1 ========================== 1 ========================== 2 Kprobe-based Event Tracing 2 Kprobe-based Event Tracing 3 ========================== 3 ========================== 4 4 5 :Author: Masami Hiramatsu 5 :Author: Masami Hiramatsu 6 6 7 Overview 7 Overview 8 -------- 8 -------- 9 These events are similar to tracepoint-based e !! 9 These events are similar to tracepoint based events. Instead of Tracepoint, 10 this is based on kprobes (kprobe and kretprobe 10 this is based on kprobes (kprobe and kretprobe). So it can probe wherever 11 kprobes can probe (this means, all functions e 11 kprobes can probe (this means, all functions except those with 12 __kprobes/nokprobe_inline annotation and those 12 __kprobes/nokprobe_inline annotation and those marked NOKPROBE_SYMBOL). 13 Unlike the tracepoint-based event, this can be !! 13 Unlike the Tracepoint based event, this can be added and removed 14 dynamically, on the fly. 14 dynamically, on the fly. 15 15 16 To enable this feature, build your kernel with 16 To enable this feature, build your kernel with CONFIG_KPROBE_EVENTS=y. 17 17 18 Similar to the event tracer, this doesn't need !! 18 Similar to the events tracer, this doesn't need to be activated via 19 current_tracer. Instead of that, add probe poi 19 current_tracer. Instead of that, add probe points via 20 /sys/kernel/tracing/kprobe_events, and enable !! 20 /sys/kernel/debug/tracing/kprobe_events, and enable it via 21 /sys/kernel/tracing/events/kprobes/<EVENT>/ena !! 21 /sys/kernel/debug/tracing/events/kprobes/<EVENT>/enable. 22 22 23 You can also use /sys/kernel/tracing/dynamic_e !! 23 You can also use /sys/kernel/debug/tracing/dynamic_events instead of 24 kprobe_events. That interface will provide uni 24 kprobe_events. That interface will provide unified access to other 25 dynamic events too. 25 dynamic events too. 26 26 27 Synopsis of kprobe_events 27 Synopsis of kprobe_events 28 ------------------------- 28 ------------------------- 29 :: 29 :: 30 30 31 p[:[GRP/][EVENT]] [MOD:]SYM[+offs]|MEMADDR [ !! 31 p[:[GRP/]EVENT] [MOD:]SYM[+offs]|MEMADDR [FETCHARGS] : Set a probe 32 r[MAXACTIVE][:[GRP/][EVENT]] [MOD:]SYM[+0] [ !! 32 r[MAXACTIVE][:[GRP/]EVENT] [MOD:]SYM[+0] [FETCHARGS] : Set a return probe 33 p[:[GRP/][EVENT]] [MOD:]SYM[+0]%return [FETC !! 33 -:[GRP/]EVENT : Clear a probe 34 -:[GRP/][EVENT] << 35 34 36 GRP : Group name. If omitted, use 35 GRP : Group name. If omitted, use "kprobes" for it. 37 EVENT : Event name. If omitted, the 36 EVENT : Event name. If omitted, the event name is generated 38 based on SYM+offs or MEMADDR 37 based on SYM+offs or MEMADDR. 39 MOD : Module name which has given 38 MOD : Module name which has given SYM. 40 SYM[+offs] : Symbol+offset where the prob 39 SYM[+offs] : Symbol+offset where the probe is inserted. 41 SYM%return : Return address of the symbol << 42 MEMADDR : Address where the probe is i 40 MEMADDR : Address where the probe is inserted. 43 MAXACTIVE : Maximum number of instances 41 MAXACTIVE : Maximum number of instances of the specified function that 44 can be probed simultaneously 42 can be probed simultaneously, or 0 for the default value 45 as defined in Documentation/ !! 43 as defined in Documentation/kprobes.txt section 1.3.1. 46 44 47 FETCHARGS : Arguments. Each probe can ha 45 FETCHARGS : Arguments. Each probe can have up to 128 args. 48 %REG : Fetch register REG 46 %REG : Fetch register REG 49 @ADDR : Fetch memory at ADDR (ADDR s 47 @ADDR : Fetch memory at ADDR (ADDR should be in kernel) 50 @SYM[+|-offs] : Fetch memory at SYM +|- offs 48 @SYM[+|-offs] : Fetch memory at SYM +|- offs (SYM should be a data symbol) 51 $stackN : Fetch Nth entry of stack (N 49 $stackN : Fetch Nth entry of stack (N >= 0) 52 $stack : Fetch stack address. 50 $stack : Fetch stack address. 53 $argN : Fetch the Nth function argum 51 $argN : Fetch the Nth function argument. (N >= 1) (\*1) 54 $retval : Fetch return value.(\*2) 52 $retval : Fetch return value.(\*2) 55 $comm : Fetch current task comm. 53 $comm : Fetch current task comm. 56 +|-[u]OFFS(FETCHARG) : Fetch memory at FETCH 54 +|-[u]OFFS(FETCHARG) : Fetch memory at FETCHARG +|- OFFS address.(\*3)(\*4) 57 \IMM : Store an immediate value to 55 \IMM : Store an immediate value to the argument. 58 NAME=FETCHARG : Set NAME as the argument nam 56 NAME=FETCHARG : Set NAME as the argument name of FETCHARG. 59 FETCHARG:TYPE : Set TYPE as the type of FETC 57 FETCHARG:TYPE : Set TYPE as the type of FETCHARG. Currently, basic types 60 (u8/u16/u32/u64/s8/s16/s32/s 58 (u8/u16/u32/u64/s8/s16/s32/s64), hexadecimal types 61 (x8/x16/x32/x64), VFS layer !! 59 (x8/x16/x32/x64), "string", "ustring" and bitfield 62 "string", "ustring", "symbol !! 60 are supported. 63 supported. !! 61 64 !! 62 (\*1) only for the probe on function entry (offs == 0). 65 (\*1) only for the probe on function entry ( !! 63 (\*2) only for return probe. 66 is best effort, because depending on t << 67 the stack. But this only support the a << 68 (\*2) only for return probe. Note that this << 69 return value type, it might be passed << 70 accesses one register. << 71 (\*3) this is useful for fetching a field of 64 (\*3) this is useful for fetching a field of data structures. 72 (\*4) "u" means user-space dereference. See 65 (\*4) "u" means user-space dereference. See :ref:`user_mem_access`. 73 66 74 Function arguments at kretprobe << 75 ------------------------------- << 76 Function arguments can be accessed at kretprob << 77 is useful to record the function parameter and << 78 trace the difference of structure fields (for << 79 correctly updates the given data structure or << 80 See the :ref:`sample<fprobetrace_exit_args_sam << 81 it works. << 82 << 83 .. _kprobetrace_types: << 84 << 85 Types 67 Types 86 ----- 68 ----- 87 Several types are supported for fetchargs. Kpr !! 69 Several types are supported for fetch-args. Kprobe tracer will access memory 88 by given type. Prefix 's' and 'u' means those 70 by given type. Prefix 's' and 'u' means those types are signed and unsigned 89 respectively. 'x' prefix implies it is unsigne 71 respectively. 'x' prefix implies it is unsigned. Traced arguments are shown 90 in decimal ('s' and 'u') or hexadecimal ('x'). 72 in decimal ('s' and 'u') or hexadecimal ('x'). Without type casting, 'x32' 91 or 'x64' is used depends on the architecture ( 73 or 'x64' is used depends on the architecture (e.g. x86-32 uses x32, and 92 x86-64 uses x64). 74 x86-64 uses x64). 93 << 94 These value types can be an array. To record a 75 These value types can be an array. To record array data, you can add '[N]' 95 (where N is a fixed number, less than 64) to t 76 (where N is a fixed number, less than 64) to the base type. 96 E.g. 'x16[4]' means an array of x16 (2-byte he !! 77 E.g. 'x16[4]' means an array of x16 (2bytes hex) with 4 elements. 97 Note that the array can be applied to memory t 78 Note that the array can be applied to memory type fetchargs, you can not 98 apply it to registers/stack-entries etc. (for 79 apply it to registers/stack-entries etc. (for example, '$stack1:x8[8]' is 99 wrong, but '+8($stack):x8[8]' is OK.) 80 wrong, but '+8($stack):x8[8]' is OK.) 100 << 101 Char type can be used to show the character va << 102 << 103 String type is a special type, which fetches a 81 String type is a special type, which fetches a "null-terminated" string from 104 kernel space. This means it will fail and stor 82 kernel space. This means it will fail and store NULL if the string container 105 has been paged out. "ustring" type is an alter 83 has been paged out. "ustring" type is an alternative of string for user-space. 106 See :ref:`user_mem_access` for more info. !! 84 See :ref:`user_mem_access` for more info.. 107 << 108 The string array type is a bit different from 85 The string array type is a bit different from other types. For other base 109 types, <base-type>[1] is equal to <base-type> 86 types, <base-type>[1] is equal to <base-type> (e.g. +0(%di):x32[1] is same 110 as +0(%di):x32.) But string[1] is not equal to 87 as +0(%di):x32.) But string[1] is not equal to string. The string type itself 111 represents "char array", but string array type 88 represents "char array", but string array type represents "char * array". 112 So, for example, +0(%di):string[1] is equal to 89 So, for example, +0(%di):string[1] is equal to +0(+0(%di)):string. 113 Bitfield is another special type, which takes 90 Bitfield is another special type, which takes 3 parameters, bit-width, bit- 114 offset, and container-size (usually 32). The s 91 offset, and container-size (usually 32). The syntax is:: 115 92 116 b<bit-width>@<bit-offset>/<container-size> 93 b<bit-width>@<bit-offset>/<container-size> 117 94 118 Symbol type('symbol') is an alias of u32 or u6 95 Symbol type('symbol') is an alias of u32 or u64 type (depends on BITS_PER_LONG) 119 which shows given pointer in "symbol+offset" s 96 which shows given pointer in "symbol+offset" style. 120 On the other hand, symbol-string type ('symstr << 121 "symbol+offset/symbolsize" style and stores it << 122 With 'symstr' type, you can filter the event w << 123 symbols, and you don't need to solve symbol na << 124 For $comm, the default type is "string"; any o 97 For $comm, the default type is "string"; any other type is invalid. 125 98 126 VFS layer common type(%pd/%pD) is a special ty << 127 file's name from struct dentry's address or st << 128 << 129 .. _user_mem_access: 99 .. _user_mem_access: 130 100 131 User Memory Access 101 User Memory Access 132 ------------------ 102 ------------------ 133 Kprobe events supports user-space memory acces 103 Kprobe events supports user-space memory access. For that purpose, you can use 134 either user-space dereference syntax or 'ustri 104 either user-space dereference syntax or 'ustring' type. 135 105 136 The user-space dereference syntax allows you t 106 The user-space dereference syntax allows you to access a field of a data 137 structure in user-space. This is done by addin 107 structure in user-space. This is done by adding the "u" prefix to the 138 dereference syntax. For example, +u4(%si) mean 108 dereference syntax. For example, +u4(%si) means it will read memory from the 139 address in the register %si offset by 4, and t 109 address in the register %si offset by 4, and the memory is expected to be in 140 user-space. You can use this for strings too, 110 user-space. You can use this for strings too, e.g. +u0(%si):string will read 141 a string from the address in the register %si 111 a string from the address in the register %si that is expected to be in user- 142 space. 'ustring' is a shortcut way of performi 112 space. 'ustring' is a shortcut way of performing the same task. That is, 143 +0(%si):ustring is equivalent to +u0(%si):stri 113 +0(%si):ustring is equivalent to +u0(%si):string. 144 114 145 Note that kprobe-event provides the user-memor 115 Note that kprobe-event provides the user-memory access syntax but it doesn't 146 use it transparently. This means if you use no 116 use it transparently. This means if you use normal dereference or string type 147 for user memory, it might fail, and may always !! 117 for user memory, it might fail, and may always fail on some archs. The user 148 user has to carefully check if the target data !! 118 has to carefully check if the target data is in kernel or user space. 149 119 150 Per-Probe Event Filtering 120 Per-Probe Event Filtering 151 ------------------------- 121 ------------------------- 152 Per-probe event filtering feature allows you t 122 Per-probe event filtering feature allows you to set different filter on each 153 probe and gives you what arguments will be sho 123 probe and gives you what arguments will be shown in trace buffer. If an event 154 name is specified right after 'p:' or 'r:' in 124 name is specified right after 'p:' or 'r:' in kprobe_events, it adds an event 155 under tracing/events/kprobes/<EVENT>, at the d 125 under tracing/events/kprobes/<EVENT>, at the directory you can see 'id', 156 'enable', 'format', 'filter' and 'trigger'. 126 'enable', 'format', 'filter' and 'trigger'. 157 127 158 enable: 128 enable: 159 You can enable/disable the probe by writing 129 You can enable/disable the probe by writing 1 or 0 on it. 160 130 161 format: 131 format: 162 This shows the format of this probe event. 132 This shows the format of this probe event. 163 133 164 filter: 134 filter: 165 You can write filtering rules of this event. 135 You can write filtering rules of this event. 166 136 167 id: 137 id: 168 This shows the id of this probe event. 138 This shows the id of this probe event. 169 139 170 trigger: 140 trigger: 171 This allows to install trigger commands whic 141 This allows to install trigger commands which are executed when the event is 172 hit (for details, see Documentation/trace/ev 142 hit (for details, see Documentation/trace/events.rst, section 6). 173 143 174 Event Profiling 144 Event Profiling 175 --------------- 145 --------------- 176 You can check the total number of probe hits a 146 You can check the total number of probe hits and probe miss-hits via 177 /sys/kernel/tracing/kprobe_profile. !! 147 /sys/kernel/debug/tracing/kprobe_profile. 178 The first column is event name, the second is 148 The first column is event name, the second is the number of probe hits, 179 the third is the number of probe miss-hits. 149 the third is the number of probe miss-hits. 180 150 181 Kernel Boot Parameter 151 Kernel Boot Parameter 182 --------------------- 152 --------------------- 183 You can add and enable new kprobe events when 153 You can add and enable new kprobe events when booting up the kernel by 184 "kprobe_event=" parameter. The parameter accep 154 "kprobe_event=" parameter. The parameter accepts a semicolon-delimited 185 kprobe events, which format is similar to the 155 kprobe events, which format is similar to the kprobe_events. 186 The difference is that the probe definition pa 156 The difference is that the probe definition parameters are comma-delimited 187 instead of space. For example, adding myprobe !! 157 instead of space. For example, adding myprobe event on do_sys_open like below 188 158 189 p:myprobe do_sys_open dfd=%ax filename=%dx f 159 p:myprobe do_sys_open dfd=%ax filename=%dx flags=%cx mode=+4($stack) 190 160 191 should be below for kernel boot parameter (jus !! 161 should be below for kernel boot parameter (just replace spaces with comma) 192 162 193 p:myprobe,do_sys_open,dfd=%ax,filename=%dx,f 163 p:myprobe,do_sys_open,dfd=%ax,filename=%dx,flags=%cx,mode=+4($stack) 194 164 195 165 196 Usage examples 166 Usage examples 197 -------------- 167 -------------- 198 To add a probe as a new event, write a new def 168 To add a probe as a new event, write a new definition to kprobe_events 199 as below:: 169 as below:: 200 170 201 echo 'p:myprobe do_sys_open dfd=%ax filename !! 171 echo 'p:myprobe do_sys_open dfd=%ax filename=%dx flags=%cx mode=+4($stack)' > /sys/kernel/debug/tracing/kprobe_events 202 172 203 This sets a kprobe on the top of do_sys_open() 173 This sets a kprobe on the top of do_sys_open() function with recording 204 1st to 4th arguments as "myprobe" event. Note, 174 1st to 4th arguments as "myprobe" event. Note, which register/stack entry is 205 assigned to each function argument depends on 175 assigned to each function argument depends on arch-specific ABI. If you unsure 206 the ABI, please try to use probe subcommand of 176 the ABI, please try to use probe subcommand of perf-tools (you can find it 207 under tools/perf/). 177 under tools/perf/). 208 As this example shows, users can choose more f 178 As this example shows, users can choose more familiar names for each arguments. 209 :: 179 :: 210 180 211 echo 'r:myretprobe do_sys_open $retval' >> / !! 181 echo 'r:myretprobe do_sys_open $retval' >> /sys/kernel/debug/tracing/kprobe_events 212 182 213 This sets a kretprobe on the return point of d 183 This sets a kretprobe on the return point of do_sys_open() function with 214 recording return value as "myretprobe" event. 184 recording return value as "myretprobe" event. 215 You can see the format of these events via 185 You can see the format of these events via 216 /sys/kernel/tracing/events/kprobes/<EVENT>/for !! 186 /sys/kernel/debug/tracing/events/kprobes/<EVENT>/format. 217 :: 187 :: 218 188 219 cat /sys/kernel/tracing/events/kprobes/mypro !! 189 cat /sys/kernel/debug/tracing/events/kprobes/myprobe/format 220 name: myprobe 190 name: myprobe 221 ID: 780 191 ID: 780 222 format: 192 format: 223 field:unsigned short common_type; 193 field:unsigned short common_type; offset:0; size:2; signed:0; 224 field:unsigned char common_flags; 194 field:unsigned char common_flags; offset:2; size:1; signed:0; 225 field:unsigned char common_preempt_c 195 field:unsigned char common_preempt_count; offset:3; size:1;signed:0; 226 field:int common_pid; offset:4; 196 field:int common_pid; offset:4; size:4; signed:1; 227 197 228 field:unsigned long __probe_ip; offs 198 field:unsigned long __probe_ip; offset:12; size:4; signed:0; 229 field:int __probe_nargs; offs 199 field:int __probe_nargs; offset:16; size:4; signed:1; 230 field:unsigned long dfd; offs 200 field:unsigned long dfd; offset:20; size:4; signed:0; 231 field:unsigned long filename; offs 201 field:unsigned long filename; offset:24; size:4; signed:0; 232 field:unsigned long flags; offs 202 field:unsigned long flags; offset:28; size:4; signed:0; 233 field:unsigned long mode; offs 203 field:unsigned long mode; offset:32; size:4; signed:0; 234 204 235 205 236 print fmt: "(%lx) dfd=%lx filename=%lx flags 206 print fmt: "(%lx) dfd=%lx filename=%lx flags=%lx mode=%lx", REC->__probe_ip, 237 REC->dfd, REC->filename, REC->flags, REC->mo 207 REC->dfd, REC->filename, REC->flags, REC->mode 238 208 239 You can see that the event has 4 arguments as 209 You can see that the event has 4 arguments as in the expressions you specified. 240 :: 210 :: 241 211 242 echo > /sys/kernel/tracing/kprobe_events !! 212 echo > /sys/kernel/debug/tracing/kprobe_events 243 213 244 This clears all probe points. 214 This clears all probe points. 245 215 246 Or, 216 Or, 247 :: 217 :: 248 218 249 echo -:myprobe >> kprobe_events 219 echo -:myprobe >> kprobe_events 250 220 251 This clears probe points selectively. 221 This clears probe points selectively. 252 222 253 Right after definition, each event is disabled 223 Right after definition, each event is disabled by default. For tracing these 254 events, you need to enable it. 224 events, you need to enable it. 255 :: 225 :: 256 226 257 echo 1 > /sys/kernel/tracing/events/kprobes/ !! 227 echo 1 > /sys/kernel/debug/tracing/events/kprobes/myprobe/enable 258 echo 1 > /sys/kernel/tracing/events/kprobes/ !! 228 echo 1 > /sys/kernel/debug/tracing/events/kprobes/myretprobe/enable 259 229 260 Use the following command to start tracing in 230 Use the following command to start tracing in an interval. 261 :: 231 :: 262 232 263 # echo 1 > tracing_on 233 # echo 1 > tracing_on 264 Open something... 234 Open something... 265 # echo 0 > tracing_on 235 # echo 0 > tracing_on 266 236 267 And you can see the traced information via /sy !! 237 And you can see the traced information via /sys/kernel/debug/tracing/trace. 268 :: 238 :: 269 239 270 cat /sys/kernel/tracing/trace !! 240 cat /sys/kernel/debug/tracing/trace 271 # tracer: nop 241 # tracer: nop 272 # 242 # 273 # TASK-PID CPU# TIMESTAMP F 243 # TASK-PID CPU# TIMESTAMP FUNCTION 274 # | | | | 244 # | | | | | 275 <...>-1447 [001] 1038282.286875: 245 <...>-1447 [001] 1038282.286875: myprobe: (do_sys_open+0x0/0xd6) dfd=3 filename=7fffd1ec4440 flags=8000 mode=0 276 <...>-1447 [001] 1038282.286878: 246 <...>-1447 [001] 1038282.286878: myretprobe: (sys_openat+0xc/0xe <- do_sys_open) $retval=fffffffffffffffe 277 <...>-1447 [001] 1038282.286885: 247 <...>-1447 [001] 1038282.286885: myprobe: (do_sys_open+0x0/0xd6) dfd=ffffff9c filename=40413c flags=8000 mode=1b6 278 <...>-1447 [001] 1038282.286915: 248 <...>-1447 [001] 1038282.286915: myretprobe: (sys_open+0x1b/0x1d <- do_sys_open) $retval=3 279 <...>-1447 [001] 1038282.286969: 249 <...>-1447 [001] 1038282.286969: myprobe: (do_sys_open+0x0/0xd6) dfd=ffffff9c filename=4041c6 flags=98800 mode=10 280 <...>-1447 [001] 1038282.286976: 250 <...>-1447 [001] 1038282.286976: myretprobe: (sys_open+0x1b/0x1d <- do_sys_open) $retval=3 281 251 282 252 283 Each line shows when the kernel hits an event, 253 Each line shows when the kernel hits an event, and <- SYMBOL means kernel 284 returns from SYMBOL(e.g. "sys_open+0x1b/0x1d < 254 returns from SYMBOL(e.g. "sys_open+0x1b/0x1d <- do_sys_open" means kernel 285 returns from do_sys_open to sys_open+0x1b). 255 returns from do_sys_open to sys_open+0x1b).
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.