~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/Documentation/trace/hisi-ptt.rst

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /Documentation/trace/hisi-ptt.rst (Architecture ppc) and /Documentation/trace/hisi-ptt.rst (Architecture sparc)


  1 .. SPDX-License-Identifier: GPL-2.0                 1 .. SPDX-License-Identifier: GPL-2.0
  2                                                     2 
  3 ======================================              3 ======================================
  4 HiSilicon PCIe Tune and Trace device                4 HiSilicon PCIe Tune and Trace device
  5 ======================================              5 ======================================
  6                                                     6 
  7 Introduction                                        7 Introduction
  8 ============                                        8 ============
  9                                                     9 
 10 HiSilicon PCIe tune and trace device (PTT) is      10 HiSilicon PCIe tune and trace device (PTT) is a PCIe Root Complex
 11 integrated Endpoint (RCiEP) device, providing      11 integrated Endpoint (RCiEP) device, providing the capability
 12 to dynamically monitor and tune the PCIe link'     12 to dynamically monitor and tune the PCIe link's events (tune),
 13 and trace the TLP headers (trace). The two fun     13 and trace the TLP headers (trace). The two functions are independent,
 14 but is recommended to use them together to ana     14 but is recommended to use them together to analyze and enhance the
 15 PCIe link's performance.                           15 PCIe link's performance.
 16                                                    16 
 17 On Kunpeng 930 SoC, the PCIe Root Complex is c     17 On Kunpeng 930 SoC, the PCIe Root Complex is composed of several
 18 PCIe cores. Each PCIe core includes several Ro     18 PCIe cores. Each PCIe core includes several Root Ports and a PTT
 19 RCiEP, like below. The PTT device is capable o     19 RCiEP, like below. The PTT device is capable of tuning and
 20 tracing the links of the PCIe core.                20 tracing the links of the PCIe core.
 21 ::                                                 21 ::
 22                                                    22 
 23           +--------------Core 0-------+            23           +--------------Core 0-------+
 24           |       |       [   PTT   ] |            24           |       |       [   PTT   ] |
 25           |       |       [Root Port]---[Endpo     25           |       |       [Root Port]---[Endpoint]
 26           |       |       [Root Port]---[Endpo     26           |       |       [Root Port]---[Endpoint]
 27           |       |       [Root Port]---[Endpo     27           |       |       [Root Port]---[Endpoint]
 28     Root Complex  |------Core 1-------+            28     Root Complex  |------Core 1-------+
 29           |       |       [   PTT   ] |            29           |       |       [   PTT   ] |
 30           |       |       [Root Port]---[ Swit     30           |       |       [Root Port]---[ Switch ]---[Endpoint]
 31           |       |       [Root Port]---[Endpo     31           |       |       [Root Port]---[Endpoint] `-[Endpoint]
 32           |       |       [Root Port]---[Endpo     32           |       |       [Root Port]---[Endpoint]
 33           +---------------------------+            33           +---------------------------+
 34                                                    34 
 35 The PTT device driver registers one PMU device     35 The PTT device driver registers one PMU device for each PTT device.
 36 The name of each PTT device is composed of 'hi     36 The name of each PTT device is composed of 'hisi_ptt' prefix with
 37 the id of the SICL and the Core where it locat     37 the id of the SICL and the Core where it locates. The Kunpeng 930
 38 SoC encapsulates multiple CPU dies (SCCL, Supe     38 SoC encapsulates multiple CPU dies (SCCL, Super CPU Cluster) and
 39 IO dies (SICL, Super I/O Cluster), where there     39 IO dies (SICL, Super I/O Cluster), where there's one PCIe Root
 40 Complex for each SICL.                             40 Complex for each SICL.
 41 ::                                                 41 ::
 42                                                    42 
 43     /sys/bus/event_source/devices/hisi_ptt<sic     43     /sys/bus/event_source/devices/hisi_ptt<sicl_id>_<core_id>
 44                                                    44 
 45 Tune                                               45 Tune
 46 ====                                               46 ====
 47                                                    47 
 48 PTT tune is designed for monitoring and adjust     48 PTT tune is designed for monitoring and adjusting PCIe link parameters (events).
 49 Currently we support events in 2 classes. The      49 Currently we support events in 2 classes. The scope of the events
 50 covers the PCIe core to which the PTT device b     50 covers the PCIe core to which the PTT device belongs.
 51                                                    51 
 52 Each event is presented as a file under $(PTT      52 Each event is presented as a file under $(PTT PMU dir)/tune, and
 53 a simple open/read/write/close cycle will be u     53 a simple open/read/write/close cycle will be used to tune the event.
 54 ::                                                 54 ::
 55                                                    55 
 56     $ cd /sys/bus/event_source/devices/hisi_pt     56     $ cd /sys/bus/event_source/devices/hisi_ptt<sicl_id>_<core_id>/tune
 57     $ ls                                           57     $ ls
 58     qos_tx_cpl    qos_tx_np    qos_tx_p            58     qos_tx_cpl    qos_tx_np    qos_tx_p
 59     tx_path_rx_req_alloc_buf_level                 59     tx_path_rx_req_alloc_buf_level
 60     tx_path_tx_req_alloc_buf_level                 60     tx_path_tx_req_alloc_buf_level
 61     $ cat qos_tx_dp                                61     $ cat qos_tx_dp
 62     1                                              62     1
 63     $ echo 2 > qos_tx_dp                           63     $ echo 2 > qos_tx_dp
 64     $ cat qos_tx_dp                                64     $ cat qos_tx_dp
 65     2                                              65     2
 66                                                    66 
 67 Current value (numerical value) of the event c     67 Current value (numerical value) of the event can be simply read
 68 from the file, and the desired value written t     68 from the file, and the desired value written to the file to tune.
 69                                                    69 
 70 1. Tx Path QoS Control                             70 1. Tx Path QoS Control
 71 ------------------------                           71 ------------------------
 72                                                    72 
 73 The following files are provided to tune the Q     73 The following files are provided to tune the QoS of the tx path of
 74 the PCIe core.                                     74 the PCIe core.
 75                                                    75 
 76 - qos_tx_cpl: weight of Tx completion TLPs         76 - qos_tx_cpl: weight of Tx completion TLPs
 77 - qos_tx_np: weight of Tx non-posted TLPs          77 - qos_tx_np: weight of Tx non-posted TLPs
 78 - qos_tx_p: weight of Tx posted TLPs               78 - qos_tx_p: weight of Tx posted TLPs
 79                                                    79 
 80 The weight influences the proportion of certai     80 The weight influences the proportion of certain packets on the PCIe link.
 81 For example, for the storage scenario, increas     81 For example, for the storage scenario, increase the proportion
 82 of the completion packets on the link to enhan     82 of the completion packets on the link to enhance the performance as
 83 more completions are consumed.                     83 more completions are consumed.
 84                                                    84 
 85 The available tune data of these events is [0,     85 The available tune data of these events is [0, 1, 2].
 86 Writing a negative value will return an error,     86 Writing a negative value will return an error, and out of range
 87 values will be converted to 2. Note that the e     87 values will be converted to 2. Note that the event value just
 88 indicates a probable level, but is not precise     88 indicates a probable level, but is not precise.
 89                                                    89 
 90 2. Tx Path Buffer Control                          90 2. Tx Path Buffer Control
 91 -------------------------                          91 -------------------------
 92                                                    92 
 93 Following files are provided to tune the buffe     93 Following files are provided to tune the buffer of tx path of the PCIe core.
 94                                                    94 
 95 - rx_alloc_buf_level: watermark of Rx requeste     95 - rx_alloc_buf_level: watermark of Rx requested
 96 - tx_alloc_buf_level: watermark of Tx requeste     96 - tx_alloc_buf_level: watermark of Tx requested
 97                                                    97 
 98 These events influence the watermark of the bu     98 These events influence the watermark of the buffer allocated for each
 99 type. Rx means the inbound while Tx means outb     99 type. Rx means the inbound while Tx means outbound. The packets will
100 be stored in the buffer first and then transmi    100 be stored in the buffer first and then transmitted either when the
101 watermark reached or when timed out. For a bus    101 watermark reached or when timed out. For a busy direction, you should
102 increase the related buffer watermark to avoid    102 increase the related buffer watermark to avoid frequently posting and
103 thus enhance the performance. In most cases ju    103 thus enhance the performance. In most cases just keep the default value.
104                                                   104 
105 The available tune data of above events is [0,    105 The available tune data of above events is [0, 1, 2].
106 Writing a negative value will return an error,    106 Writing a negative value will return an error, and out of range
107 values will be converted to 2. Note that the e    107 values will be converted to 2. Note that the event value just
108 indicates a probable level, but is not precise    108 indicates a probable level, but is not precise.
109                                                   109 
110 Trace                                             110 Trace
111 =====                                             111 =====
112                                                   112 
113 PTT trace is designed for dumping the TLP head    113 PTT trace is designed for dumping the TLP headers to the memory, which
114 can be used to analyze the transactions and us    114 can be used to analyze the transactions and usage condition of the PCIe
115 Link. You can choose to filter the traced head    115 Link. You can choose to filter the traced headers by either Requester ID,
116 or those downstream of a set of Root Ports on     116 or those downstream of a set of Root Ports on the same core of the PTT
117 device. It's also supported to trace the heade    117 device. It's also supported to trace the headers of certain type and of
118 certain direction.                                118 certain direction.
119                                                   119 
120 You can use the perf command `perf record` to     120 You can use the perf command `perf record` to set the parameters, start
121 trace and get the data. It's also supported to    121 trace and get the data. It's also supported to decode the trace
122 data with `perf report`. The control parameter    122 data with `perf report`. The control parameters for trace is inputted
123 as event code for each events, which will be f    123 as event code for each events, which will be further illustrated later.
124 An example usage is like                          124 An example usage is like
125 ::                                                125 ::
126                                                   126 
127     $ perf record -e hisi_ptt0_2/filter=0x8000    127     $ perf record -e hisi_ptt0_2/filter=0x80001,type=1,direction=1,
128       format=1/ -- sleep 5                        128       format=1/ -- sleep 5
129                                                   129 
130 This will trace the TLP headers downstream roo    130 This will trace the TLP headers downstream root port 0000:00:10.1 (event
131 code for event 'filter' is 0x80001) with type     131 code for event 'filter' is 0x80001) with type of posted TLP requests,
132 direction of inbound and traced data format of    132 direction of inbound and traced data format of 8DW.
133                                                   133 
134 1. Filter                                         134 1. Filter
135 ---------                                         135 ---------
136                                                   136 
137 The TLP headers to trace can be filtered by th    137 The TLP headers to trace can be filtered by the Root Ports or the Requester ID
138 of the Endpoint, which are located on the same    138 of the Endpoint, which are located on the same core of the PTT device. You can
139 set the filter by specifying the `filter` para    139 set the filter by specifying the `filter` parameter which is required to start
140 the trace. The parameter value is 20 bit. Bit     140 the trace. The parameter value is 20 bit. Bit 19 indicates the filter type.
141 1 for Root Port filter and 0 for Requester fil    141 1 for Root Port filter and 0 for Requester filter. Bit[15:0] indicates the
142 filter value. The value for a Root Port is a m    142 filter value. The value for a Root Port is a mask of the core port id which is
143 calculated from its PCI Slot ID as (slotid & 7    143 calculated from its PCI Slot ID as (slotid & 7) * 2. The value for a Requester
144 is the Requester ID (Device ID of the PCIe fun    144 is the Requester ID (Device ID of the PCIe function). Bit[18:16] is currently
145 reserved for extension.                           145 reserved for extension.
146                                                   146 
147 For example, if the desired filter is Endpoint    147 For example, if the desired filter is Endpoint function 0000:01:00.1 the filter
148 value will be 0x00101. If the desired filter i    148 value will be 0x00101. If the desired filter is Root Port 0000:00:10.0 then
149 then filter value is calculated as 0x80001.       149 then filter value is calculated as 0x80001.
150                                                   150 
151 The driver also presents every supported Root     151 The driver also presents every supported Root Port and Requester filter through
152 sysfs. Each filter will be an individual file     152 sysfs. Each filter will be an individual file with name of its related PCIe
153 device name (domain:bus:device.function). The     153 device name (domain:bus:device.function). The files of Root Port filters are
154 under $(PTT PMU dir)/root_port_filters and fil    154 under $(PTT PMU dir)/root_port_filters and files of Requester filters
155 are under $(PTT PMU dir)/requester_filters.       155 are under $(PTT PMU dir)/requester_filters.
156                                                   156 
157 Note that multiple Root Ports can be specified    157 Note that multiple Root Ports can be specified at one time, but only one
158 Endpoint function can be specified in one trac    158 Endpoint function can be specified in one trace. Specifying both Root Port
159 and function at the same time is not supported    159 and function at the same time is not supported. Driver maintains a list of
160 available filters and will check the invalid i    160 available filters and will check the invalid inputs.
161                                                   161 
162 The available filters will be dynamically upda    162 The available filters will be dynamically updated, which means you will always
163 get correct filter information when hotplug ev    163 get correct filter information when hotplug events happen, or when you manually
164 remove/rescan the devices.                        164 remove/rescan the devices.
165                                                   165 
166 2. Type                                           166 2. Type
167 -------                                           167 -------
168                                                   168 
169 You can trace the TLP headers of certain types    169 You can trace the TLP headers of certain types by specifying the `type`
170 parameter, which is required to start the trac    170 parameter, which is required to start the trace. The parameter value is
171 8 bit. Current supported types and related val    171 8 bit. Current supported types and related values are shown below:
172                                                   172 
173 - 8'b00000001: posted requests (P)                173 - 8'b00000001: posted requests (P)
174 - 8'b00000010: non-posted requests (NP)           174 - 8'b00000010: non-posted requests (NP)
175 - 8'b00000100: completions (CPL)                  175 - 8'b00000100: completions (CPL)
176                                                   176 
177 You can specify multiple types when tracing in    177 You can specify multiple types when tracing inbound TLP headers, but can only
178 specify one when tracing outbound TLP headers.    178 specify one when tracing outbound TLP headers.
179                                                   179 
180 3. Direction                                      180 3. Direction
181 ------------                                      181 ------------
182                                                   182 
183 You can trace the TLP headers from certain dir    183 You can trace the TLP headers from certain direction, which is relative
184 to the Root Port or the PCIe core, by specifyi    184 to the Root Port or the PCIe core, by specifying the `direction` parameter.
185 This is optional and the default parameter is     185 This is optional and the default parameter is inbound. The parameter value
186 is 4 bit. When the desired format is 4DW, dire    186 is 4 bit. When the desired format is 4DW, directions and related values
187 supported are shown below:                        187 supported are shown below:
188                                                   188 
189 - 4'b0000: inbound TLPs (P, NP, CPL)              189 - 4'b0000: inbound TLPs (P, NP, CPL)
190 - 4'b0001: outbound TLPs (P, NP, CPL)             190 - 4'b0001: outbound TLPs (P, NP, CPL)
191 - 4'b0010: outbound TLPs (P, NP, CPL) and inbo    191 - 4'b0010: outbound TLPs (P, NP, CPL) and inbound TLPs (P, NP, CPL B)
192 - 4'b0011: outbound TLPs (P, NP, CPL) and inbo    192 - 4'b0011: outbound TLPs (P, NP, CPL) and inbound TLPs (CPL A)
193                                                   193 
194 When the desired format is 8DW, directions and    194 When the desired format is 8DW, directions and related values supported are
195 shown below:                                      195 shown below:
196                                                   196 
197 - 4'b0000: reserved                               197 - 4'b0000: reserved
198 - 4'b0001: outbound TLPs (P, NP, CPL)             198 - 4'b0001: outbound TLPs (P, NP, CPL)
199 - 4'b0010: inbound TLPs (P, NP, CPL B)            199 - 4'b0010: inbound TLPs (P, NP, CPL B)
200 - 4'b0011: inbound TLPs (CPL A)                   200 - 4'b0011: inbound TLPs (CPL A)
201                                                   201 
202 Inbound completions are classified into two ty    202 Inbound completions are classified into two types:
203                                                   203 
204 - completion A (CPL A): completion of CHI/DMA/    204 - completion A (CPL A): completion of CHI/DMA/Native non-posted requests, except for CPL B
205 - completion B (CPL B): completion of DMA remo    205 - completion B (CPL B): completion of DMA remote2local and P2P non-posted requests
206                                                   206 
207 4. Format                                         207 4. Format
208 --------------                                    208 --------------
209                                                   209 
210 You can change the format of the traced TLP he    210 You can change the format of the traced TLP headers by specifying the
211 `format` parameter. The default format is 4DW.    211 `format` parameter. The default format is 4DW. The parameter value is 4 bit.
212 Current supported formats and related values a    212 Current supported formats and related values are shown below:
213                                                   213 
214 - 4'b0000: 4DW length per TLP header              214 - 4'b0000: 4DW length per TLP header
215 - 4'b0001: 8DW length per TLP header              215 - 4'b0001: 8DW length per TLP header
216                                                   216 
217 The traced TLP header format is different from    217 The traced TLP header format is different from the PCIe standard.
218                                                   218 
219 When using the 8DW data format, the entire TLP    219 When using the 8DW data format, the entire TLP header is logged
220 (Header DW0-3 shown below). For example, the T    220 (Header DW0-3 shown below). For example, the TLP header for Memory
221 Reads with 64-bit addresses is shown in PCIe r    221 Reads with 64-bit addresses is shown in PCIe r5.0, Figure 2-17;
222 the header for Configuration Requests is shown    222 the header for Configuration Requests is shown in Figure 2.20, etc.
223                                                   223 
224 In addition, 8DW trace buffer entries contain     224 In addition, 8DW trace buffer entries contain a timestamp and
225 possibly a prefix for a PASID TLP prefix (see     225 possibly a prefix for a PASID TLP prefix (see Figure 6-20, PCIe r5.0).
226 Otherwise this field will be all 0.               226 Otherwise this field will be all 0.
227                                                   227 
228 The bit[31:11] of DW0 is always 0x1fffff, whic    228 The bit[31:11] of DW0 is always 0x1fffff, which can be
229 used to distinguish the data format. 8DW forma    229 used to distinguish the data format. 8DW format is like
230 ::                                                230 ::
231                                                   231 
232     bits [                 31:11                  232     bits [                 31:11                 ][       10:0       ]
233          |------------------------------------    233          |---------------------------------------|-------------------|
234      DW0 [                0x1fffff                234      DW0 [                0x1fffff               ][ Reserved (0x7ff) ]
235      DW1 [                       Prefix           235      DW1 [                       Prefix                              ]
236      DW2 [                     Header DW0         236      DW2 [                     Header DW0                            ]
237      DW3 [                     Header DW1         237      DW3 [                     Header DW1                            ]
238      DW4 [                     Header DW2         238      DW4 [                     Header DW2                            ]
239      DW5 [                     Header DW3         239      DW5 [                     Header DW3                            ]
240      DW6 [                   Reserved (0x0)       240      DW6 [                   Reserved (0x0)                          ]
241      DW7 [                        Time            241      DW7 [                        Time                               ]
242                                                   242 
243 When using the 4DW data format, DW0 of the tra    243 When using the 4DW data format, DW0 of the trace buffer entry
244 contains selected fields of DW0 of the TLP, to    244 contains selected fields of DW0 of the TLP, together with a
245 timestamp.  DW1-DW3 of the trace buffer entry     245 timestamp.  DW1-DW3 of the trace buffer entry contain DW1-DW3
246 directly from the TLP header.                     246 directly from the TLP header.
247                                                   247 
248 4DW format is like                                248 4DW format is like
249 ::                                                249 ::
250                                                   250 
251     bits [31:30] [ 29:25 ][24][23][22][21][       251     bits [31:30] [ 29:25 ][24][23][22][21][    20:11   ][    10:0    ]
252          |-----|---------|---|---|---|---|----    252          |-----|---------|---|---|---|---|-------------|-------------|
253      DW0 [ Fmt ][  Type  ][T9][T8][TH][SO][       253      DW0 [ Fmt ][  Type  ][T9][T8][TH][SO][   Length   ][    Time    ]
254      DW1 [                     Header DW1         254      DW1 [                     Header DW1                            ]
255      DW2 [                     Header DW2         255      DW2 [                     Header DW2                            ]
256      DW3 [                     Header DW3         256      DW3 [                     Header DW3                            ]
257                                                   257 
258 5. Memory Management                              258 5. Memory Management
259 --------------------                              259 --------------------
260                                                   260 
261 The traced TLP headers will be written to the     261 The traced TLP headers will be written to the memory allocated
262 by the driver. The hardware accepts 4 DMA addr    262 by the driver. The hardware accepts 4 DMA address with same size,
263 and writes the buffer sequentially like below.    263 and writes the buffer sequentially like below. If DMA addr 3 is
264 finished and the trace is still on, it will re    264 finished and the trace is still on, it will return to addr 0.
265 ::                                                265 ::
266                                                   266 
267     +->[DMA addr 0]->[DMA addr 1]->[DMA addr 2    267     +->[DMA addr 0]->[DMA addr 1]->[DMA addr 2]->[DMA addr 3]-+
268     +-----------------------------------------    268     +---------------------------------------------------------+
269                                                   269 
270 Driver will allocate each DMA buffer of 4MiB.     270 Driver will allocate each DMA buffer of 4MiB. The finished buffer
271 will be copied to the perf AUX buffer allocate    271 will be copied to the perf AUX buffer allocated by the perf core.
272 Once the AUX buffer is full while the trace is    272 Once the AUX buffer is full while the trace is still on, driver
273 will commit the AUX buffer first and then appl    273 will commit the AUX buffer first and then apply for a new one with
274 the same size. The size of AUX buffer is defau    274 the same size. The size of AUX buffer is default to 16MiB. User can
275 adjust the size by specifying the `-m` paramet    275 adjust the size by specifying the `-m` parameter of the perf command.
276                                                   276 
277 6. Decoding                                       277 6. Decoding
278 -----------                                       278 -----------
279                                                   279 
280 You can decode the traced data with `perf repo    280 You can decode the traced data with `perf report -D` command (currently
281 only support to dump the raw trace data). The     281 only support to dump the raw trace data). The traced data will be decoded
282 according to the format described previously (    282 according to the format described previously (take 8DW as an example):
283 ::                                                283 ::
284                                                   284 
285     [...perf headers and other information]       285     [...perf headers and other information]
286     . ... HISI PTT data: size 4194304 bytes       286     . ... HISI PTT data: size 4194304 bytes
287     .  00000000: 00 00 00 00                      287     .  00000000: 00 00 00 00                                 Prefix
288     .  00000004: 01 00 00 60                      288     .  00000004: 01 00 00 60                                 Header DW0
289     .  00000008: 0f 1e 00 01                      289     .  00000008: 0f 1e 00 01                                 Header DW1
290     .  0000000c: 04 00 00 00                      290     .  0000000c: 04 00 00 00                                 Header DW2
291     .  00000010: 40 00 81 02                      291     .  00000010: 40 00 81 02                                 Header DW3
292     .  00000014: 33 c0 04 00                      292     .  00000014: 33 c0 04 00                                 Time
293     .  00000020: 00 00 00 00                      293     .  00000020: 00 00 00 00                                 Prefix
294     .  00000024: 01 00 00 60                      294     .  00000024: 01 00 00 60                                 Header DW0
295     .  00000028: 0f 1e 00 01                      295     .  00000028: 0f 1e 00 01                                 Header DW1
296     .  0000002c: 04 00 00 00                      296     .  0000002c: 04 00 00 00                                 Header DW2
297     .  00000030: 40 00 81 02                      297     .  00000030: 40 00 81 02                                 Header DW3
298     .  00000034: 02 00 00 00                      298     .  00000034: 02 00 00 00                                 Time
299     .  00000040: 00 00 00 00                      299     .  00000040: 00 00 00 00                                 Prefix
300     .  00000044: 01 00 00 60                      300     .  00000044: 01 00 00 60                                 Header DW0
301     .  00000048: 0f 1e 00 01                      301     .  00000048: 0f 1e 00 01                                 Header DW1
302     .  0000004c: 04 00 00 00                      302     .  0000004c: 04 00 00 00                                 Header DW2
303     .  00000050: 40 00 81 02                      303     .  00000050: 40 00 81 02                                 Header DW3
304     [...]                                         304     [...]
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php