1 ================ 2 Event Histograms 3 ================ 4 5 Documentation written by Tom Zanussi 6 7 1. Introduction 8 =============== 9 10 Histogram triggers are special event trigger 11 aggregate trace event data into histograms. 12 trace events and event triggers, see Documen 13 14 15 2. Histogram Trigger Command 16 ============================ 17 18 A histogram trigger command is an event trig 19 aggregates event hits into a hash table keye 20 event format fields (or stacktrace) and a se 21 derived from one or more trace event format 22 counts (hitcount). 23 24 The format of a hist trigger is as follows:: 25 26 hist:keys=<field1[,field2,...]>[:value 27 [:sort=<field1[,field2,...]>][:size= 28 [:clear][:name=histname1][:nohitcoun 29 30 When a matching event is hit, an entry is ad 31 using the key(s) and value(s) named. Keys a 32 fields in the event's format description. V 33 numeric fields - on an event hit, the value( 34 sum kept for that field. The special string 35 in place of an explicit value field - this i 36 event hits. If 'values' isn't specified, an 37 value will be automatically created and used 38 Keys can be any field, or the special string 39 will use the event's kernel stacktrace as th 40 'keys' or 'key' can be used to specify keys, 41 'values', 'vals', or 'val' can be used to sp 42 keys consisting of up to three fields can be 43 keyword. Hashing a compound key produces a 44 table for each unique combination of compone 45 useful for providing more fine-grained summa 46 Additionally, sort keys consisting of up to 47 specified by the 'sort' keyword. If more th 48 specified, the result will be a 'sort within 49 is taken to be the primary sort key and the 50 key. If a hist trigger is given a name usin 51 its histogram data will be shared with other 52 name, and trigger hits will update this comm 53 with 'compatible' fields can be combined in 54 'compatible' if the fields named in the trig 55 number and type of fields and those fields a 56 Note that any two events always share the co 57 'common_stacktrace' fields and can therefore 58 fields, however pointless that may be. 59 60 'hist' triggers add a 'hist' file to each ev 61 Reading the 'hist' file for the event will d 62 its entirety to stdout. If there are multip 63 attached to an event, there will be a table 64 output. The table displayed for a named tri 65 any other instance having the same name. Eac 66 entry is a simple list of the keys and value 67 keys are printed first and are delineated by 68 followed by the set of value fields for the 69 numeric fields are displayed as base-10 inte 70 modified by appending any of the following m 71 name: 72 73 ============= ======================= 74 .hex display a number as a h 75 .sym display an address as a 76 .sym-offset display an address as a 77 .syscall display a syscall id as 78 .execname display a common_pid as 79 .log2 display log2 value rath 80 .buckets=size display grouping of val 81 .usecs display a common_timest 82 .percent display a number of per 83 .graph display a bar-graph of 84 .stacktrace display as a stacktrace 85 ============= ======================= 86 87 Note that in general the semantics of a give 88 interpreted when applying a modifier to it, 89 restrictions to be aware of in this regard: 90 91 - only the 'hex' modifier can be used for 92 are essentially sums, and the other modi 93 in that context). 94 - the 'execname' modifier can only be used 95 reason for this is that the execname is 96 saved for the 'current' process when an 97 which is the same as the common_pid valu 98 tracing code. Trying to apply that comm 99 values wouldn't be correct, and typicall 100 pid-specific comm fields in the event it 101 102 A typical usage scenario would be the follow 103 trigger, read its current contents, and then 104 105 # echo 'hist:keys=skbaddr.hex:vals=len' > 106 /sys/kernel/tracing/events/net/netif_rx/ 107 108 # cat /sys/kernel/tracing/events/net/netif 109 110 # echo '!hist:keys=skbaddr.hex:vals=len' > 111 /sys/kernel/tracing/events/net/netif_rx/ 112 113 The trigger file itself can be read to show 114 currently attached hist trigger. This infor 115 at the top of the 'hist' file when read. 116 117 By default, the size of the hash table is 20 118 parameter can be used to specify more or few 119 are in terms of hashtable entries - if a run 120 specified, the results will show the number 121 of hits that were ignored. The size should 122 128 and 131072 (any non- power-of-2 number s 123 up). 124 125 The 'sort' parameter can be used to specify 126 on. The default if unspecified is 'hitcount 127 order is 'ascending'. To sort in the opposi 128 .descending' to the sort key. 129 130 The 'pause' parameter can be used to pause a 131 or to start a hist trigger but not log any e 132 so. 'continue' or 'cont' can be used to sta 133 hist trigger. 134 135 The 'clear' parameter will clear the content 136 trigger and leave its current paused/active 137 138 Note that the 'pause', 'cont', and 'clear' p 139 applied using 'append' shell operator ('>>') 140 existing trigger, rather than via the '>' op 141 the trigger to be removed through truncation 142 143 The 'nohitcount' (or NOHC) parameter will su 144 raw hitcount in the histogram. This option r 145 value field which is not a 'raw hitcount'. F 146 'hist:...:vals=hitcount:nohitcount' is rejec 147 'hist:...:vals=hitcount.percent:nohitcount' 148 149 - enable_hist/disable_hist 150 151 The enable_hist and disable_hist triggers ca 152 event conditionally start and stop another e 153 hist trigger. Any number of enable_hist and 154 can be attached to a given event, allowing t 155 and stop aggregations on a host of other eve 156 157 The format is very similar to the enable/dis 158 159 enable_hist:<system>:<event>[:count] 160 disable_hist:<system>:<event>[:count] 161 162 Instead of enabling or disabling the tracing 163 into the trace buffer as the enable/disable_ 164 enable/disable_hist triggers enable or disab 165 the target event into a hash table. 166 167 A typical usage scenario for the enable_hist 168 would be to first set up a paused hist trigg 169 followed by an enable_hist/disable_hist pair 170 aggregation on and off when conditions of in 171 172 # echo 'hist:keys=skbaddr.hex:vals=len:paus 173 /sys/kernel/tracing/events/net/netif_rec 174 175 # echo 'enable_hist:net:netif_receive_skb 176 /sys/kernel/tracing/events/sched/sched_p 177 178 # echo 'disable_hist:net:netif_receive_skb 179 /sys/kernel/tracing/events/sched/sched_p 180 181 The above sets up an initially paused hist t 182 and starts aggregating events when a given p 183 which stops aggregating when the process exi 184 is paused again. 185 186 The examples below provide a more concrete i 187 concepts and typical usage patterns discusse 188 189 'special' event fields 190 ------------------------ 191 192 There are a number of 'special event fields' 193 keys or values in a hist trigger. These loo 194 they were actual event fields, but aren't re 195 field definition or format file. They are h 196 event, and can be used anywhere an actual ev 197 They are: 198 199 ====================== ==== ============== 200 common_timestamp u64 timestamp (fro 201 with the event 202 modified by .u 203 interpreted as 204 common_cpu int the cpu on whi 205 ====================== ==== ============== 206 207 Extended error information 208 -------------------------- 209 210 For some error conditions encountered when i 211 command, extended error information is avail 212 tracing/error_log file. See Error Condition 213 :file:`Documentation/trace/ftrace.rst` for d 214 215 6.2 'hist' trigger examples 216 --------------------------- 217 218 The first set of examples creates aggregatio 219 event. The fields that can be used for the 220 in the kmalloc event's format file:: 221 222 # cat /sys/kernel/tracing/events/kmem/kmal 223 name: kmalloc 224 ID: 374 225 format: 226 field:unsigned short common_type; 227 field:unsigned char common_flags; 228 field:unsigned char common_preempt_cou 229 field:int common_pid; 230 231 field:unsigned long call_site; 232 field:const void * ptr; 233 field:size_t bytes_req; 234 field:size_t bytes_alloc; 235 field:gfp_t gfp_flags; 236 237 We'll start by creating a hist trigger that 238 that lists the total number of bytes request 239 the kernel that made one or more calls to km 240 241 # echo 'hist:key=call_site:val=bytes_req.b 242 /sys/kernel/tracing/events/kmem/km 243 244 This tells the tracing system to create a 'h 245 call_site field of the kmalloc event as the 246 just means that each unique call_site addres 247 created for it in the table. The 'val=bytes 248 the hist trigger that for each unique entry 249 table, it should keep a running total of the 250 requested by that call_site. 251 252 We'll let it run for awhile and then dump th 253 file in the kmalloc event's subdirectory (fo 254 of entries have been omitted):: 255 256 # cat /sys/kernel/tracing/events/kmem/kmal 257 # trigger info: hist:keys=call_site:vals=b 258 259 { call_site: 18446744072106379007 } hitcou 260 { call_site: 18446744071579557049 } hitcou 261 { call_site: 18446744071580608289 } hitcou 262 { call_site: 18446744071581827654 } hitcou 263 { call_site: 18446744071580700980 } hitcou 264 { call_site: 18446744071579359876 } hitcou 265 { call_site: 18446744071580795365 } hitcou 266 { call_site: 18446744071581303129 } hitcou 267 { call_site: 18446744071580713234 } hitcou 268 { call_site: 18446744071580933750 } hitcou 269 . 270 . 271 . 272 { call_site: 18446744072106047046 } hitcou 273 { call_site: 18446744071582116407 } hitcou 274 { call_site: 18446744072106054684 } hitcou 275 { call_site: 18446744072106224230 } hitcou 276 { call_site: 18446744072106078074 } hitcou 277 { call_site: 18446744072106062406 } hitcou 278 { call_site: 18446744071582507929 } hitcou 279 { call_site: 18446744072102520590 } hitcou 280 { call_site: 18446744071582143559 } hitcou 281 { call_site: 18446744072106465852 } hitcou 282 { call_site: 18446744072102523378 } hitcou 283 { call_site: 18446744072099568646 } hitcou 284 285 Totals: 286 Hits: 4610 287 Entries: 45 288 Dropped: 0 289 290 The output displays a line for each entry, b 291 specified in the trigger, followed by the va 292 the trigger. At the beginning of the output 293 the trigger info, which can also be displaye 294 'trigger' file:: 295 296 # cat /sys/kernel/tracing/events/kmem/kmal 297 hist:keys=call_site:vals=bytes_req:sort=hi 298 299 At the end of the output are a few lines tha 300 totals for the run. The 'Hits' field shows 301 times the event trigger was hit, the 'Entrie 302 number of used entries in the hash table, an 303 shows the number of hits that were dropped b 304 used entries for the run exceeded the maximu 305 allowed for the table (normally 0, but if no 306 want to increase the size of the table using 307 308 Notice in the above output that there's an e 309 which wasn't specified in the trigger. Also 310 trigger info output, there's a parameter, 's 311 wasn't specified in the trigger either. The 312 every trigger implicitly keeps a count of th 313 attributed to a given entry, called the 'hit 314 information is explicitly displayed in the o 315 absence of a user-specified sort parameter, 316 sort field. 317 318 The value 'hitcount' can be used in place of 319 the 'values' parameter if you don't really n 320 particular field summed and are mainly inter 321 frequencies. 322 323 To turn the hist trigger off, simply call up 324 command history and re-execute it with a '!' 325 326 # echo '!hist:key=call_site:val=bytes_req' 327 /sys/kernel/tracing/events/kmem/kma 328 329 Finally, notice that the call_site as displa 330 isn't really very useful. It's an address, 331 are displayed in hex. To have a numeric fie 332 value, simply append '.hex' to the field nam 333 334 # echo 'hist:key=call_site.hex:val=bytes_r 335 /sys/kernel/tracing/events/kmem/kma 336 337 # cat /sys/kernel/tracing/events/kmem/kmal 338 # trigger info: hist:keys=call_site.hex:va 339 340 { call_site: ffffffffa026b291 } hitcount: 341 { call_site: ffffffffa07186ff } hitcount: 342 { call_site: ffffffff811ae721 } hitcount: 343 { call_site: ffffffff811c5134 } hitcount: 344 { call_site: ffffffffa04a9ebb } hitcount: 345 { call_site: ffffffff8122e0a6 } hitcount: 346 { call_site: ffffffff8107da84 } hitcount: 347 { call_site: ffffffff812d8246 } hitcount: 348 { call_site: ffffffff811dc1e5 } hitcount: 349 { call_site: ffffffffa02515e8 } hitcount: 350 { call_site: ffffffff81258159 } hitcount: 351 { call_site: ffffffff811c80f4 } hitcount: 352 . 353 . 354 . 355 { call_site: ffffffffa06c7646 } hitcount: 356 { call_site: ffffffffa06cb246 } hitcount: 357 { call_site: ffffffffa06cef7a } hitcount: 358 { call_site: ffffffff8137e399 } hitcount: 359 { call_site: ffffffffa06c941c } hitcount: 360 { call_site: ffffffffa06f2a66 } hitcount: 361 { call_site: ffffffffa036a70e } hitcount: 362 { call_site: ffffffff81325447 } hitcount: 363 { call_site: ffffffffa072da3c } hitcount: 364 { call_site: ffffffffa036b1f2 } hitcount: 365 { call_site: ffffffffa0099c06 } hitcount: 366 367 Totals: 368 Hits: 4775 369 Entries: 46 370 Dropped: 0 371 372 Even that's only marginally more useful - wh 373 more like addresses, what users are typicall 374 when looking at text addresses are the corre 375 instead. To have an address displayed as sy 376 simply append '.sym' or '.sym-offset' to the 377 trigger:: 378 379 # echo 'hist:key=call_site.sym:val=bytes_r 380 /sys/kernel/tracing/events/kmem/kma 381 382 # cat /sys/kernel/tracing/events/kmem/kmal 383 # trigger info: hist:keys=call_site.sym:va 384 385 { call_site: [ffffffff810adcb9] syslog_pri 386 { call_site: [ffffffff8154bc62] usb_contro 387 { call_site: [ffffffffa00bf6fe] hidraw_sen 388 { call_site: [ffffffff8154acbe] usb_alloc_ 389 { call_site: [ffffffffa00bf1ca] hidraw_rep 390 { call_site: [ffffffff811e3a25] __seq_open 391 { call_site: [ffffffff8109524a] alloc_fair 392 { call_site: [ffffffff811febd5] fsnotify_a 393 { call_site: [ffffffff81440f58] __tty_buff 394 { call_site: [ffffffff81200ba6] inotify_ne 395 { call_site: [ffffffffa05e19af] ieee80211_ 396 { call_site: [ffffffff81672406] tcp_get_me 397 { call_site: [ffffffff81097ec2] alloc_rt_s 398 { call_site: [ffffffff81089b05] sched_crea 399 . 400 . 401 . 402 { call_site: [ffffffffa04a580c] intel_crtc 403 { call_site: [ffffffffa0287592] drm_mode_p 404 { call_site: [ffffffffa04c4a3c] intel_plan 405 { call_site: [ffffffff812891ca] ext4_find_ 406 { call_site: [ffffffffa029070e] drm_vma_no 407 { call_site: [ffffffffa045e7c4] i915_gem_d 408 { call_site: [ffffffffa02911f2] drm_modese 409 { call_site: [ffffffffa0489a66] intel_ring 410 { call_site: [ffffffffa046041c] i915_gem_e 411 { call_site: [ffffffff81325607] apparmor_f 412 { call_site: [ffffffffa00b7c06] hid_report 413 { call_site: [ffffffff8131ebf7] aa_alloc_t 414 { call_site: [ffffffff8125847d] ext4_htree 415 416 Totals: 417 Hits: 109928 418 Entries: 71 419 Dropped: 0 420 421 Because the default sort key above is 'hitco 422 the list of call_sites by increasing hitcoun 423 we see the functions that made the most kmal 424 run. If instead we wanted to see the top km 425 terms of the number of bytes requested rathe 426 calls, and we wanted the top caller to appea 427 the 'sort' parameter, along with the 'descen 428 429 # echo 'hist:key=call_site.sym:val=bytes_r 430 /sys/kernel/tracing/events/kmem/kma 431 432 # cat /sys/kernel/tracing/events/kmem/kmal 433 # trigger info: hist:keys=call_site.sym:va 434 435 { call_site: [ffffffffa046041c] i915_gem_e 436 { call_site: [ffffffffa045e7c4] i915_gem_d 437 { call_site: [ffffffff8125847d] ext4_htree 438 { call_site: [ffffffff811e2a1b] seq_buf_al 439 { call_site: [ffffffffa0489a66] intel_ring 440 { call_site: [ffffffff812891ca] ext4_find_ 441 { call_site: [ffffffff811ae8e1] __kmalloc 442 { call_site: [ffffffffa04c4a3c] intel_plan 443 { call_site: [ffffffffa02911f2] drm_modese 444 { call_site: [ffffffffa04a580c] intel_crtc 445 { call_site: [ffffffffa0287592] drm_mode_p 446 { call_site: [ffffffffa00b7c06] hid_report 447 { call_site: [ffffffff8137e559] sg_kmalloc 448 . 449 . 450 . 451 { call_site: [ffffffff81095225] alloc_fair 452 { call_site: [ffffffff81097ec2] alloc_rt_s 453 { call_site: [ffffffff812d8406] copy_semun 454 { call_site: [ffffffff81200ba6] inotify_ne 455 { call_site: [ffffffffa027121a] drm_getmag 456 { call_site: [ffffffff811e3a25] __seq_open 457 { call_site: [ffffffff811c52f4] bprm_chang 458 { call_site: [ffffffff8154bc62] usb_contro 459 { call_site: [ffffffffa00bf1ca] hidraw_rep 460 { call_site: [ffffffffa00bf6fe] hidraw_sen 461 462 Totals: 463 Hits: 32133 464 Entries: 81 465 Dropped: 0 466 467 To display the offset and size information i 468 name, just use 'sym-offset' instead:: 469 470 # echo 'hist:key=call_site.sym-offset:val= 471 /sys/kernel/tracing/events/kmem/kma 472 473 # cat /sys/kernel/tracing/events/kmem/kmal 474 # trigger info: hist:keys=call_site.sym-of 475 476 { call_site: [ffffffffa046041c] i915_gem_e 477 { call_site: [ffffffffa0489a66] intel_ring 478 { call_site: [ffffffffa045e7c4] i915_gem_d 479 { call_site: [ffffffffa045e646] i915_gem_d 480 { call_site: [ffffffff811e2a1b] seq_buf_al 481 { call_site: [ffffffffa04a580c] intel_crtc 482 { call_site: [ffffffff811ae8e1] __kmalloc+ 483 { call_site: [ffffffffa0287592] drm_mode_p 484 { call_site: [ffffffffa02911f2] drm_modese 485 { call_site: [ffffffffa04c4a3c] intel_plan 486 { call_site: [ffffffffa029070e] drm_vma_no 487 { call_site: [ffffffff815f8d7b] sk_prot_al 488 . 489 . 490 . 491 { call_site: [ffffffff8109524a] alloc_fair 492 { call_site: [ffffffffa027b921] drm_vm_ope 493 { call_site: [ffffffff8122e266] proc_self_ 494 { call_site: [ffffffff81213e80] load_elf_b 495 { call_site: [ffffffff8154bc62] usb_contro 496 { call_site: [ffffffffa00bf6fe] hidraw_sen 497 { call_site: [ffffffffa00bf1ca] hidraw_rep 498 499 Totals: 500 Hits: 26098 501 Entries: 64 502 Dropped: 0 503 504 We can also add multiple fields to the 'valu 505 example, we might want to see the total numb 506 alongside bytes requested, and display the r 507 allocated in a descending order:: 508 509 # echo 'hist:keys=call_site.sym:values=byt 510 /sys/kernel/tracing/events/kmem/kma 511 512 # cat /sys/kernel/tracing/events/kmem/kmal 513 # trigger info: hist:keys=call_site.sym:va 514 515 { call_site: [ffffffffa046041c] i915_gem_e 516 { call_site: [ffffffff811e2a1b] seq_buf_al 517 { call_site: [ffffffffa0489a66] intel_ring 518 { call_site: [ffffffffa045e7c4] i915_gem_d 519 { call_site: [ffffffff8125847d] ext4_htree 520 { call_site: [ffffffffa045e646] i915_gem_d 521 { call_site: [ffffffffa04c4a3c] intel_plan 522 { call_site: [ffffffffa02911f2] drm_modese 523 { call_site: [ffffffff815f8d7b] sk_prot_al 524 { call_site: [ffffffff8137e559] sg_kmalloc 525 { call_site: [ffffffffa00b7c06] hid_report 526 { call_site: [ffffffffa04a580c] intel_crtc 527 . 528 . 529 . 530 { call_site: [ffffffff8109bd3b] sched_auto 531 { call_site: [ffffffff81097ee8] alloc_rt_s 532 { call_site: [ffffffff8109524a] alloc_fair 533 { call_site: [ffffffff81095225] alloc_fair 534 { call_site: [ffffffff81097ec2] alloc_rt_s 535 { call_site: [ffffffff81213e80] load_elf_b 536 { call_site: [ffffffff81079a2e] kthread_cr 537 { call_site: [ffffffffa00bf6fe] hidraw_sen 538 { call_site: [ffffffff8154bc62] usb_contro 539 { call_site: [ffffffffa00bf1ca] hidraw_rep 540 541 Totals: 542 Hits: 66598 543 Entries: 65 544 Dropped: 0 545 546 Finally, to finish off our kmalloc example, 547 the hist trigger display symbolic call_sites 548 trigger additionally display the complete se 549 that led to each call_site. To do that, we 550 value 'common_stacktrace' for the key parame 551 552 # echo 'hist:keys=common_stacktrace:values 553 /sys/kernel/tracing/events/kmem/kma 554 555 The above trigger will use the kernel stack 556 event is triggered as the key for the hash t 557 enumeration of every kernel callpath that le 558 event, along with a running total of any of 559 that event. Here we tally bytes requested a 560 every callpath in the system that led up to 561 every callpath to a kmalloc for a kernel com 562 563 # cat /sys/kernel/tracing/events/kmem/kmal 564 # trigger info: hist:keys=common_stacktrac 565 566 { common_stacktrace: 567 __kmalloc_track_caller+0x10b/0x1a0 568 kmemdup+0x20/0x50 569 hidraw_report_event+0x8a/0x120 [hid] 570 hid_report_raw_event+0x3ea/0x440 [hid 571 hid_input_report+0x112/0x190 [hid] 572 hid_irq_in+0xc2/0x260 [usbhid] 573 __usb_hcd_giveback_urb+0x72/0x120 574 usb_giveback_urb_bh+0x9e/0xe0 575 tasklet_hi_action+0xf8/0x100 576 __do_softirq+0x114/0x2c0 577 irq_exit+0xa5/0xb0 578 do_IRQ+0x5a/0xf0 579 ret_from_intr+0x0/0x30 580 cpuidle_enter+0x17/0x20 581 cpu_startup_entry+0x315/0x3e0 582 rest_init+0x7c/0x80 583 } hitcount: 3 bytes_req: 584 { common_stacktrace: 585 __kmalloc_track_caller+0x10b/0x1a0 586 kmemdup+0x20/0x50 587 hidraw_report_event+0x8a/0x120 [hid] 588 hid_report_raw_event+0x3ea/0x440 [hid 589 hid_input_report+0x112/0x190 [hid] 590 hid_irq_in+0xc2/0x260 [usbhid] 591 __usb_hcd_giveback_urb+0x72/0x120 592 usb_giveback_urb_bh+0x9e/0xe0 593 tasklet_hi_action+0xf8/0x100 594 __do_softirq+0x114/0x2c0 595 irq_exit+0xa5/0xb0 596 do_IRQ+0x5a/0xf0 597 ret_from_intr+0x0/0x30 598 } hitcount: 3 bytes_req: 599 { common_stacktrace: 600 kmem_cache_alloc_trace+0xeb/0x150 601 aa_alloc_task_context+0x27/0x40 602 apparmor_cred_prepare+0x1f/0x50 603 security_prepare_creds+0x16/0x20 604 prepare_creds+0xdf/0x1a0 605 SyS_capset+0xb5/0x200 606 system_call_fastpath+0x12/0x6a 607 } hitcount: 1 bytes_req: 608 . 609 . 610 . 611 { common_stacktrace: 612 __kmalloc+0x11b/0x1b0 613 i915_gem_execbuffer2+0x6c/0x2c0 [i915 614 drm_ioctl+0x349/0x670 [drm] 615 do_vfs_ioctl+0x2f0/0x4f0 616 SyS_ioctl+0x81/0xa0 617 system_call_fastpath+0x12/0x6a 618 } hitcount: 17726 bytes_req: 13944 619 { common_stacktrace: 620 __kmalloc+0x11b/0x1b0 621 load_elf_phdrs+0x76/0xa0 622 load_elf_binary+0x102/0x1650 623 search_binary_handler+0x97/0x1d0 624 do_execveat_common.isra.34+0x551/0x6e 625 SyS_execve+0x3a/0x50 626 return_from_execve+0x0/0x23 627 } hitcount: 33348 bytes_req: 17152 628 { common_stacktrace: 629 kmem_cache_alloc_trace+0xeb/0x150 630 apparmor_file_alloc_security+0x27/0x4 631 security_file_alloc+0x16/0x20 632 get_empty_filp+0x93/0x1c0 633 path_openat+0x31/0x5f0 634 do_filp_open+0x3a/0x90 635 do_sys_open+0x128/0x220 636 SyS_open+0x1e/0x20 637 system_call_fastpath+0x12/0x6a 638 } hitcount: 4766422 bytes_req: 9532 639 { common_stacktrace: 640 __kmalloc+0x11b/0x1b0 641 seq_buf_alloc+0x1b/0x50 642 seq_read+0x2cc/0x370 643 proc_reg_read+0x3d/0x80 644 __vfs_read+0x28/0xe0 645 vfs_read+0x86/0x140 646 SyS_read+0x46/0xb0 647 system_call_fastpath+0x12/0x6a 648 } hitcount: 19133 bytes_req: 78368 649 650 Totals: 651 Hits: 6085872 652 Entries: 253 653 Dropped: 0 654 655 If you key a hist trigger on common_pid, in 656 gather and display sorted totals for each pr 657 special .execname modifier to display the ex 658 processes in the table rather than raw pids. 659 keeps a per-process sum of total bytes read: 660 661 # echo 'hist:key=common_pid.execname:val=c 662 /sys/kernel/tracing/events/syscalls 663 664 # cat /sys/kernel/tracing/events/syscalls/ 665 # trigger info: hist:keys=common_pid.execn 666 667 { common_pid: gnome-terminal [ 3196] 668 { common_pid: Xorg [ 1309] 669 { common_pid: compiz [ 2889] 670 { common_pid: bash [ 8710] 671 { common_pid: dbus-daemon-lau [ 8703] 672 { common_pid: irqbalance [ 1252] 673 { common_pid: 01ifupdown [ 8705] 674 { common_pid: dbus-daemon [ 772] 675 { common_pid: Socket Thread [ 8342] 676 { common_pid: nm-dhcp-client. [ 8701] 677 { common_pid: gmain [ 1315] 678 . 679 . 680 . 681 { common_pid: postgres [ 1892] 682 { common_pid: postgres [ 1891] 683 { common_pid: gmain [ 8704] 684 { common_pid: upstart-dbus-br [ 2740] 685 { common_pid: nm-dispatcher.a [ 8696] 686 { common_pid: indicator-datet [ 2904] 687 { common_pid: gdbus [ 2998] 688 { common_pid: rtkit-daemon [ 2052] 689 { common_pid: init [ 1] 690 691 Totals: 692 Hits: 2116 693 Entries: 51 694 Dropped: 0 695 696 Similarly, if you key a hist trigger on sysc 697 gather and display a list of systemwide sysc 698 the special .syscall modifier to display the 699 than raw ids. The example below keeps a run 700 counts for the system during the run:: 701 702 # echo 'hist:key=id.syscall:val=hitcount' 703 /sys/kernel/tracing/events/raw_sysc 704 705 # cat /sys/kernel/tracing/events/raw_sysca 706 # trigger info: hist:keys=id.syscall:vals= 707 708 { id: sys_fsync [ 74] 709 { id: sys_newuname [ 63] 710 { id: sys_prctl [157] 711 { id: sys_statfs [137] 712 { id: sys_symlink [ 88] 713 { id: sys_sendmmsg [307] 714 { id: sys_semctl [ 66] 715 { id: sys_readlink [ 89] 716 { id: sys_bind [ 49] 717 { id: sys_getsockname [ 51] 718 { id: sys_unlink [ 87] 719 { id: sys_rename [ 82] 720 { id: unknown_syscall [ 58] 721 { id: sys_connect [ 42] 722 { id: sys_getpid [ 39] 723 . 724 . 725 . 726 { id: sys_rt_sigprocmask [ 14] 727 { id: sys_futex [202] 728 { id: sys_write [ 1] 729 { id: sys_setitimer [ 38] 730 { id: sys_read [ 0] 731 { id: sys_select [ 23] 732 { id: sys_writev [ 20] 733 { id: sys_poll [ 7] 734 { id: sys_recvmsg [ 47] 735 { id: sys_ioctl [ 16] 736 737 Totals: 738 Hits: 67612 739 Entries: 72 740 Dropped: 0 741 742 The syscall counts above provide a rough ove 743 call activity on the system; we can see for 744 popular system call on this system was the ' 745 746 We can use 'compound' keys to refine that nu 747 further insight as to which processes exactl 748 overall ioctl count. 749 750 The command below keeps a hitcount for every 751 system call id and pid - the end result is e 752 that keeps a per-pid sum of system call hits 753 sorted using the system call id as the prima 754 hitcount sum as the secondary key:: 755 756 # echo 'hist:key=id.syscall,common_pid.exe 757 /sys/kernel/tracing/events/raw_sysc 758 759 # cat /sys/kernel/tracing/events/raw_sysca 760 # trigger info: hist:keys=id.syscall,commo 761 762 { id: sys_read [ 0], 763 { id: sys_read [ 0], 764 { id: sys_read [ 0], 765 { id: sys_read [ 0], 766 { id: sys_read [ 0], 767 { id: sys_read [ 0], 768 { id: sys_read [ 0], 769 { id: sys_read [ 0], 770 { id: sys_read [ 0], 771 { id: sys_read [ 0], 772 . 773 . 774 . 775 { id: sys_ioctl [ 16], 776 { id: sys_ioctl [ 16], 777 { id: sys_ioctl [ 16], 778 { id: sys_ioctl [ 16], 779 { id: sys_ioctl [ 16], 780 . 781 . 782 . 783 { id: sys_waitid [247], 784 { id: sys_waitid [247], 785 { id: sys_inotify_add_watch [254], 786 { id: sys_inotify_add_watch [254], 787 { id: sys_inotify_add_watch [254], 788 { id: sys_inotify_add_watch [254], 789 { id: sys_inotify_add_watch [254], 790 { id: sys_inotify_add_watch [254], 791 { id: sys_openat [257], 792 { id: sys_eventfd2 [290], 793 { id: sys_eventfd2 [290], 794 795 Totals: 796 Hits: 31536 797 Entries: 323 798 Dropped: 0 799 800 The above list does give us a breakdown of t 801 pid, but it also gives us quite a bit more t 802 don't really care about at the moment. Sinc 803 id for sys_ioctl (16, displayed next to the 804 can use that to filter out all the other sys 805 806 # echo 'hist:key=id.syscall,common_pid.exe 807 /sys/kernel/tracing/events/raw_sysc 808 809 # cat /sys/kernel/tracing/events/raw_sysca 810 # trigger info: hist:keys=id.syscall,commo 811 812 { id: sys_ioctl [ 16], 813 { id: sys_ioctl [ 16], 814 { id: sys_ioctl [ 16], 815 { id: sys_ioctl [ 16], 816 { id: sys_ioctl [ 16], 817 { id: sys_ioctl [ 16], 818 { id: sys_ioctl [ 16], 819 { id: sys_ioctl [ 16], 820 { id: sys_ioctl [ 16], 821 . 822 . 823 . 824 { id: sys_ioctl [ 16], 825 { id: sys_ioctl [ 16], 826 { id: sys_ioctl [ 16], 827 { id: sys_ioctl [ 16], 828 { id: sys_ioctl [ 16], 829 { id: sys_ioctl [ 16], 830 831 Totals: 832 Hits: 101162 833 Entries: 103 834 Dropped: 0 835 836 The above output shows that 'compiz' and 'Xo 837 the heaviest ioctl callers (which might lead 838 whether they really need to be making all th 839 possible avenues for further investigation.) 840 841 The compound key examples used a key and a s 842 sort the output, but we can just as easily u 843 Here's an example where we use a compound ke 844 common_pid and size event fields. Sorting w 845 key and 'size' as the secondary key allows u 846 ordered summary of the recvfrom sizes, with 847 each process:: 848 849 # echo 'hist:key=common_pid.execname,size: 850 /sys/kernel/tracing/events/syscalls 851 852 # cat /sys/kernel/tracing/events/syscalls/ 853 # trigger info: hist:keys=common_pid.execn 854 855 { common_pid: smbd [ 784] 856 { common_pid: dnsmasq [ 1412] 857 { common_pid: postgres [ 1796] 858 { common_pid: postgres [ 1867] 859 { common_pid: bamfdaemon [ 2787] 860 { common_pid: bamfdaemon [ 2787] 861 { common_pid: compiz [ 2994] 862 { common_pid: compiz [ 2994] 863 { common_pid: gnome-terminal [ 3199] 864 { common_pid: firefox [ 8817] 865 { common_pid: firefox [ 8817] 866 { common_pid: firefox [ 8817] 867 { common_pid: firefox [ 8817] 868 { common_pid: firefox [ 8817] 869 { common_pid: firefox [ 8817] 870 { common_pid: firefox [ 8822] 871 { common_pid: firefox [ 8822] 872 { common_pid: firefox [ 8822] 873 { common_pid: firefox [ 8822] 874 . 875 . 876 . 877 { common_pid: pool [ 8923] 878 { common_pid: pool [ 8923] 879 { common_pid: pool [ 8924] 880 { common_pid: pool [ 8924] 881 { common_pid: pool [ 8928] 882 { common_pid: pool [ 8928] 883 { common_pid: pool [ 8928] 884 { common_pid: pool [ 8929] 885 { common_pid: pool [ 8929] 886 887 Totals: 888 Hits: 2016 889 Entries: 224 890 Dropped: 0 891 892 The above example also illustrates the fact 893 key is treated as a single entity for hashin 894 it's composed of can be accessed independent 895 896 The next example uses a string field as the 897 demonstrates how you can manually pause and 898 In this example, we'll aggregate fork counts 899 large number of entries in the hash table, s 900 much smaller number, say 256:: 901 902 # echo 'hist:key=child_comm:val=hitcount:s 903 /sys/kernel/tracing/events/sched/sc 904 905 # cat /sys/kernel/tracing/events/sched/sch 906 # trigger info: hist:keys=child_comm:vals= 907 908 { child_comm: dconf worker 909 { child_comm: ibus-daemon 910 { child_comm: whoopsie 911 { child_comm: smbd 912 { child_comm: gdbus 913 { child_comm: kthreadd 914 { child_comm: dconf worker 915 { child_comm: evolution-alarm 916 { child_comm: Socket Thread 917 { child_comm: postgres 918 { child_comm: bash 919 { child_comm: compiz 920 { child_comm: evolution-sourc 921 { child_comm: dhclient 922 { child_comm: pool 923 { child_comm: nm-dispatcher.a 924 { child_comm: firefox 925 { child_comm: dbus-daemon 926 { child_comm: glib-pacrunner 927 { child_comm: evolution 928 929 Totals: 930 Hits: 89 931 Entries: 20 932 Dropped: 0 933 934 If we want to pause the hist trigger, we can 935 the command that started the trigger. Notic 936 displays as [paused]:: 937 938 # echo 'hist:key=child_comm:val=hitcount:s 939 /sys/kernel/tracing/events/sched/sc 940 941 # cat /sys/kernel/tracing/events/sched/sch 942 # trigger info: hist:keys=child_comm:vals= 943 944 { child_comm: dconf worker 945 { child_comm: kthreadd 946 { child_comm: dconf worker 947 { child_comm: gdbus 948 { child_comm: ibus-daemon 949 { child_comm: Socket Thread 950 { child_comm: evolution-alarm 951 { child_comm: smbd 952 { child_comm: bash 953 { child_comm: whoopsie 954 { child_comm: compiz 955 { child_comm: evolution-sourc 956 { child_comm: pool 957 { child_comm: postgres 958 { child_comm: firefox 959 { child_comm: dhclient 960 { child_comm: emacs 961 { child_comm: dbus-daemon 962 { child_comm: nm-dispatcher.a 963 { child_comm: evolution 964 { child_comm: glib-pacrunner 965 966 Totals: 967 Hits: 199 968 Entries: 21 969 Dropped: 0 970 971 To manually continue having the trigger aggr 972 :cont instead. Notice that the trigger info 973 again, and the data has changed:: 974 975 # echo 'hist:key=child_comm:val=hitcount:s 976 /sys/kernel/tracing/events/sched/sc 977 978 # cat /sys/kernel/tracing/events/sched/sch 979 # trigger info: hist:keys=child_comm:vals= 980 981 { child_comm: dconf worker 982 { child_comm: dconf worker 983 { child_comm: kthreadd 984 { child_comm: gdbus 985 { child_comm: ibus-daemon 986 { child_comm: Socket Thread 987 { child_comm: evolution-alarm 988 { child_comm: smbd 989 { child_comm: whoopsie 990 { child_comm: compiz 991 { child_comm: evolution-sourc 992 { child_comm: bash 993 { child_comm: pool 994 { child_comm: postgres 995 { child_comm: firefox 996 { child_comm: dhclient 997 { child_comm: emacs 998 { child_comm: dbus-daemon 999 { child_comm: nm-dispatcher.a 1000 { child_comm: evolution 1001 { child_comm: glib-pacrunner 1002 1003 Totals: 1004 Hits: 206 1005 Entries: 21 1006 Dropped: 0 1007 1008 The previous example showed how to start an 1009 appending 'pause' and 'continue' to the his 1010 hist trigger can also be started in a pause 1011 starting the trigger with ':pause' appended 1012 start the trigger only when you're ready to 1013 and not before. For example, you could sta 1014 paused state, then unpause it and do someth 1015 then pause the trigger again when done. 1016 1017 Of course, doing this manually can be diffi 1018 it is possible to automatically start and s 1019 on some condition, via the enable_hist and 1020 1021 For example, suppose we wanted to take a lo 1022 weights in terms of skb length for each cal 1023 netif_receive_skb event when downloading a 1024 wget. 1025 1026 First we set up an initially paused stacktr 1027 netif_receive_skb event:: 1028 1029 # echo 'hist:key=common_stacktrace:vals=l 1030 /sys/kernel/tracing/events/net/net 1031 1032 Next, we set up an 'enable_hist' trigger on 1033 event, with an 'if filename==/usr/bin/wget' 1034 this new trigger is that it will 'unpause' 1035 set up on netif_receive_skb if and only if 1036 sched_process_exec event with a filename of 1037 that happens, all netif_receive_skb events 1038 hash table keyed on stacktrace:: 1039 1040 # echo 'enable_hist:net:netif_receive_skb 1041 /sys/kernel/tracing/events/sched/s 1042 1043 The aggregation continues until the netif_r 1044 again, which is what the following disable_ 1045 creating a similar setup on the sched_proce 1046 filter 'comm==wget':: 1047 1048 # echo 'disable_hist:net:netif_receive_sk 1049 /sys/kernel/tracing/events/sched/s 1050 1051 Whenever a process exits and the comm field 1052 trigger filter matches 'comm==wget', the ne 1053 trigger is disabled. 1054 1055 The overall effect is that netif_receive_sk 1056 into the hash table for only the duration o 1057 wget command and then listing the 'hist' fi 1058 output generated by the wget command:: 1059 1060 $ wget https://www.kernel.org/pub/linux/k 1061 1062 # cat /sys/kernel/tracing/events/net/neti 1063 # trigger info: hist:keys=common_stacktra 1064 1065 { common_stacktrace: 1066 __netif_receive_skb_core+0x46d/0x990 1067 __netif_receive_skb+0x18/0x60 1068 netif_receive_skb_internal+0x23/0x90 1069 napi_gro_receive+0xc8/0x100 1070 ieee80211_deliver_skb+0xd6/0x270 [ma 1071 ieee80211_rx_handlers+0xccf/0x22f0 [ 1072 ieee80211_prepare_and_rx_handle+0x4e 1073 ieee80211_rx+0x31d/0x900 [mac80211] 1074 iwlagn_rx_reply_rx+0x3db/0x6f0 [iwld 1075 iwl_rx_dispatch+0x8e/0xf0 [iwldvm] 1076 iwl_pcie_irq_handler+0xe3c/0x12f0 [i 1077 irq_thread_fn+0x20/0x50 1078 irq_thread+0x11f/0x150 1079 kthread+0xd2/0xf0 1080 ret_from_fork+0x42/0x70 1081 } hitcount: 85 len: 28884 1082 { common_stacktrace: 1083 __netif_receive_skb_core+0x46d/0x990 1084 __netif_receive_skb+0x18/0x60 1085 netif_receive_skb_internal+0x23/0x90 1086 napi_gro_complete+0xa4/0xe0 1087 dev_gro_receive+0x23a/0x360 1088 napi_gro_receive+0x30/0x100 1089 ieee80211_deliver_skb+0xd6/0x270 [ma 1090 ieee80211_rx_handlers+0xccf/0x22f0 [ 1091 ieee80211_prepare_and_rx_handle+0x4e 1092 ieee80211_rx+0x31d/0x900 [mac80211] 1093 iwlagn_rx_reply_rx+0x3db/0x6f0 [iwld 1094 iwl_rx_dispatch+0x8e/0xf0 [iwldvm] 1095 iwl_pcie_irq_handler+0xe3c/0x12f0 [i 1096 irq_thread_fn+0x20/0x50 1097 irq_thread+0x11f/0x150 1098 kthread+0xd2/0xf0 1099 } hitcount: 98 len: 664329 1100 { common_stacktrace: 1101 __netif_receive_skb_core+0x46d/0x990 1102 __netif_receive_skb+0x18/0x60 1103 process_backlog+0xa8/0x150 1104 net_rx_action+0x15d/0x340 1105 __do_softirq+0x114/0x2c0 1106 do_softirq_own_stack+0x1c/0x30 1107 do_softirq+0x65/0x70 1108 __local_bh_enable_ip+0xb5/0xc0 1109 ip_finish_output+0x1f4/0x840 1110 ip_output+0x6b/0xc0 1111 ip_local_out_sk+0x31/0x40 1112 ip_send_skb+0x1a/0x50 1113 udp_send_skb+0x173/0x2a0 1114 udp_sendmsg+0x2bf/0x9f0 1115 inet_sendmsg+0x64/0xa0 1116 sock_sendmsg+0x3d/0x50 1117 } hitcount: 115 len: 13030 1118 { common_stacktrace: 1119 __netif_receive_skb_core+0x46d/0x990 1120 __netif_receive_skb+0x18/0x60 1121 netif_receive_skb_internal+0x23/0x90 1122 napi_gro_complete+0xa4/0xe0 1123 napi_gro_flush+0x6d/0x90 1124 iwl_pcie_irq_handler+0x92a/0x12f0 [i 1125 irq_thread_fn+0x20/0x50 1126 irq_thread+0x11f/0x150 1127 kthread+0xd2/0xf0 1128 ret_from_fork+0x42/0x70 1129 } hitcount: 934 len: 5512212 1130 1131 Totals: 1132 Hits: 1232 1133 Entries: 4 1134 Dropped: 0 1135 1136 The above shows all the netif_receive_skb c 1137 lengths for the duration of the wget comman 1138 1139 The 'clear' hist trigger param can be used 1140 Suppose we wanted to try another run of the 1141 this time also wanted to see the complete l 1142 into the histogram. In order to avoid havi 1143 again, we can just clear the histogram firs 1144 1145 # echo 'hist:key=common_stacktrace:vals=l 1146 /sys/kernel/tracing/events/net/net 1147 1148 Just to verify that it is in fact cleared, 1149 the hist file:: 1150 1151 # cat /sys/kernel/tracing/events/net/neti 1152 # trigger info: hist:keys=common_stacktra 1153 1154 Totals: 1155 Hits: 0 1156 Entries: 0 1157 Dropped: 0 1158 1159 Since we want to see the detailed list of e 1160 event occurring during the new run, which a 1161 events being aggregated into the hash table 1162 'enable_event' events to the triggering sch 1163 sched_process_exit events as such:: 1164 1165 # echo 'enable_event:net:netif_receive_sk 1166 /sys/kernel/tracing/events/sched/s 1167 1168 # echo 'disable_event:net:netif_receive_s 1169 /sys/kernel/tracing/events/sched/s 1170 1171 If you read the trigger files for the sched 1172 sched_process_exit triggers, you should see 1173 one enabling/disabling the hist aggregation 1174 enabling/disabling the logging of events:: 1175 1176 # cat /sys/kernel/tracing/events/sched/sc 1177 enable_event:net:netif_receive_skb:unlimi 1178 enable_hist:net:netif_receive_skb:unlimit 1179 1180 # cat /sys/kernel/tracing/events/sched/sc 1181 enable_event:net:netif_receive_skb:unlimi 1182 disable_hist:net:netif_receive_skb:unlimi 1183 1184 In other words, whenever either of the sche 1185 sched_process_exit events is hit and matche 1186 disables both the histogram and the event l 1187 with is a hash table and set of events just 1188 duration. Run the wget command again:: 1189 1190 $ wget https://www.kernel.org/pub/linux/k 1191 1192 Displaying the 'hist' file should show some 1193 saw in the last run, but this time you shou 1194 individual events in the trace file:: 1195 1196 # cat /sys/kernel/tracing/trace 1197 1198 # tracer: nop 1199 # 1200 # entries-in-buffer/entries-written: 183/ 1201 # 1202 # _-----=> i 1203 # / _----=> n 1204 # | / _---=> h 1205 # || / _--=> p 1206 # ||| / de 1207 # TASK-PID CPU# |||| TIME 1208 # | | | |||| | 1209 wget-15108 [000] ..s1 31769.6 1210 wget-15108 [000] ..s1 31769.6 1211 dnsmasq-1382 [000] ..s1 31769.6 1212 dnsmasq-1382 [000] ..s1 31769.6 1213 ##### CPU 2 buffer started #### 1214 irq/29-iwlwifi-559 [002] ..s. 31772.0 1215 irq/29-iwlwifi-559 [002] ..s. 31772.0 1216 irq/29-iwlwifi-559 [002] ..s. 31772.0 1217 irq/29-iwlwifi-559 [002] ..s. 31772.0 1218 irq/29-iwlwifi-559 [002] ..s. 31772.0 1219 . 1220 . 1221 . 1222 1223 The following example demonstrates how mult 1224 attached to a given event. This capability 1225 creating a set of different summaries deriv 1226 events, or for comparing the effects of dif 1227 other things:: 1228 1229 # echo 'hist:keys=skbaddr.hex:vals=len if 1230 /sys/kernel/tracing/events/net/net 1231 # echo 'hist:keys=skbaddr.hex:vals=len if 1232 /sys/kernel/tracing/events/net/net 1233 # echo 'hist:keys=skbaddr.hex:vals=len if 1234 /sys/kernel/tracing/events/net/net 1235 # echo 'hist:keys=skbaddr.hex:vals=len' > 1236 /sys/kernel/tracing/events/net/net 1237 # echo 'hist:keys=len:vals=common_preempt 1238 /sys/kernel/tracing/events/net/net 1239 1240 The above set of commands create four trigg 1241 their filters, along with a completely diff 1242 nonsensical trigger. Note that in order to 1243 triggers to the same file, you should use t 1244 append them ('>' will also add the new hist 1245 any existing hist triggers beforehand). 1246 1247 Displaying the contents of the 'hist' file 1248 contents of all five histograms:: 1249 1250 # cat /sys/kernel/tracing/events/net/neti 1251 1252 # event histogram 1253 # 1254 # trigger info: hist:keys=len:vals=hitcou 1255 # 1256 1257 { len: 176 } hitcount: 1 1258 { len: 223 } hitcount: 1 1259 { len: 4854 } hitcount: 1 1260 { len: 395 } hitcount: 1 1261 { len: 177 } hitcount: 1 1262 { len: 446 } hitcount: 1 1263 { len: 1601 } hitcount: 1 1264 . 1265 . 1266 . 1267 { len: 1280 } hitcount: 66 1268 { len: 116 } hitcount: 81 1269 { len: 708 } hitcount: 112 1270 { len: 46 } hitcount: 221 1271 { len: 1264 } hitcount: 458 1272 1273 Totals: 1274 Hits: 1428 1275 Entries: 147 1276 Dropped: 0 1277 1278 1279 # event histogram 1280 # 1281 # trigger info: hist:keys=skbaddr.hex:val 1282 # 1283 1284 { skbaddr: ffff8800baee5e00 } hitcount: 1285 { skbaddr: ffff88005f3d5600 } hitcount: 1286 { skbaddr: ffff88005f3d4900 } hitcount: 1287 { skbaddr: ffff88009fed6300 } hitcount: 1288 { skbaddr: ffff88009fe0ad00 } hitcount: 1289 { skbaddr: ffff88008cdb1900 } hitcount: 1290 { skbaddr: ffff880064b5ef00 } hitcount: 1291 { skbaddr: ffff880044e3c700 } hitcount: 1292 { skbaddr: ffff880100065900 } hitcount: 1293 { skbaddr: ffff8800d46bd500 } hitcount: 1294 { skbaddr: ffff88005f3d5f00 } hitcount: 1295 { skbaddr: ffff880100064700 } hitcount: 1296 { skbaddr: ffff8800badb6f00 } hitcount: 1297 . 1298 . 1299 . 1300 { skbaddr: ffff88009fe0be00 } hitcount: 1301 { skbaddr: ffff88009fe0a400 } hitcount: 1302 { skbaddr: ffff88009fe0b700 } hitcount: 1303 { skbaddr: ffff88009fe0b600 } hitcount: 1304 { skbaddr: ffff88006a462800 } hitcount: 1305 { skbaddr: ffff88006a463700 } hitcount: 1306 { skbaddr: ffff88006a462b00 } hitcount: 1307 { skbaddr: ffff88006a463600 } hitcount: 1308 { skbaddr: ffff88006a462200 } hitcount: 1309 1310 Totals: 1311 Hits: 1451 1312 Entries: 318 1313 Dropped: 0 1314 1315 1316 # event histogram 1317 # 1318 # trigger info: hist:keys=skbaddr.hex:val 1319 # 1320 1321 1322 Totals: 1323 Hits: 0 1324 Entries: 0 1325 Dropped: 0 1326 1327 1328 # event histogram 1329 # 1330 # trigger info: hist:keys=skbaddr.hex:val 1331 # 1332 1333 { skbaddr: ffff88009fd2c300 } hitcount: 1334 { skbaddr: ffff8800d2bcce00 } hitcount: 1335 { skbaddr: ffff8800d2bcd700 } hitcount: 1336 { skbaddr: ffff8800d2bcda00 } hitcount: 1337 { skbaddr: ffff8800ae2e2d00 } hitcount: 1338 { skbaddr: ffff8800d2bcdb00 } hitcount: 1339 { skbaddr: ffff88006a4df500 } hitcount: 1340 { skbaddr: ffff88008ce47b00 } hitcount: 1341 { skbaddr: ffff8800ae2e2200 } hitcount: 1342 { skbaddr: ffff88005f3e1000 } hitcount: 1343 { skbaddr: ffff8800d2bcdc00 } hitcount: 1344 { skbaddr: ffff8800d2bcc200 } hitcount: 1345 1346 Totals: 1347 Hits: 14 1348 Entries: 12 1349 Dropped: 0 1350 1351 1352 # event histogram 1353 # 1354 # trigger info: hist:keys=skbaddr.hex:val 1355 # 1356 1357 1358 Totals: 1359 Hits: 0 1360 Entries: 0 1361 Dropped: 0 1362 1363 Named triggers can be used to have triggers 1364 histogram data. This capability is mostly 1365 output of events generated by tracepoints c 1366 functions, but names can be used in a hist 1367 For example, these two triggers when hit wi 1368 field in the shared 'foo' histogram data:: 1369 1370 # echo 'hist:name=foo:keys=skbaddr.hex:va 1371 /sys/kernel/tracing/events/net/net 1372 # echo 'hist:name=foo:keys=skbaddr.hex:va 1373 /sys/kernel/tracing/events/net/net 1374 1375 You can see that they're updating common hi 1376 each event's hist files at the same time:: 1377 1378 # cat /sys/kernel/tracing/events/net/neti 1379 cat /sys/kernel/tracing/events/net/neti 1380 1381 # event histogram 1382 # 1383 # trigger info: hist:name=foo:keys=skbadd 1384 # 1385 1386 { skbaddr: ffff88000ad53500 } hitcount: 1387 { skbaddr: ffff8800af5a1500 } hitcount: 1388 { skbaddr: ffff8800d62a1900 } hitcount: 1389 { skbaddr: ffff8800d2bccb00 } hitcount: 1390 { skbaddr: ffff8800d3c69900 } hitcount: 1391 { skbaddr: ffff88009ff09100 } hitcount: 1392 { skbaddr: ffff88010f13ab00 } hitcount: 1393 { skbaddr: ffff88006a54f400 } hitcount: 1394 { skbaddr: ffff8800d2bcc500 } hitcount: 1395 { skbaddr: ffff880064505000 } hitcount: 1396 { skbaddr: ffff8800baf24e00 } hitcount: 1397 { skbaddr: ffff88009fe0ad00 } hitcount: 1398 { skbaddr: ffff8800d3edff00 } hitcount: 1399 { skbaddr: ffff88009fe0b400 } hitcount: 1400 { skbaddr: ffff8800a1c55a00 } hitcount: 1401 { skbaddr: ffff8800d2bcd100 } hitcount: 1402 { skbaddr: ffff880064505f00 } hitcount: 1403 { skbaddr: ffff8800a8bff200 } hitcount: 1404 { skbaddr: ffff880044e3cc00 } hitcount: 1405 { skbaddr: ffff8800a8bfe700 } hitcount: 1406 { skbaddr: ffff8800d2bcdc00 } hitcount: 1407 { skbaddr: ffff8800a1f64800 } hitcount: 1408 { skbaddr: ffff8800d2bcde00 } hitcount: 1409 { skbaddr: ffff88006a5dea00 } hitcount: 1410 { skbaddr: ffff88002e37a200 } hitcount: 1411 { skbaddr: ffff8800a1f32c00 } hitcount: 1412 { skbaddr: ffff88000ad52600 } hitcount: 1413 { skbaddr: ffff8800a1f91e00 } hitcount: 1414 { skbaddr: ffff8800af5a0200 } hitcount: 1415 { skbaddr: ffff8800d2bcc600 } hitcount: 1416 { skbaddr: ffff8800ba36f500 } hitcount: 1417 { skbaddr: ffff8800d021f800 } hitcount: 1418 { skbaddr: ffff8800a1f33600 } hitcount: 1419 { skbaddr: ffff8800a8bfff00 } hitcount: 1420 { skbaddr: ffff8800d62a1300 } hitcount: 1421 { skbaddr: ffff88002e37a100 } hitcount: 1422 { skbaddr: ffff880064504400 } hitcount: 1423 { skbaddr: ffff8800a8bfec00 } hitcount: 1424 { skbaddr: ffff88000ad53700 } hitcount: 1425 { skbaddr: ffff8800d2bcdb00 } hitcount: 1426 { skbaddr: ffff8800a1f90000 } hitcount: 1427 { skbaddr: ffff88006a54f900 } hitcount: 1428 1429 Totals: 1430 Hits: 81 1431 Entries: 42 1432 Dropped: 0 1433 # event histogram 1434 # 1435 # trigger info: hist:name=foo:keys=skbadd 1436 # 1437 1438 { skbaddr: ffff88000ad53500 } hitcount: 1439 { skbaddr: ffff8800af5a1500 } hitcount: 1440 { skbaddr: ffff8800d62a1900 } hitcount: 1441 { skbaddr: ffff8800d2bccb00 } hitcount: 1442 { skbaddr: ffff8800d3c69900 } hitcount: 1443 { skbaddr: ffff88009ff09100 } hitcount: 1444 { skbaddr: ffff88010f13ab00 } hitcount: 1445 { skbaddr: ffff88006a54f400 } hitcount: 1446 { skbaddr: ffff8800d2bcc500 } hitcount: 1447 { skbaddr: ffff880064505000 } hitcount: 1448 { skbaddr: ffff8800baf24e00 } hitcount: 1449 { skbaddr: ffff88009fe0ad00 } hitcount: 1450 { skbaddr: ffff8800d3edff00 } hitcount: 1451 { skbaddr: ffff88009fe0b400 } hitcount: 1452 { skbaddr: ffff8800a1c55a00 } hitcount: 1453 { skbaddr: ffff8800d2bcd100 } hitcount: 1454 { skbaddr: ffff880064505f00 } hitcount: 1455 { skbaddr: ffff8800a8bff200 } hitcount: 1456 { skbaddr: ffff880044e3cc00 } hitcount: 1457 { skbaddr: ffff8800a8bfe700 } hitcount: 1458 { skbaddr: ffff8800d2bcdc00 } hitcount: 1459 { skbaddr: ffff8800a1f64800 } hitcount: 1460 { skbaddr: ffff8800d2bcde00 } hitcount: 1461 { skbaddr: ffff88006a5dea00 } hitcount: 1462 { skbaddr: ffff88002e37a200 } hitcount: 1463 { skbaddr: ffff8800a1f32c00 } hitcount: 1464 { skbaddr: ffff88000ad52600 } hitcount: 1465 { skbaddr: ffff8800a1f91e00 } hitcount: 1466 { skbaddr: ffff8800af5a0200 } hitcount: 1467 { skbaddr: ffff8800d2bcc600 } hitcount: 1468 { skbaddr: ffff8800ba36f500 } hitcount: 1469 { skbaddr: ffff8800d021f800 } hitcount: 1470 { skbaddr: ffff8800a1f33600 } hitcount: 1471 { skbaddr: ffff8800a8bfff00 } hitcount: 1472 { skbaddr: ffff8800d62a1300 } hitcount: 1473 { skbaddr: ffff88002e37a100 } hitcount: 1474 { skbaddr: ffff880064504400 } hitcount: 1475 { skbaddr: ffff8800a8bfec00 } hitcount: 1476 { skbaddr: ffff88000ad53700 } hitcount: 1477 { skbaddr: ffff8800d2bcdb00 } hitcount: 1478 { skbaddr: ffff8800a1f90000 } hitcount: 1479 { skbaddr: ffff88006a54f900 } hitcount: 1480 1481 Totals: 1482 Hits: 81 1483 Entries: 42 1484 Dropped: 0 1485 1486 And here's an example that shows how to com 1487 any two events even if they don't share any 1488 other than 'hitcount' and 'common_stacktrac 1489 couple of triggers named 'bar' using those 1490 1491 # echo 'hist:name=bar:key=common_stacktra 1492 /sys/kernel/tracing/events/sched/s 1493 # echo 'hist:name=bar:key=common_stacktra 1494 /sys/kernel/tracing/events/net/neti 1495 1496 And displaying the output of either shows s 1497 somewhat confusing output:: 1498 1499 # cat /sys/kernel/tracing/events/sched/sc 1500 # cat /sys/kernel/tracing/events/net/neti 1501 1502 # event histogram 1503 # 1504 # trigger info: hist:name=bar:keys=common 1505 # 1506 1507 { common_stacktrace: 1508 kernel_clone+0x18e/0x330 1509 kernel_thread+0x29/0x30 1510 kthreadd+0x154/0x1b0 1511 ret_from_fork+0x3f/0x70 1512 } hitcount: 1 1513 { common_stacktrace: 1514 netif_rx_internal+0xb2/0xd0 1515 netif_rx_ni+0x20/0x70 1516 dev_loopback_xmit+0xaa/0xd0 1517 ip_mc_output+0x126/0x240 1518 ip_local_out_sk+0x31/0x40 1519 igmp_send_report+0x1e9/0x230 1520 igmp_timer_expire+0xe9/0x120 1521 call_timer_fn+0x39/0xf0 1522 run_timer_softirq+0x1e1/0x290 1523 __do_softirq+0xfd/0x290 1524 irq_exit+0x98/0xb0 1525 smp_apic_timer_interrupt+0x4a/0x 1526 apic_timer_interrupt+0x6d/0x80 1527 cpuidle_enter+0x17/0x20 1528 call_cpuidle+0x3b/0x60 1529 cpu_startup_entry+0x22d/0x310 1530 } hitcount: 1 1531 { common_stacktrace: 1532 netif_rx_internal+0xb2/0xd0 1533 netif_rx_ni+0x20/0x70 1534 dev_loopback_xmit+0xaa/0xd0 1535 ip_mc_output+0x17f/0x240 1536 ip_local_out_sk+0x31/0x40 1537 ip_send_skb+0x1a/0x50 1538 udp_send_skb+0x13e/0x270 1539 udp_sendmsg+0x2bf/0x980 1540 inet_sendmsg+0x67/0xa0 1541 sock_sendmsg+0x38/0x50 1542 SYSC_sendto+0xef/0x170 1543 SyS_sendto+0xe/0x10 1544 entry_SYSCALL_64_fastpath+0x12/0 1545 } hitcount: 2 1546 { common_stacktrace: 1547 netif_rx_internal+0xb2/0xd0 1548 netif_rx+0x1c/0x60 1549 loopback_xmit+0x6c/0xb0 1550 dev_hard_start_xmit+0x219/0x3a0 1551 __dev_queue_xmit+0x415/0x4f0 1552 dev_queue_xmit_sk+0x13/0x20 1553 ip_finish_output2+0x237/0x340 1554 ip_finish_output+0x113/0x1d0 1555 ip_output+0x66/0xc0 1556 ip_local_out_sk+0x31/0x40 1557 ip_send_skb+0x1a/0x50 1558 udp_send_skb+0x16d/0x270 1559 udp_sendmsg+0x2bf/0x980 1560 inet_sendmsg+0x67/0xa0 1561 sock_sendmsg+0x38/0x50 1562 ___sys_sendmsg+0x14e/0x270 1563 } hitcount: 76 1564 { common_stacktrace: 1565 netif_rx_internal+0xb2/0xd0 1566 netif_rx+0x1c/0x60 1567 loopback_xmit+0x6c/0xb0 1568 dev_hard_start_xmit+0x219/0x3a0 1569 __dev_queue_xmit+0x415/0x4f0 1570 dev_queue_xmit_sk+0x13/0x20 1571 ip_finish_output2+0x237/0x340 1572 ip_finish_output+0x113/0x1d0 1573 ip_output+0x66/0xc0 1574 ip_local_out_sk+0x31/0x40 1575 ip_send_skb+0x1a/0x50 1576 udp_send_skb+0x16d/0x270 1577 udp_sendmsg+0x2bf/0x980 1578 inet_sendmsg+0x67/0xa0 1579 sock_sendmsg+0x38/0x50 1580 ___sys_sendmsg+0x269/0x270 1581 } hitcount: 77 1582 { common_stacktrace: 1583 netif_rx_internal+0xb2/0xd0 1584 netif_rx+0x1c/0x60 1585 loopback_xmit+0x6c/0xb0 1586 dev_hard_start_xmit+0x219/0x3a0 1587 __dev_queue_xmit+0x415/0x4f0 1588 dev_queue_xmit_sk+0x13/0x20 1589 ip_finish_output2+0x237/0x340 1590 ip_finish_output+0x113/0x1d0 1591 ip_output+0x66/0xc0 1592 ip_local_out_sk+0x31/0x40 1593 ip_send_skb+0x1a/0x50 1594 udp_send_skb+0x16d/0x270 1595 udp_sendmsg+0x2bf/0x980 1596 inet_sendmsg+0x67/0xa0 1597 sock_sendmsg+0x38/0x50 1598 SYSC_sendto+0xef/0x170 1599 } hitcount: 88 1600 { common_stacktrace: 1601 kernel_clone+0x18e/0x330 1602 SyS_clone+0x19/0x20 1603 entry_SYSCALL_64_fastpath+0x12/0 1604 } hitcount: 244 1605 1606 Totals: 1607 Hits: 489 1608 Entries: 7 1609 Dropped: 0 1610 1611 2.2 Inter-event hist triggers 1612 ----------------------------- 1613 1614 Inter-event hist triggers are hist triggers t 1615 one or more other events and create a histogr 1616 from an inter-event histogram can in turn bec 1617 further combined histograms, thus providing a 1618 histograms, which is important for some appli 1619 1620 The most important example of an inter-event 1621 in this manner is latency, which is simply a 1622 between two events. Although latency is the 1623 inter-event quantity, note that because the s 1624 general across the trace event subsystem, any 1625 in an inter-event quantity. 1626 1627 An example of a histogram that combines data 1628 into a useful chain would be a 'wakeupswitch 1629 combines a 'wakeup latency' histogram and a ' 1630 histogram. 1631 1632 Normally, a hist trigger specification consis 1633 compound) key along with one or more numeric 1634 continually updated sums associated with that 1635 specification in this case consists of indivi 1636 specifications that refer to trace event fiel 1637 single event type. 1638 1639 The inter-event hist trigger extension allows 1640 events to be referenced and combined into a m 1641 specification. In support of this overall go 1642 features have been added to the hist trigger 1643 1644 - In order to compute an inter-event quanti 1645 event needs to saved and then referenced 1646 requires the introduction of support for 1647 1648 - The computation of inter-event quantities 1649 require some minimal amount of support fo 1650 expressions to variables (+ and -). 1651 1652 - A histogram consisting of inter-event qua 1653 histogram on either event (so having the 1654 event host the histogram output doesn't r 1655 address the idea that the histogram is as 1656 combination of events, support is added a 1657 'synthetic' events that are events derive 1658 These synthetic events are full-fledged e 1659 and can be used as such, as for instance 1660 'combination' histograms mentioned previo 1661 1662 - A set of 'actions' can be associated with 1663 these can be used to generate the previou 1664 events, but can also be used for other pu 1665 example saving context when a 'max' laten 1666 1667 - Trace events don't have a 'timestamp' ass 1668 there is an implicit timestamp saved alon 1669 underlying ftrace ring buffer. This time 1670 a synthetic field named 'common_timestamp 1671 histograms as if it were any other event 1672 field in the trace format but rather is a 1673 nonetheless can be used as if it were an 1674 it is in units of nanoseconds; appending 1675 common_timestamp field changes the units 1676 1677 A note on inter-event timestamps: If common_t 1678 histogram, the trace buffer is automatically 1679 absolute timestamps and the "global" trace cl 1680 bogus timestamp differences with other clocks 1681 across CPUs. This can be overridden by speci 1682 trace clocks instead, using the "clock=XXX" h 1683 where XXX is any of the clocks listed in the 1684 pseudo-file. 1685 1686 These features are described in more detail i 1687 1688 2.2.1 Histogram Variables 1689 ------------------------- 1690 1691 Variables are simply named locations used for 1692 values between matching events. A 'matching' 1693 event that has a matching key - if a variable 1694 entry corresponding to that key, any subseque 1695 key can access that variable. 1696 1697 A variable's value is normally available to a 1698 it is set to something else by a subsequent e 1699 to that rule is that any variable used in an 1700 'read-once' - once it's used by an expression 1701 it's reset to its 'unset' state, which means 1702 unless it's set again. This ensures not only 1703 use an uninitialized variable in a calculatio 1704 is used only once and not for any unrelated s 1705 1706 The basic syntax for saving a variable is to 1707 variable name not corresponding to any keywor 1708 to any event field. 1709 1710 Either keys or values can be saved and retrie 1711 creates a variable named 'ts0' for a histogra 1712 'next_pid':: 1713 1714 # echo 'hist:keys=next_pid:vals=$ts0:ts0=co 1715 event/trigger 1716 1717 The ts0 variable can be accessed by any subse 1718 same pid as 'next_pid'. 1719 1720 Variable references are formed by prepending 1721 the '$' sign. Thus for example, the ts0 vari 1722 referenced as '$ts0' in expressions. 1723 1724 Because 'vals=' is used, the common_timestamp 1725 will also be summed as a normal histogram val 1726 timestamp it makes little sense). 1727 1728 The below shows that a key value can also be 1729 1730 # echo 'hist:timer_pid=common_pid:key=timer 1731 1732 If a variable isn't a key variable or prefixe 1733 associated event field will be saved in a var 1734 as a value:: 1735 1736 # echo 'hist:keys=next_pid:ts1=common_times 1737 1738 Multiple variables can be assigned at the sam 1739 result in both ts0 and b being created as var 1740 common_timestamp and field1 additionally bein 1741 1742 # echo 'hist:keys=pid:vals=$ts0,$b:ts0=comm 1743 event/trigger 1744 1745 Note that variable assignments can appear eit 1746 following their use. The command below behav 1747 command above:: 1748 1749 # echo 'hist:keys=pid:ts0=common_timestamp, 1750 event/trigger 1751 1752 Any number of variables not bound to a 'vals= 1753 assigned by simply separating them with colon 1754 thing but without the values being summed in 1755 1756 # echo 'hist:keys=pid:ts0=common_timestamp: 1757 1758 Variables set as above can be referenced and 1759 another event. 1760 1761 For example, here's how a latency can be calc 1762 1763 # echo 'hist:keys=pid,prio:ts0=common_times 1764 # echo 'hist:keys=next_pid:wakeup_lat=commo 1765 1766 In the first line above, the event's timestam 1767 variable ts0. In the next line, ts0 is subtr 1768 event's timestamp to produce the latency, whi 1769 yet another variable, 'wakeup_lat'. The hist 1770 makes use of the wakeup_lat variable to compu 1771 using the same key and variable from yet anot 1772 1773 # echo 'hist:key=pid:wakeupswitch_lat=$wake 1774 1775 Expressions support the use of addition, subt 1776 division operators (+-\*/). 1777 1778 Note if division by zero cannot be detected a 1779 divisor is not a constant), the result will b 1780 1781 Numeric constants can also be used directly i 1782 1783 # echo 'hist:keys=next_pid:timestamp_secs=c 1784 1785 or assigned to a variable and referenced in a 1786 1787 # echo 'hist:keys=next_pid:us_per_sec=10000 1788 # echo 'hist:keys=next_pid:timestamp_secs=c 1789 1790 Variables can even hold stacktraces, which ar 1791 1792 2.2.2 Synthetic Events 1793 ---------------------- 1794 1795 Synthetic events are user-defined events gene 1796 variables or fields associated with one or mo 1797 purpose is to provide a mechanism for display 1798 multiple events consistent with the existing 1799 usage for normal events. 1800 1801 To define a synthetic event, the user writes 1802 consisting of the name of the new event along 1803 variables and their types, which can be any v 1804 separated by semicolons, to the tracing/synth 1805 1806 See synth_field_size() for available types. 1807 1808 If field_name contains [n], the field is cons 1809 1810 If field_names contains[] (no subscript), the 1811 be a dynamic array, which will only take as m 1812 is required to hold the array. 1813 1814 A string field can be specified using either 1815 1816 char name[32]; 1817 1818 Or the dynamic: 1819 1820 char name[]; 1821 1822 The size limit for either is 256. 1823 1824 For instance, the following creates a new eve 1825 with 3 fields: lat, pid, and prio. Each of t 1826 variable reference to a variable on another e 1827 1828 # echo 'wakeup_latency \ 1829 u64 lat; \ 1830 pid_t pid; \ 1831 int prio' >> \ 1832 /sys/kernel/tracing/synthetic_event 1833 1834 Reading the tracing/synthetic_events file lis 1835 defined synthetic events, in this case the ev 1836 1837 # cat /sys/kernel/tracing/synthetic_events 1838 wakeup_latency u64 lat; pid_t pid; int pr 1839 1840 An existing synthetic event definition can be 1841 the command that defined it with a '!':: 1842 1843 # echo '!wakeup_latency u64 lat pid_t pid i 1844 /sys/kernel/tracing/synthetic_events 1845 1846 At this point, there isn't yet an actual 'wak 1847 instantiated in the event subsystem - for thi 1848 trigger action' needs to be instantiated and 1849 and variables defined on other events (see Se 1850 how that is done using hist trigger 'onmatch' 1851 done, the 'wakeup_latency' synthetic event in 1852 1853 The new event is created under the tracing/ev 1854 and looks and behaves just like any other eve 1855 1856 # ls /sys/kernel/tracing/events/synthetic/w 1857 enable filter format hist id tri 1858 1859 A histogram can now be defined for the new sy 1860 1861 # echo 'hist:keys=pid,prio,lat.log2:sort=la 1862 /sys/kernel/tracing/events/synthetic/ 1863 1864 The above shows the latency "lat" in a power 1865 1866 Like any other event, once a histogram is ena 1867 output can be displayed by reading the event' 1868 1869 # cat /sys/kernel/tracing/events/synthetic/ 1870 1871 # event histogram 1872 # 1873 # trigger info: hist:keys=pid,prio,lat.log2 1874 # 1875 1876 { pid: 2035, prio: 9, lat: ~ 1877 { pid: 2034, prio: 9, lat: ~ 1878 { pid: 2029, prio: 9, lat: ~ 1879 { pid: 2034, prio: 120, lat: ~ 1880 { pid: 2033, prio: 120, lat: ~ 1881 { pid: 2030, prio: 9, lat: ~ 1882 { pid: 2030, prio: 120, lat: ~ 1883 { pid: 2032, prio: 120, lat: ~ 1884 { pid: 2035, prio: 120, lat: ~ 1885 { pid: 2031, prio: 9, lat: ~ 1886 { pid: 2028, prio: 120, lat: ~ 1887 { pid: 2033, prio: 9, lat: ~ 1888 { pid: 2032, prio: 9, lat: ~ 1889 { pid: 2029, prio: 120, lat: ~ 1890 { pid: 2031, prio: 120, lat: ~ 1891 { pid: 2029, prio: 120, lat: ~ 1892 { pid: 2035, prio: 9, lat: ~ 1893 { pid: 2030, prio: 120, lat: ~ 1894 { pid: 2032, prio: 9, lat: ~ 1895 { pid: 2031, prio: 9, lat: ~ 1896 { pid: 2034, prio: 9, lat: ~ 1897 { pid: 2030, prio: 9, lat: ~ 1898 { pid: 2033, prio: 9, lat: ~ 1899 { pid: 2029, prio: 9, lat: ~ 1900 { pid: 2028, prio: 120, lat: ~ 1901 { pid: 2031, prio: 120, lat: ~ 1902 { pid: 2028, prio: 120, lat: ~ 1903 { pid: 2029, prio: 9, lat: ~ 1904 { pid: 2031, prio: 120, lat: ~ 1905 { pid: 2032, prio: 120, lat: ~ 1906 1907 Totals: 1908 Hits: 2122 1909 Entries: 30 1910 Dropped: 0 1911 1912 1913 The latency values can also be grouped linear 1914 the ".buckets" modifier and specify a size (i 1915 1916 # echo 'hist:keys=pid,prio,lat.buckets=10:s 1917 /sys/kernel/tracing/events/synthetic/ 1918 1919 # event histogram 1920 # 1921 # trigger info: hist:keys=pid,prio,lat.buck 1922 # 1923 1924 { pid: 2067, prio: 9, lat: ~ 1925 { pid: 2068, prio: 9, lat: ~ 1926 { pid: 2070, prio: 9, lat: ~ 1927 { pid: 2067, prio: 120, lat: ~ 1928 { pid: 2065, prio: 120, lat: ~ 1929 { pid: 2066, prio: 120, lat: ~ 1930 { pid: 2069, prio: 9, lat: ~ 1931 { pid: 2069, prio: 120, lat: ~ 1932 { pid: 2070, prio: 120, lat: ~ 1933 { pid: 2068, prio: 120, lat: ~ 1934 { pid: 2066, prio: 9, lat: ~ 1935 { pid: 2064, prio: 120, lat: ~ 1936 { pid: 2065, prio: 9, lat: ~ 1937 { pid: 2071, prio: 9, lat: ~ 1938 { pid: 2065, prio: 9, lat: ~ 1939 { pid: 2064, prio: 120, lat: ~ 1940 1941 Totals: 1942 Hits: 2112 1943 Entries: 16 1944 Dropped: 0 1945 1946 To save stacktraces, create a synthetic event 1947 or even just "long[]". For example, to see ho 1948 uninterruptible state:: 1949 1950 # cd /sys/kernel/tracing 1951 # echo 's:block_lat pid_t pid; u64 delta; u 1952 # echo 'hist:keys=next_pid:ts=common_timest 1953 # echo 'hist:keys=prev_pid:delta=common_tim 1954 # echo 1 > events/synthetic/block_lat/enabl 1955 # cat trace 1956 1957 # tracer: nop 1958 # 1959 # entries-in-buffer/entries-written: 2/2 1960 # 1961 # _-----=> i 1962 # / _----=> n 1963 # | / _---=> h 1964 # || / _--=> p 1965 # ||| / _-=> m 1966 # |||| / d 1967 # TASK-PID CPU# ||||| TIMES 1968 # | | | ||||| | 1969 <idle>-0 [005] d..4. 521. 1970 => __schedule+0x448/0x7b0 1971 => schedule+0x5a/0xb0 1972 => io_schedule+0x42/0x70 1973 => bit_wait_io+0xd/0x60 1974 => __wait_on_bit+0x4b/0x140 1975 => out_of_line_wait_on_bit+0x91/0xb0 1976 => jbd2_journal_commit_transaction+0x1679/0 1977 => kjournald2+0xa9/0x280 1978 => kthread+0xe9/0x110 1979 => ret_from_fork+0x2c/0x50 1980 1981 <...>-2 [004] d..4. 525. 1982 => __schedule+0x448/0x7b0 1983 => schedule+0x5a/0xb0 1984 => schedule_timeout+0x11a/0x150 1985 => wait_for_completion_killable+0x144/0x1f0 1986 => __kthread_create_on_node+0xe7/0x1e0 1987 => kthread_create_on_node+0x51/0x70 1988 => create_worker+0xcc/0x1a0 1989 => worker_thread+0x2ad/0x380 1990 => kthread+0xe9/0x110 1991 => ret_from_fork+0x2c/0x50 1992 1993 A synthetic event that has a stacktrace field 1994 histogram:: 1995 1996 # echo 'hist:keys=delta.buckets=100,stack.s 1997 # cat events/synthetic/block_lat/hist 1998 1999 # event histogram 2000 # 2001 # trigger info: hist:keys=delta.buckets=100 2002 # 2003 { delta: ~ 0-99, stack.stacktrace _ 2004 schedule+0x6b/0x110 2005 io_schedule+0x46/0x80 2006 bit_wait_io+0x11/0x80 2007 __wait_on_bit+0x4e/0x120 2008 out_of_line_wait_on_bit+0x8d/0xb0 2009 __wait_on_buffer+0x33/0x40 2010 jbd2_journal_commit_transaction+0x15 2011 kjournald2+0xab/0x270 2012 kthread+0xfa/0x130 2013 ret_from_fork+0x29/0x50 2014 } hitcount: 1 2015 { delta: ~ 0-99, stack.stacktrace _ 2016 schedule+0x6b/0x110 2017 io_schedule+0x46/0x80 2018 rq_qos_wait+0xd0/0x170 2019 wbt_wait+0x9e/0xf0 2020 __rq_qos_throttle+0x25/0x40 2021 blk_mq_submit_bio+0x2c3/0x5b0 2022 __submit_bio+0xff/0x190 2023 submit_bio_noacct_nocheck+0x25b/0x2b 2024 submit_bio_noacct+0x20b/0x600 2025 submit_bio+0x28/0x90 2026 ext4_bio_write_page+0x1e0/0x8c0 2027 mpage_submit_page+0x60/0x80 2028 mpage_process_page_bufs+0x16c/0x180 2029 mpage_prepare_extent_to_map+0x23f/0x 2030 } hitcount: 1 2031 { delta: ~ 0-99, stack.stacktrace _ 2032 schedule+0x6b/0x110 2033 schedule_hrtimeout_range_clock+0x97/ 2034 schedule_hrtimeout_range+0x13/0x20 2035 usleep_range_state+0x65/0x90 2036 __intel_wait_for_register+0x1c1/0x23 2037 intel_psr_wait_for_idle_locked+0x171 2038 intel_pipe_update_start+0x169/0x360 2039 intel_update_crtc+0x112/0x490 [i915] 2040 skl_commit_modeset_enables+0x199/0x6 2041 intel_atomic_commit_tail+0x7c4/0x108 2042 intel_atomic_commit_work+0x12/0x20 [ 2043 process_one_work+0x21c/0x3f0 2044 worker_thread+0x50/0x3e0 2045 kthread+0xfa/0x130 2046 } hitcount: 3 2047 { delta: ~ 0-99, stack.stacktrace _ 2048 schedule+0x6b/0x110 2049 schedule_timeout+0x11e/0x160 2050 __wait_for_common+0x8f/0x190 2051 wait_for_completion+0x24/0x30 2052 __flush_work.isra.0+0x1cc/0x360 2053 flush_work+0xe/0x20 2054 drm_mode_rmfb+0x18b/0x1d0 [drm] 2055 drm_mode_rmfb_ioctl+0x10/0x20 [drm] 2056 drm_ioctl_kernel+0xb8/0x150 [drm] 2057 drm_ioctl+0x243/0x560 [drm] 2058 __x64_sys_ioctl+0x92/0xd0 2059 do_syscall_64+0x59/0x90 2060 entry_SYSCALL_64_after_hwframe+0x72/ 2061 } hitcount: 1 2062 { delta: ~ 0-99, stack.stacktrace _ 2063 schedule+0x6b/0x110 2064 schedule_timeout+0x87/0x160 2065 __wait_for_common+0x8f/0x190 2066 wait_for_completion_timeout+0x1d/0x3 2067 drm_atomic_helper_wait_for_flip_done 2068 intel_atomic_commit_tail+0x8ce/0x108 2069 intel_atomic_commit_work+0x12/0x20 [ 2070 process_one_work+0x21c/0x3f0 2071 worker_thread+0x50/0x3e0 2072 kthread+0xfa/0x130 2073 ret_from_fork+0x29/0x50 2074 } hitcount: 1 2075 { delta: ~ 100-199, stack.stacktrace 2076 schedule+0x6b/0x110 2077 schedule_hrtimeout_range_clock+0x97/ 2078 schedule_hrtimeout_range+0x13/0x20 2079 usleep_range_state+0x65/0x90 2080 pci_set_low_power_state+0x17f/0x1f0 2081 pci_set_power_state+0x49/0x250 2082 pci_finish_runtime_suspend+0x4a/0x90 2083 pci_pm_runtime_suspend+0xcb/0x1b0 2084 __rpm_callback+0x48/0x120 2085 rpm_callback+0x67/0x70 2086 rpm_suspend+0x167/0x780 2087 rpm_idle+0x25a/0x380 2088 pm_runtime_work+0x93/0xc0 2089 process_one_work+0x21c/0x3f0 2090 } hitcount: 1 2091 2092 Totals: 2093 Hits: 10 2094 Entries: 7 2095 Dropped: 0 2096 2097 2.2.3 Hist trigger 'handlers' and 'actions' 2098 ------------------------------------------- 2099 2100 A hist trigger 'action' is a function that's 2101 conditionally) whenever a histogram entry is 2102 2103 When a histogram entry is added or updated, a 2104 is what decides whether the corresponding act 2105 or not. 2106 2107 Hist trigger handlers and actions are paired 2108 form: 2109 2110 <handler>.<action> 2111 2112 To specify a handler.action pair for a given 2113 that handler.action pair between colons in th 2114 specification. 2115 2116 In theory, any handler can be combined with a 2117 practice, not every handler.action combinatio 2118 if a given handler.action combination isn't s 2119 trigger will fail with -EINVAL; 2120 2121 The default 'handler.action' if none is expli 2122 always has been, to simply update the set of 2123 entry. Some applications, however, may want 2124 actions at that point, such as generate anoth 2125 save a maximum. 2126 2127 The supported handlers and actions are listed 2128 described in more detail in the following par 2129 of descriptions of some common and useful han 2130 2131 The available handlers are: 2132 2133 - onmatch(matching.event) - invoke actio 2134 - onmax(var) - invoke actio 2135 - onchange(var) - invoke actio 2136 2137 The available actions are: 2138 2139 - trace(<synthetic_event_name>,param list) 2140 - save(field,...) 2141 - snapshot() 2142 2143 The following commonly-used handler.action pa 2144 2145 - onmatch(matching.event).trace(<synthetic_ 2146 2147 The 'onmatch(matching.event).trace(<synth 2148 list)' hist trigger action is invoked whe 2149 and the histogram entry would be added or 2150 named synthetic event to be generated wit 2151 'param list'. The result is the generati 2152 that consists of the values contained in 2153 time the invoking event was hit. For exa 2154 event name is 'wakeup_latency', a wakeup_ 2155 generated using onmatch(event).trace(wake 2156 2157 There is also an equivalent alternative f 2158 generating synthetic events. In this for 2159 name is used as if it were a function nam 2160 the 'wakeup_latency' synthetic event name 2161 wakeup_latency event would be generated b 2162 were a function call, with the event fiel 2163 arguments: onmatch(event).wakeup_latency( 2164 for this form is: 2165 2166 onmatch(matching.event).<synthetic_even 2167 2168 In either case, the 'param list' consists 2169 parameters which may be either variables 2170 either the 'matching.event' or the target 2171 fields specified in the param list may be 2172 or unqualified. If a variable is specifi 2173 must be unique between the two events. A 2174 param can be unqualified if it refers to 2175 must be fully qualified if it refers to t 2176 fully-qualified name is of the form 'syst 2177 or 'system.event_name.field'. 2178 2179 The 'matching.event' specification is sim 2180 event name of the event that matches the 2181 onmatch() functionality, in the form 'sys 2182 keys of both events are compared to find 2183 multiple histogram keys are used, they al 2184 order. 2185 2186 Finally, the number and type of variables 2187 list' must match the number and types of 2188 synthetic event being generated. 2189 2190 As an example the below defines a simple 2191 a variable defined on the sched_wakeup_ne 2192 when invoking the synthetic event. Here 2193 event:: 2194 2195 # echo 'wakeup_new_test pid_t pid' >> \ 2196 /sys/kernel/tracing/synthetic_ev 2197 2198 # cat /sys/kernel/tracing/synthetic_eve 2199 wakeup_new_test pid_t pid 2200 2201 The following hist trigger both defines t 2202 variable and specifies an onmatch() actio 2203 wakeup_new_test synthetic event whenever 2204 occurs, which because of the 'if comm == 2205 happens when the executable is cyclictest 2206 2207 # echo 'hist:keys=$testpid:testpid=pid: 2208 wakeup_new_test($testpid) if co 2209 /sys/kernel/tracing/events/sche 2210 2211 Or, equivalently, using the 'trace' keywo 2212 2213 # echo 'hist:keys=$testpid:testpid=pid: 2214 trace(wakeup_new_test,$testpid) 2215 /sys/kernel/tracing/events/sche 2216 2217 Creating and displaying a histogram based 2218 just a matter of using the fields and new 2219 tracing/events/synthetic directory, as us 2220 2221 # echo 'hist:keys=pid:sort=pid' >> \ 2222 /sys/kernel/tracing/events/synth 2223 2224 Running 'cyclictest' should cause wakeup_ 2225 wakeup_new_test synthetic events which sh 2226 output in the wakeup_new_test event's his 2227 2228 # cat /sys/kernel/tracing/events/synthe 2229 2230 A more typical usage would be to use two 2231 latency. The following example uses a se 2232 produce a 'wakeup_latency' histogram. 2233 2234 First, we define a 'wakeup_latency' synth 2235 2236 # echo 'wakeup_latency u64 lat; pid_t p 2237 /sys/kernel/tracing/synthetic_e 2238 2239 Next, we specify that whenever we see a s 2240 cyclictest thread, save the timestamp in 2241 2242 # echo 'hist:keys=$saved_pid:saved_pid= 2243 if comm=="cyclictest"' >> \ 2244 /sys/kernel/tracing/events/sche 2245 2246 Then, when the corresponding thread is ac 2247 CPU by a sched_switch event (saved_pid ma 2248 the latency and use that along with anoth 2249 to generate a wakeup_latency synthetic ev 2250 2251 # echo 'hist:keys=next_pid:wakeup_lat=c 2252 onmatch(sched.sched_waking).wak 2253 $saved_pid,next_prio) i 2254 /sys/kernel/tracing/events/sche 2255 2256 We also need to create a histogram on the 2257 event in order to aggregate the generated 2258 2259 # echo 'hist:keys=pid,prio,lat:sort=pid 2260 /sys/kernel/tracing/events/synt 2261 2262 Finally, once we've run cyclictest to act 2263 events, we can see the output by looking 2264 synthetic event's hist file:: 2265 2266 # cat /sys/kernel/tracing/events/synthe 2267 2268 - onmax(var).save(field,.. .) 2269 2270 The 'onmax(var).save(field,...)' hist tri 2271 whenever the value of 'var' associated wi 2272 exceeds the current maximum contained in 2273 2274 The end result is that the trace event fi 2275 onmax.save() params will be saved if 'var 2276 maximum for that hist trigger entry. Thi 2277 event that exhibited the new maximum to b 2278 reference. When the histogram is display 2279 displaying the saved values will be print 2280 2281 As an example the below defines a couple 2282 sched_waking and another for sched_switch 2283 a sched_waking occurs, the timestamp is s 2284 corresponding to the current pid, and whe 2285 back to that pid, the timestamp differenc 2286 resulting latency, stored in wakeup_lat, 2287 maximum latency, the values specified in 2288 recorded:: 2289 2290 # echo 'hist:keys=pid:ts0=common_timest 2291 if comm=="cyclictest"' >> \ 2292 /sys/kernel/tracing/events/sche 2293 2294 # echo 'hist:keys=next_pid:\ 2295 wakeup_lat=common_timestamp.use 2296 onmax($wakeup_lat).save(next_co 2297 if next_comm=="cyclictest"' >> 2298 /sys/kernel/tracing/events/sche 2299 2300 When the histogram is displayed, the max 2301 values corresponding to the max are displ 2302 of the fields:: 2303 2304 # cat /sys/kernel/tracing/events/sched/ 2305 { next_pid: 2255 } hitcount: 2306 common_timestamp-ts0: 0 2307 max: 27 2308 next_comm: cyclictest 2309 prev_pid: 0 prev_prio: 2310 2311 { next_pid: 2256 } hitcount: 2312 common_timestamp-ts0: 0 2313 max: 49 next_comm: cyclict 2314 prev_pid: 0 prev_prio: 2315 2316 Totals: 2317 Hits: 12970 2318 Entries: 2 2319 Dropped: 0 2320 2321 - onmax(var).snapshot() 2322 2323 The 'onmax(var).snapshot()' hist trigger 2324 whenever the value of 'var' associated wi 2325 exceeds the current maximum contained in 2326 2327 The end result is that a global snapshot 2328 be saved in the tracing/snapshot file if 2329 maximum for any hist trigger entry. 2330 2331 Note that in this case the maximum is a g 2332 current trace instance, which is the maxi 2333 the histogram. The key of the specific t 2334 the global maximum and the global maximum 2335 along with a message stating that a snaps 2336 where to find it. The user can use the k 2337 to locate the corresponding bucket in the 2338 detail. 2339 2340 As an example the below defines a couple 2341 sched_waking and another for sched_switch 2342 a sched_waking event occurs, the timestam 2343 corresponding to the current pid, and whe 2344 back to that pid, the timestamp differenc 2345 resulting latency, stored in wakeup_lat, 2346 maximum latency, a snapshot is taken. As 2347 the scheduler events are also enabled, wh 2348 will show up in the snapshot when it is t 2349 2350 # echo 1 > /sys/kernel/tracing/events/s 2351 2352 # echo 'hist:keys=pid:ts0=common_timest 2353 if comm=="cyclictest"' >> \ 2354 /sys/kernel/tracing/events/sche 2355 2356 # echo 'hist:keys=next_pid:wakeup_lat=c 2357 onmax($wakeup_lat).save(next_pr 2358 prev_comm):onmax($wakeup_lat).s 2359 if next_comm=="cyclictest"' >> 2360 /sys/kernel/tracing/events/sche 2361 2362 When the histogram is displayed, for each 2363 and the saved values corresponding to the 2364 following the rest of the fields. 2365 2366 If a snapshot was taken, there is also a 2367 along with the value and event that trigg 2368 2369 # cat /sys/kernel/tracing/events/sched/ 2370 { next_pid: 2101 } hitcount: 2371 max: 52 next_prio: 2372 prev_pid: 0 prev_prio: 2373 2374 { next_pid: 2103 } hitcount: 2375 max: 572 next_prio: 2376 prev_pid: 0 prev_prio: 2377 2378 { next_pid: 2102 } hitcount: 2379 max: 74 next_prio: 2380 prev_pid: 0 prev_prio: 2381 2382 Snapshot taken (see tracing/snapshot). 2383 triggering value { onmax($wakeup_la 2384 triggered by event with key: { next 2385 2386 Totals: 2387 Hits: 3508 2388 Entries: 3 2389 Dropped: 0 2390 2391 In the above case, the event that trigger 2392 the key with next_pid == 2103. If you lo 2393 2103 as the key, you'll find the addition 2394 with the local maximum for that bucket, w 2395 as the global maximum (since that was the 2396 triggered the global snapshot). 2397 2398 And finally, looking at the snapshot data 2399 the end the event that triggered the snap 2400 can verify the timestamps between the sch 2401 sched_switch events, which should match t 2402 global maximum):: 2403 2404 # cat /sys/kernel/tracing/snapshot 2405 2406 <...>-2103 [005] d..3 309.873125: 2407 <idle>-0 [005] d.h3 309.873611 2408 <idle>-0 [005] dNh4 309.873613 2409 <idle>-0 [005] d..3 309.873616 2410 <...>-2102 [005] d..3 309.873625: 2411 <idle>-0 [005] d.h3 309.874624 2412 <idle>-0 [005] dNh4 309.874626 2413 <idle>-0 [005] dNh3 309.874628 2414 <idle>-0 [005] dNh4 309.874630 2415 <idle>-0 [005] d..3 309.874633 2416 <idle>-0 [004] d.h3 309.874757 2417 <idle>-0 [004] dNh4 309.874762 2418 <idle>-0 [004] d..3 309.874766 2419 gnome-terminal--1699 [004] d.h2 309.8 2420 <idle>-0 [003] d.s4 309.874956 2421 <idle>-0 [003] d.s5 309.874960 2422 <idle>-0 [003] d.s5 309.874961 2423 <idle>-0 [007] d..3 309.874963 2424 rcu_sched-9 [007] d..3 309.874973 2425 rcu_sched-9 [007] d..3 309.874978 2426 <...>-2102 [005] d..4 309.874994 2427 <...>-2102 [005] d..4 309.875185 2428 <idle>-0 [001] d..3 309.875200 2429 2430 - onchange(var).save(field,.. .) 2431 2432 The 'onchange(var).save(field,...)' hist 2433 whenever the value of 'var' associated wi 2434 changes. 2435 2436 The end result is that the trace event fi 2437 onchange.save() params will be saved if ' 2438 hist trigger entry. This allows context 2439 changed the value to be saved for later r 2440 histogram is displayed, additional fields 2441 values will be printed. 2442 2443 - onchange(var).snapshot() 2444 2445 The 'onchange(var).snapshot()' hist trigg 2446 whenever the value of 'var' associated wi 2447 changes. 2448 2449 The end result is that a global snapshot 2450 be saved in the tracing/snapshot file if 2451 hist trigger entry. 2452 2453 Note that in this case the changed value 2454 associated with current trace instance. 2455 trace event that caused the value to chan 2456 itself are displayed, along with a messag 2457 has been taken and where to find it. The 2458 information displayed to locate the corre 2459 histogram for even more detail. 2460 2461 As an example the below defines a hist tr 2462 event, keyed on dport. Whenever a tcp_pr 2463 cwnd field is checked against the current 2464 $cwnd variable. If the value has changed 2465 As part of the setup, all the scheduler a 2466 enabled, which are the events that will s 2467 when it is taken at some point:: 2468 2469 # echo 1 > /sys/kernel/tracing/events/s 2470 # echo 1 > /sys/kernel/tracing/events/t 2471 2472 # echo 'hist:keys=dport:cwnd=snd_cwnd: 2473 onchange($cwnd).save(snd_wnd,sr 2474 onchange($cwnd).snapshot()' >> 2475 /sys/kernel/tracing/events/tcp/ 2476 2477 When the histogram is displayed, for each 2478 and the saved values corresponding to tha 2479 following the rest of the fields. 2480 2481 If a snapshot was taken, there is also a 2482 along with the value and event that trigg 2483 2484 # cat /sys/kernel/tracing/events/tcp/tc 2485 2486 { dport: 1521 } hitcount: 2487 changed: 10 snd_wnd: 35 2488 2489 { dport: 80 } hitcount: 2490 changed: 10 snd_wnd: 28 2491 2492 { dport: 9001 } hitcount: 2493 changed: 10 snd_wnd: 48 2494 2495 { dport: 443 } hitcount: 2496 changed: 10 snd_wnd: 26 2497 2498 Snapshot taken (see tracing/snapshot). 2499 2500 triggering value { onchange($cwnd) 2501 triggered by event with key: { dpor 2502 2503 Totals: 2504 Hits: 414 2505 Entries: 4 2506 Dropped: 0 2507 2508 In the above case, the event that trigger 2509 key with dport == 80. If you look at the 2510 the key, you'll find the additional value 2511 changed value for that bucket, which shou 2512 global changed value (since that was the 2513 the global snapshot). 2514 2515 And finally, looking at the snapshot data 2516 the end the event that triggered the snap 2517 2518 # cat /sys/kernel/tracing/snapshot 2519 2520 gnome-shell-1261 [006] dN.3 49.8 2521 kworker/u16:4-773 [003] d..3 49.8 2522 gnome-shell-1261 [006] d..3 49.8 2523 kworker/3:2-135 [003] d..3 49.8 2524 kworker/6:2-387 [006] d..3 49.8 2525 kworker/6:2-387 [006] d..3 49.8 2526 kworker/3:2-135 [003] d..3 49.8 2527 <idle>-0 [004] ..s7 49.8 2528 2529 3. User space creating a trigger 2530 -------------------------------- 2531 2532 Writing into /sys/kernel/tracing/trace_marker 2533 ring buffer. This can also act like an event, 2534 file located in /sys/kernel/tracing/events/ft 2535 2536 Modifying cyclictest to write into the trace_ 2537 and after it wakes up, something like this:: 2538 2539 static void traceputs(char *str) 2540 { 2541 /* tracemark_fd is the trace_marker f 2542 if (tracemark_fd < 0) 2543 return; 2544 /* write the tracemark message */ 2545 write(tracemark_fd, str, strlen(str)) 2546 } 2547 2548 And later add something like:: 2549 2550 traceputs("start"); 2551 clock_nanosleep(...); 2552 traceputs("end"); 2553 2554 We can make a histogram from this:: 2555 2556 # cd /sys/kernel/tracing 2557 # echo 'latency u64 lat' > synthetic_events 2558 # echo 'hist:keys=common_pid:ts0=common_time 2559 # echo 'hist:keys=common_pid:lat=common_time 2560 # echo 'hist:keys=lat,common_pid:sort=lat' > 2561 2562 The above created a synthetic event called "l 2563 against the trace_marker, one gets triggered 2564 trace_marker file and the other when "end" is 2565 it will call the "latency" synthetic event wi 2566 parameter. Finally, a histogram is added to t 2567 record the calculated latency along with the 2568 2569 Now running cyclictest with:: 2570 2571 # ./cyclictest -p80 -d0 -i250 -n -a -t --tra 2572 2573 -p80 : run threads at priority 80 2574 -d0 : have all threads run at the same int 2575 -i250 : start the interval at 250 microsecon 2576 -n : sleep with nanosleep 2577 -a : affine all threads to a separate CPU 2578 -t : one thread per available CPU 2579 --tracemark : enable trace mark writing 2580 -b 1000 : stop if any latency is greater tha 2581 2582 Note, the -b 1000 is used just to make --trac 2583 2584 Then we can see the histogram created by this 2585 2586 # cat events/synthetic/latency/hist 2587 # event histogram 2588 # 2589 # trigger info: hist:keys=lat,common_pid:val 2590 # 2591 2592 { lat: 107, common_pid: 2039 } 2593 { lat: 122, common_pid: 2041 } 2594 { lat: 166, common_pid: 2039 } 2595 { lat: 174, common_pid: 2039 } 2596 { lat: 194, common_pid: 2041 } 2597 { lat: 196, common_pid: 2036 } 2598 { lat: 197, common_pid: 2038 } 2599 { lat: 198, common_pid: 2039 } 2600 { lat: 199, common_pid: 2039 } 2601 { lat: 200, common_pid: 2041 } 2602 { lat: 201, common_pid: 2039 } 2603 { lat: 202, common_pid: 2038 } 2604 { lat: 202, common_pid: 2043 } 2605 { lat: 203, common_pid: 2039 } 2606 { lat: 203, common_pid: 2036 } 2607 { lat: 203, common_pid: 2041 } 2608 { lat: 206, common_pid: 2038 } 2609 { lat: 207, common_pid: 2039 } 2610 { lat: 207, common_pid: 2036 } 2611 { lat: 208, common_pid: 2040 } 2612 { lat: 209, common_pid: 2043 } 2613 { lat: 210, common_pid: 2039 } 2614 { lat: 211, common_pid: 2039 } 2615 { lat: 212, common_pid: 2043 } 2616 { lat: 212, common_pid: 2039 } 2617 { lat: 213, common_pid: 2039 } 2618 { lat: 214, common_pid: 2038 } 2619 { lat: 214, common_pid: 2039 } 2620 { lat: 214, common_pid: 2042 } 2621 { lat: 215, common_pid: 2039 } 2622 { lat: 217, common_pid: 2036 } 2623 { lat: 217, common_pid: 2040 } 2624 { lat: 217, common_pid: 2039 } 2625 { lat: 218, common_pid: 2039 } 2626 { lat: 219, common_pid: 2039 } 2627 { lat: 220, common_pid: 2039 } 2628 { lat: 221, common_pid: 2039 } 2629 { lat: 221, common_pid: 2042 } 2630 { lat: 222, common_pid: 2039 } 2631 { lat: 223, common_pid: 2036 } 2632 { lat: 223, common_pid: 2039 } 2633 { lat: 224, common_pid: 2039 } 2634 { lat: 224, common_pid: 2037 } 2635 { lat: 224, common_pid: 2036 } 2636 { lat: 225, common_pid: 2039 } 2637 { lat: 225, common_pid: 2042 } 2638 { lat: 226, common_pid: 2039 } 2639 { lat: 226, common_pid: 2036 } 2640 { lat: 227, common_pid: 2039 } 2641 { lat: 227, common_pid: 2036 } 2642 { lat: 227, common_pid: 2043 } 2643 { lat: 228, common_pid: 2039 } 2644 { lat: 228, common_pid: 2036 } 2645 { lat: 229, common_pid: 2039 } 2646 { lat: 229, common_pid: 2036 } 2647 { lat: 229, common_pid: 2038 } 2648 { lat: 230, common_pid: 2039 } 2649 { lat: 230, common_pid: 2036 } 2650 { lat: 230, common_pid: 2043 } 2651 { lat: 230, common_pid: 2042 } 2652 { lat: 231, common_pid: 2041 } 2653 { lat: 231, common_pid: 2036 } 2654 { lat: 231, common_pid: 2043 } 2655 { lat: 231, common_pid: 2039 } 2656 { lat: 232, common_pid: 2037 } 2657 { lat: 232, common_pid: 2039 } 2658 { lat: 232, common_pid: 2040 } 2659 { lat: 232, common_pid: 2036 } 2660 { lat: 232, common_pid: 2043 } 2661 { lat: 233, common_pid: 2036 } 2662 { lat: 233, common_pid: 2039 } 2663 { lat: 234, common_pid: 2039 } 2664 { lat: 234, common_pid: 2038 } 2665 { lat: 234, common_pid: 2043 } 2666 { lat: 234, common_pid: 2036 } 2667 { lat: 234, common_pid: 2040 } 2668 { lat: 235, common_pid: 2037 } 2669 { lat: 235, common_pid: 2036 } 2670 { lat: 235, common_pid: 2043 } 2671 { lat: 235, common_pid: 2039 } 2672 { lat: 235, common_pid: 2042 } 2673 { lat: 235, common_pid: 2040 } 2674 { lat: 235, common_pid: 2041 } 2675 { lat: 236, common_pid: 2036 } 2676 { lat: 236, common_pid: 2037 } 2677 { lat: 236, common_pid: 2041 } 2678 { lat: 236, common_pid: 2039 } 2679 { lat: 236, common_pid: 2043 } 2680 { lat: 236, common_pid: 2040 } 2681 { lat: 237, common_pid: 2037 } 2682 { lat: 237, common_pid: 2040 } 2683 { lat: 237, common_pid: 2036 } 2684 { lat: 237, common_pid: 2039 } 2685 { lat: 237, common_pid: 2043 } 2686 { lat: 237, common_pid: 2042 } 2687 { lat: 237, common_pid: 2041 } 2688 { lat: 238, common_pid: 2043 } 2689 { lat: 238, common_pid: 2040 } 2690 { lat: 238, common_pid: 2037 } 2691 { lat: 238, common_pid: 2038 } 2692 { lat: 238, common_pid: 2039 } 2693 { lat: 238, common_pid: 2042 } 2694 { lat: 238, common_pid: 2036 } 2695 { lat: 239, common_pid: 2041 } 2696 { lat: 239, common_pid: 2043 } 2697 { lat: 239, common_pid: 2037 } 2698 { lat: 239, common_pid: 2038 } 2699 { lat: 239, common_pid: 2036 } 2700 { lat: 239, common_pid: 2040 } 2701 { lat: 239, common_pid: 2042 } 2702 { lat: 240, common_pid: 2037 } 2703 { lat: 240, common_pid: 2043 } 2704 { lat: 240, common_pid: 2040 } 2705 { lat: 240, common_pid: 2039 } 2706 { lat: 240, common_pid: 2041 } 2707 { lat: 240, common_pid: 2038 } 2708 { lat: 240, common_pid: 2036 } 2709 { lat: 240, common_pid: 2042 } 2710 { lat: 241, common_pid: 2036 } 2711 { lat: 241, common_pid: 2041 } 2712 { lat: 241, common_pid: 2037 } 2713 { lat: 241, common_pid: 2042 } 2714 { lat: 241, common_pid: 2040 } 2715 { lat: 241, common_pid: 2039 } 2716 { lat: 241, common_pid: 2038 } 2717 { lat: 241, common_pid: 2043 } 2718 { lat: 242, common_pid: 2040 } 2719 { lat: 242, common_pid: 2041 } 2720 { lat: 242, common_pid: 2039 } 2721 { lat: 242, common_pid: 2042 } 2722 { lat: 242, common_pid: 2037 } 2723 { lat: 242, common_pid: 2043 } 2724 { lat: 242, common_pid: 2036 } 2725 { lat: 242, common_pid: 2038 } 2726 { lat: 243, common_pid: 2037 } 2727 { lat: 243, common_pid: 2039 } 2728 { lat: 243, common_pid: 2042 } 2729 { lat: 243, common_pid: 2041 } 2730 { lat: 243, common_pid: 2036 } 2731 { lat: 243, common_pid: 2038 } 2732 { lat: 243, common_pid: 2040 } 2733 { lat: 243, common_pid: 2043 } 2734 { lat: 244, common_pid: 2043 } 2735 { lat: 244, common_pid: 2042 } 2736 { lat: 244, common_pid: 2039 } 2737 { lat: 244, common_pid: 2040 } 2738 { lat: 244, common_pid: 2038 } 2739 { lat: 244, common_pid: 2037 } 2740 { lat: 244, common_pid: 2036 } 2741 { lat: 244, common_pid: 2041 } 2742 { lat: 245, common_pid: 2036 } 2743 { lat: 245, common_pid: 2041 } 2744 { lat: 245, common_pid: 2037 } 2745 { lat: 245, common_pid: 2039 } 2746 { lat: 245, common_pid: 2038 } 2747 { lat: 245, common_pid: 2042 } 2748 { lat: 245, common_pid: 2040 } 2749 { lat: 245, common_pid: 2043 } 2750 { lat: 246, common_pid: 2038 } 2751 { lat: 246, common_pid: 2041 } 2752 { lat: 246, common_pid: 2037 } 2753 { lat: 246, common_pid: 2040 } 2754 { lat: 246, common_pid: 2043 } 2755 { lat: 246, common_pid: 2039 } 2756 { lat: 246, common_pid: 2042 } 2757 { lat: 246, common_pid: 2036 } 2758 { lat: 247, common_pid: 2042 } 2759 { lat: 247, common_pid: 2043 } 2760 { lat: 247, common_pid: 2041 } 2761 { lat: 247, common_pid: 2038 } 2762 { lat: 247, common_pid: 2040 } 2763 { lat: 247, common_pid: 2036 } 2764 { lat: 247, common_pid: 2039 } 2765 { lat: 247, common_pid: 2037 } 2766 { lat: 248, common_pid: 2037 } 2767 { lat: 248, common_pid: 2042 } 2768 { lat: 248, common_pid: 2038 } 2769 { lat: 248, common_pid: 2036 } 2770 { lat: 248, common_pid: 2039 } 2771 { lat: 248, common_pid: 2041 } 2772 { lat: 248, common_pid: 2043 } 2773 { lat: 248, common_pid: 2040 } 2774 { lat: 249, common_pid: 2037 } 2775 { lat: 249, common_pid: 2038 } 2776 { lat: 249, common_pid: 2043 } 2777 { lat: 249, common_pid: 2039 } 2778 { lat: 249, common_pid: 2042 } 2779 { lat: 249, common_pid: 2040 } 2780 { lat: 249, common_pid: 2041 } 2781 { lat: 249, common_pid: 2036 } 2782 { lat: 250, common_pid: 2038 } 2783 { lat: 250, common_pid: 2036 } 2784 { lat: 250, common_pid: 2040 } 2785 { lat: 250, common_pid: 2043 } 2786 { lat: 250, common_pid: 2042 } 2787 { lat: 250, common_pid: 2041 } 2788 { lat: 250, common_pid: 2039 } 2789 { lat: 250, common_pid: 2037 } 2790 { lat: 251, common_pid: 2037 } 2791 { lat: 251, common_pid: 2039 } 2792 { lat: 251, common_pid: 2036 } 2793 { lat: 251, common_pid: 2042 } 2794 { lat: 251, common_pid: 2041 } 2795 { lat: 251, common_pid: 2043 } 2796 { lat: 251, common_pid: 2040 } 2797 { lat: 252, common_pid: 2040 } 2798 { lat: 252, common_pid: 2036 } 2799 { lat: 252, common_pid: 2037 } 2800 { lat: 252, common_pid: 2043 } 2801 { lat: 253, common_pid: 2037 } 2802 { lat: 253, common_pid: 2039 } 2803 { lat: 253, common_pid: 2036 } 2804 { lat: 253, common_pid: 2043 } 2805 { lat: 253, common_pid: 2040 } 2806 { lat: 254, common_pid: 2036 } 2807 { lat: 254, common_pid: 2043 } 2808 { lat: 254, common_pid: 2041 } 2809 { lat: 254, common_pid: 2042 } 2810 { lat: 254, common_pid: 2039 } 2811 { lat: 254, common_pid: 2037 } 2812 { lat: 255, common_pid: 2043 } 2813 { lat: 255, common_pid: 2037 } 2814 { lat: 255, common_pid: 2036 } 2815 { lat: 255, common_pid: 2039 } 2816 { lat: 256, common_pid: 2043 } 2817 { lat: 256, common_pid: 2036 } 2818 { lat: 256, common_pid: 2039 } 2819 { lat: 257, common_pid: 2039 } 2820 { lat: 257, common_pid: 2036 } 2821 { lat: 258, common_pid: 2039 } 2822 { lat: 258, common_pid: 2036 } 2823 { lat: 259, common_pid: 2036 } 2824 { lat: 259, common_pid: 2039 } 2825 { lat: 260, common_pid: 2036 } 2826 { lat: 260, common_pid: 2039 } 2827 { lat: 261, common_pid: 2036 } 2828 { lat: 261, common_pid: 2039 } 2829 { lat: 262, common_pid: 2039 } 2830 { lat: 262, common_pid: 2036 } 2831 { lat: 263, common_pid: 2039 } 2832 { lat: 263, common_pid: 2036 } 2833 { lat: 264, common_pid: 2039 } 2834 { lat: 264, common_pid: 2036 } 2835 { lat: 265, common_pid: 2036 } 2836 { lat: 265, common_pid: 2039 } 2837 { lat: 266, common_pid: 2036 } 2838 { lat: 266, common_pid: 2039 } 2839 { lat: 267, common_pid: 2036 } 2840 { lat: 267, common_pid: 2039 } 2841 { lat: 268, common_pid: 2036 } 2842 { lat: 268, common_pid: 2039 } 2843 { lat: 269, common_pid: 2036 } 2844 { lat: 269, common_pid: 2043 } 2845 { lat: 269, common_pid: 2039 } 2846 { lat: 270, common_pid: 2040 } 2847 { lat: 270, common_pid: 2039 } 2848 { lat: 271, common_pid: 2041 } 2849 { lat: 271, common_pid: 2039 } 2850 { lat: 272, common_pid: 2039 } 2851 { lat: 273, common_pid: 2039 } 2852 { lat: 274, common_pid: 2039 } 2853 { lat: 275, common_pid: 2039 } 2854 { lat: 276, common_pid: 2039 } 2855 { lat: 276, common_pid: 2037 } 2856 { lat: 276, common_pid: 2038 } 2857 { lat: 277, common_pid: 2039 } 2858 { lat: 277, common_pid: 2042 } 2859 { lat: 278, common_pid: 2039 } 2860 { lat: 279, common_pid: 2039 } 2861 { lat: 279, common_pid: 2043 } 2862 { lat: 280, common_pid: 2039 } 2863 { lat: 283, common_pid: 2036 } 2864 { lat: 284, common_pid: 2039 } 2865 { lat: 284, common_pid: 2043 } 2866 { lat: 288, common_pid: 2039 } 2867 { lat: 289, common_pid: 2039 } 2868 { lat: 300, common_pid: 2039 } 2869 { lat: 384, common_pid: 2039 } 2870 2871 Totals: 2872 Hits: 67625 2873 Entries: 278 2874 Dropped: 0 2875 2876 Note, the writes are around the sleep, so ide 2877 microseconds. If you are wondering how there 2878 250 microseconds, that is because the way cyc 2879 iteration comes in late, the next one will se 2880 250. That is, if an iteration came in 50 micr 2881 will be at 200 microseconds. 2882 2883 But this could easily be done in userspace. T 2884 interesting, we can mix the histogram between 2885 kernel with trace_marker:: 2886 2887 # cd /sys/kernel/tracing 2888 # echo 'latency u64 lat' > synthetic_events 2889 # echo 'hist:keys=pid:ts0=common_timestamp.u 2890 # echo 'hist:keys=common_pid:lat=common_time 2891 # echo 'hist:keys=lat,common_pid:sort=lat' > 2892 2893 The difference this time is that instead of u 2894 the latency, the sched_waking event is used, 2895 trace_marker write with the pid that is being 2896 2897 After running cyclictest again with the same 2898 2899 # cat events/synthetic/latency/hist 2900 # event histogram 2901 # 2902 # trigger info: hist:keys=lat,common_pid:val 2903 # 2904 2905 { lat: 7, common_pid: 2302 } 2906 { lat: 7, common_pid: 2299 } 2907 { lat: 7, common_pid: 2303 } 2908 { lat: 7, common_pid: 2305 } 2909 { lat: 7, common_pid: 2306 } 2910 { lat: 7, common_pid: 2301 } 2911 { lat: 7, common_pid: 2300 } 2912 { lat: 8, common_pid: 2303 } 2913 { lat: 8, common_pid: 2304 } 2914 { lat: 8, common_pid: 2305 } 2915 { lat: 8, common_pid: 2301 } 2916 { lat: 8, common_pid: 2306 } 2917 { lat: 8, common_pid: 2302 } 2918 { lat: 8, common_pid: 2299 } 2919 { lat: 8, common_pid: 2300 } 2920 { lat: 9, common_pid: 2305 } 2921 { lat: 9, common_pid: 2299 } 2922 { lat: 9, common_pid: 2303 } 2923 { lat: 9, common_pid: 2301 } 2924 { lat: 9, common_pid: 2304 } 2925 { lat: 9, common_pid: 2302 } 2926 { lat: 9, common_pid: 2300 } 2927 { lat: 9, common_pid: 2306 } 2928 { lat: 10, common_pid: 2299 } 2929 { lat: 10, common_pid: 2306 } 2930 { lat: 10, common_pid: 2303 } 2931 { lat: 10, common_pid: 2304 } 2932 { lat: 10, common_pid: 2302 } 2933 { lat: 10, common_pid: 2301 } 2934 { lat: 10, common_pid: 2300 } 2935 { lat: 10, common_pid: 2305 } 2936 { lat: 11, common_pid: 2303 } 2937 { lat: 11, common_pid: 2305 } 2938 { lat: 11, common_pid: 2306 } 2939 { lat: 11, common_pid: 2302 } 2940 { lat: 11, common_pid: 2304 } 2941 { lat: 11, common_pid: 2300 } 2942 { lat: 11, common_pid: 2299 } 2943 { lat: 12, common_pid: 2305 } 2944 { lat: 12, common_pid: 2300 } 2945 { lat: 12, common_pid: 2306 } 2946 { lat: 12, common_pid: 2302 } 2947 { lat: 12, common_pid: 2303 } 2948 { lat: 12, common_pid: 2304 } 2949 { lat: 13, common_pid: 2300 } 2950 { lat: 13, common_pid: 2301 } 2951 { lat: 13, common_pid: 2306 } 2952 { lat: 13, common_pid: 2302 } 2953 { lat: 13, common_pid: 2305 } 2954 { lat: 13, common_pid: 2303 } 2955 { lat: 13, common_pid: 2304 } 2956 { lat: 14, common_pid: 2303 } 2957 { lat: 14, common_pid: 2306 } 2958 { lat: 14, common_pid: 2305 } 2959 { lat: 14, common_pid: 2304 } 2960 { lat: 14, common_pid: 2302 } 2961 { lat: 14, common_pid: 2300 } 2962 { lat: 14, common_pid: 2299 } 2963 { lat: 14, common_pid: 2301 } 2964 { lat: 15, common_pid: 2305 } 2965 { lat: 15, common_pid: 2302 } 2966 { lat: 15, common_pid: 2300 } 2967 { lat: 15, common_pid: 2299 } 2968 { lat: 15, common_pid: 2301 } 2969 { lat: 15, common_pid: 2304 } 2970 { lat: 15, common_pid: 2303 } 2971 { lat: 15, common_pid: 2306 } 2972 { lat: 16, common_pid: 2302 } 2973 { lat: 16, common_pid: 2306 } 2974 { lat: 16, common_pid: 2300 } 2975 { lat: 17, common_pid: 2302 } 2976 { lat: 17, common_pid: 2303 } 2977 { lat: 18, common_pid: 2304 } 2978 { lat: 18, common_pid: 2302 } 2979 { lat: 18, common_pid: 2299 } 2980 { lat: 18, common_pid: 2301 } 2981 { lat: 19, common_pid: 2303 } 2982 { lat: 19, common_pid: 2304 } 2983 { lat: 19, common_pid: 2302 } 2984 { lat: 19, common_pid: 2299 } 2985 { lat: 19, common_pid: 2306 } 2986 { lat: 19, common_pid: 2300 } 2987 { lat: 19, common_pid: 2305 } 2988 { lat: 20, common_pid: 2299 } 2989 { lat: 20, common_pid: 2302 } 2990 { lat: 20, common_pid: 2305 } 2991 { lat: 20, common_pid: 2300 } 2992 { lat: 20, common_pid: 2301 } 2993 { lat: 20, common_pid: 2303 } 2994 { lat: 21, common_pid: 2305 } 2995 { lat: 21, common_pid: 2299 } 2996 { lat: 21, common_pid: 2303 } 2997 { lat: 21, common_pid: 2302 } 2998 { lat: 21, common_pid: 2300 } 2999 { lat: 21, common_pid: 2301 } 3000 { lat: 21, common_pid: 2304 } 3001 { lat: 22, common_pid: 2302 } 3002 { lat: 22, common_pid: 2303 } 3003 { lat: 22, common_pid: 2306 } 3004 { lat: 22, common_pid: 2301 } 3005 { lat: 22, common_pid: 2300 } 3006 { lat: 22, common_pid: 2299 } 3007 { lat: 22, common_pid: 2305 } 3008 { lat: 22, common_pid: 2304 } 3009 { lat: 23, common_pid: 2299 } 3010 { lat: 23, common_pid: 2306 } 3011 { lat: 23, common_pid: 2302 } 3012 { lat: 24, common_pid: 2302 } 3013 { lat: 24, common_pid: 2300 } 3014 { lat: 24, common_pid: 2306 } 3015 { lat: 24, common_pid: 2305 } 3016 { lat: 24, common_pid: 2299 } 3017 { lat: 25, common_pid: 2300 } 3018 { lat: 25, common_pid: 2302 } 3019 { lat: 26, common_pid: 2302 } 3020 { lat: 27, common_pid: 2305 } 3021 { lat: 27, common_pid: 2300 } 3022 { lat: 27, common_pid: 2302 } 3023 { lat: 28, common_pid: 2306 } 3024 { lat: 28, common_pid: 2302 } 3025 { lat: 29, common_pid: 2302 } 3026 { lat: 29, common_pid: 2300 } 3027 { lat: 29, common_pid: 2306 } 3028 { lat: 29, common_pid: 2304 } 3029 { lat: 30, common_pid: 2302 } 3030 { lat: 31, common_pid: 2302 } 3031 { lat: 32, common_pid: 2302 } 3032 { lat: 33, common_pid: 2299 } 3033 { lat: 33, common_pid: 2302 } 3034 { lat: 34, common_pid: 2302 } 3035 { lat: 35, common_pid: 2302 } 3036 { lat: 35, common_pid: 2304 } 3037 { lat: 36, common_pid: 2302 } 3038 { lat: 37, common_pid: 2302 } 3039 { lat: 38, common_pid: 2302 } 3040 { lat: 39, common_pid: 2302 } 3041 { lat: 39, common_pid: 2304 } 3042 { lat: 40, common_pid: 2304 } 3043 { lat: 40, common_pid: 2302 } 3044 { lat: 41, common_pid: 2304 } 3045 { lat: 41, common_pid: 2302 } 3046 { lat: 42, common_pid: 2302 } 3047 { lat: 42, common_pid: 2304 } 3048 { lat: 43, common_pid: 2302 } 3049 { lat: 43, common_pid: 2304 } 3050 { lat: 44, common_pid: 2302 } 3051 { lat: 45, common_pid: 2302 } 3052 { lat: 46, common_pid: 2302 } 3053 { lat: 47, common_pid: 2302 } 3054 { lat: 48, common_pid: 2301 } 3055 { lat: 48, common_pid: 2302 } 3056 { lat: 49, common_pid: 2302 } 3057 { lat: 50, common_pid: 2302 } 3058 { lat: 50, common_pid: 2301 } 3059 { lat: 51, common_pid: 2302 } 3060 { lat: 51, common_pid: 2301 } 3061 { lat: 61, common_pid: 2302 } 3062 { lat: 110, common_pid: 2302 } 3063 3064 Totals: 3065 Hits: 89565 3066 Entries: 158 3067 Dropped: 0 3068 3069 This doesn't tell us any information about ho 3070 woken up, but it does show us a nice histogra 3071 the time that cyclictest was woken to the tim
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.