codecs 2977 Multiple Codecs 2909 --------------- 2978 --------------- 2910 2979 2911 When there are several codecs on the same car 2980 When there are several codecs on the same card, you need to call 2912 :c:func:`snd_ac97_mixer()` multiple times wit 2981 :c:func:`snd_ac97_mixer()` multiple times with ``ac97.num=1`` or 2913 greater. The ``num`` field specifies the code 2982 greater. The ``num`` field specifies the codec number. 2914 2983 2915 If you set up multiple codecs, you either nee 2984 If you set up multiple codecs, you either need to write different 2916 callbacks for each codec or check ``ac97->num 2985 callbacks for each codec or check ``ac97->num`` in the callback 2917 routines. 2986 routines. 2918 2987 2919 MIDI (MPU401-UART) Interface 2988 MIDI (MPU401-UART) Interface 2920 ============================ 2989 ============================ 2921 2990 2922 General 2991 General 2923 ------- 2992 ------- 2924 2993 2925 Many soundcards have built-in MIDI (MPU401-UA 2994 Many soundcards have built-in MIDI (MPU401-UART) interfaces. When the 2926 soundcard supports the standard MPU401-UART i 2995 soundcard supports the standard MPU401-UART interface, most likely you 2927 can use the ALSA MPU401-UART API. The MPU401- 2996 can use the ALSA MPU401-UART API. The MPU401-UART API is defined in 2928 ``<sound/mpu401.h>``. 2997 ``<sound/mpu401.h>``. 2929 2998 2930 Some soundchips have a similar but slightly d 2999 Some soundchips have a similar but slightly different implementation of 2931 mpu401 stuff. For example, emu10k1 has its ow 3000 mpu401 stuff. For example, emu10k1 has its own mpu401 routines. 2932 3001 2933 MIDI Constructor 3002 MIDI Constructor 2934 ---------------- 3003 ---------------- 2935 3004 2936 To create a rawmidi object, call :c:func:`snd !! 3005 To create a rawmidi object, call :c:func:`snd_mpu401_uart_new()`. >> 3006 >> 3007 :: 2937 3008 2938 struct snd_rawmidi *rmidi; 3009 struct snd_rawmidi *rmidi; 2939 snd_mpu401_uart_new(card, 0, MPU401_HW_MPU4 3010 snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags, 2940 irq, &rmidi); 3011 irq, &rmidi); 2941 3012 2942 3013 2943 The first argument is the card pointer, and t 3014 The first argument is the card pointer, and the second is the index of 2944 this component. You can create up to 8 rawmid 3015 this component. You can create up to 8 rawmidi devices. 2945 3016 2946 The third argument is the type of the hardwar 3017 The third argument is the type of the hardware, ``MPU401_HW_XXX``. If 2947 it's not a special one, you can use ``MPU401_ 3018 it's not a special one, you can use ``MPU401_HW_MPU401``. 2948 3019 2949 The 4th argument is the I/O port address. Man 3020 The 4th argument is the I/O port address. Many backward-compatible 2950 MPU401 have an I/O port such as 0x330. Or, it 3021 MPU401 have an I/O port such as 0x330. Or, it might be a part of its own 2951 PCI I/O region. It depends on the chip design 3022 PCI I/O region. It depends on the chip design. 2952 3023 2953 The 5th argument is a bitflag for additional 3024 The 5th argument is a bitflag for additional information. When the I/O 2954 port address above is part of the PCI I/O reg 3025 port address above is part of the PCI I/O region, the MPU401 I/O port 2955 might have been already allocated (reserved) 3026 might have been already allocated (reserved) by the driver itself. In 2956 such a case, pass a bit flag ``MPU401_INFO_IN 3027 such a case, pass a bit flag ``MPU401_INFO_INTEGRATED``, and the 2957 mpu401-uart layer will allocate the I/O ports 3028 mpu401-uart layer will allocate the I/O ports by itself. 2958 3029 2959 When the controller supports only the input o 3030 When the controller supports only the input or output MIDI stream, pass 2960 the ``MPU401_INFO_INPUT`` or ``MPU401_INFO_OU 3031 the ``MPU401_INFO_INPUT`` or ``MPU401_INFO_OUTPUT`` bitflag, 2961 respectively. Then the rawmidi instance is cr 3032 respectively. Then the rawmidi instance is created as a single stream. 2962 3033 2963 ``MPU401_INFO_MMIO`` bitflag is used to chang 3034 ``MPU401_INFO_MMIO`` bitflag is used to change the access method to MMIO 2964 (via readb and writeb) instead of iob and out 3035 (via readb and writeb) instead of iob and outb. In this case, you have 2965 to pass the iomapped address to :c:func:`snd_ 3036 to pass the iomapped address to :c:func:`snd_mpu401_uart_new()`. 2966 3037 2967 When ``MPU401_INFO_TX_IRQ`` is set, the outpu 3038 When ``MPU401_INFO_TX_IRQ`` is set, the output stream isn't checked in 2968 the default interrupt handler. The driver nee 3039 the default interrupt handler. The driver needs to call 2969 :c:func:`snd_mpu401_uart_interrupt_tx()` by i 3040 :c:func:`snd_mpu401_uart_interrupt_tx()` by itself to start 2970 processing the output stream in the irq handl 3041 processing the output stream in the irq handler. 2971 3042 2972 If the MPU-401 interface shares its interrupt 3043 If the MPU-401 interface shares its interrupt with the other logical 2973 devices on the card, set ``MPU401_INFO_IRQ_HO 3044 devices on the card, set ``MPU401_INFO_IRQ_HOOK`` (see 2974 `below <MIDI Interrupt Handler_>`__). !! 3045 `below <#MIDI-Interrupt-Handler>`__). 2975 3046 2976 Usually, the port address corresponds to the 3047 Usually, the port address corresponds to the command port and port + 1 2977 corresponds to the data port. If not, you may 3048 corresponds to the data port. If not, you may change the ``cport`` 2978 field of struct snd_mpu401 manually afterward !! 3049 field of :c:type:`struct snd_mpu401 <snd_mpu401>` manually afterward. 2979 However, struct snd_mpu401 pointer is !! 3050 However, :c:type:`struct snd_mpu401 <snd_mpu401>` pointer is 2980 not returned explicitly by :c:func:`snd_mpu40 3051 not returned explicitly by :c:func:`snd_mpu401_uart_new()`. You 2981 need to cast ``rmidi->private_data`` to struc !! 3052 need to cast ``rmidi->private_data`` to :c:type:`struct snd_mpu401 >> 3053 <snd_mpu401>` explicitly, >> 3054 >> 3055 :: 2982 3056 2983 struct snd_mpu401 *mpu; 3057 struct snd_mpu401 *mpu; 2984 mpu = rmidi->private_data; 3058 mpu = rmidi->private_data; 2985 3059 2986 and reset the ``cport`` as you like:: !! 3060 and reset the ``cport`` as you like: >> 3061 >> 3062 :: 2987 3063 2988 mpu->cport = my_own_control_port; 3064 mpu->cport = my_own_control_port; 2989 3065 2990 The 6th argument specifies the ISA irq number 3066 The 6th argument specifies the ISA irq number that will be allocated. If 2991 no interrupt is to be allocated (because your 3067 no interrupt is to be allocated (because your code is already allocating 2992 a shared interrupt, or because the device doe 3068 a shared interrupt, or because the device does not use interrupts), pass 2993 -1 instead. For a MPU-401 device without an i 3069 -1 instead. For a MPU-401 device without an interrupt, a polling timer 2994 will be used instead. 3070 will be used instead. 2995 3071 2996 MIDI Interrupt Handler 3072 MIDI Interrupt Handler 2997 ---------------------- 3073 ---------------------- 2998 3074 2999 When the interrupt is allocated in 3075 When the interrupt is allocated in 3000 :c:func:`snd_mpu401_uart_new()`, an exclusive 3076 :c:func:`snd_mpu401_uart_new()`, an exclusive ISA interrupt 3001 handler is automatically used, hence you don' 3077 handler is automatically used, hence you don't have anything else to do 3002 than creating the mpu401 stuff. Otherwise, yo 3078 than creating the mpu401 stuff. Otherwise, you have to set 3003 ``MPU401_INFO_IRQ_HOOK``, and call 3079 ``MPU401_INFO_IRQ_HOOK``, and call 3004 :c:func:`snd_mpu401_uart_interrupt()` explici 3080 :c:func:`snd_mpu401_uart_interrupt()` explicitly from your own 3005 interrupt handler when it has determined that 3081 interrupt handler when it has determined that a UART interrupt has 3006 occurred. 3082 occurred. 3007 3083 3008 In this case, you need to pass the private_da 3084 In this case, you need to pass the private_data of the returned rawmidi 3009 object from :c:func:`snd_mpu401_uart_new()` a 3085 object from :c:func:`snd_mpu401_uart_new()` as the second 3010 argument of :c:func:`snd_mpu401_uart_interrup !! 3086 argument of :c:func:`snd_mpu401_uart_interrupt()`. >> 3087 >> 3088 :: 3011 3089 3012 snd_mpu401_uart_interrupt(irq, rmidi->priva 3090 snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs); 3013 3091 3014 3092 3015 RawMIDI Interface 3093 RawMIDI Interface 3016 ================= 3094 ================= 3017 3095 3018 Overview 3096 Overview 3019 -------- 3097 -------- 3020 3098 3021 The raw MIDI interface is used for hardware M 3099 The raw MIDI interface is used for hardware MIDI ports that can be 3022 accessed as a byte stream. It is not used for 3100 accessed as a byte stream. It is not used for synthesizer chips that do 3023 not directly understand MIDI. 3101 not directly understand MIDI. 3024 3102 3025 ALSA handles file and buffer management. All 3103 ALSA handles file and buffer management. All you have to do is to write 3026 some code to move data between the buffer and 3104 some code to move data between the buffer and the hardware. 3027 3105 3028 The rawmidi API is defined in ``<sound/rawmid 3106 The rawmidi API is defined in ``<sound/rawmidi.h>``. 3029 3107 3030 RawMIDI Constructor 3108 RawMIDI Constructor 3031 ------------------- 3109 ------------------- 3032 3110 3033 To create a rawmidi device, call the :c:func: 3111 To create a rawmidi device, call the :c:func:`snd_rawmidi_new()` 3034 function:: !! 3112 function: >> 3113 >> 3114 :: 3035 3115 3036 struct snd_rawmidi *rmidi; 3116 struct snd_rawmidi *rmidi; 3037 err = snd_rawmidi_new(chip->card, "MyMIDI", 3117 err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi); 3038 if (err < 0) 3118 if (err < 0) 3039 return err; 3119 return err; 3040 rmidi->private_data = chip; 3120 rmidi->private_data = chip; 3041 strcpy(rmidi->name, "My MIDI"); 3121 strcpy(rmidi->name, "My MIDI"); 3042 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTP 3122 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | 3043 SNDRV_RAWMIDI_INFO_INPU 3123 SNDRV_RAWMIDI_INFO_INPUT | 3044 SNDRV_RAWMIDI_INFO_DUPL 3124 SNDRV_RAWMIDI_INFO_DUPLEX; 3045 3125 3046 The first argument is the card pointer, the s 3126 The first argument is the card pointer, the second argument is the ID 3047 string. 3127 string. 3048 3128 3049 The third argument is the index of this compo 3129 The third argument is the index of this component. You can create up to 3050 8 rawmidi devices. 3130 8 rawmidi devices. 3051 3131 3052 The fourth and fifth arguments are the number 3132 The fourth and fifth arguments are the number of output and input 3053 substreams, respectively, of this device (a s 3133 substreams, respectively, of this device (a substream is the equivalent 3054 of a MIDI port). 3134 of a MIDI port). 3055 3135 3056 Set the ``info_flags`` field to specify the c 3136 Set the ``info_flags`` field to specify the capabilities of the 3057 device. Set ``SNDRV_RAWMIDI_INFO_OUTPUT`` if 3137 device. Set ``SNDRV_RAWMIDI_INFO_OUTPUT`` if there is at least one 3058 output port, ``SNDRV_RAWMIDI_INFO_INPUT`` if 3138 output port, ``SNDRV_RAWMIDI_INFO_INPUT`` if there is at least one 3059 input port, and ``SNDRV_RAWMIDI_INFO_DUPLEX`` 3139 input port, and ``SNDRV_RAWMIDI_INFO_DUPLEX`` if the device can handle 3060 output and input at the same time. 3140 output and input at the same time. 3061 3141 3062 After the rawmidi device is created, you need 3142 After the rawmidi device is created, you need to set the operators 3063 (callbacks) for each substream. There are hel 3143 (callbacks) for each substream. There are helper functions to set the 3064 operators for all the substreams of a device: !! 3144 operators for all the substreams of a device: >> 3145 >> 3146 :: 3065 3147 3066 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_ST 3148 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops); 3067 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_ST 3149 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops); 3068 3150 3069 The operators are usually defined like this:: !! 3151 The operators are usually defined like this: >> 3152 >> 3153 :: 3070 3154 3071 static struct snd_rawmidi_ops snd_mymidi_ou 3155 static struct snd_rawmidi_ops snd_mymidi_output_ops = { 3072 .open = snd_mymidi_output_open, 3156 .open = snd_mymidi_output_open, 3073 .close = snd_mymidi_output_close, 3157 .close = snd_mymidi_output_close, 3074 .trigger = snd_mymidi_output_trigge 3158 .trigger = snd_mymidi_output_trigger, 3075 }; 3159 }; 3076 3160 3077 These callbacks are explained in the `RawMIDI 3161 These callbacks are explained in the `RawMIDI Callbacks`_ section. 3078 3162 3079 If there are more than one substream, you sho 3163 If there are more than one substream, you should give a unique name to 3080 each of them:: !! 3164 each of them: >> 3165 >> 3166 :: 3081 3167 3082 struct snd_rawmidi_substream *substream; 3168 struct snd_rawmidi_substream *substream; 3083 list_for_each_entry(substream, 3169 list_for_each_entry(substream, 3084 &rmidi->streams[SNDRV_R 3170 &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams, 3085 list { 3171 list { 3086 sprintf(substream->name, "My MIDI P 3172 sprintf(substream->name, "My MIDI Port %d", substream->number + 1); 3087 } 3173 } 3088 /* same for SNDRV_RAWMIDI_STREAM_INPUT */ 3174 /* same for SNDRV_RAWMIDI_STREAM_INPUT */ 3089 3175 3090 RawMIDI Callbacks 3176 RawMIDI Callbacks 3091 ----------------- 3177 ----------------- 3092 3178 3093 In all the callbacks, the private data that y 3179 In all the callbacks, the private data that you've set for the rawmidi 3094 device can be accessed as ``substream->rmidi- 3180 device can be accessed as ``substream->rmidi->private_data``. 3095 3181 3096 If there is more than one port, your callback 3182 If there is more than one port, your callbacks can determine the port 3097 index from the struct snd_rawmidi_substream d 3183 index from the struct snd_rawmidi_substream data passed to each 3098 callback:: !! 3184 callback: >> 3185 >> 3186 :: 3099 3187 3100 struct snd_rawmidi_substream *substream; 3188 struct snd_rawmidi_substream *substream; 3101 int index = substream->number; 3189 int index = substream->number; 3102 3190 3103 RawMIDI open callback 3191 RawMIDI open callback 3104 ~~~~~~~~~~~~~~~~~~~~~ 3192 ~~~~~~~~~~~~~~~~~~~~~ 3105 3193 3106 :: 3194 :: 3107 3195 3108 static int snd_xxx_open(struct snd_rawm 3196 static int snd_xxx_open(struct snd_rawmidi_substream *substream); 3109 3197 3110 3198 3111 This is called when a substream is opened. Yo 3199 This is called when a substream is opened. You can initialize the 3112 hardware here, but you shouldn't start transm 3200 hardware here, but you shouldn't start transmitting/receiving data yet. 3113 3201 3114 RawMIDI close callback 3202 RawMIDI close callback 3115 ~~~~~~~~~~~~~~~~~~~~~~ 3203 ~~~~~~~~~~~~~~~~~~~~~~ 3116 3204 3117 :: 3205 :: 3118 3206 3119 static int snd_xxx_close(struct snd_raw 3207 static int snd_xxx_close(struct snd_rawmidi_substream *substream); 3120 3208 3121 Guess what. 3209 Guess what. 3122 3210 3123 The ``open`` and ``close`` callbacks of a raw 3211 The ``open`` and ``close`` callbacks of a rawmidi device are 3124 serialized with a mutex, and can sleep. 3212 serialized with a mutex, and can sleep. 3125 3213 3126 Rawmidi trigger callback for output substream 3214 Rawmidi trigger callback for output substreams 3127 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3215 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3128 3216 3129 :: 3217 :: 3130 3218 3131 static void snd_xxx_output_trigger(stru 3219 static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up); 3132 3220 3133 3221 3134 This is called with a nonzero ``up`` paramete 3222 This is called with a nonzero ``up`` parameter when there is some data 3135 in the substream buffer that must be transmit 3223 in the substream buffer that must be transmitted. 3136 3224 3137 To read data from the buffer, call 3225 To read data from the buffer, call 3138 :c:func:`snd_rawmidi_transmit_peek()`. It wil 3226 :c:func:`snd_rawmidi_transmit_peek()`. It will return the number 3139 of bytes that have been read; this will be le 3227 of bytes that have been read; this will be less than the number of bytes 3140 requested when there are no more data in the 3228 requested when there are no more data in the buffer. After the data have 3141 been transmitted successfully, call 3229 been transmitted successfully, call 3142 :c:func:`snd_rawmidi_transmit_ack()` to remov 3230 :c:func:`snd_rawmidi_transmit_ack()` to remove the data from the 3143 substream buffer:: !! 3231 substream buffer: >> 3232 >> 3233 :: 3144 3234 3145 unsigned char data; 3235 unsigned char data; 3146 while (snd_rawmidi_transmit_peek(substream, 3236 while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) { 3147 if (snd_mychip_try_to_transmit(data 3237 if (snd_mychip_try_to_transmit(data)) 3148 snd_rawmidi_transmit_ack(su 3238 snd_rawmidi_transmit_ack(substream, 1); 3149 else 3239 else 3150 break; /* hardware FIFO ful 3240 break; /* hardware FIFO full */ 3151 } 3241 } 3152 3242 3153 If you know beforehand that the hardware will 3243 If you know beforehand that the hardware will accept data, you can use 3154 the :c:func:`snd_rawmidi_transmit()` function 3244 the :c:func:`snd_rawmidi_transmit()` function which reads some 3155 data and removes them from the buffer at once !! 3245 data and removes them from the buffer at once: >> 3246 >> 3247 :: 3156 3248 3157 while (snd_mychip_transmit_possible()) { 3249 while (snd_mychip_transmit_possible()) { 3158 unsigned char data; 3250 unsigned char data; 3159 if (snd_rawmidi_transmit(substream, 3251 if (snd_rawmidi_transmit(substream, &data, 1) != 1) 3160 break; /* no more data */ 3252 break; /* no more data */ 3161 snd_mychip_transmit(data); 3253 snd_mychip_transmit(data); 3162 } 3254 } 3163 3255 3164 If you know beforehand how many bytes you can 3256 If you know beforehand how many bytes you can accept, you can use a 3165 buffer size greater than one with the ``snd_r !! 3257 buffer size greater than one with the >> 3258 :c:func:`snd_rawmidi_transmit\*()` functions. 3166 3259 3167 The ``trigger`` callback must not sleep. If t 3260 The ``trigger`` callback must not sleep. If the hardware FIFO is full 3168 before the substream buffer has been emptied, 3261 before the substream buffer has been emptied, you have to continue 3169 transmitting data later, either in an interru 3262 transmitting data later, either in an interrupt handler, or with a 3170 timer if the hardware doesn't have a MIDI tra 3263 timer if the hardware doesn't have a MIDI transmit interrupt. 3171 3264 3172 The ``trigger`` callback is called with a zer 3265 The ``trigger`` callback is called with a zero ``up`` parameter when 3173 the transmission of data should be aborted. 3266 the transmission of data should be aborted. 3174 3267 3175 RawMIDI trigger callback for input substreams 3268 RawMIDI trigger callback for input substreams 3176 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3269 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 3177 3270 3178 :: 3271 :: 3179 3272 3180 static void snd_xxx_input_trigger(struc 3273 static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up); 3181 3274 3182 3275 3183 This is called with a nonzero ``up`` paramete 3276 This is called with a nonzero ``up`` parameter to enable receiving data, 3184 or with a zero ``up`` parameter do disable re 3277 or with a zero ``up`` parameter do disable receiving data. 3185 3278 3186 The ``trigger`` callback must not sleep; the 3279 The ``trigger`` callback must not sleep; the actual reading of data 3187 from the device is usually done in an interru 3280 from the device is usually done in an interrupt handler. 3188 3281 3189 When data reception is enabled, your interrup 3282 When data reception is enabled, your interrupt handler should call 3190 :c:func:`snd_rawmidi_receive()` for all recei !! 3283 :c:func:`snd_rawmidi_receive()` for all received data: >> 3284 >> 3285 :: 3191 3286 3192 void snd_mychip_midi_interrupt(...) 3287 void snd_mychip_midi_interrupt(...) 3193 { 3288 { 3194 while (mychip_midi_available()) { 3289 while (mychip_midi_available()) { 3195 unsigned char data; 3290 unsigned char data; 3196 data = mychip_midi_read(); 3291 data = mychip_midi_read(); 3197 snd_rawmidi_receive(substre 3292 snd_rawmidi_receive(substream, &data, 1); 3198 } 3293 } 3199 } 3294 } 3200 3295 3201 3296 3202 drain callback 3297 drain callback 3203 ~~~~~~~~~~~~~~ 3298 ~~~~~~~~~~~~~~ 3204 3299 3205 :: 3300 :: 3206 3301 3207 static void snd_xxx_drain(struct snd_ra 3302 static void snd_xxx_drain(struct snd_rawmidi_substream *substream); 3208 3303 3209 3304 3210 This is only used with output substreams. Thi 3305 This is only used with output substreams. This function should wait 3211 until all data read from the substream buffer 3306 until all data read from the substream buffer have been transmitted. 3212 This ensures that the device can be closed an 3307 This ensures that the device can be closed and the driver unloaded 3213 without losing data. 3308 without losing data. 3214 3309 3215 This callback is optional. If you do not set 3310 This callback is optional. If you do not set ``drain`` in the struct 3216 snd_rawmidi_ops structure, ALSA will simply w !! 3311 snd_rawmidi_ops structure, ALSA will simply wait for 50 milliseconds 3217 instead. 3312 instead. 3218 3313 3219 Miscellaneous Devices 3314 Miscellaneous Devices 3220 ===================== 3315 ===================== 3221 3316 3222 FM OPL3 3317 FM OPL3 3223 ------- 3318 ------- 3224 3319 3225 The FM OPL3 is still used in many chips (main 3320 The FM OPL3 is still used in many chips (mainly for backward 3226 compatibility). ALSA has a nice OPL3 FM contr 3321 compatibility). ALSA has a nice OPL3 FM control layer, too. The OPL3 API 3227 is defined in ``<sound/opl3.h>``. 3322 is defined in ``<sound/opl3.h>``. 3228 3323 3229 FM registers can be directly accessed through 3324 FM registers can be directly accessed through the direct-FM API, defined 3230 in ``<sound/asound_fm.h>``. In ALSA native mo 3325 in ``<sound/asound_fm.h>``. In ALSA native mode, FM registers are 3231 accessed through the Hardware-Dependent Devic 3326 accessed through the Hardware-Dependent Device direct-FM extension API, 3232 whereas in OSS compatible mode, FM registers 3327 whereas in OSS compatible mode, FM registers can be accessed with the 3233 OSS direct-FM compatible API in ``/dev/dmfmX` 3328 OSS direct-FM compatible API in ``/dev/dmfmX`` device. 3234 3329 3235 To create the OPL3 component, you have two fu 3330 To create the OPL3 component, you have two functions to call. The first 3236 one is a constructor for the ``opl3_t`` insta !! 3331 one is a constructor for the ``opl3_t`` instance. >> 3332 >> 3333 :: 3237 3334 3238 struct snd_opl3 *opl3; 3335 struct snd_opl3 *opl3; 3239 snd_opl3_create(card, lport, rport, OPL3_HW 3336 snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX, 3240 integrated, &opl3); 3337 integrated, &opl3); 3241 3338 3242 The first argument is the card pointer, the s 3339 The first argument is the card pointer, the second one is the left port 3243 address, and the third is the right port addr 3340 address, and the third is the right port address. In most cases, the 3244 right port is placed at the left port + 2. 3341 right port is placed at the left port + 2. 3245 3342 3246 The fourth argument is the hardware type. 3343 The fourth argument is the hardware type. 3247 3344 3248 When the left and right ports have been alrea 3345 When the left and right ports have been already allocated by the card 3249 driver, pass non-zero to the fifth argument ( 3346 driver, pass non-zero to the fifth argument (``integrated``). Otherwise, 3250 the opl3 module will allocate the specified p 3347 the opl3 module will allocate the specified ports by itself. 3251 3348 3252 When the accessing the hardware requires spec 3349 When the accessing the hardware requires special method instead of the 3253 standard I/O access, you can create opl3 inst 3350 standard I/O access, you can create opl3 instance separately with 3254 :c:func:`snd_opl3_new()`:: !! 3351 :c:func:`snd_opl3_new()`. >> 3352 >> 3353 :: 3255 3354 3256 struct snd_opl3 *opl3; 3355 struct snd_opl3 *opl3; 3257 snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3) 3356 snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3); 3258 3357 3259 Then set ``command``, ``private_data`` and `` 3358 Then set ``command``, ``private_data`` and ``private_free`` for the 3260 private access function, the private data and 3359 private access function, the private data and the destructor. The 3261 ``l_port`` and ``r_port`` are not necessarily 3360 ``l_port`` and ``r_port`` are not necessarily set. Only the command 3262 must be set properly. You can retrieve the da 3361 must be set properly. You can retrieve the data from the 3263 ``opl3->private_data`` field. 3362 ``opl3->private_data`` field. 3264 3363 3265 After creating the opl3 instance via :c:func: 3364 After creating the opl3 instance via :c:func:`snd_opl3_new()`, 3266 call :c:func:`snd_opl3_init()` to initialize 3365 call :c:func:`snd_opl3_init()` to initialize the chip to the 3267 proper state. Note that :c:func:`snd_opl3_cre 3366 proper state. Note that :c:func:`snd_opl3_create()` always calls 3268 it internally. 3367 it internally. 3269 3368 3270 If the opl3 instance is created successfully, 3369 If the opl3 instance is created successfully, then create a hwdep device 3271 for this opl3:: !! 3370 for this opl3. >> 3371 >> 3372 :: 3272 3373 3273 struct snd_hwdep *opl3hwdep; 3374 struct snd_hwdep *opl3hwdep; 3274 snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep); 3375 snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep); 3275 3376 3276 The first argument is the ``opl3_t`` instance 3377 The first argument is the ``opl3_t`` instance you created, and the 3277 second is the index number, usually 0. 3378 second is the index number, usually 0. 3278 3379 3279 The third argument is the index-offset for th 3380 The third argument is the index-offset for the sequencer client assigned 3280 to the OPL3 port. When there is an MPU401-UAR 3381 to the OPL3 port. When there is an MPU401-UART, give 1 for here (UART 3281 always takes 0). 3382 always takes 0). 3282 3383 3283 Hardware-Dependent Devices 3384 Hardware-Dependent Devices 3284 -------------------------- 3385 -------------------------- 3285 3386 3286 Some chips need user-space access for special 3387 Some chips need user-space access for special controls or for loading 3287 the micro code. In such a case, you can creat 3388 the micro code. In such a case, you can create a hwdep 3288 (hardware-dependent) device. The hwdep API is 3389 (hardware-dependent) device. The hwdep API is defined in 3289 ``<sound/hwdep.h>``. You can find examples in 3390 ``<sound/hwdep.h>``. You can find examples in opl3 driver or 3290 ``isa/sb/sb16_csp.c``. 3391 ``isa/sb/sb16_csp.c``. 3291 3392 3292 The creation of the ``hwdep`` instance is don 3393 The creation of the ``hwdep`` instance is done via 3293 :c:func:`snd_hwdep_new()`:: !! 3394 :c:func:`snd_hwdep_new()`. >> 3395 >> 3396 :: 3294 3397 3295 struct snd_hwdep *hw; 3398 struct snd_hwdep *hw; 3296 snd_hwdep_new(card, "My HWDEP", 0, &hw); 3399 snd_hwdep_new(card, "My HWDEP", 0, &hw); 3297 3400 3298 where the third argument is the index number. 3401 where the third argument is the index number. 3299 3402 3300 You can then pass any pointer value to the `` 3403 You can then pass any pointer value to the ``private_data``. If you 3301 assign private data, you should define a dest !! 3404 assign a private data, you should define the destructor, too. The 3302 destructor function is set in the ``private_f !! 3405 destructor function is set in the ``private_free`` field. >> 3406 >> 3407 :: 3303 3408 3304 struct mydata *p = kmalloc(sizeof(*p), GFP_ 3409 struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL); 3305 hw->private_data = p; 3410 hw->private_data = p; 3306 hw->private_free = mydata_free; 3411 hw->private_free = mydata_free; 3307 3412 3308 and the implementation of the destructor woul !! 3413 and the implementation of the destructor would be: >> 3414 >> 3415 :: 3309 3416 3310 static void mydata_free(struct snd_hwdep *h 3417 static void mydata_free(struct snd_hwdep *hw) 3311 { 3418 { 3312 struct mydata *p = hw->private_data 3419 struct mydata *p = hw->private_data; 3313 kfree(p); 3420 kfree(p); 3314 } 3421 } 3315 3422 3316 The arbitrary file operations can be defined 3423 The arbitrary file operations can be defined for this instance. The file 3317 operators are defined in the ``ops`` table. F 3424 operators are defined in the ``ops`` table. For example, assume that 3318 this chip needs an ioctl:: !! 3425 this chip needs an ioctl. >> 3426 >> 3427 :: 3319 3428 3320 hw->ops.open = mydata_open; 3429 hw->ops.open = mydata_open; 3321 hw->ops.ioctl = mydata_ioctl; 3430 hw->ops.ioctl = mydata_ioctl; 3322 hw->ops.release = mydata_release; 3431 hw->ops.release = mydata_release; 3323 3432 3324 And implement the callback functions as you l 3433 And implement the callback functions as you like. 3325 3434 3326 IEC958 (S/PDIF) 3435 IEC958 (S/PDIF) 3327 --------------- 3436 --------------- 3328 3437 3329 Usually the controls for IEC958 devices are i 3438 Usually the controls for IEC958 devices are implemented via the control 3330 interface. There is a macro to compose a name 3439 interface. There is a macro to compose a name string for IEC958 3331 controls, :c:func:`SNDRV_CTL_NAME_IEC958()` d 3440 controls, :c:func:`SNDRV_CTL_NAME_IEC958()` defined in 3332 ``<include/asound.h>``. 3441 ``<include/asound.h>``. 3333 3442 3334 There are some standard controls for IEC958 s 3443 There are some standard controls for IEC958 status bits. These controls 3335 use the type ``SNDRV_CTL_ELEM_TYPE_IEC958``, 3444 use the type ``SNDRV_CTL_ELEM_TYPE_IEC958``, and the size of element is 3336 fixed as 4 bytes array (value.iec958.status[x 3445 fixed as 4 bytes array (value.iec958.status[x]). For the ``info`` 3337 callback, you don't specify the value field f 3446 callback, you don't specify the value field for this type (the count 3338 field must be set, though). 3447 field must be set, though). 3339 3448 3340 “IEC958 Playback Con Mask” is used to ret 3449 “IEC958 Playback Con Mask” is used to return the bit-mask for the IEC958 3341 status bits of consumer mode. Similarly, “I 3450 status bits of consumer mode. Similarly, “IEC958 Playback Pro Mask” 3342 returns the bitmask for professional mode. Th !! 3451 returns the bitmask for professional mode. They are read-only controls, >> 3452 and are defined as MIXER controls (iface = >> 3453 ``SNDRV_CTL_ELEM_IFACE_MIXER``). 3343 3454 3344 Meanwhile, “IEC958 Playback Default” cont 3455 Meanwhile, “IEC958 Playback Default” control is defined for getting and 3345 setting the current default IEC958 bits. !! 3456 setting the current default IEC958 bits. Note that this one is usually 3346 !! 3457 defined as a PCM control (iface = ``SNDRV_CTL_ELEM_IFACE_PCM``), 3347 Due to historical reasons, both variants of t !! 3458 although in some places it's defined as a MIXER control. 3348 Playback Default controls can be implemented << 3349 ``SNDRV_CTL_ELEM_IFACE_PCM`` or a ``SNDRV_CTL << 3350 Drivers should expose the mask and default on << 3351 3459 3352 In addition, you can define the control switc 3460 In addition, you can define the control switches to enable/disable or to 3353 set the raw bit mode. The implementation will 3461 set the raw bit mode. The implementation will depend on the chip, but 3354 the control should be named as “IEC958 xxx 3462 the control should be named as “IEC958 xxx”, preferably using the 3355 :c:func:`SNDRV_CTL_NAME_IEC958()` macro. 3463 :c:func:`SNDRV_CTL_NAME_IEC958()` macro. 3356 3464 3357 You can find several cases, for example, ``pc 3465 You can find several cases, for example, ``pci/emu10k1``, 3358 ``pci/ice1712``, or ``pci/cmipci.c``. 3466 ``pci/ice1712``, or ``pci/cmipci.c``. 3359 3467 3360 Buffer and Memory Management 3468 Buffer and Memory Management 3361 ============================ 3469 ============================ 3362 3470 3363 Buffer Types 3471 Buffer Types 3364 ------------ 3472 ------------ 3365 3473 3366 ALSA provides several different buffer alloca 3474 ALSA provides several different buffer allocation functions depending on 3367 the bus and the architecture. All these have 3475 the bus and the architecture. All these have a consistent API. The 3368 allocation of physically-contiguous pages is !! 3476 allocation of physically-contiguous pages is done via 3369 :c:func:`snd_malloc_xxx_pages()` function, wh 3477 :c:func:`snd_malloc_xxx_pages()` function, where xxx is the bus 3370 type. 3478 type. 3371 3479 3372 The allocation of pages with fallback is done !! 3480 The allocation of pages with fallback is 3373 :c:func:`snd_dma_alloc_pages_fallback()`. Thi !! 3481 :c:func:`snd_malloc_xxx_pages_fallback()`. This function tries 3374 to allocate the specified number of pages, bu !! 3482 to allocate the specified pages but if the pages are not available, it 3375 available, it tries to reduce the request siz !! 3483 tries to reduce the page sizes until enough space is found. 3376 is found, down to one page. << 3377 3484 3378 To release the pages, call the :c:func:`snd_d !! 3485 The release the pages, call :c:func:`snd_free_xxx_pages()` 3379 function. 3486 function. 3380 3487 3381 Usually, ALSA drivers try to allocate and res 3488 Usually, ALSA drivers try to allocate and reserve a large contiguous 3382 physical space at the time the module is load !! 3489 physical space at the time the module is loaded for the later use. This 3383 is called “pre-allocation”. As already wr 3490 is called “pre-allocation”. As already written, you can call the 3384 following function at PCM instance constructi !! 3491 following function at pcm instance construction time (in the case of PCI 3385 bus):: !! 3492 bus). >> 3493 >> 3494 :: 3386 3495 3387 snd_pcm_lib_preallocate_pages_for_all(pcm, 3496 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 3388 &pci- !! 3497 snd_dma_pci_data(pci), size, max); 3389 3498 3390 where ``size`` is the byte size to be pre-all !! 3499 where ``size`` is the byte size to be pre-allocated and the ``max`` is 3391 the maximum size settable via the ``prealloc` !! 3500 the maximum size to be changed via the ``prealloc`` proc file. The 3392 allocator will try to get an area as large as 3501 allocator will try to get an area as large as possible within the 3393 given size. 3502 given size. 3394 3503 3395 The second argument (type) and the third argu 3504 The second argument (type) and the third argument (device pointer) are 3396 dependent on the bus. For normal devices, pas !! 3505 dependent on the bus. In the case of the ISA bus, pass 3397 (typically identical as ``card->dev``) to the !! 3506 :c:func:`snd_dma_isa_data()` as the third argument with 3398 ``SNDRV_DMA_TYPE_DEV`` type. !! 3507 ``SNDRV_DMA_TYPE_DEV`` type. For the continuous buffer unrelated to the 3399 !! 3508 bus can be pre-allocated with ``SNDRV_DMA_TYPE_CONTINUOUS`` type and the 3400 A continuous buffer unrelated to the !! 3509 ``snd_dma_continuous_data(GFP_KERNEL)`` device pointer, where 3401 bus can be pre-allocated with ``SNDRV_DMA_TYP !! 3510 ``GFP_KERNEL`` is the kernel allocation flag to use. For the PCI 3402 You can pass NULL to the device pointer in th !! 3511 scatter-gather buffers, use ``SNDRV_DMA_TYPE_DEV_SG`` with 3403 default mode implying to allocate with the `` !! 3512 ``snd_dma_pci_data(pci)`` (see the `Non-Contiguous Buffers`_ 3404 If you need a restricted (lower) address, set !! 3513 section). 3405 bits for the device, and pass the device poin << 3406 device memory allocations. For this type, it << 3407 NULL to the device pointer, too, if no addres << 3408 << 3409 For the scatter-gather buffers, use ``SNDRV_D << 3410 device pointer (see the `Non-Contiguous Buffe << 3411 3514 3412 Once the buffer is pre-allocated, you can use 3515 Once the buffer is pre-allocated, you can use the allocator in the 3413 ``hw_params`` callback:: !! 3516 ``hw_params`` callback: >> 3517 >> 3518 :: 3414 3519 3415 snd_pcm_lib_malloc_pages(substream, size); 3520 snd_pcm_lib_malloc_pages(substream, size); 3416 3521 3417 Note that you have to pre-allocate to use thi 3522 Note that you have to pre-allocate to use this function. 3418 3523 3419 But most drivers use the "managed buffer allo << 3420 of manual allocation and release. << 3421 This is done by calling :c:func:`snd_pcm_set_ << 3422 instead of :c:func:`snd_pcm_lib_preallocate_p << 3423 << 3424 snd_pcm_set_managed_buffer_all(pcm, SNDRV_D << 3425 &pci->dev, s << 3426 << 3427 where the passed arguments are identical for << 3428 The difference in the managed mode is that PC << 3429 :c:func:`snd_pcm_lib_malloc_pages()` internal << 3430 the PCM ``hw_params`` callback, and call :c:f << 3431 after the PCM ``hw_free`` callback automatica << 3432 doesn't have to call these functions explicit << 3433 longer. This allows many drivers to have NUL << 3434 ``hw_free`` entries. << 3435 << 3436 External Hardware Buffers 3524 External Hardware Buffers 3437 ------------------------- 3525 ------------------------- 3438 3526 3439 Some chips have their own hardware buffers an !! 3527 Some chips have their own hardware buffers and the DMA transfer from the 3440 host memory is not available. In such a case, 3528 host memory is not available. In such a case, you need to either 1) 3441 copy/set the audio data directly to the exter 3529 copy/set the audio data directly to the external hardware buffer, or 2) 3442 make an intermediate buffer and copy/set the 3530 make an intermediate buffer and copy/set the data from it to the 3443 external hardware buffer in interrupts (or in 3531 external hardware buffer in interrupts (or in tasklets, preferably). 3444 3532 3445 The first case works fine if the external har 3533 The first case works fine if the external hardware buffer is large 3446 enough. This method doesn't need any extra bu 3534 enough. This method doesn't need any extra buffers and thus is more 3447 efficient. You need to define the ``copy`` ca !! 3535 effective. You need to define the ``copy`` and ``silence`` callbacks 3448 for the data transfer, in addition to the ``f !! 3536 for the data transfer. However, there is a drawback: it cannot be 3449 callback for playback. However, there is a dr << 3450 mmapped. The examples are GUS's GF1 PCM or em 3537 mmapped. The examples are GUS's GF1 PCM or emu8000's wavetable PCM. 3451 3538 3452 The second case allows for mmap on the buffer 3539 The second case allows for mmap on the buffer, although you have to 3453 handle an interrupt or a tasklet to transfer 3540 handle an interrupt or a tasklet to transfer the data from the 3454 intermediate buffer to the hardware buffer. Y 3541 intermediate buffer to the hardware buffer. You can find an example in 3455 the vxpocket driver. 3542 the vxpocket driver. 3456 3543 3457 Another case is when the chip uses a PCI memo 3544 Another case is when the chip uses a PCI memory-map region for the 3458 buffer instead of the host memory. In this ca 3545 buffer instead of the host memory. In this case, mmap is available only 3459 on certain architectures like the Intel one. 3546 on certain architectures like the Intel one. In non-mmap mode, the data 3460 cannot be transferred as in the normal way. T 3547 cannot be transferred as in the normal way. Thus you need to define the 3461 ``copy`` and ``fill_silence`` callbacks as we !! 3548 ``copy`` and ``silence`` callbacks as well, as in the cases above. The 3462 as in the cases above. Examples are found in !! 3549 examples are found in ``rme32.c`` and ``rme96.c``. 3463 ``rme96.c``. !! 3550 3464 !! 3551 The implementation of the ``copy`` and ``silence`` callbacks depends 3465 The implementation of the ``copy`` and !! 3552 upon whether the hardware supports interleaved or non-interleaved 3466 ``silence`` callbacks depends upon whether th !! 3553 samples. The ``copy`` callback is defined like below, a bit 3467 interleaved or non-interleaved samples. The ` !! 3554 differently depending whether the direction is playback or capture: 3468 defined like below, a bit differently dependi !! 3555 3469 is playback or capture:: !! 3556 :: 3470 !! 3557 3471 static int playback_copy(struct snd_pcm_sub !! 3558 static int playback_copy(struct snd_pcm_substream *substream, int channel, 3472 int channel, unsigned long pos !! 3559 snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count); 3473 struct iov_iter *src, unsigned !! 3560 static int capture_copy(struct snd_pcm_substream *substream, int channel, 3474 static int capture_copy(struct snd_pcm_subs !! 3561 snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count); 3475 int channel, unsigned long pos << 3476 struct iov_iter *dst, unsigned << 3477 3562 3478 In the case of interleaved samples, the secon 3563 In the case of interleaved samples, the second argument (``channel``) is 3479 not used. The third argument (``pos``) specif !! 3564 not used. The third argument (``pos``) points the current position >> 3565 offset in frames. 3480 3566 3481 The meaning of the fourth argument is differe 3567 The meaning of the fourth argument is different between playback and 3482 capture. For playback, it holds the source da 3568 capture. For playback, it holds the source data pointer, and for 3483 capture, it's the destination data pointer. 3569 capture, it's the destination data pointer. 3484 3570 3485 The last argument is the number of bytes to b !! 3571 The last argument is the number of frames to be copied. 3486 3572 3487 What you have to do in this callback is again 3573 What you have to do in this callback is again different between playback 3488 and capture directions. In the playback case, 3574 and capture directions. In the playback case, you copy the given amount 3489 of data (``count``) at the specified pointer 3575 of data (``count``) at the specified pointer (``src``) to the specified 3490 offset (``pos``) in the hardware buffer. When !! 3576 offset (``pos``) on the hardware buffer. When coded like memcpy-like 3491 way, the copy would look like:: !! 3577 way, the copy would be like: >> 3578 >> 3579 :: 3492 3580 3493 my_memcpy_from_iter(my_buffer + pos, src, c !! 3581 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src, >> 3582 frames_to_bytes(runtime, count)); 3494 3583 3495 For the capture direction, you copy the given 3584 For the capture direction, you copy the given amount of data (``count``) 3496 at the specified offset (``pos``) in the hard !! 3585 at the specified offset (``pos``) on the hardware buffer to the 3497 specified pointer (``dst``):: !! 3586 specified pointer (``dst``). >> 3587 >> 3588 :: 3498 3589 3499 my_memcpy_to_iter(dst, my_buffer + pos, cou !! 3590 my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos), >> 3591 frames_to_bytes(runtime, count)); 3500 3592 3501 The given ``src`` or ``dst`` a struct iov_ite !! 3593 Note that both the position and the amount of data are given in frames. 3502 pointer and the size. Use the existing helpe << 3503 data as defined in ``linux/uio.h``. << 3504 << 3505 Careful readers might notice that these callb << 3506 arguments in bytes, not in frames like other << 3507 this makes coding easier like in the examples << 3508 it easier to unify both the interleaved and n << 3509 explained below. << 3510 3594 3511 In the case of non-interleaved samples, the i 3595 In the case of non-interleaved samples, the implementation will be a bit 3512 more complicated. The callback is called for !! 3596 more complicated. 3513 the second argument, so in total it's called << 3514 3597 3515 The meaning of the other arguments are almost !! 3598 You need to check the channel argument, and if it's -1, copy the whole 3516 interleaved case. The callback is supposed t !! 3599 channels. Otherwise, you have to copy only the specified channel. Please 3517 the given user-space buffer, but only for the !! 3600 check ``isa/gus/gus_pcm.c`` as an example. 3518 details, please check ``isa/gus/gus_pcm.c`` o !! 3601 3519 as examples. !! 3602 The ``silence`` callback is also implemented in a similar way 3520 !! 3603 3521 Usually for the playback, another callback `` !! 3604 :: 3522 defined. It's implemented in a similar way a << 3523 above:: << 3524 3605 3525 static int silence(struct snd_pcm_substream 3606 static int silence(struct snd_pcm_substream *substream, int channel, 3526 unsigned long pos, unsig !! 3607 snd_pcm_uframes_t pos, snd_pcm_uframes_t count); 3527 3608 3528 The meanings of arguments are the same as in 3609 The meanings of arguments are the same as in the ``copy`` callback, 3529 although there is no buffer pointer !! 3610 although there is no ``src/dst`` argument. In the case of interleaved 3530 argument. In the case of interleaved samples, !! 3611 samples, the channel argument has no meaning, as well as on ``copy`` 3531 no meaning, as for the ``copy`` callback. !! 3612 callback. 3532 3613 3533 The role of the ``fill_silence`` callback is !! 3614 The role of ``silence`` callback is to set the given amount 3534 (``count``) of silence data at the specified !! 3615 (``count``) of silence data at the specified offset (``pos``) on the 3535 hardware buffer. Suppose that the data format 3616 hardware buffer. Suppose that the data format is signed (that is, the 3536 silent-data is 0), and the implementation usi 3617 silent-data is 0), and the implementation using a memset-like function 3537 would look like:: !! 3618 would be like: >> 3619 >> 3620 :: 3538 3621 3539 my_memset(my_buffer + pos, 0, count); !! 3622 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0, >> 3623 frames_to_bytes(runtime, count)); 3540 3624 3541 In the case of non-interleaved samples, again 3625 In the case of non-interleaved samples, again, the implementation 3542 becomes a bit more complicated, as it's calle !! 3626 becomes a bit more complicated. See, for example, ``isa/gus/gus_pcm.c``. 3543 for each channel. See, for example, ``isa/gus << 3544 3627 3545 Non-Contiguous Buffers 3628 Non-Contiguous Buffers 3546 ---------------------- 3629 ---------------------- 3547 3630 3548 If your hardware supports a page table as in !! 3631 If your hardware supports the page table as in emu10k1 or the buffer 3549 descriptors as in via82xx, you can use scatte !! 3632 descriptors as in via82xx, you can use the scatter-gather (SG) DMA. ALSA 3550 provides an interface for handling SG-buffers 3633 provides an interface for handling SG-buffers. The API is provided in 3551 ``<sound/pcm.h>``. 3634 ``<sound/pcm.h>``. 3552 3635 3553 For creating the SG-buffer handler, call 3636 For creating the SG-buffer handler, call 3554 :c:func:`snd_pcm_set_managed_buffer()` or !! 3637 :c:func:`snd_pcm_lib_preallocate_pages()` or 3555 :c:func:`snd_pcm_set_managed_buffer_all()` wi !! 3638 :c:func:`snd_pcm_lib_preallocate_pages_for_all()` with 3556 ``SNDRV_DMA_TYPE_DEV_SG`` in the PCM construc !! 3639 ``SNDRV_DMA_TYPE_DEV_SG`` in the PCM constructor like other PCI 3557 pre-allocations. You need to pass ``&pci->dev !! 3640 pre-allocator. You need to pass ``snd_dma_pci_data(pci)``, where pci is 3558 the struct pci_dev pointer of the chip as wel !! 3641 the :c:type:`struct pci_dev <pci_dev>` pointer of the chip as >> 3642 well. The ``struct snd_sg_buf`` instance is created as >> 3643 ``substream->dma_private``. You can cast the pointer like: 3559 3644 3560 snd_pcm_set_managed_buffer_all(pcm, SNDRV_D !! 3645 :: 3561 &pci->dev, s << 3562 << 3563 The ``struct snd_sg_buf`` instance is created << 3564 ``substream->dma_private`` in turn. You can c << 3565 3646 3566 struct snd_sg_buf *sgbuf = (struct snd_sg_b 3647 struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private; 3567 3648 3568 Then in the :c:func:`snd_pcm_lib_malloc_pages !! 3649 Then call :c:func:`snd_pcm_lib_malloc_pages()` in the ``hw_params`` >> 3650 callback as well as in the case of normal PCI buffer. The SG-buffer 3569 handler will allocate the non-contiguous kern 3651 handler will allocate the non-contiguous kernel pages of the given size 3570 and map them as virtually contiguous memory. !! 3652 and map them onto the virtually contiguous memory. The virtual pointer 3571 is addressed via runtime->dma_area. The physi !! 3653 is addressed in runtime->dma_area. The physical address 3572 (``runtime->dma_addr``) is set to zero, becau 3654 (``runtime->dma_addr``) is set to zero, because the buffer is 3573 physically non-contiguous. The physical addre 3655 physically non-contiguous. The physical address table is set up in 3574 ``sgbuf->table``. You can get the physical ad 3656 ``sgbuf->table``. You can get the physical address at a certain offset 3575 via :c:func:`snd_pcm_sgbuf_get_addr()`. 3657 via :c:func:`snd_pcm_sgbuf_get_addr()`. 3576 3658 3577 If you need to release the SG-buffer data exp !! 3659 When a SG-handler is used, you need to set 3578 standard API function :c:func:`snd_pcm_lib_fr !! 3660 :c:func:`snd_pcm_sgbuf_ops_page()` as the ``page`` callback. (See >> 3661 `page callback`_ section.) >> 3662 >> 3663 To release the data, call :c:func:`snd_pcm_lib_free_pages()` in >> 3664 the ``hw_free`` callback as usual. 3579 3665 3580 Vmalloc'ed Buffers 3666 Vmalloc'ed Buffers 3581 ------------------ 3667 ------------------ 3582 3668 3583 It's possible to use a buffer allocated via : 3669 It's possible to use a buffer allocated via :c:func:`vmalloc()`, for 3584 example, for an intermediate buffer. !! 3670 example, for an intermediate buffer. Since the allocated pages are not 3585 You can simply allocate it via the standard !! 3671 contiguous, you need to set the ``page`` callback to obtain the physical 3586 :c:func:`snd_pcm_lib_malloc_pages()` and co. !! 3672 address at every offset. 3587 buffer preallocation with ``SNDRV_DMA_TYPE_VM !! 3673 3588 !! 3674 The implementation of ``page`` callback would be like this: 3589 snd_pcm_set_managed_buffer_all(pcm, SNDRV_D !! 3675 3590 NULL, 0, 0); !! 3676 :: 3591 !! 3677 3592 NULL is passed as the device pointer argument !! 3678 #include <linux/vmalloc.h> 3593 that default pages (GFP_KERNEL and GFP_HIGHME !! 3679 3594 allocated. !! 3680 /* get the physical page pointer on the given offset */ 3595 !! 3681 static struct page *mychip_page(struct snd_pcm_substream *substream, 3596 Also, note that zero is passed as both the si !! 3682 unsigned long offset) 3597 argument here. Since each vmalloc call shoul !! 3683 { 3598 we don't need to pre-allocate the buffers lik !! 3684 void *pageptr = substream->runtime->dma_area + offset; 3599 pages. !! 3685 return vmalloc_to_page(pageptr); >> 3686 } 3600 3687 3601 Proc Interface 3688 Proc Interface 3602 ============== 3689 ============== 3603 3690 3604 ALSA provides an easy interface for procfs. T 3691 ALSA provides an easy interface for procfs. The proc files are very 3605 useful for debugging. I recommend you set up 3692 useful for debugging. I recommend you set up proc files if you write a 3606 driver and want to get a running status or re 3693 driver and want to get a running status or register dumps. The API is 3607 found in ``<sound/info.h>``. 3694 found in ``<sound/info.h>``. 3608 3695 3609 To create a proc file, call :c:func:`snd_card !! 3696 To create a proc file, call :c:func:`snd_card_proc_new()`. >> 3697 >> 3698 :: 3610 3699 3611 struct snd_info_entry *entry; 3700 struct snd_info_entry *entry; 3612 int err = snd_card_proc_new(card, "my-file" 3701 int err = snd_card_proc_new(card, "my-file", &entry); 3613 3702 3614 where the second argument specifies the name 3703 where the second argument specifies the name of the proc file to be 3615 created. The above example will create a file 3704 created. The above example will create a file ``my-file`` under the 3616 card directory, e.g. ``/proc/asound/card0/my- 3705 card directory, e.g. ``/proc/asound/card0/my-file``. 3617 3706 3618 Like other components, the proc entry created 3707 Like other components, the proc entry created via 3619 :c:func:`snd_card_proc_new()` will be registe 3708 :c:func:`snd_card_proc_new()` will be registered and released 3620 automatically in the card registration and re 3709 automatically in the card registration and release functions. 3621 3710 3622 When the creation is successful, the function 3711 When the creation is successful, the function stores a new instance in 3623 the pointer given in the third argument. It i 3712 the pointer given in the third argument. It is initialized as a text 3624 proc file for read only. To use this proc fil 3713 proc file for read only. To use this proc file as a read-only text file 3625 as-is, set the read callback with private dat !! 3714 as it is, set the read callback with a private data via 3626 :c:func:`snd_info_set_text_ops()`:: !! 3715 :c:func:`snd_info_set_text_ops()`. >> 3716 >> 3717 :: 3627 3718 3628 snd_info_set_text_ops(entry, chip, my_proc_ 3719 snd_info_set_text_ops(entry, chip, my_proc_read); 3629 3720 3630 where the second argument (``chip``) is the p 3721 where the second argument (``chip``) is the private data to be used in 3631 the callback. The third parameter specifies t !! 3722 the callbacks. The third parameter specifies the read buffer size and 3632 the fourth (``my_proc_read``) is the callback 3723 the fourth (``my_proc_read``) is the callback function, which is 3633 defined like:: !! 3724 defined like >> 3725 >> 3726 :: 3634 3727 3635 static void my_proc_read(struct snd_info_en 3728 static void my_proc_read(struct snd_info_entry *entry, 3636 struct snd_info_bu 3729 struct snd_info_buffer *buffer); 3637 3730 3638 In the read callback, use :c:func:`snd_iprint 3731 In the read callback, use :c:func:`snd_iprintf()` for output 3639 strings, which works just like normal :c:func 3732 strings, which works just like normal :c:func:`printf()`. For 3640 example:: !! 3733 example, >> 3734 >> 3735 :: 3641 3736 3642 static void my_proc_read(struct snd_info_en 3737 static void my_proc_read(struct snd_info_entry *entry, 3643 struct snd_info_bu 3738 struct snd_info_buffer *buffer) 3644 { 3739 { 3645 struct my_chip *chip = entry->priva 3740 struct my_chip *chip = entry->private_data; 3646 3741 3647 snd_iprintf(buffer, "This is my chi 3742 snd_iprintf(buffer, "This is my chip!\n"); 3648 snd_iprintf(buffer, "Port = %ld\n", 3743 snd_iprintf(buffer, "Port = %ld\n", chip->port); 3649 } 3744 } 3650 3745 3651 The file permissions can be changed afterward !! 3746 The file permissions can be changed afterwards. As default, it's set as 3652 read only for all users. If you want to add w 3747 read only for all users. If you want to add write permission for the 3653 user (root by default), do as follows:: !! 3748 user (root as default), do as follows: >> 3749 >> 3750 :: 3654 3751 3655 entry->mode = S_IFREG | S_IRUGO | S_IWUSR; 3752 entry->mode = S_IFREG | S_IRUGO | S_IWUSR; 3656 3753 3657 and set the write buffer size and the callbac !! 3754 and set the write buffer size and the callback >> 3755 >> 3756 :: 3658 3757 3659 entry->c.text.write = my_proc_write; 3758 entry->c.text.write = my_proc_write; 3660 3759 3661 In the write callback, you can use :c:func:`s !! 3760 For the write callback, you can use :c:func:`snd_info_get_line()` 3662 to get a text line, and :c:func:`snd_info_get 3761 to get a text line, and :c:func:`snd_info_get_str()` to retrieve 3663 a string from the line. Some examples are fou 3762 a string from the line. Some examples are found in 3664 ``core/oss/mixer_oss.c``, core/oss/and ``pcm_ 3763 ``core/oss/mixer_oss.c``, core/oss/and ``pcm_oss.c``. 3665 3764 3666 For a raw-data proc-file, set the attributes !! 3765 For a raw-data proc-file, set the attributes as follows: >> 3766 >> 3767 :: 3667 3768 3668 static const struct snd_info_entry_ops my_f !! 3769 static struct snd_info_entry_ops my_file_io_ops = { 3669 .read = my_file_io_read, 3770 .read = my_file_io_read, 3670 }; 3771 }; 3671 3772 3672 entry->content = SNDRV_INFO_CONTENT_DATA; 3773 entry->content = SNDRV_INFO_CONTENT_DATA; 3673 entry->private_data = chip; 3774 entry->private_data = chip; 3674 entry->c.ops = &my_file_io_ops; 3775 entry->c.ops = &my_file_io_ops; 3675 entry->size = 4096; 3776 entry->size = 4096; 3676 entry->mode = S_IFREG | S_IRUGO; 3777 entry->mode = S_IFREG | S_IRUGO; 3677 3778 3678 For raw data, ``size`` field must be set prop !! 3779 For the raw data, ``size`` field must be set properly. This specifies 3679 the maximum size of the proc file access. 3780 the maximum size of the proc file access. 3680 3781 3681 The read/write callbacks of raw mode are more 3782 The read/write callbacks of raw mode are more direct than the text mode. 3682 You need to use a low-level I/O functions suc 3783 You need to use a low-level I/O functions such as 3683 :c:func:`copy_from_user()` and :c:func:`copy_ !! 3784 :c:func:`copy_from/to_user()` to transfer the data. 3684 data:: !! 3785 >> 3786 :: 3685 3787 3686 static ssize_t my_file_io_read(struct snd_i 3788 static ssize_t my_file_io_read(struct snd_info_entry *entry, 3687 void *file_priv 3789 void *file_private_data, 3688 struct file *fi 3790 struct file *file, 3689 char *buf, 3791 char *buf, 3690 size_t count, 3792 size_t count, 3691 loff_t pos) 3793 loff_t pos) 3692 { 3794 { 3693 if (copy_to_user(buf, local_data + 3795 if (copy_to_user(buf, local_data + pos, count)) 3694 return -EFAULT; 3796 return -EFAULT; 3695 return count; 3797 return count; 3696 } 3798 } 3697 3799 3698 If the size of the info entry has been set up 3800 If the size of the info entry has been set up properly, ``count`` and 3699 ``pos`` are guaranteed to fit within 0 and th 3801 ``pos`` are guaranteed to fit within 0 and the given size. You don't 3700 have to check the range in the callbacks unle 3802 have to check the range in the callbacks unless any other condition is 3701 required. 3803 required. 3702 3804 3703 Power Management 3805 Power Management 3704 ================ 3806 ================ 3705 3807 3706 If the chip is supposed to work with suspend/ 3808 If the chip is supposed to work with suspend/resume functions, you need 3707 to add power-management code to the driver. T 3809 to add power-management code to the driver. The additional code for 3708 power-management should be ifdef-ed with ``CO !! 3810 power-management should be ifdef-ed with ``CONFIG_PM``. 3709 with __maybe_unused attribute; otherwise the << 3710 3811 3711 If the driver *fully* supports suspend/resume 3812 If the driver *fully* supports suspend/resume that is, the device can be 3712 properly resumed to its state when suspend wa 3813 properly resumed to its state when suspend was called, you can set the 3713 ``SNDRV_PCM_INFO_RESUME`` flag in the PCM inf !! 3814 ``SNDRV_PCM_INFO_RESUME`` flag in the pcm info field. Usually, this is 3714 possible when the registers of the chip can b 3815 possible when the registers of the chip can be safely saved and restored 3715 to RAM. If this is set, the trigger callback 3816 to RAM. If this is set, the trigger callback is called with 3716 ``SNDRV_PCM_TRIGGER_RESUME`` after the resume 3817 ``SNDRV_PCM_TRIGGER_RESUME`` after the resume callback completes. 3717 3818 3718 Even if the driver doesn't support PM fully b 3819 Even if the driver doesn't support PM fully but partial suspend/resume 3719 is still possible, it's still worthy to imple 3820 is still possible, it's still worthy to implement suspend/resume 3720 callbacks. In such a case, applications would 3821 callbacks. In such a case, applications would reset the status by 3721 calling :c:func:`snd_pcm_prepare()` and resta 3822 calling :c:func:`snd_pcm_prepare()` and restart the stream 3722 appropriately. Hence, you can define suspend/ 3823 appropriately. Hence, you can define suspend/resume callbacks below but 3723 don't set the ``SNDRV_PCM_INFO_RESUME`` info !! 3824 don't set ``SNDRV_PCM_INFO_RESUME`` info flag to the PCM. 3724 3825 3725 Note that the trigger with SUSPEND can always 3826 Note that the trigger with SUSPEND can always be called when 3726 :c:func:`snd_pcm_suspend_all()` is called, re 3827 :c:func:`snd_pcm_suspend_all()` is called, regardless of the 3727 ``SNDRV_PCM_INFO_RESUME`` flag. The ``RESUME` 3828 ``SNDRV_PCM_INFO_RESUME`` flag. The ``RESUME`` flag affects only the 3728 behavior of :c:func:`snd_pcm_resume()`. (Thus 3829 behavior of :c:func:`snd_pcm_resume()`. (Thus, in theory, 3729 ``SNDRV_PCM_TRIGGER_RESUME`` isn't needed to 3830 ``SNDRV_PCM_TRIGGER_RESUME`` isn't needed to be handled in the trigger 3730 callback when no ``SNDRV_PCM_INFO_RESUME`` fl 3831 callback when no ``SNDRV_PCM_INFO_RESUME`` flag is set. But, it's better 3731 to keep it for compatibility reasons.) 3832 to keep it for compatibility reasons.) 3732 3833 3733 The driver needs to define the !! 3834 In the earlier version of ALSA drivers, a common power-management layer >> 3835 was provided, but it has been removed. The driver needs to define the 3734 suspend/resume hooks according to the bus the 3836 suspend/resume hooks according to the bus the device is connected to. In 3735 the case of PCI drivers, the callbacks look l !! 3837 the case of PCI drivers, the callbacks look like below: >> 3838 >> 3839 :: 3736 3840 3737 static int __maybe_unused snd_my_suspend(st !! 3841 #ifdef CONFIG_PM >> 3842 static int snd_my_suspend(struct pci_dev *pci, pm_message_t state) 3738 { 3843 { 3739 .... /* do things for suspend */ 3844 .... /* do things for suspend */ 3740 return 0; 3845 return 0; 3741 } 3846 } 3742 static int __maybe_unused snd_my_resume(str !! 3847 static int snd_my_resume(struct pci_dev *pci) 3743 { 3848 { 3744 .... /* do things for suspend */ 3849 .... /* do things for suspend */ 3745 return 0; 3850 return 0; 3746 } 3851 } >> 3852 #endif 3747 3853 3748 The scheme of the real suspend job is as foll !! 3854 The scheme of the real suspend job is as follows. 3749 3855 3750 1. Retrieve the card and the chip data. 3856 1. Retrieve the card and the chip data. 3751 3857 3752 2. Call :c:func:`snd_power_change_state()` wi 3858 2. Call :c:func:`snd_power_change_state()` with 3753 ``SNDRV_CTL_POWER_D3hot`` to change the po 3859 ``SNDRV_CTL_POWER_D3hot`` to change the power status. 3754 3860 3755 3. If AC97 codecs are used, call :c:func:`snd !! 3861 3. Call :c:func:`snd_pcm_suspend_all()` to suspend the running >> 3862 PCM streams. >> 3863 >> 3864 4. If AC97 codecs are used, call :c:func:`snd_ac97_suspend()` for 3756 each codec. 3865 each codec. 3757 3866 3758 4. Save the register values if necessary. !! 3867 5. Save the register values if necessary. 3759 3868 3760 5. Stop the hardware if necessary. !! 3869 6. Stop the hardware if necessary. 3761 3870 3762 Typical code would look like:: !! 3871 7. Disable the PCI device by calling >> 3872 :c:func:`pci_disable_device()`. Then, call >> 3873 :c:func:`pci_save_state()` at last. >> 3874 >> 3875 A typical code would be like: >> 3876 >> 3877 :: 3763 3878 3764 static int __maybe_unused mychip_suspend(st !! 3879 static int mychip_suspend(struct pci_dev *pci, pm_message_t state) 3765 { 3880 { 3766 /* (1) */ 3881 /* (1) */ 3767 struct snd_card *card = dev_get_drv !! 3882 struct snd_card *card = pci_get_drvdata(pci); 3768 struct mychip *chip = card->private 3883 struct mychip *chip = card->private_data; 3769 /* (2) */ 3884 /* (2) */ 3770 snd_power_change_state(card, SNDRV_ 3885 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 3771 /* (3) */ 3886 /* (3) */ 3772 snd_ac97_suspend(chip->ac97); !! 3887 snd_pcm_suspend_all(chip->pcm); 3773 /* (4) */ 3888 /* (4) */ 3774 snd_mychip_save_registers(chip); !! 3889 snd_ac97_suspend(chip->ac97); 3775 /* (5) */ 3890 /* (5) */ >> 3891 snd_mychip_save_registers(chip); >> 3892 /* (6) */ 3776 snd_mychip_stop_hardware(chip); 3893 snd_mychip_stop_hardware(chip); >> 3894 /* (7) */ >> 3895 pci_disable_device(pci); >> 3896 pci_save_state(pci); 3777 return 0; 3897 return 0; 3778 } 3898 } 3779 3899 3780 3900 3781 The scheme of the real resume job is as follo !! 3901 The scheme of the real resume job is as follows. 3782 3902 3783 1. Retrieve the card and the chip data. 3903 1. Retrieve the card and the chip data. 3784 3904 3785 2. Re-initialize the chip. !! 3905 2. Set up PCI. First, call :c:func:`pci_restore_state()`. Then >> 3906 enable the pci device again by calling >> 3907 :c:func:`pci_enable_device()`. Call >> 3908 :c:func:`pci_set_master()` if necessary, too. 3786 3909 3787 3. Restore the saved registers if necessary. !! 3910 3. Re-initialize the chip. 3788 3911 3789 4. Resume the mixer, e.g. by calling :c:func: !! 3912 4. Restore the saved registers if necessary. 3790 3913 3791 5. Restart the hardware (if any). !! 3914 5. Resume the mixer, e.g. calling :c:func:`snd_ac97_resume()`. 3792 3915 3793 6. Call :c:func:`snd_power_change_state()` wi !! 3916 6. Restart the hardware (if any). >> 3917 >> 3918 7. Call :c:func:`snd_power_change_state()` with 3794 ``SNDRV_CTL_POWER_D0`` to notify the proce 3919 ``SNDRV_CTL_POWER_D0`` to notify the processes. 3795 3920 3796 Typical code would look like:: !! 3921 A typical code would be like: >> 3922 >> 3923 :: 3797 3924 3798 static int __maybe_unused mychip_resume(str !! 3925 static int mychip_resume(struct pci_dev *pci) 3799 { 3926 { 3800 /* (1) */ 3927 /* (1) */ 3801 struct snd_card *card = dev_get_drv !! 3928 struct snd_card *card = pci_get_drvdata(pci); 3802 struct mychip *chip = card->private 3929 struct mychip *chip = card->private_data; 3803 /* (2) */ 3930 /* (2) */ 3804 snd_mychip_reinit_chip(chip); !! 3931 pci_restore_state(pci); >> 3932 pci_enable_device(pci); >> 3933 pci_set_master(pci); 3805 /* (3) */ 3934 /* (3) */ 3806 snd_mychip_restore_registers(chip); !! 3935 snd_mychip_reinit_chip(chip); 3807 /* (4) */ 3936 /* (4) */ 3808 snd_ac97_resume(chip->ac97); !! 3937 snd_mychip_restore_registers(chip); 3809 /* (5) */ 3938 /* (5) */ 3810 snd_mychip_restart_chip(chip); !! 3939 snd_ac97_resume(chip->ac97); 3811 /* (6) */ 3940 /* (6) */ >> 3941 snd_mychip_restart_chip(chip); >> 3942 /* (7) */ 3812 snd_power_change_state(card, SNDRV_ 3943 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 3813 return 0; 3944 return 0; 3814 } 3945 } 3815 3946 3816 Note that, at the time this callback gets cal !! 3947 As shown in the above, it's better to save registers after suspending 3817 been already suspended via its own PM ops cal !! 3948 the PCM operations via :c:func:`snd_pcm_suspend_all()` or 3818 :c:func:`snd_pcm_suspend_all()` internally. !! 3949 :c:func:`snd_pcm_suspend()`. It means that the PCM streams are >> 3950 already stopped when the register snapshot is taken. But, remember that >> 3951 you don't have to restart the PCM stream in the resume callback. It'll >> 3952 be restarted via trigger call with ``SNDRV_PCM_TRIGGER_RESUME`` when >> 3953 necessary. 3819 3954 3820 OK, we have all callbacks now. Let's set them 3955 OK, we have all callbacks now. Let's set them up. In the initialization 3821 of the card, make sure that you can get the c 3956 of the card, make sure that you can get the chip data from the card 3822 instance, typically via ``private_data`` fiel 3957 instance, typically via ``private_data`` field, in case you created the 3823 chip data individually:: !! 3958 chip data individually. >> 3959 >> 3960 :: 3824 3961 3825 static int snd_mychip_probe(struct pci_dev 3962 static int snd_mychip_probe(struct pci_dev *pci, 3826 const struct pc 3963 const struct pci_device_id *pci_id) 3827 { 3964 { 3828 .... 3965 .... 3829 struct snd_card *card; 3966 struct snd_card *card; 3830 struct mychip *chip; 3967 struct mychip *chip; 3831 int err; 3968 int err; 3832 .... 3969 .... 3833 err = snd_card_new(&pci->dev, index 3970 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 3834 0, &card); 3971 0, &card); 3835 .... 3972 .... 3836 chip = kzalloc(sizeof(*chip), GFP_K 3973 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 3837 .... 3974 .... 3838 card->private_data = chip; 3975 card->private_data = chip; 3839 .... 3976 .... 3840 } 3977 } 3841 3978 3842 When you created the chip data with :c:func:` 3979 When you created the chip data with :c:func:`snd_card_new()`, it's 3843 anyway accessible via ``private_data`` field: !! 3980 anyway accessible via ``private_data`` field. >> 3981 >> 3982 :: 3844 3983 3845 static int snd_mychip_probe(struct pci_dev 3984 static int snd_mychip_probe(struct pci_dev *pci, 3846 const struct pc 3985 const struct pci_device_id *pci_id) 3847 { 3986 { 3848 .... 3987 .... 3849 struct snd_card *card; 3988 struct snd_card *card; 3850 struct mychip *chip; 3989 struct mychip *chip; 3851 int err; 3990 int err; 3852 .... 3991 .... 3853 err = snd_card_new(&pci->dev, index 3992 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 3854 sizeof(struct my 3993 sizeof(struct mychip), &card); 3855 .... 3994 .... 3856 chip = card->private_data; 3995 chip = card->private_data; 3857 .... 3996 .... 3858 } 3997 } 3859 3998 3860 If you need space to save the registers, allo !! 3999 If you need a space to save the registers, allocate the buffer for it 3861 here, too, since it would be fatal if you can 4000 here, too, since it would be fatal if you cannot allocate a memory in 3862 the suspend phase. The allocated buffer shoul 4001 the suspend phase. The allocated buffer should be released in the 3863 corresponding destructor. 4002 corresponding destructor. 3864 4003 3865 And next, set suspend/resume callbacks to the !! 4004 And next, set suspend/resume callbacks to the pci_driver. 3866 4005 3867 static DEFINE_SIMPLE_DEV_PM_OPS(snd_my_pm_o !! 4006 :: 3868 4007 3869 static struct pci_driver driver = { 4008 static struct pci_driver driver = { 3870 .name = KBUILD_MODNAME, 4009 .name = KBUILD_MODNAME, 3871 .id_table = snd_my_ids, 4010 .id_table = snd_my_ids, 3872 .probe = snd_my_probe, 4011 .probe = snd_my_probe, 3873 .remove = snd_my_remove, 4012 .remove = snd_my_remove, 3874 .driver = { !! 4013 #ifdef CONFIG_PM 3875 .pm = &snd_my_pm_ops, !! 4014 .suspend = snd_my_suspend, 3876 }, !! 4015 .resume = snd_my_resume, >> 4016 #endif 3877 }; 4017 }; 3878 4018 3879 Module Parameters 4019 Module Parameters 3880 ================= 4020 ================= 3881 4021 3882 There are standard module options for ALSA. A 4022 There are standard module options for ALSA. At least, each module should 3883 have the ``index``, ``id`` and ``enable`` opt 4023 have the ``index``, ``id`` and ``enable`` options. 3884 4024 3885 If the module supports multiple cards (usuall 4025 If the module supports multiple cards (usually up to 8 = ``SNDRV_CARDS`` 3886 cards), they should be arrays. The default in 4026 cards), they should be arrays. The default initial values are defined 3887 already as constants for easier programming:: !! 4027 already as constants for easier programming: >> 4028 >> 4029 :: 3888 4030 3889 static int index[SNDRV_CARDS] = SNDRV_DEFAU 4031 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; 3890 static char *id[SNDRV_CARDS] = SNDRV_DEFAUL 4032 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; 3891 static int enable[SNDRV_CARDS] = SNDRV_DEFA 4033 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; 3892 4034 3893 If the module supports only a single card, th 4035 If the module supports only a single card, they could be single 3894 variables, instead. ``enable`` option is not 4036 variables, instead. ``enable`` option is not always necessary in this 3895 case, but it would be better to have a dummy 4037 case, but it would be better to have a dummy option for compatibility. 3896 4038 3897 The module parameters must be declared with t 4039 The module parameters must be declared with the standard 3898 ``module_param()``, ``module_param_array()`` !! 4040 ``module_param()()``, ``module_param_array()()`` and 3899 :c:func:`MODULE_PARM_DESC()` macros. 4041 :c:func:`MODULE_PARM_DESC()` macros. 3900 4042 3901 Typical code would look as below:: !! 4043 The typical coding would be like below: >> 4044 >> 4045 :: 3902 4046 3903 #define CARD_NAME "My Chip" 4047 #define CARD_NAME "My Chip" 3904 4048 3905 module_param_array(index, int, NULL, 0444); 4049 module_param_array(index, int, NULL, 0444); 3906 MODULE_PARM_DESC(index, "Index value for " 4050 MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard."); 3907 module_param_array(id, charp, NULL, 0444); 4051 module_param_array(id, charp, NULL, 0444); 3908 MODULE_PARM_DESC(id, "ID string for " CARD_ 4052 MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard."); 3909 module_param_array(enable, bool, NULL, 0444 4053 module_param_array(enable, bool, NULL, 0444); 3910 MODULE_PARM_DESC(enable, "Enable " CARD_NAM 4054 MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard."); 3911 4055 3912 Also, don't forget to define the module descr !! 4056 Also, don't forget to define the module description, classes, license 3913 Especially, the recent modprobe requires to d !! 4057 and devices. Especially, the recent modprobe requires to define the 3914 module license as GPL, etc., otherwise the sy !! 4058 module license as GPL, etc., otherwise the system is shown as “tainted”. 3915 << 3916 MODULE_DESCRIPTION("Sound driver for My Chi << 3917 MODULE_LICENSE("GPL"); << 3918 << 3919 4059 3920 Device-Managed Resources !! 4060 :: 3921 ======================== << 3922 4061 3923 In the examples above, all resources are allo !! 4062 MODULE_DESCRIPTION("My Chip"); 3924 manually. But human beings are lazy in natur !! 4063 MODULE_LICENSE("GPL"); 3925 are lazier. So there are some ways to automa !! 4064 MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}"); 3926 the (device-)managed resources aka devres or << 3927 example, an object allocated via :c:func:`dev << 3928 freed automatically at unbinding the device. << 3929 << 3930 ALSA core provides also the device-managed he << 3931 :c:func:`snd_devm_card_new()` for creating a << 3932 Call this functions instead of the normal :c: << 3933 and you can forget the explicit :c:func:`snd_ << 3934 it's called automagically at error and remova << 3935 << 3936 One caveat is that the call of :c:func:`snd_c << 3937 at the beginning of the call chain only after << 3938 :c:func:`snd_card_register()`. << 3939 << 3940 Also, the ``private_free`` callback is always << 3941 so be careful to put the hardware clean-up pr << 3942 ``private_free`` callback. It might be calle << 3943 actually set up at an earlier error path. Fo << 3944 invalid initialization, you can set ``private << 3945 :c:func:`snd_card_register()` call succeeds. << 3946 << 3947 Another thing to be remarked is that you shou << 3948 helpers for each component as much as possibl << 3949 the card in that way. Mixing up with the nor << 3950 resources may screw up the release order. << 3951 4065 3952 4066 3953 How To Put Your Driver Into ALSA Tree 4067 How To Put Your Driver Into ALSA Tree 3954 ===================================== 4068 ===================================== 3955 4069 3956 General 4070 General 3957 ------- 4071 ------- 3958 4072 3959 So far, you've learned how to write the drive 4073 So far, you've learned how to write the driver codes. And you might have 3960 a question now: how to put my own driver into 4074 a question now: how to put my own driver into the ALSA driver tree? Here 3961 (finally :) the standard procedure is describ 4075 (finally :) the standard procedure is described briefly. 3962 4076 3963 Suppose that you create a new PCI driver for 4077 Suppose that you create a new PCI driver for the card “xyz”. The card 3964 module name would be snd-xyz. The new driver 4078 module name would be snd-xyz. The new driver is usually put into the 3965 alsa-driver tree, ``sound/pci`` directory in !! 4079 alsa-driver tree, ``alsa-driver/pci`` directory in the case of PCI 3966 cards. !! 4080 cards. Then the driver is evaluated, audited and tested by developers >> 4081 and users. After a certain time, the driver will go to the alsa-kernel >> 4082 tree (to the corresponding directory, such as ``alsa-kernel/pci``) and >> 4083 eventually will be integrated into the Linux 2.6 tree (the directory >> 4084 would be ``linux/sound/pci``). 3967 4085 3968 In the following sections, the driver code is 4086 In the following sections, the driver code is supposed to be put into 3969 Linux kernel tree. The two cases are covered: !! 4087 alsa-driver tree. The two cases are covered: a driver consisting of a 3970 single source file and one consisting of seve 4088 single source file and one consisting of several source files. 3971 4089 3972 Driver with A Single Source File 4090 Driver with A Single Source File 3973 -------------------------------- 4091 -------------------------------- 3974 4092 3975 1. Modify sound/pci/Makefile !! 4093 1. Modify alsa-driver/pci/Makefile >> 4094 >> 4095 Suppose you have a file xyz.c. Add the following two lines 3976 4096 3977 Suppose you have a file xyz.c. Add the fol !! 4097 :: 3978 4098 3979 snd-xyz-y := xyz.o !! 4099 snd-xyz-objs := xyz.o 3980 obj-$(CONFIG_SND_XYZ) += snd-xyz.o !! 4100 obj-$(CONFIG_SND_XYZ) += snd-xyz.o 3981 4101 3982 2. Create the Kconfig entry 4102 2. Create the Kconfig entry 3983 4103 3984 Add the new entry of Kconfig for your xyz !! 4104 Add the new entry of Kconfig for your xyz driver. config SND_XYZ >> 4105 tristate "Foobar XYZ" depends on SND select SND_PCM help Say Y here >> 4106 to include support for Foobar XYZ soundcard. To compile this driver >> 4107 as a module, choose M here: the module will be called snd-xyz. the >> 4108 line, select SND_PCM, specifies that the driver xyz supports PCM. In >> 4109 addition to SND_PCM, the following components are supported for >> 4110 select command: SND_RAWMIDI, SND_TIMER, SND_HWDEP, >> 4111 SND_MPU401_UART, SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, >> 4112 SND_AC97_CODEC. Add the select command for each supported >> 4113 component. >> 4114 >> 4115 Note that some selections imply the lowlevel selections. For example, >> 4116 PCM includes TIMER, MPU401_UART includes RAWMIDI, AC97_CODEC >> 4117 includes PCM, and OPL3_LIB includes HWDEP. You don't need to give >> 4118 the lowlevel selections again. 3985 4119 3986 config SND_XYZ !! 4120 For the details of Kconfig script, refer to the kbuild documentation. 3987 tristate "Foobar XYZ" << 3988 depends on SND << 3989 select SND_PCM << 3990 help << 3991 Say Y here to include support for Fo << 3992 To compile this driver as a module, << 3993 the module will be called snd-xyz. << 3994 << 3995 The line ``select SND_PCM`` specifies that th << 3996 In addition to SND_PCM, the following compone << 3997 select command: SND_RAWMIDI, SND_TIMER, SND_H << 3998 SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_A << 3999 Add the select command for each supported com << 4000 << 4001 Note that some selections imply the lowlevel << 4002 PCM includes TIMER, MPU401_UART includes RAWM << 4003 includes PCM, and OPL3_LIB includes HWDEP. Yo << 4004 the lowlevel selections again. << 4005 4121 4006 For the details of Kconfig script, refer to t !! 4122 3. Run cvscompile script to re-generate the configure script and build >> 4123 the whole stuff again. 4007 4124 4008 Drivers with Several Source Files 4125 Drivers with Several Source Files 4009 --------------------------------- 4126 --------------------------------- 4010 4127 4011 Suppose that the driver snd-xyz have several 4128 Suppose that the driver snd-xyz have several source files. They are 4012 located in the new subdirectory, sound/pci/xy !! 4129 located in the new subdirectory, pci/xyz. >> 4130 >> 4131 1. Add a new directory (``xyz``) in ``alsa-driver/pci/Makefile`` as >> 4132 below 4013 4133 4014 1. Add a new directory (``sound/pci/xyz``) in !! 4134 :: 4015 as below:: << 4016 4135 4017 obj-$(CONFIG_SND) += sound/pci/xyz/ !! 4136 obj-$(CONFIG_SND) += xyz/ 4018 4137 4019 4138 4020 2. Under the directory ``sound/pci/xyz``, cre !! 4139 2. Under the directory ``xyz``, create a Makefile >> 4140 >> 4141 :: >> 4142 >> 4143 ifndef SND_TOPDIR >> 4144 SND_TOPDIR=../.. >> 4145 endif >> 4146 >> 4147 include $(SND_TOPDIR)/toplevel.config >> 4148 include $(SND_TOPDIR)/Makefile.conf >> 4149 >> 4150 snd-xyz-objs := xyz.o abc.o def.o 4021 4151 4022 snd-xyz-y := xyz.o abc.o def.o << 4023 obj-$(CONFIG_SND_XYZ) += snd-xyz.o 4152 obj-$(CONFIG_SND_XYZ) += snd-xyz.o 4024 4153 >> 4154 include $(SND_TOPDIR)/Rules.make >> 4155 4025 3. Create the Kconfig entry 4156 3. Create the Kconfig entry 4026 4157 4027 This procedure is as same as in the last s 4158 This procedure is as same as in the last section. 4028 4159 >> 4160 4. Run cvscompile script to re-generate the configure script and build >> 4161 the whole stuff again. 4029 4162 4030 Useful Functions 4163 Useful Functions 4031 ================ 4164 ================ 4032 4165 >> 4166 :c:func:`snd_printk()` and friends >> 4167 --------------------------------------- >> 4168 >> 4169 ALSA provides a verbose version of the :c:func:`printk()` function. >> 4170 If a kernel config ``CONFIG_SND_VERBOSE_PRINTK`` is set, this function >> 4171 prints the given message together with the file name and the line of the >> 4172 caller. The ``KERN_XXX`` prefix is processed as well as the original >> 4173 :c:func:`printk()` does, so it's recommended to add this prefix, >> 4174 e.g. snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\\n"); >> 4175 >> 4176 There are also :c:func:`printk()`'s for debugging. >> 4177 :c:func:`snd_printd()` can be used for general debugging purposes. >> 4178 If ``CONFIG_SND_DEBUG`` is set, this function is compiled, and works >> 4179 just like :c:func:`snd_printk()`. If the ALSA is compiled without >> 4180 the debugging flag, it's ignored. >> 4181 >> 4182 :c:func:`snd_printdd()` is compiled in only when >> 4183 ``CONFIG_SND_DEBUG_VERBOSE`` is set. Please note that >> 4184 ``CONFIG_SND_DEBUG_VERBOSE`` is not set as default even if you configure >> 4185 the alsa-driver with ``--with-debug=full`` option. You need to give >> 4186 explicitly ``--with-debug=detect`` option instead. >> 4187 4033 :c:func:`snd_BUG()` 4188 :c:func:`snd_BUG()` 4034 ------------------- !! 4189 ------------------------ 4035 4190 4036 It shows the ``BUG?`` message and stack trace 4191 It shows the ``BUG?`` message and stack trace as well as 4037 :c:func:`snd_BUG_ON()` at the point. It's use 4192 :c:func:`snd_BUG_ON()` at the point. It's useful to show that a 4038 fatal error happens there. 4193 fatal error happens there. 4039 4194 4040 When no debug flag is set, this macro is igno 4195 When no debug flag is set, this macro is ignored. 4041 4196 4042 :c:func:`snd_BUG_ON()` 4197 :c:func:`snd_BUG_ON()` 4043 ---------------------- !! 4198 ---------------------------- 4044 4199 4045 :c:func:`snd_BUG_ON()` macro is similar with 4200 :c:func:`snd_BUG_ON()` macro is similar with 4046 :c:func:`WARN_ON()` macro. For example, snd_B 4201 :c:func:`WARN_ON()` macro. For example, snd_BUG_ON(!pointer); or 4047 it can be used as the condition, if (snd_BUG_ 4202 it can be used as the condition, if (snd_BUG_ON(non_zero_is_bug)) 4048 return -EINVAL; 4203 return -EINVAL; 4049 4204 4050 The macro takes an conditional expression to 4205 The macro takes an conditional expression to evaluate. When 4051 ``CONFIG_SND_DEBUG``, is set, if the expressi 4206 ``CONFIG_SND_DEBUG``, is set, if the expression is non-zero, it shows 4052 the warning message such as ``BUG? (xxx)`` no 4207 the warning message such as ``BUG? (xxx)`` normally followed by stack 4053 trace. In both cases it returns the evaluated 4208 trace. In both cases it returns the evaluated value. 4054 4209 4055 Acknowledgments 4210 Acknowledgments 4056 =============== 4211 =============== 4057 4212 4058 I would like to thank Phil Kerr for his help 4213 I would like to thank Phil Kerr for his help for improvement and 4059 corrections of this document. 4214 corrections of this document. 4060 4215 4061 Kevin Conder reformatted the original plain-t 4216 Kevin Conder reformatted the original plain-text to the DocBook format. 4062 4217 4063 Giuliano Pochini corrected typos and contribu 4218 Giuliano Pochini corrected typos and contributed the example codes in 4064 the hardware constraints section. 4219 the hardware constraints section.
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.