~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/sound/kernel-api/writing-an-alsa-driver.rst

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /Documentation/sound/kernel-api/writing-an-alsa-driver.rst (Version linux-6.12-rc7) and /Documentation/sound/kernel-api/writing-an-alsa-driver.rst (Version linux-4.14.336)


  1 ======================                              1 ======================
  2 Writing an ALSA Driver                              2 Writing an ALSA Driver
  3 ======================                              3 ======================
  4                                                     4 
  5 :Author: Takashi Iwai <tiwai@suse.de>                5 :Author: Takashi Iwai <tiwai@suse.de>
                                                   >>   6 :Date:   Oct 15, 2007
                                                   >>   7 :Edition: 0.3.7
  6                                                     8 
  7 Preface                                             9 Preface
  8 =======                                            10 =======
  9                                                    11 
 10 This document describes how to write an `ALSA      12 This document describes how to write an `ALSA (Advanced Linux Sound
 11 Architecture) <http://www.alsa-project.org/>`_     13 Architecture) <http://www.alsa-project.org/>`__ driver. The document
 12 focuses mainly on PCI soundcards. In the case      14 focuses mainly on PCI soundcards. In the case of other device types, the
 13 API might be different, too. However, at least     15 API might be different, too. However, at least the ALSA kernel API is
 14 consistent, and therefore it would be still a      16 consistent, and therefore it would be still a bit help for writing them.
 15                                                    17 
 16 This document targets people who already have      18 This document targets people who already have enough C language skills
 17 and have basic linux kernel programming knowle     19 and have basic linux kernel programming knowledge. This document doesn't
 18 explain the general topic of linux kernel codi     20 explain the general topic of linux kernel coding and doesn't cover
 19 low-level driver implementation details. It on     21 low-level driver implementation details. It only describes the standard
 20 way to write a PCI sound driver on ALSA.           22 way to write a PCI sound driver on ALSA.
 21                                                    23 
                                                   >>  24 If you are already familiar with the older ALSA ver.0.5.x API, you can
                                                   >>  25 check the drivers such as ``sound/pci/es1938.c`` or
                                                   >>  26 ``sound/pci/maestro3.c`` which have also almost the same code-base in
                                                   >>  27 the ALSA 0.5.x tree, so you can compare the differences.
                                                   >>  28 
                                                   >>  29 This document is still a draft version. Any feedback and corrections,
                                                   >>  30 please!!
                                                   >>  31 
 22 File Tree Structure                                32 File Tree Structure
 23 ===================                                33 ===================
 24                                                    34 
 25 General                                            35 General
 26 -------                                            36 -------
 27                                                    37 
 28 The file tree structure of ALSA driver is depi !!  38 The ALSA drivers are provided in two ways.
                                                   >>  39 
                                                   >>  40 One is the trees provided as a tarball or via cvs from the ALSA's ftp
                                                   >>  41 site, and another is the 2.6 (or later) Linux kernel tree. To
                                                   >>  42 synchronize both, the ALSA driver tree is split into two different
                                                   >>  43 trees: alsa-kernel and alsa-driver. The former contains purely the
                                                   >>  44 source code for the Linux 2.6 (or later) tree. This tree is designed
                                                   >>  45 only for compilation on 2.6 or later environment. The latter,
                                                   >>  46 alsa-driver, contains many subtle files for compiling ALSA drivers
                                                   >>  47 outside of the Linux kernel tree, wrapper functions for older 2.2 and
                                                   >>  48 2.4 kernels, to adapt the latest kernel API, and additional drivers
                                                   >>  49 which are still in development or in tests. The drivers in alsa-driver
                                                   >>  50 tree will be moved to alsa-kernel (and eventually to the 2.6 kernel
                                                   >>  51 tree) when they are finished and confirmed to work fine.
                                                   >>  52 
                                                   >>  53 The file tree structure of ALSA driver is depicted below. Both
                                                   >>  54 alsa-kernel and alsa-driver have almost the same file structure, except
                                                   >>  55 for “core” directory. It's named as “acore” in alsa-driver tree.
                                                   >>  56 
                                                   >>  57 ::
 29                                                    58 
 30             sound                                  59             sound
 31                     /core                          60                     /core
 32                             /oss                   61                             /oss
 33                             /seq                   62                             /seq
 34                                     /oss           63                                     /oss
                                                   >>  64                                     /instr
                                                   >>  65                     /ioctl32
 35                     /include                       66                     /include
 36                     /drivers                       67                     /drivers
 37                             /mpu401                68                             /mpu401
 38                             /opl3                  69                             /opl3
 39                     /i2c                           70                     /i2c
                                                   >>  71                             /l3
 40                     /synth                         72                     /synth
 41                             /emux                  73                             /emux
 42                     /pci                           74                     /pci
 43                             /(cards)               75                             /(cards)
 44                     /isa                           76                     /isa
 45                             /(cards)               77                             /(cards)
 46                     /arm                           78                     /arm
 47                     /ppc                           79                     /ppc
 48                     /sparc                         80                     /sparc
 49                     /usb                           81                     /usb
 50                     /pcmcia /(cards)               82                     /pcmcia /(cards)
 51                     /soc                       << 
 52                     /oss                           83                     /oss
 53                                                    84 
 54                                                    85 
 55 core directory                                     86 core directory
 56 --------------                                     87 --------------
 57                                                    88 
 58 This directory contains the middle layer which     89 This directory contains the middle layer which is the heart of ALSA
 59 drivers. In this directory, the native ALSA mo     90 drivers. In this directory, the native ALSA modules are stored. The
 60 sub-directories contain different modules and      91 sub-directories contain different modules and are dependent upon the
 61 kernel config.                                     92 kernel config.
 62                                                    93 
 63 core/oss                                           94 core/oss
 64 ~~~~~~~~                                           95 ~~~~~~~~
 65                                                    96 
 66 The code for OSS PCM and mixer emulation modul !!  97 The codes for PCM and mixer OSS emulation modules are stored in this
 67 directory. The OSS rawmidi emulation is includ !!  98 directory. The rawmidi OSS emulation is included in the ALSA rawmidi
 68 code since it's quite small. The sequencer cod     99 code since it's quite small. The sequencer code is stored in
 69 ``core/seq/oss`` directory (see `below <core/s !! 100 ``core/seq/oss`` directory (see `below <#core-seq-oss>`__).
                                                   >> 101 
                                                   >> 102 core/ioctl32
                                                   >> 103 ~~~~~~~~~~~~
                                                   >> 104 
                                                   >> 105 This directory contains the 32bit-ioctl wrappers for 64bit architectures
                                                   >> 106 such like x86-64, ppc64 and sparc64. For 32bit and alpha architectures,
                                                   >> 107 these are not compiled.
 70                                                   108 
 71 core/seq                                          109 core/seq
 72 ~~~~~~~~                                          110 ~~~~~~~~
 73                                                   111 
 74 This directory and its sub-directories are for    112 This directory and its sub-directories are for the ALSA sequencer. This
 75 directory contains the sequencer core and prim    113 directory contains the sequencer core and primary sequencer modules such
 76 as snd-seq-midi, snd-seq-virmidi, etc. They ar !! 114 like snd-seq-midi, snd-seq-virmidi, etc. They are compiled only when
 77 ``CONFIG_SND_SEQUENCER`` is set in the kernel     115 ``CONFIG_SND_SEQUENCER`` is set in the kernel config.
 78                                                   116 
 79 core/seq/oss                                      117 core/seq/oss
 80 ~~~~~~~~~~~~                                      118 ~~~~~~~~~~~~
 81                                                   119 
 82 This contains the OSS sequencer emulation code !! 120 This contains the OSS sequencer emulation codes.
                                                   >> 121 
                                                   >> 122 core/seq/instr
                                                   >> 123 ~~~~~~~~~~~~~~
                                                   >> 124 
                                                   >> 125 This directory contains the modules for the sequencer instrument layer.
 83                                                   126 
 84 include directory                                 127 include directory
 85 -----------------                                 128 -----------------
 86                                                   129 
 87 This is the place for the public header files     130 This is the place for the public header files of ALSA drivers, which are
 88 to be exported to user-space, or included by s !! 131 to be exported to user-space, or included by several files at different
 89 directories. Basically, the private header fil    132 directories. Basically, the private header files should not be placed in
 90 this directory, but you may still find files t    133 this directory, but you may still find files there, due to historical
 91 reasons :)                                        134 reasons :)
 92                                                   135 
 93 drivers directory                                 136 drivers directory
 94 -----------------                                 137 -----------------
 95                                                   138 
 96 This directory contains code shared among diff    139 This directory contains code shared among different drivers on different
 97 architectures. They are hence supposed not to     140 architectures. They are hence supposed not to be architecture-specific.
 98 For example, the dummy PCM driver and the seri !! 141 For example, the dummy pcm driver and the serial MIDI driver are found
 99 in this directory. In the sub-directories, the    142 in this directory. In the sub-directories, there is code for components
100 which are independent from bus and cpu archite    143 which are independent from bus and cpu architectures.
101                                                   144 
102 drivers/mpu401                                    145 drivers/mpu401
103 ~~~~~~~~~~~~~~                                    146 ~~~~~~~~~~~~~~
104                                                   147 
105 The MPU401 and MPU401-UART modules are stored     148 The MPU401 and MPU401-UART modules are stored here.
106                                                   149 
107 drivers/opl3 and opl4                             150 drivers/opl3 and opl4
108 ~~~~~~~~~~~~~~~~~~~~~                             151 ~~~~~~~~~~~~~~~~~~~~~
109                                                   152 
110 The OPL3 and OPL4 FM-synth stuff is found here    153 The OPL3 and OPL4 FM-synth stuff is found here.
111                                                   154 
112 i2c directory                                     155 i2c directory
113 -------------                                     156 -------------
114                                                   157 
115 This contains the ALSA i2c components.            158 This contains the ALSA i2c components.
116                                                   159 
117 Although there is a standard i2c layer on Linu    160 Although there is a standard i2c layer on Linux, ALSA has its own i2c
118 code for some cards, because the soundcard nee    161 code for some cards, because the soundcard needs only a simple operation
119 and the standard i2c API is too complicated fo    162 and the standard i2c API is too complicated for such a purpose.
120                                                   163 
                                                   >> 164 i2c/l3
                                                   >> 165 ~~~~~~
                                                   >> 166 
                                                   >> 167 This is a sub-directory for ARM L3 i2c.
                                                   >> 168 
121 synth directory                                   169 synth directory
122 ---------------                                   170 ---------------
123                                                   171 
124 This contains the synth middle-level modules.     172 This contains the synth middle-level modules.
125                                                   173 
126 So far, there is only Emu8000/Emu10k1 synth dr    174 So far, there is only Emu8000/Emu10k1 synth driver under the
127 ``synth/emux`` sub-directory.                     175 ``synth/emux`` sub-directory.
128                                                   176 
129 pci directory                                     177 pci directory
130 -------------                                     178 -------------
131                                                   179 
132 This directory and its sub-directories hold th    180 This directory and its sub-directories hold the top-level card modules
133 for PCI soundcards and the code specific to th    181 for PCI soundcards and the code specific to the PCI BUS.
134                                                   182 
135 The drivers compiled from a single file are st    183 The drivers compiled from a single file are stored directly in the pci
136 directory, while the drivers with several sour    184 directory, while the drivers with several source files are stored on
137 their own sub-directory (e.g. emu10k1, ice1712    185 their own sub-directory (e.g. emu10k1, ice1712).
138                                                   186 
139 isa directory                                     187 isa directory
140 -------------                                     188 -------------
141                                                   189 
142 This directory and its sub-directories hold th    190 This directory and its sub-directories hold the top-level card modules
143 for ISA soundcards.                               191 for ISA soundcards.
144                                                   192 
145 arm, ppc, and sparc directories                   193 arm, ppc, and sparc directories
146 -------------------------------                   194 -------------------------------
147                                                   195 
148 They are used for top-level card modules which    196 They are used for top-level card modules which are specific to one of
149 these architectures.                              197 these architectures.
150                                                   198 
151 usb directory                                     199 usb directory
152 -------------                                     200 -------------
153                                                   201 
154 This directory contains the USB-audio driver.  !! 202 This directory contains the USB-audio driver. In the latest version, the
155 The USB MIDI driver is integrated in the usb-a !! 203 USB MIDI driver is integrated in the usb-audio driver.
156                                                   204 
157 pcmcia directory                                  205 pcmcia directory
158 ----------------                                  206 ----------------
159                                                   207 
160 The PCMCIA, especially PCCard drivers will go     208 The PCMCIA, especially PCCard drivers will go here. CardBus drivers will
161 be in the pci directory, because their API is     209 be in the pci directory, because their API is identical to that of
162 standard PCI cards.                               210 standard PCI cards.
163                                                   211 
164 soc directory                                  << 
165 -------------                                  << 
166                                                << 
167 This directory contains the codes for ASoC (AL << 
168 layer including ASoC core, codec and machine d << 
169                                                << 
170 oss directory                                     212 oss directory
171 -------------                                     213 -------------
172                                                   214 
173 This contains OSS/Lite code.                   !! 215 The OSS/Lite source files are stored here in Linux 2.6 (or later) tree.
174 At the time of writing, all code has been remo !! 216 In the ALSA driver tarball, this directory is empty, of course :)
175 on m68k.                                       << 
176                                                << 
177                                                   217 
178 Basic Flow for PCI Drivers                        218 Basic Flow for PCI Drivers
179 ==========================                        219 ==========================
180                                                   220 
181 Outline                                           221 Outline
182 -------                                           222 -------
183                                                   223 
184 The minimum flow for PCI soundcards is as foll    224 The minimum flow for PCI soundcards is as follows:
185                                                   225 
186 -  define the PCI ID table (see the section `P    226 -  define the PCI ID table (see the section `PCI Entries`_).
187                                                   227 
188 -  create ``probe`` callback.                     228 -  create ``probe`` callback.
189                                                   229 
190 -  create ``remove`` callback.                    230 -  create ``remove`` callback.
191                                                   231 
192 -  create a struct pci_driver structure        !! 232 -  create a :c:type:`struct pci_driver <pci_driver>` structure
193    containing the three pointers above.           233    containing the three pointers above.
194                                                   234 
195 -  create an ``init`` function just calling th    235 -  create an ``init`` function just calling the
196    :c:func:`pci_register_driver()` to register    236    :c:func:`pci_register_driver()` to register the pci_driver
197    table defined above.                           237    table defined above.
198                                                   238 
199 -  create an ``exit`` function to call the        239 -  create an ``exit`` function to call the
200    :c:func:`pci_unregister_driver()` function.    240    :c:func:`pci_unregister_driver()` function.
201                                                   241 
202 Full Code Example                                 242 Full Code Example
203 -----------------                                 243 -----------------
204                                                   244 
205 The code example is shown below. Some parts ar    245 The code example is shown below. Some parts are kept unimplemented at
206 this moment but will be filled in the next sec    246 this moment but will be filled in the next sections. The numbers in the
207 comment lines of the :c:func:`snd_mychip_probe    247 comment lines of the :c:func:`snd_mychip_probe()` function refer
208 to details explained in the following section.    248 to details explained in the following section.
209                                                   249 
210 ::                                                250 ::
211                                                   251 
212       #include <linux/init.h>                     252       #include <linux/init.h>
213       #include <linux/pci.h>                      253       #include <linux/pci.h>
214       #include <linux/slab.h>                     254       #include <linux/slab.h>
215       #include <sound/core.h>                     255       #include <sound/core.h>
216       #include <sound/initval.h>                  256       #include <sound/initval.h>
217                                                   257 
218       /* module parameters (see "Module Parame    258       /* module parameters (see "Module Parameters") */
219       /* SNDRV_CARDS: maximum number of cards     259       /* SNDRV_CARDS: maximum number of cards supported by this module */
220       static int index[SNDRV_CARDS] = SNDRV_DE    260       static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
221       static char *id[SNDRV_CARDS] = SNDRV_DEF    261       static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
222       static bool enable[SNDRV_CARDS] = SNDRV_    262       static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
223                                                   263 
224       /* definition of the chip-specific recor    264       /* definition of the chip-specific record */
225       struct mychip {                             265       struct mychip {
226               struct snd_card *card;              266               struct snd_card *card;
227               /* the rest of the implementatio    267               /* the rest of the implementation will be in section
228                * "PCI Resource Management"        268                * "PCI Resource Management"
229                */                                 269                */
230       };                                          270       };
231                                                   271 
232       /* chip-specific destructor                 272       /* chip-specific destructor
233        * (see "PCI Resource Management")          273        * (see "PCI Resource Management")
234        */                                         274        */
235       static int snd_mychip_free(struct mychip    275       static int snd_mychip_free(struct mychip *chip)
236       {                                           276       {
237               .... /* will be implemented late    277               .... /* will be implemented later... */
238       }                                           278       }
239                                                   279 
240       /* component-destructor                     280       /* component-destructor
241        * (see "Management of Cards and Compone    281        * (see "Management of Cards and Components")
242        */                                         282        */
243       static int snd_mychip_dev_free(struct sn    283       static int snd_mychip_dev_free(struct snd_device *device)
244       {                                           284       {
245               return snd_mychip_free(device->d    285               return snd_mychip_free(device->device_data);
246       }                                           286       }
247                                                   287 
248       /* chip-specific constructor                288       /* chip-specific constructor
249        * (see "Management of Cards and Compone    289        * (see "Management of Cards and Components")
250        */                                         290        */
251       static int snd_mychip_create(struct snd_    291       static int snd_mychip_create(struct snd_card *card,
252                                    struct pci_    292                                    struct pci_dev *pci,
253                                    struct mych    293                                    struct mychip **rchip)
254       {                                           294       {
255               struct mychip *chip;                295               struct mychip *chip;
256               int err;                            296               int err;
257               static const struct snd_device_o !! 297               static struct snd_device_ops ops = {
258                      .dev_free = snd_mychip_de    298                      .dev_free = snd_mychip_dev_free,
259               };                                  299               };
260                                                   300 
261               *rchip = NULL;                      301               *rchip = NULL;
262                                                   302 
263               /* check PCI availability here      303               /* check PCI availability here
264                * (see "PCI Resource Management    304                * (see "PCI Resource Management")
265                */                                 305                */
266               ....                                306               ....
267                                                   307 
268               /* allocate a chip-specific data    308               /* allocate a chip-specific data with zero filled */
269               chip = kzalloc(sizeof(*chip), GF    309               chip = kzalloc(sizeof(*chip), GFP_KERNEL);
270               if (chip == NULL)                   310               if (chip == NULL)
271                       return -ENOMEM;             311                       return -ENOMEM;
272                                                   312 
273               chip->card = card;                  313               chip->card = card;
274                                                   314 
275               /* rest of initialization here;     315               /* rest of initialization here; will be implemented
276                * later, see "PCI Resource Mana    316                * later, see "PCI Resource Management"
277                */                                 317                */
278               ....                                318               ....
279                                                   319 
280               err = snd_device_new(card, SNDRV    320               err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
281               if (err < 0) {                      321               if (err < 0) {
282                       snd_mychip_free(chip);      322                       snd_mychip_free(chip);
283                       return err;                 323                       return err;
284               }                                   324               }
285                                                   325 
286               *rchip = chip;                      326               *rchip = chip;
287               return 0;                           327               return 0;
288       }                                           328       }
289                                                   329 
290       /* constructor -- see "Driver Constructo    330       /* constructor -- see "Driver Constructor" sub-section */
291       static int snd_mychip_probe(struct pci_d    331       static int snd_mychip_probe(struct pci_dev *pci,
292                                   const struct    332                                   const struct pci_device_id *pci_id)
293       {                                           333       {
294               static int dev;                     334               static int dev;
295               struct snd_card *card;              335               struct snd_card *card;
296               struct mychip *chip;                336               struct mychip *chip;
297               int err;                            337               int err;
298                                                   338 
299               /* (1) */                           339               /* (1) */
300               if (dev >= SNDRV_CARDS)             340               if (dev >= SNDRV_CARDS)
301                       return -ENODEV;             341                       return -ENODEV;
302               if (!enable[dev]) {                 342               if (!enable[dev]) {
303                       dev++;                      343                       dev++;
304                       return -ENOENT;             344                       return -ENOENT;
305               }                                   345               }
306                                                   346 
307               /* (2) */                           347               /* (2) */
308               err = snd_card_new(&pci->dev, in    348               err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
309                                  0, &card);       349                                  0, &card);
310               if (err < 0)                        350               if (err < 0)
311                       return err;                 351                       return err;
312                                                   352 
313               /* (3) */                           353               /* (3) */
314               err = snd_mychip_create(card, pc    354               err = snd_mychip_create(card, pci, &chip);
315               if (err < 0)                     !! 355               if (err < 0) {
316                       goto error;              !! 356                       snd_card_free(card);
                                                   >> 357                       return err;
                                                   >> 358               }
317                                                   359 
318               /* (4) */                           360               /* (4) */
319               strcpy(card->driver, "My Chip");    361               strcpy(card->driver, "My Chip");
320               strcpy(card->shortname, "My Own     362               strcpy(card->shortname, "My Own Chip 123");
321               sprintf(card->longname, "%s at 0    363               sprintf(card->longname, "%s at 0x%lx irq %i",
322                       card->shortname, chip->p !! 364                       card->shortname, chip->ioport, chip->irq);
323                                                   365 
324               /* (5) */                           366               /* (5) */
325               .... /* implemented later */        367               .... /* implemented later */
326                                                   368 
327               /* (6) */                           369               /* (6) */
328               err = snd_card_register(card);      370               err = snd_card_register(card);
329               if (err < 0)                     !! 371               if (err < 0) {
330                       goto error;              !! 372                       snd_card_free(card);
                                                   >> 373                       return err;
                                                   >> 374               }
331                                                   375 
332               /* (7) */                           376               /* (7) */
333               pci_set_drvdata(pci, card);         377               pci_set_drvdata(pci, card);
334               dev++;                              378               dev++;
335               return 0;                           379               return 0;
336                                                << 
337       error:                                   << 
338               snd_card_free(card);             << 
339               return err;                      << 
340       }                                           380       }
341                                                   381 
342       /* destructor -- see the "Destructor" su    382       /* destructor -- see the "Destructor" sub-section */
343       static void snd_mychip_remove(struct pci    383       static void snd_mychip_remove(struct pci_dev *pci)
344       {                                           384       {
345               snd_card_free(pci_get_drvdata(pc    385               snd_card_free(pci_get_drvdata(pci));
                                                   >> 386               pci_set_drvdata(pci, NULL);
346       }                                           387       }
347                                                   388 
348                                                   389 
349                                                   390 
350 Driver Constructor                                391 Driver Constructor
351 ------------------                                392 ------------------
352                                                   393 
353 The real constructor of PCI drivers is the ``p    394 The real constructor of PCI drivers is the ``probe`` callback. The
354 ``probe`` callback and other component-constru    395 ``probe`` callback and other component-constructors which are called
355 from the ``probe`` callback cannot be used wit    396 from the ``probe`` callback cannot be used with the ``__init`` prefix
356 because any PCI device could be a hotplug devi    397 because any PCI device could be a hotplug device.
357                                                   398 
358 In the ``probe`` callback, the following schem    399 In the ``probe`` callback, the following scheme is often used.
359                                                   400 
360 1) Check and increment the device index.          401 1) Check and increment the device index.
361 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~          402 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
362                                                   403 
363 ::                                                404 ::
364                                                   405 
365   static int dev;                                 406   static int dev;
366   ....                                            407   ....
367   if (dev >= SNDRV_CARDS)                         408   if (dev >= SNDRV_CARDS)
368           return -ENODEV;                         409           return -ENODEV;
369   if (!enable[dev]) {                             410   if (!enable[dev]) {
370           dev++;                                  411           dev++;
371           return -ENOENT;                         412           return -ENOENT;
372   }                                               413   }
373                                                   414 
374                                                   415 
375 where ``enable[dev]`` is the module option.       416 where ``enable[dev]`` is the module option.
376                                                   417 
377 Each time the ``probe`` callback is called, ch    418 Each time the ``probe`` callback is called, check the availability of
378 the device. If not available, simply increment    419 the device. If not available, simply increment the device index and
379 return. dev will be incremented also later (`s !! 420 returns. dev will be incremented also later (`step 7
380 <7) Set the PCI driver data and return zero._> !! 421 <#set-the-pci-driver-data-and-return-zero>`__).
381                                                   422 
382 2) Create a card instance                         423 2) Create a card instance
383 ~~~~~~~~~~~~~~~~~~~~~~~~~                         424 ~~~~~~~~~~~~~~~~~~~~~~~~~
384                                                   425 
385 ::                                                426 ::
386                                                   427 
387   struct snd_card *card;                          428   struct snd_card *card;
388   int err;                                        429   int err;
389   ....                                            430   ....
390   err = snd_card_new(&pci->dev, index[dev], id    431   err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
391                      0, &card);                   432                      0, &card);
392                                                   433 
393                                                   434 
394 The details will be explained in the section `    435 The details will be explained in the section `Management of Cards and
395 Components`_.                                     436 Components`_.
396                                                   437 
397 3) Create a main component                        438 3) Create a main component
398 ~~~~~~~~~~~~~~~~~~~~~~~~~~                        439 ~~~~~~~~~~~~~~~~~~~~~~~~~~
399                                                   440 
400 In this part, the PCI resources are allocated: !! 441 In this part, the PCI resources are allocated.
                                                   >> 442 
                                                   >> 443 ::
401                                                   444 
402   struct mychip *chip;                            445   struct mychip *chip;
403   ....                                            446   ....
404   err = snd_mychip_create(card, pci, &chip);      447   err = snd_mychip_create(card, pci, &chip);
405   if (err < 0)                                 !! 448   if (err < 0) {
406           goto error;                          << 
407                                                << 
408 The details will be explained in the section ` << 
409 Management`_.                                  << 
410                                                << 
411 When something goes wrong, the probe function  << 
412 error.  In this example, we have a single erro << 
413 at the end of the function::                   << 
414                                                << 
415   error:                                       << 
416           snd_card_free(card);                    449           snd_card_free(card);
417           return err;                             450           return err;
                                                   >> 451   }
418                                                   452 
419 Since each component can be properly freed, th !! 453 The details will be explained in the section `PCI Resource
420 :c:func:`snd_card_free()` call should suffice  !! 454 Management`_.
421                                                << 
422                                                   455 
423 4) Set the driver ID and name strings.            456 4) Set the driver ID and name strings.
424 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~            457 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
425                                                   458 
426 ::                                                459 ::
427                                                   460 
428   strcpy(card->driver, "My Chip");                461   strcpy(card->driver, "My Chip");
429   strcpy(card->shortname, "My Own Chip 123");     462   strcpy(card->shortname, "My Own Chip 123");
430   sprintf(card->longname, "%s at 0x%lx irq %i"    463   sprintf(card->longname, "%s at 0x%lx irq %i",
431           card->shortname, chip->port, chip->i !! 464           card->shortname, chip->ioport, chip->irq);
432                                                   465 
433 The driver field holds the minimal ID string o    466 The driver field holds the minimal ID string of the chip. This is used
434 by alsa-lib's configurator, so keep it simple     467 by alsa-lib's configurator, so keep it simple but unique. Even the
435 same driver can have different driver IDs to d    468 same driver can have different driver IDs to distinguish the
436 functionality of each chip type.                  469 functionality of each chip type.
437                                                   470 
438 The shortname field is a string shown as more     471 The shortname field is a string shown as more verbose name. The longname
439 field contains the information shown in ``/pro    472 field contains the information shown in ``/proc/asound/cards``.
440                                                   473 
441 5) Create other components, such as mixer, MID    474 5) Create other components, such as mixer, MIDI, etc.
442 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    475 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
443                                                   476 
444 Here you define the basic components such as ` !! 477 Here you define the basic components such as `PCM <#PCM-Interface>`__,
445 mixer (e.g. `AC97 <API for AC97 Codec_>`__), M !! 478 mixer (e.g. `AC97 <#API-for-AC97-Codec>`__), MIDI (e.g.
446 `MPU-401 <MIDI (MPU401-UART) Interface_>`__),  !! 479 `MPU-401 <#MIDI-MPU401-UART-Interface>`__), and other interfaces.
447 Also, if you want a `proc file <Proc Interface !! 480 Also, if you want a `proc file <#Proc-Interface>`__, define it here,
448 too.                                              481 too.
449                                                   482 
450 6) Register the card instance.                    483 6) Register the card instance.
451 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                    484 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
452                                                   485 
453 ::                                                486 ::
454                                                   487 
455   err = snd_card_register(card);                  488   err = snd_card_register(card);
456   if (err < 0)                                 !! 489   if (err < 0) {
457           goto error;                          !! 490           snd_card_free(card);
                                                   >> 491           return err;
                                                   >> 492   }
458                                                   493 
459 Will be explained in the section `Management o    494 Will be explained in the section `Management of Cards and
460 Components`_, too.                                495 Components`_, too.
461                                                   496 
462 7) Set the PCI driver data and return zero.       497 7) Set the PCI driver data and return zero.
463 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~       498 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
464                                                   499 
465 ::                                                500 ::
466                                                   501 
467   pci_set_drvdata(pci, card);                     502   pci_set_drvdata(pci, card);
468   dev++;                                          503   dev++;
469   return 0;                                       504   return 0;
470                                                   505 
471 In the above, the card record is stored. This     506 In the above, the card record is stored. This pointer is used in the
472 remove callback and power-management callbacks    507 remove callback and power-management callbacks, too.
473                                                   508 
474 Destructor                                        509 Destructor
475 ----------                                        510 ----------
476                                                   511 
477 The destructor, the remove callback, simply re !! 512 The destructor, remove callback, simply releases the card instance. Then
478 Then the ALSA middle layer will release all th !! 513 the ALSA middle layer will release all the attached components
479 automatically.                                    514 automatically.
480                                                   515 
481 It would be typically just calling :c:func:`sn !! 516 It would be typically like the following:
                                                   >> 517 
                                                   >> 518 ::
482                                                   519 
483   static void snd_mychip_remove(struct pci_dev    520   static void snd_mychip_remove(struct pci_dev *pci)
484   {                                               521   {
485           snd_card_free(pci_get_drvdata(pci));    522           snd_card_free(pci_get_drvdata(pci));
                                                   >> 523           pci_set_drvdata(pci, NULL);
486   }                                               524   }
487                                                   525 
488                                                   526 
489 The above code assumes that the card pointer i    527 The above code assumes that the card pointer is set to the PCI driver
490 data.                                             528 data.
491                                                   529 
492 Header Files                                      530 Header Files
493 ------------                                      531 ------------
494                                                   532 
495 For the above example, at least the following     533 For the above example, at least the following include files are
496 necessary::                                    !! 534 necessary.
                                                   >> 535 
                                                   >> 536 ::
497                                                   537 
498   #include <linux/init.h>                         538   #include <linux/init.h>
499   #include <linux/pci.h>                          539   #include <linux/pci.h>
500   #include <linux/slab.h>                         540   #include <linux/slab.h>
501   #include <sound/core.h>                         541   #include <sound/core.h>
502   #include <sound/initval.h>                      542   #include <sound/initval.h>
503                                                   543 
504 where the last one is necessary only when modu    544 where the last one is necessary only when module options are defined
505 in the source file. If the code is split into     545 in the source file. If the code is split into several files, the files
506 without module options don't need them.           546 without module options don't need them.
507                                                   547 
508 In addition to these headers, you'll need ``<l    548 In addition to these headers, you'll need ``<linux/interrupt.h>`` for
509 interrupt handling, and ``<linux/io.h>`` for I !! 549 interrupt handling, and ``<asm/io.h>`` for I/O access. If you use the
510 :c:func:`mdelay()` or :c:func:`udelay()` funct    550 :c:func:`mdelay()` or :c:func:`udelay()` functions, you'll need
511 to include ``<linux/delay.h>`` too.               551 to include ``<linux/delay.h>`` too.
512                                                   552 
513 The ALSA interfaces like the PCM and control A    553 The ALSA interfaces like the PCM and control APIs are defined in other
514 ``<sound/xxx.h>`` header files. They have to b    554 ``<sound/xxx.h>`` header files. They have to be included after
515 ``<sound/core.h>``.                               555 ``<sound/core.h>``.
516                                                   556 
517 Management of Cards and Components                557 Management of Cards and Components
518 ==================================                558 ==================================
519                                                   559 
520 Card Instance                                     560 Card Instance
521 -------------                                     561 -------------
522                                                   562 
523 For each soundcard, a “card” record must b    563 For each soundcard, a “card” record must be allocated.
524                                                   564 
525 A card record is the headquarters of the sound    565 A card record is the headquarters of the soundcard. It manages the whole
526 list of devices (components) on the soundcard,    566 list of devices (components) on the soundcard, such as PCM, mixers,
527 MIDI, synthesizer, and so on. Also, the card r    567 MIDI, synthesizer, and so on. Also, the card record holds the ID and the
528 name strings of the card, manages the root of     568 name strings of the card, manages the root of proc files, and controls
529 the power-management states and hotplug discon    569 the power-management states and hotplug disconnections. The component
530 list on the card record is used to manage the     570 list on the card record is used to manage the correct release of
531 resources at destruction.                         571 resources at destruction.
532                                                   572 
533 As mentioned above, to create a card instance,    573 As mentioned above, to create a card instance, call
534 :c:func:`snd_card_new()`::                     !! 574 :c:func:`snd_card_new()`.
                                                   >> 575 
                                                   >> 576 ::
535                                                   577 
536   struct snd_card *card;                          578   struct snd_card *card;
537   int err;                                        579   int err;
538   err = snd_card_new(&pci->dev, index, id, mod    580   err = snd_card_new(&pci->dev, index, id, module, extra_size, &card);
539                                                   581 
540                                                   582 
541 The function takes six arguments: the parent d    583 The function takes six arguments: the parent device pointer, the
542 card-index number, the id string, the module p    584 card-index number, the id string, the module pointer (usually
543 ``THIS_MODULE``), the size of extra-data space    585 ``THIS_MODULE``), the size of extra-data space, and the pointer to
544 return the card instance. The extra_size argum    586 return the card instance. The extra_size argument is used to allocate
545 card->private_data for the chip-specific data.    587 card->private_data for the chip-specific data. Note that these data are
546 allocated by :c:func:`snd_card_new()`.            588 allocated by :c:func:`snd_card_new()`.
547                                                   589 
548 The first argument, the pointer of struct devi !! 590 The first argument, the pointer of struct :c:type:`struct device
549 device. For PCI devices, typically ``&pci->``  !! 591 <device>`, specifies the parent device. For PCI devices, typically
                                                   >> 592 ``&pci->`` is passed there.
550                                                   593 
551 Components                                        594 Components
552 ----------                                        595 ----------
553                                                   596 
554 After the card is created, you can attach the     597 After the card is created, you can attach the components (devices) to
555 the card instance. In an ALSA driver, a compon    598 the card instance. In an ALSA driver, a component is represented as a
556 struct snd_device object. A component          !! 599 :c:type:`struct snd_device <snd_device>` object. A component
557 can be a PCM instance, a control interface, a     600 can be a PCM instance, a control interface, a raw MIDI interface, etc.
558 Each such instance has one component entry.       601 Each such instance has one component entry.
559                                                   602 
560 A component can be created via the :c:func:`sn !! 603 A component can be created via :c:func:`snd_device_new()`
561 function::                                     !! 604 function.
                                                   >> 605 
                                                   >> 606 ::
562                                                   607 
563   snd_device_new(card, SNDRV_DEV_XXX, chip, &o    608   snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
564                                                   609 
565 This takes the card pointer, the device-level     610 This takes the card pointer, the device-level (``SNDRV_DEV_XXX``), the
566 data pointer, and the callback pointers (``&op    611 data pointer, and the callback pointers (``&ops``). The device-level
567 defines the type of components and the order o    612 defines the type of components and the order of registration and
568 de-registration. For most components, the devi    613 de-registration. For most components, the device-level is already
569 defined. For a user-defined component, you can    614 defined. For a user-defined component, you can use
570 ``SNDRV_DEV_LOWLEVEL``.                           615 ``SNDRV_DEV_LOWLEVEL``.
571                                                   616 
572 This function itself doesn't allocate the data    617 This function itself doesn't allocate the data space. The data must be
573 allocated manually beforehand, and its pointer    618 allocated manually beforehand, and its pointer is passed as the
574 argument. This pointer (``chip`` in the above     619 argument. This pointer (``chip`` in the above example) is used as the
575 identifier for the instance.                      620 identifier for the instance.
576                                                   621 
577 Each pre-defined ALSA component such as AC97 a !! 622 Each pre-defined ALSA component such as ac97 and pcm calls
578 :c:func:`snd_device_new()` inside its construc    623 :c:func:`snd_device_new()` inside its constructor. The destructor
579 for each component is defined in the callback     624 for each component is defined in the callback pointers. Hence, you don't
580 need to take care of calling a destructor for     625 need to take care of calling a destructor for such a component.
581                                                   626 
582 If you wish to create your own component, you     627 If you wish to create your own component, you need to set the destructor
583 function to the dev_free callback in the ``ops    628 function to the dev_free callback in the ``ops``, so that it can be
584 released automatically via :c:func:`snd_card_f    629 released automatically via :c:func:`snd_card_free()`. The next
585 example will show an implementation of chip-sp    630 example will show an implementation of chip-specific data.
586                                                   631 
587 Chip-Specific Data                                632 Chip-Specific Data
588 ------------------                                633 ------------------
589                                                   634 
590 Chip-specific information, e.g. the I/O port a    635 Chip-specific information, e.g. the I/O port address, its resource
591 pointer, or the irq number, is stored in the c !! 636 pointer, or the irq number, is stored in the chip-specific record.
                                                   >> 637 
                                                   >> 638 ::
592                                                   639 
593   struct mychip {                                 640   struct mychip {
594           ....                                    641           ....
595   };                                              642   };
596                                                   643 
597                                                   644 
598 In general, there are two ways of allocating t    645 In general, there are two ways of allocating the chip record.
599                                                   646 
600 1. Allocating via :c:func:`snd_card_new()`.       647 1. Allocating via :c:func:`snd_card_new()`.
601 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    648 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
602                                                   649 
603 As mentioned above, you can pass the extra-dat    650 As mentioned above, you can pass the extra-data-length to the 5th
604 argument of :c:func:`snd_card_new()`, e.g.::   !! 651 argument of :c:func:`snd_card_new()`, i.e.
                                                   >> 652 
                                                   >> 653 ::
605                                                   654 
606   err = snd_card_new(&pci->dev, index[dev], id    655   err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
607                      sizeof(struct mychip), &c    656                      sizeof(struct mychip), &card);
608                                                   657 
609 struct mychip is the type of the chip record.  !! 658 :c:type:`struct mychip <mychip>` is the type of the chip record.
610                                                   659 
611 In return, the allocated record can be accesse    660 In return, the allocated record can be accessed as
612                                                   661 
613 ::                                                662 ::
614                                                   663 
615   struct mychip *chip = card->private_data;       664   struct mychip *chip = card->private_data;
616                                                   665 
617 With this method, you don't have to allocate t    666 With this method, you don't have to allocate twice. The record is
618 released together with the card instance.         667 released together with the card instance.
619                                                   668 
620 2. Allocating an extra device.                    669 2. Allocating an extra device.
621 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                    670 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
622                                                   671 
623 After allocating a card instance via :c:func:`    672 After allocating a card instance via :c:func:`snd_card_new()`
624 (with ``0`` on the 4th arg), call :c:func:`kza !! 673 (with ``0`` on the 4th arg), call :c:func:`kzalloc()`.
                                                   >> 674 
                                                   >> 675 ::
625                                                   676 
626   struct snd_card *card;                          677   struct snd_card *card;
627   struct mychip *chip;                            678   struct mychip *chip;
628   err = snd_card_new(&pci->dev, index[dev], id    679   err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
629                      0, &card);                   680                      0, &card);
630   .....                                           681   .....
631   chip = kzalloc(sizeof(*chip), GFP_KERNEL);      682   chip = kzalloc(sizeof(*chip), GFP_KERNEL);
632                                                   683 
633 The chip record should have the field to hold     684 The chip record should have the field to hold the card pointer at least,
634                                                   685 
635 ::                                                686 ::
636                                                   687 
637   struct mychip {                                 688   struct mychip {
638           struct snd_card *card;                  689           struct snd_card *card;
639           ....                                    690           ....
640   };                                              691   };
641                                                   692 
642                                                   693 
643 Then, set the card pointer in the returned chi !! 694 Then, set the card pointer in the returned chip instance.
                                                   >> 695 
                                                   >> 696 ::
644                                                   697 
645   chip->card = card;                              698   chip->card = card;
646                                                   699 
647 Next, initialize the fields, and register this    700 Next, initialize the fields, and register this chip record as a
648 low-level device with a specified ``ops``::    !! 701 low-level device with a specified ``ops``,
649                                                   702 
650   static const struct snd_device_ops ops = {   !! 703 ::
                                                   >> 704 
                                                   >> 705   static struct snd_device_ops ops = {
651           .dev_free =        snd_mychip_dev_fr    706           .dev_free =        snd_mychip_dev_free,
652   };                                              707   };
653   ....                                            708   ....
654   snd_device_new(card, SNDRV_DEV_LOWLEVEL, chi    709   snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
655                                                   710 
656 :c:func:`snd_mychip_dev_free()` is the device-    711 :c:func:`snd_mychip_dev_free()` is the device-destructor
657 function, which will call the real destructor: !! 712 function, which will call the real destructor.
                                                   >> 713 
                                                   >> 714 ::
658                                                   715 
659   static int snd_mychip_dev_free(struct snd_de    716   static int snd_mychip_dev_free(struct snd_device *device)
660   {                                               717   {
661           return snd_mychip_free(device->devic    718           return snd_mychip_free(device->device_data);
662   }                                               719   }
663                                                   720 
664 where :c:func:`snd_mychip_free()` is the real     721 where :c:func:`snd_mychip_free()` is the real destructor.
665                                                   722 
666 The demerit of this method is the obviously la << 
667 The merit is, however, that you can trigger yo << 
668 registering and disconnecting the card via a s << 
669 About registering and disconnecting the card,  << 
670 below.                                         << 
671                                                << 
672                                                << 
673 Registration and Release                          723 Registration and Release
674 ------------------------                          724 ------------------------
675                                                   725 
676 After all components are assigned, register th    726 After all components are assigned, register the card instance by calling
677 :c:func:`snd_card_register()`. Access to the d    727 :c:func:`snd_card_register()`. Access to the device files is
678 enabled at this point. That is, before            728 enabled at this point. That is, before
679 :c:func:`snd_card_register()` is called, the c    729 :c:func:`snd_card_register()` is called, the components are safely
680 inaccessible from external side. If this call     730 inaccessible from external side. If this call fails, exit the probe
681 function after releasing the card via :c:func:    731 function after releasing the card via :c:func:`snd_card_free()`.
682                                                   732 
683 For releasing the card instance, you can call     733 For releasing the card instance, you can call simply
684 :c:func:`snd_card_free()`. As mentioned earlie    734 :c:func:`snd_card_free()`. As mentioned earlier, all components
685 are released automatically by this call.          735 are released automatically by this call.
686                                                   736 
687 For a device which allows hotplugging, you can    737 For a device which allows hotplugging, you can use
688 :c:func:`snd_card_free_when_closed()`. This on    738 :c:func:`snd_card_free_when_closed()`. This one will postpone
689 the destruction until all devices are closed.     739 the destruction until all devices are closed.
690                                                   740 
691 PCI Resource Management                           741 PCI Resource Management
692 =======================                           742 =======================
693                                                   743 
694 Full Code Example                                 744 Full Code Example
695 -----------------                                 745 -----------------
696                                                   746 
697 In this section, we'll complete the chip-speci    747 In this section, we'll complete the chip-specific constructor,
698 destructor and PCI entries. Example code is sh !! 748 destructor and PCI entries. Example code is shown first, below.
                                                   >> 749 
                                                   >> 750 ::
699                                                   751 
700       struct mychip {                             752       struct mychip {
701               struct snd_card *card;              753               struct snd_card *card;
702               struct pci_dev *pci;                754               struct pci_dev *pci;
703                                                   755 
704               unsigned long port;                 756               unsigned long port;
705               int irq;                            757               int irq;
706       };                                          758       };
707                                                   759 
708       static int snd_mychip_free(struct mychip    760       static int snd_mychip_free(struct mychip *chip)
709       {                                           761       {
710               /* disable hardware here if any     762               /* disable hardware here if any */
711               .... /* (not implemented in this    763               .... /* (not implemented in this document) */
712                                                   764 
713               /* release the irq */               765               /* release the irq */
714               if (chip->irq >= 0)                 766               if (chip->irq >= 0)
715                       free_irq(chip->irq, chip    767                       free_irq(chip->irq, chip);
716               /* release the I/O ports & memor    768               /* release the I/O ports & memory */
717               pci_release_regions(chip->pci);     769               pci_release_regions(chip->pci);
718               /* disable the PCI entry */         770               /* disable the PCI entry */
719               pci_disable_device(chip->pci);      771               pci_disable_device(chip->pci);
720               /* release the data */              772               /* release the data */
721               kfree(chip);                        773               kfree(chip);
722               return 0;                           774               return 0;
723       }                                           775       }
724                                                   776 
725       /* chip-specific constructor */             777       /* chip-specific constructor */
726       static int snd_mychip_create(struct snd_    778       static int snd_mychip_create(struct snd_card *card,
727                                    struct pci_    779                                    struct pci_dev *pci,
728                                    struct mych    780                                    struct mychip **rchip)
729       {                                           781       {
730               struct mychip *chip;                782               struct mychip *chip;
731               int err;                            783               int err;
732               static const struct snd_device_o !! 784               static struct snd_device_ops ops = {
733                      .dev_free = snd_mychip_de    785                      .dev_free = snd_mychip_dev_free,
734               };                                  786               };
735                                                   787 
736               *rchip = NULL;                      788               *rchip = NULL;
737                                                   789 
738               /* initialize the PCI entry */      790               /* initialize the PCI entry */
739               err = pci_enable_device(pci);       791               err = pci_enable_device(pci);
740               if (err < 0)                        792               if (err < 0)
741                       return err;                 793                       return err;
742               /* check PCI availability (28bit    794               /* check PCI availability (28bit DMA) */
743               if (pci_set_dma_mask(pci, DMA_BI    795               if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
744                   pci_set_consistent_dma_mask(    796                   pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
745                       printk(KERN_ERR "error t    797                       printk(KERN_ERR "error to set 28bit mask DMA\n");
746                       pci_disable_device(pci);    798                       pci_disable_device(pci);
747                       return -ENXIO;              799                       return -ENXIO;
748               }                                   800               }
749                                                   801 
750               chip = kzalloc(sizeof(*chip), GF    802               chip = kzalloc(sizeof(*chip), GFP_KERNEL);
751               if (chip == NULL) {                 803               if (chip == NULL) {
752                       pci_disable_device(pci);    804                       pci_disable_device(pci);
753                       return -ENOMEM;             805                       return -ENOMEM;
754               }                                   806               }
755                                                   807 
756               /* initialize the stuff */          808               /* initialize the stuff */
757               chip->card = card;                  809               chip->card = card;
758               chip->pci = pci;                    810               chip->pci = pci;
759               chip->irq = -1;                     811               chip->irq = -1;
760                                                   812 
761               /* (1) PCI resource allocation *    813               /* (1) PCI resource allocation */
762               err = pci_request_regions(pci, "    814               err = pci_request_regions(pci, "My Chip");
763               if (err < 0) {                      815               if (err < 0) {
764                       kfree(chip);                816                       kfree(chip);
765                       pci_disable_device(pci);    817                       pci_disable_device(pci);
766                       return err;                 818                       return err;
767               }                                   819               }
768               chip->port = pci_resource_start(    820               chip->port = pci_resource_start(pci, 0);
769               if (request_irq(pci->irq, snd_my    821               if (request_irq(pci->irq, snd_mychip_interrupt,
770                               IRQF_SHARED, KBU    822                               IRQF_SHARED, KBUILD_MODNAME, chip)) {
771                       printk(KERN_ERR "cannot     823                       printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
772                       snd_mychip_free(chip);      824                       snd_mychip_free(chip);
773                       return -EBUSY;              825                       return -EBUSY;
774               }                                   826               }
775               chip->irq = pci->irq;               827               chip->irq = pci->irq;
776               card->sync_irq = chip->irq;      << 
777                                                   828 
778               /* (2) initialization of the chi    829               /* (2) initialization of the chip hardware */
779               .... /*   (not implemented in th    830               .... /*   (not implemented in this document) */
780                                                   831 
781               err = snd_device_new(card, SNDRV    832               err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
782               if (err < 0) {                      833               if (err < 0) {
783                       snd_mychip_free(chip);      834                       snd_mychip_free(chip);
784                       return err;                 835                       return err;
785               }                                   836               }
786                                                   837 
787               *rchip = chip;                      838               *rchip = chip;
788               return 0;                           839               return 0;
789       }                                           840       }
790                                                   841 
791       /* PCI IDs */                               842       /* PCI IDs */
792       static struct pci_device_id snd_mychip_i    843       static struct pci_device_id snd_mychip_ids[] = {
793               { PCI_VENDOR_ID_FOO, PCI_DEVICE_    844               { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
794                 PCI_ANY_ID, PCI_ANY_ID, 0, 0,     845                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
795               ....                                846               ....
796               { 0, }                              847               { 0, }
797       };                                          848       };
798       MODULE_DEVICE_TABLE(pci, snd_mychip_ids)    849       MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
799                                                   850 
800       /* pci_driver definition */                 851       /* pci_driver definition */
801       static struct pci_driver driver = {         852       static struct pci_driver driver = {
802               .name = KBUILD_MODNAME,             853               .name = KBUILD_MODNAME,
803               .id_table = snd_mychip_ids,         854               .id_table = snd_mychip_ids,
804               .probe = snd_mychip_probe,          855               .probe = snd_mychip_probe,
805               .remove = snd_mychip_remove,        856               .remove = snd_mychip_remove,
806       };                                          857       };
807                                                   858 
808       /* module initialization */                 859       /* module initialization */
809       static int __init alsa_card_mychip_init(    860       static int __init alsa_card_mychip_init(void)
810       {                                           861       {
811               return pci_register_driver(&driv    862               return pci_register_driver(&driver);
812       }                                           863       }
813                                                   864 
814       /* module clean up */                       865       /* module clean up */
815       static void __exit alsa_card_mychip_exit    866       static void __exit alsa_card_mychip_exit(void)
816       {                                           867       {
817               pci_unregister_driver(&driver);     868               pci_unregister_driver(&driver);
818       }                                           869       }
819                                                   870 
820       module_init(alsa_card_mychip_init)          871       module_init(alsa_card_mychip_init)
821       module_exit(alsa_card_mychip_exit)          872       module_exit(alsa_card_mychip_exit)
822                                                   873 
823       EXPORT_NO_SYMBOLS; /* for old kernels on    874       EXPORT_NO_SYMBOLS; /* for old kernels only */
824                                                   875 
825 Some Hafta's                                      876 Some Hafta's
826 ------------                                      877 ------------
827                                                   878 
828 The allocation of PCI resources is done in the    879 The allocation of PCI resources is done in the ``probe`` function, and
829 usually an extra :c:func:`xxx_create()` functi    880 usually an extra :c:func:`xxx_create()` function is written for this
830 purpose.                                          881 purpose.
831                                                   882 
832 In the case of PCI devices, you first have to     883 In the case of PCI devices, you first have to call the
833 :c:func:`pci_enable_device()` function before     884 :c:func:`pci_enable_device()` function before allocating
834 resources. Also, you need to set the proper PC    885 resources. Also, you need to set the proper PCI DMA mask to limit the
835 accessed I/O range. In some cases, you might n    886 accessed I/O range. In some cases, you might need to call
836 :c:func:`pci_set_master()` function, too.         887 :c:func:`pci_set_master()` function, too.
837                                                   888 
838 Suppose a 28bit mask, the code to be added wou !! 889 Suppose the 28bit mask, and the code to be added would be like:
                                                   >> 890 
                                                   >> 891 ::
839                                                   892 
840   err = pci_enable_device(pci);                   893   err = pci_enable_device(pci);
841   if (err < 0)                                    894   if (err < 0)
842           return err;                             895           return err;
843   if (pci_set_dma_mask(pci, DMA_BIT_MASK(28))     896   if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
844       pci_set_consistent_dma_mask(pci, DMA_BIT    897       pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
845           printk(KERN_ERR "error to set 28bit     898           printk(KERN_ERR "error to set 28bit mask DMA\n");
846           pci_disable_device(pci);                899           pci_disable_device(pci);
847           return -ENXIO;                          900           return -ENXIO;
848   }                                               901   }
849                                                   902   
850                                                   903 
851 Resource Allocation                               904 Resource Allocation
852 -------------------                               905 -------------------
853                                                   906 
854 The allocation of I/O ports and irqs is done v    907 The allocation of I/O ports and irqs is done via standard kernel
855 functions.  These resources must be released i !! 908 functions. Unlike ALSA ver.0.5.x., there are no helpers for that. And
856 function (see below).                          !! 909 these resources must be released in the destructor function (see below).
                                                   >> 910 Also, on ALSA 0.9.x, you don't need to allocate (pseudo-)DMA for PCI
                                                   >> 911 like in ALSA 0.5.x.
857                                                   912 
858 Now assume that the PCI device has an I/O port    913 Now assume that the PCI device has an I/O port with 8 bytes and an
859 interrupt. Then struct mychip will have the    !! 914 interrupt. Then :c:type:`struct mychip <mychip>` will have the
860 following fields::                             !! 915 following fields:
                                                   >> 916 
                                                   >> 917 ::
861                                                   918 
862   struct mychip {                                 919   struct mychip {
863           struct snd_card *card;                  920           struct snd_card *card;
864                                                   921 
865           unsigned long port;                     922           unsigned long port;
866           int irq;                                923           int irq;
867   };                                              924   };
868                                                   925 
869                                                   926 
870 For an I/O port (and also a memory region), yo    927 For an I/O port (and also a memory region), you need to have the
871 resource pointer for the standard resource man    928 resource pointer for the standard resource management. For an irq, you
872 have to keep only the irq number (integer). Bu    929 have to keep only the irq number (integer). But you need to initialize
873 this number to -1 before actual allocation, si !! 930 this number as -1 before actual allocation, since irq 0 is valid. The
874 port address and its resource pointer can be i    931 port address and its resource pointer can be initialized as null by
875 :c:func:`kzalloc()` automatically, so you don'    932 :c:func:`kzalloc()` automatically, so you don't have to take care of
876 resetting them.                                   933 resetting them.
877                                                   934 
878 The allocation of an I/O port is done like thi !! 935 The allocation of an I/O port is done like this:
                                                   >> 936 
                                                   >> 937 ::
879                                                   938 
880   err = pci_request_regions(pci, "My Chip");      939   err = pci_request_regions(pci, "My Chip");
881   if (err < 0) {                                  940   if (err < 0) { 
882           kfree(chip);                            941           kfree(chip);
883           pci_disable_device(pci);                942           pci_disable_device(pci);
884           return err;                             943           return err;
885   }                                               944   }
886   chip->port = pci_resource_start(pci, 0);        945   chip->port = pci_resource_start(pci, 0);
887                                                   946 
888 It will reserve the I/O port region of 8 bytes    947 It will reserve the I/O port region of 8 bytes of the given PCI device.
889 The returned value, ``chip->res_port``, is all    948 The returned value, ``chip->res_port``, is allocated via
890 :c:func:`kmalloc()` by :c:func:`request_region    949 :c:func:`kmalloc()` by :c:func:`request_region()`. The pointer
891 must be released via :c:func:`kfree()`, but th    950 must be released via :c:func:`kfree()`, but there is a problem with
892 this. This issue will be explained later.         951 this. This issue will be explained later.
893                                                   952 
894 The allocation of an interrupt source is done  !! 953 The allocation of an interrupt source is done like this:
                                                   >> 954 
                                                   >> 955 ::
895                                                   956 
896   if (request_irq(pci->irq, snd_mychip_interru    957   if (request_irq(pci->irq, snd_mychip_interrupt,
897                   IRQF_SHARED, KBUILD_MODNAME,    958                   IRQF_SHARED, KBUILD_MODNAME, chip)) {
898           printk(KERN_ERR "cannot grab irq %d\    959           printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
899           snd_mychip_free(chip);                  960           snd_mychip_free(chip);
900           return -EBUSY;                          961           return -EBUSY;
901   }                                               962   }
902   chip->irq = pci->irq;                           963   chip->irq = pci->irq;
903                                                   964 
904 where :c:func:`snd_mychip_interrupt()` is the     965 where :c:func:`snd_mychip_interrupt()` is the interrupt handler
905 defined `later <PCM Interrupt Handler_>`__. No !! 966 defined `later <#pcm-interface-interrupt-handler>`__. Note that
906 ``chip->irq`` should be defined only when :c:f    967 ``chip->irq`` should be defined only when :c:func:`request_irq()`
907 succeeded.                                        968 succeeded.
908                                                   969 
909 On the PCI bus, interrupts can be shared. Thus    970 On the PCI bus, interrupts can be shared. Thus, ``IRQF_SHARED`` is used
910 as the interrupt flag of :c:func:`request_irq(    971 as the interrupt flag of :c:func:`request_irq()`.
911                                                   972 
912 The last argument of :c:func:`request_irq()` i    973 The last argument of :c:func:`request_irq()` is the data pointer
913 passed to the interrupt handler. Usually, the     974 passed to the interrupt handler. Usually, the chip-specific record is
914 used for that, but you can use what you like,     975 used for that, but you can use what you like, too.
915                                                   976 
916 I won't give details about the interrupt handl    977 I won't give details about the interrupt handler at this point, but at
917 least its appearance can be explained now. The    978 least its appearance can be explained now. The interrupt handler looks
918 usually as follows::                           !! 979 usually like the following:
                                                   >> 980 
                                                   >> 981 ::
919                                                   982 
920   static irqreturn_t snd_mychip_interrupt(int     983   static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
921   {                                               984   {
922           struct mychip *chip = dev_id;           985           struct mychip *chip = dev_id;
923           ....                                    986           ....
924           return IRQ_HANDLED;                     987           return IRQ_HANDLED;
925   }                                               988   }
926                                                   989 
927 After requesting the IRQ, you can passed it to << 
928 field::                                        << 
929                                                << 
930           card->irq = chip->irq;               << 
931                                                << 
932 This allows the PCM core to automatically call << 
933 :c:func:`synchronize_irq()` at the right time, << 
934 See the later section `sync_stop callback`_ fo << 
935                                                   990 
936 Now let's write the corresponding destructor f    991 Now let's write the corresponding destructor for the resources above.
937 The role of destructor is simple: disable the     992 The role of destructor is simple: disable the hardware (if already
938 activated) and release the resources. So far,     993 activated) and release the resources. So far, we have no hardware part,
939 so the disabling code is not written here.        994 so the disabling code is not written here.
940                                                   995 
941 To release the resources, the “check-and-rel    996 To release the resources, the “check-and-release” method is a safer way.
942 For the interrupt, do like this::              !! 997 For the interrupt, do like this:
                                                   >> 998 
                                                   >> 999 ::
943                                                   1000 
944   if (chip->irq >= 0)                             1001   if (chip->irq >= 0)
945           free_irq(chip->irq, chip);              1002           free_irq(chip->irq, chip);
946                                                   1003 
947 Since the irq number can start from 0, you sho    1004 Since the irq number can start from 0, you should initialize
948 ``chip->irq`` with a negative value (e.g. -1),    1005 ``chip->irq`` with a negative value (e.g. -1), so that you can check
949 the validity of the irq number as above.          1006 the validity of the irq number as above.
950                                                   1007 
951 When you requested I/O ports or memory regions    1008 When you requested I/O ports or memory regions via
952 :c:func:`pci_request_region()` or                 1009 :c:func:`pci_request_region()` or
953 :c:func:`pci_request_regions()` like in this e    1010 :c:func:`pci_request_regions()` like in this example, release the
954 resource(s) using the corresponding function,     1011 resource(s) using the corresponding function,
955 :c:func:`pci_release_region()` or                 1012 :c:func:`pci_release_region()` or
956 :c:func:`pci_release_regions()`::              !! 1013 :c:func:`pci_release_regions()`.
                                                   >> 1014 
                                                   >> 1015 ::
957                                                   1016 
958   pci_release_regions(chip->pci);                 1017   pci_release_regions(chip->pci);
959                                                   1018 
960 When you requested manually via :c:func:`reque    1019 When you requested manually via :c:func:`request_region()` or
961 :c:func:`request_mem_region()`, you can releas    1020 :c:func:`request_mem_region()`, you can release it via
962 :c:func:`release_resource()`. Suppose that you    1021 :c:func:`release_resource()`. Suppose that you keep the resource
963 pointer returned from :c:func:`request_region(    1022 pointer returned from :c:func:`request_region()` in
964 chip->res_port, the release procedure looks li !! 1023 chip->res_port, the release procedure looks like:
                                                   >> 1024 
                                                   >> 1025 ::
965                                                   1026 
966   release_and_free_resource(chip->res_port);      1027   release_and_free_resource(chip->res_port);
967                                                   1028 
968 Don't forget to call :c:func:`pci_disable_devi    1029 Don't forget to call :c:func:`pci_disable_device()` before the
969 end.                                              1030 end.
970                                                   1031 
971 And finally, release the chip-specific record: !! 1032 And finally, release the chip-specific record.
                                                   >> 1033 
                                                   >> 1034 ::
972                                                   1035 
973   kfree(chip);                                    1036   kfree(chip);
974                                                   1037 
975 We didn't implement the hardware disabling par !! 1038 We didn't implement the hardware disabling part in the above. If you
976 need to do this, please note that the destruct    1039 need to do this, please note that the destructor may be called even
977 before the initialization of the chip is compl    1040 before the initialization of the chip is completed. It would be better
978 to have a flag to skip hardware disabling if t    1041 to have a flag to skip hardware disabling if the hardware was not
979 initialized yet.                                  1042 initialized yet.
980                                                   1043 
981 When the chip-data is assigned to the card usi    1044 When the chip-data is assigned to the card using
982 :c:func:`snd_device_new()` with ``SNDRV_DEV_LO !! 1045 :c:func:`snd_device_new()` with ``SNDRV_DEV_LOWLELVEL`` , its
983 destructor is called last. That is, it is assu !! 1046 destructor is called at the last. That is, it is assured that all other
984 components like PCMs and controls have already    1047 components like PCMs and controls have already been released. You don't
985 have to stop PCMs, etc. explicitly, but just c    1048 have to stop PCMs, etc. explicitly, but just call low-level hardware
986 stopping.                                         1049 stopping.
987                                                   1050 
988 The management of a memory-mapped region is al    1051 The management of a memory-mapped region is almost as same as the
989 management of an I/O port. You'll need two fie !! 1052 management of an I/O port. You'll need three fields like the
                                                   >> 1053 following:
                                                   >> 1054 
                                                   >> 1055 ::
990                                                   1056 
991   struct mychip {                                 1057   struct mychip {
992           ....                                    1058           ....
993           unsigned long iobase_phys;              1059           unsigned long iobase_phys;
994           void __iomem *iobase_virt;              1060           void __iomem *iobase_virt;
995   };                                              1061   };
996                                                   1062 
997 and the allocation would look like below::     !! 1063 and the allocation would be like below:
998                                                   1064 
999   err = pci_request_regions(pci, "My Chip");   !! 1065 ::
1000   if (err < 0) {                              !! 1066 
                                                   >> 1067   if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1001           kfree(chip);                           1068           kfree(chip);
1002           return err;                            1069           return err;
1003   }                                              1070   }
1004   chip->iobase_phys = pci_resource_start(pci,    1071   chip->iobase_phys = pci_resource_start(pci, 0);
1005   chip->iobase_virt = ioremap(chip->iobase_ph !! 1072   chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
1006                                       pci_res    1073                                       pci_resource_len(pci, 0));
1007                                                  1074 
1008 and the corresponding destructor would be::   !! 1075 and the corresponding destructor would be:
                                                   >> 1076 
                                                   >> 1077 ::
1009                                                  1078 
1010   static int snd_mychip_free(struct mychip *c    1079   static int snd_mychip_free(struct mychip *chip)
1011   {                                              1080   {
1012           ....                                   1081           ....
1013           if (chip->iobase_virt)                 1082           if (chip->iobase_virt)
1014                   iounmap(chip->iobase_virt);    1083                   iounmap(chip->iobase_virt);
1015           ....                                   1084           ....
1016           pci_release_regions(chip->pci);        1085           pci_release_regions(chip->pci);
1017           ....                                   1086           ....
1018   }                                              1087   }
1019                                                  1088 
1020 Of course, a modern way with :c:func:`pci_iom << 
1021 bit easier, too::                             << 
1022                                               << 
1023   err = pci_request_regions(pci, "My Chip");  << 
1024   if (err < 0) {                              << 
1025           kfree(chip);                        << 
1026           return err;                         << 
1027   }                                           << 
1028   chip->iobase_virt = pci_iomap(pci, 0, 0);   << 
1029                                               << 
1030 which is paired with :c:func:`pci_iounmap()`  << 
1031                                               << 
1032                                               << 
1033 PCI Entries                                      1089 PCI Entries
1034 -----------                                      1090 -----------
1035                                                  1091 
1036 So far, so good. Let's finish the missing PCI    1092 So far, so good. Let's finish the missing PCI stuff. At first, we need a
1037 struct pci_device_id table for                !! 1093 :c:type:`struct pci_device_id <pci_device_id>` table for
1038 this chipset. It's a table of PCI vendor/devi    1094 this chipset. It's a table of PCI vendor/device ID number, and some
1039 masks.                                           1095 masks.
1040                                                  1096 
1041 For example::                                 !! 1097 For example,
                                                   >> 1098 
                                                   >> 1099 ::
1042                                                  1100 
1043   static struct pci_device_id snd_mychip_ids[    1101   static struct pci_device_id snd_mychip_ids[] = {
1044           { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_    1102           { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1045             PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,     1103             PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1046           ....                                   1104           ....
1047           { 0, }                                 1105           { 0, }
1048   };                                             1106   };
1049   MODULE_DEVICE_TABLE(pci, snd_mychip_ids);      1107   MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1050                                                  1108 
1051 The first and second fields of the struct pci !! 1109 The first and second fields of the :c:type:`struct pci_device_id
1052 and device IDs. If you have no reason to filt !! 1110 <pci_device_id>` structure are the vendor and device IDs. If you
1053 leave the remaining fields as above. The last !! 1111 have no reason to filter the matching devices, you can leave the
1054 struct pci_device_id contains private data fo !! 1112 remaining fields as above. The last field of the :c:type:`struct
1055 any value here, for example, to define specif !! 1113 pci_device_id <pci_device_id>` struct contains private data
1056 device IDs. Such an example is found in the i !! 1114 for this entry. You can specify any value here, for example, to define
                                                   >> 1115 specific operations for supported device IDs. Such an example is found
                                                   >> 1116 in the intel8x0 driver.
1057                                                  1117 
1058 The last entry of this list is the terminator    1118 The last entry of this list is the terminator. You must specify this
1059 all-zero entry.                                  1119 all-zero entry.
1060                                                  1120 
1061 Then, prepare the struct pci_driver           !! 1121 Then, prepare the :c:type:`struct pci_driver <pci_driver>`
1062 record::                                      !! 1122 record:
                                                   >> 1123 
                                                   >> 1124 ::
1063                                                  1125 
1064   static struct pci_driver driver = {            1126   static struct pci_driver driver = {
1065           .name = KBUILD_MODNAME,                1127           .name = KBUILD_MODNAME,
1066           .id_table = snd_mychip_ids,            1128           .id_table = snd_mychip_ids,
1067           .probe = snd_mychip_probe,             1129           .probe = snd_mychip_probe,
1068           .remove = snd_mychip_remove,           1130           .remove = snd_mychip_remove,
1069   };                                             1131   };
1070                                                  1132 
1071 The ``probe`` and ``remove`` functions have a    1133 The ``probe`` and ``remove`` functions have already been defined in
1072 the previous sections. The ``name`` field is     1134 the previous sections. The ``name`` field is the name string of this
1073 device. Note that you must not use slashes ( !! 1135 device. Note that you must not use a slash “/” in this string.
                                                   >> 1136 
                                                   >> 1137 And at last, the module entries:
1074                                                  1138 
1075 And at last, the module entries::             !! 1139 ::
1076                                                  1140 
1077   static int __init alsa_card_mychip_init(voi    1141   static int __init alsa_card_mychip_init(void)
1078   {                                              1142   {
1079           return pci_register_driver(&driver)    1143           return pci_register_driver(&driver);
1080   }                                              1144   }
1081                                                  1145 
1082   static void __exit alsa_card_mychip_exit(vo    1146   static void __exit alsa_card_mychip_exit(void)
1083   {                                              1147   {
1084           pci_unregister_driver(&driver);        1148           pci_unregister_driver(&driver);
1085   }                                              1149   }
1086                                                  1150 
1087   module_init(alsa_card_mychip_init)             1151   module_init(alsa_card_mychip_init)
1088   module_exit(alsa_card_mychip_exit)             1152   module_exit(alsa_card_mychip_exit)
1089                                                  1153 
1090 Note that these module entries are tagged wit    1154 Note that these module entries are tagged with ``__init`` and ``__exit``
1091 prefixes.                                        1155 prefixes.
1092                                                  1156 
                                                   >> 1157 Oh, one thing was forgotten. If you have no exported symbols, you need
                                                   >> 1158 to declare it in 2.2 or 2.4 kernels (it's not necessary in 2.6 kernels).
                                                   >> 1159 
                                                   >> 1160 ::
                                                   >> 1161 
                                                   >> 1162   EXPORT_NO_SYMBOLS;
                                                   >> 1163 
1093 That's all!                                      1164 That's all!
1094                                                  1165 
1095 PCM Interface                                    1166 PCM Interface
1096 =============                                    1167 =============
1097                                                  1168 
1098 General                                          1169 General
1099 -------                                          1170 -------
1100                                                  1171 
1101 The PCM middle layer of ALSA is quite powerfu    1172 The PCM middle layer of ALSA is quite powerful and it is only necessary
1102 for each driver to implement the low-level fu    1173 for each driver to implement the low-level functions to access its
1103 hardware.                                        1174 hardware.
1104                                                  1175 
1105 To access the PCM layer, you need to include  !! 1176 For accessing to the PCM layer, you need to include ``<sound/pcm.h>``
1106 first. In addition, ``<sound/pcm_params.h>``     1177 first. In addition, ``<sound/pcm_params.h>`` might be needed if you
1107 access some functions related with hw_param.  !! 1178 access to some functions related with hw_param.
1108                                                  1179 
1109 Each card device can have up to four PCM inst !! 1180 Each card device can have up to four pcm instances. A pcm instance
1110 corresponds to a PCM device file. The limitat !! 1181 corresponds to a pcm device file. The limitation of number of instances
1111 comes only from the available bit size of Lin !! 1182 comes only from the available bit size of the Linux's device numbers.
1112 Once 64bit device numbers are used, we'll hav !! 1183 Once when 64bit device number is used, we'll have more pcm instances
1113 available.                                       1184 available.
1114                                                  1185 
1115 A PCM instance consists of PCM playback and c !! 1186 A pcm instance consists of pcm playback and capture streams, and each
1116 PCM stream consists of one or more PCM substr !! 1187 pcm stream consists of one or more pcm substreams. Some soundcards
1117 support multiple playback functions. For exam    1188 support multiple playback functions. For example, emu10k1 has a PCM
1118 playback of 32 stereo substreams. In this cas    1189 playback of 32 stereo substreams. In this case, at each open, a free
1119 substream is (usually) automatically chosen a    1190 substream is (usually) automatically chosen and opened. Meanwhile, when
1120 only one substream exists and it was already  !! 1191 only one substream exists and it was already opened, the successful open
1121 will either block or error with ``EAGAIN`` ac    1192 will either block or error with ``EAGAIN`` according to the file open
1122 mode. But you don't have to care about such d    1193 mode. But you don't have to care about such details in your driver. The
1123 PCM middle layer will take care of such work.    1194 PCM middle layer will take care of such work.
1124                                                  1195 
1125 Full Code Example                                1196 Full Code Example
1126 -----------------                                1197 -----------------
1127                                                  1198 
1128 The example code below does not include any h    1199 The example code below does not include any hardware access routines but
1129 shows only the skeleton, how to build up the  !! 1200 shows only the skeleton, how to build up the PCM interfaces.
                                                   >> 1201 
                                                   >> 1202 ::
1130                                                  1203 
1131       #include <sound/pcm.h>                     1204       #include <sound/pcm.h>
1132       ....                                       1205       ....
1133                                                  1206 
1134       /* hardware definition */                  1207       /* hardware definition */
1135       static struct snd_pcm_hardware snd_mych    1208       static struct snd_pcm_hardware snd_mychip_playback_hw = {
1136               .info = (SNDRV_PCM_INFO_MMAP |     1209               .info = (SNDRV_PCM_INFO_MMAP |
1137                        SNDRV_PCM_INFO_INTERLE    1210                        SNDRV_PCM_INFO_INTERLEAVED |
1138                        SNDRV_PCM_INFO_BLOCK_T    1211                        SNDRV_PCM_INFO_BLOCK_TRANSFER |
1139                        SNDRV_PCM_INFO_MMAP_VA    1212                        SNDRV_PCM_INFO_MMAP_VALID),
1140               .formats =          SNDRV_PCM_F    1213               .formats =          SNDRV_PCM_FMTBIT_S16_LE,
1141               .rates =            SNDRV_PCM_R    1214               .rates =            SNDRV_PCM_RATE_8000_48000,
1142               .rate_min =         8000,          1215               .rate_min =         8000,
1143               .rate_max =         48000,         1216               .rate_max =         48000,
1144               .channels_min =     2,             1217               .channels_min =     2,
1145               .channels_max =     2,             1218               .channels_max =     2,
1146               .buffer_bytes_max = 32768,         1219               .buffer_bytes_max = 32768,
1147               .period_bytes_min = 4096,          1220               .period_bytes_min = 4096,
1148               .period_bytes_max = 32768,         1221               .period_bytes_max = 32768,
1149               .periods_min =      1,             1222               .periods_min =      1,
1150               .periods_max =      1024,          1223               .periods_max =      1024,
1151       };                                         1224       };
1152                                                  1225 
1153       /* hardware definition */                  1226       /* hardware definition */
1154       static struct snd_pcm_hardware snd_mych    1227       static struct snd_pcm_hardware snd_mychip_capture_hw = {
1155               .info = (SNDRV_PCM_INFO_MMAP |     1228               .info = (SNDRV_PCM_INFO_MMAP |
1156                        SNDRV_PCM_INFO_INTERLE    1229                        SNDRV_PCM_INFO_INTERLEAVED |
1157                        SNDRV_PCM_INFO_BLOCK_T    1230                        SNDRV_PCM_INFO_BLOCK_TRANSFER |
1158                        SNDRV_PCM_INFO_MMAP_VA    1231                        SNDRV_PCM_INFO_MMAP_VALID),
1159               .formats =          SNDRV_PCM_F    1232               .formats =          SNDRV_PCM_FMTBIT_S16_LE,
1160               .rates =            SNDRV_PCM_R    1233               .rates =            SNDRV_PCM_RATE_8000_48000,
1161               .rate_min =         8000,          1234               .rate_min =         8000,
1162               .rate_max =         48000,         1235               .rate_max =         48000,
1163               .channels_min =     2,             1236               .channels_min =     2,
1164               .channels_max =     2,             1237               .channels_max =     2,
1165               .buffer_bytes_max = 32768,         1238               .buffer_bytes_max = 32768,
1166               .period_bytes_min = 4096,          1239               .period_bytes_min = 4096,
1167               .period_bytes_max = 32768,         1240               .period_bytes_max = 32768,
1168               .periods_min =      1,             1241               .periods_min =      1,
1169               .periods_max =      1024,          1242               .periods_max =      1024,
1170       };                                         1243       };
1171                                                  1244 
1172       /* open callback */                        1245       /* open callback */
1173       static int snd_mychip_playback_open(str    1246       static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
1174       {                                          1247       {
1175               struct mychip *chip = snd_pcm_s    1248               struct mychip *chip = snd_pcm_substream_chip(substream);
1176               struct snd_pcm_runtime *runtime    1249               struct snd_pcm_runtime *runtime = substream->runtime;
1177                                                  1250 
1178               runtime->hw = snd_mychip_playba    1251               runtime->hw = snd_mychip_playback_hw;
1179               /* more hardware-initialization    1252               /* more hardware-initialization will be done here */
1180               ....                               1253               ....
1181               return 0;                          1254               return 0;
1182       }                                          1255       }
1183                                                  1256 
1184       /* close callback */                       1257       /* close callback */
1185       static int snd_mychip_playback_close(st    1258       static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
1186       {                                          1259       {
1187               struct mychip *chip = snd_pcm_s    1260               struct mychip *chip = snd_pcm_substream_chip(substream);
1188               /* the hardware-specific codes     1261               /* the hardware-specific codes will be here */
1189               ....                               1262               ....
1190               return 0;                          1263               return 0;
1191                                                  1264 
1192       }                                          1265       }
1193                                                  1266 
1194       /* open callback */                        1267       /* open callback */
1195       static int snd_mychip_capture_open(stru    1268       static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
1196       {                                          1269       {
1197               struct mychip *chip = snd_pcm_s    1270               struct mychip *chip = snd_pcm_substream_chip(substream);
1198               struct snd_pcm_runtime *runtime    1271               struct snd_pcm_runtime *runtime = substream->runtime;
1199                                                  1272 
1200               runtime->hw = snd_mychip_captur    1273               runtime->hw = snd_mychip_capture_hw;
1201               /* more hardware-initialization    1274               /* more hardware-initialization will be done here */
1202               ....                               1275               ....
1203               return 0;                          1276               return 0;
1204       }                                          1277       }
1205                                                  1278 
1206       /* close callback */                       1279       /* close callback */
1207       static int snd_mychip_capture_close(str    1280       static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
1208       {                                          1281       {
1209               struct mychip *chip = snd_pcm_s    1282               struct mychip *chip = snd_pcm_substream_chip(substream);
1210               /* the hardware-specific codes     1283               /* the hardware-specific codes will be here */
1211               ....                               1284               ....
1212               return 0;                          1285               return 0;
                                                   >> 1286 
1213       }                                          1287       }
1214                                                  1288 
1215       /* hw_params callback */                   1289       /* hw_params callback */
1216       static int snd_mychip_pcm_hw_params(str    1290       static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
1217                                    struct snd    1291                                    struct snd_pcm_hw_params *hw_params)
1218       {                                          1292       {
1219               /* the hardware-specific codes  !! 1293               return snd_pcm_lib_malloc_pages(substream,
1220               ....                            !! 1294                                          params_buffer_bytes(hw_params));
1221               return 0;                       << 
1222       }                                          1295       }
1223                                                  1296 
1224       /* hw_free callback */                     1297       /* hw_free callback */
1225       static int snd_mychip_pcm_hw_free(struc    1298       static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
1226       {                                          1299       {
1227               /* the hardware-specific codes  !! 1300               return snd_pcm_lib_free_pages(substream);
1228               ....                            << 
1229               return 0;                       << 
1230       }                                          1301       }
1231                                                  1302 
1232       /* prepare callback */                     1303       /* prepare callback */
1233       static int snd_mychip_pcm_prepare(struc    1304       static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
1234       {                                          1305       {
1235               struct mychip *chip = snd_pcm_s    1306               struct mychip *chip = snd_pcm_substream_chip(substream);
1236               struct snd_pcm_runtime *runtime    1307               struct snd_pcm_runtime *runtime = substream->runtime;
1237                                                  1308 
1238               /* set up the hardware with the    1309               /* set up the hardware with the current configuration
1239                * for example...                  1310                * for example...
1240                */                                1311                */
1241               mychip_set_sample_format(chip,     1312               mychip_set_sample_format(chip, runtime->format);
1242               mychip_set_sample_rate(chip, ru    1313               mychip_set_sample_rate(chip, runtime->rate);
1243               mychip_set_channels(chip, runti    1314               mychip_set_channels(chip, runtime->channels);
1244               mychip_set_dma_setup(chip, runt    1315               mychip_set_dma_setup(chip, runtime->dma_addr,
1245                                    chip->buff    1316                                    chip->buffer_size,
1246                                    chip->peri    1317                                    chip->period_size);
1247               return 0;                          1318               return 0;
1248       }                                          1319       }
1249                                                  1320 
1250       /* trigger callback */                     1321       /* trigger callback */
1251       static int snd_mychip_pcm_trigger(struc    1322       static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
1252                                         int c    1323                                         int cmd)
1253       {                                          1324       {
1254               switch (cmd) {                     1325               switch (cmd) {
1255               case SNDRV_PCM_TRIGGER_START:      1326               case SNDRV_PCM_TRIGGER_START:
1256                       /* do something to star    1327                       /* do something to start the PCM engine */
1257                       ....                       1328                       ....
1258                       break;                     1329                       break;
1259               case SNDRV_PCM_TRIGGER_STOP:       1330               case SNDRV_PCM_TRIGGER_STOP:
1260                       /* do something to stop    1331                       /* do something to stop the PCM engine */
1261                       ....                       1332                       ....
1262                       break;                     1333                       break;
1263               default:                           1334               default:
1264                       return -EINVAL;            1335                       return -EINVAL;
1265               }                                  1336               }
1266       }                                          1337       }
1267                                                  1338 
1268       /* pointer callback */                     1339       /* pointer callback */
1269       static snd_pcm_uframes_t                   1340       static snd_pcm_uframes_t
1270       snd_mychip_pcm_pointer(struct snd_pcm_s    1341       snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
1271       {                                          1342       {
1272               struct mychip *chip = snd_pcm_s    1343               struct mychip *chip = snd_pcm_substream_chip(substream);
1273               unsigned int current_ptr;          1344               unsigned int current_ptr;
1274                                                  1345 
1275               /* get the current hardware poi    1346               /* get the current hardware pointer */
1276               current_ptr = mychip_get_hw_poi    1347               current_ptr = mychip_get_hw_pointer(chip);
1277               return current_ptr;                1348               return current_ptr;
1278       }                                          1349       }
1279                                                  1350 
1280       /* operators */                            1351       /* operators */
1281       static struct snd_pcm_ops snd_mychip_pl    1352       static struct snd_pcm_ops snd_mychip_playback_ops = {
1282               .open =        snd_mychip_playb    1353               .open =        snd_mychip_playback_open,
1283               .close =       snd_mychip_playb    1354               .close =       snd_mychip_playback_close,
                                                   >> 1355               .ioctl =       snd_pcm_lib_ioctl,
1284               .hw_params =   snd_mychip_pcm_h    1356               .hw_params =   snd_mychip_pcm_hw_params,
1285               .hw_free =     snd_mychip_pcm_h    1357               .hw_free =     snd_mychip_pcm_hw_free,
1286               .prepare =     snd_mychip_pcm_p    1358               .prepare =     snd_mychip_pcm_prepare,
1287               .trigger =     snd_mychip_pcm_t    1359               .trigger =     snd_mychip_pcm_trigger,
1288               .pointer =     snd_mychip_pcm_p    1360               .pointer =     snd_mychip_pcm_pointer,
1289       };                                         1361       };
1290                                                  1362 
1291       /* operators */                            1363       /* operators */
1292       static struct snd_pcm_ops snd_mychip_ca    1364       static struct snd_pcm_ops snd_mychip_capture_ops = {
1293               .open =        snd_mychip_captu    1365               .open =        snd_mychip_capture_open,
1294               .close =       snd_mychip_captu    1366               .close =       snd_mychip_capture_close,
                                                   >> 1367               .ioctl =       snd_pcm_lib_ioctl,
1295               .hw_params =   snd_mychip_pcm_h    1368               .hw_params =   snd_mychip_pcm_hw_params,
1296               .hw_free =     snd_mychip_pcm_h    1369               .hw_free =     snd_mychip_pcm_hw_free,
1297               .prepare =     snd_mychip_pcm_p    1370               .prepare =     snd_mychip_pcm_prepare,
1298               .trigger =     snd_mychip_pcm_t    1371               .trigger =     snd_mychip_pcm_trigger,
1299               .pointer =     snd_mychip_pcm_p    1372               .pointer =     snd_mychip_pcm_pointer,
1300       };                                         1373       };
1301                                                  1374 
1302       /*                                         1375       /*
1303        *  definitions of capture are omitted     1376        *  definitions of capture are omitted here...
1304        */                                        1377        */
1305                                                  1378 
1306       /* create a pcm device */                  1379       /* create a pcm device */
1307       static int snd_mychip_new_pcm(struct my    1380       static int snd_mychip_new_pcm(struct mychip *chip)
1308       {                                          1381       {
1309               struct snd_pcm *pcm;               1382               struct snd_pcm *pcm;
1310               int err;                           1383               int err;
1311                                                  1384 
1312               err = snd_pcm_new(chip->card, "    1385               err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
1313               if (err < 0)                       1386               if (err < 0)
1314                       return err;                1387                       return err;
1315               pcm->private_data = chip;          1388               pcm->private_data = chip;
1316               strcpy(pcm->name, "My Chip");      1389               strcpy(pcm->name, "My Chip");
1317               chip->pcm = pcm;                   1390               chip->pcm = pcm;
1318               /* set operators */                1391               /* set operators */
1319               snd_pcm_set_ops(pcm, SNDRV_PCM_    1392               snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1320                               &snd_mychip_pla    1393                               &snd_mychip_playback_ops);
1321               snd_pcm_set_ops(pcm, SNDRV_PCM_    1394               snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1322                               &snd_mychip_cap    1395                               &snd_mychip_capture_ops);
1323               /* pre-allocation of buffers */    1396               /* pre-allocation of buffers */
1324               /* NOTE: this may fail */          1397               /* NOTE: this may fail */
1325               snd_pcm_set_managed_buffer_all( !! 1398               snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1326                                               !! 1399                                                     snd_dma_pci_data(chip->pci),
1327                                               !! 1400                                                     64*1024, 64*1024);
1328               return 0;                          1401               return 0;
1329       }                                          1402       }
1330                                                  1403 
1331                                                  1404 
1332 PCM Constructor                                  1405 PCM Constructor
1333 ---------------                                  1406 ---------------
1334                                                  1407 
1335 A PCM instance is allocated by the :c:func:`s !! 1408 A pcm instance is allocated by the :c:func:`snd_pcm_new()`
1336 function. It would be better to create a cons !! 1409 function. It would be better to create a constructor for pcm, namely,
                                                   >> 1410 
                                                   >> 1411 ::
1337                                                  1412 
1338   static int snd_mychip_new_pcm(struct mychip    1413   static int snd_mychip_new_pcm(struct mychip *chip)
1339   {                                              1414   {
1340           struct snd_pcm *pcm;                   1415           struct snd_pcm *pcm;
1341           int err;                               1416           int err;
1342                                                  1417 
1343           err = snd_pcm_new(chip->card, "My C    1418           err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
1344           if (err < 0)                           1419           if (err < 0) 
1345                   return err;                    1420                   return err;
1346           pcm->private_data = chip;              1421           pcm->private_data = chip;
1347           strcpy(pcm->name, "My Chip");          1422           strcpy(pcm->name, "My Chip");
1348           chip->pcm = pcm;                       1423           chip->pcm = pcm;
1349           ...                                 !! 1424           ....
1350           return 0;                              1425           return 0;
1351   }                                              1426   }
1352                                                  1427 
1353 The :c:func:`snd_pcm_new()` function takes si !! 1428 The :c:func:`snd_pcm_new()` function takes four arguments. The
1354 first argument is the card pointer to which t !! 1429 first argument is the card pointer to which this pcm is assigned, and
1355 the second is the ID string.                     1430 the second is the ID string.
1356                                                  1431 
1357 The third argument (``index``, 0 in the above    1432 The third argument (``index``, 0 in the above) is the index of this new
1358 PCM. It begins from zero. If you create more  !! 1433 pcm. It begins from zero. If you create more than one pcm instances,
1359 specify the different numbers in this argumen    1434 specify the different numbers in this argument. For example, ``index =
1360 1`` for the second PCM device.                   1435 1`` for the second PCM device.
1361                                                  1436 
1362 The fourth and fifth arguments are the number    1437 The fourth and fifth arguments are the number of substreams for playback
1363 and capture, respectively. Here 1 is used for    1438 and capture, respectively. Here 1 is used for both arguments. When no
1364 playback or capture substreams are available,    1439 playback or capture substreams are available, pass 0 to the
1365 corresponding argument.                          1440 corresponding argument.
1366                                                  1441 
1367 If a chip supports multiple playbacks or capt    1442 If a chip supports multiple playbacks or captures, you can specify more
1368 numbers, but they must be handled properly in    1443 numbers, but they must be handled properly in open/close, etc.
1369 callbacks. When you need to know which substr    1444 callbacks. When you need to know which substream you are referring to,
1370 then it can be obtained from struct snd_pcm_s !! 1445 then it can be obtained from :c:type:`struct snd_pcm_substream
1371 callback as follows::                         !! 1446 <snd_pcm_substream>` data passed to each callback as follows:
                                                   >> 1447 
                                                   >> 1448 ::
1372                                                  1449 
1373   struct snd_pcm_substream *substream;           1450   struct snd_pcm_substream *substream;
1374   int index = substream->number;                 1451   int index = substream->number;
1375                                                  1452 
1376                                                  1453 
1377 After the PCM is created, you need to set ope !! 1454 After the pcm is created, you need to set operators for each pcm stream.
                                                   >> 1455 
                                                   >> 1456 ::
1378                                                  1457 
1379   snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYB    1458   snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1380                   &snd_mychip_playback_ops);     1459                   &snd_mychip_playback_ops);
1381   snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTU    1460   snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1382                   &snd_mychip_capture_ops);      1461                   &snd_mychip_capture_ops);
1383                                                  1462 
1384 The operators are defined typically like this !! 1463 The operators are defined typically like this:
                                                   >> 1464 
                                                   >> 1465 ::
1385                                                  1466 
1386   static struct snd_pcm_ops snd_mychip_playba    1467   static struct snd_pcm_ops snd_mychip_playback_ops = {
1387           .open =        snd_mychip_pcm_open,    1468           .open =        snd_mychip_pcm_open,
1388           .close =       snd_mychip_pcm_close    1469           .close =       snd_mychip_pcm_close,
                                                   >> 1470           .ioctl =       snd_pcm_lib_ioctl,
1389           .hw_params =   snd_mychip_pcm_hw_pa    1471           .hw_params =   snd_mychip_pcm_hw_params,
1390           .hw_free =     snd_mychip_pcm_hw_fr    1472           .hw_free =     snd_mychip_pcm_hw_free,
1391           .prepare =     snd_mychip_pcm_prepa    1473           .prepare =     snd_mychip_pcm_prepare,
1392           .trigger =     snd_mychip_pcm_trigg    1474           .trigger =     snd_mychip_pcm_trigger,
1393           .pointer =     snd_mychip_pcm_point    1475           .pointer =     snd_mychip_pcm_pointer,
1394   };                                             1476   };
1395                                                  1477 
1396 All the callbacks are described in the Operat    1478 All the callbacks are described in the Operators_ subsection.
1397                                                  1479 
1398 After setting the operators, you probably wil    1480 After setting the operators, you probably will want to pre-allocate the
1399 buffer and set up the managed allocation mode !! 1481 buffer. For the pre-allocation, simply call the following:
1400 For that, simply call the following::         !! 1482 
                                                   >> 1483 ::
1401                                                  1484 
1402   snd_pcm_set_managed_buffer_all(pcm, SNDRV_D !! 1485   snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1403                                  &chip->pci-> !! 1486                                         snd_dma_pci_data(chip->pci),
1404                                  64*1024, 64* !! 1487                                         64*1024, 64*1024);
1405                                                  1488 
1406 It will allocate a buffer up to 64kB by defau !! 1489 It will allocate a buffer up to 64kB as default. Buffer management
1407 details will be described in the later sectio    1490 details will be described in the later section `Buffer and Memory
1408 Management`_.                                    1491 Management`_.
1409                                                  1492 
1410 Additionally, you can set some extra informat !! 1493 Additionally, you can set some extra information for this pcm in
1411 ``pcm->info_flags``. The available values are    1494 ``pcm->info_flags``. The available values are defined as
1412 ``SNDRV_PCM_INFO_XXX`` in ``<sound/asound.h>`    1495 ``SNDRV_PCM_INFO_XXX`` in ``<sound/asound.h>``, which is used for the
1413 hardware definition (described later). When y    1496 hardware definition (described later). When your soundchip supports only
1414 half-duplex, specify it like this::           !! 1497 half-duplex, specify like this:
                                                   >> 1498 
                                                   >> 1499 ::
1415                                                  1500 
1416   pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLE    1501   pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1417                                                  1502 
1418                                                  1503 
1419 ... And the Destructor?                          1504 ... And the Destructor?
1420 -----------------------                          1505 -----------------------
1421                                                  1506 
1422 The destructor for a PCM instance is not alwa !! 1507 The destructor for a pcm instance is not always necessary. Since the pcm
1423 device will be released by the middle layer c    1508 device will be released by the middle layer code automatically, you
1424 don't have to call the destructor explicitly.    1509 don't have to call the destructor explicitly.
1425                                                  1510 
1426 The destructor would be necessary if you crea    1511 The destructor would be necessary if you created special records
1427 internally and needed to release them. In suc    1512 internally and needed to release them. In such a case, set the
1428 destructor function to ``pcm->private_free``: !! 1513 destructor function to ``pcm->private_free``:
                                                   >> 1514 
                                                   >> 1515 ::
1429                                                  1516 
1430       static void mychip_pcm_free(struct snd_    1517       static void mychip_pcm_free(struct snd_pcm *pcm)
1431       {                                          1518       {
1432               struct mychip *chip = snd_pcm_c    1519               struct mychip *chip = snd_pcm_chip(pcm);
1433               /* free your own data */           1520               /* free your own data */
1434               kfree(chip->my_private_pcm_data    1521               kfree(chip->my_private_pcm_data);
1435               /* do what you like else */        1522               /* do what you like else */
1436               ....                               1523               ....
1437       }                                          1524       }
1438                                                  1525 
1439       static int snd_mychip_new_pcm(struct my    1526       static int snd_mychip_new_pcm(struct mychip *chip)
1440       {                                          1527       {
1441               struct snd_pcm *pcm;               1528               struct snd_pcm *pcm;
1442               ....                               1529               ....
1443               /* allocate your own data */       1530               /* allocate your own data */
1444               chip->my_private_pcm_data = kma    1531               chip->my_private_pcm_data = kmalloc(...);
1445               /* set the destructor */           1532               /* set the destructor */
1446               pcm->private_data = chip;          1533               pcm->private_data = chip;
1447               pcm->private_free = mychip_pcm_    1534               pcm->private_free = mychip_pcm_free;
1448               ....                               1535               ....
1449       }                                          1536       }
1450                                                  1537 
1451                                                  1538 
1452                                                  1539 
1453 Runtime Pointer - The Chest of PCM Informatio    1540 Runtime Pointer - The Chest of PCM Information
1454 ---------------------------------------------    1541 ----------------------------------------------
1455                                                  1542 
1456 When the PCM substream is opened, a PCM runti    1543 When the PCM substream is opened, a PCM runtime instance is allocated
1457 and assigned to the substream. This pointer i    1544 and assigned to the substream. This pointer is accessible via
1458 ``substream->runtime``. This runtime pointer     1545 ``substream->runtime``. This runtime pointer holds most information you
1459 need to control the PCM: a copy of hw_params  !! 1546 need to control the PCM: the copy of hw_params and sw_params
1460 configurations, the buffer pointers, mmap rec    1547 configurations, the buffer pointers, mmap records, spinlocks, etc.
1461                                                  1548 
1462 The definition of runtime instance is found i    1549 The definition of runtime instance is found in ``<sound/pcm.h>``. Here
1463 is the relevant part of this file::           !! 1550 are the contents of this file:
                                                   >> 1551 
                                                   >> 1552 ::
1464                                                  1553 
1465   struct _snd_pcm_runtime {                      1554   struct _snd_pcm_runtime {
1466           /* -- Status -- */                     1555           /* -- Status -- */
1467           struct snd_pcm_substream *trigger_m    1556           struct snd_pcm_substream *trigger_master;
1468           snd_timestamp_t trigger_tstamp;        1557           snd_timestamp_t trigger_tstamp;       /* trigger timestamp */
1469           int overrange;                         1558           int overrange;
1470           snd_pcm_uframes_t avail_max;           1559           snd_pcm_uframes_t avail_max;
1471           snd_pcm_uframes_t hw_ptr_base;         1560           snd_pcm_uframes_t hw_ptr_base;        /* Position at buffer restart */
1472           snd_pcm_uframes_t hw_ptr_interrupt;    1561           snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
1473                                                  1562   
1474           /* -- HW params -- */                  1563           /* -- HW params -- */
1475           snd_pcm_access_t access;      /* ac    1564           snd_pcm_access_t access;      /* access mode */
1476           snd_pcm_format_t format;      /* SN    1565           snd_pcm_format_t format;      /* SNDRV_PCM_FORMAT_* */
1477           snd_pcm_subformat_t subformat;         1566           snd_pcm_subformat_t subformat;        /* subformat */
1478           unsigned int rate;            /* ra    1567           unsigned int rate;            /* rate in Hz */
1479           unsigned int channels;                 1568           unsigned int channels;                /* channels */
1480           snd_pcm_uframes_t period_size;         1569           snd_pcm_uframes_t period_size;        /* period size */
1481           unsigned int periods;         /* pe    1570           unsigned int periods;         /* periods */
1482           snd_pcm_uframes_t buffer_size;         1571           snd_pcm_uframes_t buffer_size;        /* buffer size */
1483           unsigned int tick_time;                1572           unsigned int tick_time;               /* tick time */
1484           snd_pcm_uframes_t min_align;  /* Mi    1573           snd_pcm_uframes_t min_align;  /* Min alignment for the format */
1485           size_t byte_align;                     1574           size_t byte_align;
1486           unsigned int frame_bits;               1575           unsigned int frame_bits;
1487           unsigned int sample_bits;              1576           unsigned int sample_bits;
1488           unsigned int info;                     1577           unsigned int info;
1489           unsigned int rate_num;                 1578           unsigned int rate_num;
1490           unsigned int rate_den;                 1579           unsigned int rate_den;
1491                                                  1580   
1492           /* -- SW params -- */                  1581           /* -- SW params -- */
1493           struct timespec tstamp_mode;  /* mm    1582           struct timespec tstamp_mode;  /* mmap timestamp is updated */
1494           unsigned int period_step;              1583           unsigned int period_step;
1495           unsigned int sleep_min;                1584           unsigned int sleep_min;               /* min ticks to sleep */
1496           snd_pcm_uframes_t start_threshold;     1585           snd_pcm_uframes_t start_threshold;
1497           /*                                  !! 1586           snd_pcm_uframes_t stop_threshold;
1498            * The following two thresholds all !! 1587           snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
1499            * hw_avail drops below the thresho !! 1588                                                   noise is nearest than this */
1500            */                                 !! 1589           snd_pcm_uframes_t silence_size;       /* Silence filling size */
1501           snd_pcm_uframes_t stop_threshold;   << 
1502           snd_pcm_uframes_t silence_threshold << 
1503           snd_pcm_uframes_t silence_size;     << 
1504                                               << 
1505           snd_pcm_uframes_t boundary;   /* po    1590           snd_pcm_uframes_t boundary;   /* pointers wrap point */
1506                                                  1591   
1507           /* internal data of auto-silencer * !! 1592           snd_pcm_uframes_t silenced_start;
1508           snd_pcm_uframes_t silence_start; /* !! 1593           snd_pcm_uframes_t silenced_size;
1509           snd_pcm_uframes_t silence_filled; / << 
1510                                                  1594   
1511           snd_pcm_sync_id_t sync;                1595           snd_pcm_sync_id_t sync;               /* hardware synchronization ID */
1512                                                  1596   
1513           /* -- mmap -- */                       1597           /* -- mmap -- */
1514           volatile struct snd_pcm_mmap_status    1598           volatile struct snd_pcm_mmap_status *status;
1515           volatile struct snd_pcm_mmap_contro    1599           volatile struct snd_pcm_mmap_control *control;
1516           atomic_t mmap_count;                   1600           atomic_t mmap_count;
1517                                                  1601   
1518           /* -- locking / scheduling -- */       1602           /* -- locking / scheduling -- */
1519           spinlock_t lock;                       1603           spinlock_t lock;
1520           wait_queue_head_t sleep;               1604           wait_queue_head_t sleep;
1521           struct timer_list tick_timer;          1605           struct timer_list tick_timer;
1522           struct fasync_struct *fasync;          1606           struct fasync_struct *fasync;
1523                                                  1607 
1524           /* -- private section -- */            1608           /* -- private section -- */
1525           void *private_data;                    1609           void *private_data;
1526           void (*private_free)(struct snd_pcm    1610           void (*private_free)(struct snd_pcm_runtime *runtime);
1527                                                  1611   
1528           /* -- hardware description -- */       1612           /* -- hardware description -- */
1529           struct snd_pcm_hardware hw;            1613           struct snd_pcm_hardware hw;
1530           struct snd_pcm_hw_constraints hw_co    1614           struct snd_pcm_hw_constraints hw_constraints;
1531                                                  1615   
1532           /* -- timer -- */                      1616           /* -- timer -- */
1533           unsigned int timer_resolution;         1617           unsigned int timer_resolution;        /* timer resolution */
1534                                                  1618   
1535           /* -- DMA -- */                        1619           /* -- DMA -- */           
1536           unsigned char *dma_area;      /* DM    1620           unsigned char *dma_area;      /* DMA area */
1537           dma_addr_t dma_addr;          /* ph    1621           dma_addr_t dma_addr;          /* physical bus address (not accessible from main CPU) */
1538           size_t dma_bytes;             /* si    1622           size_t dma_bytes;             /* size of DMA area */
1539                                                  1623   
1540           struct snd_dma_buffer *dma_buffer_p    1624           struct snd_dma_buffer *dma_buffer_p;  /* allocated buffer */
1541                                                  1625   
1542   #if defined(CONFIG_SND_PCM_OSS) || defined(    1626   #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
1543           /* -- OSS things -- */                 1627           /* -- OSS things -- */
1544           struct snd_pcm_oss_runtime oss;        1628           struct snd_pcm_oss_runtime oss;
1545   #endif                                         1629   #endif
1546   };                                             1630   };
1547                                                  1631 
1548                                                  1632 
1549 For the operators (callbacks) of each sound d    1633 For the operators (callbacks) of each sound driver, most of these
1550 records are supposed to be read-only. Only th    1634 records are supposed to be read-only. Only the PCM middle-layer changes
1551 / updates them. The exceptions are the hardwa    1635 / updates them. The exceptions are the hardware description (hw) DMA
1552 buffer information and the private data. Besi    1636 buffer information and the private data. Besides, if you use the
1553 standard managed buffer allocation mode, you  !! 1637 standard buffer allocation method via
                                                   >> 1638 :c:func:`snd_pcm_lib_malloc_pages()`, you don't need to set the
1554 DMA buffer information by yourself.              1639 DMA buffer information by yourself.
1555                                                  1640 
1556 In the sections below, important records are     1641 In the sections below, important records are explained.
1557                                                  1642 
1558 Hardware Description                             1643 Hardware Description
1559 ~~~~~~~~~~~~~~~~~~~~                             1644 ~~~~~~~~~~~~~~~~~~~~
1560                                                  1645 
1561 The hardware descriptor (struct snd_pcm_hardw !! 1646 The hardware descriptor (:c:type:`struct snd_pcm_hardware
1562 the fundamental hardware configuration. Above !! 1647 <snd_pcm_hardware>`) contains the definitions of the fundamental
1563 in the `PCM open callback`_. Note that the ru !! 1648 hardware configuration. Above all, you'll need to define this in the
1564 the descriptor, not a pointer to the existing !! 1649 `PCM open callback`_. Note that the runtime instance holds the copy of
                                                   >> 1650 the descriptor, not the pointer to the existing descriptor. That is,
1565 in the open callback, you can modify the copi    1651 in the open callback, you can modify the copied descriptor
1566 (``runtime->hw``) as you need. For example, i    1652 (``runtime->hw``) as you need. For example, if the maximum number of
1567 channels is 1 only on some chip models, you c    1653 channels is 1 only on some chip models, you can still use the same
1568 hardware descriptor and change the channels_m !! 1654 hardware descriptor and change the channels_max later:
                                                   >> 1655 
                                                   >> 1656 ::
1569                                                  1657 
1570           struct snd_pcm_runtime *runtime = s    1658           struct snd_pcm_runtime *runtime = substream->runtime;
1571           ...                                    1659           ...
1572           runtime->hw = snd_mychip_playback_h    1660           runtime->hw = snd_mychip_playback_hw; /* common definition */
1573           if (chip->model == VERY_OLD_ONE)       1661           if (chip->model == VERY_OLD_ONE)
1574                   runtime->hw.channels_max =     1662                   runtime->hw.channels_max = 1;
1575                                                  1663 
1576 Typically, you'll have a hardware descriptor  !! 1664 Typically, you'll have a hardware descriptor as below:
                                                   >> 1665 
                                                   >> 1666 ::
1577                                                  1667 
1578   static struct snd_pcm_hardware snd_mychip_p    1668   static struct snd_pcm_hardware snd_mychip_playback_hw = {
1579           .info = (SNDRV_PCM_INFO_MMAP |         1669           .info = (SNDRV_PCM_INFO_MMAP |
1580                    SNDRV_PCM_INFO_INTERLEAVED    1670                    SNDRV_PCM_INFO_INTERLEAVED |
1581                    SNDRV_PCM_INFO_BLOCK_TRANS    1671                    SNDRV_PCM_INFO_BLOCK_TRANSFER |
1582                    SNDRV_PCM_INFO_MMAP_VALID)    1672                    SNDRV_PCM_INFO_MMAP_VALID),
1583           .formats =          SNDRV_PCM_FMTBI    1673           .formats =          SNDRV_PCM_FMTBIT_S16_LE,
1584           .rates =            SNDRV_PCM_RATE_    1674           .rates =            SNDRV_PCM_RATE_8000_48000,
1585           .rate_min =         8000,              1675           .rate_min =         8000,
1586           .rate_max =         48000,             1676           .rate_max =         48000,
1587           .channels_min =     2,                 1677           .channels_min =     2,
1588           .channels_max =     2,                 1678           .channels_max =     2,
1589           .buffer_bytes_max = 32768,             1679           .buffer_bytes_max = 32768,
1590           .period_bytes_min = 4096,              1680           .period_bytes_min = 4096,
1591           .period_bytes_max = 32768,             1681           .period_bytes_max = 32768,
1592           .periods_min =      1,                 1682           .periods_min =      1,
1593           .periods_max =      1024,              1683           .periods_max =      1024,
1594   };                                             1684   };
1595                                                  1685 
1596 -  The ``info`` field contains the type and c    1686 -  The ``info`` field contains the type and capabilities of this
1597    PCM. The bit flags are defined in ``<sound !! 1687    pcm. The bit flags are defined in ``<sound/asound.h>`` as
1598    ``SNDRV_PCM_INFO_XXX``. Here, at least, yo    1688    ``SNDRV_PCM_INFO_XXX``. Here, at least, you have to specify whether
1599    mmap is supported and which interleaving f !! 1689    the mmap is supported and which interleaved format is
1600    supported. When the hardware supports mmap    1690    supported. When the hardware supports mmap, add the
1601    ``SNDRV_PCM_INFO_MMAP`` flag here. When th    1691    ``SNDRV_PCM_INFO_MMAP`` flag here. When the hardware supports the
1602    interleaved or the non-interleaved formats !! 1692    interleaved or the non-interleaved formats,
1603    ``SNDRV_PCM_INFO_INTERLEAVED`` or ``SNDRV_    1693    ``SNDRV_PCM_INFO_INTERLEAVED`` or ``SNDRV_PCM_INFO_NONINTERLEAVED``
1604    flag must be set, respectively. If both ar    1694    flag must be set, respectively. If both are supported, you can set
1605    both, too.                                    1695    both, too.
1606                                                  1696 
1607    In the above example, ``MMAP_VALID`` and `    1697    In the above example, ``MMAP_VALID`` and ``BLOCK_TRANSFER`` are
1608    specified for the OSS mmap mode. Usually b    1698    specified for the OSS mmap mode. Usually both are set. Of course,
1609    ``MMAP_VALID`` is set only if mmap is real !! 1699    ``MMAP_VALID`` is set only if the mmap is really supported.
1610                                                  1700 
1611    The other possible flags are ``SNDRV_PCM_I    1701    The other possible flags are ``SNDRV_PCM_INFO_PAUSE`` and
1612    ``SNDRV_PCM_INFO_RESUME``. The ``PAUSE`` b !! 1702    ``SNDRV_PCM_INFO_RESUME``. The ``PAUSE`` bit means that the pcm
1613    supports the “pause” operation, while     1703    supports the “pause” operation, while the ``RESUME`` bit means that
1614    the PCM supports the full “suspend/resum !! 1704    the pcm supports the full “suspend/resume” operation. If the
1615    ``PAUSE`` flag is set, the ``trigger`` cal    1705    ``PAUSE`` flag is set, the ``trigger`` callback below must handle
1616    the corresponding (pause push/release) com    1706    the corresponding (pause push/release) commands. The suspend/resume
1617    trigger commands can be defined even witho    1707    trigger commands can be defined even without the ``RESUME``
1618    flag. See the `Power Management`_ section  !! 1708    flag. See `Power Management`_ section for details.
1619                                                  1709 
1620    When the PCM substreams can be synchronize    1710    When the PCM substreams can be synchronized (typically,
1621    synchronized start/stop of a playback and  !! 1711    synchronized start/stop of a playback and a capture streams), you
1622    can give ``SNDRV_PCM_INFO_SYNC_START``, to    1712    can give ``SNDRV_PCM_INFO_SYNC_START``, too. In this case, you'll
1623    need to check the linked-list of PCM subst    1713    need to check the linked-list of PCM substreams in the trigger
1624    callback. This will be described in a late !! 1714    callback. This will be described in the later section.
1625                                                  1715 
1626 -  The ``formats`` field contains the bit-fla !! 1716 -  ``formats`` field contains the bit-flags of supported formats
1627    (``SNDRV_PCM_FMTBIT_XXX``). If the hardwar    1717    (``SNDRV_PCM_FMTBIT_XXX``). If the hardware supports more than one
1628    format, give all or'ed bits. In the exampl    1718    format, give all or'ed bits. In the example above, the signed 16bit
1629    little-endian format is specified.            1719    little-endian format is specified.
1630                                                  1720 
1631 -  The ``rates`` field contains the bit-flags !! 1721 -  ``rates`` field contains the bit-flags of supported rates
1632    (``SNDRV_PCM_RATE_XXX``). When the chip su    1722    (``SNDRV_PCM_RATE_XXX``). When the chip supports continuous rates,
1633    pass the ``CONTINUOUS`` bit additionally.  !! 1723    pass ``CONTINUOUS`` bit additionally. The pre-defined rate bits are
1634    are provided only for typical rates. If yo !! 1724    provided only for typical rates. If your chip supports
1635    unconventional rates, you need to add the     1725    unconventional rates, you need to add the ``KNOT`` bit and set up
1636    the hardware constraint manually (explaine    1726    the hardware constraint manually (explained later).
1637                                                  1727 
1638 -  ``rate_min`` and ``rate_max`` define the m    1728 -  ``rate_min`` and ``rate_max`` define the minimum and maximum sample
1639    rate. This should correspond somehow to ``    1729    rate. This should correspond somehow to ``rates`` bits.
1640                                                  1730 
1641 -  ``channels_min`` and ``channels_max`` defi !! 1731 -  ``channel_min`` and ``channel_max`` define, as you might already
1642    expected, the minimum and maximum number o    1732    expected, the minimum and maximum number of channels.
1643                                                  1733 
1644 -  ``buffer_bytes_max`` defines the maximum b    1734 -  ``buffer_bytes_max`` defines the maximum buffer size in
1645    bytes. There is no ``buffer_bytes_min`` fi    1735    bytes. There is no ``buffer_bytes_min`` field, since it can be
1646    calculated from the minimum period size an    1736    calculated from the minimum period size and the minimum number of
1647    periods. Meanwhile, ``period_bytes_min`` a !! 1737    periods. Meanwhile, ``period_bytes_min`` and define the minimum and
1648    define the minimum and maximum size of the !! 1738    maximum size of the period in bytes. ``periods_max`` and
1649    ``periods_max`` and ``periods_min`` define !! 1739    ``periods_min`` define the maximum and minimum number of periods in
1650    number of periods in the buffer.           !! 1740    the buffer.
1651                                                  1741 
1652    The “period” is a term that correspond    1742    The “period” is a term that corresponds to a fragment in the OSS
1653    world. The period defines the point at whi !! 1743    world. The period defines the size at which a PCM interrupt is
1654    generated. This point strongly depends on  !! 1744    generated. This size strongly depends on the hardware. Generally,
1655    a smaller period size will give you more i !! 1745    the smaller period size will give you more interrupts, that is,
1656    in being able to fill/drain the buffer mor !! 1746    more controls. In the case of capture, this size defines the input
1657    capture, this size defines the input laten !! 1747    latency. On the other hand, the whole buffer size defines the
1658    the whole buffer size defines the output l !! 1748    output latency for the playback direction.
1659    direction.                                 << 
1660                                                  1749 
1661 -  There is also a field ``fifo_size``. This     1750 -  There is also a field ``fifo_size``. This specifies the size of the
1662    hardware FIFO, but currently it is neither !! 1751    hardware FIFO, but currently it is neither used in the driver nor
1663    in the alsa-lib. So, you can ignore this f    1752    in the alsa-lib. So, you can ignore this field.
1664                                                  1753 
1665 PCM Configurations                               1754 PCM Configurations
1666 ~~~~~~~~~~~~~~~~~~                               1755 ~~~~~~~~~~~~~~~~~~
1667                                                  1756 
1668 Ok, let's go back again to the PCM runtime re    1757 Ok, let's go back again to the PCM runtime records. The most
1669 frequently referred records in the runtime in    1758 frequently referred records in the runtime instance are the PCM
1670 configurations. The PCM configurations are st    1759 configurations. The PCM configurations are stored in the runtime
1671 instance after the application sends ``hw_par    1760 instance after the application sends ``hw_params`` data via
1672 alsa-lib. There are many fields copied from h    1761 alsa-lib. There are many fields copied from hw_params and sw_params
1673 structs. For example, ``format`` holds the fo    1762 structs. For example, ``format`` holds the format type chosen by the
1674 application. This field contains the enum val    1763 application. This field contains the enum value
1675 ``SNDRV_PCM_FORMAT_XXX``.                        1764 ``SNDRV_PCM_FORMAT_XXX``.
1676                                                  1765 
1677 One thing to be noted is that the configured     1766 One thing to be noted is that the configured buffer and period sizes
1678 are stored in “frames” in the runtime. In    1767 are stored in “frames” in the runtime. In the ALSA world, ``1 frame =
1679 channels \* samples-size``. For conversion be    1768 channels \* samples-size``. For conversion between frames and bytes,
1680 you can use the :c:func:`frames_to_bytes()` a    1769 you can use the :c:func:`frames_to_bytes()` and
1681 :c:func:`bytes_to_frames()` helper functions: !! 1770 :c:func:`bytes_to_frames()` helper functions.
                                                   >> 1771 
                                                   >> 1772 ::
1682                                                  1773 
1683   period_bytes = frames_to_bytes(runtime, run    1774   period_bytes = frames_to_bytes(runtime, runtime->period_size);
1684                                                  1775 
1685 Also, many software parameters (sw_params) ar    1776 Also, many software parameters (sw_params) are stored in frames, too.
1686 Please check the type of the field. ``snd_pcm !! 1777 Please check the type of the field. ``snd_pcm_uframes_t`` is for the
1687 frames as unsigned integer while ``snd_pcm_sf !! 1778 frames as unsigned integer while ``snd_pcm_sframes_t`` is for the
1688 frames as signed integer.                        1779 frames as signed integer.
1689                                                  1780 
1690 DMA Buffer Information                           1781 DMA Buffer Information
1691 ~~~~~~~~~~~~~~~~~~~~~~                           1782 ~~~~~~~~~~~~~~~~~~~~~~
1692                                                  1783 
1693 The DMA buffer is defined by the following fo !! 1784 The DMA buffer is defined by the following four fields, ``dma_area``,
1694 ``dma_addr``, ``dma_bytes`` and ``dma_private !! 1785 ``dma_addr``, ``dma_bytes`` and ``dma_private``. The ``dma_area``
1695 holds the buffer pointer (the logical address    1786 holds the buffer pointer (the logical address). You can call
1696 :c:func:`memcpy()` from/to this pointer. Mean    1787 :c:func:`memcpy()` from/to this pointer. Meanwhile, ``dma_addr`` holds
1697 the physical address of the buffer. This fiel    1788 the physical address of the buffer. This field is specified only when
1698 the buffer is a linear buffer. ``dma_bytes``  !! 1789 the buffer is a linear buffer. ``dma_bytes`` holds the size of buffer
1699 buffer in bytes. ``dma_private`` is used for  !! 1790 in bytes. ``dma_private`` is used for the ALSA DMA allocator.
1700                                                  1791 
1701 If you use either the managed buffer allocati !! 1792 If you use a standard ALSA function,
1702 API function :c:func:`snd_pcm_lib_malloc_page !! 1793 :c:func:`snd_pcm_lib_malloc_pages()`, for allocating the buffer,
1703 these fields are set by the ALSA middle layer    1794 these fields are set by the ALSA middle layer, and you should *not*
1704 change them by yourself. You can read them bu    1795 change them by yourself. You can read them but not write them. On the
1705 other hand, if you want to allocate the buffe    1796 other hand, if you want to allocate the buffer by yourself, you'll
1706 need to manage it in the hw_params callback.  !! 1797 need to manage it in hw_params callback. At least, ``dma_bytes`` is
1707 mandatory. ``dma_area`` is necessary when the    1798 mandatory. ``dma_area`` is necessary when the buffer is mmapped. If
1708 your driver doesn't support mmap, this field     1799 your driver doesn't support mmap, this field is not
1709 necessary. ``dma_addr`` is also optional. You    1800 necessary. ``dma_addr`` is also optional. You can use dma_private as
1710 you like, too.                                   1801 you like, too.
1711                                                  1802 
1712 Running Status                                   1803 Running Status
1713 ~~~~~~~~~~~~~~                                   1804 ~~~~~~~~~~~~~~
1714                                                  1805 
1715 The running status can be referred via ``runt    1806 The running status can be referred via ``runtime->status``. This is
1716 a pointer to a struct snd_pcm_mmap_status rec !! 1807 the pointer to the :c:type:`struct snd_pcm_mmap_status
1717 For example, you can get the current          !! 1808 <snd_pcm_mmap_status>` record. For example, you can get the current
1718 DMA hardware pointer via ``runtime->status->h    1809 DMA hardware pointer via ``runtime->status->hw_ptr``.
1719                                                  1810 
1720 The DMA application pointer can be referred v    1811 The DMA application pointer can be referred via ``runtime->control``,
1721 which points to a struct snd_pcm_mmap_control !! 1812 which points to the :c:type:`struct snd_pcm_mmap_control
1722 However, accessing this value directly is not !! 1813 <snd_pcm_mmap_control>` record. However, accessing directly to
                                                   >> 1814 this value is not recommended.
1723                                                  1815 
1724 Private Data                                     1816 Private Data
1725 ~~~~~~~~~~~~                                     1817 ~~~~~~~~~~~~
1726                                                  1818 
1727 You can allocate a record for the substream a    1819 You can allocate a record for the substream and store it in
1728 ``runtime->private_data``. Usually, this is d    1820 ``runtime->private_data``. Usually, this is done in the `PCM open
1729 callback`_. Don't mix this with ``pcm->privat    1821 callback`_. Don't mix this with ``pcm->private_data``. The
1730 ``pcm->private_data`` usually points to the c    1822 ``pcm->private_data`` usually points to the chip instance assigned
1731 statically at creation time of the PCM device !! 1823 statically at the creation of PCM, while the ``runtime->private_data``
1732 ``runtime->private_data``                     !! 1824 points to a dynamic data structure created at the PCM open
1733 points to a dynamic data structure created in !! 1825 callback.
1734 callback::                                    !! 1826 
                                                   >> 1827 ::
1735                                                  1828 
1736   static int snd_xxx_open(struct snd_pcm_subs    1829   static int snd_xxx_open(struct snd_pcm_substream *substream)
1737   {                                              1830   {
1738           struct my_pcm_data *data;              1831           struct my_pcm_data *data;
1739           ....                                   1832           ....
1740           data = kmalloc(sizeof(*data), GFP_K    1833           data = kmalloc(sizeof(*data), GFP_KERNEL);
1741           substream->runtime->private_data =     1834           substream->runtime->private_data = data;
1742           ....                                   1835           ....
1743   }                                              1836   }
1744                                                  1837 
1745                                                  1838 
1746 The allocated object must be released in the     1839 The allocated object must be released in the `close callback`_.
1747                                                  1840 
1748 Operators                                        1841 Operators
1749 ---------                                        1842 ---------
1750                                                  1843 
1751 OK, now let me give details about each PCM ca !! 1844 OK, now let me give details about each pcm callback (``ops``). In
1752 general, every callback must return 0 if succ    1845 general, every callback must return 0 if successful, or a negative
1753 error number such as ``-EINVAL``. To choose a    1846 error number such as ``-EINVAL``. To choose an appropriate error
1754 number, it is advised to check what value oth    1847 number, it is advised to check what value other parts of the kernel
1755 return when the same kind of request fails.      1848 return when the same kind of request fails.
1756                                                  1849 
1757 Each callback function takes at least one arg !! 1850 The callback function takes at least the argument with :c:type:`struct
1758 struct snd_pcm_substream pointer. To retrieve !! 1851 snd_pcm_substream <snd_pcm_substream>` pointer. To retrieve the chip
1759 record from the given substream instance, you    1852 record from the given substream instance, you can use the following
1760 macro::                                       !! 1853 macro.
                                                   >> 1854 
                                                   >> 1855 ::
1761                                                  1856 
1762   int xxx(...) {                              !! 1857   int xxx() {
1763           struct mychip *chip = snd_pcm_subst    1858           struct mychip *chip = snd_pcm_substream_chip(substream);
1764           ....                                   1859           ....
1765   }                                              1860   }
1766                                                  1861 
1767 The macro reads ``substream->private_data``,     1862 The macro reads ``substream->private_data``, which is a copy of
1768 ``pcm->private_data``. You can override the f    1863 ``pcm->private_data``. You can override the former if you need to
1769 assign different data records per PCM substre    1864 assign different data records per PCM substream. For example, the
1770 cmi8330 driver assigns different ``private_da    1865 cmi8330 driver assigns different ``private_data`` for playback and
1771 capture directions, because it uses two diffe    1866 capture directions, because it uses two different codecs (SB- and
1772 AD-compatible) for different directions.         1867 AD-compatible) for different directions.
1773                                                  1868 
1774 PCM open callback                                1869 PCM open callback
1775 ~~~~~~~~~~~~~~~~~                                1870 ~~~~~~~~~~~~~~~~~
1776                                                  1871 
1777 ::                                               1872 ::
1778                                                  1873 
1779   static int snd_xxx_open(struct snd_pcm_subs    1874   static int snd_xxx_open(struct snd_pcm_substream *substream);
1780                                                  1875 
1781 This is called when a PCM substream is opened !! 1876 This is called when a pcm substream is opened.
1782                                                  1877 
1783 At least, here you have to initialize the ``r    1878 At least, here you have to initialize the ``runtime->hw``
1784 record. Typically, this is done like this::   !! 1879 record. Typically, this is done by like this:
                                                   >> 1880 
                                                   >> 1881 ::
1785                                                  1882 
1786   static int snd_xxx_open(struct snd_pcm_subs    1883   static int snd_xxx_open(struct snd_pcm_substream *substream)
1787   {                                              1884   {
1788           struct mychip *chip = snd_pcm_subst    1885           struct mychip *chip = snd_pcm_substream_chip(substream);
1789           struct snd_pcm_runtime *runtime = s    1886           struct snd_pcm_runtime *runtime = substream->runtime;
1790                                                  1887 
1791           runtime->hw = snd_mychip_playback_h    1888           runtime->hw = snd_mychip_playback_hw;
1792           return 0;                              1889           return 0;
1793   }                                              1890   }
1794                                                  1891 
1795 where ``snd_mychip_playback_hw`` is the pre-d    1892 where ``snd_mychip_playback_hw`` is the pre-defined hardware
1796 description.                                     1893 description.
1797                                                  1894 
1798 You can allocate private data in this callbac !! 1895 You can allocate a private data in this callback, as described in
1799 `Private Data`_ section.                         1896 `Private Data`_ section.
1800                                                  1897 
1801 If the hardware configuration needs more cons    1898 If the hardware configuration needs more constraints, set the hardware
1802 constraints here, too. See Constraints_ for m    1899 constraints here, too. See Constraints_ for more details.
1803                                                  1900 
1804 close callback                                   1901 close callback
1805 ~~~~~~~~~~~~~~                                   1902 ~~~~~~~~~~~~~~
1806                                                  1903 
1807 ::                                               1904 ::
1808                                                  1905 
1809   static int snd_xxx_close(struct snd_pcm_sub    1906   static int snd_xxx_close(struct snd_pcm_substream *substream);
1810                                                  1907 
1811                                                  1908 
1812 Obviously, this is called when a PCM substrea !! 1909 Obviously, this is called when a pcm substream is closed.
                                                   >> 1910 
                                                   >> 1911 Any private instance for a pcm substream allocated in the ``open``
                                                   >> 1912 callback will be released here.
1813                                                  1913 
1814 Any private instance for a PCM substream allo !! 1914 ::
1815 callback will be released here::              << 
1816                                                  1915 
1817   static int snd_xxx_close(struct snd_pcm_sub    1916   static int snd_xxx_close(struct snd_pcm_substream *substream)
1818   {                                              1917   {
1819           ....                                   1918           ....
1820           kfree(substream->runtime->private_d    1919           kfree(substream->runtime->private_data);
1821           ....                                   1920           ....
1822   }                                              1921   }
1823                                                  1922 
1824 ioctl callback                                   1923 ioctl callback
1825 ~~~~~~~~~~~~~~                                   1924 ~~~~~~~~~~~~~~
1826                                                  1925 
1827 This is used for any special call to PCM ioct !! 1926 This is used for any special call to pcm ioctls. But usually you can
1828 leave it NULL, then the PCM core calls the ge !! 1927 pass a generic ioctl callback, :c:func:`snd_pcm_lib_ioctl()`.
1829 function :c:func:`snd_pcm_lib_ioctl()`.  If y << 
1830 unique setup of channel info or reset procedu << 
1831 callback function here.                       << 
1832                                                  1928 
1833 hw_params callback                               1929 hw_params callback
1834 ~~~~~~~~~~~~~~~~~~~                              1930 ~~~~~~~~~~~~~~~~~~~
1835                                                  1931 
1836 ::                                               1932 ::
1837                                                  1933 
1838   static int snd_xxx_hw_params(struct snd_pcm    1934   static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
1839                                struct snd_pcm    1935                                struct snd_pcm_hw_params *hw_params);
1840                                                  1936 
1841 This is called when the hardware parameters ( !! 1937 This is called when the hardware parameter (``hw_params``) is set up
1842 by the application, that is, once when the bu    1938 by the application, that is, once when the buffer size, the period
1843 size, the format, etc. are defined for the PC !! 1939 size, the format, etc. are defined for the pcm substream.
1844                                                  1940 
1845 Many hardware setups should be done in this c    1941 Many hardware setups should be done in this callback, including the
1846 allocation of buffers.                           1942 allocation of buffers.
1847                                                  1943 
1848 Parameters to be initialized are retrieved by !! 1944 Parameters to be initialized are retrieved by
1849 :c:func:`params_xxx()` macros.                !! 1945 :c:func:`params_xxx()` macros. To allocate buffer, you can call a
                                                   >> 1946 helper function,
1850                                                  1947 
1851 When you choose managed buffer allocation mod !! 1948 ::
1852 a buffer is already allocated before this cal << 
1853 called. Alternatively, you can call a helper  << 
1854 allocating the buffer::                       << 
1855                                                  1949 
1856   snd_pcm_lib_malloc_pages(substream, params_    1950   snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
1857                                                  1951 
1858 :c:func:`snd_pcm_lib_malloc_pages()` is avail    1952 :c:func:`snd_pcm_lib_malloc_pages()` is available only when the
1859 DMA buffers have been pre-allocated. See the     1953 DMA buffers have been pre-allocated. See the section `Buffer Types`_
1860 for more details.                                1954 for more details.
1861                                                  1955 
1862 Note that this one and the ``prepare`` callba !! 1956 Note that this and ``prepare`` callbacks may be called multiple times
1863 times per initialization. For example, the OS !! 1957 per initialization. For example, the OSS emulation may call these
1864 callbacks at each change via its ioctl.          1958 callbacks at each change via its ioctl.
1865                                                  1959 
1866 Thus, you need to be careful not to allocate     1960 Thus, you need to be careful not to allocate the same buffers many
1867 times, which will lead to memory leaks! Calli    1961 times, which will lead to memory leaks! Calling the helper function
1868 above many times is OK. It will release the p    1962 above many times is OK. It will release the previous buffer
1869 automatically when it was already allocated.     1963 automatically when it was already allocated.
1870                                                  1964 
1871 Another note is that this callback is non-ato !! 1965 Another note is that this callback is non-atomic (schedulable) as
1872 default, i.e. when no ``nonatomic`` flag set.    1966 default, i.e. when no ``nonatomic`` flag set. This is important,
1873 because the ``trigger`` callback is atomic (n    1967 because the ``trigger`` callback is atomic (non-schedulable). That is,
1874 mutexes or any schedule-related functions are !! 1968 mutexes or any schedule-related functions are not available in
1875 ``trigger`` callback. Please see the subsecti    1969 ``trigger`` callback. Please see the subsection Atomicity_ for
1876 details.                                         1970 details.
1877                                                  1971 
1878 hw_free callback                                 1972 hw_free callback
1879 ~~~~~~~~~~~~~~~~~                                1973 ~~~~~~~~~~~~~~~~~
1880                                                  1974 
1881 ::                                               1975 ::
1882                                                  1976 
1883   static int snd_xxx_hw_free(struct snd_pcm_s    1977   static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
1884                                                  1978 
1885 This is called to release the resources alloc    1979 This is called to release the resources allocated via
1886 ``hw_params``.                                !! 1980 ``hw_params``. For example, releasing the buffer via
1887                                               !! 1981 :c:func:`snd_pcm_lib_malloc_pages()` is done by calling the
1888 This function is always called before the clo !! 1982 following:
1889 Also, the callback may be called multiple tim << 
1890 whether each resource was already released.   << 
1891                                                  1983 
1892 When you have chosen managed buffer allocatio !! 1984 ::
1893 substream, the allocated PCM buffer will be a << 
1894 after this callback gets called.  Otherwise y << 
1895 buffer manually.  Typically, when the buffer  << 
1896 pre-allocated pool, you can use the standard  << 
1897 :c:func:`snd_pcm_lib_malloc_pages()` like::   << 
1898                                                  1985 
1899   snd_pcm_lib_free_pages(substream);             1986   snd_pcm_lib_free_pages(substream);
1900                                                  1987 
                                                   >> 1988 This function is always called before the close callback is called.
                                                   >> 1989 Also, the callback may be called multiple times, too. Keep track
                                                   >> 1990 whether the resource was already released.
                                                   >> 1991 
1901 prepare callback                                 1992 prepare callback
1902 ~~~~~~~~~~~~~~~~                                 1993 ~~~~~~~~~~~~~~~~
1903                                                  1994 
1904 ::                                               1995 ::
1905                                                  1996 
1906   static int snd_xxx_prepare(struct snd_pcm_s    1997   static int snd_xxx_prepare(struct snd_pcm_substream *substream);
1907                                                  1998 
1908 This callback is called when the PCM is “pr !! 1999 This callback is called when the pcm is “prepared”. You can set the
1909 format type, sample rate, etc. here. The diff    2000 format type, sample rate, etc. here. The difference from ``hw_params``
1910 is that the ``prepare`` callback will be call    2001 is that the ``prepare`` callback will be called each time
1911 :c:func:`snd_pcm_prepare()` is called, i.e. w    2002 :c:func:`snd_pcm_prepare()` is called, i.e. when recovering after
1912 underruns, etc.                                  2003 underruns, etc.
1913                                                  2004 
1914 Note that this callback is non-atomic. You ca !! 2005 Note that this callback is now non-atomic. You can use
1915 schedule-related functions safely in this cal    2006 schedule-related functions safely in this callback.
1916                                                  2007 
1917 In this and the following callbacks, you can     2008 In this and the following callbacks, you can refer to the values via
1918 the runtime record, ``substream->runtime``. F    2009 the runtime record, ``substream->runtime``. For example, to get the
1919 current rate, format or channels, access to `    2010 current rate, format or channels, access to ``runtime->rate``,
1920 ``runtime->format`` or ``runtime->channels``,    2011 ``runtime->format`` or ``runtime->channels``, respectively. The
1921 physical address of the allocated buffer is s    2012 physical address of the allocated buffer is set to
1922 ``runtime->dma_area``. The buffer and period     2013 ``runtime->dma_area``. The buffer and period sizes are in
1923 ``runtime->buffer_size`` and ``runtime->perio    2014 ``runtime->buffer_size`` and ``runtime->period_size``, respectively.
1924                                                  2015 
1925 Be careful that this callback will be called     2016 Be careful that this callback will be called many times at each setup,
1926 too.                                             2017 too.
1927                                                  2018 
1928 trigger callback                                 2019 trigger callback
1929 ~~~~~~~~~~~~~~~~                                 2020 ~~~~~~~~~~~~~~~~
1930                                                  2021 
1931 ::                                               2022 ::
1932                                                  2023 
1933   static int snd_xxx_trigger(struct snd_pcm_s    2024   static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
1934                                                  2025 
1935 This is called when the PCM is started, stopp !! 2026 This is called when the pcm is started, stopped or paused.
1936                                                  2027 
1937 The action is specified in the second argumen !! 2028 Which action is specified in the second argument,
1938 defined in ``<sound/pcm.h>``. At least, the ` !! 2029 ``SNDRV_PCM_TRIGGER_XXX`` in ``<sound/pcm.h>``. At least, the ``START``
1939 and ``STOP`` commands must be defined in this !! 2030 and ``STOP`` commands must be defined in this callback.
                                                   >> 2031 
                                                   >> 2032 ::
1940                                                  2033 
1941   switch (cmd) {                                 2034   switch (cmd) {
1942   case SNDRV_PCM_TRIGGER_START:                  2035   case SNDRV_PCM_TRIGGER_START:
1943           /* do something to start the PCM en    2036           /* do something to start the PCM engine */
1944           break;                                 2037           break;
1945   case SNDRV_PCM_TRIGGER_STOP:                   2038   case SNDRV_PCM_TRIGGER_STOP:
1946           /* do something to stop the PCM eng    2039           /* do something to stop the PCM engine */
1947           break;                                 2040           break;
1948   default:                                       2041   default:
1949           return -EINVAL;                        2042           return -EINVAL;
1950   }                                              2043   }
1951                                                  2044 
1952 When the PCM supports the pause operation (gi !! 2045 When the pcm supports the pause operation (given in the info field of
1953 the hardware table), the ``PAUSE_PUSH`` and `    2046 the hardware table), the ``PAUSE_PUSH`` and ``PAUSE_RELEASE`` commands
1954 must be handled here, too. The former is the  !! 2047 must be handled here, too. The former is the command to pause the pcm,
1955 and the latter to restart the PCM again.      !! 2048 and the latter to restart the pcm again.
1956                                                  2049 
1957 When the PCM supports the suspend/resume oper !! 2050 When the pcm supports the suspend/resume operation, regardless of full
1958 or partial suspend/resume support, the ``SUSP    2051 or partial suspend/resume support, the ``SUSPEND`` and ``RESUME``
1959 commands must be handled, too. These commands    2052 commands must be handled, too. These commands are issued when the
1960 power-management status is changed. Obviously    2053 power-management status is changed. Obviously, the ``SUSPEND`` and
1961 ``RESUME`` commands suspend and resume the PC !! 2054 ``RESUME`` commands suspend and resume the pcm substream, and usually,
1962 they are identical to the ``STOP`` and ``STAR    2055 they are identical to the ``STOP`` and ``START`` commands, respectively.
1963 See the `Power Management`_ section for detai    2056 See the `Power Management`_ section for details.
1964                                                  2057 
1965 As mentioned, this callback is atomic by defa !! 2058 As mentioned, this callback is atomic as default unless ``nonatomic``
1966 flag set, and you cannot call functions which    2059 flag set, and you cannot call functions which may sleep. The
1967 ``trigger`` callback should be as minimal as     2060 ``trigger`` callback should be as minimal as possible, just really
1968 triggering the DMA. The other stuff should be !! 2061 triggering the DMA. The other stuff should be initialized
1969 ``hw_params`` and ``prepare`` callbacks prope    2062 ``hw_params`` and ``prepare`` callbacks properly beforehand.
1970                                                  2063 
1971 sync_stop callback                            << 
1972 ~~~~~~~~~~~~~~~~~~                            << 
1973                                               << 
1974 ::                                            << 
1975                                               << 
1976   static int snd_xxx_sync_stop(struct snd_pcm << 
1977                                               << 
1978 This callback is optional, and NULL can be pa << 
1979 the PCM core stops the stream, before it chan << 
1980 ``prepare``, ``hw_params`` or ``hw_free``.    << 
1981 Since the IRQ handler might be still pending, << 
1982 the pending task finishes before moving to th << 
1983 might lead to a crash due to resource conflic << 
1984 resources.  A typical behavior is to call a s << 
1985 like :c:func:`synchronize_irq()` here.        << 
1986                                               << 
1987 For the majority of drivers that need only a  << 
1988 :c:func:`synchronize_irq()`, there is a simpl << 
1989 While keeping the ``sync_stop`` PCM callback  << 
1990 the ``card->sync_irq`` field to the returned  << 
1991 requesting an IRQ, instead.   Then PCM core w << 
1992 :c:func:`synchronize_irq()` with the given IR << 
1993                                               << 
1994 If the IRQ handler is released by the card de << 
1995 to clear ``card->sync_irq``, as the card itse << 
1996 So, usually you'll need to add just a single  << 
1997 ``card->sync_irq`` in the driver code unless  << 
1998 the IRQ.  When the driver frees and re-acquir << 
1999 (e.g. for suspend/resume), it needs to clear  << 
2000 ``card->sync_irq`` again appropriately.       << 
2001                                               << 
2002 pointer callback                                 2064 pointer callback
2003 ~~~~~~~~~~~~~~~~                                 2065 ~~~~~~~~~~~~~~~~
2004                                                  2066 
2005 ::                                               2067 ::
2006                                                  2068 
2007   static snd_pcm_uframes_t snd_xxx_pointer(st    2069   static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
2008                                                  2070 
2009 This callback is called when the PCM middle l    2071 This callback is called when the PCM middle layer inquires the current
2010 hardware position in the buffer. The position !! 2072 hardware position on the buffer. The position must be returned in
2011 frames, ranging from 0 to ``buffer_size - 1``    2073 frames, ranging from 0 to ``buffer_size - 1``. 
2012                                                  2074 
2013 This is usually called from the buffer-update !! 2075 This is called usually from the buffer-update routine in the pcm
2014 middle layer, which is invoked when :c:func:`    2076 middle layer, which is invoked when :c:func:`snd_pcm_period_elapsed()`
2015 is called by the interrupt routine. Then the  !! 2077 is called in the interrupt routine. Then the pcm middle layer updates
2016 the position and calculates the available spa    2078 the position and calculates the available space, and wakes up the
2017 sleeping poll threads, etc.                      2079 sleeping poll threads, etc.
2018                                                  2080 
2019 This callback is also atomic by default.      !! 2081 This callback is also atomic as default.
2020                                                  2082 
2021 copy and fill_silence ops                     !! 2083 copy_user, copy_kernel and fill_silence ops
2022 ~~~~~~~~~~~~~~~~~~~~~~~~~                     !! 2084 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2023                                                  2085 
2024 These callbacks are not mandatory, and can be    2086 These callbacks are not mandatory, and can be omitted in most cases.
2025 These callbacks are used when the hardware bu    2087 These callbacks are used when the hardware buffer cannot be in the
2026 normal memory space. Some chips have their ow !! 2088 normal memory space. Some chips have their own buffer on the hardware
2027 which is not mappable. In such a case, you ha    2089 which is not mappable. In such a case, you have to transfer the data
2028 manually from the memory buffer to the hardwa    2090 manually from the memory buffer to the hardware buffer. Or, if the
2029 buffer is non-contiguous on both physical and    2091 buffer is non-contiguous on both physical and virtual memory spaces,
2030 these callbacks must be defined, too.            2092 these callbacks must be defined, too.
2031                                                  2093 
2032 If these two callbacks are defined, copy and     2094 If these two callbacks are defined, copy and set-silence operations
2033 are done by them. The details will be describ !! 2095 are done by them. The detailed will be described in the later section
2034 `Buffer and Memory Management`_.                 2096 `Buffer and Memory Management`_.
2035                                                  2097 
2036 ack callback                                     2098 ack callback
2037 ~~~~~~~~~~~~                                     2099 ~~~~~~~~~~~~
2038                                                  2100 
2039 This callback is also not mandatory. This cal    2101 This callback is also not mandatory. This callback is called when the
2040 ``appl_ptr`` is updated in read or write oper    2102 ``appl_ptr`` is updated in read or write operations. Some drivers like
2041 emu10k1-fx and cs46xx need to track the curre    2103 emu10k1-fx and cs46xx need to track the current ``appl_ptr`` for the
2042 internal buffer, and this callback is useful     2104 internal buffer, and this callback is useful only for such a purpose.
2043                                                  2105 
2044 The callback function may return 0 or a negat !! 2106 This callback is atomic as default.
2045 return value is ``-EPIPE``, PCM core treats t << 
2046 and changes the state to ``SNDRV_PCM_STATE_XR << 
2047                                               << 
2048 This callback is atomic by default.           << 
2049                                                  2107 
2050 page callback                                    2108 page callback
2051 ~~~~~~~~~~~~~                                    2109 ~~~~~~~~~~~~~
2052                                                  2110 
2053 This callback is optional too. The mmap calls !! 2111 This callback is optional too. This callback is used mainly for
2054 page fault address.                           !! 2112 non-contiguous buffers. The mmap calls this callback to get the page
2055                                               !! 2113 address. Some examples will be explained in the later section `Buffer
2056 You need no special callback for the standard !! 2114 and Memory Management`_, too.
2057 buffer. Hence this callback should be rarely  << 
2058                                               << 
2059 mmap callback                                 << 
2060 ~~~~~~~~~~~~~                                 << 
2061                                               << 
2062 This is another optional callback for control << 
2063 When defined, the PCM core calls this callbac << 
2064 memory-mapped, instead of using the standard  << 
2065 If you need special handling (due to some arc << 
2066 device-specific issues), implement everything << 
2067                                               << 
2068                                                  2115 
2069 PCM Interrupt Handler                            2116 PCM Interrupt Handler
2070 ---------------------                            2117 ---------------------
2071                                                  2118 
2072 The remainder of the PCM stuff is the PCM int !! 2119 The rest of pcm stuff is the PCM interrupt handler. The role of PCM
2073 of the PCM                                    << 
2074 interrupt handler in the sound driver is to u    2120 interrupt handler in the sound driver is to update the buffer position
2075 and to tell the PCM middle layer when the buf    2121 and to tell the PCM middle layer when the buffer position goes across
2076 the specified period boundary. To inform abou !! 2122 the prescribed period size. To inform this, call the
2077 :c:func:`snd_pcm_period_elapsed()` function.     2123 :c:func:`snd_pcm_period_elapsed()` function.
2078                                                  2124 
2079 There are several ways sound chips can genera !! 2125 There are several types of sound chips to generate the interrupts.
2080                                                  2126 
2081 Interrupts at the period (fragment) boundary     2127 Interrupts at the period (fragment) boundary
2082 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~     2128 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2083                                                  2129 
2084 This is the most frequently found type: the h    2130 This is the most frequently found type: the hardware generates an
2085 interrupt at each period boundary. In this ca    2131 interrupt at each period boundary. In this case, you can call
2086 :c:func:`snd_pcm_period_elapsed()` at each in    2132 :c:func:`snd_pcm_period_elapsed()` at each interrupt.
2087                                                  2133 
2088 :c:func:`snd_pcm_period_elapsed()` takes the     2134 :c:func:`snd_pcm_period_elapsed()` takes the substream pointer as
2089 its argument. Thus, you need to keep the subs    2135 its argument. Thus, you need to keep the substream pointer accessible
2090 from the chip instance. For example, define `    2136 from the chip instance. For example, define ``substream`` field in the
2091 chip record to hold the current running subst    2137 chip record to hold the current running substream pointer, and set the
2092 pointer value at ``open`` callback (and reset    2138 pointer value at ``open`` callback (and reset at ``close`` callback).
2093                                                  2139 
2094 If you acquire a spinlock in the interrupt ha    2140 If you acquire a spinlock in the interrupt handler, and the lock is used
2095 in other PCM callbacks, too, then you have to !! 2141 in other pcm callbacks, too, then you have to release the lock before
2096 calling :c:func:`snd_pcm_period_elapsed()`, b    2142 calling :c:func:`snd_pcm_period_elapsed()`, because
2097 :c:func:`snd_pcm_period_elapsed()` calls othe !! 2143 :c:func:`snd_pcm_period_elapsed()` calls other pcm callbacks
2098 inside.                                          2144 inside.
2099                                                  2145 
2100 Typical code would look like::                !! 2146 Typical code would be like:
                                                   >> 2147 
                                                   >> 2148 ::
2101                                                  2149 
2102                                                  2150 
2103       static irqreturn_t snd_mychip_interrupt    2151       static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
2104       {                                          2152       {
2105               struct mychip *chip = dev_id;      2153               struct mychip *chip = dev_id;
2106               spin_lock(&chip->lock);            2154               spin_lock(&chip->lock);
2107               ....                               2155               ....
2108               if (pcm_irq_invoked(chip)) {       2156               if (pcm_irq_invoked(chip)) {
2109                       /* call updater, unlock    2157                       /* call updater, unlock before it */
2110                       spin_unlock(&chip->lock    2158                       spin_unlock(&chip->lock);
2111                       snd_pcm_period_elapsed(    2159                       snd_pcm_period_elapsed(chip->substream);
2112                       spin_lock(&chip->lock);    2160                       spin_lock(&chip->lock);
2113                       /* acknowledge the inte    2161                       /* acknowledge the interrupt if necessary */
2114               }                                  2162               }
2115               ....                               2163               ....
2116               spin_unlock(&chip->lock);          2164               spin_unlock(&chip->lock);
2117               return IRQ_HANDLED;                2165               return IRQ_HANDLED;
2118       }                                          2166       }
2119                                                  2167 
2120 Also, when the device can detect a buffer und << 
2121 can notify the XRUN status to the PCM core by << 
2122 :c:func:`snd_pcm_stop_xrun()`. This function  << 
2123 the PCM state to ``SNDRV_PCM_STATE_XRUN``. No << 
2124 outside the PCM stream lock, hence it can't b << 
2125 callback.                                     << 
2126                                                  2168 
2127                                                  2169 
2128 High frequency timer interrupts                  2170 High frequency timer interrupts
2129 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                  2171 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2130                                                  2172 
2131 This happens when the hardware doesn't genera    2173 This happens when the hardware doesn't generate interrupts at the period
2132 boundary but issues timer interrupts at a fix    2174 boundary but issues timer interrupts at a fixed timer rate (e.g. es1968
2133 or ymfpci drivers). In this case, you need to    2175 or ymfpci drivers). In this case, you need to check the current hardware
2134 position and accumulate the processed sample     2176 position and accumulate the processed sample length at each interrupt.
2135 When the accumulated size exceeds the period     2177 When the accumulated size exceeds the period size, call
2136 :c:func:`snd_pcm_period_elapsed()` and reset     2178 :c:func:`snd_pcm_period_elapsed()` and reset the accumulator.
2137                                                  2179 
2138 Typical code would look as follows::          !! 2180 Typical code would be like the following.
                                                   >> 2181 
                                                   >> 2182 ::
2139                                                  2183 
2140                                                  2184 
2141       static irqreturn_t snd_mychip_interrupt    2185       static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
2142       {                                          2186       {
2143               struct mychip *chip = dev_id;      2187               struct mychip *chip = dev_id;
2144               spin_lock(&chip->lock);            2188               spin_lock(&chip->lock);
2145               ....                               2189               ....
2146               if (pcm_irq_invoked(chip)) {       2190               if (pcm_irq_invoked(chip)) {
2147                       unsigned int last_ptr,     2191                       unsigned int last_ptr, size;
2148                       /* get the current hard    2192                       /* get the current hardware pointer (in frames) */
2149                       last_ptr = get_hw_ptr(c    2193                       last_ptr = get_hw_ptr(chip);
2150                       /* calculate the proces    2194                       /* calculate the processed frames since the
2151                        * last update             2195                        * last update
2152                        */                        2196                        */
2153                       if (last_ptr < chip->la    2197                       if (last_ptr < chip->last_ptr)
2154                               size = runtime-    2198                               size = runtime->buffer_size + last_ptr
2155                                        - chip    2199                                        - chip->last_ptr;
2156                       else                       2200                       else
2157                               size = last_ptr    2201                               size = last_ptr - chip->last_ptr;
2158                       /* remember the last up    2202                       /* remember the last updated point */
2159                       chip->last_ptr = last_p    2203                       chip->last_ptr = last_ptr;
2160                       /* accumulate the size     2204                       /* accumulate the size */
2161                       chip->size += size;        2205                       chip->size += size;
2162                       /* over the period boun    2206                       /* over the period boundary? */
2163                       if (chip->size >= runti    2207                       if (chip->size >= runtime->period_size) {
2164                               /* reset the ac    2208                               /* reset the accumulator */
2165                               chip->size %= r    2209                               chip->size %= runtime->period_size;
2166                               /* call updater    2210                               /* call updater */
2167                               spin_unlock(&ch    2211                               spin_unlock(&chip->lock);
2168                               snd_pcm_period_    2212                               snd_pcm_period_elapsed(substream);
2169                               spin_lock(&chip    2213                               spin_lock(&chip->lock);
2170                       }                          2214                       }
2171                       /* acknowledge the inte    2215                       /* acknowledge the interrupt if necessary */
2172               }                                  2216               }
2173               ....                               2217               ....
2174               spin_unlock(&chip->lock);          2218               spin_unlock(&chip->lock);
2175               return IRQ_HANDLED;                2219               return IRQ_HANDLED;
2176       }                                          2220       }
2177                                                  2221 
2178                                                  2222 
2179                                                  2223 
2180 On calling :c:func:`snd_pcm_period_elapsed()`    2224 On calling :c:func:`snd_pcm_period_elapsed()`
2181 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    2225 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2182                                                  2226 
2183 In both cases, even if more than one period h !! 2227 In both cases, even if more than one period are elapsed, you don't have
2184 to call :c:func:`snd_pcm_period_elapsed()` ma    2228 to call :c:func:`snd_pcm_period_elapsed()` many times. Call only
2185 once. And the PCM layer will check the curren !! 2229 once. And the pcm layer will check the current hardware pointer and
2186 update to the latest status.                     2230 update to the latest status.
2187                                                  2231 
2188 Atomicity                                        2232 Atomicity
2189 ---------                                        2233 ---------
2190                                                  2234 
2191 One of the most important (and thus difficult    2235 One of the most important (and thus difficult to debug) problems in
2192 kernel programming are race conditions. In th    2236 kernel programming are race conditions. In the Linux kernel, they are
2193 usually avoided via spin-locks, mutexes or se    2237 usually avoided via spin-locks, mutexes or semaphores. In general, if a
2194 race condition can happen in an interrupt han    2238 race condition can happen in an interrupt handler, it has to be managed
2195 atomically, and you have to use a spinlock to    2239 atomically, and you have to use a spinlock to protect the critical
2196 section. If the critical section is not in in !! 2240 session. If the critical section is not in interrupt handler code and if
2197 taking a relatively long time to execute is a    2241 taking a relatively long time to execute is acceptable, you should use
2198 mutexes or semaphores instead.                   2242 mutexes or semaphores instead.
2199                                                  2243 
2200 As already seen, some PCM callbacks are atomi !! 2244 As already seen, some pcm callbacks are atomic and some are not. For
2201 example, the ``hw_params`` callback is non-at !! 2245 example, the ``hw_params`` callback is non-atomic, while ``trigger``
2202 callback is atomic. This means, the latter is    2246 callback is atomic. This means, the latter is called already in a
2203 spinlock held by the PCM middle layer, the PC !! 2247 spinlock held by the PCM middle layer. Please take this atomicity into
2204 take this atomicity into account when you cho !! 2248 account when you choose a locking scheme in the callbacks.
2205 the callbacks.                                << 
2206                                                  2249 
2207 In the atomic callbacks, you cannot use funct    2250 In the atomic callbacks, you cannot use functions which may call
2208 :c:func:`schedule()` or go to :c:func:`sleep(    2251 :c:func:`schedule()` or go to :c:func:`sleep()`. Semaphores and
2209 mutexes can sleep, and hence they cannot be u    2252 mutexes can sleep, and hence they cannot be used inside the atomic
2210 callbacks (e.g. ``trigger`` callback). To imp    2253 callbacks (e.g. ``trigger`` callback). To implement some delay in such a
2211 callback, please use :c:func:`udelay()` or :c    2254 callback, please use :c:func:`udelay()` or :c:func:`mdelay()`.
2212                                                  2255 
2213 All three atomic callbacks (trigger, pointer,    2256 All three atomic callbacks (trigger, pointer, and ack) are called with
2214 local interrupts disabled.                       2257 local interrupts disabled.
2215                                                  2258 
2216 However, it is possible to request all PCM op !! 2259 The recent changes in PCM core code, however, allow all PCM operations
2217 This assumes that all call sites are in       !! 2260 to be non-atomic. This assumes that the all caller sides are in
2218 non-atomic contexts. For example, the functio    2261 non-atomic contexts. For example, the function
2219 :c:func:`snd_pcm_period_elapsed()` is called     2262 :c:func:`snd_pcm_period_elapsed()` is called typically from the
2220 interrupt handler. But, if you set up the dri    2263 interrupt handler. But, if you set up the driver to use a threaded
2221 interrupt handler, this call can be in non-at    2264 interrupt handler, this call can be in non-atomic context, too. In such
2222 a case, you can set the ``nonatomic`` field o !! 2265 a case, you can set ``nonatomic`` filed of :c:type:`struct snd_pcm
2223 after creating it. When this flag is set, mut !! 2266 <snd_pcm>` object after creating it. When this flag is set, mutex
2224 in the PCM core instead of spin and rwlocks,  !! 2267 and rwsem are used internally in the PCM core instead of spin and
2225 functions safely in a non-atomic              !! 2268 rwlocks, so that you can call all PCM functions safely in a non-atomic
2226 context.                                         2269 context.
2227                                                  2270 
2228 Also, in some cases, you might need to call   << 
2229 :c:func:`snd_pcm_period_elapsed()` in the ato << 
2230 period gets elapsed during ``ack`` or other c << 
2231 variant that can be called inside the PCM str << 
2232 :c:func:`snd_pcm_period_elapsed_under_stream_ << 
2233 too.                                          << 
2234                                               << 
2235 Constraints                                      2271 Constraints
2236 -----------                                      2272 -----------
2237                                                  2273 
2238 Due to physical limitations, hardware is not  !! 2274 If your chip supports unconventional sample rates, or only the limited
2239 These limitations are expressed by setting co !! 2275 samples, you need to set a constraint for the condition.
2240                                                  2276 
2241 For example, in order to restrict the sample  !! 2277 For example, in order to restrict the sample rates in the some supported
2242 values, use :c:func:`snd_pcm_hw_constraint_li    2278 values, use :c:func:`snd_pcm_hw_constraint_list()`. You need to
2243 call this function in the open callback::     !! 2279 call this function in the open callback.
                                                   >> 2280 
                                                   >> 2281 ::
2244                                                  2282 
2245       static unsigned int rates[] =              2283       static unsigned int rates[] =
2246               {4000, 10000, 22050, 44100};       2284               {4000, 10000, 22050, 44100};
2247       static struct snd_pcm_hw_constraint_lis    2285       static struct snd_pcm_hw_constraint_list constraints_rates = {
2248               .count = ARRAY_SIZE(rates),        2286               .count = ARRAY_SIZE(rates),
2249               .list = rates,                     2287               .list = rates,
2250               .mask = 0,                         2288               .mask = 0,
2251       };                                         2289       };
2252                                                  2290 
2253       static int snd_mychip_pcm_open(struct s    2291       static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
2254       {                                          2292       {
2255               int err;                           2293               int err;
2256               ....                               2294               ....
2257               err = snd_pcm_hw_constraint_lis    2295               err = snd_pcm_hw_constraint_list(substream->runtime, 0,
2258                                                  2296                                                SNDRV_PCM_HW_PARAM_RATE,
2259                                                  2297                                                &constraints_rates);
2260               if (err < 0)                       2298               if (err < 0)
2261                       return err;                2299                       return err;
2262               ....                               2300               ....
2263       }                                          2301       }
2264                                                  2302 
                                                   >> 2303 
                                                   >> 2304 
2265 There are many different constraints. Look at    2305 There are many different constraints. Look at ``sound/pcm.h`` for a
2266 complete list. You can even define your own c    2306 complete list. You can even define your own constraint rules. For
2267 example, let's suppose my_chip can manage a s    2307 example, let's suppose my_chip can manage a substream of 1 channel if
2268 and only if the format is ``S16_LE``, otherwi    2308 and only if the format is ``S16_LE``, otherwise it supports any format
2269 specified in struct snd_pcm_hardware (or in a !! 2309 specified in the :c:type:`struct snd_pcm_hardware
2270 constraint_list). You can build a rule like t !! 2310 <snd_pcm_hardware>` structure (or in any other
                                                   >> 2311 constraint_list). You can build a rule like this:
                                                   >> 2312 
                                                   >> 2313 ::
2271                                                  2314 
2272       static int hw_rule_channels_by_format(s    2315       static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
2273                                             s    2316                                             struct snd_pcm_hw_rule *rule)
2274       {                                          2317       {
2275               struct snd_interval *c = hw_par    2318               struct snd_interval *c = hw_param_interval(params,
2276                             SNDRV_PCM_HW_PARA    2319                             SNDRV_PCM_HW_PARAM_CHANNELS);
2277               struct snd_mask *f = hw_param_m    2320               struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2278               struct snd_interval ch;            2321               struct snd_interval ch;
2279                                                  2322 
2280               snd_interval_any(&ch);             2323               snd_interval_any(&ch);
2281               if (f->bits[0] == SNDRV_PCM_FMT    2324               if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
2282                       ch.min = ch.max = 1;       2325                       ch.min = ch.max = 1;
2283                       ch.integer = 1;            2326                       ch.integer = 1;
2284                       return snd_interval_ref    2327                       return snd_interval_refine(c, &ch);
2285               }                                  2328               }
2286               return 0;                          2329               return 0;
2287       }                                          2330       }
2288                                                  2331 
2289                                                  2332 
2290 Then you need to call this function to add yo !! 2333 Then you need to call this function to add your rule:
                                                   >> 2334 
                                                   >> 2335 ::
2291                                                  2336 
2292   snd_pcm_hw_rule_add(substream->runtime, 0,     2337   snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2293                       hw_rule_channels_by_for    2338                       hw_rule_channels_by_format, NULL,
2294                       SNDRV_PCM_HW_PARAM_FORM    2339                       SNDRV_PCM_HW_PARAM_FORMAT, -1);
2295                                                  2340 
2296 The rule function is called when an applicati    2341 The rule function is called when an application sets the PCM format, and
2297 it refines the number of channels accordingly    2342 it refines the number of channels accordingly. But an application may
2298 set the number of channels before setting the    2343 set the number of channels before setting the format. Thus you also need
2299 to define the inverse rule::                  !! 2344 to define the inverse rule:
                                                   >> 2345 
                                                   >> 2346 ::
2300                                                  2347 
2301       static int hw_rule_format_by_channels(s    2348       static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
2302                                             s    2349                                             struct snd_pcm_hw_rule *rule)
2303       {                                          2350       {
2304               struct snd_interval *c = hw_par    2351               struct snd_interval *c = hw_param_interval(params,
2305                     SNDRV_PCM_HW_PARAM_CHANNE    2352                     SNDRV_PCM_HW_PARAM_CHANNELS);
2306               struct snd_mask *f = hw_param_m    2353               struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2307               struct snd_mask fmt;               2354               struct snd_mask fmt;
2308                                                  2355 
2309               snd_mask_any(&fmt);    /* Init     2356               snd_mask_any(&fmt);    /* Init the struct */
2310               if (c->min < 2) {                  2357               if (c->min < 2) {
2311                       fmt.bits[0] &= SNDRV_PC    2358                       fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
2312                       return snd_mask_refine(    2359                       return snd_mask_refine(f, &fmt);
2313               }                                  2360               }
2314               return 0;                          2361               return 0;
2315       }                                          2362       }
2316                                                  2363 
2317                                                  2364 
2318 ... and in the open callback::                !! 2365 ... and in the open callback:
                                                   >> 2366 
                                                   >> 2367 ::
2319                                                  2368 
2320   snd_pcm_hw_rule_add(substream->runtime, 0,     2369   snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2321                       hw_rule_format_by_chann    2370                       hw_rule_format_by_channels, NULL,
2322                       SNDRV_PCM_HW_PARAM_CHAN    2371                       SNDRV_PCM_HW_PARAM_CHANNELS, -1);
2323                                                  2372 
2324 One typical usage of the hw constraints is to << 
2325 with the period size.  By default, ALSA PCM c << 
2326 buffer size to be aligned with the period siz << 
2327 possible to have a combination like 256 perio << 
2328 bytes.                                        << 
2329                                               << 
2330 Many device chips, however, require the buffe << 
2331 periods.  In such a case, call                << 
2332 :c:func:`snd_pcm_hw_constraint_integer()` for << 
2333 ``SNDRV_PCM_HW_PARAM_PERIODS``::              << 
2334                                               << 
2335   snd_pcm_hw_constraint_integer(substream->ru << 
2336                                 SNDRV_PCM_HW_ << 
2337                                               << 
2338 This assures that the number of periods is in << 
2339 size is aligned with the period size.         << 
2340                                               << 
2341 The hw constraint is a very powerful mechanis << 
2342 preferred PCM configuration, and there are re << 
2343 I won't give more details here, rather I woul    2373 I won't give more details here, rather I would like to say, “Luke, use
2344 the source.”                                   2374 the source.”
2345                                                  2375 
2346 Control Interface                                2376 Control Interface
2347 =================                                2377 =================
2348                                                  2378 
2349 General                                          2379 General
2350 -------                                          2380 -------
2351                                                  2381 
2352 The control interface is used widely for many    2382 The control interface is used widely for many switches, sliders, etc.
2353 which are accessed from user-space. Its most     2383 which are accessed from user-space. Its most important use is the mixer
2354 interface. In other words, since ALSA 0.9.x,     2384 interface. In other words, since ALSA 0.9.x, all the mixer stuff is
2355 implemented on the control kernel API.           2385 implemented on the control kernel API.
2356                                                  2386 
2357 ALSA has a well-defined AC97 control module.     2387 ALSA has a well-defined AC97 control module. If your chip supports only
2358 the AC97 and nothing else, you can skip this     2388 the AC97 and nothing else, you can skip this section.
2359                                                  2389 
2360 The control API is defined in ``<sound/contro    2390 The control API is defined in ``<sound/control.h>``. Include this file
2361 if you want to add your own controls.            2391 if you want to add your own controls.
2362                                                  2392 
2363 Definition of Controls                           2393 Definition of Controls
2364 ----------------------                           2394 ----------------------
2365                                                  2395 
2366 To create a new control, you need to define t    2396 To create a new control, you need to define the following three
2367 callbacks: ``info``, ``get`` and ``put``. The    2397 callbacks: ``info``, ``get`` and ``put``. Then, define a
2368 struct snd_kcontrol_new record, such as::     !! 2398 :c:type:`struct snd_kcontrol_new <snd_kcontrol_new>` record, such as:
                                                   >> 2399 
                                                   >> 2400 ::
2369                                                  2401 
2370                                                  2402 
2371       static struct snd_kcontrol_new my_contr    2403       static struct snd_kcontrol_new my_control = {
2372               .iface = SNDRV_CTL_ELEM_IFACE_M    2404               .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2373               .name = "PCM Playback Switch",     2405               .name = "PCM Playback Switch",
2374               .index = 0,                        2406               .index = 0,
2375               .access = SNDRV_CTL_ELEM_ACCESS    2407               .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
2376               .private_value = 0xffff,           2408               .private_value = 0xffff,
2377               .info = my_control_info,           2409               .info = my_control_info,
2378               .get = my_control_get,             2410               .get = my_control_get,
2379               .put = my_control_put              2411               .put = my_control_put
2380       };                                         2412       };
2381                                                  2413 
2382                                                  2414 
2383 The ``iface`` field specifies the control typ    2415 The ``iface`` field specifies the control type,
2384 ``SNDRV_CTL_ELEM_IFACE_XXX``, which is usuall    2416 ``SNDRV_CTL_ELEM_IFACE_XXX``, which is usually ``MIXER``. Use ``CARD``
2385 for global controls that are not logically pa    2417 for global controls that are not logically part of the mixer. If the
2386 control is closely associated with some speci    2418 control is closely associated with some specific device on the sound
2387 card, use ``HWDEP``, ``PCM``, ``RAWMIDI``, ``    2419 card, use ``HWDEP``, ``PCM``, ``RAWMIDI``, ``TIMER``, or ``SEQUENCER``,
2388 and specify the device number with the ``devi    2420 and specify the device number with the ``device`` and ``subdevice``
2389 fields.                                          2421 fields.
2390                                                  2422 
2391 The ``name`` is the name identifier string. S    2423 The ``name`` is the name identifier string. Since ALSA 0.9.x, the
2392 control name is very important, because its r    2424 control name is very important, because its role is classified from
2393 its name. There are pre-defined standard cont    2425 its name. There are pre-defined standard control names. The details
2394 are described in the `Control Names`_ subsect    2426 are described in the `Control Names`_ subsection.
2395                                                  2427 
2396 The ``index`` field holds the index number of    2428 The ``index`` field holds the index number of this control. If there
2397 are several different controls with the same     2429 are several different controls with the same name, they can be
2398 distinguished by the index number. This is th    2430 distinguished by the index number. This is the case when several
2399 codecs exist on the card. If the index is zer    2431 codecs exist on the card. If the index is zero, you can omit the
2400 definition above.                                2432 definition above. 
2401                                                  2433 
2402 The ``access`` field contains the access type    2434 The ``access`` field contains the access type of this control. Give
2403 the combination of bit masks, ``SNDRV_CTL_ELE    2435 the combination of bit masks, ``SNDRV_CTL_ELEM_ACCESS_XXX``,
2404 there. The details will be explained in the `    2436 there. The details will be explained in the `Access Flags`_
2405 subsection.                                      2437 subsection.
2406                                                  2438 
2407 The ``private_value`` field contains an arbit    2439 The ``private_value`` field contains an arbitrary long integer value
2408 for this record. When using the generic ``inf    2440 for this record. When using the generic ``info``, ``get`` and ``put``
2409 callbacks, you can pass a value through this     2441 callbacks, you can pass a value through this field. If several small
2410 numbers are necessary, you can combine them i    2442 numbers are necessary, you can combine them in bitwise. Or, it's
2411 possible to store a pointer (casted to unsign !! 2443 possible to give a pointer (casted to unsigned long) of some record to
2412 this field, too.                                 2444 this field, too. 
2413                                                  2445 
2414 The ``tlv`` field can be used to provide meta    2446 The ``tlv`` field can be used to provide metadata about the control;
2415 see the `Metadata`_ subsection.                  2447 see the `Metadata`_ subsection.
2416                                                  2448 
2417 The other three are `Control Callbacks`_.        2449 The other three are `Control Callbacks`_.
2418                                                  2450 
2419 Control Names                                    2451 Control Names
2420 -------------                                    2452 -------------
2421                                                  2453 
2422 There are some standards to define the contro    2454 There are some standards to define the control names. A control is
2423 usually defined from the three parts as “SO    2455 usually defined from the three parts as “SOURCE DIRECTION FUNCTION”.
2424                                                  2456 
2425 The first, ``SOURCE``, specifies the source o    2457 The first, ``SOURCE``, specifies the source of the control, and is a
2426 string such as “Master”, “PCM”, “CD    2458 string such as “Master”, “PCM”, “CD” and “Line”. There are many
2427 pre-defined sources.                             2459 pre-defined sources.
2428                                                  2460 
2429 The second, ``DIRECTION``, is one of the foll    2461 The second, ``DIRECTION``, is one of the following strings according to
2430 the direction of the control: “Playback”,    2462 the direction of the control: “Playback”, “Capture”, “Bypass Playback”
2431 and “Bypass Capture”. Or, it can be omitt    2463 and “Bypass Capture”. Or, it can be omitted, meaning both playback and
2432 capture directions.                              2464 capture directions.
2433                                                  2465 
2434 The third, ``FUNCTION``, is one of the follow    2466 The third, ``FUNCTION``, is one of the following strings according to
2435 the function of the control: “Switch”,     2467 the function of the control: “Switch”, “Volume” and “Route”.
2436                                                  2468 
2437 The example of control names are, thus, “Ma    2469 The example of control names are, thus, “Master Capture Switch” or “PCM
2438 Playback Volume”.                              2470 Playback Volume”.
2439                                                  2471 
2440 There are some exceptions:                       2472 There are some exceptions:
2441                                                  2473 
2442 Global capture and playback                      2474 Global capture and playback
2443 ~~~~~~~~~~~~~~~~~~~~~~~~~~~                      2475 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
2444                                                  2476 
2445 “Capture Source”, “Capture Switch” an    2477 “Capture Source”, “Capture Switch” and “Capture Volume” are used for the
2446 global capture (input) source, switch and vol    2478 global capture (input) source, switch and volume. Similarly, “Playback
2447 Switch” and “Playback Volume” are used     2479 Switch” and “Playback Volume” are used for the global output gain switch
2448 and volume.                                      2480 and volume.
2449                                                  2481 
2450 Tone-controls                                    2482 Tone-controls
2451 ~~~~~~~~~~~~~                                    2483 ~~~~~~~~~~~~~
2452                                                  2484 
2453 tone-control switch and volumes are specified    2485 tone-control switch and volumes are specified like “Tone Control - XXX”,
2454 e.g. “Tone Control - Switch”, “Tone Con    2486 e.g. “Tone Control - Switch”, “Tone Control - Bass”, “Tone Control -
2455 Center”.                                       2487 Center”.
2456                                                  2488 
2457 3D controls                                      2489 3D controls
2458 ~~~~~~~~~~~                                      2490 ~~~~~~~~~~~
2459                                                  2491 
2460 3D-control switches and volumes are specified    2492 3D-control switches and volumes are specified like “3D Control - XXX”,
2461 e.g. “3D Control - Switch”, “3D Control    2493 e.g. “3D Control - Switch”, “3D Control - Center”, “3D Control - Space”.
2462                                                  2494 
2463 Mic boost                                        2495 Mic boost
2464 ~~~~~~~~~                                        2496 ~~~~~~~~~
2465                                                  2497 
2466 Mic-boost switch is set as “Mic Boost” or    2498 Mic-boost switch is set as “Mic Boost” or “Mic Boost (6dB)”.
2467                                                  2499 
2468 More precise information can be found in         2500 More precise information can be found in
2469 ``Documentation/sound/designs/control-names.r !! 2501 ``Documentation/sound/alsa/ControlNames.txt``.
2470                                                  2502 
2471 Access Flags                                     2503 Access Flags
2472 ------------                                     2504 ------------
2473                                                  2505 
2474 The access flag is the bitmask which specifie    2506 The access flag is the bitmask which specifies the access type of the
2475 given control. The default access type is        2507 given control. The default access type is
2476 ``SNDRV_CTL_ELEM_ACCESS_READWRITE``, which me    2508 ``SNDRV_CTL_ELEM_ACCESS_READWRITE``, which means both read and write are
2477 allowed to this control. When the access flag    2509 allowed to this control. When the access flag is omitted (i.e. = 0), it
2478 is considered as ``READWRITE`` access by defa !! 2510 is considered as ``READWRITE`` access as default.
2479                                                  2511 
2480 When the control is read-only, pass ``SNDRV_C    2512 When the control is read-only, pass ``SNDRV_CTL_ELEM_ACCESS_READ``
2481 instead. In this case, you don't have to defi    2513 instead. In this case, you don't have to define the ``put`` callback.
2482 Similarly, when the control is write-only (al    2514 Similarly, when the control is write-only (although it's a rare case),
2483 you can use the ``WRITE`` flag instead, and y    2515 you can use the ``WRITE`` flag instead, and you don't need the ``get``
2484 callback.                                        2516 callback.
2485                                                  2517 
2486 If the control value changes frequently (e.g.    2518 If the control value changes frequently (e.g. the VU meter),
2487 ``VOLATILE`` flag should be given. This means    2519 ``VOLATILE`` flag should be given. This means that the control may be
2488 changed without `Change notification`_. Appli    2520 changed without `Change notification`_. Applications should poll such
2489 a control constantly.                            2521 a control constantly.
2490                                                  2522 
2491 When the control may be updated, but currentl !! 2523 When the control is inactive, set the ``INACTIVE`` flag, too. There are
2492 setting the ``INACTIVE`` flag may be appropri !! 2524 ``LOCK`` and ``OWNER`` flags to change the write permissions.
2493 controls should be inactive while no PCM devi << 
2494                                               << 
2495 There are ``LOCK`` and ``OWNER`` flags to cha << 
2496                                                  2525 
2497 Control Callbacks                                2526 Control Callbacks
2498 -----------------                                2527 -----------------
2499                                                  2528 
2500 info callback                                    2529 info callback
2501 ~~~~~~~~~~~~~                                    2530 ~~~~~~~~~~~~~
2502                                                  2531 
2503 The ``info`` callback is used to get detailed    2532 The ``info`` callback is used to get detailed information on this
2504 control. This must store the values of the gi !! 2533 control. This must store the values of the given :c:type:`struct
2505 struct snd_ctl_elem_info object. For example, !! 2534 snd_ctl_elem_info <snd_ctl_elem_info>` object. For example,
2506 for a boolean control with a single element:: !! 2535 for a boolean control with a single element:
                                                   >> 2536 
                                                   >> 2537 ::
2507                                                  2538 
2508                                                  2539 
2509       static int snd_myctl_mono_info(struct s    2540       static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol,
2510                               struct snd_ctl_    2541                               struct snd_ctl_elem_info *uinfo)
2511       {                                          2542       {
2512               uinfo->type = SNDRV_CTL_ELEM_TY    2543               uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2513               uinfo->count = 1;                  2544               uinfo->count = 1;
2514               uinfo->value.integer.min = 0;      2545               uinfo->value.integer.min = 0;
2515               uinfo->value.integer.max = 1;      2546               uinfo->value.integer.max = 1;
2516               return 0;                          2547               return 0;
2517       }                                          2548       }
2518                                                  2549 
2519                                                  2550 
2520                                                  2551 
2521 The ``type`` field specifies the type of the     2552 The ``type`` field specifies the type of the control. There are
2522 ``BOOLEAN``, ``INTEGER``, ``ENUMERATED``, ``B    2553 ``BOOLEAN``, ``INTEGER``, ``ENUMERATED``, ``BYTES``, ``IEC958`` and
2523 ``INTEGER64``. The ``count`` field specifies     2554 ``INTEGER64``. The ``count`` field specifies the number of elements in
2524 this control. For example, a stereo volume wo    2555 this control. For example, a stereo volume would have count = 2. The
2525 ``value`` field is a union, and the values st !! 2556 ``value`` field is a union, and the values stored are depending on the
2526 type. The boolean and integer types are ident    2557 type. The boolean and integer types are identical.
2527                                                  2558 
2528 The enumerated type is a bit different from t !! 2559 The enumerated type is a bit different from others. You'll need to set
2529 set the string for the selectec item index::  !! 2560 the string for the currently given item index.
                                                   >> 2561 
                                                   >> 2562 ::
2530                                                  2563 
2531   static int snd_myctl_enum_info(struct snd_k    2564   static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
2532                           struct snd_ctl_elem    2565                           struct snd_ctl_elem_info *uinfo)
2533   {                                              2566   {
2534           static char *texts[4] = {              2567           static char *texts[4] = {
2535                   "First", "Second", "Third",    2568                   "First", "Second", "Third", "Fourth"
2536           };                                     2569           };
2537           uinfo->type = SNDRV_CTL_ELEM_TYPE_E    2570           uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2538           uinfo->count = 1;                      2571           uinfo->count = 1;
2539           uinfo->value.enumerated.items = 4;     2572           uinfo->value.enumerated.items = 4;
2540           if (uinfo->value.enumerated.item >     2573           if (uinfo->value.enumerated.item > 3)
2541                   uinfo->value.enumerated.ite    2574                   uinfo->value.enumerated.item = 3;
2542           strcpy(uinfo->value.enumerated.name    2575           strcpy(uinfo->value.enumerated.name,
2543                  texts[uinfo->value.enumerate    2576                  texts[uinfo->value.enumerated.item]);
2544           return 0;                              2577           return 0;
2545   }                                              2578   }
2546                                                  2579 
2547 The above callback can be simplified with a h    2580 The above callback can be simplified with a helper function,
2548 :c:func:`snd_ctl_enum_info()`. The final code    2581 :c:func:`snd_ctl_enum_info()`. The final code looks like below.
2549 (You can pass ``ARRAY_SIZE(texts)`` instead o    2582 (You can pass ``ARRAY_SIZE(texts)`` instead of 4 in the third argument;
2550 it's a matter of taste.)                         2583 it's a matter of taste.)
2551                                                  2584 
2552 ::                                               2585 ::
2553                                                  2586 
2554   static int snd_myctl_enum_info(struct snd_k    2587   static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
2555                           struct snd_ctl_elem    2588                           struct snd_ctl_elem_info *uinfo)
2556   {                                              2589   {
2557           static char *texts[4] = {              2590           static char *texts[4] = {
2558                   "First", "Second", "Third",    2591                   "First", "Second", "Third", "Fourth"
2559           };                                     2592           };
2560           return snd_ctl_enum_info(uinfo, 1,     2593           return snd_ctl_enum_info(uinfo, 1, 4, texts);
2561   }                                              2594   }
2562                                                  2595 
2563                                                  2596 
2564 Some common info callbacks are available for     2597 Some common info callbacks are available for your convenience:
2565 :c:func:`snd_ctl_boolean_mono_info()` and        2598 :c:func:`snd_ctl_boolean_mono_info()` and
2566 :c:func:`snd_ctl_boolean_stereo_info()`. Obvi    2599 :c:func:`snd_ctl_boolean_stereo_info()`. Obviously, the former
2567 is an info callback for a mono channel boolea    2600 is an info callback for a mono channel boolean item, just like
2568 :c:func:`snd_myctl_mono_info()` above, and th    2601 :c:func:`snd_myctl_mono_info()` above, and the latter is for a
2569 stereo channel boolean item.                     2602 stereo channel boolean item.
2570                                                  2603 
2571 get callback                                     2604 get callback
2572 ~~~~~~~~~~~~                                     2605 ~~~~~~~~~~~~
2573                                                  2606 
2574 This callback is used to read the current val !! 2607 This callback is used to read the current value of the control and to
2575 can be returned to user-space.                !! 2608 return to user-space.
                                                   >> 2609 
                                                   >> 2610 For example,
                                                   >> 2611 
                                                   >> 2612 ::
2576                                                  2613 
2577 For example::                                 << 
2578                                                  2614 
2579       static int snd_myctl_get(struct snd_kco    2615       static int snd_myctl_get(struct snd_kcontrol *kcontrol,
2580                                struct snd_ctl    2616                                struct snd_ctl_elem_value *ucontrol)
2581       {                                          2617       {
2582               struct mychip *chip = snd_kcont    2618               struct mychip *chip = snd_kcontrol_chip(kcontrol);
2583               ucontrol->value.integer.value[0    2619               ucontrol->value.integer.value[0] = get_some_value(chip);
2584               return 0;                          2620               return 0;
2585       }                                          2621       }
2586                                                  2622 
2587                                                  2623 
2588                                                  2624 
2589 The ``value`` field depends on the type of co    2625 The ``value`` field depends on the type of control as well as on the
2590 info callback. For example, the sb driver use    2626 info callback. For example, the sb driver uses this field to store the
2591 register offset, the bit-shift and the bit-ma    2627 register offset, the bit-shift and the bit-mask. The ``private_value``
2592 field is set as follows::                     !! 2628 field is set as follows:
                                                   >> 2629 
                                                   >> 2630 ::
2593                                                  2631 
2594   .private_value = reg | (shift << 16) | (mas    2632   .private_value = reg | (shift << 16) | (mask << 24)
2595                                                  2633 
2596 and is retrieved in callbacks like::          !! 2634 and is retrieved in callbacks like
                                                   >> 2635 
                                                   >> 2636 ::
2597                                                  2637 
2598   static int snd_sbmixer_get_single(struct sn    2638   static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
2599                                     struct sn    2639                                     struct snd_ctl_elem_value *ucontrol)
2600   {                                              2640   {
2601           int reg = kcontrol->private_value &    2641           int reg = kcontrol->private_value & 0xff;
2602           int shift = (kcontrol->private_valu    2642           int shift = (kcontrol->private_value >> 16) & 0xff;
2603           int mask = (kcontrol->private_value    2643           int mask = (kcontrol->private_value >> 24) & 0xff;
2604           ....                                   2644           ....
2605   }                                              2645   }
2606                                                  2646 
2607 In the ``get`` callback, you have to fill all    2647 In the ``get`` callback, you have to fill all the elements if the
2608 control has more than one element, i.e. ``cou !! 2648 control has more than one elements, i.e. ``count > 1``. In the example
2609 above, we filled only one element (``value.in    2649 above, we filled only one element (``value.integer.value[0]``) since
2610 ``count = 1`` is assumed.                     !! 2650 it's assumed as ``count = 1``.
2611                                                  2651 
2612 put callback                                     2652 put callback
2613 ~~~~~~~~~~~~                                     2653 ~~~~~~~~~~~~
2614                                                  2654 
2615 This callback is used to write a value coming !! 2655 This callback is used to write a value from user-space.
                                                   >> 2656 
                                                   >> 2657 For example,
                                                   >> 2658 
                                                   >> 2659 ::
2616                                                  2660 
2617 For example::                                 << 
2618                                                  2661 
2619       static int snd_myctl_put(struct snd_kco    2662       static int snd_myctl_put(struct snd_kcontrol *kcontrol,
2620                                struct snd_ctl    2663                                struct snd_ctl_elem_value *ucontrol)
2621       {                                          2664       {
2622               struct mychip *chip = snd_kcont    2665               struct mychip *chip = snd_kcontrol_chip(kcontrol);
2623               int changed = 0;                   2666               int changed = 0;
2624               if (chip->current_value !=         2667               if (chip->current_value !=
2625                    ucontrol->value.integer.va    2668                    ucontrol->value.integer.value[0]) {
2626                       change_current_value(ch    2669                       change_current_value(chip,
2627                                   ucontrol->v    2670                                   ucontrol->value.integer.value[0]);
2628                       changed = 1;               2671                       changed = 1;
2629               }                                  2672               }
2630               return changed;                    2673               return changed;
2631       }                                          2674       }
2632                                                  2675 
2633                                                  2676 
2634                                                  2677 
2635 As seen above, you have to return 1 if the va    2678 As seen above, you have to return 1 if the value is changed. If the
2636 value is not changed, return 0 instead. If an    2679 value is not changed, return 0 instead. If any fatal error happens,
2637 return a negative error code as usual.           2680 return a negative error code as usual.
2638                                                  2681 
2639 As in the ``get`` callback, when the control     2682 As in the ``get`` callback, when the control has more than one
2640 element, all elements must be evaluated in th !! 2683 elements, all elements must be evaluated in this callback, too.
2641                                                  2684 
2642 Callbacks are not atomic                         2685 Callbacks are not atomic
2643 ~~~~~~~~~~~~~~~~~~~~~~~~                         2686 ~~~~~~~~~~~~~~~~~~~~~~~~
2644                                                  2687 
2645 All these three callbacks are not-atomic.     !! 2688 All these three callbacks are basically not atomic.
2646                                                  2689 
2647 Control Constructor                              2690 Control Constructor
2648 -------------------                              2691 -------------------
2649                                                  2692 
2650 When everything is ready, finally we can crea    2693 When everything is ready, finally we can create a new control. To create
2651 a control, there are two functions to be call    2694 a control, there are two functions to be called,
2652 :c:func:`snd_ctl_new1()` and :c:func:`snd_ctl    2695 :c:func:`snd_ctl_new1()` and :c:func:`snd_ctl_add()`.
2653                                                  2696 
2654 In the simplest way, you can do it like this: !! 2697 In the simplest way, you can do like this:
                                                   >> 2698 
                                                   >> 2699 ::
2655                                                  2700 
2656   err = snd_ctl_add(card, snd_ctl_new1(&my_co    2701   err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip));
2657   if (err < 0)                                   2702   if (err < 0)
2658           return err;                            2703           return err;
2659                                                  2704 
2660 where ``my_control`` is the struct snd_kcontr !! 2705 where ``my_control`` is the :c:type:`struct snd_kcontrol_new
2661 and chip is the object pointer to be passed t !! 2706 <snd_kcontrol_new>` object defined above, and chip is the object
2662 can be referred to in callbacks.              !! 2707 pointer to be passed to kcontrol->private_data which can be referred
                                                   >> 2708 to in callbacks.
2663                                                  2709 
2664 :c:func:`snd_ctl_new1()` allocates a new stru !! 2710 :c:func:`snd_ctl_new1()` allocates a new :c:type:`struct
                                                   >> 2711 snd_kcontrol <snd_kcontrol>` instance, and
2665 :c:func:`snd_ctl_add()` assigns the given con    2712 :c:func:`snd_ctl_add()` assigns the given control component to the
2666 card.                                            2713 card.
2667                                                  2714 
2668 Change Notification                              2715 Change Notification
2669 -------------------                              2716 -------------------
2670                                                  2717 
2671 If you need to change and update a control in    2718 If you need to change and update a control in the interrupt routine, you
2672 can call :c:func:`snd_ctl_notify()`. For exam !! 2719 can call :c:func:`snd_ctl_notify()`. For example,
                                                   >> 2720 
                                                   >> 2721 ::
2673                                                  2722 
2674   snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_V    2723   snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
2675                                                  2724 
2676 This function takes the card pointer, the eve    2725 This function takes the card pointer, the event-mask, and the control id
2677 pointer for the notification. The event-mask     2726 pointer for the notification. The event-mask specifies the types of
2678 notification, for example, in the above examp    2727 notification, for example, in the above example, the change of control
2679 values is notified. The id pointer is the poi !! 2728 values is notified. The id pointer is the pointer of :c:type:`struct
2680 to be notified. You can find some examples in !! 2729 snd_ctl_elem_id <snd_ctl_elem_id>` to be notified. You can
2681 for hardware volume interrupts.               !! 2730 find some examples in ``es1938.c`` or ``es1968.c`` for hardware volume
                                                   >> 2731 interrupts.
2682                                                  2732 
2683 Metadata                                         2733 Metadata
2684 --------                                         2734 --------
2685                                                  2735 
2686 To provide information about the dB values of !! 2736 To provide information about the dB values of a mixer control, use on of
2687 the ``DECLARE_TLV_xxx`` macros from ``<sound/    2737 the ``DECLARE_TLV_xxx`` macros from ``<sound/tlv.h>`` to define a
2688 variable containing this information, set the    2738 variable containing this information, set the ``tlv.p`` field to point to
2689 this variable, and include the ``SNDRV_CTL_EL    2739 this variable, and include the ``SNDRV_CTL_ELEM_ACCESS_TLV_READ`` flag
2690 in the ``access`` field; like this::          !! 2740 in the ``access`` field; like this:
                                                   >> 2741 
                                                   >> 2742 ::
2691                                                  2743 
2692   static DECLARE_TLV_DB_SCALE(db_scale_my_con    2744   static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0);
2693                                                  2745 
2694   static struct snd_kcontrol_new my_control =    2746   static struct snd_kcontrol_new my_control = {
2695           ...                                    2747           ...
2696           .access = SNDRV_CTL_ELEM_ACCESS_REA    2748           .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
2697                     SNDRV_CTL_ELEM_ACCESS_TLV    2749                     SNDRV_CTL_ELEM_ACCESS_TLV_READ,
2698           ...                                    2750           ...
2699           .tlv.p = db_scale_my_control,          2751           .tlv.p = db_scale_my_control,
2700   };                                             2752   };
2701                                                  2753 
2702                                                  2754 
2703 The :c:func:`DECLARE_TLV_DB_SCALE()` macro de    2755 The :c:func:`DECLARE_TLV_DB_SCALE()` macro defines information
2704 about a mixer control where each step in the     2756 about a mixer control where each step in the control's value changes the
2705 dB value by a constant dB amount. The first p    2757 dB value by a constant dB amount. The first parameter is the name of the
2706 variable to be defined. The second parameter     2758 variable to be defined. The second parameter is the minimum value, in
2707 units of 0.01 dB. The third parameter is the     2759 units of 0.01 dB. The third parameter is the step size, in units of 0.01
2708 dB. Set the fourth parameter to 1 if the mini    2760 dB. Set the fourth parameter to 1 if the minimum value actually mutes
2709 the control.                                     2761 the control.
2710                                                  2762 
2711 The :c:func:`DECLARE_TLV_DB_LINEAR()` macro d    2763 The :c:func:`DECLARE_TLV_DB_LINEAR()` macro defines information
2712 about a mixer control where the control's val    2764 about a mixer control where the control's value affects the output
2713 linearly. The first parameter is the name of     2765 linearly. The first parameter is the name of the variable to be defined.
2714 The second parameter is the minimum value, in    2766 The second parameter is the minimum value, in units of 0.01 dB. The
2715 third parameter is the maximum value, in unit    2767 third parameter is the maximum value, in units of 0.01 dB. If the
2716 minimum value mutes the control, set the seco    2768 minimum value mutes the control, set the second parameter to
2717 ``TLV_DB_GAIN_MUTE``.                            2769 ``TLV_DB_GAIN_MUTE``.
2718                                                  2770 
2719 API for AC97 Codec                               2771 API for AC97 Codec
2720 ==================                               2772 ==================
2721                                                  2773 
2722 General                                          2774 General
2723 -------                                          2775 -------
2724                                                  2776 
2725 The ALSA AC97 codec layer is a well-defined o    2777 The ALSA AC97 codec layer is a well-defined one, and you don't have to
2726 write much code to control it. Only low-level    2778 write much code to control it. Only low-level control routines are
2727 necessary. The AC97 codec API is defined in `    2779 necessary. The AC97 codec API is defined in ``<sound/ac97_codec.h>``.
2728                                                  2780 
2729 Full Code Example                                2781 Full Code Example
2730 -----------------                                2782 -----------------
2731                                                  2783 
2732 ::                                               2784 ::
2733                                                  2785 
2734       struct mychip {                            2786       struct mychip {
2735               ....                               2787               ....
2736               struct snd_ac97 *ac97;             2788               struct snd_ac97 *ac97;
2737               ....                               2789               ....
2738       };                                         2790       };
2739                                                  2791 
2740       static unsigned short snd_mychip_ac97_r    2792       static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
2741                                                  2793                                                  unsigned short reg)
2742       {                                          2794       {
2743               struct mychip *chip = ac97->pri    2795               struct mychip *chip = ac97->private_data;
2744               ....                               2796               ....
2745               /* read a register value here f    2797               /* read a register value here from the codec */
2746               return the_register_value;         2798               return the_register_value;
2747       }                                          2799       }
2748                                                  2800 
2749       static void snd_mychip_ac97_write(struc    2801       static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
2750                                        unsign    2802                                        unsigned short reg, unsigned short val)
2751       {                                          2803       {
2752               struct mychip *chip = ac97->pri    2804               struct mychip *chip = ac97->private_data;
2753               ....                               2805               ....
2754               /* write the given register val    2806               /* write the given register value to the codec */
2755       }                                          2807       }
2756                                                  2808 
2757       static int snd_mychip_ac97(struct mychi    2809       static int snd_mychip_ac97(struct mychip *chip)
2758       {                                          2810       {
2759               struct snd_ac97_bus *bus;          2811               struct snd_ac97_bus *bus;
2760               struct snd_ac97_template ac97;     2812               struct snd_ac97_template ac97;
2761               int err;                           2813               int err;
2762               static struct snd_ac97_bus_ops     2814               static struct snd_ac97_bus_ops ops = {
2763                       .write = snd_mychip_ac9    2815                       .write = snd_mychip_ac97_write,
2764                       .read = snd_mychip_ac97    2816                       .read = snd_mychip_ac97_read,
2765               };                                 2817               };
2766                                                  2818 
2767               err = snd_ac97_bus(chip->card,     2819               err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus);
2768               if (err < 0)                       2820               if (err < 0)
2769                       return err;                2821                       return err;
2770               memset(&ac97, 0, sizeof(ac97));    2822               memset(&ac97, 0, sizeof(ac97));
2771               ac97.private_data = chip;          2823               ac97.private_data = chip;
2772               return snd_ac97_mixer(bus, &ac9    2824               return snd_ac97_mixer(bus, &ac97, &chip->ac97);
2773       }                                          2825       }
2774                                                  2826 
2775                                                  2827 
2776 AC97 Constructor                                 2828 AC97 Constructor
2777 ----------------                                 2829 ----------------
2778                                                  2830 
2779 To create an ac97 instance, first call :c:fun    2831 To create an ac97 instance, first call :c:func:`snd_ac97_bus()`
2780 with an ``ac97_bus_ops_t`` record with callba !! 2832 with an ``ac97_bus_ops_t`` record with callback functions.
                                                   >> 2833 
                                                   >> 2834 ::
2781                                                  2835 
2782   struct snd_ac97_bus *bus;                      2836   struct snd_ac97_bus *bus;
2783   static struct snd_ac97_bus_ops ops = {         2837   static struct snd_ac97_bus_ops ops = {
2784         .write = snd_mychip_ac97_write,          2838         .write = snd_mychip_ac97_write,
2785         .read = snd_mychip_ac97_read,            2839         .read = snd_mychip_ac97_read,
2786   };                                             2840   };
2787                                                  2841 
2788   snd_ac97_bus(card, 0, &ops, NULL, &pbus);      2842   snd_ac97_bus(card, 0, &ops, NULL, &pbus);
2789                                                  2843 
2790 The bus record is shared among all belonging     2844 The bus record is shared among all belonging ac97 instances.
2791                                                  2845 
2792 And then call :c:func:`snd_ac97_mixer()` with !! 2846 And then call :c:func:`snd_ac97_mixer()` with an :c:type:`struct
2793 record together with the bus pointer created  !! 2847 snd_ac97_template <snd_ac97_template>` record together with
                                                   >> 2848 the bus pointer created above.
                                                   >> 2849 
                                                   >> 2850 ::
2794                                                  2851 
2795   struct snd_ac97_template ac97;                 2852   struct snd_ac97_template ac97;
2796   int err;                                       2853   int err;
2797                                                  2854 
2798   memset(&ac97, 0, sizeof(ac97));                2855   memset(&ac97, 0, sizeof(ac97));
2799   ac97.private_data = chip;                      2856   ac97.private_data = chip;
2800   snd_ac97_mixer(bus, &ac97, &chip->ac97);       2857   snd_ac97_mixer(bus, &ac97, &chip->ac97);
2801                                                  2858 
2802 where chip->ac97 is a pointer to a newly crea    2859 where chip->ac97 is a pointer to a newly created ``ac97_t``
2803 instance. In this case, the chip pointer is s    2860 instance. In this case, the chip pointer is set as the private data,
2804 so that the read/write callback functions can    2861 so that the read/write callback functions can refer to this chip
2805 instance. This instance is not necessarily st    2862 instance. This instance is not necessarily stored in the chip
2806 record. If you need to change the register va    2863 record. If you need to change the register values from the driver, or
2807 need the suspend/resume of ac97 codecs, keep     2864 need the suspend/resume of ac97 codecs, keep this pointer to pass to
2808 the corresponding functions.                     2865 the corresponding functions.
2809                                                  2866 
2810 AC97 Callbacks                                   2867 AC97 Callbacks
2811 --------------                                   2868 --------------
2812                                                  2869 
2813 The standard callbacks are ``read`` and ``wri    2870 The standard callbacks are ``read`` and ``write``. Obviously they
2814 correspond to the functions for read and writ    2871 correspond to the functions for read and write accesses to the
2815 hardware low-level codes.                        2872 hardware low-level codes.
2816                                                  2873 
2817 The ``read`` callback returns the register va    2874 The ``read`` callback returns the register value specified in the
2818 argument::                                    !! 2875 argument.
                                                   >> 2876 
                                                   >> 2877 ::
2819                                                  2878 
2820   static unsigned short snd_mychip_ac97_read(    2879   static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
2821                                                  2880                                              unsigned short reg)
2822   {                                              2881   {
2823           struct mychip *chip = ac97->private    2882           struct mychip *chip = ac97->private_data;
2824           ....                                   2883           ....
2825           return the_register_value;             2884           return the_register_value;
2826   }                                              2885   }
2827                                                  2886 
2828 Here, the chip can be cast from ``ac97->priva    2887 Here, the chip can be cast from ``ac97->private_data``.
2829                                                  2888 
2830 Meanwhile, the ``write`` callback is used to     2889 Meanwhile, the ``write`` callback is used to set the register
2831 value::                                       !! 2890 value
                                                   >> 2891 
                                                   >> 2892 ::
2832                                                  2893 
2833   static void snd_mychip_ac97_write(struct sn    2894   static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
2834                        unsigned short reg, un    2895                        unsigned short reg, unsigned short val)
2835                                                  2896 
2836                                                  2897 
2837 These callbacks are non-atomic like the contr    2898 These callbacks are non-atomic like the control API callbacks.
2838                                                  2899 
2839 There are also other callbacks: ``reset``, ``    2900 There are also other callbacks: ``reset``, ``wait`` and ``init``.
2840                                                  2901 
2841 The ``reset`` callback is used to reset the c    2902 The ``reset`` callback is used to reset the codec. If the chip
2842 requires a special kind of reset, you can def    2903 requires a special kind of reset, you can define this callback.
2843                                                  2904 
2844 The ``wait`` callback is used to add some wai    2905 The ``wait`` callback is used to add some waiting time in the standard
2845 initialization of the codec. If the chip requ    2906 initialization of the codec. If the chip requires the extra waiting
2846 time, define this callback.                      2907 time, define this callback.
2847                                                  2908 
2848 The ``init`` callback is used for additional     2909 The ``init`` callback is used for additional initialization of the
2849 codec.                                           2910 codec.
2850                                                  2911 
2851 Updating Registers in The Driver                 2912 Updating Registers in The Driver
2852 --------------------------------                 2913 --------------------------------
2853                                                  2914 
2854 If you need to access to the codec from the d    2915 If you need to access to the codec from the driver, you can call the
2855 following functions: :c:func:`snd_ac97_write(    2916 following functions: :c:func:`snd_ac97_write()`,
2856 :c:func:`snd_ac97_read()`, :c:func:`snd_ac97_    2917 :c:func:`snd_ac97_read()`, :c:func:`snd_ac97_update()` and
2857 :c:func:`snd_ac97_update_bits()`.                2918 :c:func:`snd_ac97_update_bits()`.
2858                                                  2919 
2859 Both :c:func:`snd_ac97_write()` and              2920 Both :c:func:`snd_ac97_write()` and
2860 :c:func:`snd_ac97_update()` functions are use    2921 :c:func:`snd_ac97_update()` functions are used to set a value to
2861 the given register (``AC97_XXX``). The differ    2922 the given register (``AC97_XXX``). The difference between them is that
2862 :c:func:`snd_ac97_update()` doesn't write a v    2923 :c:func:`snd_ac97_update()` doesn't write a value if the given
2863 value has been already set, while :c:func:`sn    2924 value has been already set, while :c:func:`snd_ac97_write()`
2864 always rewrites the value::                   !! 2925 always rewrites the value.
                                                   >> 2926 
                                                   >> 2927 ::
2865                                                  2928 
2866   snd_ac97_write(ac97, AC97_MASTER, 0x8080);     2929   snd_ac97_write(ac97, AC97_MASTER, 0x8080);
2867   snd_ac97_update(ac97, AC97_MASTER, 0x8080);    2930   snd_ac97_update(ac97, AC97_MASTER, 0x8080);
2868                                                  2931 
2869 :c:func:`snd_ac97_read()` is used to read the    2932 :c:func:`snd_ac97_read()` is used to read the value of the given
2870 register. For example::                       !! 2933 register. For example,
                                                   >> 2934 
                                                   >> 2935 ::
2871                                                  2936 
2872   value = snd_ac97_read(ac97, AC97_MASTER);      2937   value = snd_ac97_read(ac97, AC97_MASTER);
2873                                                  2938 
2874 :c:func:`snd_ac97_update_bits()` is used to u    2939 :c:func:`snd_ac97_update_bits()` is used to update some bits in
2875 the given register::                          !! 2940 the given register.
                                                   >> 2941 
                                                   >> 2942 ::
2876                                                  2943 
2877   snd_ac97_update_bits(ac97, reg, mask, value    2944   snd_ac97_update_bits(ac97, reg, mask, value);
2878                                                  2945 
2879 Also, there is a function to change the sampl    2946 Also, there is a function to change the sample rate (of a given register
2880 such as ``AC97_PCM_FRONT_DAC_RATE``) when VRA    2947 such as ``AC97_PCM_FRONT_DAC_RATE``) when VRA or DRA is supported by the
2881 codec: :c:func:`snd_ac97_set_rate()`::        !! 2948 codec: :c:func:`snd_ac97_set_rate()`.
                                                   >> 2949 
                                                   >> 2950 ::
2882                                                  2951 
2883   snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_    2952   snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
2884                                                  2953 
2885                                                  2954 
2886 The following registers are available to set     2955 The following registers are available to set the rate:
2887 ``AC97_PCM_MIC_ADC_RATE``, ``AC97_PCM_FRONT_D    2956 ``AC97_PCM_MIC_ADC_RATE``, ``AC97_PCM_FRONT_DAC_RATE``,
2888 ``AC97_PCM_LR_ADC_RATE``, ``AC97_SPDIF``. Whe    2957 ``AC97_PCM_LR_ADC_RATE``, ``AC97_SPDIF``. When ``AC97_SPDIF`` is
2889 specified, the register is not really changed    2958 specified, the register is not really changed but the corresponding
2890 IEC958 status bits will be updated.              2959 IEC958 status bits will be updated.
2891                                                  2960 
2892 Clock Adjustment                                 2961 Clock Adjustment
2893 ----------------                                 2962 ----------------
2894                                                  2963 
2895 In some chips, the clock of the codec isn't 4    2964 In some chips, the clock of the codec isn't 48000 but using a PCI clock
2896 (to save a quartz!). In this case, change the    2965 (to save a quartz!). In this case, change the field ``bus->clock`` to
2897 the corresponding value. For example, intel8x    2966 the corresponding value. For example, intel8x0 and es1968 drivers have
2898 their own function to read from the clock.       2967 their own function to read from the clock.
2899                                                  2968 
2900 Proc Files                                       2969 Proc Files
2901 ----------                                       2970 ----------
2902                                                  2971 
2903 The ALSA AC97 interface will create a proc fi    2972 The ALSA AC97 interface will create a proc file such as
2904 ``/proc/asound/card0/codec97#0/ac97#0-0`` and    2973 ``/proc/asound/card0/codec97#0/ac97#0-0`` and ``ac97#0-0+regs``. You
2905 can refer to these files to see the current s    2974 can refer to these files to see the current status and registers of
2906 the codec.                                       2975 the codec.
2907                                                  2976 
2908 Multiple Codecs                                  2977 Multiple Codecs
2909 ---------------                                  2978 ---------------
2910                                                  2979 
2911 When there are several codecs on the same car    2980 When there are several codecs on the same card, you need to call
2912 :c:func:`snd_ac97_mixer()` multiple times wit    2981 :c:func:`snd_ac97_mixer()` multiple times with ``ac97.num=1`` or
2913 greater. The ``num`` field specifies the code    2982 greater. The ``num`` field specifies the codec number.
2914                                                  2983 
2915 If you set up multiple codecs, you either nee    2984 If you set up multiple codecs, you either need to write different
2916 callbacks for each codec or check ``ac97->num    2985 callbacks for each codec or check ``ac97->num`` in the callback
2917 routines.                                        2986 routines.
2918                                                  2987 
2919 MIDI (MPU401-UART) Interface                     2988 MIDI (MPU401-UART) Interface
2920 ============================                     2989 ============================
2921                                                  2990 
2922 General                                          2991 General
2923 -------                                          2992 -------
2924                                                  2993 
2925 Many soundcards have built-in MIDI (MPU401-UA    2994 Many soundcards have built-in MIDI (MPU401-UART) interfaces. When the
2926 soundcard supports the standard MPU401-UART i    2995 soundcard supports the standard MPU401-UART interface, most likely you
2927 can use the ALSA MPU401-UART API. The MPU401-    2996 can use the ALSA MPU401-UART API. The MPU401-UART API is defined in
2928 ``<sound/mpu401.h>``.                            2997 ``<sound/mpu401.h>``.
2929                                                  2998 
2930 Some soundchips have a similar but slightly d    2999 Some soundchips have a similar but slightly different implementation of
2931 mpu401 stuff. For example, emu10k1 has its ow    3000 mpu401 stuff. For example, emu10k1 has its own mpu401 routines.
2932                                                  3001 
2933 MIDI Constructor                                 3002 MIDI Constructor
2934 ----------------                                 3003 ----------------
2935                                                  3004 
2936 To create a rawmidi object, call :c:func:`snd !! 3005 To create a rawmidi object, call :c:func:`snd_mpu401_uart_new()`.
                                                   >> 3006 
                                                   >> 3007 ::
2937                                                  3008 
2938   struct snd_rawmidi *rmidi;                     3009   struct snd_rawmidi *rmidi;
2939   snd_mpu401_uart_new(card, 0, MPU401_HW_MPU4    3010   snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,
2940                       irq, &rmidi);              3011                       irq, &rmidi);
2941                                                  3012 
2942                                                  3013 
2943 The first argument is the card pointer, and t    3014 The first argument is the card pointer, and the second is the index of
2944 this component. You can create up to 8 rawmid    3015 this component. You can create up to 8 rawmidi devices.
2945                                                  3016 
2946 The third argument is the type of the hardwar    3017 The third argument is the type of the hardware, ``MPU401_HW_XXX``. If
2947 it's not a special one, you can use ``MPU401_    3018 it's not a special one, you can use ``MPU401_HW_MPU401``.
2948                                                  3019 
2949 The 4th argument is the I/O port address. Man    3020 The 4th argument is the I/O port address. Many backward-compatible
2950 MPU401 have an I/O port such as 0x330. Or, it    3021 MPU401 have an I/O port such as 0x330. Or, it might be a part of its own
2951 PCI I/O region. It depends on the chip design    3022 PCI I/O region. It depends on the chip design.
2952                                                  3023 
2953 The 5th argument is a bitflag for additional     3024 The 5th argument is a bitflag for additional information. When the I/O
2954 port address above is part of the PCI I/O reg    3025 port address above is part of the PCI I/O region, the MPU401 I/O port
2955 might have been already allocated (reserved)     3026 might have been already allocated (reserved) by the driver itself. In
2956 such a case, pass a bit flag ``MPU401_INFO_IN    3027 such a case, pass a bit flag ``MPU401_INFO_INTEGRATED``, and the
2957 mpu401-uart layer will allocate the I/O ports    3028 mpu401-uart layer will allocate the I/O ports by itself.
2958                                                  3029 
2959 When the controller supports only the input o    3030 When the controller supports only the input or output MIDI stream, pass
2960 the ``MPU401_INFO_INPUT`` or ``MPU401_INFO_OU    3031 the ``MPU401_INFO_INPUT`` or ``MPU401_INFO_OUTPUT`` bitflag,
2961 respectively. Then the rawmidi instance is cr    3032 respectively. Then the rawmidi instance is created as a single stream.
2962                                                  3033 
2963 ``MPU401_INFO_MMIO`` bitflag is used to chang    3034 ``MPU401_INFO_MMIO`` bitflag is used to change the access method to MMIO
2964 (via readb and writeb) instead of iob and out    3035 (via readb and writeb) instead of iob and outb. In this case, you have
2965 to pass the iomapped address to :c:func:`snd_    3036 to pass the iomapped address to :c:func:`snd_mpu401_uart_new()`.
2966                                                  3037 
2967 When ``MPU401_INFO_TX_IRQ`` is set, the outpu    3038 When ``MPU401_INFO_TX_IRQ`` is set, the output stream isn't checked in
2968 the default interrupt handler. The driver nee    3039 the default interrupt handler. The driver needs to call
2969 :c:func:`snd_mpu401_uart_interrupt_tx()` by i    3040 :c:func:`snd_mpu401_uart_interrupt_tx()` by itself to start
2970 processing the output stream in the irq handl    3041 processing the output stream in the irq handler.
2971                                                  3042 
2972 If the MPU-401 interface shares its interrupt    3043 If the MPU-401 interface shares its interrupt with the other logical
2973 devices on the card, set ``MPU401_INFO_IRQ_HO    3044 devices on the card, set ``MPU401_INFO_IRQ_HOOK`` (see
2974 `below <MIDI Interrupt Handler_>`__).         !! 3045 `below <#MIDI-Interrupt-Handler>`__).
2975                                                  3046 
2976 Usually, the port address corresponds to the     3047 Usually, the port address corresponds to the command port and port + 1
2977 corresponds to the data port. If not, you may    3048 corresponds to the data port. If not, you may change the ``cport``
2978 field of struct snd_mpu401 manually afterward !! 3049 field of :c:type:`struct snd_mpu401 <snd_mpu401>` manually afterward.
2979 However, struct snd_mpu401 pointer is         !! 3050 However, :c:type:`struct snd_mpu401 <snd_mpu401>` pointer is
2980 not returned explicitly by :c:func:`snd_mpu40    3051 not returned explicitly by :c:func:`snd_mpu401_uart_new()`. You
2981 need to cast ``rmidi->private_data`` to struc !! 3052 need to cast ``rmidi->private_data`` to :c:type:`struct snd_mpu401
                                                   >> 3053 <snd_mpu401>` explicitly,
                                                   >> 3054 
                                                   >> 3055 ::
2982                                                  3056 
2983   struct snd_mpu401 *mpu;                        3057   struct snd_mpu401 *mpu;
2984   mpu = rmidi->private_data;                     3058   mpu = rmidi->private_data;
2985                                                  3059 
2986 and reset the ``cport`` as you like::         !! 3060 and reset the ``cport`` as you like:
                                                   >> 3061 
                                                   >> 3062 ::
2987                                                  3063 
2988   mpu->cport = my_own_control_port;              3064   mpu->cport = my_own_control_port;
2989                                                  3065 
2990 The 6th argument specifies the ISA irq number    3066 The 6th argument specifies the ISA irq number that will be allocated. If
2991 no interrupt is to be allocated (because your    3067 no interrupt is to be allocated (because your code is already allocating
2992 a shared interrupt, or because the device doe    3068 a shared interrupt, or because the device does not use interrupts), pass
2993 -1 instead. For a MPU-401 device without an i    3069 -1 instead. For a MPU-401 device without an interrupt, a polling timer
2994 will be used instead.                            3070 will be used instead.
2995                                                  3071 
2996 MIDI Interrupt Handler                           3072 MIDI Interrupt Handler
2997 ----------------------                           3073 ----------------------
2998                                                  3074 
2999 When the interrupt is allocated in               3075 When the interrupt is allocated in
3000 :c:func:`snd_mpu401_uart_new()`, an exclusive    3076 :c:func:`snd_mpu401_uart_new()`, an exclusive ISA interrupt
3001 handler is automatically used, hence you don'    3077 handler is automatically used, hence you don't have anything else to do
3002 than creating the mpu401 stuff. Otherwise, yo    3078 than creating the mpu401 stuff. Otherwise, you have to set
3003 ``MPU401_INFO_IRQ_HOOK``, and call               3079 ``MPU401_INFO_IRQ_HOOK``, and call
3004 :c:func:`snd_mpu401_uart_interrupt()` explici    3080 :c:func:`snd_mpu401_uart_interrupt()` explicitly from your own
3005 interrupt handler when it has determined that    3081 interrupt handler when it has determined that a UART interrupt has
3006 occurred.                                        3082 occurred.
3007                                                  3083 
3008 In this case, you need to pass the private_da    3084 In this case, you need to pass the private_data of the returned rawmidi
3009 object from :c:func:`snd_mpu401_uart_new()` a    3085 object from :c:func:`snd_mpu401_uart_new()` as the second
3010 argument of :c:func:`snd_mpu401_uart_interrup !! 3086 argument of :c:func:`snd_mpu401_uart_interrupt()`.
                                                   >> 3087 
                                                   >> 3088 ::
3011                                                  3089 
3012   snd_mpu401_uart_interrupt(irq, rmidi->priva    3090   snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
3013                                                  3091 
3014                                                  3092 
3015 RawMIDI Interface                                3093 RawMIDI Interface
3016 =================                                3094 =================
3017                                                  3095 
3018 Overview                                         3096 Overview
3019 --------                                         3097 --------
3020                                                  3098 
3021 The raw MIDI interface is used for hardware M    3099 The raw MIDI interface is used for hardware MIDI ports that can be
3022 accessed as a byte stream. It is not used for    3100 accessed as a byte stream. It is not used for synthesizer chips that do
3023 not directly understand MIDI.                    3101 not directly understand MIDI.
3024                                                  3102 
3025 ALSA handles file and buffer management. All     3103 ALSA handles file and buffer management. All you have to do is to write
3026 some code to move data between the buffer and    3104 some code to move data between the buffer and the hardware.
3027                                                  3105 
3028 The rawmidi API is defined in ``<sound/rawmid    3106 The rawmidi API is defined in ``<sound/rawmidi.h>``.
3029                                                  3107 
3030 RawMIDI Constructor                              3108 RawMIDI Constructor
3031 -------------------                              3109 -------------------
3032                                                  3110 
3033 To create a rawmidi device, call the :c:func:    3111 To create a rawmidi device, call the :c:func:`snd_rawmidi_new()`
3034 function::                                    !! 3112 function:
                                                   >> 3113 
                                                   >> 3114 ::
3035                                                  3115 
3036   struct snd_rawmidi *rmidi;                     3116   struct snd_rawmidi *rmidi;
3037   err = snd_rawmidi_new(chip->card, "MyMIDI",    3117   err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
3038   if (err < 0)                                   3118   if (err < 0)
3039           return err;                            3119           return err;
3040   rmidi->private_data = chip;                    3120   rmidi->private_data = chip;
3041   strcpy(rmidi->name, "My MIDI");                3121   strcpy(rmidi->name, "My MIDI");
3042   rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTP    3122   rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
3043                       SNDRV_RAWMIDI_INFO_INPU    3123                       SNDRV_RAWMIDI_INFO_INPUT |
3044                       SNDRV_RAWMIDI_INFO_DUPL    3124                       SNDRV_RAWMIDI_INFO_DUPLEX;
3045                                                  3125 
3046 The first argument is the card pointer, the s    3126 The first argument is the card pointer, the second argument is the ID
3047 string.                                          3127 string.
3048                                                  3128 
3049 The third argument is the index of this compo    3129 The third argument is the index of this component. You can create up to
3050 8 rawmidi devices.                               3130 8 rawmidi devices.
3051                                                  3131 
3052 The fourth and fifth arguments are the number    3132 The fourth and fifth arguments are the number of output and input
3053 substreams, respectively, of this device (a s    3133 substreams, respectively, of this device (a substream is the equivalent
3054 of a MIDI port).                                 3134 of a MIDI port).
3055                                                  3135 
3056 Set the ``info_flags`` field to specify the c    3136 Set the ``info_flags`` field to specify the capabilities of the
3057 device. Set ``SNDRV_RAWMIDI_INFO_OUTPUT`` if     3137 device. Set ``SNDRV_RAWMIDI_INFO_OUTPUT`` if there is at least one
3058 output port, ``SNDRV_RAWMIDI_INFO_INPUT`` if     3138 output port, ``SNDRV_RAWMIDI_INFO_INPUT`` if there is at least one
3059 input port, and ``SNDRV_RAWMIDI_INFO_DUPLEX``    3139 input port, and ``SNDRV_RAWMIDI_INFO_DUPLEX`` if the device can handle
3060 output and input at the same time.               3140 output and input at the same time.
3061                                                  3141 
3062 After the rawmidi device is created, you need    3142 After the rawmidi device is created, you need to set the operators
3063 (callbacks) for each substream. There are hel    3143 (callbacks) for each substream. There are helper functions to set the
3064 operators for all the substreams of a device: !! 3144 operators for all the substreams of a device:
                                                   >> 3145 
                                                   >> 3146 ::
3065                                                  3147 
3066   snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_ST    3148   snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
3067   snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_ST    3149   snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
3068                                                  3150 
3069 The operators are usually defined like this:: !! 3151 The operators are usually defined like this:
                                                   >> 3152 
                                                   >> 3153 ::
3070                                                  3154 
3071   static struct snd_rawmidi_ops snd_mymidi_ou    3155   static struct snd_rawmidi_ops snd_mymidi_output_ops = {
3072           .open =    snd_mymidi_output_open,     3156           .open =    snd_mymidi_output_open,
3073           .close =   snd_mymidi_output_close,    3157           .close =   snd_mymidi_output_close,
3074           .trigger = snd_mymidi_output_trigge    3158           .trigger = snd_mymidi_output_trigger,
3075   };                                             3159   };
3076                                                  3160 
3077 These callbacks are explained in the `RawMIDI    3161 These callbacks are explained in the `RawMIDI Callbacks`_ section.
3078                                                  3162 
3079 If there are more than one substream, you sho    3163 If there are more than one substream, you should give a unique name to
3080 each of them::                                !! 3164 each of them:
                                                   >> 3165 
                                                   >> 3166 ::
3081                                                  3167 
3082   struct snd_rawmidi_substream *substream;       3168   struct snd_rawmidi_substream *substream;
3083   list_for_each_entry(substream,                 3169   list_for_each_entry(substream,
3084                       &rmidi->streams[SNDRV_R    3170                       &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams,
3085                       list {                     3171                       list {
3086           sprintf(substream->name, "My MIDI P    3172           sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
3087   }                                              3173   }
3088   /* same for SNDRV_RAWMIDI_STREAM_INPUT */      3174   /* same for SNDRV_RAWMIDI_STREAM_INPUT */
3089                                                  3175 
3090 RawMIDI Callbacks                                3176 RawMIDI Callbacks
3091 -----------------                                3177 -----------------
3092                                                  3178 
3093 In all the callbacks, the private data that y    3179 In all the callbacks, the private data that you've set for the rawmidi
3094 device can be accessed as ``substream->rmidi-    3180 device can be accessed as ``substream->rmidi->private_data``.
3095                                                  3181 
3096 If there is more than one port, your callback    3182 If there is more than one port, your callbacks can determine the port
3097 index from the struct snd_rawmidi_substream d    3183 index from the struct snd_rawmidi_substream data passed to each
3098 callback::                                    !! 3184 callback:
                                                   >> 3185 
                                                   >> 3186 ::
3099                                                  3187 
3100   struct snd_rawmidi_substream *substream;       3188   struct snd_rawmidi_substream *substream;
3101   int index = substream->number;                 3189   int index = substream->number;
3102                                                  3190 
3103 RawMIDI open callback                            3191 RawMIDI open callback
3104 ~~~~~~~~~~~~~~~~~~~~~                            3192 ~~~~~~~~~~~~~~~~~~~~~
3105                                                  3193 
3106 ::                                               3194 ::
3107                                                  3195 
3108       static int snd_xxx_open(struct snd_rawm    3196       static int snd_xxx_open(struct snd_rawmidi_substream *substream);
3109                                                  3197 
3110                                                  3198 
3111 This is called when a substream is opened. Yo    3199 This is called when a substream is opened. You can initialize the
3112 hardware here, but you shouldn't start transm    3200 hardware here, but you shouldn't start transmitting/receiving data yet.
3113                                                  3201 
3114 RawMIDI close callback                           3202 RawMIDI close callback
3115 ~~~~~~~~~~~~~~~~~~~~~~                           3203 ~~~~~~~~~~~~~~~~~~~~~~
3116                                                  3204 
3117 ::                                               3205 ::
3118                                                  3206 
3119       static int snd_xxx_close(struct snd_raw    3207       static int snd_xxx_close(struct snd_rawmidi_substream *substream);
3120                                                  3208 
3121 Guess what.                                      3209 Guess what.
3122                                                  3210 
3123 The ``open`` and ``close`` callbacks of a raw    3211 The ``open`` and ``close`` callbacks of a rawmidi device are
3124 serialized with a mutex, and can sleep.          3212 serialized with a mutex, and can sleep.
3125                                                  3213 
3126 Rawmidi trigger callback for output substream    3214 Rawmidi trigger callback for output substreams
3127 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    3215 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3128                                                  3216 
3129 ::                                               3217 ::
3130                                                  3218 
3131       static void snd_xxx_output_trigger(stru    3219       static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
3132                                                  3220 
3133                                                  3221 
3134 This is called with a nonzero ``up`` paramete    3222 This is called with a nonzero ``up`` parameter when there is some data
3135 in the substream buffer that must be transmit    3223 in the substream buffer that must be transmitted.
3136                                                  3224 
3137 To read data from the buffer, call               3225 To read data from the buffer, call
3138 :c:func:`snd_rawmidi_transmit_peek()`. It wil    3226 :c:func:`snd_rawmidi_transmit_peek()`. It will return the number
3139 of bytes that have been read; this will be le    3227 of bytes that have been read; this will be less than the number of bytes
3140 requested when there are no more data in the     3228 requested when there are no more data in the buffer. After the data have
3141 been transmitted successfully, call              3229 been transmitted successfully, call
3142 :c:func:`snd_rawmidi_transmit_ack()` to remov    3230 :c:func:`snd_rawmidi_transmit_ack()` to remove the data from the
3143 substream buffer::                            !! 3231 substream buffer:
                                                   >> 3232 
                                                   >> 3233 ::
3144                                                  3234 
3145   unsigned char data;                            3235   unsigned char data;
3146   while (snd_rawmidi_transmit_peek(substream,    3236   while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
3147           if (snd_mychip_try_to_transmit(data    3237           if (snd_mychip_try_to_transmit(data))
3148                   snd_rawmidi_transmit_ack(su    3238                   snd_rawmidi_transmit_ack(substream, 1);
3149           else                                   3239           else
3150                   break; /* hardware FIFO ful    3240                   break; /* hardware FIFO full */
3151   }                                              3241   }
3152                                                  3242 
3153 If you know beforehand that the hardware will    3243 If you know beforehand that the hardware will accept data, you can use
3154 the :c:func:`snd_rawmidi_transmit()` function    3244 the :c:func:`snd_rawmidi_transmit()` function which reads some
3155 data and removes them from the buffer at once !! 3245 data and removes them from the buffer at once:
                                                   >> 3246 
                                                   >> 3247 ::
3156                                                  3248 
3157   while (snd_mychip_transmit_possible()) {       3249   while (snd_mychip_transmit_possible()) {
3158           unsigned char data;                    3250           unsigned char data;
3159           if (snd_rawmidi_transmit(substream,    3251           if (snd_rawmidi_transmit(substream, &data, 1) != 1)
3160                   break; /* no more data */      3252                   break; /* no more data */
3161           snd_mychip_transmit(data);             3253           snd_mychip_transmit(data);
3162   }                                              3254   }
3163                                                  3255 
3164 If you know beforehand how many bytes you can    3256 If you know beforehand how many bytes you can accept, you can use a
3165 buffer size greater than one with the ``snd_r !! 3257 buffer size greater than one with the
                                                   >> 3258 :c:func:`snd_rawmidi_transmit\*()` functions.
3166                                                  3259 
3167 The ``trigger`` callback must not sleep. If t    3260 The ``trigger`` callback must not sleep. If the hardware FIFO is full
3168 before the substream buffer has been emptied,    3261 before the substream buffer has been emptied, you have to continue
3169 transmitting data later, either in an interru    3262 transmitting data later, either in an interrupt handler, or with a
3170 timer if the hardware doesn't have a MIDI tra    3263 timer if the hardware doesn't have a MIDI transmit interrupt.
3171                                                  3264 
3172 The ``trigger`` callback is called with a zer    3265 The ``trigger`` callback is called with a zero ``up`` parameter when
3173 the transmission of data should be aborted.      3266 the transmission of data should be aborted.
3174                                                  3267 
3175 RawMIDI trigger callback for input substreams    3268 RawMIDI trigger callback for input substreams
3176 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    3269 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3177                                                  3270 
3178 ::                                               3271 ::
3179                                                  3272 
3180       static void snd_xxx_input_trigger(struc    3273       static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
3181                                                  3274 
3182                                                  3275 
3183 This is called with a nonzero ``up`` paramete    3276 This is called with a nonzero ``up`` parameter to enable receiving data,
3184 or with a zero ``up`` parameter do disable re    3277 or with a zero ``up`` parameter do disable receiving data.
3185                                                  3278 
3186 The ``trigger`` callback must not sleep; the     3279 The ``trigger`` callback must not sleep; the actual reading of data
3187 from the device is usually done in an interru    3280 from the device is usually done in an interrupt handler.
3188                                                  3281 
3189 When data reception is enabled, your interrup    3282 When data reception is enabled, your interrupt handler should call
3190 :c:func:`snd_rawmidi_receive()` for all recei !! 3283 :c:func:`snd_rawmidi_receive()` for all received data:
                                                   >> 3284 
                                                   >> 3285 ::
3191                                                  3286 
3192   void snd_mychip_midi_interrupt(...)            3287   void snd_mychip_midi_interrupt(...)
3193   {                                              3288   {
3194           while (mychip_midi_available()) {      3289           while (mychip_midi_available()) {
3195                   unsigned char data;            3290                   unsigned char data;
3196                   data = mychip_midi_read();     3291                   data = mychip_midi_read();
3197                   snd_rawmidi_receive(substre    3292                   snd_rawmidi_receive(substream, &data, 1);
3198           }                                      3293           }
3199   }                                              3294   }
3200                                                  3295 
3201                                                  3296 
3202 drain callback                                   3297 drain callback
3203 ~~~~~~~~~~~~~~                                   3298 ~~~~~~~~~~~~~~
3204                                                  3299 
3205 ::                                               3300 ::
3206                                                  3301 
3207       static void snd_xxx_drain(struct snd_ra    3302       static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
3208                                                  3303 
3209                                                  3304 
3210 This is only used with output substreams. Thi    3305 This is only used with output substreams. This function should wait
3211 until all data read from the substream buffer    3306 until all data read from the substream buffer have been transmitted.
3212 This ensures that the device can be closed an    3307 This ensures that the device can be closed and the driver unloaded
3213 without losing data.                             3308 without losing data.
3214                                                  3309 
3215 This callback is optional. If you do not set     3310 This callback is optional. If you do not set ``drain`` in the struct
3216 snd_rawmidi_ops structure, ALSA will simply w !! 3311 snd_rawmidi_ops structure, ALSA will simply wait for 50 milliseconds
3217 instead.                                         3312 instead.
3218                                                  3313 
3219 Miscellaneous Devices                            3314 Miscellaneous Devices
3220 =====================                            3315 =====================
3221                                                  3316 
3222 FM OPL3                                          3317 FM OPL3
3223 -------                                          3318 -------
3224                                                  3319 
3225 The FM OPL3 is still used in many chips (main    3320 The FM OPL3 is still used in many chips (mainly for backward
3226 compatibility). ALSA has a nice OPL3 FM contr    3321 compatibility). ALSA has a nice OPL3 FM control layer, too. The OPL3 API
3227 is defined in ``<sound/opl3.h>``.                3322 is defined in ``<sound/opl3.h>``.
3228                                                  3323 
3229 FM registers can be directly accessed through    3324 FM registers can be directly accessed through the direct-FM API, defined
3230 in ``<sound/asound_fm.h>``. In ALSA native mo    3325 in ``<sound/asound_fm.h>``. In ALSA native mode, FM registers are
3231 accessed through the Hardware-Dependent Devic    3326 accessed through the Hardware-Dependent Device direct-FM extension API,
3232 whereas in OSS compatible mode, FM registers     3327 whereas in OSS compatible mode, FM registers can be accessed with the
3233 OSS direct-FM compatible API in ``/dev/dmfmX`    3328 OSS direct-FM compatible API in ``/dev/dmfmX`` device.
3234                                                  3329 
3235 To create the OPL3 component, you have two fu    3330 To create the OPL3 component, you have two functions to call. The first
3236 one is a constructor for the ``opl3_t`` insta !! 3331 one is a constructor for the ``opl3_t`` instance.
                                                   >> 3332 
                                                   >> 3333 ::
3237                                                  3334 
3238   struct snd_opl3 *opl3;                         3335   struct snd_opl3 *opl3;
3239   snd_opl3_create(card, lport, rport, OPL3_HW    3336   snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
3240                   integrated, &opl3);            3337                   integrated, &opl3);
3241                                                  3338 
3242 The first argument is the card pointer, the s    3339 The first argument is the card pointer, the second one is the left port
3243 address, and the third is the right port addr    3340 address, and the third is the right port address. In most cases, the
3244 right port is placed at the left port + 2.       3341 right port is placed at the left port + 2.
3245                                                  3342 
3246 The fourth argument is the hardware type.        3343 The fourth argument is the hardware type.
3247                                                  3344 
3248 When the left and right ports have been alrea    3345 When the left and right ports have been already allocated by the card
3249 driver, pass non-zero to the fifth argument (    3346 driver, pass non-zero to the fifth argument (``integrated``). Otherwise,
3250 the opl3 module will allocate the specified p    3347 the opl3 module will allocate the specified ports by itself.
3251                                                  3348 
3252 When the accessing the hardware requires spec    3349 When the accessing the hardware requires special method instead of the
3253 standard I/O access, you can create opl3 inst    3350 standard I/O access, you can create opl3 instance separately with
3254 :c:func:`snd_opl3_new()`::                    !! 3351 :c:func:`snd_opl3_new()`.
                                                   >> 3352 
                                                   >> 3353 ::
3255                                                  3354 
3256   struct snd_opl3 *opl3;                         3355   struct snd_opl3 *opl3;
3257   snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3)    3356   snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
3258                                                  3357 
3259 Then set ``command``, ``private_data`` and ``    3358 Then set ``command``, ``private_data`` and ``private_free`` for the
3260 private access function, the private data and    3359 private access function, the private data and the destructor. The
3261 ``l_port`` and ``r_port`` are not necessarily    3360 ``l_port`` and ``r_port`` are not necessarily set. Only the command
3262 must be set properly. You can retrieve the da    3361 must be set properly. You can retrieve the data from the
3263 ``opl3->private_data`` field.                    3362 ``opl3->private_data`` field. 
3264                                                  3363 
3265 After creating the opl3 instance via :c:func:    3364 After creating the opl3 instance via :c:func:`snd_opl3_new()`,
3266 call :c:func:`snd_opl3_init()` to initialize     3365 call :c:func:`snd_opl3_init()` to initialize the chip to the
3267 proper state. Note that :c:func:`snd_opl3_cre    3366 proper state. Note that :c:func:`snd_opl3_create()` always calls
3268 it internally.                                   3367 it internally.
3269                                                  3368 
3270 If the opl3 instance is created successfully,    3369 If the opl3 instance is created successfully, then create a hwdep device
3271 for this opl3::                               !! 3370 for this opl3.
                                                   >> 3371 
                                                   >> 3372 ::
3272                                                  3373 
3273   struct snd_hwdep *opl3hwdep;                   3374   struct snd_hwdep *opl3hwdep;
3274   snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);    3375   snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
3275                                                  3376 
3276 The first argument is the ``opl3_t`` instance    3377 The first argument is the ``opl3_t`` instance you created, and the
3277 second is the index number, usually 0.           3378 second is the index number, usually 0.
3278                                                  3379 
3279 The third argument is the index-offset for th    3380 The third argument is the index-offset for the sequencer client assigned
3280 to the OPL3 port. When there is an MPU401-UAR    3381 to the OPL3 port. When there is an MPU401-UART, give 1 for here (UART
3281 always takes 0).                                 3382 always takes 0).
3282                                                  3383 
3283 Hardware-Dependent Devices                       3384 Hardware-Dependent Devices
3284 --------------------------                       3385 --------------------------
3285                                                  3386 
3286 Some chips need user-space access for special    3387 Some chips need user-space access for special controls or for loading
3287 the micro code. In such a case, you can creat    3388 the micro code. In such a case, you can create a hwdep
3288 (hardware-dependent) device. The hwdep API is    3389 (hardware-dependent) device. The hwdep API is defined in
3289 ``<sound/hwdep.h>``. You can find examples in    3390 ``<sound/hwdep.h>``. You can find examples in opl3 driver or
3290 ``isa/sb/sb16_csp.c``.                           3391 ``isa/sb/sb16_csp.c``.
3291                                                  3392 
3292 The creation of the ``hwdep`` instance is don    3393 The creation of the ``hwdep`` instance is done via
3293 :c:func:`snd_hwdep_new()`::                   !! 3394 :c:func:`snd_hwdep_new()`.
                                                   >> 3395 
                                                   >> 3396 ::
3294                                                  3397 
3295   struct snd_hwdep *hw;                          3398   struct snd_hwdep *hw;
3296   snd_hwdep_new(card, "My HWDEP", 0, &hw);       3399   snd_hwdep_new(card, "My HWDEP", 0, &hw);
3297                                                  3400 
3298 where the third argument is the index number.    3401 where the third argument is the index number.
3299                                                  3402 
3300 You can then pass any pointer value to the ``    3403 You can then pass any pointer value to the ``private_data``. If you
3301 assign private data, you should define a dest !! 3404 assign a private data, you should define the destructor, too. The
3302 destructor function is set in the ``private_f !! 3405 destructor function is set in the ``private_free`` field.
                                                   >> 3406 
                                                   >> 3407 ::
3303                                                  3408 
3304   struct mydata *p = kmalloc(sizeof(*p), GFP_    3409   struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
3305   hw->private_data = p;                          3410   hw->private_data = p;
3306   hw->private_free = mydata_free;                3411   hw->private_free = mydata_free;
3307                                                  3412 
3308 and the implementation of the destructor woul !! 3413 and the implementation of the destructor would be:
                                                   >> 3414 
                                                   >> 3415 ::
3309                                                  3416 
3310   static void mydata_free(struct snd_hwdep *h    3417   static void mydata_free(struct snd_hwdep *hw)
3311   {                                              3418   {
3312           struct mydata *p = hw->private_data    3419           struct mydata *p = hw->private_data;
3313           kfree(p);                              3420           kfree(p);
3314   }                                              3421   }
3315                                                  3422 
3316 The arbitrary file operations can be defined     3423 The arbitrary file operations can be defined for this instance. The file
3317 operators are defined in the ``ops`` table. F    3424 operators are defined in the ``ops`` table. For example, assume that
3318 this chip needs an ioctl::                    !! 3425 this chip needs an ioctl.
                                                   >> 3426 
                                                   >> 3427 ::
3319                                                  3428 
3320   hw->ops.open = mydata_open;                    3429   hw->ops.open = mydata_open;
3321   hw->ops.ioctl = mydata_ioctl;                  3430   hw->ops.ioctl = mydata_ioctl;
3322   hw->ops.release = mydata_release;              3431   hw->ops.release = mydata_release;
3323                                                  3432 
3324 And implement the callback functions as you l    3433 And implement the callback functions as you like.
3325                                                  3434 
3326 IEC958 (S/PDIF)                                  3435 IEC958 (S/PDIF)
3327 ---------------                                  3436 ---------------
3328                                                  3437 
3329 Usually the controls for IEC958 devices are i    3438 Usually the controls for IEC958 devices are implemented via the control
3330 interface. There is a macro to compose a name    3439 interface. There is a macro to compose a name string for IEC958
3331 controls, :c:func:`SNDRV_CTL_NAME_IEC958()` d    3440 controls, :c:func:`SNDRV_CTL_NAME_IEC958()` defined in
3332 ``<include/asound.h>``.                          3441 ``<include/asound.h>``.
3333                                                  3442 
3334 There are some standard controls for IEC958 s    3443 There are some standard controls for IEC958 status bits. These controls
3335 use the type ``SNDRV_CTL_ELEM_TYPE_IEC958``,     3444 use the type ``SNDRV_CTL_ELEM_TYPE_IEC958``, and the size of element is
3336 fixed as 4 bytes array (value.iec958.status[x    3445 fixed as 4 bytes array (value.iec958.status[x]). For the ``info``
3337 callback, you don't specify the value field f    3446 callback, you don't specify the value field for this type (the count
3338 field must be set, though).                      3447 field must be set, though).
3339                                                  3448 
3340 “IEC958 Playback Con Mask” is used to ret    3449 “IEC958 Playback Con Mask” is used to return the bit-mask for the IEC958
3341 status bits of consumer mode. Similarly, “I    3450 status bits of consumer mode. Similarly, “IEC958 Playback Pro Mask”
3342 returns the bitmask for professional mode. Th !! 3451 returns the bitmask for professional mode. They are read-only controls,
                                                   >> 3452 and are defined as MIXER controls (iface =
                                                   >> 3453 ``SNDRV_CTL_ELEM_IFACE_MIXER``).
3343                                                  3454 
3344 Meanwhile, “IEC958 Playback Default” cont    3455 Meanwhile, “IEC958 Playback Default” control is defined for getting and
3345 setting the current default IEC958 bits.      !! 3456 setting the current default IEC958 bits. Note that this one is usually
3346                                               !! 3457 defined as a PCM control (iface = ``SNDRV_CTL_ELEM_IFACE_PCM``),
3347 Due to historical reasons, both variants of t !! 3458 although in some places it's defined as a MIXER control.
3348 Playback Default controls can be implemented  << 
3349 ``SNDRV_CTL_ELEM_IFACE_PCM`` or a ``SNDRV_CTL << 
3350 Drivers should expose the mask and default on << 
3351                                                  3459 
3352 In addition, you can define the control switc    3460 In addition, you can define the control switches to enable/disable or to
3353 set the raw bit mode. The implementation will    3461 set the raw bit mode. The implementation will depend on the chip, but
3354 the control should be named as “IEC958 xxx    3462 the control should be named as “IEC958 xxx”, preferably using the
3355 :c:func:`SNDRV_CTL_NAME_IEC958()` macro.         3463 :c:func:`SNDRV_CTL_NAME_IEC958()` macro.
3356                                                  3464 
3357 You can find several cases, for example, ``pc    3465 You can find several cases, for example, ``pci/emu10k1``,
3358 ``pci/ice1712``, or ``pci/cmipci.c``.            3466 ``pci/ice1712``, or ``pci/cmipci.c``.
3359                                                  3467 
3360 Buffer and Memory Management                     3468 Buffer and Memory Management
3361 ============================                     3469 ============================
3362                                                  3470 
3363 Buffer Types                                     3471 Buffer Types
3364 ------------                                     3472 ------------
3365                                                  3473 
3366 ALSA provides several different buffer alloca    3474 ALSA provides several different buffer allocation functions depending on
3367 the bus and the architecture. All these have     3475 the bus and the architecture. All these have a consistent API. The
3368 allocation of physically-contiguous pages is  !! 3476 allocation of physically-contiguous pages is done via
3369 :c:func:`snd_malloc_xxx_pages()` function, wh    3477 :c:func:`snd_malloc_xxx_pages()` function, where xxx is the bus
3370 type.                                            3478 type.
3371                                                  3479 
3372 The allocation of pages with fallback is done !! 3480 The allocation of pages with fallback is
3373 :c:func:`snd_dma_alloc_pages_fallback()`. Thi !! 3481 :c:func:`snd_malloc_xxx_pages_fallback()`. This function tries
3374 to allocate the specified number of pages, bu !! 3482 to allocate the specified pages but if the pages are not available, it
3375 available, it tries to reduce the request siz !! 3483 tries to reduce the page sizes until enough space is found.
3376 is found, down to one page.                   << 
3377                                                  3484 
3378 To release the pages, call the :c:func:`snd_d !! 3485 The release the pages, call :c:func:`snd_free_xxx_pages()`
3379 function.                                        3486 function.
3380                                                  3487 
3381 Usually, ALSA drivers try to allocate and res    3488 Usually, ALSA drivers try to allocate and reserve a large contiguous
3382 physical space at the time the module is load !! 3489 physical space at the time the module is loaded for the later use. This
3383 is called “pre-allocation”. As already wr    3490 is called “pre-allocation”. As already written, you can call the
3384 following function at PCM instance constructi !! 3491 following function at pcm instance construction time (in the case of PCI
3385 bus)::                                        !! 3492 bus).
                                                   >> 3493 
                                                   >> 3494 ::
3386                                                  3495 
3387   snd_pcm_lib_preallocate_pages_for_all(pcm,     3496   snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
3388                                         &pci- !! 3497                                         snd_dma_pci_data(pci), size, max);
3389                                                  3498 
3390 where ``size`` is the byte size to be pre-all !! 3499 where ``size`` is the byte size to be pre-allocated and the ``max`` is
3391 the maximum size settable via the ``prealloc` !! 3500 the maximum size to be changed via the ``prealloc`` proc file. The
3392 allocator will try to get an area as large as    3501 allocator will try to get an area as large as possible within the
3393 given size.                                      3502 given size.
3394                                                  3503 
3395 The second argument (type) and the third argu    3504 The second argument (type) and the third argument (device pointer) are
3396 dependent on the bus. For normal devices, pas !! 3505 dependent on the bus. In the case of the ISA bus, pass
3397 (typically identical as ``card->dev``) to the !! 3506 :c:func:`snd_dma_isa_data()` as the third argument with
3398 ``SNDRV_DMA_TYPE_DEV`` type.                  !! 3507 ``SNDRV_DMA_TYPE_DEV`` type. For the continuous buffer unrelated to the
3399                                               !! 3508 bus can be pre-allocated with ``SNDRV_DMA_TYPE_CONTINUOUS`` type and the
3400 A continuous buffer unrelated to the          !! 3509 ``snd_dma_continuous_data(GFP_KERNEL)`` device pointer, where
3401 bus can be pre-allocated with ``SNDRV_DMA_TYP !! 3510 ``GFP_KERNEL`` is the kernel allocation flag to use. For the PCI
3402 You can pass NULL to the device pointer in th !! 3511 scatter-gather buffers, use ``SNDRV_DMA_TYPE_DEV_SG`` with
3403 default mode implying to allocate with the `` !! 3512 ``snd_dma_pci_data(pci)`` (see the `Non-Contiguous Buffers`_
3404 If you need a restricted (lower) address, set !! 3513 section).
3405 bits for the device, and pass the device poin << 
3406 device memory allocations.  For this type, it << 
3407 NULL to the device pointer, too, if no addres << 
3408                                               << 
3409 For the scatter-gather buffers, use ``SNDRV_D << 
3410 device pointer (see the `Non-Contiguous Buffe << 
3411                                                  3514 
3412 Once the buffer is pre-allocated, you can use    3515 Once the buffer is pre-allocated, you can use the allocator in the
3413 ``hw_params`` callback::                      !! 3516 ``hw_params`` callback:
                                                   >> 3517 
                                                   >> 3518 ::
3414                                                  3519 
3415   snd_pcm_lib_malloc_pages(substream, size);     3520   snd_pcm_lib_malloc_pages(substream, size);
3416                                                  3521 
3417 Note that you have to pre-allocate to use thi    3522 Note that you have to pre-allocate to use this function.
3418                                                  3523 
3419 But most drivers use the "managed buffer allo << 
3420 of manual allocation and release.             << 
3421 This is done by calling :c:func:`snd_pcm_set_ << 
3422 instead of :c:func:`snd_pcm_lib_preallocate_p << 
3423                                               << 
3424   snd_pcm_set_managed_buffer_all(pcm, SNDRV_D << 
3425                                  &pci->dev, s << 
3426                                               << 
3427 where the passed arguments are identical for  << 
3428 The difference in the managed mode is that PC << 
3429 :c:func:`snd_pcm_lib_malloc_pages()` internal << 
3430 the PCM ``hw_params`` callback, and call :c:f << 
3431 after the PCM ``hw_free`` callback automatica << 
3432 doesn't have to call these functions explicit << 
3433 longer.  This allows many drivers to have NUL << 
3434 ``hw_free`` entries.                          << 
3435                                               << 
3436 External Hardware Buffers                        3524 External Hardware Buffers
3437 -------------------------                        3525 -------------------------
3438                                                  3526 
3439 Some chips have their own hardware buffers an !! 3527 Some chips have their own hardware buffers and the DMA transfer from the
3440 host memory is not available. In such a case,    3528 host memory is not available. In such a case, you need to either 1)
3441 copy/set the audio data directly to the exter    3529 copy/set the audio data directly to the external hardware buffer, or 2)
3442 make an intermediate buffer and copy/set the     3530 make an intermediate buffer and copy/set the data from it to the
3443 external hardware buffer in interrupts (or in    3531 external hardware buffer in interrupts (or in tasklets, preferably).
3444                                                  3532 
3445 The first case works fine if the external har    3533 The first case works fine if the external hardware buffer is large
3446 enough. This method doesn't need any extra bu    3534 enough. This method doesn't need any extra buffers and thus is more
3447 efficient. You need to define the ``copy`` ca !! 3535 effective. You need to define the ``copy_user`` and ``copy_kernel``
3448 for the data transfer, in addition to the ``f !! 3536 callbacks for the data transfer, in addition to ``fill_silence``
3449 callback for playback. However, there is a dr    3537 callback for playback. However, there is a drawback: it cannot be
3450 mmapped. The examples are GUS's GF1 PCM or em    3538 mmapped. The examples are GUS's GF1 PCM or emu8000's wavetable PCM.
3451                                                  3539 
3452 The second case allows for mmap on the buffer    3540 The second case allows for mmap on the buffer, although you have to
3453 handle an interrupt or a tasklet to transfer     3541 handle an interrupt or a tasklet to transfer the data from the
3454 intermediate buffer to the hardware buffer. Y    3542 intermediate buffer to the hardware buffer. You can find an example in
3455 the vxpocket driver.                             3543 the vxpocket driver.
3456                                                  3544 
3457 Another case is when the chip uses a PCI memo    3545 Another case is when the chip uses a PCI memory-map region for the
3458 buffer instead of the host memory. In this ca    3546 buffer instead of the host memory. In this case, mmap is available only
3459 on certain architectures like the Intel one.     3547 on certain architectures like the Intel one. In non-mmap mode, the data
3460 cannot be transferred as in the normal way. T    3548 cannot be transferred as in the normal way. Thus you need to define the
3461 ``copy`` and ``fill_silence`` callbacks as we !! 3549 ``copy_user``, ``copy_kernel`` and ``fill_silence`` callbacks as well,
3462 as in the cases above. Examples are found in  !! 3550 as in the cases above. The examples are found in ``rme32.c`` and
3463 ``rme96.c``.                                     3551 ``rme96.c``.
3464                                                  3552 
3465 The implementation of the ``copy`` and        !! 3553 The implementation of the ``copy_user``, ``copy_kernel`` and
3466 ``silence`` callbacks depends upon whether th    3554 ``silence`` callbacks depends upon whether the hardware supports
3467 interleaved or non-interleaved samples. The ` !! 3555 interleaved or non-interleaved samples. The ``copy_user`` callback is
3468 defined like below, a bit differently dependi !! 3556 defined like below, a bit differently depending whether the direction
3469 is playback or capture::                      !! 3557 is playback or capture:
                                                   >> 3558 
                                                   >> 3559 ::
3470                                                  3560 
3471   static int playback_copy(struct snd_pcm_sub !! 3561   static int playback_copy_user(struct snd_pcm_substream *substream,
3472                int channel, unsigned long pos    3562                int channel, unsigned long pos,
3473                struct iov_iter *src, unsigned !! 3563                void __user *src, unsigned long count);
3474   static int capture_copy(struct snd_pcm_subs !! 3564   static int capture_copy_user(struct snd_pcm_substream *substream,
3475                int channel, unsigned long pos    3565                int channel, unsigned long pos,
3476                struct iov_iter *dst, unsigned !! 3566                void __user *dst, unsigned long count);
3477                                                  3567 
3478 In the case of interleaved samples, the secon    3568 In the case of interleaved samples, the second argument (``channel``) is
3479 not used. The third argument (``pos``) specif !! 3569 not used. The third argument (``pos``) points the current position
                                                   >> 3570 offset in bytes.
3480                                                  3571 
3481 The meaning of the fourth argument is differe    3572 The meaning of the fourth argument is different between playback and
3482 capture. For playback, it holds the source da    3573 capture. For playback, it holds the source data pointer, and for
3483 capture, it's the destination data pointer.      3574 capture, it's the destination data pointer.
3484                                                  3575 
3485 The last argument is the number of bytes to b    3576 The last argument is the number of bytes to be copied.
3486                                                  3577 
3487 What you have to do in this callback is again    3578 What you have to do in this callback is again different between playback
3488 and capture directions. In the playback case,    3579 and capture directions. In the playback case, you copy the given amount
3489 of data (``count``) at the specified pointer     3580 of data (``count``) at the specified pointer (``src``) to the specified
3490 offset (``pos``) in the hardware buffer. When !! 3581 offset (``pos``) on the hardware buffer. When coded like memcpy-like
3491 way, the copy would look like::               !! 3582 way, the copy would be like:
3492                                                  3583 
3493   my_memcpy_from_iter(my_buffer + pos, src, c !! 3584 ::
                                                   >> 3585 
                                                   >> 3586   my_memcpy_from_user(my_buffer + pos, src, count);
3494                                                  3587 
3495 For the capture direction, you copy the given    3588 For the capture direction, you copy the given amount of data (``count``)
3496 at the specified offset (``pos``) in the hard !! 3589 at the specified offset (``pos``) on the hardware buffer to the
3497 specified pointer (``dst``)::                 !! 3590 specified pointer (``dst``).
                                                   >> 3591 
                                                   >> 3592 ::
3498                                                  3593 
3499   my_memcpy_to_iter(dst, my_buffer + pos, cou !! 3594   my_memcpy_to_user(dst, my_buffer + pos, count);
3500                                                  3595 
3501 The given ``src`` or ``dst`` a struct iov_ite !! 3596 Here the functions are named as ``from_user`` and ``to_user`` because
3502 pointer and the size.  Use the existing helpe !! 3597 it's the user-space buffer that is passed to these callbacks.  That
3503 data as defined in ``linux/uio.h``.           !! 3598 is, the callback is supposed to copy from/to the user-space data
                                                   >> 3599 directly to/from the hardware buffer.
3504                                                  3600 
3505 Careful readers might notice that these callb    3601 Careful readers might notice that these callbacks receive the
3506 arguments in bytes, not in frames like other     3602 arguments in bytes, not in frames like other callbacks.  It's because
3507 this makes coding easier like in the examples !! 3603 it would make coding easier like the examples above, and also it makes
3508 it easier to unify both the interleaved and n !! 3604 easier to unify both the interleaved and non-interleaved cases, as
3509 explained below.                              !! 3605 explained in the following.
3510                                                  3606 
3511 In the case of non-interleaved samples, the i    3607 In the case of non-interleaved samples, the implementation will be a bit
3512 more complicated.  The callback is called for !! 3608 more complicated.  The callback is called for each channel, passed by
3513 the second argument, so in total it's called  !! 3609 the second argument, so totally it's called for N-channels times per
                                                   >> 3610 transfer.
                                                   >> 3611 
                                                   >> 3612 The meaning of other arguments are almost same as the interleaved
                                                   >> 3613 case.  The callback is supposed to copy the data from/to the given
                                                   >> 3614 user-space buffer, but only for the given channel.  For the detailed
                                                   >> 3615 implementations, please check ``isa/gus/gus_pcm.c`` or
                                                   >> 3616 "pci/rme9652/rme9652.c" as examples.
                                                   >> 3617 
                                                   >> 3618 The above callbacks are the copy from/to the user-space buffer.  There
                                                   >> 3619 are some cases where we want copy from/to the kernel-space buffer
                                                   >> 3620 instead.  In such a case, ``copy_kernel`` callback is called.  It'd
                                                   >> 3621 look like:
                                                   >> 3622 
                                                   >> 3623 ::
                                                   >> 3624 
                                                   >> 3625   static int playback_copy_kernel(struct snd_pcm_substream *substream,
                                                   >> 3626                int channel, unsigned long pos,
                                                   >> 3627                void *src, unsigned long count);
                                                   >> 3628   static int capture_copy_kernel(struct snd_pcm_substream *substream,
                                                   >> 3629                int channel, unsigned long pos,
                                                   >> 3630                void *dst, unsigned long count);
                                                   >> 3631 
                                                   >> 3632 As found easily, the only difference is that the buffer pointer is
                                                   >> 3633 without ``__user`` prefix; that is, a kernel-buffer pointer is passed
                                                   >> 3634 in the fourth argument.  Correspondingly, the implementation would be
                                                   >> 3635 a version without the user-copy, such as:
                                                   >> 3636 
                                                   >> 3637 ::
3514                                                  3638 
3515 The meaning of the other arguments are almost !! 3639   my_memcpy(my_buffer + pos, src, count);
3516 interleaved case.  The callback is supposed t << 
3517 the given user-space buffer, but only for the << 
3518 details, please check ``isa/gus/gus_pcm.c`` o << 
3519 as examples.                                  << 
3520                                                  3640 
3521 Usually for the playback, another callback ``    3641 Usually for the playback, another callback ``fill_silence`` is
3522 defined.  It's implemented in a similar way a    3642 defined.  It's implemented in a similar way as the copy callbacks
3523 above::                                       !! 3643 above:
                                                   >> 3644 
                                                   >> 3645 ::
3524                                                  3646 
3525   static int silence(struct snd_pcm_substream    3647   static int silence(struct snd_pcm_substream *substream, int channel,
3526                      unsigned long pos, unsig    3648                      unsigned long pos, unsigned long count);
3527                                                  3649 
3528 The meanings of arguments are the same as in  !! 3650 The meanings of arguments are the same as in the ``copy_user`` and
3529 although there is no buffer pointer           !! 3651 ``copy_kernel`` callbacks, although there is no buffer pointer
3530 argument. In the case of interleaved samples,    3652 argument. In the case of interleaved samples, the channel argument has
3531 no meaning, as for the ``copy`` callback.     !! 3653 no meaning, as well as on ``copy_*`` callbacks.
3532                                                  3654 
3533 The role of the ``fill_silence`` callback is  !! 3655 The role of ``fill_silence`` callback is to set the given amount
3534 (``count``) of silence data at the specified  !! 3656 (``count``) of silence data at the specified offset (``pos``) on the
3535 hardware buffer. Suppose that the data format    3657 hardware buffer. Suppose that the data format is signed (that is, the
3536 silent-data is 0), and the implementation usi    3658 silent-data is 0), and the implementation using a memset-like function
3537 would look like::                             !! 3659 would be like: 
                                                   >> 3660 
                                                   >> 3661 ::
3538                                                  3662 
3539   my_memset(my_buffer + pos, 0, count);          3663   my_memset(my_buffer + pos, 0, count);
3540                                                  3664 
3541 In the case of non-interleaved samples, again    3665 In the case of non-interleaved samples, again, the implementation
3542 becomes a bit more complicated, as it's calle !! 3666 becomes a bit more complicated, as it's called N-times per transfer
3543 for each channel. See, for example, ``isa/gus    3667 for each channel. See, for example, ``isa/gus/gus_pcm.c``.
3544                                                  3668 
3545 Non-Contiguous Buffers                           3669 Non-Contiguous Buffers
3546 ----------------------                           3670 ----------------------
3547                                                  3671 
3548 If your hardware supports a page table as in  !! 3672 If your hardware supports the page table as in emu10k1 or the buffer
3549 descriptors as in via82xx, you can use scatte !! 3673 descriptors as in via82xx, you can use the scatter-gather (SG) DMA. ALSA
3550 provides an interface for handling SG-buffers    3674 provides an interface for handling SG-buffers. The API is provided in
3551 ``<sound/pcm.h>``.                               3675 ``<sound/pcm.h>``.
3552                                                  3676 
3553 For creating the SG-buffer handler, call         3677 For creating the SG-buffer handler, call
3554 :c:func:`snd_pcm_set_managed_buffer()` or     !! 3678 :c:func:`snd_pcm_lib_preallocate_pages()` or
3555 :c:func:`snd_pcm_set_managed_buffer_all()` wi !! 3679 :c:func:`snd_pcm_lib_preallocate_pages_for_all()` with
3556 ``SNDRV_DMA_TYPE_DEV_SG`` in the PCM construc !! 3680 ``SNDRV_DMA_TYPE_DEV_SG`` in the PCM constructor like other PCI
3557 pre-allocations. You need to pass ``&pci->dev !! 3681 pre-allocator. You need to pass ``snd_dma_pci_data(pci)``, where pci is
3558 the struct pci_dev pointer of the chip as wel !! 3682 the :c:type:`struct pci_dev <pci_dev>` pointer of the chip as
3559                                               !! 3683 well. The ``struct snd_sg_buf`` instance is created as
3560   snd_pcm_set_managed_buffer_all(pcm, SNDRV_D !! 3684 ``substream->dma_private``. You can cast the pointer like:
3561                                  &pci->dev, s << 
3562                                                  3685 
3563 The ``struct snd_sg_buf`` instance is created !! 3686 ::
3564 ``substream->dma_private`` in turn. You can c << 
3565                                                  3687 
3566   struct snd_sg_buf *sgbuf = (struct snd_sg_b    3688   struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private;
3567                                                  3689 
3568 Then in the :c:func:`snd_pcm_lib_malloc_pages !! 3690 Then call :c:func:`snd_pcm_lib_malloc_pages()` in the ``hw_params``
                                                   >> 3691 callback as well as in the case of normal PCI buffer. The SG-buffer
3569 handler will allocate the non-contiguous kern    3692 handler will allocate the non-contiguous kernel pages of the given size
3570 and map them as virtually contiguous memory.  !! 3693 and map them onto the virtually contiguous memory. The virtual pointer
3571 is addressed via runtime->dma_area. The physi !! 3694 is addressed in runtime->dma_area. The physical address
3572 (``runtime->dma_addr``) is set to zero, becau    3695 (``runtime->dma_addr``) is set to zero, because the buffer is
3573 physically non-contiguous. The physical addre    3696 physically non-contiguous. The physical address table is set up in
3574 ``sgbuf->table``. You can get the physical ad    3697 ``sgbuf->table``. You can get the physical address at a certain offset
3575 via :c:func:`snd_pcm_sgbuf_get_addr()`.          3698 via :c:func:`snd_pcm_sgbuf_get_addr()`.
3576                                                  3699 
3577 If you need to release the SG-buffer data exp !! 3700 When a SG-handler is used, you need to set
3578 standard API function :c:func:`snd_pcm_lib_fr !! 3701 :c:func:`snd_pcm_sgbuf_ops_page()` as the ``page`` callback. (See
                                                   >> 3702 `page callback`_ section.)
                                                   >> 3703 
                                                   >> 3704 To release the data, call :c:func:`snd_pcm_lib_free_pages()` in
                                                   >> 3705 the ``hw_free`` callback as usual.
3579                                                  3706 
3580 Vmalloc'ed Buffers                               3707 Vmalloc'ed Buffers
3581 ------------------                               3708 ------------------
3582                                                  3709 
3583 It's possible to use a buffer allocated via :    3710 It's possible to use a buffer allocated via :c:func:`vmalloc()`, for
3584 example, for an intermediate buffer.          !! 3711 example, for an intermediate buffer. Since the allocated pages are not
3585 You can simply allocate it via the standard   !! 3712 contiguous, you need to set the ``page`` callback to obtain the physical
3586 :c:func:`snd_pcm_lib_malloc_pages()` and co.  !! 3713 address at every offset.
3587 buffer preallocation with ``SNDRV_DMA_TYPE_VM !! 3714 
3588                                               !! 3715 The implementation of ``page`` callback would be like this:
3589   snd_pcm_set_managed_buffer_all(pcm, SNDRV_D !! 3716 
3590                                  NULL, 0, 0); !! 3717 ::
3591                                               !! 3718 
3592 NULL is passed as the device pointer argument !! 3719   #include <linux/vmalloc.h>
3593 that default pages (GFP_KERNEL and GFP_HIGHME !! 3720 
3594 allocated.                                    !! 3721   /* get the physical page pointer on the given offset */
3595                                               !! 3722   static struct page *mychip_page(struct snd_pcm_substream *substream,
3596 Also, note that zero is passed as both the si !! 3723                                   unsigned long offset)
3597 argument here.  Since each vmalloc call shoul !! 3724   {
3598 we don't need to pre-allocate the buffers lik !! 3725           void *pageptr = substream->runtime->dma_area + offset;
3599 pages.                                        !! 3726           return vmalloc_to_page(pageptr);
                                                   >> 3727   }
3600                                                  3728 
3601 Proc Interface                                   3729 Proc Interface
3602 ==============                                   3730 ==============
3603                                                  3731 
3604 ALSA provides an easy interface for procfs. T    3732 ALSA provides an easy interface for procfs. The proc files are very
3605 useful for debugging. I recommend you set up     3733 useful for debugging. I recommend you set up proc files if you write a
3606 driver and want to get a running status or re    3734 driver and want to get a running status or register dumps. The API is
3607 found in ``<sound/info.h>``.                     3735 found in ``<sound/info.h>``.
3608                                                  3736 
3609 To create a proc file, call :c:func:`snd_card !! 3737 To create a proc file, call :c:func:`snd_card_proc_new()`.
                                                   >> 3738 
                                                   >> 3739 ::
3610                                                  3740 
3611   struct snd_info_entry *entry;                  3741   struct snd_info_entry *entry;
3612   int err = snd_card_proc_new(card, "my-file"    3742   int err = snd_card_proc_new(card, "my-file", &entry);
3613                                                  3743 
3614 where the second argument specifies the name     3744 where the second argument specifies the name of the proc file to be
3615 created. The above example will create a file    3745 created. The above example will create a file ``my-file`` under the
3616 card directory, e.g. ``/proc/asound/card0/my-    3746 card directory, e.g. ``/proc/asound/card0/my-file``.
3617                                                  3747 
3618 Like other components, the proc entry created    3748 Like other components, the proc entry created via
3619 :c:func:`snd_card_proc_new()` will be registe    3749 :c:func:`snd_card_proc_new()` will be registered and released
3620 automatically in the card registration and re    3750 automatically in the card registration and release functions.
3621                                                  3751 
3622 When the creation is successful, the function    3752 When the creation is successful, the function stores a new instance in
3623 the pointer given in the third argument. It i    3753 the pointer given in the third argument. It is initialized as a text
3624 proc file for read only. To use this proc fil    3754 proc file for read only. To use this proc file as a read-only text file
3625 as-is, set the read callback with private dat !! 3755 as it is, set the read callback with a private data via
3626 :c:func:`snd_info_set_text_ops()`::           !! 3756 :c:func:`snd_info_set_text_ops()`.
                                                   >> 3757 
                                                   >> 3758 ::
3627                                                  3759 
3628   snd_info_set_text_ops(entry, chip, my_proc_    3760   snd_info_set_text_ops(entry, chip, my_proc_read);
3629                                                  3761 
3630 where the second argument (``chip``) is the p    3762 where the second argument (``chip``) is the private data to be used in
3631 the callback. The third parameter specifies t !! 3763 the callbacks. The third parameter specifies the read buffer size and
3632 the fourth (``my_proc_read``) is the callback    3764 the fourth (``my_proc_read``) is the callback function, which is
3633 defined like::                                !! 3765 defined like
                                                   >> 3766 
                                                   >> 3767 ::
3634                                                  3768 
3635   static void my_proc_read(struct snd_info_en    3769   static void my_proc_read(struct snd_info_entry *entry,
3636                            struct snd_info_bu    3770                            struct snd_info_buffer *buffer);
3637                                                  3771 
3638 In the read callback, use :c:func:`snd_iprint    3772 In the read callback, use :c:func:`snd_iprintf()` for output
3639 strings, which works just like normal :c:func    3773 strings, which works just like normal :c:func:`printf()`. For
3640 example::                                     !! 3774 example,
                                                   >> 3775 
                                                   >> 3776 ::
3641                                                  3777 
3642   static void my_proc_read(struct snd_info_en    3778   static void my_proc_read(struct snd_info_entry *entry,
3643                            struct snd_info_bu    3779                            struct snd_info_buffer *buffer)
3644   {                                              3780   {
3645           struct my_chip *chip = entry->priva    3781           struct my_chip *chip = entry->private_data;
3646                                                  3782 
3647           snd_iprintf(buffer, "This is my chi    3783           snd_iprintf(buffer, "This is my chip!\n");
3648           snd_iprintf(buffer, "Port = %ld\n",    3784           snd_iprintf(buffer, "Port = %ld\n", chip->port);
3649   }                                              3785   }
3650                                                  3786 
3651 The file permissions can be changed afterward !! 3787 The file permissions can be changed afterwards. As default, it's set as
3652 read only for all users. If you want to add w    3788 read only for all users. If you want to add write permission for the
3653 user (root by default), do as follows::       !! 3789 user (root as default), do as follows:
                                                   >> 3790 
                                                   >> 3791 ::
3654                                                  3792 
3655  entry->mode = S_IFREG | S_IRUGO | S_IWUSR;      3793  entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
3656                                                  3794 
3657 and set the write buffer size and the callbac !! 3795 and set the write buffer size and the callback
                                                   >> 3796 
                                                   >> 3797 ::
3658                                                  3798 
3659   entry->c.text.write = my_proc_write;           3799   entry->c.text.write = my_proc_write;
3660                                                  3800 
3661 In the write callback, you can use :c:func:`s !! 3801 For the write callback, you can use :c:func:`snd_info_get_line()`
3662 to get a text line, and :c:func:`snd_info_get    3802 to get a text line, and :c:func:`snd_info_get_str()` to retrieve
3663 a string from the line. Some examples are fou    3803 a string from the line. Some examples are found in
3664 ``core/oss/mixer_oss.c``, core/oss/and ``pcm_    3804 ``core/oss/mixer_oss.c``, core/oss/and ``pcm_oss.c``.
3665                                                  3805 
3666 For a raw-data proc-file, set the attributes  !! 3806 For a raw-data proc-file, set the attributes as follows:
                                                   >> 3807 
                                                   >> 3808 ::
3667                                                  3809 
3668   static const struct snd_info_entry_ops my_f !! 3810   static struct snd_info_entry_ops my_file_io_ops = {
3669           .read = my_file_io_read,               3811           .read = my_file_io_read,
3670   };                                             3812   };
3671                                                  3813 
3672   entry->content = SNDRV_INFO_CONTENT_DATA;      3814   entry->content = SNDRV_INFO_CONTENT_DATA;
3673   entry->private_data = chip;                    3815   entry->private_data = chip;
3674   entry->c.ops = &my_file_io_ops;                3816   entry->c.ops = &my_file_io_ops;
3675   entry->size = 4096;                            3817   entry->size = 4096;
3676   entry->mode = S_IFREG | S_IRUGO;               3818   entry->mode = S_IFREG | S_IRUGO;
3677                                                  3819 
3678 For raw data, ``size`` field must be set prop !! 3820 For the raw data, ``size`` field must be set properly. This specifies
3679 the maximum size of the proc file access.        3821 the maximum size of the proc file access.
3680                                                  3822 
3681 The read/write callbacks of raw mode are more    3823 The read/write callbacks of raw mode are more direct than the text mode.
3682 You need to use a low-level I/O functions suc    3824 You need to use a low-level I/O functions such as
3683 :c:func:`copy_from_user()` and :c:func:`copy_ !! 3825 :c:func:`copy_from/to_user()` to transfer the data.
3684 data::                                        !! 3826 
                                                   >> 3827 ::
3685                                                  3828 
3686   static ssize_t my_file_io_read(struct snd_i    3829   static ssize_t my_file_io_read(struct snd_info_entry *entry,
3687                               void *file_priv    3830                               void *file_private_data,
3688                               struct file *fi    3831                               struct file *file,
3689                               char *buf,         3832                               char *buf,
3690                               size_t count,      3833                               size_t count,
3691                               loff_t pos)        3834                               loff_t pos)
3692   {                                              3835   {
3693           if (copy_to_user(buf, local_data +     3836           if (copy_to_user(buf, local_data + pos, count))
3694                   return -EFAULT;                3837                   return -EFAULT;
3695           return count;                          3838           return count;
3696   }                                              3839   }
3697                                                  3840 
3698 If the size of the info entry has been set up    3841 If the size of the info entry has been set up properly, ``count`` and
3699 ``pos`` are guaranteed to fit within 0 and th    3842 ``pos`` are guaranteed to fit within 0 and the given size. You don't
3700 have to check the range in the callbacks unle    3843 have to check the range in the callbacks unless any other condition is
3701 required.                                        3844 required.
3702                                                  3845 
3703 Power Management                                 3846 Power Management
3704 ================                                 3847 ================
3705                                                  3848 
3706 If the chip is supposed to work with suspend/    3849 If the chip is supposed to work with suspend/resume functions, you need
3707 to add power-management code to the driver. T    3850 to add power-management code to the driver. The additional code for
3708 power-management should be ifdef-ed with ``CO !! 3851 power-management should be ifdef-ed with ``CONFIG_PM``.
3709 with __maybe_unused attribute; otherwise the  << 
3710                                                  3852 
3711 If the driver *fully* supports suspend/resume    3853 If the driver *fully* supports suspend/resume that is, the device can be
3712 properly resumed to its state when suspend wa    3854 properly resumed to its state when suspend was called, you can set the
3713 ``SNDRV_PCM_INFO_RESUME`` flag in the PCM inf !! 3855 ``SNDRV_PCM_INFO_RESUME`` flag in the pcm info field. Usually, this is
3714 possible when the registers of the chip can b    3856 possible when the registers of the chip can be safely saved and restored
3715 to RAM. If this is set, the trigger callback     3857 to RAM. If this is set, the trigger callback is called with
3716 ``SNDRV_PCM_TRIGGER_RESUME`` after the resume    3858 ``SNDRV_PCM_TRIGGER_RESUME`` after the resume callback completes.
3717                                                  3859 
3718 Even if the driver doesn't support PM fully b    3860 Even if the driver doesn't support PM fully but partial suspend/resume
3719 is still possible, it's still worthy to imple    3861 is still possible, it's still worthy to implement suspend/resume
3720 callbacks. In such a case, applications would    3862 callbacks. In such a case, applications would reset the status by
3721 calling :c:func:`snd_pcm_prepare()` and resta    3863 calling :c:func:`snd_pcm_prepare()` and restart the stream
3722 appropriately. Hence, you can define suspend/    3864 appropriately. Hence, you can define suspend/resume callbacks below but
3723 don't set the ``SNDRV_PCM_INFO_RESUME`` info  !! 3865 don't set ``SNDRV_PCM_INFO_RESUME`` info flag to the PCM.
3724                                                  3866 
3725 Note that the trigger with SUSPEND can always    3867 Note that the trigger with SUSPEND can always be called when
3726 :c:func:`snd_pcm_suspend_all()` is called, re    3868 :c:func:`snd_pcm_suspend_all()` is called, regardless of the
3727 ``SNDRV_PCM_INFO_RESUME`` flag. The ``RESUME`    3869 ``SNDRV_PCM_INFO_RESUME`` flag. The ``RESUME`` flag affects only the
3728 behavior of :c:func:`snd_pcm_resume()`. (Thus    3870 behavior of :c:func:`snd_pcm_resume()`. (Thus, in theory,
3729 ``SNDRV_PCM_TRIGGER_RESUME`` isn't needed to     3871 ``SNDRV_PCM_TRIGGER_RESUME`` isn't needed to be handled in the trigger
3730 callback when no ``SNDRV_PCM_INFO_RESUME`` fl    3872 callback when no ``SNDRV_PCM_INFO_RESUME`` flag is set. But, it's better
3731 to keep it for compatibility reasons.)           3873 to keep it for compatibility reasons.)
3732                                                  3874 
3733 The driver needs to define the                !! 3875 In the earlier version of ALSA drivers, a common power-management layer
                                                   >> 3876 was provided, but it has been removed. The driver needs to define the
3734 suspend/resume hooks according to the bus the    3877 suspend/resume hooks according to the bus the device is connected to. In
3735 the case of PCI drivers, the callbacks look l !! 3878 the case of PCI drivers, the callbacks look like below:
3736                                                  3879 
3737   static int __maybe_unused snd_my_suspend(st !! 3880 ::
                                                   >> 3881 
                                                   >> 3882   #ifdef CONFIG_PM
                                                   >> 3883   static int snd_my_suspend(struct pci_dev *pci, pm_message_t state)
3738   {                                              3884   {
3739           .... /* do things for suspend */       3885           .... /* do things for suspend */
3740           return 0;                              3886           return 0;
3741   }                                              3887   }
3742   static int __maybe_unused snd_my_resume(str !! 3888   static int snd_my_resume(struct pci_dev *pci)
3743   {                                              3889   {
3744           .... /* do things for suspend */       3890           .... /* do things for suspend */
3745           return 0;                              3891           return 0;
3746   }                                              3892   }
                                                   >> 3893   #endif
3747                                                  3894 
3748 The scheme of the real suspend job is as foll !! 3895 The scheme of the real suspend job is as follows.
3749                                                  3896 
3750 1. Retrieve the card and the chip data.          3897 1. Retrieve the card and the chip data.
3751                                                  3898 
3752 2. Call :c:func:`snd_power_change_state()` wi    3899 2. Call :c:func:`snd_power_change_state()` with
3753    ``SNDRV_CTL_POWER_D3hot`` to change the po    3900    ``SNDRV_CTL_POWER_D3hot`` to change the power status.
3754                                                  3901 
3755 3. If AC97 codecs are used, call :c:func:`snd !! 3902 3. Call :c:func:`snd_pcm_suspend_all()` to suspend the running
                                                   >> 3903    PCM streams.
                                                   >> 3904 
                                                   >> 3905 4. If AC97 codecs are used, call :c:func:`snd_ac97_suspend()` for
3756    each codec.                                   3906    each codec.
3757                                                  3907 
3758 4. Save the register values if necessary.     !! 3908 5. Save the register values if necessary.
                                                   >> 3909 
                                                   >> 3910 6. Stop the hardware if necessary.
                                                   >> 3911 
                                                   >> 3912 7. Disable the PCI device by calling
                                                   >> 3913    :c:func:`pci_disable_device()`. Then, call
                                                   >> 3914    :c:func:`pci_save_state()` at last.
3759                                                  3915 
3760 5. Stop the hardware if necessary.            !! 3916 A typical code would be like:
3761                                                  3917 
3762 Typical code would look like::                !! 3918 ::
3763                                                  3919 
3764   static int __maybe_unused mychip_suspend(st !! 3920   static int mychip_suspend(struct pci_dev *pci, pm_message_t state)
3765   {                                              3921   {
3766           /* (1) */                              3922           /* (1) */
3767           struct snd_card *card = dev_get_drv !! 3923           struct snd_card *card = pci_get_drvdata(pci);
3768           struct mychip *chip = card->private    3924           struct mychip *chip = card->private_data;
3769           /* (2) */                              3925           /* (2) */
3770           snd_power_change_state(card, SNDRV_    3926           snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3771           /* (3) */                              3927           /* (3) */
3772           snd_ac97_suspend(chip->ac97);       !! 3928           snd_pcm_suspend_all(chip->pcm);
3773           /* (4) */                              3929           /* (4) */
3774           snd_mychip_save_registers(chip);    !! 3930           snd_ac97_suspend(chip->ac97);
3775           /* (5) */                              3931           /* (5) */
                                                   >> 3932           snd_mychip_save_registers(chip);
                                                   >> 3933           /* (6) */
3776           snd_mychip_stop_hardware(chip);        3934           snd_mychip_stop_hardware(chip);
                                                   >> 3935           /* (7) */
                                                   >> 3936           pci_disable_device(pci);
                                                   >> 3937           pci_save_state(pci);
3777           return 0;                              3938           return 0;
3778   }                                              3939   }
3779                                                  3940 
3780                                                  3941 
3781 The scheme of the real resume job is as follo !! 3942 The scheme of the real resume job is as follows.
3782                                                  3943 
3783 1. Retrieve the card and the chip data.          3944 1. Retrieve the card and the chip data.
3784                                                  3945 
3785 2. Re-initialize the chip.                    !! 3946 2. Set up PCI. First, call :c:func:`pci_restore_state()`. Then
                                                   >> 3947    enable the pci device again by calling
                                                   >> 3948    :c:func:`pci_enable_device()`. Call
                                                   >> 3949    :c:func:`pci_set_master()` if necessary, too.
                                                   >> 3950 
                                                   >> 3951 3. Re-initialize the chip.
3786                                                  3952 
3787 3. Restore the saved registers if necessary.  !! 3953 4. Restore the saved registers if necessary.
3788                                                  3954 
3789 4. Resume the mixer, e.g. by calling :c:func: !! 3955 5. Resume the mixer, e.g. calling :c:func:`snd_ac97_resume()`.
3790                                                  3956 
3791 5. Restart the hardware (if any).             !! 3957 6. Restart the hardware (if any).
3792                                                  3958 
3793 6. Call :c:func:`snd_power_change_state()` wi !! 3959 7. Call :c:func:`snd_power_change_state()` with
3794    ``SNDRV_CTL_POWER_D0`` to notify the proce    3960    ``SNDRV_CTL_POWER_D0`` to notify the processes.
3795                                                  3961 
3796 Typical code would look like::                !! 3962 A typical code would be like:
                                                   >> 3963 
                                                   >> 3964 ::
3797                                                  3965 
3798   static int __maybe_unused mychip_resume(str !! 3966   static int mychip_resume(struct pci_dev *pci)
3799   {                                              3967   {
3800           /* (1) */                              3968           /* (1) */
3801           struct snd_card *card = dev_get_drv !! 3969           struct snd_card *card = pci_get_drvdata(pci);
3802           struct mychip *chip = card->private    3970           struct mychip *chip = card->private_data;
3803           /* (2) */                              3971           /* (2) */
3804           snd_mychip_reinit_chip(chip);       !! 3972           pci_restore_state(pci);
                                                   >> 3973           pci_enable_device(pci);
                                                   >> 3974           pci_set_master(pci);
3805           /* (3) */                              3975           /* (3) */
3806           snd_mychip_restore_registers(chip); !! 3976           snd_mychip_reinit_chip(chip);
3807           /* (4) */                              3977           /* (4) */
3808           snd_ac97_resume(chip->ac97);        !! 3978           snd_mychip_restore_registers(chip);
3809           /* (5) */                              3979           /* (5) */
3810           snd_mychip_restart_chip(chip);      !! 3980           snd_ac97_resume(chip->ac97);
3811           /* (6) */                              3981           /* (6) */
                                                   >> 3982           snd_mychip_restart_chip(chip);
                                                   >> 3983           /* (7) */
3812           snd_power_change_state(card, SNDRV_    3984           snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3813           return 0;                              3985           return 0;
3814   }                                              3986   }
3815                                                  3987 
3816 Note that, at the time this callback gets cal !! 3988 As shown in the above, it's better to save registers after suspending
3817 been already suspended via its own PM ops cal !! 3989 the PCM operations via :c:func:`snd_pcm_suspend_all()` or
3818 :c:func:`snd_pcm_suspend_all()` internally.   !! 3990 :c:func:`snd_pcm_suspend()`. It means that the PCM streams are
                                                   >> 3991 already stopped when the register snapshot is taken. But, remember that
                                                   >> 3992 you don't have to restart the PCM stream in the resume callback. It'll
                                                   >> 3993 be restarted via trigger call with ``SNDRV_PCM_TRIGGER_RESUME`` when
                                                   >> 3994 necessary.
3819                                                  3995 
3820 OK, we have all callbacks now. Let's set them    3996 OK, we have all callbacks now. Let's set them up. In the initialization
3821 of the card, make sure that you can get the c    3997 of the card, make sure that you can get the chip data from the card
3822 instance, typically via ``private_data`` fiel    3998 instance, typically via ``private_data`` field, in case you created the
3823 chip data individually::                      !! 3999 chip data individually.
                                                   >> 4000 
                                                   >> 4001 ::
3824                                                  4002 
3825   static int snd_mychip_probe(struct pci_dev     4003   static int snd_mychip_probe(struct pci_dev *pci,
3826                               const struct pc    4004                               const struct pci_device_id *pci_id)
3827   {                                              4005   {
3828           ....                                   4006           ....
3829           struct snd_card *card;                 4007           struct snd_card *card;
3830           struct mychip *chip;                   4008           struct mychip *chip;
3831           int err;                               4009           int err;
3832           ....                                   4010           ....
3833           err = snd_card_new(&pci->dev, index    4011           err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3834                              0, &card);          4012                              0, &card);
3835           ....                                   4013           ....
3836           chip = kzalloc(sizeof(*chip), GFP_K    4014           chip = kzalloc(sizeof(*chip), GFP_KERNEL);
3837           ....                                   4015           ....
3838           card->private_data = chip;             4016           card->private_data = chip;
3839           ....                                   4017           ....
3840   }                                              4018   }
3841                                                  4019 
3842 When you created the chip data with :c:func:`    4020 When you created the chip data with :c:func:`snd_card_new()`, it's
3843 anyway accessible via ``private_data`` field: !! 4021 anyway accessible via ``private_data`` field.
                                                   >> 4022 
                                                   >> 4023 ::
3844                                                  4024 
3845   static int snd_mychip_probe(struct pci_dev     4025   static int snd_mychip_probe(struct pci_dev *pci,
3846                               const struct pc    4026                               const struct pci_device_id *pci_id)
3847   {                                              4027   {
3848           ....                                   4028           ....
3849           struct snd_card *card;                 4029           struct snd_card *card;
3850           struct mychip *chip;                   4030           struct mychip *chip;
3851           int err;                               4031           int err;
3852           ....                                   4032           ....
3853           err = snd_card_new(&pci->dev, index    4033           err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3854                              sizeof(struct my    4034                              sizeof(struct mychip), &card);
3855           ....                                   4035           ....
3856           chip = card->private_data;             4036           chip = card->private_data;
3857           ....                                   4037           ....
3858   }                                              4038   }
3859                                                  4039 
3860 If you need space to save the registers, allo !! 4040 If you need a space to save the registers, allocate the buffer for it
3861 here, too, since it would be fatal if you can    4041 here, too, since it would be fatal if you cannot allocate a memory in
3862 the suspend phase. The allocated buffer shoul    4042 the suspend phase. The allocated buffer should be released in the
3863 corresponding destructor.                        4043 corresponding destructor.
3864                                                  4044 
3865 And next, set suspend/resume callbacks to the !! 4045 And next, set suspend/resume callbacks to the pci_driver.
3866                                                  4046 
3867   static DEFINE_SIMPLE_DEV_PM_OPS(snd_my_pm_o !! 4047 ::
3868                                                  4048 
3869   static struct pci_driver driver = {            4049   static struct pci_driver driver = {
3870           .name = KBUILD_MODNAME,                4050           .name = KBUILD_MODNAME,
3871           .id_table = snd_my_ids,                4051           .id_table = snd_my_ids,
3872           .probe = snd_my_probe,                 4052           .probe = snd_my_probe,
3873           .remove = snd_my_remove,               4053           .remove = snd_my_remove,
3874           .driver = {                         !! 4054   #ifdef CONFIG_PM
3875                   .pm = &snd_my_pm_ops,       !! 4055           .suspend = snd_my_suspend,
3876           },                                  !! 4056           .resume = snd_my_resume,
                                                   >> 4057   #endif
3877   };                                             4058   };
3878                                                  4059 
3879 Module Parameters                                4060 Module Parameters
3880 =================                                4061 =================
3881                                                  4062 
3882 There are standard module options for ALSA. A    4063 There are standard module options for ALSA. At least, each module should
3883 have the ``index``, ``id`` and ``enable`` opt    4064 have the ``index``, ``id`` and ``enable`` options.
3884                                                  4065 
3885 If the module supports multiple cards (usuall    4066 If the module supports multiple cards (usually up to 8 = ``SNDRV_CARDS``
3886 cards), they should be arrays. The default in    4067 cards), they should be arrays. The default initial values are defined
3887 already as constants for easier programming:: !! 4068 already as constants for easier programming:
                                                   >> 4069 
                                                   >> 4070 ::
3888                                                  4071 
3889   static int index[SNDRV_CARDS] = SNDRV_DEFAU    4072   static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
3890   static char *id[SNDRV_CARDS] = SNDRV_DEFAUL    4073   static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
3891   static int enable[SNDRV_CARDS] = SNDRV_DEFA    4074   static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
3892                                                  4075 
3893 If the module supports only a single card, th    4076 If the module supports only a single card, they could be single
3894 variables, instead. ``enable`` option is not     4077 variables, instead. ``enable`` option is not always necessary in this
3895 case, but it would be better to have a dummy     4078 case, but it would be better to have a dummy option for compatibility.
3896                                                  4079 
3897 The module parameters must be declared with t    4080 The module parameters must be declared with the standard
3898 ``module_param()``, ``module_param_array()``  !! 4081 ``module_param()()``, ``module_param_array()()`` and
3899 :c:func:`MODULE_PARM_DESC()` macros.             4082 :c:func:`MODULE_PARM_DESC()` macros.
3900                                                  4083 
3901 Typical code would look as below::            !! 4084 The typical coding would be like below:
                                                   >> 4085 
                                                   >> 4086 ::
3902                                                  4087 
3903   #define CARD_NAME "My Chip"                    4088   #define CARD_NAME "My Chip"
3904                                                  4089 
3905   module_param_array(index, int, NULL, 0444);    4090   module_param_array(index, int, NULL, 0444);
3906   MODULE_PARM_DESC(index, "Index value for "     4091   MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
3907   module_param_array(id, charp, NULL, 0444);     4092   module_param_array(id, charp, NULL, 0444);
3908   MODULE_PARM_DESC(id, "ID string for " CARD_    4093   MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
3909   module_param_array(enable, bool, NULL, 0444    4094   module_param_array(enable, bool, NULL, 0444);
3910   MODULE_PARM_DESC(enable, "Enable " CARD_NAM    4095   MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
3911                                                  4096 
3912 Also, don't forget to define the module descr !! 4097 Also, don't forget to define the module description, classes, license
3913 Especially, the recent modprobe requires to d !! 4098 and devices. Especially, the recent modprobe requires to define the
3914 module license as GPL, etc., otherwise the sy !! 4099 module license as GPL, etc., otherwise the system is shown as “tainted”.
3915                                               << 
3916   MODULE_DESCRIPTION("Sound driver for My Chi << 
3917   MODULE_LICENSE("GPL");                      << 
3918                                               << 
3919                                                  4100 
3920 Device-Managed Resources                      !! 4101 ::
3921 ========================                      << 
3922                                                  4102 
3923 In the examples above, all resources are allo !! 4103   MODULE_DESCRIPTION("My Chip");
3924 manually.  But human beings are lazy in natur !! 4104   MODULE_LICENSE("GPL");
3925 are lazier.  So there are some ways to automa !! 4105   MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}");
3926 the (device-)managed resources aka devres or  << 
3927 example, an object allocated via :c:func:`dev << 
3928 freed automatically at unbinding the device.  << 
3929                                               << 
3930 ALSA core provides also the device-managed he << 
3931 :c:func:`snd_devm_card_new()` for creating a  << 
3932 Call this functions instead of the normal :c: << 
3933 and you can forget the explicit :c:func:`snd_ << 
3934 it's called automagically at error and remova << 
3935                                               << 
3936 One caveat is that the call of :c:func:`snd_c << 
3937 at the beginning of the call chain only after << 
3938 :c:func:`snd_card_register()`.                << 
3939                                               << 
3940 Also, the ``private_free`` callback is always << 
3941 so be careful to put the hardware clean-up pr << 
3942 ``private_free`` callback.  It might be calle << 
3943 actually set up at an earlier error path.  Fo << 
3944 invalid initialization, you can set ``private << 
3945 :c:func:`snd_card_register()` call succeeds.  << 
3946                                               << 
3947 Another thing to be remarked is that you shou << 
3948 helpers for each component as much as possibl << 
3949 the card in that way.  Mixing up with the nor << 
3950 resources may screw up the release order.     << 
3951                                                  4106 
3952                                                  4107 
3953 How To Put Your Driver Into ALSA Tree            4108 How To Put Your Driver Into ALSA Tree
3954 =====================================            4109 =====================================
3955                                                  4110 
3956 General                                          4111 General
3957 -------                                          4112 -------
3958                                                  4113 
3959 So far, you've learned how to write the drive    4114 So far, you've learned how to write the driver codes. And you might have
3960 a question now: how to put my own driver into    4115 a question now: how to put my own driver into the ALSA driver tree? Here
3961 (finally :) the standard procedure is describ    4116 (finally :) the standard procedure is described briefly.
3962                                                  4117 
3963 Suppose that you create a new PCI driver for     4118 Suppose that you create a new PCI driver for the card “xyz”. The card
3964 module name would be snd-xyz. The new driver     4119 module name would be snd-xyz. The new driver is usually put into the
3965 alsa-driver tree, ``sound/pci`` directory in  !! 4120 alsa-driver tree, ``alsa-driver/pci`` directory in the case of PCI
3966 cards.                                        !! 4121 cards. Then the driver is evaluated, audited and tested by developers
                                                   >> 4122 and users. After a certain time, the driver will go to the alsa-kernel
                                                   >> 4123 tree (to the corresponding directory, such as ``alsa-kernel/pci``) and
                                                   >> 4124 eventually will be integrated into the Linux 2.6 tree (the directory
                                                   >> 4125 would be ``linux/sound/pci``).
3967                                                  4126 
3968 In the following sections, the driver code is    4127 In the following sections, the driver code is supposed to be put into
3969 Linux kernel tree. The two cases are covered: !! 4128 alsa-driver tree. The two cases are covered: a driver consisting of a
3970 single source file and one consisting of seve    4129 single source file and one consisting of several source files.
3971                                                  4130 
3972 Driver with A Single Source File                 4131 Driver with A Single Source File
3973 --------------------------------                 4132 --------------------------------
3974                                                  4133 
3975 1. Modify sound/pci/Makefile                  !! 4134 1. Modify alsa-driver/pci/Makefile
3976                                                  4135 
3977    Suppose you have a file xyz.c. Add the fol !! 4136    Suppose you have a file xyz.c. Add the following two lines
3978                                                  4137 
3979      snd-xyz-y := xyz.o                       !! 4138 ::
3980      obj-$(CONFIG_SND_XYZ) += snd-xyz.o       !! 4139 
                                                   >> 4140   snd-xyz-objs := xyz.o
                                                   >> 4141   obj-$(CONFIG_SND_XYZ) += snd-xyz.o
3981                                                  4142 
3982 2. Create the Kconfig entry                      4143 2. Create the Kconfig entry
3983                                                  4144 
3984    Add the new entry of Kconfig for your xyz  !! 4145    Add the new entry of Kconfig for your xyz driver. config SND_XYZ
                                                   >> 4146    tristate "Foobar XYZ" depends on SND select SND_PCM help Say Y here
                                                   >> 4147    to include support for Foobar XYZ soundcard. To compile this driver
                                                   >> 4148    as a module, choose M here: the module will be called snd-xyz. the
                                                   >> 4149    line, select SND_PCM, specifies that the driver xyz supports PCM. In
                                                   >> 4150    addition to SND_PCM, the following components are supported for
                                                   >> 4151    select command: SND_RAWMIDI, SND_TIMER, SND_HWDEP,
                                                   >> 4152    SND_MPU401_UART, SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB,
                                                   >> 4153    SND_AC97_CODEC. Add the select command for each supported
                                                   >> 4154    component.
                                                   >> 4155 
                                                   >> 4156    Note that some selections imply the lowlevel selections. For example,
                                                   >> 4157    PCM includes TIMER, MPU401_UART includes RAWMIDI, AC97_CODEC
                                                   >> 4158    includes PCM, and OPL3_LIB includes HWDEP. You don't need to give
                                                   >> 4159    the lowlevel selections again.
3985                                                  4160 
3986      config SND_XYZ                           !! 4161    For the details of Kconfig script, refer to the kbuild documentation.
3987        tristate "Foobar XYZ"                  << 
3988        depends on SND                         << 
3989        select SND_PCM                         << 
3990        help                                   << 
3991          Say Y here to include support for Fo << 
3992          To compile this driver as a module,  << 
3993          the module will be called snd-xyz.   << 
3994                                               << 
3995 The line ``select SND_PCM`` specifies that th << 
3996 In addition to SND_PCM, the following compone << 
3997 select command: SND_RAWMIDI, SND_TIMER, SND_H << 
3998 SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_A << 
3999 Add the select command for each supported com << 
4000                                               << 
4001 Note that some selections imply the lowlevel  << 
4002 PCM includes TIMER, MPU401_UART includes RAWM << 
4003 includes PCM, and OPL3_LIB includes HWDEP. Yo << 
4004 the lowlevel selections again.                << 
4005                                                  4162 
4006 For the details of Kconfig script, refer to t !! 4163 3. Run cvscompile script to re-generate the configure script and build
                                                   >> 4164    the whole stuff again.
4007                                                  4165 
4008 Drivers with Several Source Files                4166 Drivers with Several Source Files
4009 ---------------------------------                4167 ---------------------------------
4010                                                  4168 
4011 Suppose that the driver snd-xyz have several     4169 Suppose that the driver snd-xyz have several source files. They are
4012 located in the new subdirectory, sound/pci/xy !! 4170 located in the new subdirectory, pci/xyz.
                                                   >> 4171 
                                                   >> 4172 1. Add a new directory (``xyz``) in ``alsa-driver/pci/Makefile`` as
                                                   >> 4173    below
4013                                                  4174 
4014 1. Add a new directory (``sound/pci/xyz``) in !! 4175 ::
4015    as below::                                 !! 4176 
                                                   >> 4177   obj-$(CONFIG_SND) += xyz/
                                                   >> 4178 
                                                   >> 4179 
                                                   >> 4180 2. Under the directory ``xyz``, create a Makefile
                                                   >> 4181 
                                                   >> 4182 ::
4016                                                  4183 
4017      obj-$(CONFIG_SND) += sound/pci/xyz/      !! 4184          ifndef SND_TOPDIR
                                                   >> 4185          SND_TOPDIR=../..
                                                   >> 4186          endif
4018                                                  4187 
                                                   >> 4188          include $(SND_TOPDIR)/toplevel.config
                                                   >> 4189          include $(SND_TOPDIR)/Makefile.conf
4019                                                  4190 
4020 2. Under the directory ``sound/pci/xyz``, cre !! 4191          snd-xyz-objs := xyz.o abc.o def.o
4021                                                  4192 
4022          snd-xyz-y := xyz.o abc.o def.o       << 
4023          obj-$(CONFIG_SND_XYZ) += snd-xyz.o      4193          obj-$(CONFIG_SND_XYZ) += snd-xyz.o
4024                                                  4194 
                                                   >> 4195          include $(SND_TOPDIR)/Rules.make
                                                   >> 4196 
4025 3. Create the Kconfig entry                      4197 3. Create the Kconfig entry
4026                                                  4198 
4027    This procedure is as same as in the last s    4199    This procedure is as same as in the last section.
4028                                                  4200 
                                                   >> 4201 4. Run cvscompile script to re-generate the configure script and build
                                                   >> 4202    the whole stuff again.
4029                                                  4203 
4030 Useful Functions                                 4204 Useful Functions
4031 ================                                 4205 ================
4032                                                  4206 
                                                   >> 4207 :c:func:`snd_printk()` and friends
                                                   >> 4208 ---------------------------------------
                                                   >> 4209 
                                                   >> 4210 ALSA provides a verbose version of the :c:func:`printk()` function.
                                                   >> 4211 If a kernel config ``CONFIG_SND_VERBOSE_PRINTK`` is set, this function
                                                   >> 4212 prints the given message together with the file name and the line of the
                                                   >> 4213 caller. The ``KERN_XXX`` prefix is processed as well as the original
                                                   >> 4214 :c:func:`printk()` does, so it's recommended to add this prefix,
                                                   >> 4215 e.g. snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\\n");
                                                   >> 4216 
                                                   >> 4217 There are also :c:func:`printk()`'s for debugging.
                                                   >> 4218 :c:func:`snd_printd()` can be used for general debugging purposes.
                                                   >> 4219 If ``CONFIG_SND_DEBUG`` is set, this function is compiled, and works
                                                   >> 4220 just like :c:func:`snd_printk()`. If the ALSA is compiled without
                                                   >> 4221 the debugging flag, it's ignored.
                                                   >> 4222 
                                                   >> 4223 :c:func:`snd_printdd()` is compiled in only when
                                                   >> 4224 ``CONFIG_SND_DEBUG_VERBOSE`` is set. Please note that
                                                   >> 4225 ``CONFIG_SND_DEBUG_VERBOSE`` is not set as default even if you configure
                                                   >> 4226 the alsa-driver with ``--with-debug=full`` option. You need to give
                                                   >> 4227 explicitly ``--with-debug=detect`` option instead.
                                                   >> 4228 
4033 :c:func:`snd_BUG()`                              4229 :c:func:`snd_BUG()`
4034 -------------------                           !! 4230 ------------------------
4035                                                  4231 
4036 It shows the ``BUG?`` message and stack trace    4232 It shows the ``BUG?`` message and stack trace as well as
4037 :c:func:`snd_BUG_ON()` at the point. It's use    4233 :c:func:`snd_BUG_ON()` at the point. It's useful to show that a
4038 fatal error happens there.                       4234 fatal error happens there.
4039                                                  4235 
4040 When no debug flag is set, this macro is igno    4236 When no debug flag is set, this macro is ignored.
4041                                                  4237 
4042 :c:func:`snd_BUG_ON()`                           4238 :c:func:`snd_BUG_ON()`
4043 ----------------------                        !! 4239 ----------------------------
4044                                                  4240 
4045 :c:func:`snd_BUG_ON()` macro is similar with     4241 :c:func:`snd_BUG_ON()` macro is similar with
4046 :c:func:`WARN_ON()` macro. For example, snd_B    4242 :c:func:`WARN_ON()` macro. For example, snd_BUG_ON(!pointer); or
4047 it can be used as the condition, if (snd_BUG_    4243 it can be used as the condition, if (snd_BUG_ON(non_zero_is_bug))
4048 return -EINVAL;                                  4244 return -EINVAL;
4049                                                  4245 
4050 The macro takes an conditional expression to     4246 The macro takes an conditional expression to evaluate. When
4051 ``CONFIG_SND_DEBUG``, is set, if the expressi    4247 ``CONFIG_SND_DEBUG``, is set, if the expression is non-zero, it shows
4052 the warning message such as ``BUG? (xxx)`` no    4248 the warning message such as ``BUG? (xxx)`` normally followed by stack
4053 trace. In both cases it returns the evaluated    4249 trace. In both cases it returns the evaluated value.
4054                                                  4250 
4055 Acknowledgments                                  4251 Acknowledgments
4056 ===============                                  4252 ===============
4057                                                  4253 
4058 I would like to thank Phil Kerr for his help     4254 I would like to thank Phil Kerr for his help for improvement and
4059 corrections of this document.                    4255 corrections of this document.
4060                                                  4256 
4061 Kevin Conder reformatted the original plain-t    4257 Kevin Conder reformatted the original plain-text to the DocBook format.
4062                                                  4258 
4063 Giuliano Pochini corrected typos and contribu    4259 Giuliano Pochini corrected typos and contributed the example codes in
4064 the hardware constraints section.                4260 the hardware constraints section.
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php