1 .. SPDX-License-Identifier: GPL-2.0 1 .. SPDX-License-Identifier: GPL-2.0 2 2 3 ============================================== 3 =================================================================== 4 The Definitive KVM (Kernel-based Virtual Machi 4 The Definitive KVM (Kernel-based Virtual Machine) API Documentation 5 ============================================== 5 =================================================================== 6 6 7 1. General description 7 1. General description 8 ====================== 8 ====================== 9 9 10 The kvm API is a set of ioctls that are issued 10 The kvm API is a set of ioctls that are issued to control various aspects 11 of a virtual machine. The ioctls belong to th 11 of a virtual machine. The ioctls belong to the following classes: 12 12 13 - System ioctls: These query and set global a 13 - System ioctls: These query and set global attributes which affect the 14 whole kvm subsystem. In addition a system 14 whole kvm subsystem. In addition a system ioctl is used to create 15 virtual machines. 15 virtual machines. 16 16 17 - VM ioctls: These query and set attributes t 17 - VM ioctls: These query and set attributes that affect an entire virtual 18 machine, for example memory layout. In add 18 machine, for example memory layout. In addition a VM ioctl is used to 19 create virtual cpus (vcpus) and devices. 19 create virtual cpus (vcpus) and devices. 20 20 21 VM ioctls must be issued from the same proc 21 VM ioctls must be issued from the same process (address space) that was 22 used to create the VM. 22 used to create the VM. 23 23 24 - vcpu ioctls: These query and set attributes 24 - vcpu ioctls: These query and set attributes that control the operation 25 of a single virtual cpu. 25 of a single virtual cpu. 26 26 27 vcpu ioctls should be issued from the same 27 vcpu ioctls should be issued from the same thread that was used to create 28 the vcpu, except for asynchronous vcpu ioct 28 the vcpu, except for asynchronous vcpu ioctl that are marked as such in 29 the documentation. Otherwise, the first io 29 the documentation. Otherwise, the first ioctl after switching threads 30 could see a performance impact. 30 could see a performance impact. 31 31 32 - device ioctls: These query and set attribut 32 - device ioctls: These query and set attributes that control the operation 33 of a single device. 33 of a single device. 34 34 35 device ioctls must be issued from the same 35 device ioctls must be issued from the same process (address space) that 36 was used to create the VM. 36 was used to create the VM. 37 37 38 2. File descriptors 38 2. File descriptors 39 =================== 39 =================== 40 40 41 The kvm API is centered around file descriptor 41 The kvm API is centered around file descriptors. An initial 42 open("/dev/kvm") obtains a handle to the kvm s 42 open("/dev/kvm") obtains a handle to the kvm subsystem; this handle 43 can be used to issue system ioctls. A KVM_CRE 43 can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this 44 handle will create a VM file descriptor which 44 handle will create a VM file descriptor which can be used to issue VM 45 ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVIC 45 ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVICE ioctl on a VM fd will 46 create a virtual cpu or device and return a fi 46 create a virtual cpu or device and return a file descriptor pointing to 47 the new resource. Finally, ioctls on a vcpu o 47 the new resource. Finally, ioctls on a vcpu or device fd can be used 48 to control the vcpu or device. For vcpus, thi 48 to control the vcpu or device. For vcpus, this includes the important 49 task of actually running guest code. 49 task of actually running guest code. 50 50 51 In general file descriptors can be migrated am 51 In general file descriptors can be migrated among processes by means 52 of fork() and the SCM_RIGHTS facility of unix 52 of fork() and the SCM_RIGHTS facility of unix domain socket. These 53 kinds of tricks are explicitly not supported b 53 kinds of tricks are explicitly not supported by kvm. While they will 54 not cause harm to the host, their actual behav 54 not cause harm to the host, their actual behavior is not guaranteed by 55 the API. See "General description" for detail 55 the API. See "General description" for details on the ioctl usage 56 model that is supported by KVM. 56 model that is supported by KVM. 57 57 58 It is important to note that although VM ioctl !! 58 It is important to note that althought VM ioctls may only be issued from 59 the process that created the VM, a VM's lifecy 59 the process that created the VM, a VM's lifecycle is associated with its 60 file descriptor, not its creator (process). I 60 file descriptor, not its creator (process). In other words, the VM and 61 its resources, *including the associated addre 61 its resources, *including the associated address space*, are not freed 62 until the last reference to the VM's file desc 62 until the last reference to the VM's file descriptor has been released. 63 For example, if fork() is issued after ioctl(K 63 For example, if fork() is issued after ioctl(KVM_CREATE_VM), the VM will 64 not be freed until both the parent (original) 64 not be freed until both the parent (original) process and its child have 65 put their references to the VM's file descript 65 put their references to the VM's file descriptor. 66 66 67 Because a VM's resources are not freed until t 67 Because a VM's resources are not freed until the last reference to its 68 file descriptor is released, creating addition 68 file descriptor is released, creating additional references to a VM 69 via fork(), dup(), etc... without careful cons 69 via fork(), dup(), etc... without careful consideration is strongly 70 discouraged and may have unwanted side effects 70 discouraged and may have unwanted side effects, e.g. memory allocated 71 by and on behalf of the VM's process may not b 71 by and on behalf of the VM's process may not be freed/unaccounted when 72 the VM is shut down. 72 the VM is shut down. 73 73 74 74 75 3. Extensions 75 3. Extensions 76 ============= 76 ============= 77 77 78 As of Linux 2.6.22, the KVM ABI has been stabi 78 As of Linux 2.6.22, the KVM ABI has been stabilized: no backward 79 incompatible change are allowed. However, the 79 incompatible change are allowed. However, there is an extension 80 facility that allows backward-compatible exten 80 facility that allows backward-compatible extensions to the API to be 81 queried and used. 81 queried and used. 82 82 83 The extension mechanism is not based on the Li 83 The extension mechanism is not based on the Linux version number. 84 Instead, kvm defines extension identifiers and 84 Instead, kvm defines extension identifiers and a facility to query 85 whether a particular extension identifier is a 85 whether a particular extension identifier is available. If it is, a 86 set of ioctls is available for application use 86 set of ioctls is available for application use. 87 87 88 88 89 4. API description 89 4. API description 90 ================== 90 ================== 91 91 92 This section describes ioctls that can be used 92 This section describes ioctls that can be used to control kvm guests. 93 For each ioctl, the following information is p 93 For each ioctl, the following information is provided along with a 94 description: 94 description: 95 95 96 Capability: 96 Capability: 97 which KVM extension provides this ioctl. 97 which KVM extension provides this ioctl. Can be 'basic', 98 which means that is will be provided by 98 which means that is will be provided by any kernel that supports 99 API version 12 (see section 4.1), a KVM_ 99 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which 100 means availability needs to be checked w 100 means availability needs to be checked with KVM_CHECK_EXTENSION 101 (see section 4.4), or 'none' which means 101 (see section 4.4), or 'none' which means that while not all kernels 102 support this ioctl, there's no capabilit 102 support this ioctl, there's no capability bit to check its 103 availability: for kernels that don't sup 103 availability: for kernels that don't support the ioctl, 104 the ioctl returns -ENOTTY. 104 the ioctl returns -ENOTTY. 105 105 106 Architectures: 106 Architectures: 107 which instruction set architectures prov 107 which instruction set architectures provide this ioctl. 108 x86 includes both i386 and x86_64. 108 x86 includes both i386 and x86_64. 109 109 110 Type: 110 Type: 111 system, vm, or vcpu. 111 system, vm, or vcpu. 112 112 113 Parameters: 113 Parameters: 114 what parameters are accepted by the ioct 114 what parameters are accepted by the ioctl. 115 115 116 Returns: 116 Returns: 117 the return value. General error numbers 117 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 118 are not detailed, but errors with specif 118 are not detailed, but errors with specific meanings are. 119 119 120 120 121 4.1 KVM_GET_API_VERSION 121 4.1 KVM_GET_API_VERSION 122 ----------------------- 122 ----------------------- 123 123 124 :Capability: basic 124 :Capability: basic 125 :Architectures: all 125 :Architectures: all 126 :Type: system ioctl 126 :Type: system ioctl 127 :Parameters: none 127 :Parameters: none 128 :Returns: the constant KVM_API_VERSION (=12) 128 :Returns: the constant KVM_API_VERSION (=12) 129 129 130 This identifies the API version as the stable 130 This identifies the API version as the stable kvm API. It is not 131 expected that this number will change. Howeve 131 expected that this number will change. However, Linux 2.6.20 and 132 2.6.21 report earlier versions; these are not 132 2.6.21 report earlier versions; these are not documented and not 133 supported. Applications should refuse to run 133 supported. Applications should refuse to run if KVM_GET_API_VERSION 134 returns a value other than 12. If this check 134 returns a value other than 12. If this check passes, all ioctls 135 described as 'basic' will be available. 135 described as 'basic' will be available. 136 136 137 137 138 4.2 KVM_CREATE_VM 138 4.2 KVM_CREATE_VM 139 ----------------- 139 ----------------- 140 140 141 :Capability: basic 141 :Capability: basic 142 :Architectures: all 142 :Architectures: all 143 :Type: system ioctl 143 :Type: system ioctl 144 :Parameters: machine type identifier (KVM_VM_* 144 :Parameters: machine type identifier (KVM_VM_*) 145 :Returns: a VM fd that can be used to control 145 :Returns: a VM fd that can be used to control the new virtual machine. 146 146 147 The new VM has no virtual cpus and no memory. 147 The new VM has no virtual cpus and no memory. 148 You probably want to use 0 as machine type. 148 You probably want to use 0 as machine type. 149 149 150 X86: << 151 ^^^^ << 152 << 153 Supported X86 VM types can be queried via KVM_ << 154 << 155 S390: << 156 ^^^^^ << 157 << 158 In order to create user controlled virtual mac 150 In order to create user controlled virtual machines on S390, check 159 KVM_CAP_S390_UCONTROL and use the flag KVM_VM_ 151 KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as 160 privileged user (CAP_SYS_ADMIN). 152 privileged user (CAP_SYS_ADMIN). 161 153 162 MIPS: << 163 ^^^^^ << 164 << 165 To use hardware assisted virtualization on MIP 154 To use hardware assisted virtualization on MIPS (VZ ASE) rather than 166 the default trap & emulate implementation (whi 155 the default trap & emulate implementation (which changes the virtual 167 memory layout to fit in user mode), check KVM_ 156 memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the 168 flag KVM_VM_MIPS_VZ. 157 flag KVM_VM_MIPS_VZ. 169 158 170 ARM64: << 171 ^^^^^^ << 172 159 173 On arm64, the physical address size for a VM ( 160 On arm64, the physical address size for a VM (IPA Size limit) is limited 174 to 40bits by default. The limit can be configu 161 to 40bits by default. The limit can be configured if the host supports the 175 extension KVM_CAP_ARM_VM_IPA_SIZE. When suppor 162 extension KVM_CAP_ARM_VM_IPA_SIZE. When supported, use 176 KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the 163 KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the size in the machine type 177 identifier, where IPA_Bits is the maximum widt 164 identifier, where IPA_Bits is the maximum width of any physical 178 address used by the VM. The IPA_Bits is encode 165 address used by the VM. The IPA_Bits is encoded in bits[7-0] of the 179 machine type identifier. 166 machine type identifier. 180 167 181 e.g, to configure a guest to use 48bit physica 168 e.g, to configure a guest to use 48bit physical address size:: 182 169 183 vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_V 170 vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_VM_TYPE_ARM_IPA_SIZE(48)); 184 171 185 The requested size (IPA_Bits) must be: 172 The requested size (IPA_Bits) must be: 186 173 187 == ======================================== 174 == ========================================================= 188 0 Implies default size, 40bits (for backwa 175 0 Implies default size, 40bits (for backward compatibility) 189 N Implies N bits, where N is a positive in 176 N Implies N bits, where N is a positive integer such that, 190 32 <= N <= Host_IPA_Limit 177 32 <= N <= Host_IPA_Limit 191 == ======================================== 178 == ========================================================= 192 179 193 Host_IPA_Limit is the maximum possible value f 180 Host_IPA_Limit is the maximum possible value for IPA_Bits on the host and 194 is dependent on the CPU capability and the ker 181 is dependent on the CPU capability and the kernel configuration. The limit can 195 be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of 182 be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of the KVM_CHECK_EXTENSION 196 ioctl() at run-time. 183 ioctl() at run-time. 197 184 198 Creation of the VM will fail if the requested 185 Creation of the VM will fail if the requested IPA size (whether it is 199 implicit or explicit) is unsupported on the ho 186 implicit or explicit) is unsupported on the host. 200 187 201 Please note that configuring the IPA size does 188 Please note that configuring the IPA size does not affect the capability 202 exposed by the guest CPUs in ID_AA64MMFR0_EL1[ 189 exposed by the guest CPUs in ID_AA64MMFR0_EL1[PARange]. It only affects 203 size of the address translated by the stage2 l 190 size of the address translated by the stage2 level (guest physical to 204 host physical address translations). 191 host physical address translations). 205 192 206 193 207 4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATUR 194 4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST 208 ---------------------------------------------- 195 ---------------------------------------------------------- 209 196 210 :Capability: basic, KVM_CAP_GET_MSR_FEATURES f 197 :Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST 211 :Architectures: x86 198 :Architectures: x86 212 :Type: system ioctl 199 :Type: system ioctl 213 :Parameters: struct kvm_msr_list (in/out) 200 :Parameters: struct kvm_msr_list (in/out) 214 :Returns: 0 on success; -1 on error 201 :Returns: 0 on success; -1 on error 215 202 216 Errors: 203 Errors: 217 204 218 ====== ================================= 205 ====== ============================================================ 219 EFAULT the msr index list cannot be read 206 EFAULT the msr index list cannot be read from or written to 220 E2BIG the msr index list is too big to !! 207 E2BIG the msr index list is to be to fit in the array specified by 221 the user. 208 the user. 222 ====== ================================= 209 ====== ============================================================ 223 210 224 :: 211 :: 225 212 226 struct kvm_msr_list { 213 struct kvm_msr_list { 227 __u32 nmsrs; /* number of msrs in entr 214 __u32 nmsrs; /* number of msrs in entries */ 228 __u32 indices[0]; 215 __u32 indices[0]; 229 }; 216 }; 230 217 231 The user fills in the size of the indices arra 218 The user fills in the size of the indices array in nmsrs, and in return 232 kvm adjusts nmsrs to reflect the actual number 219 kvm adjusts nmsrs to reflect the actual number of msrs and fills in the 233 indices array with their numbers. 220 indices array with their numbers. 234 221 235 KVM_GET_MSR_INDEX_LIST returns the guest msrs 222 KVM_GET_MSR_INDEX_LIST returns the guest msrs that are supported. The list 236 varies by kvm version and host processor, but 223 varies by kvm version and host processor, but does not change otherwise. 237 224 238 Note: if kvm indicates supports MCE (KVM_CAP_M 225 Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are 239 not returned in the MSR list, as different vcp 226 not returned in the MSR list, as different vcpus can have a different number 240 of banks, as set via the KVM_X86_SETUP_MCE ioc 227 of banks, as set via the KVM_X86_SETUP_MCE ioctl. 241 228 242 KVM_GET_MSR_FEATURE_INDEX_LIST returns the lis 229 KVM_GET_MSR_FEATURE_INDEX_LIST returns the list of MSRs that can be passed 243 to the KVM_GET_MSRS system ioctl. This lets u 230 to the KVM_GET_MSRS system ioctl. This lets userspace probe host capabilities 244 and processor features that are exposed via MS 231 and processor features that are exposed via MSRs (e.g., VMX capabilities). 245 This list also varies by kvm version and host 232 This list also varies by kvm version and host processor, but does not change 246 otherwise. 233 otherwise. 247 234 248 235 249 4.4 KVM_CHECK_EXTENSION 236 4.4 KVM_CHECK_EXTENSION 250 ----------------------- 237 ----------------------- 251 238 252 :Capability: basic, KVM_CAP_CHECK_EXTENSION_VM 239 :Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl 253 :Architectures: all 240 :Architectures: all 254 :Type: system ioctl, vm ioctl 241 :Type: system ioctl, vm ioctl 255 :Parameters: extension identifier (KVM_CAP_*) 242 :Parameters: extension identifier (KVM_CAP_*) 256 :Returns: 0 if unsupported; 1 (or some other p 243 :Returns: 0 if unsupported; 1 (or some other positive integer) if supported 257 244 258 The API allows the application to query about 245 The API allows the application to query about extensions to the core 259 kvm API. Userspace passes an extension identi 246 kvm API. Userspace passes an extension identifier (an integer) and 260 receives an integer that describes the extensi 247 receives an integer that describes the extension availability. 261 Generally 0 means no and 1 means yes, but some 248 Generally 0 means no and 1 means yes, but some extensions may report 262 additional information in the integer return v 249 additional information in the integer return value. 263 250 264 Based on their initialization different VMs ma 251 Based on their initialization different VMs may have different capabilities. 265 It is thus encouraged to use the vm ioctl to q 252 It is thus encouraged to use the vm ioctl to query for capabilities (available 266 with KVM_CAP_CHECK_EXTENSION_VM on the vm fd) 253 with KVM_CAP_CHECK_EXTENSION_VM on the vm fd) 267 254 268 4.5 KVM_GET_VCPU_MMAP_SIZE 255 4.5 KVM_GET_VCPU_MMAP_SIZE 269 -------------------------- 256 -------------------------- 270 257 271 :Capability: basic 258 :Capability: basic 272 :Architectures: all 259 :Architectures: all 273 :Type: system ioctl 260 :Type: system ioctl 274 :Parameters: none 261 :Parameters: none 275 :Returns: size of vcpu mmap area, in bytes 262 :Returns: size of vcpu mmap area, in bytes 276 263 277 The KVM_RUN ioctl (cf.) communicates with user 264 The KVM_RUN ioctl (cf.) communicates with userspace via a shared 278 memory region. This ioctl returns the size of 265 memory region. This ioctl returns the size of that region. See the 279 KVM_RUN documentation for details. 266 KVM_RUN documentation for details. 280 267 281 Besides the size of the KVM_RUN communication << 282 the VCPU file descriptor can be mmap-ed, inclu << 283 268 284 - if KVM_CAP_COALESCED_MMIO is available, a pa !! 269 4.6 KVM_SET_MEMORY_REGION 285 KVM_COALESCED_MMIO_PAGE_OFFSET * PAGE_SIZE; !! 270 ------------------------- 286 this page is included in the result of KVM_G !! 271 287 KVM_CAP_COALESCED_MMIO is not documented yet !! 272 :Capability: basic 288 !! 273 :Architectures: all 289 - if KVM_CAP_DIRTY_LOG_RING is available, a nu !! 274 :Type: vm ioctl 290 KVM_DIRTY_LOG_PAGE_OFFSET * PAGE_SIZE. For !! 275 :Parameters: struct kvm_memory_region (in) 291 KVM_CAP_DIRTY_LOG_RING, see section 8.3. !! 276 :Returns: 0 on success, -1 on error >> 277 >> 278 This ioctl is obsolete and has been removed. 292 279 293 280 294 4.7 KVM_CREATE_VCPU 281 4.7 KVM_CREATE_VCPU 295 ------------------- 282 ------------------- 296 283 297 :Capability: basic 284 :Capability: basic 298 :Architectures: all 285 :Architectures: all 299 :Type: vm ioctl 286 :Type: vm ioctl 300 :Parameters: vcpu id (apic id on x86) 287 :Parameters: vcpu id (apic id on x86) 301 :Returns: vcpu fd on success, -1 on error 288 :Returns: vcpu fd on success, -1 on error 302 289 303 This API adds a vcpu to a virtual machine. No 290 This API adds a vcpu to a virtual machine. No more than max_vcpus may be added. 304 The vcpu id is an integer in the range [0, max 291 The vcpu id is an integer in the range [0, max_vcpu_id). 305 292 306 The recommended max_vcpus value can be retriev 293 The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of 307 the KVM_CHECK_EXTENSION ioctl() at run-time. 294 the KVM_CHECK_EXTENSION ioctl() at run-time. 308 The maximum possible value for max_vcpus can b 295 The maximum possible value for max_vcpus can be retrieved using the 309 KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION i 296 KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time. 310 297 311 If the KVM_CAP_NR_VCPUS does not exist, you sh 298 If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4 312 cpus max. 299 cpus max. 313 If the KVM_CAP_MAX_VCPUS does not exist, you s 300 If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is 314 same as the value returned from KVM_CAP_NR_VCP 301 same as the value returned from KVM_CAP_NR_VCPUS. 315 302 316 The maximum possible value for max_vcpu_id can 303 The maximum possible value for max_vcpu_id can be retrieved using the 317 KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION 304 KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time. 318 305 319 If the KVM_CAP_MAX_VCPU_ID does not exist, you 306 If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id 320 is the same as the value returned from KVM_CAP 307 is the same as the value returned from KVM_CAP_MAX_VCPUS. 321 308 322 On powerpc using book3s_hv mode, the vcpus are 309 On powerpc using book3s_hv mode, the vcpus are mapped onto virtual 323 threads in one or more virtual CPU cores. (Th 310 threads in one or more virtual CPU cores. (This is because the 324 hardware requires all the hardware threads in 311 hardware requires all the hardware threads in a CPU core to be in the 325 same partition.) The KVM_CAP_PPC_SMT capabili 312 same partition.) The KVM_CAP_PPC_SMT capability indicates the number 326 of vcpus per virtual core (vcore). The vcore 313 of vcpus per virtual core (vcore). The vcore id is obtained by 327 dividing the vcpu id by the number of vcpus pe 314 dividing the vcpu id by the number of vcpus per vcore. The vcpus in a 328 given vcore will always be in the same physica 315 given vcore will always be in the same physical core as each other 329 (though that might be a different physical cor 316 (though that might be a different physical core from time to time). 330 Userspace can control the threading (SMT) mode 317 Userspace can control the threading (SMT) mode of the guest by its 331 allocation of vcpu ids. For example, if users 318 allocation of vcpu ids. For example, if userspace wants 332 single-threaded guest vcpus, it should make al 319 single-threaded guest vcpus, it should make all vcpu ids be a multiple 333 of the number of vcpus per vcore. 320 of the number of vcpus per vcore. 334 321 335 For virtual cpus that have been created with S 322 For virtual cpus that have been created with S390 user controlled virtual 336 machines, the resulting vcpu fd can be memory 323 machines, the resulting vcpu fd can be memory mapped at page offset 337 KVM_S390_SIE_PAGE_OFFSET in order to obtain a 324 KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual 338 cpu's hardware control block. 325 cpu's hardware control block. 339 326 340 327 341 4.8 KVM_GET_DIRTY_LOG (vm ioctl) 328 4.8 KVM_GET_DIRTY_LOG (vm ioctl) 342 -------------------------------- 329 -------------------------------- 343 330 344 :Capability: basic 331 :Capability: basic 345 :Architectures: all 332 :Architectures: all 346 :Type: vm ioctl 333 :Type: vm ioctl 347 :Parameters: struct kvm_dirty_log (in/out) 334 :Parameters: struct kvm_dirty_log (in/out) 348 :Returns: 0 on success, -1 on error 335 :Returns: 0 on success, -1 on error 349 336 350 :: 337 :: 351 338 352 /* for KVM_GET_DIRTY_LOG */ 339 /* for KVM_GET_DIRTY_LOG */ 353 struct kvm_dirty_log { 340 struct kvm_dirty_log { 354 __u32 slot; 341 __u32 slot; 355 __u32 padding; 342 __u32 padding; 356 union { 343 union { 357 void __user *dirty_bitmap; /* 344 void __user *dirty_bitmap; /* one bit per page */ 358 __u64 padding; 345 __u64 padding; 359 }; 346 }; 360 }; 347 }; 361 348 362 Given a memory slot, return a bitmap containin 349 Given a memory slot, return a bitmap containing any pages dirtied 363 since the last call to this ioctl. Bit 0 is t 350 since the last call to this ioctl. Bit 0 is the first page in the 364 memory slot. Ensure the entire structure is c 351 memory slot. Ensure the entire structure is cleared to avoid padding 365 issues. 352 issues. 366 353 367 If KVM_CAP_MULTI_ADDRESS_SPACE is available, b !! 354 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies 368 the address space for which you want to return !! 355 the address space for which you want to return the dirty bitmap. 369 KVM_SET_USER_MEMORY_REGION for details on the !! 356 They must be less than the value that KVM_CHECK_EXTENSION returns for >> 357 the KVM_CAP_MULTI_ADDRESS_SPACE capability. 370 358 371 The bits in the dirty bitmap are cleared befor 359 The bits in the dirty bitmap are cleared before the ioctl returns, unless 372 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. 360 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. For more information, 373 see the description of the capability. 361 see the description of the capability. 374 362 375 Note that the Xen shared_info page, if configu !! 363 4.9 KVM_SET_MEMORY_ALIAS 376 to be dirty. KVM will not explicitly mark it s !! 364 ------------------------ >> 365 >> 366 :Capability: basic >> 367 :Architectures: x86 >> 368 :Type: vm ioctl >> 369 :Parameters: struct kvm_memory_alias (in) >> 370 :Returns: 0 (success), -1 (error) >> 371 >> 372 This ioctl is obsolete and has been removed. 377 373 378 374 379 4.10 KVM_RUN 375 4.10 KVM_RUN 380 ------------ 376 ------------ 381 377 382 :Capability: basic 378 :Capability: basic 383 :Architectures: all 379 :Architectures: all 384 :Type: vcpu ioctl 380 :Type: vcpu ioctl 385 :Parameters: none 381 :Parameters: none 386 :Returns: 0 on success, -1 on error 382 :Returns: 0 on success, -1 on error 387 383 388 Errors: 384 Errors: 389 385 390 ======= ================================= !! 386 ===== ============================= 391 EINTR an unmasked signal is pending 387 EINTR an unmasked signal is pending 392 ENOEXEC the vcpu hasn't been initialized !! 388 ===== ============================= 393 instructions from device memory ( << 394 ENOSYS data abort outside memslots with << 395 KVM_CAP_ARM_NISV_TO_USER not enab << 396 EPERM SVE feature set but not finalized << 397 ======= ================================= << 398 389 399 This ioctl is used to run a guest virtual cpu. 390 This ioctl is used to run a guest virtual cpu. While there are no 400 explicit parameters, there is an implicit para 391 explicit parameters, there is an implicit parameter block that can be 401 obtained by mmap()ing the vcpu fd at offset 0, 392 obtained by mmap()ing the vcpu fd at offset 0, with the size given by 402 KVM_GET_VCPU_MMAP_SIZE. The parameter block i 393 KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct 403 kvm_run' (see below). 394 kvm_run' (see below). 404 395 405 396 406 4.11 KVM_GET_REGS 397 4.11 KVM_GET_REGS 407 ----------------- 398 ----------------- 408 399 409 :Capability: basic 400 :Capability: basic 410 :Architectures: all except arm64 !! 401 :Architectures: all except ARM, arm64 411 :Type: vcpu ioctl 402 :Type: vcpu ioctl 412 :Parameters: struct kvm_regs (out) 403 :Parameters: struct kvm_regs (out) 413 :Returns: 0 on success, -1 on error 404 :Returns: 0 on success, -1 on error 414 405 415 Reads the general purpose registers from the v 406 Reads the general purpose registers from the vcpu. 416 407 417 :: 408 :: 418 409 419 /* x86 */ 410 /* x86 */ 420 struct kvm_regs { 411 struct kvm_regs { 421 /* out (KVM_GET_REGS) / in (KVM_SET_RE 412 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ 422 __u64 rax, rbx, rcx, rdx; 413 __u64 rax, rbx, rcx, rdx; 423 __u64 rsi, rdi, rsp, rbp; 414 __u64 rsi, rdi, rsp, rbp; 424 __u64 r8, r9, r10, r11; 415 __u64 r8, r9, r10, r11; 425 __u64 r12, r13, r14, r15; 416 __u64 r12, r13, r14, r15; 426 __u64 rip, rflags; 417 __u64 rip, rflags; 427 }; 418 }; 428 419 429 /* mips */ 420 /* mips */ 430 struct kvm_regs { 421 struct kvm_regs { 431 /* out (KVM_GET_REGS) / in (KVM_SET_RE 422 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ 432 __u64 gpr[32]; 423 __u64 gpr[32]; 433 __u64 hi; 424 __u64 hi; 434 __u64 lo; 425 __u64 lo; 435 __u64 pc; 426 __u64 pc; 436 }; 427 }; 437 428 438 /* LoongArch */ << 439 struct kvm_regs { << 440 /* out (KVM_GET_REGS) / in (KVM_SET_RE << 441 unsigned long gpr[32]; << 442 unsigned long pc; << 443 }; << 444 << 445 429 446 4.12 KVM_SET_REGS 430 4.12 KVM_SET_REGS 447 ----------------- 431 ----------------- 448 432 449 :Capability: basic 433 :Capability: basic 450 :Architectures: all except arm64 !! 434 :Architectures: all except ARM, arm64 451 :Type: vcpu ioctl 435 :Type: vcpu ioctl 452 :Parameters: struct kvm_regs (in) 436 :Parameters: struct kvm_regs (in) 453 :Returns: 0 on success, -1 on error 437 :Returns: 0 on success, -1 on error 454 438 455 Writes the general purpose registers into the 439 Writes the general purpose registers into the vcpu. 456 440 457 See KVM_GET_REGS for the data structure. 441 See KVM_GET_REGS for the data structure. 458 442 459 443 460 4.13 KVM_GET_SREGS 444 4.13 KVM_GET_SREGS 461 ------------------ 445 ------------------ 462 446 463 :Capability: basic 447 :Capability: basic 464 :Architectures: x86, ppc 448 :Architectures: x86, ppc 465 :Type: vcpu ioctl 449 :Type: vcpu ioctl 466 :Parameters: struct kvm_sregs (out) 450 :Parameters: struct kvm_sregs (out) 467 :Returns: 0 on success, -1 on error 451 :Returns: 0 on success, -1 on error 468 452 469 Reads special registers from the vcpu. 453 Reads special registers from the vcpu. 470 454 471 :: 455 :: 472 456 473 /* x86 */ 457 /* x86 */ 474 struct kvm_sregs { 458 struct kvm_sregs { 475 struct kvm_segment cs, ds, es, fs, gs, 459 struct kvm_segment cs, ds, es, fs, gs, ss; 476 struct kvm_segment tr, ldt; 460 struct kvm_segment tr, ldt; 477 struct kvm_dtable gdt, idt; 461 struct kvm_dtable gdt, idt; 478 __u64 cr0, cr2, cr3, cr4, cr8; 462 __u64 cr0, cr2, cr3, cr4, cr8; 479 __u64 efer; 463 __u64 efer; 480 __u64 apic_base; 464 __u64 apic_base; 481 __u64 interrupt_bitmap[(KVM_NR_INTERRU 465 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64]; 482 }; 466 }; 483 467 484 /* ppc -- see arch/powerpc/include/uapi/asm/ 468 /* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */ 485 469 486 interrupt_bitmap is a bitmap of pending extern 470 interrupt_bitmap is a bitmap of pending external interrupts. At most 487 one bit may be set. This interrupt has been a 471 one bit may be set. This interrupt has been acknowledged by the APIC 488 but not yet injected into the cpu core. 472 but not yet injected into the cpu core. 489 473 490 474 491 4.14 KVM_SET_SREGS 475 4.14 KVM_SET_SREGS 492 ------------------ 476 ------------------ 493 477 494 :Capability: basic 478 :Capability: basic 495 :Architectures: x86, ppc 479 :Architectures: x86, ppc 496 :Type: vcpu ioctl 480 :Type: vcpu ioctl 497 :Parameters: struct kvm_sregs (in) 481 :Parameters: struct kvm_sregs (in) 498 :Returns: 0 on success, -1 on error 482 :Returns: 0 on success, -1 on error 499 483 500 Writes special registers into the vcpu. See K 484 Writes special registers into the vcpu. See KVM_GET_SREGS for the 501 data structures. 485 data structures. 502 486 503 487 504 4.15 KVM_TRANSLATE 488 4.15 KVM_TRANSLATE 505 ------------------ 489 ------------------ 506 490 507 :Capability: basic 491 :Capability: basic 508 :Architectures: x86 492 :Architectures: x86 509 :Type: vcpu ioctl 493 :Type: vcpu ioctl 510 :Parameters: struct kvm_translation (in/out) 494 :Parameters: struct kvm_translation (in/out) 511 :Returns: 0 on success, -1 on error 495 :Returns: 0 on success, -1 on error 512 496 513 Translates a virtual address according to the 497 Translates a virtual address according to the vcpu's current address 514 translation mode. 498 translation mode. 515 499 516 :: 500 :: 517 501 518 struct kvm_translation { 502 struct kvm_translation { 519 /* in */ 503 /* in */ 520 __u64 linear_address; 504 __u64 linear_address; 521 505 522 /* out */ 506 /* out */ 523 __u64 physical_address; 507 __u64 physical_address; 524 __u8 valid; 508 __u8 valid; 525 __u8 writeable; 509 __u8 writeable; 526 __u8 usermode; 510 __u8 usermode; 527 __u8 pad[5]; 511 __u8 pad[5]; 528 }; 512 }; 529 513 530 514 531 4.16 KVM_INTERRUPT 515 4.16 KVM_INTERRUPT 532 ------------------ 516 ------------------ 533 517 534 :Capability: basic 518 :Capability: basic 535 :Architectures: x86, ppc, mips, riscv, loongar !! 519 :Architectures: x86, ppc, mips 536 :Type: vcpu ioctl 520 :Type: vcpu ioctl 537 :Parameters: struct kvm_interrupt (in) 521 :Parameters: struct kvm_interrupt (in) 538 :Returns: 0 on success, negative on failure. 522 :Returns: 0 on success, negative on failure. 539 523 540 Queues a hardware interrupt vector to be injec 524 Queues a hardware interrupt vector to be injected. 541 525 542 :: 526 :: 543 527 544 /* for KVM_INTERRUPT */ 528 /* for KVM_INTERRUPT */ 545 struct kvm_interrupt { 529 struct kvm_interrupt { 546 /* in */ 530 /* in */ 547 __u32 irq; 531 __u32 irq; 548 }; 532 }; 549 533 550 X86: 534 X86: 551 ^^^^ 535 ^^^^ 552 536 553 :Returns: 537 :Returns: 554 538 555 ========= ============================ 539 ========= =================================== 556 0 on success, 540 0 on success, 557 -EEXIST if an interrupt is already e 541 -EEXIST if an interrupt is already enqueued 558 -EINVAL the irq number is invalid 542 -EINVAL the irq number is invalid 559 -ENXIO if the PIC is in the kernel 543 -ENXIO if the PIC is in the kernel 560 -EFAULT if the pointer is invalid 544 -EFAULT if the pointer is invalid 561 ========= ============================ 545 ========= =================================== 562 546 563 Note 'irq' is an interrupt vector, not an inte 547 Note 'irq' is an interrupt vector, not an interrupt pin or line. This 564 ioctl is useful if the in-kernel PIC is not us 548 ioctl is useful if the in-kernel PIC is not used. 565 549 566 PPC: 550 PPC: 567 ^^^^ 551 ^^^^ 568 552 569 Queues an external interrupt to be injected. T !! 553 Queues an external interrupt to be injected. This ioctl is overleaded 570 with 3 different irq values: 554 with 3 different irq values: 571 555 572 a) KVM_INTERRUPT_SET 556 a) KVM_INTERRUPT_SET 573 557 574 This injects an edge type external interrup 558 This injects an edge type external interrupt into the guest once it's ready 575 to receive interrupts. When injected, the i 559 to receive interrupts. When injected, the interrupt is done. 576 560 577 b) KVM_INTERRUPT_UNSET 561 b) KVM_INTERRUPT_UNSET 578 562 579 This unsets any pending interrupt. 563 This unsets any pending interrupt. 580 564 581 Only available with KVM_CAP_PPC_UNSET_IRQ. 565 Only available with KVM_CAP_PPC_UNSET_IRQ. 582 566 583 c) KVM_INTERRUPT_SET_LEVEL 567 c) KVM_INTERRUPT_SET_LEVEL 584 568 585 This injects a level type external interrup 569 This injects a level type external interrupt into the guest context. The 586 interrupt stays pending until a specific io 570 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET 587 is triggered. 571 is triggered. 588 572 589 Only available with KVM_CAP_PPC_IRQ_LEVEL. 573 Only available with KVM_CAP_PPC_IRQ_LEVEL. 590 574 591 Note that any value for 'irq' other than the o 575 Note that any value for 'irq' other than the ones stated above is invalid 592 and incurs unexpected behavior. 576 and incurs unexpected behavior. 593 577 594 This is an asynchronous vcpu ioctl and can be 578 This is an asynchronous vcpu ioctl and can be invoked from any thread. 595 579 596 MIPS: 580 MIPS: 597 ^^^^^ 581 ^^^^^ 598 582 599 Queues an external interrupt to be injected in 583 Queues an external interrupt to be injected into the virtual CPU. A negative 600 interrupt number dequeues the interrupt. 584 interrupt number dequeues the interrupt. 601 585 602 This is an asynchronous vcpu ioctl and can be 586 This is an asynchronous vcpu ioctl and can be invoked from any thread. 603 587 604 RISC-V: << 605 ^^^^^^^ << 606 << 607 Queues an external interrupt to be injected in << 608 is overloaded with 2 different irq values: << 609 << 610 a) KVM_INTERRUPT_SET << 611 << 612 This sets external interrupt for a virtual << 613 once it is ready. << 614 588 615 b) KVM_INTERRUPT_UNSET !! 589 4.17 KVM_DEBUG_GUEST 616 !! 590 -------------------- 617 This clears pending external interrupt for << 618 << 619 This is an asynchronous vcpu ioctl and can be << 620 << 621 LOONGARCH: << 622 ^^^^^^^^^^ << 623 591 624 Queues an external interrupt to be injected in !! 592 :Capability: basic 625 interrupt number dequeues the interrupt. !! 593 :Architectures: none >> 594 :Type: vcpu ioctl >> 595 :Parameters: none) >> 596 :Returns: -1 on error 626 597 627 This is an asynchronous vcpu ioctl and can be !! 598 Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead. 628 599 629 600 630 4.18 KVM_GET_MSRS 601 4.18 KVM_GET_MSRS 631 ----------------- 602 ----------------- 632 603 633 :Capability: basic (vcpu), KVM_CAP_GET_MSR_FEA 604 :Capability: basic (vcpu), KVM_CAP_GET_MSR_FEATURES (system) 634 :Architectures: x86 605 :Architectures: x86 635 :Type: system ioctl, vcpu ioctl 606 :Type: system ioctl, vcpu ioctl 636 :Parameters: struct kvm_msrs (in/out) 607 :Parameters: struct kvm_msrs (in/out) 637 :Returns: number of msrs successfully returned 608 :Returns: number of msrs successfully returned; 638 -1 on error 609 -1 on error 639 610 640 When used as a system ioctl: 611 When used as a system ioctl: 641 Reads the values of MSR-based features that ar 612 Reads the values of MSR-based features that are available for the VM. This 642 is similar to KVM_GET_SUPPORTED_CPUID, but it 613 is similar to KVM_GET_SUPPORTED_CPUID, but it returns MSR indices and values. 643 The list of msr-based features can be obtained 614 The list of msr-based features can be obtained using KVM_GET_MSR_FEATURE_INDEX_LIST 644 in a system ioctl. 615 in a system ioctl. 645 616 646 When used as a vcpu ioctl: 617 When used as a vcpu ioctl: 647 Reads model-specific registers from the vcpu. 618 Reads model-specific registers from the vcpu. Supported msr indices can 648 be obtained using KVM_GET_MSR_INDEX_LIST in a 619 be obtained using KVM_GET_MSR_INDEX_LIST in a system ioctl. 649 620 650 :: 621 :: 651 622 652 struct kvm_msrs { 623 struct kvm_msrs { 653 __u32 nmsrs; /* number of msrs in entr 624 __u32 nmsrs; /* number of msrs in entries */ 654 __u32 pad; 625 __u32 pad; 655 626 656 struct kvm_msr_entry entries[0]; 627 struct kvm_msr_entry entries[0]; 657 }; 628 }; 658 629 659 struct kvm_msr_entry { 630 struct kvm_msr_entry { 660 __u32 index; 631 __u32 index; 661 __u32 reserved; 632 __u32 reserved; 662 __u64 data; 633 __u64 data; 663 }; 634 }; 664 635 665 Application code should set the 'nmsrs' member 636 Application code should set the 'nmsrs' member (which indicates the 666 size of the entries array) and the 'index' mem 637 size of the entries array) and the 'index' member of each array entry. 667 kvm will fill in the 'data' member. 638 kvm will fill in the 'data' member. 668 639 669 640 670 4.19 KVM_SET_MSRS 641 4.19 KVM_SET_MSRS 671 ----------------- 642 ----------------- 672 643 673 :Capability: basic 644 :Capability: basic 674 :Architectures: x86 645 :Architectures: x86 675 :Type: vcpu ioctl 646 :Type: vcpu ioctl 676 :Parameters: struct kvm_msrs (in) 647 :Parameters: struct kvm_msrs (in) 677 :Returns: number of msrs successfully set (see 648 :Returns: number of msrs successfully set (see below), -1 on error 678 649 679 Writes model-specific registers to the vcpu. 650 Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the 680 data structures. 651 data structures. 681 652 682 Application code should set the 'nmsrs' member 653 Application code should set the 'nmsrs' member (which indicates the 683 size of the entries array), and the 'index' an 654 size of the entries array), and the 'index' and 'data' members of each 684 array entry. 655 array entry. 685 656 686 It tries to set the MSRs in array entries[] on 657 It tries to set the MSRs in array entries[] one by one. If setting an MSR 687 fails, e.g., due to setting reserved bits, the 658 fails, e.g., due to setting reserved bits, the MSR isn't supported/emulated 688 by KVM, etc..., it stops processing the MSR li 659 by KVM, etc..., it stops processing the MSR list and returns the number of 689 MSRs that have been set successfully. 660 MSRs that have been set successfully. 690 661 691 662 692 4.20 KVM_SET_CPUID 663 4.20 KVM_SET_CPUID 693 ------------------ 664 ------------------ 694 665 695 :Capability: basic 666 :Capability: basic 696 :Architectures: x86 667 :Architectures: x86 697 :Type: vcpu ioctl 668 :Type: vcpu ioctl 698 :Parameters: struct kvm_cpuid (in) 669 :Parameters: struct kvm_cpuid (in) 699 :Returns: 0 on success, -1 on error 670 :Returns: 0 on success, -1 on error 700 671 701 Defines the vcpu responses to the cpuid instru 672 Defines the vcpu responses to the cpuid instruction. Applications 702 should use the KVM_SET_CPUID2 ioctl if availab 673 should use the KVM_SET_CPUID2 ioctl if available. 703 674 704 Caveat emptor: !! 675 Note, when this IOCTL fails, KVM gives no guarantees that previous valid CPUID 705 - If this IOCTL fails, KVM gives no guarante !! 676 configuration (if there is) is not corrupted. Userspace can get a copy of the 706 configuration (if there is) is not corrupt !! 677 resulting CPUID configuration through KVM_GET_CPUID2 in case. 707 of the resulting CPUID configuration throu << 708 - Using KVM_SET_CPUID{,2} after KVM_RUN, i.e << 709 after running the guest, may cause guest i << 710 - Using heterogeneous CPUID configurations, << 711 may cause guest instability. << 712 678 713 :: 679 :: 714 680 715 struct kvm_cpuid_entry { 681 struct kvm_cpuid_entry { 716 __u32 function; 682 __u32 function; 717 __u32 eax; 683 __u32 eax; 718 __u32 ebx; 684 __u32 ebx; 719 __u32 ecx; 685 __u32 ecx; 720 __u32 edx; 686 __u32 edx; 721 __u32 padding; 687 __u32 padding; 722 }; 688 }; 723 689 724 /* for KVM_SET_CPUID */ 690 /* for KVM_SET_CPUID */ 725 struct kvm_cpuid { 691 struct kvm_cpuid { 726 __u32 nent; 692 __u32 nent; 727 __u32 padding; 693 __u32 padding; 728 struct kvm_cpuid_entry entries[0]; 694 struct kvm_cpuid_entry entries[0]; 729 }; 695 }; 730 696 731 697 732 4.21 KVM_SET_SIGNAL_MASK 698 4.21 KVM_SET_SIGNAL_MASK 733 ------------------------ 699 ------------------------ 734 700 735 :Capability: basic 701 :Capability: basic 736 :Architectures: all 702 :Architectures: all 737 :Type: vcpu ioctl 703 :Type: vcpu ioctl 738 :Parameters: struct kvm_signal_mask (in) 704 :Parameters: struct kvm_signal_mask (in) 739 :Returns: 0 on success, -1 on error 705 :Returns: 0 on success, -1 on error 740 706 741 Defines which signals are blocked during execu 707 Defines which signals are blocked during execution of KVM_RUN. This 742 signal mask temporarily overrides the threads 708 signal mask temporarily overrides the threads signal mask. Any 743 unblocked signal received (except SIGKILL and 709 unblocked signal received (except SIGKILL and SIGSTOP, which retain 744 their traditional behaviour) will cause KVM_RU 710 their traditional behaviour) will cause KVM_RUN to return with -EINTR. 745 711 746 Note the signal will only be delivered if not 712 Note the signal will only be delivered if not blocked by the original 747 signal mask. 713 signal mask. 748 714 749 :: 715 :: 750 716 751 /* for KVM_SET_SIGNAL_MASK */ 717 /* for KVM_SET_SIGNAL_MASK */ 752 struct kvm_signal_mask { 718 struct kvm_signal_mask { 753 __u32 len; 719 __u32 len; 754 __u8 sigset[0]; 720 __u8 sigset[0]; 755 }; 721 }; 756 722 757 723 758 4.22 KVM_GET_FPU 724 4.22 KVM_GET_FPU 759 ---------------- 725 ---------------- 760 726 761 :Capability: basic 727 :Capability: basic 762 :Architectures: x86, loongarch !! 728 :Architectures: x86 763 :Type: vcpu ioctl 729 :Type: vcpu ioctl 764 :Parameters: struct kvm_fpu (out) 730 :Parameters: struct kvm_fpu (out) 765 :Returns: 0 on success, -1 on error 731 :Returns: 0 on success, -1 on error 766 732 767 Reads the floating point state from the vcpu. 733 Reads the floating point state from the vcpu. 768 734 769 :: 735 :: 770 736 771 /* x86: for KVM_GET_FPU and KVM_SET_FPU */ !! 737 /* for KVM_GET_FPU and KVM_SET_FPU */ 772 struct kvm_fpu { 738 struct kvm_fpu { 773 __u8 fpr[8][16]; 739 __u8 fpr[8][16]; 774 __u16 fcw; 740 __u16 fcw; 775 __u16 fsw; 741 __u16 fsw; 776 __u8 ftwx; /* in fxsave format */ 742 __u8 ftwx; /* in fxsave format */ 777 __u8 pad1; 743 __u8 pad1; 778 __u16 last_opcode; 744 __u16 last_opcode; 779 __u64 last_ip; 745 __u64 last_ip; 780 __u64 last_dp; 746 __u64 last_dp; 781 __u8 xmm[16][16]; 747 __u8 xmm[16][16]; 782 __u32 mxcsr; 748 __u32 mxcsr; 783 __u32 pad2; 749 __u32 pad2; 784 }; 750 }; 785 751 786 /* LoongArch: for KVM_GET_FPU and KVM_SET_FP << 787 struct kvm_fpu { << 788 __u32 fcsr; << 789 __u64 fcc; << 790 struct kvm_fpureg { << 791 __u64 val64[4]; << 792 }fpr[32]; << 793 }; << 794 << 795 752 796 4.23 KVM_SET_FPU 753 4.23 KVM_SET_FPU 797 ---------------- 754 ---------------- 798 755 799 :Capability: basic 756 :Capability: basic 800 :Architectures: x86, loongarch !! 757 :Architectures: x86 801 :Type: vcpu ioctl 758 :Type: vcpu ioctl 802 :Parameters: struct kvm_fpu (in) 759 :Parameters: struct kvm_fpu (in) 803 :Returns: 0 on success, -1 on error 760 :Returns: 0 on success, -1 on error 804 761 805 Writes the floating point state to the vcpu. 762 Writes the floating point state to the vcpu. 806 763 807 :: 764 :: 808 765 809 /* x86: for KVM_GET_FPU and KVM_SET_FPU */ !! 766 /* for KVM_GET_FPU and KVM_SET_FPU */ 810 struct kvm_fpu { 767 struct kvm_fpu { 811 __u8 fpr[8][16]; 768 __u8 fpr[8][16]; 812 __u16 fcw; 769 __u16 fcw; 813 __u16 fsw; 770 __u16 fsw; 814 __u8 ftwx; /* in fxsave format */ 771 __u8 ftwx; /* in fxsave format */ 815 __u8 pad1; 772 __u8 pad1; 816 __u16 last_opcode; 773 __u16 last_opcode; 817 __u64 last_ip; 774 __u64 last_ip; 818 __u64 last_dp; 775 __u64 last_dp; 819 __u8 xmm[16][16]; 776 __u8 xmm[16][16]; 820 __u32 mxcsr; 777 __u32 mxcsr; 821 __u32 pad2; 778 __u32 pad2; 822 }; 779 }; 823 780 824 /* LoongArch: for KVM_GET_FPU and KVM_SET_FP << 825 struct kvm_fpu { << 826 __u32 fcsr; << 827 __u64 fcc; << 828 struct kvm_fpureg { << 829 __u64 val64[4]; << 830 }fpr[32]; << 831 }; << 832 << 833 781 834 4.24 KVM_CREATE_IRQCHIP 782 4.24 KVM_CREATE_IRQCHIP 835 ----------------------- 783 ----------------------- 836 784 837 :Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQ 785 :Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390) 838 :Architectures: x86, arm64, s390 !! 786 :Architectures: x86, ARM, arm64, s390 839 :Type: vm ioctl 787 :Type: vm ioctl 840 :Parameters: none 788 :Parameters: none 841 :Returns: 0 on success, -1 on error 789 :Returns: 0 on success, -1 on error 842 790 843 Creates an interrupt controller model in the k 791 Creates an interrupt controller model in the kernel. 844 On x86, creates a virtual ioapic, a virtual PI 792 On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up 845 future vcpus to have a local APIC. IRQ routin 793 future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both 846 PIC and IOAPIC; GSI 16-23 only go to the IOAPI 794 PIC and IOAPIC; GSI 16-23 only go to the IOAPIC. 847 On arm64, a GICv2 is created. Any other GIC ve !! 795 On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of 848 KVM_CREATE_DEVICE, which also supports creatin 796 KVM_CREATE_DEVICE, which also supports creating a GICv2. Using 849 KVM_CREATE_DEVICE is preferred over KVM_CREATE 797 KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2. 850 On s390, a dummy irq routing table is created. 798 On s390, a dummy irq routing table is created. 851 799 852 Note that on s390 the KVM_CAP_S390_IRQCHIP vm 800 Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled 853 before KVM_CREATE_IRQCHIP can be used. 801 before KVM_CREATE_IRQCHIP can be used. 854 802 855 803 856 4.25 KVM_IRQ_LINE 804 4.25 KVM_IRQ_LINE 857 ----------------- 805 ----------------- 858 806 859 :Capability: KVM_CAP_IRQCHIP 807 :Capability: KVM_CAP_IRQCHIP 860 :Architectures: x86, arm64 !! 808 :Architectures: x86, arm, arm64 861 :Type: vm ioctl 809 :Type: vm ioctl 862 :Parameters: struct kvm_irq_level 810 :Parameters: struct kvm_irq_level 863 :Returns: 0 on success, -1 on error 811 :Returns: 0 on success, -1 on error 864 812 865 Sets the level of a GSI input to the interrupt 813 Sets the level of a GSI input to the interrupt controller model in the kernel. 866 On some architectures it is required that an i 814 On some architectures it is required that an interrupt controller model has 867 been previously created with KVM_CREATE_IRQCHI 815 been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered 868 interrupts require the level to be set to 1 an 816 interrupts require the level to be set to 1 and then back to 0. 869 817 870 On real hardware, interrupt pins can be active 818 On real hardware, interrupt pins can be active-low or active-high. This 871 does not matter for the level field of struct 819 does not matter for the level field of struct kvm_irq_level: 1 always 872 means active (asserted), 0 means inactive (dea 820 means active (asserted), 0 means inactive (deasserted). 873 821 874 x86 allows the operating system to program the 822 x86 allows the operating system to program the interrupt polarity 875 (active-low/active-high) for level-triggered i 823 (active-low/active-high) for level-triggered interrupts, and KVM used 876 to consider the polarity. However, due to bit 824 to consider the polarity. However, due to bitrot in the handling of 877 active-low interrupts, the above convention is 825 active-low interrupts, the above convention is now valid on x86 too. 878 This is signaled by KVM_CAP_X86_IOAPIC_POLARIT 826 This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace 879 should not present interrupts to the guest as 827 should not present interrupts to the guest as active-low unless this 880 capability is present (or unless it is not usi 828 capability is present (or unless it is not using the in-kernel irqchip, 881 of course). 829 of course). 882 830 883 831 884 arm64 can signal an interrupt either at the CP !! 832 ARM/arm64 can signal an interrupt either at the CPU level, or at the 885 in-kernel irqchip (GIC), and for in-kernel irq 833 in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to 886 use PPIs designated for specific cpus. The ir 834 use PPIs designated for specific cpus. The irq field is interpreted 887 like this:: 835 like this:: 888 836 889 bits: | 31 ... 28 | 27 ... 24 | 23 ... 1 !! 837  bits: | 31 ... 28 | 27 ... 24 | 23 ... 16 | 15 ... 0 | 890 field: | vcpu2_index | irq_type | vcpu_inde 838 field: | vcpu2_index | irq_type | vcpu_index | irq_id | 891 839 892 The irq_type field has the following values: 840 The irq_type field has the following values: 893 841 894 - KVM_ARM_IRQ_TYPE_CPU: !! 842 - irq_type[0]: 895 out-of-kernel GIC: irq_id 0 is 843 out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ 896 - KVM_ARM_IRQ_TYPE_SPI: !! 844 - irq_type[1]: 897 in-kernel GIC: SPI, irq_id betw 845 in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.) 898 (the vcpu_index field is ignore 846 (the vcpu_index field is ignored) 899 - KVM_ARM_IRQ_TYPE_PPI: !! 847 - irq_type[2]: 900 in-kernel GIC: PPI, irq_id betw 848 in-kernel GIC: PPI, irq_id between 16 and 31 (incl.) 901 849 902 (The irq_id field thus corresponds nicely to t 850 (The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs) 903 851 904 In both cases, level is used to assert/deasser 852 In both cases, level is used to assert/deassert the line. 905 853 906 When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supporte 854 When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supported, the target vcpu is 907 identified as (256 * vcpu2_index + vcpu_index) 855 identified as (256 * vcpu2_index + vcpu_index). Otherwise, vcpu2_index 908 must be zero. 856 must be zero. 909 857 910 Note that on arm64, the KVM_CAP_IRQCHIP capabi !! 858 Note that on arm/arm64, the KVM_CAP_IRQCHIP capability only conditions 911 injection of interrupts for the in-kernel irqc 859 injection of interrupts for the in-kernel irqchip. KVM_IRQ_LINE can always 912 be used for a userspace interrupt controller. 860 be used for a userspace interrupt controller. 913 861 914 :: 862 :: 915 863 916 struct kvm_irq_level { 864 struct kvm_irq_level { 917 union { 865 union { 918 __u32 irq; /* GSI */ 866 __u32 irq; /* GSI */ 919 __s32 status; /* not used for 867 __s32 status; /* not used for KVM_IRQ_LEVEL */ 920 }; 868 }; 921 __u32 level; /* 0 or 1 */ 869 __u32 level; /* 0 or 1 */ 922 }; 870 }; 923 871 924 872 925 4.26 KVM_GET_IRQCHIP 873 4.26 KVM_GET_IRQCHIP 926 -------------------- 874 -------------------- 927 875 928 :Capability: KVM_CAP_IRQCHIP 876 :Capability: KVM_CAP_IRQCHIP 929 :Architectures: x86 877 :Architectures: x86 930 :Type: vm ioctl 878 :Type: vm ioctl 931 :Parameters: struct kvm_irqchip (in/out) 879 :Parameters: struct kvm_irqchip (in/out) 932 :Returns: 0 on success, -1 on error 880 :Returns: 0 on success, -1 on error 933 881 934 Reads the state of a kernel interrupt controll 882 Reads the state of a kernel interrupt controller created with 935 KVM_CREATE_IRQCHIP into a buffer provided by t 883 KVM_CREATE_IRQCHIP into a buffer provided by the caller. 936 884 937 :: 885 :: 938 886 939 struct kvm_irqchip { 887 struct kvm_irqchip { 940 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 888 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ 941 __u32 pad; 889 __u32 pad; 942 union { 890 union { 943 char dummy[512]; /* reserving 891 char dummy[512]; /* reserving space */ 944 struct kvm_pic_state pic; 892 struct kvm_pic_state pic; 945 struct kvm_ioapic_state ioapic 893 struct kvm_ioapic_state ioapic; 946 } chip; 894 } chip; 947 }; 895 }; 948 896 949 897 950 4.27 KVM_SET_IRQCHIP 898 4.27 KVM_SET_IRQCHIP 951 -------------------- 899 -------------------- 952 900 953 :Capability: KVM_CAP_IRQCHIP 901 :Capability: KVM_CAP_IRQCHIP 954 :Architectures: x86 902 :Architectures: x86 955 :Type: vm ioctl 903 :Type: vm ioctl 956 :Parameters: struct kvm_irqchip (in) 904 :Parameters: struct kvm_irqchip (in) 957 :Returns: 0 on success, -1 on error 905 :Returns: 0 on success, -1 on error 958 906 959 Sets the state of a kernel interrupt controlle 907 Sets the state of a kernel interrupt controller created with 960 KVM_CREATE_IRQCHIP from a buffer provided by t 908 KVM_CREATE_IRQCHIP from a buffer provided by the caller. 961 909 962 :: 910 :: 963 911 964 struct kvm_irqchip { 912 struct kvm_irqchip { 965 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 913 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ 966 __u32 pad; 914 __u32 pad; 967 union { 915 union { 968 char dummy[512]; /* reserving 916 char dummy[512]; /* reserving space */ 969 struct kvm_pic_state pic; 917 struct kvm_pic_state pic; 970 struct kvm_ioapic_state ioapic 918 struct kvm_ioapic_state ioapic; 971 } chip; 919 } chip; 972 }; 920 }; 973 921 974 922 975 4.28 KVM_XEN_HVM_CONFIG 923 4.28 KVM_XEN_HVM_CONFIG 976 ----------------------- 924 ----------------------- 977 925 978 :Capability: KVM_CAP_XEN_HVM 926 :Capability: KVM_CAP_XEN_HVM 979 :Architectures: x86 927 :Architectures: x86 980 :Type: vm ioctl 928 :Type: vm ioctl 981 :Parameters: struct kvm_xen_hvm_config (in) 929 :Parameters: struct kvm_xen_hvm_config (in) 982 :Returns: 0 on success, -1 on error 930 :Returns: 0 on success, -1 on error 983 931 984 Sets the MSR that the Xen HVM guest uses to in 932 Sets the MSR that the Xen HVM guest uses to initialize its hypercall 985 page, and provides the starting address and si 933 page, and provides the starting address and size of the hypercall 986 blobs in userspace. When the guest writes the 934 blobs in userspace. When the guest writes the MSR, kvm copies one 987 page of a blob (32- or 64-bit, depending on th 935 page of a blob (32- or 64-bit, depending on the vcpu mode) to guest 988 memory. 936 memory. 989 937 990 :: 938 :: 991 939 992 struct kvm_xen_hvm_config { 940 struct kvm_xen_hvm_config { 993 __u32 flags; 941 __u32 flags; 994 __u32 msr; 942 __u32 msr; 995 __u64 blob_addr_32; 943 __u64 blob_addr_32; 996 __u64 blob_addr_64; 944 __u64 blob_addr_64; 997 __u8 blob_size_32; 945 __u8 blob_size_32; 998 __u8 blob_size_64; 946 __u8 blob_size_64; 999 __u8 pad2[30]; 947 __u8 pad2[30]; 1000 }; 948 }; 1001 949 1002 If certain flags are returned from the KVM_CA << 1003 be set in the flags field of this ioctl: << 1004 << 1005 The KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL flag r << 1006 the contents of the hypercall page automatica << 1007 intercepted and passed to userspace through K << 1008 case, all of the blob size and address fields << 1009 << 1010 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indic << 1011 will always use the KVM_XEN_HVM_EVTCHN_SEND i << 1012 channel interrupts rather than manipulating t << 1013 structures directly. This, in turn, may allow << 1014 such as intercepting the SCHEDOP_poll hyperca << 1015 spinlock operation for the guest. Userspace m << 1016 to deliver events if it was advertised, even << 1017 send this indication that it will always do s << 1018 << 1019 No other flags are currently valid in the str << 1020 950 1021 4.29 KVM_GET_CLOCK 951 4.29 KVM_GET_CLOCK 1022 ------------------ 952 ------------------ 1023 953 1024 :Capability: KVM_CAP_ADJUST_CLOCK 954 :Capability: KVM_CAP_ADJUST_CLOCK 1025 :Architectures: x86 955 :Architectures: x86 1026 :Type: vm ioctl 956 :Type: vm ioctl 1027 :Parameters: struct kvm_clock_data (out) 957 :Parameters: struct kvm_clock_data (out) 1028 :Returns: 0 on success, -1 on error 958 :Returns: 0 on success, -1 on error 1029 959 1030 Gets the current timestamp of kvmclock as see 960 Gets the current timestamp of kvmclock as seen by the current guest. In 1031 conjunction with KVM_SET_CLOCK, it is used to 961 conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios 1032 such as migration. 962 such as migration. 1033 963 1034 When KVM_CAP_ADJUST_CLOCK is passed to KVM_CH 964 When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the 1035 set of bits that KVM can return in struct kvm 965 set of bits that KVM can return in struct kvm_clock_data's flag member. 1036 966 1037 The following flags are defined: !! 967 The only flag defined now is KVM_CLOCK_TSC_STABLE. If set, the returned 1038 !! 968 value is the exact kvmclock value seen by all VCPUs at the instant 1039 KVM_CLOCK_TSC_STABLE !! 969 when KVM_GET_CLOCK was called. If clear, the returned value is simply 1040 If set, the returned value is the exact kvm !! 970 CLOCK_MONOTONIC plus a constant offset; the offset can be modified 1041 value seen by all VCPUs at the instant when !! 971 with KVM_SET_CLOCK. KVM will try to make all VCPUs follow this clock, 1042 If clear, the returned value is simply CLOC !! 972 but the exact value read by each VCPU could differ, because the host 1043 offset; the offset can be modified with KVM !! 973 TSC is not stable. 1044 to make all VCPUs follow this clock, but th << 1045 VCPU could differ, because the host TSC is << 1046 << 1047 KVM_CLOCK_REALTIME << 1048 If set, the `realtime` field in the kvm_clo << 1049 structure is populated with the value of th << 1050 clocksource at the instant when KVM_GET_CLO << 1051 the `realtime` field does not contain a val << 1052 << 1053 KVM_CLOCK_HOST_TSC << 1054 If set, the `host_tsc` field in the kvm_clo << 1055 structure is populated with the value of th << 1056 at the instant when KVM_GET_CLOCK was calle << 1057 does not contain a value. << 1058 974 1059 :: 975 :: 1060 976 1061 struct kvm_clock_data { 977 struct kvm_clock_data { 1062 __u64 clock; /* kvmclock current val 978 __u64 clock; /* kvmclock current value */ 1063 __u32 flags; 979 __u32 flags; 1064 __u32 pad0; !! 980 __u32 pad[9]; 1065 __u64 realtime; << 1066 __u64 host_tsc; << 1067 __u32 pad[4]; << 1068 }; 981 }; 1069 982 1070 983 1071 4.30 KVM_SET_CLOCK 984 4.30 KVM_SET_CLOCK 1072 ------------------ 985 ------------------ 1073 986 1074 :Capability: KVM_CAP_ADJUST_CLOCK 987 :Capability: KVM_CAP_ADJUST_CLOCK 1075 :Architectures: x86 988 :Architectures: x86 1076 :Type: vm ioctl 989 :Type: vm ioctl 1077 :Parameters: struct kvm_clock_data (in) 990 :Parameters: struct kvm_clock_data (in) 1078 :Returns: 0 on success, -1 on error 991 :Returns: 0 on success, -1 on error 1079 992 1080 Sets the current timestamp of kvmclock to the 993 Sets the current timestamp of kvmclock to the value specified in its parameter. 1081 In conjunction with KVM_GET_CLOCK, it is used 994 In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios 1082 such as migration. 995 such as migration. 1083 996 1084 The following flags can be passed: << 1085 << 1086 KVM_CLOCK_REALTIME << 1087 If set, KVM will compare the value of the ` << 1088 with the value of the host's real time cloc << 1089 KVM_SET_CLOCK was called. The difference in << 1090 kvmclock value that will be provided to gue << 1091 << 1092 Other flags returned by ``KVM_GET_CLOCK`` are << 1093 << 1094 :: 997 :: 1095 998 1096 struct kvm_clock_data { 999 struct kvm_clock_data { 1097 __u64 clock; /* kvmclock current val 1000 __u64 clock; /* kvmclock current value */ 1098 __u32 flags; 1001 __u32 flags; 1099 __u32 pad0; !! 1002 __u32 pad[9]; 1100 __u64 realtime; << 1101 __u64 host_tsc; << 1102 __u32 pad[4]; << 1103 }; 1003 }; 1104 1004 1105 1005 1106 4.31 KVM_GET_VCPU_EVENTS 1006 4.31 KVM_GET_VCPU_EVENTS 1107 ------------------------ 1007 ------------------------ 1108 1008 1109 :Capability: KVM_CAP_VCPU_EVENTS 1009 :Capability: KVM_CAP_VCPU_EVENTS 1110 :Extended by: KVM_CAP_INTR_SHADOW 1010 :Extended by: KVM_CAP_INTR_SHADOW 1111 :Architectures: x86, arm64 !! 1011 :Architectures: x86, arm, arm64 1112 :Type: vcpu ioctl 1012 :Type: vcpu ioctl 1113 :Parameters: struct kvm_vcpu_events (out) !! 1013 :Parameters: struct kvm_vcpu_event (out) 1114 :Returns: 0 on success, -1 on error 1014 :Returns: 0 on success, -1 on error 1115 1015 1116 X86: 1016 X86: 1117 ^^^^ 1017 ^^^^ 1118 1018 1119 Gets currently pending exceptions, interrupts 1019 Gets currently pending exceptions, interrupts, and NMIs as well as related 1120 states of the vcpu. 1020 states of the vcpu. 1121 1021 1122 :: 1022 :: 1123 1023 1124 struct kvm_vcpu_events { 1024 struct kvm_vcpu_events { 1125 struct { 1025 struct { 1126 __u8 injected; 1026 __u8 injected; 1127 __u8 nr; 1027 __u8 nr; 1128 __u8 has_error_code; 1028 __u8 has_error_code; 1129 __u8 pending; 1029 __u8 pending; 1130 __u32 error_code; 1030 __u32 error_code; 1131 } exception; 1031 } exception; 1132 struct { 1032 struct { 1133 __u8 injected; 1033 __u8 injected; 1134 __u8 nr; 1034 __u8 nr; 1135 __u8 soft; 1035 __u8 soft; 1136 __u8 shadow; 1036 __u8 shadow; 1137 } interrupt; 1037 } interrupt; 1138 struct { 1038 struct { 1139 __u8 injected; 1039 __u8 injected; 1140 __u8 pending; 1040 __u8 pending; 1141 __u8 masked; 1041 __u8 masked; 1142 __u8 pad; 1042 __u8 pad; 1143 } nmi; 1043 } nmi; 1144 __u32 sipi_vector; 1044 __u32 sipi_vector; 1145 __u32 flags; 1045 __u32 flags; 1146 struct { 1046 struct { 1147 __u8 smm; 1047 __u8 smm; 1148 __u8 pending; 1048 __u8 pending; 1149 __u8 smm_inside_nmi; 1049 __u8 smm_inside_nmi; 1150 __u8 latched_init; 1050 __u8 latched_init; 1151 } smi; 1051 } smi; 1152 __u8 reserved[27]; 1052 __u8 reserved[27]; 1153 __u8 exception_has_payload; 1053 __u8 exception_has_payload; 1154 __u64 exception_payload; 1054 __u64 exception_payload; 1155 }; 1055 }; 1156 1056 1157 The following bits are defined in the flags f 1057 The following bits are defined in the flags field: 1158 1058 1159 - KVM_VCPUEVENT_VALID_SHADOW may be set to si 1059 - KVM_VCPUEVENT_VALID_SHADOW may be set to signal that 1160 interrupt.shadow contains a valid state. 1060 interrupt.shadow contains a valid state. 1161 1061 1162 - KVM_VCPUEVENT_VALID_SMM may be set to signa 1062 - KVM_VCPUEVENT_VALID_SMM may be set to signal that smi contains a 1163 valid state. 1063 valid state. 1164 1064 1165 - KVM_VCPUEVENT_VALID_PAYLOAD may be set to s 1065 - KVM_VCPUEVENT_VALID_PAYLOAD may be set to signal that the 1166 exception_has_payload, exception_payload, a 1066 exception_has_payload, exception_payload, and exception.pending 1167 fields contain a valid state. This bit will 1067 fields contain a valid state. This bit will be set whenever 1168 KVM_CAP_EXCEPTION_PAYLOAD is enabled. 1068 KVM_CAP_EXCEPTION_PAYLOAD is enabled. 1169 1069 1170 - KVM_VCPUEVENT_VALID_TRIPLE_FAULT may be set !! 1070 ARM/ARM64: 1171 triple_fault_pending field contains a valid !! 1071 ^^^^^^^^^^ 1172 be set whenever KVM_CAP_X86_TRIPLE_FAULT_EV << 1173 << 1174 ARM64: << 1175 ^^^^^^ << 1176 1072 1177 If the guest accesses a device that is being 1073 If the guest accesses a device that is being emulated by the host kernel in 1178 such a way that a real device would generate 1074 such a way that a real device would generate a physical SError, KVM may make 1179 a virtual SError pending for that VCPU. This 1075 a virtual SError pending for that VCPU. This system error interrupt remains 1180 pending until the guest takes the exception b 1076 pending until the guest takes the exception by unmasking PSTATE.A. 1181 1077 1182 Running the VCPU may cause it to take a pendi 1078 Running the VCPU may cause it to take a pending SError, or make an access that 1183 causes an SError to become pending. The event 1079 causes an SError to become pending. The event's description is only valid while 1184 the VPCU is not running. 1080 the VPCU is not running. 1185 1081 1186 This API provides a way to read and write the 1082 This API provides a way to read and write the pending 'event' state that is not 1187 visible to the guest. To save, restore or mig 1083 visible to the guest. To save, restore or migrate a VCPU the struct representing 1188 the state can be read then written using this 1084 the state can be read then written using this GET/SET API, along with the other 1189 guest-visible registers. It is not possible t 1085 guest-visible registers. It is not possible to 'cancel' an SError that has been 1190 made pending. 1086 made pending. 1191 1087 1192 A device being emulated in user-space may als 1088 A device being emulated in user-space may also wish to generate an SError. To do 1193 this the events structure can be populated by 1089 this the events structure can be populated by user-space. The current state 1194 should be read first, to ensure no existing S 1090 should be read first, to ensure no existing SError is pending. If an existing 1195 SError is pending, the architecture's 'Multip 1091 SError is pending, the architecture's 'Multiple SError interrupts' rules should 1196 be followed. (2.5.3 of DDI0587.a "ARM Reliabi 1092 be followed. (2.5.3 of DDI0587.a "ARM Reliability, Availability, and 1197 Serviceability (RAS) Specification"). 1093 Serviceability (RAS) Specification"). 1198 1094 1199 SError exceptions always have an ESR value. S 1095 SError exceptions always have an ESR value. Some CPUs have the ability to 1200 specify what the virtual SError's ESR value s 1096 specify what the virtual SError's ESR value should be. These systems will 1201 advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In t 1097 advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In this case exception.has_esr will 1202 always have a non-zero value when read, and t 1098 always have a non-zero value when read, and the agent making an SError pending 1203 should specify the ISS field in the lower 24 1099 should specify the ISS field in the lower 24 bits of exception.serror_esr. If 1204 the system supports KVM_CAP_ARM_INJECT_SERROR 1100 the system supports KVM_CAP_ARM_INJECT_SERROR_ESR, but user-space sets the events 1205 with exception.has_esr as zero, KVM will choo 1101 with exception.has_esr as zero, KVM will choose an ESR. 1206 1102 1207 Specifying exception.has_esr on a system that 1103 Specifying exception.has_esr on a system that does not support it will return 1208 -EINVAL. Setting anything other than the lowe 1104 -EINVAL. Setting anything other than the lower 24bits of exception.serror_esr 1209 will return -EINVAL. 1105 will return -EINVAL. 1210 1106 1211 It is not possible to read back a pending ext 1107 It is not possible to read back a pending external abort (injected via 1212 KVM_SET_VCPU_EVENTS or otherwise) because suc 1108 KVM_SET_VCPU_EVENTS or otherwise) because such an exception is always delivered 1213 directly to the virtual CPU). 1109 directly to the virtual CPU). 1214 1110 1215 :: 1111 :: 1216 1112 1217 struct kvm_vcpu_events { 1113 struct kvm_vcpu_events { 1218 struct { 1114 struct { 1219 __u8 serror_pending; 1115 __u8 serror_pending; 1220 __u8 serror_has_esr; 1116 __u8 serror_has_esr; 1221 __u8 ext_dabt_pending; 1117 __u8 ext_dabt_pending; 1222 /* Align it to 8 bytes */ 1118 /* Align it to 8 bytes */ 1223 __u8 pad[5]; 1119 __u8 pad[5]; 1224 __u64 serror_esr; 1120 __u64 serror_esr; 1225 } exception; 1121 } exception; 1226 __u32 reserved[12]; 1122 __u32 reserved[12]; 1227 }; 1123 }; 1228 1124 1229 4.32 KVM_SET_VCPU_EVENTS 1125 4.32 KVM_SET_VCPU_EVENTS 1230 ------------------------ 1126 ------------------------ 1231 1127 1232 :Capability: KVM_CAP_VCPU_EVENTS 1128 :Capability: KVM_CAP_VCPU_EVENTS 1233 :Extended by: KVM_CAP_INTR_SHADOW 1129 :Extended by: KVM_CAP_INTR_SHADOW 1234 :Architectures: x86, arm64 !! 1130 :Architectures: x86, arm, arm64 1235 :Type: vcpu ioctl 1131 :Type: vcpu ioctl 1236 :Parameters: struct kvm_vcpu_events (in) !! 1132 :Parameters: struct kvm_vcpu_event (in) 1237 :Returns: 0 on success, -1 on error 1133 :Returns: 0 on success, -1 on error 1238 1134 1239 X86: 1135 X86: 1240 ^^^^ 1136 ^^^^ 1241 1137 1242 Set pending exceptions, interrupts, and NMIs 1138 Set pending exceptions, interrupts, and NMIs as well as related states of the 1243 vcpu. 1139 vcpu. 1244 1140 1245 See KVM_GET_VCPU_EVENTS for the data structur 1141 See KVM_GET_VCPU_EVENTS for the data structure. 1246 1142 1247 Fields that may be modified asynchronously by 1143 Fields that may be modified asynchronously by running VCPUs can be excluded 1248 from the update. These fields are nmi.pending 1144 from the update. These fields are nmi.pending, sipi_vector, smi.smm, 1249 smi.pending. Keep the corresponding bits in t 1145 smi.pending. Keep the corresponding bits in the flags field cleared to 1250 suppress overwriting the current in-kernel st 1146 suppress overwriting the current in-kernel state. The bits are: 1251 1147 1252 =============================== ============ 1148 =============================== ================================== 1253 KVM_VCPUEVENT_VALID_NMI_PENDING transfer nmi 1149 KVM_VCPUEVENT_VALID_NMI_PENDING transfer nmi.pending to the kernel 1254 KVM_VCPUEVENT_VALID_SIPI_VECTOR transfer sip 1150 KVM_VCPUEVENT_VALID_SIPI_VECTOR transfer sipi_vector 1255 KVM_VCPUEVENT_VALID_SMM transfer the 1151 KVM_VCPUEVENT_VALID_SMM transfer the smi sub-struct. 1256 =============================== ============ 1152 =============================== ================================== 1257 1153 1258 If KVM_CAP_INTR_SHADOW is available, KVM_VCPU 1154 If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in 1259 the flags field to signal that interrupt.shad 1155 the flags field to signal that interrupt.shadow contains a valid state and 1260 shall be written into the VCPU. 1156 shall be written into the VCPU. 1261 1157 1262 KVM_VCPUEVENT_VALID_SMM can only be set if KV 1158 KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available. 1263 1159 1264 If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_ 1160 If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_VCPUEVENT_VALID_PAYLOAD 1265 can be set in the flags field to signal that 1161 can be set in the flags field to signal that the 1266 exception_has_payload, exception_payload, and 1162 exception_has_payload, exception_payload, and exception.pending fields 1267 contain a valid state and shall be written in 1163 contain a valid state and shall be written into the VCPU. 1268 1164 1269 If KVM_CAP_X86_TRIPLE_FAULT_EVENT is enabled, !! 1165 ARM/ARM64: 1270 can be set in flags field to signal that the !! 1166 ^^^^^^^^^^ 1271 a valid state and shall be written into the V << 1272 << 1273 ARM64: << 1274 ^^^^^^ << 1275 1167 1276 User space may need to inject several types o 1168 User space may need to inject several types of events to the guest. 1277 1169 1278 Set the pending SError exception state for th 1170 Set the pending SError exception state for this VCPU. It is not possible to 1279 'cancel' an Serror that has been made pending 1171 'cancel' an Serror that has been made pending. 1280 1172 1281 If the guest performed an access to I/O memor 1173 If the guest performed an access to I/O memory which could not be handled by 1282 userspace, for example because of missing ins 1174 userspace, for example because of missing instruction syndrome decode 1283 information or because there is no device map 1175 information or because there is no device mapped at the accessed IPA, then 1284 userspace can ask the kernel to inject an ext 1176 userspace can ask the kernel to inject an external abort using the address 1285 from the exiting fault on the VCPU. It is a p 1177 from the exiting fault on the VCPU. It is a programming error to set 1286 ext_dabt_pending after an exit which was not 1178 ext_dabt_pending after an exit which was not either KVM_EXIT_MMIO or 1287 KVM_EXIT_ARM_NISV. This feature is only avail 1179 KVM_EXIT_ARM_NISV. This feature is only available if the system supports 1288 KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper 1180 KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper which provides commonality in 1289 how userspace reports accesses for the above 1181 how userspace reports accesses for the above cases to guests, across different 1290 userspace implementations. Nevertheless, user 1182 userspace implementations. Nevertheless, userspace can still emulate all Arm 1291 exceptions by manipulating individual registe 1183 exceptions by manipulating individual registers using the KVM_SET_ONE_REG API. 1292 1184 1293 See KVM_GET_VCPU_EVENTS for the data structur 1185 See KVM_GET_VCPU_EVENTS for the data structure. 1294 1186 1295 1187 1296 4.33 KVM_GET_DEBUGREGS 1188 4.33 KVM_GET_DEBUGREGS 1297 ---------------------- 1189 ---------------------- 1298 1190 1299 :Capability: KVM_CAP_DEBUGREGS 1191 :Capability: KVM_CAP_DEBUGREGS 1300 :Architectures: x86 1192 :Architectures: x86 1301 :Type: vm ioctl 1193 :Type: vm ioctl 1302 :Parameters: struct kvm_debugregs (out) 1194 :Parameters: struct kvm_debugregs (out) 1303 :Returns: 0 on success, -1 on error 1195 :Returns: 0 on success, -1 on error 1304 1196 1305 Reads debug registers from the vcpu. 1197 Reads debug registers from the vcpu. 1306 1198 1307 :: 1199 :: 1308 1200 1309 struct kvm_debugregs { 1201 struct kvm_debugregs { 1310 __u64 db[4]; 1202 __u64 db[4]; 1311 __u64 dr6; 1203 __u64 dr6; 1312 __u64 dr7; 1204 __u64 dr7; 1313 __u64 flags; 1205 __u64 flags; 1314 __u64 reserved[9]; 1206 __u64 reserved[9]; 1315 }; 1207 }; 1316 1208 1317 1209 1318 4.34 KVM_SET_DEBUGREGS 1210 4.34 KVM_SET_DEBUGREGS 1319 ---------------------- 1211 ---------------------- 1320 1212 1321 :Capability: KVM_CAP_DEBUGREGS 1213 :Capability: KVM_CAP_DEBUGREGS 1322 :Architectures: x86 1214 :Architectures: x86 1323 :Type: vm ioctl 1215 :Type: vm ioctl 1324 :Parameters: struct kvm_debugregs (in) 1216 :Parameters: struct kvm_debugregs (in) 1325 :Returns: 0 on success, -1 on error 1217 :Returns: 0 on success, -1 on error 1326 1218 1327 Writes debug registers into the vcpu. 1219 Writes debug registers into the vcpu. 1328 1220 1329 See KVM_GET_DEBUGREGS for the data structure. 1221 See KVM_GET_DEBUGREGS for the data structure. The flags field is unused 1330 yet and must be cleared on entry. 1222 yet and must be cleared on entry. 1331 1223 1332 1224 1333 4.35 KVM_SET_USER_MEMORY_REGION 1225 4.35 KVM_SET_USER_MEMORY_REGION 1334 ------------------------------- 1226 ------------------------------- 1335 1227 1336 :Capability: KVM_CAP_USER_MEMORY 1228 :Capability: KVM_CAP_USER_MEMORY 1337 :Architectures: all 1229 :Architectures: all 1338 :Type: vm ioctl 1230 :Type: vm ioctl 1339 :Parameters: struct kvm_userspace_memory_regi 1231 :Parameters: struct kvm_userspace_memory_region (in) 1340 :Returns: 0 on success, -1 on error 1232 :Returns: 0 on success, -1 on error 1341 1233 1342 :: 1234 :: 1343 1235 1344 struct kvm_userspace_memory_region { 1236 struct kvm_userspace_memory_region { 1345 __u32 slot; 1237 __u32 slot; 1346 __u32 flags; 1238 __u32 flags; 1347 __u64 guest_phys_addr; 1239 __u64 guest_phys_addr; 1348 __u64 memory_size; /* bytes */ 1240 __u64 memory_size; /* bytes */ 1349 __u64 userspace_addr; /* start of the 1241 __u64 userspace_addr; /* start of the userspace allocated memory */ 1350 }; 1242 }; 1351 1243 1352 /* for kvm_userspace_memory_region::flags * !! 1244 /* for kvm_memory_region::flags */ 1353 #define KVM_MEM_LOG_DIRTY_PAGES (1UL 1245 #define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0) 1354 #define KVM_MEM_READONLY (1UL << 1) 1246 #define KVM_MEM_READONLY (1UL << 1) 1355 1247 1356 This ioctl allows the user to create, modify 1248 This ioctl allows the user to create, modify or delete a guest physical 1357 memory slot. Bits 0-15 of "slot" specify the 1249 memory slot. Bits 0-15 of "slot" specify the slot id and this value 1358 should be less than the maximum number of use 1250 should be less than the maximum number of user memory slots supported per 1359 VM. The maximum allowed slots can be queried 1251 VM. The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS. 1360 Slots may not overlap in guest physical addre 1252 Slots may not overlap in guest physical address space. 1361 1253 1362 If KVM_CAP_MULTI_ADDRESS_SPACE is available, 1254 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot" 1363 specifies the address space which is being mo 1255 specifies the address space which is being modified. They must be 1364 less than the value that KVM_CHECK_EXTENSION 1256 less than the value that KVM_CHECK_EXTENSION returns for the 1365 KVM_CAP_MULTI_ADDRESS_SPACE capability. Slot 1257 KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces 1366 are unrelated; the restriction on overlapping 1258 are unrelated; the restriction on overlapping slots only applies within 1367 each address space. 1259 each address space. 1368 1260 1369 Deleting a slot is done by passing zero for m 1261 Deleting a slot is done by passing zero for memory_size. When changing 1370 an existing slot, it may be moved in the gues 1262 an existing slot, it may be moved in the guest physical memory space, 1371 or its flags may be modified, but it may not 1263 or its flags may be modified, but it may not be resized. 1372 1264 1373 Memory for the region is taken starting at th 1265 Memory for the region is taken starting at the address denoted by the 1374 field userspace_addr, which must point at use 1266 field userspace_addr, which must point at user addressable memory for 1375 the entire memory slot size. Any object may 1267 the entire memory slot size. Any object may back this memory, including 1376 anonymous memory, ordinary files, and hugetlb 1268 anonymous memory, ordinary files, and hugetlbfs. 1377 1269 1378 On architectures that support a form of addre 1270 On architectures that support a form of address tagging, userspace_addr must 1379 be an untagged address. 1271 be an untagged address. 1380 1272 1381 It is recommended that the lower 21 bits of g 1273 It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr 1382 be identical. This allows large pages in the 1274 be identical. This allows large pages in the guest to be backed by large 1383 pages in the host. 1275 pages in the host. 1384 1276 1385 The flags field supports two flags: KVM_MEM_L 1277 The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and 1386 KVM_MEM_READONLY. The former can be set to i 1278 KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of 1387 writes to memory within the slot. See KVM_GE 1279 writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to 1388 use it. The latter can be set, if KVM_CAP_RE 1280 use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it, 1389 to make a new slot read-only. In this case, 1281 to make a new slot read-only. In this case, writes to this memory will be 1390 posted to userspace as KVM_EXIT_MMIO exits. 1282 posted to userspace as KVM_EXIT_MMIO exits. 1391 1283 1392 When the KVM_CAP_SYNC_MMU capability is avail 1284 When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of 1393 the memory region are automatically reflected 1285 the memory region are automatically reflected into the guest. For example, an 1394 mmap() that affects the region will be made v 1286 mmap() that affects the region will be made visible immediately. Another 1395 example is madvise(MADV_DROP). 1287 example is madvise(MADV_DROP). 1396 1288 1397 Note: On arm64, a write generated by the page !! 1289 It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl. 1398 the Access and Dirty flags, for example) neve !! 1290 The KVM_SET_MEMORY_REGION does not allow fine grained control over memory 1399 KVM_EXIT_MMIO exit when the slot has the KVM_ !! 1291 allocation and is deprecated. 1400 is because KVM cannot provide the data that w << 1401 page-table walker, making it impossible to em << 1402 Instead, an abort (data abort if the cause of << 1403 was a load or a store, instruction abort if i << 1404 fetch) is injected in the guest. << 1405 << 1406 S390: << 1407 ^^^^^ << 1408 1292 1409 Returns -EINVAL if the VM has the KVM_VM_S390 << 1410 Returns -EINVAL if called on a protected VM. << 1411 1293 1412 4.36 KVM_SET_TSS_ADDR 1294 4.36 KVM_SET_TSS_ADDR 1413 --------------------- 1295 --------------------- 1414 1296 1415 :Capability: KVM_CAP_SET_TSS_ADDR 1297 :Capability: KVM_CAP_SET_TSS_ADDR 1416 :Architectures: x86 1298 :Architectures: x86 1417 :Type: vm ioctl 1299 :Type: vm ioctl 1418 :Parameters: unsigned long tss_address (in) 1300 :Parameters: unsigned long tss_address (in) 1419 :Returns: 0 on success, -1 on error 1301 :Returns: 0 on success, -1 on error 1420 1302 1421 This ioctl defines the physical address of a 1303 This ioctl defines the physical address of a three-page region in the guest 1422 physical address space. The region must be w 1304 physical address space. The region must be within the first 4GB of the 1423 guest physical address space and must not con 1305 guest physical address space and must not conflict with any memory slot 1424 or any mmio address. The guest may malfuncti 1306 or any mmio address. The guest may malfunction if it accesses this memory 1425 region. 1307 region. 1426 1308 1427 This ioctl is required on Intel-based hosts. 1309 This ioctl is required on Intel-based hosts. This is needed on Intel hardware 1428 because of a quirk in the virtualization impl 1310 because of a quirk in the virtualization implementation (see the internals 1429 documentation when it pops into existence). 1311 documentation when it pops into existence). 1430 1312 1431 1313 1432 4.37 KVM_ENABLE_CAP 1314 4.37 KVM_ENABLE_CAP 1433 ------------------- 1315 ------------------- 1434 1316 1435 :Capability: KVM_CAP_ENABLE_CAP 1317 :Capability: KVM_CAP_ENABLE_CAP 1436 :Architectures: mips, ppc, s390, x86, loongar !! 1318 :Architectures: mips, ppc, s390 1437 :Type: vcpu ioctl 1319 :Type: vcpu ioctl 1438 :Parameters: struct kvm_enable_cap (in) 1320 :Parameters: struct kvm_enable_cap (in) 1439 :Returns: 0 on success; -1 on error 1321 :Returns: 0 on success; -1 on error 1440 1322 1441 :Capability: KVM_CAP_ENABLE_CAP_VM 1323 :Capability: KVM_CAP_ENABLE_CAP_VM 1442 :Architectures: all 1324 :Architectures: all 1443 :Type: vm ioctl 1325 :Type: vm ioctl 1444 :Parameters: struct kvm_enable_cap (in) 1326 :Parameters: struct kvm_enable_cap (in) 1445 :Returns: 0 on success; -1 on error 1327 :Returns: 0 on success; -1 on error 1446 1328 1447 .. note:: 1329 .. note:: 1448 1330 1449 Not all extensions are enabled by default. 1331 Not all extensions are enabled by default. Using this ioctl the application 1450 can enable an extension, making it availab 1332 can enable an extension, making it available to the guest. 1451 1333 1452 On systems that do not support this ioctl, it 1334 On systems that do not support this ioctl, it always fails. On systems that 1453 do support it, it only works for extensions t 1335 do support it, it only works for extensions that are supported for enablement. 1454 1336 1455 To check if a capability can be enabled, the 1337 To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should 1456 be used. 1338 be used. 1457 1339 1458 :: 1340 :: 1459 1341 1460 struct kvm_enable_cap { 1342 struct kvm_enable_cap { 1461 /* in */ 1343 /* in */ 1462 __u32 cap; 1344 __u32 cap; 1463 1345 1464 The capability that is supposed to get enable 1346 The capability that is supposed to get enabled. 1465 1347 1466 :: 1348 :: 1467 1349 1468 __u32 flags; 1350 __u32 flags; 1469 1351 1470 A bitfield indicating future enhancements. Ha 1352 A bitfield indicating future enhancements. Has to be 0 for now. 1471 1353 1472 :: 1354 :: 1473 1355 1474 __u64 args[4]; 1356 __u64 args[4]; 1475 1357 1476 Arguments for enabling a feature. If a featur 1358 Arguments for enabling a feature. If a feature needs initial values to 1477 function properly, this is the place to put t 1359 function properly, this is the place to put them. 1478 1360 1479 :: 1361 :: 1480 1362 1481 __u8 pad[64]; 1363 __u8 pad[64]; 1482 }; 1364 }; 1483 1365 1484 The vcpu ioctl should be used for vcpu-specif 1366 The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl 1485 for vm-wide capabilities. 1367 for vm-wide capabilities. 1486 1368 1487 4.38 KVM_GET_MP_STATE 1369 4.38 KVM_GET_MP_STATE 1488 --------------------- 1370 --------------------- 1489 1371 1490 :Capability: KVM_CAP_MP_STATE 1372 :Capability: KVM_CAP_MP_STATE 1491 :Architectures: x86, s390, arm64, riscv, loon !! 1373 :Architectures: x86, s390, arm, arm64 1492 :Type: vcpu ioctl 1374 :Type: vcpu ioctl 1493 :Parameters: struct kvm_mp_state (out) 1375 :Parameters: struct kvm_mp_state (out) 1494 :Returns: 0 on success; -1 on error 1376 :Returns: 0 on success; -1 on error 1495 1377 1496 :: 1378 :: 1497 1379 1498 struct kvm_mp_state { 1380 struct kvm_mp_state { 1499 __u32 mp_state; 1381 __u32 mp_state; 1500 }; 1382 }; 1501 1383 1502 Returns the vcpu's current "multiprocessing s 1384 Returns the vcpu's current "multiprocessing state" (though also valid on 1503 uniprocessor guests). 1385 uniprocessor guests). 1504 1386 1505 Possible values are: 1387 Possible values are: 1506 1388 1507 ========================== ============ 1389 ========================== =============================================== 1508 KVM_MP_STATE_RUNNABLE the vcpu is !! 1390 KVM_MP_STATE_RUNNABLE the vcpu is currently running [x86,arm/arm64] 1509 [x86,arm64,r << 1510 KVM_MP_STATE_UNINITIALIZED the vcpu is 1391 KVM_MP_STATE_UNINITIALIZED the vcpu is an application processor (AP) 1511 which has no 1392 which has not yet received an INIT signal [x86] 1512 KVM_MP_STATE_INIT_RECEIVED the vcpu has 1393 KVM_MP_STATE_INIT_RECEIVED the vcpu has received an INIT signal, and is 1513 now ready fo 1394 now ready for a SIPI [x86] 1514 KVM_MP_STATE_HALTED the vcpu has 1395 KVM_MP_STATE_HALTED the vcpu has executed a HLT instruction and 1515 is waiting f 1396 is waiting for an interrupt [x86] 1516 KVM_MP_STATE_SIPI_RECEIVED the vcpu has 1397 KVM_MP_STATE_SIPI_RECEIVED the vcpu has just received a SIPI (vector 1517 accessible v 1398 accessible via KVM_GET_VCPU_EVENTS) [x86] 1518 KVM_MP_STATE_STOPPED the vcpu is !! 1399 KVM_MP_STATE_STOPPED the vcpu is stopped [s390,arm/arm64] 1519 KVM_MP_STATE_CHECK_STOP the vcpu is 1400 KVM_MP_STATE_CHECK_STOP the vcpu is in a special error state [s390] 1520 KVM_MP_STATE_OPERATING the vcpu is 1401 KVM_MP_STATE_OPERATING the vcpu is operating (running or halted) 1521 [s390] 1402 [s390] 1522 KVM_MP_STATE_LOAD the vcpu is 1403 KVM_MP_STATE_LOAD the vcpu is in a special load/startup state 1523 [s390] 1404 [s390] 1524 KVM_MP_STATE_SUSPENDED the vcpu is << 1525 for a wakeup << 1526 ========================== ============ 1405 ========================== =============================================== 1527 1406 1528 On x86, this ioctl is only useful after KVM_C 1407 On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an 1529 in-kernel irqchip, the multiprocessing state 1408 in-kernel irqchip, the multiprocessing state must be maintained by userspace on 1530 these architectures. 1409 these architectures. 1531 1410 1532 For arm64: !! 1411 For arm/arm64: 1533 ^^^^^^^^^^ !! 1412 ^^^^^^^^^^^^^^ 1534 << 1535 If a vCPU is in the KVM_MP_STATE_SUSPENDED st << 1536 architectural execution of a WFI instruction. << 1537 << 1538 If a wakeup event is recognized, KVM will exi << 1539 KVM_SYSTEM_EVENT exit, where the event type i << 1540 userspace wants to honor the wakeup, it must << 1541 KVM_MP_STATE_RUNNABLE. If it does not, KVM wi << 1542 event in subsequent calls to KVM_RUN. << 1543 << 1544 .. warning:: << 1545 << 1546 If userspace intends to keep the vCPU in << 1547 strongly recommended that userspace take << 1548 wakeup event (such as masking an interru << 1549 calls to KVM_RUN will immediately exit w << 1550 event and inadvertently waste CPU cycles << 1551 << 1552 Additionally, if userspace takes action << 1553 it is strongly recommended that it also << 1554 original state when the vCPU is made RUN << 1555 if userspace masked a pending interrupt << 1556 the interrupt should be unmasked before << 1557 guest. << 1558 << 1559 For riscv: << 1560 ^^^^^^^^^^ << 1561 1413 1562 The only states that are valid are KVM_MP_STA 1414 The only states that are valid are KVM_MP_STATE_STOPPED and 1563 KVM_MP_STATE_RUNNABLE which reflect if the vc 1415 KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not. 1564 1416 1565 On LoongArch, only the KVM_MP_STATE_RUNNABLE << 1566 whether the vcpu is runnable. << 1567 << 1568 4.39 KVM_SET_MP_STATE 1417 4.39 KVM_SET_MP_STATE 1569 --------------------- 1418 --------------------- 1570 1419 1571 :Capability: KVM_CAP_MP_STATE 1420 :Capability: KVM_CAP_MP_STATE 1572 :Architectures: x86, s390, arm64, riscv, loon !! 1421 :Architectures: x86, s390, arm, arm64 1573 :Type: vcpu ioctl 1422 :Type: vcpu ioctl 1574 :Parameters: struct kvm_mp_state (in) 1423 :Parameters: struct kvm_mp_state (in) 1575 :Returns: 0 on success; -1 on error 1424 :Returns: 0 on success; -1 on error 1576 1425 1577 Sets the vcpu's current "multiprocessing stat 1426 Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for 1578 arguments. 1427 arguments. 1579 1428 1580 On x86, this ioctl is only useful after KVM_C 1429 On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an 1581 in-kernel irqchip, the multiprocessing state 1430 in-kernel irqchip, the multiprocessing state must be maintained by userspace on 1582 these architectures. 1431 these architectures. 1583 1432 1584 For arm64/riscv: !! 1433 For arm/arm64: 1585 ^^^^^^^^^^^^^^^^ !! 1434 ^^^^^^^^^^^^^^ 1586 1435 1587 The only states that are valid are KVM_MP_STA 1436 The only states that are valid are KVM_MP_STATE_STOPPED and 1588 KVM_MP_STATE_RUNNABLE which reflect if the vc 1437 KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not. 1589 1438 1590 On LoongArch, only the KVM_MP_STATE_RUNNABLE << 1591 whether the vcpu is runnable. << 1592 << 1593 4.40 KVM_SET_IDENTITY_MAP_ADDR 1439 4.40 KVM_SET_IDENTITY_MAP_ADDR 1594 ------------------------------ 1440 ------------------------------ 1595 1441 1596 :Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR 1442 :Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR 1597 :Architectures: x86 1443 :Architectures: x86 1598 :Type: vm ioctl 1444 :Type: vm ioctl 1599 :Parameters: unsigned long identity (in) 1445 :Parameters: unsigned long identity (in) 1600 :Returns: 0 on success, -1 on error 1446 :Returns: 0 on success, -1 on error 1601 1447 1602 This ioctl defines the physical address of a 1448 This ioctl defines the physical address of a one-page region in the guest 1603 physical address space. The region must be w 1449 physical address space. The region must be within the first 4GB of the 1604 guest physical address space and must not con 1450 guest physical address space and must not conflict with any memory slot 1605 or any mmio address. The guest may malfuncti 1451 or any mmio address. The guest may malfunction if it accesses this memory 1606 region. 1452 region. 1607 1453 1608 Setting the address to 0 will result in reset 1454 Setting the address to 0 will result in resetting the address to its default 1609 (0xfffbc000). 1455 (0xfffbc000). 1610 1456 1611 This ioctl is required on Intel-based hosts. 1457 This ioctl is required on Intel-based hosts. This is needed on Intel hardware 1612 because of a quirk in the virtualization impl 1458 because of a quirk in the virtualization implementation (see the internals 1613 documentation when it pops into existence). 1459 documentation when it pops into existence). 1614 1460 1615 Fails if any VCPU has already been created. 1461 Fails if any VCPU has already been created. 1616 1462 1617 4.41 KVM_SET_BOOT_CPU_ID 1463 4.41 KVM_SET_BOOT_CPU_ID 1618 ------------------------ 1464 ------------------------ 1619 1465 1620 :Capability: KVM_CAP_SET_BOOT_CPU_ID 1466 :Capability: KVM_CAP_SET_BOOT_CPU_ID 1621 :Architectures: x86 1467 :Architectures: x86 1622 :Type: vm ioctl 1468 :Type: vm ioctl 1623 :Parameters: unsigned long vcpu_id 1469 :Parameters: unsigned long vcpu_id 1624 :Returns: 0 on success, -1 on error 1470 :Returns: 0 on success, -1 on error 1625 1471 1626 Define which vcpu is the Bootstrap Processor 1472 Define which vcpu is the Bootstrap Processor (BSP). Values are the same 1627 as the vcpu id in KVM_CREATE_VCPU. If this i 1473 as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default 1628 is vcpu 0. This ioctl has to be called before !! 1474 is vcpu 0. 1629 otherwise it will return EBUSY error. << 1630 1475 1631 1476 1632 4.42 KVM_GET_XSAVE 1477 4.42 KVM_GET_XSAVE 1633 ------------------ 1478 ------------------ 1634 1479 1635 :Capability: KVM_CAP_XSAVE 1480 :Capability: KVM_CAP_XSAVE 1636 :Architectures: x86 1481 :Architectures: x86 1637 :Type: vcpu ioctl 1482 :Type: vcpu ioctl 1638 :Parameters: struct kvm_xsave (out) 1483 :Parameters: struct kvm_xsave (out) 1639 :Returns: 0 on success, -1 on error 1484 :Returns: 0 on success, -1 on error 1640 1485 1641 1486 1642 :: 1487 :: 1643 1488 1644 struct kvm_xsave { 1489 struct kvm_xsave { 1645 __u32 region[1024]; 1490 __u32 region[1024]; 1646 __u32 extra[0]; << 1647 }; 1491 }; 1648 1492 1649 This ioctl would copy current vcpu's xsave st 1493 This ioctl would copy current vcpu's xsave struct to the userspace. 1650 1494 1651 1495 1652 4.43 KVM_SET_XSAVE 1496 4.43 KVM_SET_XSAVE 1653 ------------------ 1497 ------------------ 1654 1498 1655 :Capability: KVM_CAP_XSAVE and KVM_CAP_XSAVE2 !! 1499 :Capability: KVM_CAP_XSAVE 1656 :Architectures: x86 1500 :Architectures: x86 1657 :Type: vcpu ioctl 1501 :Type: vcpu ioctl 1658 :Parameters: struct kvm_xsave (in) 1502 :Parameters: struct kvm_xsave (in) 1659 :Returns: 0 on success, -1 on error 1503 :Returns: 0 on success, -1 on error 1660 1504 1661 :: 1505 :: 1662 1506 1663 1507 1664 struct kvm_xsave { 1508 struct kvm_xsave { 1665 __u32 region[1024]; 1509 __u32 region[1024]; 1666 __u32 extra[0]; << 1667 }; 1510 }; 1668 1511 1669 This ioctl would copy userspace's xsave struc !! 1512 This ioctl would copy userspace's xsave struct to the kernel. 1670 as many bytes as are returned by KVM_CHECK_EX << 1671 when invoked on the vm file descriptor. The s << 1672 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will alwa << 1673 Currently, it is only greater than 4096 if a << 1674 enabled with ``arch_prctl()``, but this may c << 1675 << 1676 The offsets of the state save areas in struct << 1677 contents of CPUID leaf 0xD on the host. << 1678 1513 1679 1514 1680 4.44 KVM_GET_XCRS 1515 4.44 KVM_GET_XCRS 1681 ----------------- 1516 ----------------- 1682 1517 1683 :Capability: KVM_CAP_XCRS 1518 :Capability: KVM_CAP_XCRS 1684 :Architectures: x86 1519 :Architectures: x86 1685 :Type: vcpu ioctl 1520 :Type: vcpu ioctl 1686 :Parameters: struct kvm_xcrs (out) 1521 :Parameters: struct kvm_xcrs (out) 1687 :Returns: 0 on success, -1 on error 1522 :Returns: 0 on success, -1 on error 1688 1523 1689 :: 1524 :: 1690 1525 1691 struct kvm_xcr { 1526 struct kvm_xcr { 1692 __u32 xcr; 1527 __u32 xcr; 1693 __u32 reserved; 1528 __u32 reserved; 1694 __u64 value; 1529 __u64 value; 1695 }; 1530 }; 1696 1531 1697 struct kvm_xcrs { 1532 struct kvm_xcrs { 1698 __u32 nr_xcrs; 1533 __u32 nr_xcrs; 1699 __u32 flags; 1534 __u32 flags; 1700 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1535 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1701 __u64 padding[16]; 1536 __u64 padding[16]; 1702 }; 1537 }; 1703 1538 1704 This ioctl would copy current vcpu's xcrs to 1539 This ioctl would copy current vcpu's xcrs to the userspace. 1705 1540 1706 1541 1707 4.45 KVM_SET_XCRS 1542 4.45 KVM_SET_XCRS 1708 ----------------- 1543 ----------------- 1709 1544 1710 :Capability: KVM_CAP_XCRS 1545 :Capability: KVM_CAP_XCRS 1711 :Architectures: x86 1546 :Architectures: x86 1712 :Type: vcpu ioctl 1547 :Type: vcpu ioctl 1713 :Parameters: struct kvm_xcrs (in) 1548 :Parameters: struct kvm_xcrs (in) 1714 :Returns: 0 on success, -1 on error 1549 :Returns: 0 on success, -1 on error 1715 1550 1716 :: 1551 :: 1717 1552 1718 struct kvm_xcr { 1553 struct kvm_xcr { 1719 __u32 xcr; 1554 __u32 xcr; 1720 __u32 reserved; 1555 __u32 reserved; 1721 __u64 value; 1556 __u64 value; 1722 }; 1557 }; 1723 1558 1724 struct kvm_xcrs { 1559 struct kvm_xcrs { 1725 __u32 nr_xcrs; 1560 __u32 nr_xcrs; 1726 __u32 flags; 1561 __u32 flags; 1727 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1562 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1728 __u64 padding[16]; 1563 __u64 padding[16]; 1729 }; 1564 }; 1730 1565 1731 This ioctl would set vcpu's xcr to the value 1566 This ioctl would set vcpu's xcr to the value userspace specified. 1732 1567 1733 1568 1734 4.46 KVM_GET_SUPPORTED_CPUID 1569 4.46 KVM_GET_SUPPORTED_CPUID 1735 ---------------------------- 1570 ---------------------------- 1736 1571 1737 :Capability: KVM_CAP_EXT_CPUID 1572 :Capability: KVM_CAP_EXT_CPUID 1738 :Architectures: x86 1573 :Architectures: x86 1739 :Type: system ioctl 1574 :Type: system ioctl 1740 :Parameters: struct kvm_cpuid2 (in/out) 1575 :Parameters: struct kvm_cpuid2 (in/out) 1741 :Returns: 0 on success, -1 on error 1576 :Returns: 0 on success, -1 on error 1742 1577 1743 :: 1578 :: 1744 1579 1745 struct kvm_cpuid2 { 1580 struct kvm_cpuid2 { 1746 __u32 nent; 1581 __u32 nent; 1747 __u32 padding; 1582 __u32 padding; 1748 struct kvm_cpuid_entry2 entries[0]; 1583 struct kvm_cpuid_entry2 entries[0]; 1749 }; 1584 }; 1750 1585 1751 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1586 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) 1752 #define KVM_CPUID_FLAG_STATEFUL_FUNC 1587 #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) /* deprecated */ 1753 #define KVM_CPUID_FLAG_STATE_READ_NEXT 1588 #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) /* deprecated */ 1754 1589 1755 struct kvm_cpuid_entry2 { 1590 struct kvm_cpuid_entry2 { 1756 __u32 function; 1591 __u32 function; 1757 __u32 index; 1592 __u32 index; 1758 __u32 flags; 1593 __u32 flags; 1759 __u32 eax; 1594 __u32 eax; 1760 __u32 ebx; 1595 __u32 ebx; 1761 __u32 ecx; 1596 __u32 ecx; 1762 __u32 edx; 1597 __u32 edx; 1763 __u32 padding[3]; 1598 __u32 padding[3]; 1764 }; 1599 }; 1765 1600 1766 This ioctl returns x86 cpuid features which a 1601 This ioctl returns x86 cpuid features which are supported by both the 1767 hardware and kvm in its default configuration 1602 hardware and kvm in its default configuration. Userspace can use the 1768 information returned by this ioctl to constru 1603 information returned by this ioctl to construct cpuid information (for 1769 KVM_SET_CPUID2) that is consistent with hardw 1604 KVM_SET_CPUID2) that is consistent with hardware, kernel, and 1770 userspace capabilities, and with user require 1605 userspace capabilities, and with user requirements (for example, the 1771 user may wish to constrain cpuid to emulate o 1606 user may wish to constrain cpuid to emulate older hardware, or for 1772 feature consistency across a cluster). 1607 feature consistency across a cluster). 1773 1608 1774 Dynamically-enabled feature bits need to be r << 1775 ``arch_prctl()`` before calling this ioctl. F << 1776 been requested are excluded from the result. << 1777 << 1778 Note that certain capabilities, such as KVM_C 1609 Note that certain capabilities, such as KVM_CAP_X86_DISABLE_EXITS, may 1779 expose cpuid features (e.g. MONITOR) which ar 1610 expose cpuid features (e.g. MONITOR) which are not supported by kvm in 1780 its default configuration. If userspace enabl 1611 its default configuration. If userspace enables such capabilities, it 1781 is responsible for modifying the results of t 1612 is responsible for modifying the results of this ioctl appropriately. 1782 1613 1783 Userspace invokes KVM_GET_SUPPORTED_CPUID by 1614 Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure 1784 with the 'nent' field indicating the number o 1615 with the 'nent' field indicating the number of entries in the variable-size 1785 array 'entries'. If the number of entries is 1616 array 'entries'. If the number of entries is too low to describe the cpu 1786 capabilities, an error (E2BIG) is returned. 1617 capabilities, an error (E2BIG) is returned. If the number is too high, 1787 the 'nent' field is adjusted and an error (EN 1618 the 'nent' field is adjusted and an error (ENOMEM) is returned. If the 1788 number is just right, the 'nent' field is adj 1619 number is just right, the 'nent' field is adjusted to the number of valid 1789 entries in the 'entries' array, which is then 1620 entries in the 'entries' array, which is then filled. 1790 1621 1791 The entries returned are the host cpuid as re 1622 The entries returned are the host cpuid as returned by the cpuid instruction, 1792 with unknown or unsupported features masked o 1623 with unknown or unsupported features masked out. Some features (for example, 1793 x2apic), may not be present in the host cpu, 1624 x2apic), may not be present in the host cpu, but are exposed by kvm if it can 1794 emulate them efficiently. The fields in each 1625 emulate them efficiently. The fields in each entry are defined as follows: 1795 1626 1796 function: 1627 function: 1797 the eax value used to obtain the ent 1628 the eax value used to obtain the entry 1798 1629 1799 index: 1630 index: 1800 the ecx value used to obtain the ent 1631 the ecx value used to obtain the entry (for entries that are 1801 affected by ecx) 1632 affected by ecx) 1802 1633 1803 flags: 1634 flags: 1804 an OR of zero or more of the following: 1635 an OR of zero or more of the following: 1805 1636 1806 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 1637 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 1807 if the index field is valid 1638 if the index field is valid 1808 1639 1809 eax, ebx, ecx, edx: 1640 eax, ebx, ecx, edx: 1810 the values returned by the cpuid ins 1641 the values returned by the cpuid instruction for 1811 this function/index combination 1642 this function/index combination 1812 1643 1813 The TSC deadline timer feature (CPUID leaf 1, 1644 The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned 1814 as false, since the feature depends on KVM_CR 1645 as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC 1815 support. Instead it is reported via:: 1646 support. Instead it is reported via:: 1816 1647 1817 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEAD 1648 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER) 1818 1649 1819 if that returns true and you use KVM_CREATE_I 1650 if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the 1820 feature in userspace, then you can enable the 1651 feature in userspace, then you can enable the feature for KVM_SET_CPUID2. 1821 1652 1822 1653 1823 4.47 KVM_PPC_GET_PVINFO 1654 4.47 KVM_PPC_GET_PVINFO 1824 ----------------------- 1655 ----------------------- 1825 1656 1826 :Capability: KVM_CAP_PPC_GET_PVINFO 1657 :Capability: KVM_CAP_PPC_GET_PVINFO 1827 :Architectures: ppc 1658 :Architectures: ppc 1828 :Type: vm ioctl 1659 :Type: vm ioctl 1829 :Parameters: struct kvm_ppc_pvinfo (out) 1660 :Parameters: struct kvm_ppc_pvinfo (out) 1830 :Returns: 0 on success, !0 on error 1661 :Returns: 0 on success, !0 on error 1831 1662 1832 :: 1663 :: 1833 1664 1834 struct kvm_ppc_pvinfo { 1665 struct kvm_ppc_pvinfo { 1835 __u32 flags; 1666 __u32 flags; 1836 __u32 hcall[4]; 1667 __u32 hcall[4]; 1837 __u8 pad[108]; 1668 __u8 pad[108]; 1838 }; 1669 }; 1839 1670 1840 This ioctl fetches PV specific information th 1671 This ioctl fetches PV specific information that need to be passed to the guest 1841 using the device tree or other means from vm 1672 using the device tree or other means from vm context. 1842 1673 1843 The hcall array defines 4 instructions that m 1674 The hcall array defines 4 instructions that make up a hypercall. 1844 1675 1845 If any additional field gets added to this st 1676 If any additional field gets added to this structure later on, a bit for that 1846 additional piece of information will be set i 1677 additional piece of information will be set in the flags bitmap. 1847 1678 1848 The flags bitmap is defined as:: 1679 The flags bitmap is defined as:: 1849 1680 1850 /* the host supports the ePAPR idle hcall 1681 /* the host supports the ePAPR idle hcall 1851 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1< 1682 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0) 1852 1683 1853 4.52 KVM_SET_GSI_ROUTING 1684 4.52 KVM_SET_GSI_ROUTING 1854 ------------------------ 1685 ------------------------ 1855 1686 1856 :Capability: KVM_CAP_IRQ_ROUTING 1687 :Capability: KVM_CAP_IRQ_ROUTING 1857 :Architectures: x86 s390 arm64 !! 1688 :Architectures: x86 s390 arm arm64 1858 :Type: vm ioctl 1689 :Type: vm ioctl 1859 :Parameters: struct kvm_irq_routing (in) 1690 :Parameters: struct kvm_irq_routing (in) 1860 :Returns: 0 on success, -1 on error 1691 :Returns: 0 on success, -1 on error 1861 1692 1862 Sets the GSI routing table entries, overwriti 1693 Sets the GSI routing table entries, overwriting any previously set entries. 1863 1694 1864 On arm64, GSI routing has the following limit !! 1695 On arm/arm64, GSI routing has the following limitation: 1865 1696 1866 - GSI routing does not apply to KVM_IRQ_LINE 1697 - GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD. 1867 1698 1868 :: 1699 :: 1869 1700 1870 struct kvm_irq_routing { 1701 struct kvm_irq_routing { 1871 __u32 nr; 1702 __u32 nr; 1872 __u32 flags; 1703 __u32 flags; 1873 struct kvm_irq_routing_entry entries[ 1704 struct kvm_irq_routing_entry entries[0]; 1874 }; 1705 }; 1875 1706 1876 No flags are specified so far, the correspond 1707 No flags are specified so far, the corresponding field must be set to zero. 1877 1708 1878 :: 1709 :: 1879 1710 1880 struct kvm_irq_routing_entry { 1711 struct kvm_irq_routing_entry { 1881 __u32 gsi; 1712 __u32 gsi; 1882 __u32 type; 1713 __u32 type; 1883 __u32 flags; 1714 __u32 flags; 1884 __u32 pad; 1715 __u32 pad; 1885 union { 1716 union { 1886 struct kvm_irq_routing_irqchi 1717 struct kvm_irq_routing_irqchip irqchip; 1887 struct kvm_irq_routing_msi ms 1718 struct kvm_irq_routing_msi msi; 1888 struct kvm_irq_routing_s390_a 1719 struct kvm_irq_routing_s390_adapter adapter; 1889 struct kvm_irq_routing_hv_sin 1720 struct kvm_irq_routing_hv_sint hv_sint; 1890 struct kvm_irq_routing_xen_ev << 1891 __u32 pad[8]; 1721 __u32 pad[8]; 1892 } u; 1722 } u; 1893 }; 1723 }; 1894 1724 1895 /* gsi routing entry types */ 1725 /* gsi routing entry types */ 1896 #define KVM_IRQ_ROUTING_IRQCHIP 1 1726 #define KVM_IRQ_ROUTING_IRQCHIP 1 1897 #define KVM_IRQ_ROUTING_MSI 2 1727 #define KVM_IRQ_ROUTING_MSI 2 1898 #define KVM_IRQ_ROUTING_S390_ADAPTER 3 1728 #define KVM_IRQ_ROUTING_S390_ADAPTER 3 1899 #define KVM_IRQ_ROUTING_HV_SINT 4 1729 #define KVM_IRQ_ROUTING_HV_SINT 4 1900 #define KVM_IRQ_ROUTING_XEN_EVTCHN 5 << 1901 1730 1902 flags: 1731 flags: 1903 1732 1904 - KVM_MSI_VALID_DEVID: used along with KVM_IR 1733 - KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry 1905 type, specifies that the devid field contai 1734 type, specifies that the devid field contains a valid value. The per-VM 1906 KVM_CAP_MSI_DEVID capability advertises the 1735 KVM_CAP_MSI_DEVID capability advertises the requirement to provide 1907 the device ID. If this capability is not a 1736 the device ID. If this capability is not available, userspace should 1908 never set the KVM_MSI_VALID_DEVID flag as t 1737 never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. 1909 - zero otherwise 1738 - zero otherwise 1910 1739 1911 :: 1740 :: 1912 1741 1913 struct kvm_irq_routing_irqchip { 1742 struct kvm_irq_routing_irqchip { 1914 __u32 irqchip; 1743 __u32 irqchip; 1915 __u32 pin; 1744 __u32 pin; 1916 }; 1745 }; 1917 1746 1918 struct kvm_irq_routing_msi { 1747 struct kvm_irq_routing_msi { 1919 __u32 address_lo; 1748 __u32 address_lo; 1920 __u32 address_hi; 1749 __u32 address_hi; 1921 __u32 data; 1750 __u32 data; 1922 union { 1751 union { 1923 __u32 pad; 1752 __u32 pad; 1924 __u32 devid; 1753 __u32 devid; 1925 }; 1754 }; 1926 }; 1755 }; 1927 1756 1928 If KVM_MSI_VALID_DEVID is set, devid contains 1757 If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier 1929 for the device that wrote the MSI message. F 1758 for the device that wrote the MSI message. For PCI, this is usually a 1930 BDF identifier in the lower 16 bits. !! 1759 BFD identifier in the lower 16 bits. 1931 1760 1932 On x86, address_hi is ignored unless the KVM_ 1761 On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS 1933 feature of KVM_CAP_X2APIC_API capability is e 1762 feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, 1934 address_hi bits 31-8 provide bits 31-8 of the 1763 address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of 1935 address_hi must be zero. 1764 address_hi must be zero. 1936 1765 1937 :: 1766 :: 1938 1767 1939 struct kvm_irq_routing_s390_adapter { 1768 struct kvm_irq_routing_s390_adapter { 1940 __u64 ind_addr; 1769 __u64 ind_addr; 1941 __u64 summary_addr; 1770 __u64 summary_addr; 1942 __u64 ind_offset; 1771 __u64 ind_offset; 1943 __u32 summary_offset; 1772 __u32 summary_offset; 1944 __u32 adapter_id; 1773 __u32 adapter_id; 1945 }; 1774 }; 1946 1775 1947 struct kvm_irq_routing_hv_sint { 1776 struct kvm_irq_routing_hv_sint { 1948 __u32 vcpu; 1777 __u32 vcpu; 1949 __u32 sint; 1778 __u32 sint; 1950 }; 1779 }; 1951 1780 1952 struct kvm_irq_routing_xen_evtchn { << 1953 __u32 port; << 1954 __u32 vcpu; << 1955 __u32 priority; << 1956 }; << 1957 << 1958 << 1959 When KVM_CAP_XEN_HVM includes the KVM_XEN_HVM << 1960 in its indication of supported features, rout << 1961 is supported. Although the priority field is << 1962 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL is supported << 1963 2 level event channels. FIFO event channel su << 1964 the future. << 1965 << 1966 1781 1967 4.55 KVM_SET_TSC_KHZ 1782 4.55 KVM_SET_TSC_KHZ 1968 -------------------- 1783 -------------------- 1969 1784 1970 :Capability: KVM_CAP_TSC_CONTROL / KVM_CAP_VM !! 1785 :Capability: KVM_CAP_TSC_CONTROL 1971 :Architectures: x86 1786 :Architectures: x86 1972 :Type: vcpu ioctl / vm ioctl !! 1787 :Type: vcpu ioctl 1973 :Parameters: virtual tsc_khz 1788 :Parameters: virtual tsc_khz 1974 :Returns: 0 on success, -1 on error 1789 :Returns: 0 on success, -1 on error 1975 1790 1976 Specifies the tsc frequency for the virtual m 1791 Specifies the tsc frequency for the virtual machine. The unit of the 1977 frequency is KHz. 1792 frequency is KHz. 1978 1793 1979 If the KVM_CAP_VM_TSC_CONTROL capability is a << 1980 be used as a vm ioctl to set the initial tsc << 1981 created vCPUs. << 1982 1794 1983 4.56 KVM_GET_TSC_KHZ 1795 4.56 KVM_GET_TSC_KHZ 1984 -------------------- 1796 -------------------- 1985 1797 1986 :Capability: KVM_CAP_GET_TSC_KHZ / KVM_CAP_VM !! 1798 :Capability: KVM_CAP_GET_TSC_KHZ 1987 :Architectures: x86 1799 :Architectures: x86 1988 :Type: vcpu ioctl / vm ioctl !! 1800 :Type: vcpu ioctl 1989 :Parameters: none 1801 :Parameters: none 1990 :Returns: virtual tsc-khz on success, negativ 1802 :Returns: virtual tsc-khz on success, negative value on error 1991 1803 1992 Returns the tsc frequency of the guest. The u 1804 Returns the tsc frequency of the guest. The unit of the return value is 1993 KHz. If the host has unstable tsc this ioctl 1805 KHz. If the host has unstable tsc this ioctl returns -EIO instead as an 1994 error. 1806 error. 1995 1807 1996 1808 1997 4.57 KVM_GET_LAPIC 1809 4.57 KVM_GET_LAPIC 1998 ------------------ 1810 ------------------ 1999 1811 2000 :Capability: KVM_CAP_IRQCHIP 1812 :Capability: KVM_CAP_IRQCHIP 2001 :Architectures: x86 1813 :Architectures: x86 2002 :Type: vcpu ioctl 1814 :Type: vcpu ioctl 2003 :Parameters: struct kvm_lapic_state (out) 1815 :Parameters: struct kvm_lapic_state (out) 2004 :Returns: 0 on success, -1 on error 1816 :Returns: 0 on success, -1 on error 2005 1817 2006 :: 1818 :: 2007 1819 2008 #define KVM_APIC_REG_SIZE 0x400 1820 #define KVM_APIC_REG_SIZE 0x400 2009 struct kvm_lapic_state { 1821 struct kvm_lapic_state { 2010 char regs[KVM_APIC_REG_SIZE]; 1822 char regs[KVM_APIC_REG_SIZE]; 2011 }; 1823 }; 2012 1824 2013 Reads the Local APIC registers and copies the 1825 Reads the Local APIC registers and copies them into the input argument. The 2014 data format and layout are the same as docume 1826 data format and layout are the same as documented in the architecture manual. 2015 1827 2016 If KVM_X2APIC_API_USE_32BIT_IDS feature of KV 1828 If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is 2017 enabled, then the format of APIC_ID register 1829 enabled, then the format of APIC_ID register depends on the APIC mode 2018 (reported by MSR_IA32_APICBASE) of its VCPU. 1830 (reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in 2019 the APIC_ID register (bytes 32-35). xAPIC on 1831 the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID 2020 which is stored in bits 31-24 of the APIC reg 1832 which is stored in bits 31-24 of the APIC register, or equivalently in 2021 byte 35 of struct kvm_lapic_state's regs fiel 1833 byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then 2022 be called after MSR_IA32_APICBASE has been se 1834 be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR. 2023 1835 2024 If KVM_X2APIC_API_USE_32BIT_IDS feature is di 1836 If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state 2025 always uses xAPIC format. 1837 always uses xAPIC format. 2026 1838 2027 1839 2028 4.58 KVM_SET_LAPIC 1840 4.58 KVM_SET_LAPIC 2029 ------------------ 1841 ------------------ 2030 1842 2031 :Capability: KVM_CAP_IRQCHIP 1843 :Capability: KVM_CAP_IRQCHIP 2032 :Architectures: x86 1844 :Architectures: x86 2033 :Type: vcpu ioctl 1845 :Type: vcpu ioctl 2034 :Parameters: struct kvm_lapic_state (in) 1846 :Parameters: struct kvm_lapic_state (in) 2035 :Returns: 0 on success, -1 on error 1847 :Returns: 0 on success, -1 on error 2036 1848 2037 :: 1849 :: 2038 1850 2039 #define KVM_APIC_REG_SIZE 0x400 1851 #define KVM_APIC_REG_SIZE 0x400 2040 struct kvm_lapic_state { 1852 struct kvm_lapic_state { 2041 char regs[KVM_APIC_REG_SIZE]; 1853 char regs[KVM_APIC_REG_SIZE]; 2042 }; 1854 }; 2043 1855 2044 Copies the input argument into the Local APIC 1856 Copies the input argument into the Local APIC registers. The data format 2045 and layout are the same as documented in the 1857 and layout are the same as documented in the architecture manual. 2046 1858 2047 The format of the APIC ID register (bytes 32- 1859 The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's 2048 regs field) depends on the state of the KVM_C 1860 regs field) depends on the state of the KVM_CAP_X2APIC_API capability. 2049 See the note in KVM_GET_LAPIC. 1861 See the note in KVM_GET_LAPIC. 2050 1862 2051 1863 2052 4.59 KVM_IOEVENTFD 1864 4.59 KVM_IOEVENTFD 2053 ------------------ 1865 ------------------ 2054 1866 2055 :Capability: KVM_CAP_IOEVENTFD 1867 :Capability: KVM_CAP_IOEVENTFD 2056 :Architectures: all 1868 :Architectures: all 2057 :Type: vm ioctl 1869 :Type: vm ioctl 2058 :Parameters: struct kvm_ioeventfd (in) 1870 :Parameters: struct kvm_ioeventfd (in) 2059 :Returns: 0 on success, !0 on error 1871 :Returns: 0 on success, !0 on error 2060 1872 2061 This ioctl attaches or detaches an ioeventfd 1873 This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address 2062 within the guest. A guest write in the regis 1874 within the guest. A guest write in the registered address will signal the 2063 provided event instead of triggering an exit. 1875 provided event instead of triggering an exit. 2064 1876 2065 :: 1877 :: 2066 1878 2067 struct kvm_ioeventfd { 1879 struct kvm_ioeventfd { 2068 __u64 datamatch; 1880 __u64 datamatch; 2069 __u64 addr; /* legal pio/mmio 1881 __u64 addr; /* legal pio/mmio address */ 2070 __u32 len; /* 0, 1, 2, 4, or 1882 __u32 len; /* 0, 1, 2, 4, or 8 bytes */ 2071 __s32 fd; 1883 __s32 fd; 2072 __u32 flags; 1884 __u32 flags; 2073 __u8 pad[36]; 1885 __u8 pad[36]; 2074 }; 1886 }; 2075 1887 2076 For the special case of virtio-ccw devices on 1888 For the special case of virtio-ccw devices on s390, the ioevent is matched 2077 to a subchannel/virtqueue tuple instead. 1889 to a subchannel/virtqueue tuple instead. 2078 1890 2079 The following flags are defined:: 1891 The following flags are defined:: 2080 1892 2081 #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << 1893 #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch) 2082 #define KVM_IOEVENTFD_FLAG_PIO (1 << 1894 #define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio) 2083 #define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << 1895 #define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign) 2084 #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIF 1896 #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \ 2085 (1 << kvm_ioeventfd_flag_nr_virtio_cc 1897 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify) 2086 1898 2087 If datamatch flag is set, the event will be s 1899 If datamatch flag is set, the event will be signaled only if the written value 2088 to the registered address is equal to datamat 1900 to the registered address is equal to datamatch in struct kvm_ioeventfd. 2089 1901 2090 For virtio-ccw devices, addr contains the sub 1902 For virtio-ccw devices, addr contains the subchannel id and datamatch the 2091 virtqueue index. 1903 virtqueue index. 2092 1904 2093 With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero len 1905 With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and 2094 the kernel will ignore the length of guest wr 1906 the kernel will ignore the length of guest write and may get a faster vmexit. 2095 The speedup may only apply to specific archit 1907 The speedup may only apply to specific architectures, but the ioeventfd will 2096 work anyway. 1908 work anyway. 2097 1909 2098 4.60 KVM_DIRTY_TLB 1910 4.60 KVM_DIRTY_TLB 2099 ------------------ 1911 ------------------ 2100 1912 2101 :Capability: KVM_CAP_SW_TLB 1913 :Capability: KVM_CAP_SW_TLB 2102 :Architectures: ppc 1914 :Architectures: ppc 2103 :Type: vcpu ioctl 1915 :Type: vcpu ioctl 2104 :Parameters: struct kvm_dirty_tlb (in) 1916 :Parameters: struct kvm_dirty_tlb (in) 2105 :Returns: 0 on success, -1 on error 1917 :Returns: 0 on success, -1 on error 2106 1918 2107 :: 1919 :: 2108 1920 2109 struct kvm_dirty_tlb { 1921 struct kvm_dirty_tlb { 2110 __u64 bitmap; 1922 __u64 bitmap; 2111 __u32 num_dirty; 1923 __u32 num_dirty; 2112 }; 1924 }; 2113 1925 2114 This must be called whenever userspace has ch 1926 This must be called whenever userspace has changed an entry in the shared 2115 TLB, prior to calling KVM_RUN on the associat 1927 TLB, prior to calling KVM_RUN on the associated vcpu. 2116 1928 2117 The "bitmap" field is the userspace address o 1929 The "bitmap" field is the userspace address of an array. This array 2118 consists of a number of bits, equal to the to 1930 consists of a number of bits, equal to the total number of TLB entries as 2119 determined by the last successful call to KVM 1931 determined by the last successful call to KVM_CONFIG_TLB, rounded up to the 2120 nearest multiple of 64. 1932 nearest multiple of 64. 2121 1933 2122 Each bit corresponds to one TLB entry, ordere 1934 Each bit corresponds to one TLB entry, ordered the same as in the shared TLB 2123 array. 1935 array. 2124 1936 2125 The array is little-endian: the bit 0 is the 1937 The array is little-endian: the bit 0 is the least significant bit of the 2126 first byte, bit 8 is the least significant bi 1938 first byte, bit 8 is the least significant bit of the second byte, etc. 2127 This avoids any complications with differing 1939 This avoids any complications with differing word sizes. 2128 1940 2129 The "num_dirty" field is a performance hint f 1941 The "num_dirty" field is a performance hint for KVM to determine whether it 2130 should skip processing the bitmap and just in 1942 should skip processing the bitmap and just invalidate everything. It must 2131 be set to the number of set bits in the bitma 1943 be set to the number of set bits in the bitmap. 2132 1944 2133 1945 2134 4.62 KVM_CREATE_SPAPR_TCE 1946 4.62 KVM_CREATE_SPAPR_TCE 2135 ------------------------- 1947 ------------------------- 2136 1948 2137 :Capability: KVM_CAP_SPAPR_TCE 1949 :Capability: KVM_CAP_SPAPR_TCE 2138 :Architectures: powerpc 1950 :Architectures: powerpc 2139 :Type: vm ioctl 1951 :Type: vm ioctl 2140 :Parameters: struct kvm_create_spapr_tce (in) 1952 :Parameters: struct kvm_create_spapr_tce (in) 2141 :Returns: file descriptor for manipulating th 1953 :Returns: file descriptor for manipulating the created TCE table 2142 1954 2143 This creates a virtual TCE (translation contr 1955 This creates a virtual TCE (translation control entry) table, which 2144 is an IOMMU for PAPR-style virtual I/O. It i 1956 is an IOMMU for PAPR-style virtual I/O. It is used to translate 2145 logical addresses used in virtual I/O into gu 1957 logical addresses used in virtual I/O into guest physical addresses, 2146 and provides a scatter/gather capability for 1958 and provides a scatter/gather capability for PAPR virtual I/O. 2147 1959 2148 :: 1960 :: 2149 1961 2150 /* for KVM_CAP_SPAPR_TCE */ 1962 /* for KVM_CAP_SPAPR_TCE */ 2151 struct kvm_create_spapr_tce { 1963 struct kvm_create_spapr_tce { 2152 __u64 liobn; 1964 __u64 liobn; 2153 __u32 window_size; 1965 __u32 window_size; 2154 }; 1966 }; 2155 1967 2156 The liobn field gives the logical IO bus numb 1968 The liobn field gives the logical IO bus number for which to create a 2157 TCE table. The window_size field specifies t 1969 TCE table. The window_size field specifies the size of the DMA window 2158 which this TCE table will translate - the tab 1970 which this TCE table will translate - the table will contain one 64 2159 bit TCE entry for every 4kiB of the DMA windo 1971 bit TCE entry for every 4kiB of the DMA window. 2160 1972 2161 When the guest issues an H_PUT_TCE hcall on a 1973 When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE 2162 table has been created using this ioctl(), th 1974 table has been created using this ioctl(), the kernel will handle it 2163 in real mode, updating the TCE table. H_PUT_ 1975 in real mode, updating the TCE table. H_PUT_TCE calls for other 2164 liobns will cause a vm exit and must be handl 1976 liobns will cause a vm exit and must be handled by userspace. 2165 1977 2166 The return value is a file descriptor which c 1978 The return value is a file descriptor which can be passed to mmap(2) 2167 to map the created TCE table into userspace. 1979 to map the created TCE table into userspace. This lets userspace read 2168 the entries written by kernel-handled H_PUT_T 1980 the entries written by kernel-handled H_PUT_TCE calls, and also lets 2169 userspace update the TCE table directly which 1981 userspace update the TCE table directly which is useful in some 2170 circumstances. 1982 circumstances. 2171 1983 2172 1984 2173 4.63 KVM_ALLOCATE_RMA 1985 4.63 KVM_ALLOCATE_RMA 2174 --------------------- 1986 --------------------- 2175 1987 2176 :Capability: KVM_CAP_PPC_RMA 1988 :Capability: KVM_CAP_PPC_RMA 2177 :Architectures: powerpc 1989 :Architectures: powerpc 2178 :Type: vm ioctl 1990 :Type: vm ioctl 2179 :Parameters: struct kvm_allocate_rma (out) 1991 :Parameters: struct kvm_allocate_rma (out) 2180 :Returns: file descriptor for mapping the all 1992 :Returns: file descriptor for mapping the allocated RMA 2181 1993 2182 This allocates a Real Mode Area (RMA) from th 1994 This allocates a Real Mode Area (RMA) from the pool allocated at boot 2183 time by the kernel. An RMA is a physically-c 1995 time by the kernel. An RMA is a physically-contiguous, aligned region 2184 of memory used on older POWER processors to p 1996 of memory used on older POWER processors to provide the memory which 2185 will be accessed by real-mode (MMU off) acces 1997 will be accessed by real-mode (MMU off) accesses in a KVM guest. 2186 POWER processors support a set of sizes for t 1998 POWER processors support a set of sizes for the RMA that usually 2187 includes 64MB, 128MB, 256MB and some larger p 1999 includes 64MB, 128MB, 256MB and some larger powers of two. 2188 2000 2189 :: 2001 :: 2190 2002 2191 /* for KVM_ALLOCATE_RMA */ 2003 /* for KVM_ALLOCATE_RMA */ 2192 struct kvm_allocate_rma { 2004 struct kvm_allocate_rma { 2193 __u64 rma_size; 2005 __u64 rma_size; 2194 }; 2006 }; 2195 2007 2196 The return value is a file descriptor which c 2008 The return value is a file descriptor which can be passed to mmap(2) 2197 to map the allocated RMA into userspace. The 2009 to map the allocated RMA into userspace. The mapped area can then be 2198 passed to the KVM_SET_USER_MEMORY_REGION ioct 2010 passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the 2199 RMA for a virtual machine. The size of the R 2011 RMA for a virtual machine. The size of the RMA in bytes (which is 2200 fixed at host kernel boot time) is returned i 2012 fixed at host kernel boot time) is returned in the rma_size field of 2201 the argument structure. 2013 the argument structure. 2202 2014 2203 The KVM_CAP_PPC_RMA capability is 1 or 2 if t 2015 The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl 2204 is supported; 2 if the processor requires all 2016 is supported; 2 if the processor requires all virtual machines to have 2205 an RMA, or 1 if the processor can use an RMA 2017 an RMA, or 1 if the processor can use an RMA but doesn't require it, 2206 because it supports the Virtual RMA (VRMA) fa 2018 because it supports the Virtual RMA (VRMA) facility. 2207 2019 2208 2020 2209 4.64 KVM_NMI 2021 4.64 KVM_NMI 2210 ------------ 2022 ------------ 2211 2023 2212 :Capability: KVM_CAP_USER_NMI 2024 :Capability: KVM_CAP_USER_NMI 2213 :Architectures: x86 2025 :Architectures: x86 2214 :Type: vcpu ioctl 2026 :Type: vcpu ioctl 2215 :Parameters: none 2027 :Parameters: none 2216 :Returns: 0 on success, -1 on error 2028 :Returns: 0 on success, -1 on error 2217 2029 2218 Queues an NMI on the thread's vcpu. Note thi 2030 Queues an NMI on the thread's vcpu. Note this is well defined only 2219 when KVM_CREATE_IRQCHIP has not been called, 2031 when KVM_CREATE_IRQCHIP has not been called, since this is an interface 2220 between the virtual cpu core and virtual loca 2032 between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP 2221 has been called, this interface is completely 2033 has been called, this interface is completely emulated within the kernel. 2222 2034 2223 To use this to emulate the LINT1 input with K 2035 To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the 2224 following algorithm: 2036 following algorithm: 2225 2037 2226 - pause the vcpu 2038 - pause the vcpu 2227 - read the local APIC's state (KVM_GET_LAPI 2039 - read the local APIC's state (KVM_GET_LAPIC) 2228 - check whether changing LINT1 will queue a 2040 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1) 2229 - if so, issue KVM_NMI 2041 - if so, issue KVM_NMI 2230 - resume the vcpu 2042 - resume the vcpu 2231 2043 2232 Some guests configure the LINT1 NMI input to 2044 Some guests configure the LINT1 NMI input to cause a panic, aiding in 2233 debugging. 2045 debugging. 2234 2046 2235 2047 2236 4.65 KVM_S390_UCAS_MAP 2048 4.65 KVM_S390_UCAS_MAP 2237 ---------------------- 2049 ---------------------- 2238 2050 2239 :Capability: KVM_CAP_S390_UCONTROL 2051 :Capability: KVM_CAP_S390_UCONTROL 2240 :Architectures: s390 2052 :Architectures: s390 2241 :Type: vcpu ioctl 2053 :Type: vcpu ioctl 2242 :Parameters: struct kvm_s390_ucas_mapping (in 2054 :Parameters: struct kvm_s390_ucas_mapping (in) 2243 :Returns: 0 in case of success 2055 :Returns: 0 in case of success 2244 2056 2245 The parameter is defined like this:: 2057 The parameter is defined like this:: 2246 2058 2247 struct kvm_s390_ucas_mapping { 2059 struct kvm_s390_ucas_mapping { 2248 __u64 user_addr; 2060 __u64 user_addr; 2249 __u64 vcpu_addr; 2061 __u64 vcpu_addr; 2250 __u64 length; 2062 __u64 length; 2251 }; 2063 }; 2252 2064 2253 This ioctl maps the memory at "user_addr" wit 2065 This ioctl maps the memory at "user_addr" with the length "length" to 2254 the vcpu's address space starting at "vcpu_ad 2066 the vcpu's address space starting at "vcpu_addr". All parameters need to 2255 be aligned by 1 megabyte. 2067 be aligned by 1 megabyte. 2256 2068 2257 2069 2258 4.66 KVM_S390_UCAS_UNMAP 2070 4.66 KVM_S390_UCAS_UNMAP 2259 ------------------------ 2071 ------------------------ 2260 2072 2261 :Capability: KVM_CAP_S390_UCONTROL 2073 :Capability: KVM_CAP_S390_UCONTROL 2262 :Architectures: s390 2074 :Architectures: s390 2263 :Type: vcpu ioctl 2075 :Type: vcpu ioctl 2264 :Parameters: struct kvm_s390_ucas_mapping (in 2076 :Parameters: struct kvm_s390_ucas_mapping (in) 2265 :Returns: 0 in case of success 2077 :Returns: 0 in case of success 2266 2078 2267 The parameter is defined like this:: 2079 The parameter is defined like this:: 2268 2080 2269 struct kvm_s390_ucas_mapping { 2081 struct kvm_s390_ucas_mapping { 2270 __u64 user_addr; 2082 __u64 user_addr; 2271 __u64 vcpu_addr; 2083 __u64 vcpu_addr; 2272 __u64 length; 2084 __u64 length; 2273 }; 2085 }; 2274 2086 2275 This ioctl unmaps the memory in the vcpu's ad 2087 This ioctl unmaps the memory in the vcpu's address space starting at 2276 "vcpu_addr" with the length "length". The fie 2088 "vcpu_addr" with the length "length". The field "user_addr" is ignored. 2277 All parameters need to be aligned by 1 megaby 2089 All parameters need to be aligned by 1 megabyte. 2278 2090 2279 2091 2280 4.67 KVM_S390_VCPU_FAULT 2092 4.67 KVM_S390_VCPU_FAULT 2281 ------------------------ 2093 ------------------------ 2282 2094 2283 :Capability: KVM_CAP_S390_UCONTROL 2095 :Capability: KVM_CAP_S390_UCONTROL 2284 :Architectures: s390 2096 :Architectures: s390 2285 :Type: vcpu ioctl 2097 :Type: vcpu ioctl 2286 :Parameters: vcpu absolute address (in) 2098 :Parameters: vcpu absolute address (in) 2287 :Returns: 0 in case of success 2099 :Returns: 0 in case of success 2288 2100 2289 This call creates a page table entry on the v 2101 This call creates a page table entry on the virtual cpu's address space 2290 (for user controlled virtual machines) or the 2102 (for user controlled virtual machines) or the virtual machine's address 2291 space (for regular virtual machines). This on 2103 space (for regular virtual machines). This only works for minor faults, 2292 thus it's recommended to access subject memor 2104 thus it's recommended to access subject memory page via the user page 2293 table upfront. This is useful to handle valid 2105 table upfront. This is useful to handle validity intercepts for user 2294 controlled virtual machines to fault in the v 2106 controlled virtual machines to fault in the virtual cpu's lowcore pages 2295 prior to calling the KVM_RUN ioctl. 2107 prior to calling the KVM_RUN ioctl. 2296 2108 2297 2109 2298 4.68 KVM_SET_ONE_REG 2110 4.68 KVM_SET_ONE_REG 2299 -------------------- 2111 -------------------- 2300 2112 2301 :Capability: KVM_CAP_ONE_REG 2113 :Capability: KVM_CAP_ONE_REG 2302 :Architectures: all 2114 :Architectures: all 2303 :Type: vcpu ioctl 2115 :Type: vcpu ioctl 2304 :Parameters: struct kvm_one_reg (in) 2116 :Parameters: struct kvm_one_reg (in) 2305 :Returns: 0 on success, negative value on fai 2117 :Returns: 0 on success, negative value on failure 2306 2118 2307 Errors: 2119 Errors: 2308 2120 2309 ====== ================================== 2121 ====== ============================================================ 2310 ENOENT no such register !! 2122  ENOENT   no such register 2311 EINVAL invalid register ID, or no such re !! 2123  EINVAL   invalid register ID, or no such register or used with VMs in 2312 protected virtualization mode on s 2124 protected virtualization mode on s390 2313 EPERM (arm64) register access not allowe !! 2125  EPERM    (arm64) register access not allowed before vcpu finalization 2314 EBUSY (riscv) changing register value no << 2315 has run at least once << 2316 ====== ================================== 2126 ====== ============================================================ 2317 2127 2318 (These error codes are indicative only: do no 2128 (These error codes are indicative only: do not rely on a specific error 2319 code being returned in a specific situation.) 2129 code being returned in a specific situation.) 2320 2130 2321 :: 2131 :: 2322 2132 2323 struct kvm_one_reg { 2133 struct kvm_one_reg { 2324 __u64 id; 2134 __u64 id; 2325 __u64 addr; 2135 __u64 addr; 2326 }; 2136 }; 2327 2137 2328 Using this ioctl, a single vcpu register can 2138 Using this ioctl, a single vcpu register can be set to a specific value 2329 defined by user space with the passed in stru 2139 defined by user space with the passed in struct kvm_one_reg, where id 2330 refers to the register identifier as describe 2140 refers to the register identifier as described below and addr is a pointer 2331 to a variable with the respective size. There 2141 to a variable with the respective size. There can be architecture agnostic 2332 and architecture specific registers. Each hav 2142 and architecture specific registers. Each have their own range of operation 2333 and their own constants and width. To keep tr 2143 and their own constants and width. To keep track of the implemented 2334 registers, find a list below: 2144 registers, find a list below: 2335 2145 2336 ======= =============================== === 2146 ======= =============================== ============ 2337 Arch Register Wid 2147 Arch Register Width (bits) 2338 ======= =============================== === 2148 ======= =============================== ============ 2339 PPC KVM_REG_PPC_HIOR 64 2149 PPC KVM_REG_PPC_HIOR 64 2340 PPC KVM_REG_PPC_IAC1 64 2150 PPC KVM_REG_PPC_IAC1 64 2341 PPC KVM_REG_PPC_IAC2 64 2151 PPC KVM_REG_PPC_IAC2 64 2342 PPC KVM_REG_PPC_IAC3 64 2152 PPC KVM_REG_PPC_IAC3 64 2343 PPC KVM_REG_PPC_IAC4 64 2153 PPC KVM_REG_PPC_IAC4 64 2344 PPC KVM_REG_PPC_DAC1 64 2154 PPC KVM_REG_PPC_DAC1 64 2345 PPC KVM_REG_PPC_DAC2 64 2155 PPC KVM_REG_PPC_DAC2 64 2346 PPC KVM_REG_PPC_DABR 64 2156 PPC KVM_REG_PPC_DABR 64 2347 PPC KVM_REG_PPC_DSCR 64 2157 PPC KVM_REG_PPC_DSCR 64 2348 PPC KVM_REG_PPC_PURR 64 2158 PPC KVM_REG_PPC_PURR 64 2349 PPC KVM_REG_PPC_SPURR 64 2159 PPC KVM_REG_PPC_SPURR 64 2350 PPC KVM_REG_PPC_DAR 64 2160 PPC KVM_REG_PPC_DAR 64 2351 PPC KVM_REG_PPC_DSISR 32 2161 PPC KVM_REG_PPC_DSISR 32 2352 PPC KVM_REG_PPC_AMR 64 2162 PPC KVM_REG_PPC_AMR 64 2353 PPC KVM_REG_PPC_UAMOR 64 2163 PPC KVM_REG_PPC_UAMOR 64 2354 PPC KVM_REG_PPC_MMCR0 64 2164 PPC KVM_REG_PPC_MMCR0 64 2355 PPC KVM_REG_PPC_MMCR1 64 2165 PPC KVM_REG_PPC_MMCR1 64 2356 PPC KVM_REG_PPC_MMCRA 64 2166 PPC KVM_REG_PPC_MMCRA 64 2357 PPC KVM_REG_PPC_MMCR2 64 2167 PPC KVM_REG_PPC_MMCR2 64 2358 PPC KVM_REG_PPC_MMCRS 64 2168 PPC KVM_REG_PPC_MMCRS 64 2359 PPC KVM_REG_PPC_MMCR3 64 2169 PPC KVM_REG_PPC_MMCR3 64 2360 PPC KVM_REG_PPC_SIAR 64 2170 PPC KVM_REG_PPC_SIAR 64 2361 PPC KVM_REG_PPC_SDAR 64 2171 PPC KVM_REG_PPC_SDAR 64 2362 PPC KVM_REG_PPC_SIER 64 2172 PPC KVM_REG_PPC_SIER 64 2363 PPC KVM_REG_PPC_SIER2 64 2173 PPC KVM_REG_PPC_SIER2 64 2364 PPC KVM_REG_PPC_SIER3 64 2174 PPC KVM_REG_PPC_SIER3 64 2365 PPC KVM_REG_PPC_PMC1 32 2175 PPC KVM_REG_PPC_PMC1 32 2366 PPC KVM_REG_PPC_PMC2 32 2176 PPC KVM_REG_PPC_PMC2 32 2367 PPC KVM_REG_PPC_PMC3 32 2177 PPC KVM_REG_PPC_PMC3 32 2368 PPC KVM_REG_PPC_PMC4 32 2178 PPC KVM_REG_PPC_PMC4 32 2369 PPC KVM_REG_PPC_PMC5 32 2179 PPC KVM_REG_PPC_PMC5 32 2370 PPC KVM_REG_PPC_PMC6 32 2180 PPC KVM_REG_PPC_PMC6 32 2371 PPC KVM_REG_PPC_PMC7 32 2181 PPC KVM_REG_PPC_PMC7 32 2372 PPC KVM_REG_PPC_PMC8 32 2182 PPC KVM_REG_PPC_PMC8 32 2373 PPC KVM_REG_PPC_FPR0 64 2183 PPC KVM_REG_PPC_FPR0 64 2374 ... 2184 ... 2375 PPC KVM_REG_PPC_FPR31 64 2185 PPC KVM_REG_PPC_FPR31 64 2376 PPC KVM_REG_PPC_VR0 128 2186 PPC KVM_REG_PPC_VR0 128 2377 ... 2187 ... 2378 PPC KVM_REG_PPC_VR31 128 2188 PPC KVM_REG_PPC_VR31 128 2379 PPC KVM_REG_PPC_VSR0 128 2189 PPC KVM_REG_PPC_VSR0 128 2380 ... 2190 ... 2381 PPC KVM_REG_PPC_VSR31 128 2191 PPC KVM_REG_PPC_VSR31 128 2382 PPC KVM_REG_PPC_FPSCR 64 2192 PPC KVM_REG_PPC_FPSCR 64 2383 PPC KVM_REG_PPC_VSCR 32 2193 PPC KVM_REG_PPC_VSCR 32 2384 PPC KVM_REG_PPC_VPA_ADDR 64 2194 PPC KVM_REG_PPC_VPA_ADDR 64 2385 PPC KVM_REG_PPC_VPA_SLB 128 2195 PPC KVM_REG_PPC_VPA_SLB 128 2386 PPC KVM_REG_PPC_VPA_DTL 128 2196 PPC KVM_REG_PPC_VPA_DTL 128 2387 PPC KVM_REG_PPC_EPCR 32 2197 PPC KVM_REG_PPC_EPCR 32 2388 PPC KVM_REG_PPC_EPR 32 2198 PPC KVM_REG_PPC_EPR 32 2389 PPC KVM_REG_PPC_TCR 32 2199 PPC KVM_REG_PPC_TCR 32 2390 PPC KVM_REG_PPC_TSR 32 2200 PPC KVM_REG_PPC_TSR 32 2391 PPC KVM_REG_PPC_OR_TSR 32 2201 PPC KVM_REG_PPC_OR_TSR 32 2392 PPC KVM_REG_PPC_CLEAR_TSR 32 2202 PPC KVM_REG_PPC_CLEAR_TSR 32 2393 PPC KVM_REG_PPC_MAS0 32 2203 PPC KVM_REG_PPC_MAS0 32 2394 PPC KVM_REG_PPC_MAS1 32 2204 PPC KVM_REG_PPC_MAS1 32 2395 PPC KVM_REG_PPC_MAS2 64 2205 PPC KVM_REG_PPC_MAS2 64 2396 PPC KVM_REG_PPC_MAS7_3 64 2206 PPC KVM_REG_PPC_MAS7_3 64 2397 PPC KVM_REG_PPC_MAS4 32 2207 PPC KVM_REG_PPC_MAS4 32 2398 PPC KVM_REG_PPC_MAS6 32 2208 PPC KVM_REG_PPC_MAS6 32 2399 PPC KVM_REG_PPC_MMUCFG 32 2209 PPC KVM_REG_PPC_MMUCFG 32 2400 PPC KVM_REG_PPC_TLB0CFG 32 2210 PPC KVM_REG_PPC_TLB0CFG 32 2401 PPC KVM_REG_PPC_TLB1CFG 32 2211 PPC KVM_REG_PPC_TLB1CFG 32 2402 PPC KVM_REG_PPC_TLB2CFG 32 2212 PPC KVM_REG_PPC_TLB2CFG 32 2403 PPC KVM_REG_PPC_TLB3CFG 32 2213 PPC KVM_REG_PPC_TLB3CFG 32 2404 PPC KVM_REG_PPC_TLB0PS 32 2214 PPC KVM_REG_PPC_TLB0PS 32 2405 PPC KVM_REG_PPC_TLB1PS 32 2215 PPC KVM_REG_PPC_TLB1PS 32 2406 PPC KVM_REG_PPC_TLB2PS 32 2216 PPC KVM_REG_PPC_TLB2PS 32 2407 PPC KVM_REG_PPC_TLB3PS 32 2217 PPC KVM_REG_PPC_TLB3PS 32 2408 PPC KVM_REG_PPC_EPTCFG 32 2218 PPC KVM_REG_PPC_EPTCFG 32 2409 PPC KVM_REG_PPC_ICP_STATE 64 2219 PPC KVM_REG_PPC_ICP_STATE 64 2410 PPC KVM_REG_PPC_VP_STATE 128 2220 PPC KVM_REG_PPC_VP_STATE 128 2411 PPC KVM_REG_PPC_TB_OFFSET 64 2221 PPC KVM_REG_PPC_TB_OFFSET 64 2412 PPC KVM_REG_PPC_SPMC1 32 2222 PPC KVM_REG_PPC_SPMC1 32 2413 PPC KVM_REG_PPC_SPMC2 32 2223 PPC KVM_REG_PPC_SPMC2 32 2414 PPC KVM_REG_PPC_IAMR 64 2224 PPC KVM_REG_PPC_IAMR 64 2415 PPC KVM_REG_PPC_TFHAR 64 2225 PPC KVM_REG_PPC_TFHAR 64 2416 PPC KVM_REG_PPC_TFIAR 64 2226 PPC KVM_REG_PPC_TFIAR 64 2417 PPC KVM_REG_PPC_TEXASR 64 2227 PPC KVM_REG_PPC_TEXASR 64 2418 PPC KVM_REG_PPC_FSCR 64 2228 PPC KVM_REG_PPC_FSCR 64 2419 PPC KVM_REG_PPC_PSPB 32 2229 PPC KVM_REG_PPC_PSPB 32 2420 PPC KVM_REG_PPC_EBBHR 64 2230 PPC KVM_REG_PPC_EBBHR 64 2421 PPC KVM_REG_PPC_EBBRR 64 2231 PPC KVM_REG_PPC_EBBRR 64 2422 PPC KVM_REG_PPC_BESCR 64 2232 PPC KVM_REG_PPC_BESCR 64 2423 PPC KVM_REG_PPC_TAR 64 2233 PPC KVM_REG_PPC_TAR 64 2424 PPC KVM_REG_PPC_DPDES 64 2234 PPC KVM_REG_PPC_DPDES 64 2425 PPC KVM_REG_PPC_DAWR 64 2235 PPC KVM_REG_PPC_DAWR 64 2426 PPC KVM_REG_PPC_DAWRX 64 2236 PPC KVM_REG_PPC_DAWRX 64 2427 PPC KVM_REG_PPC_CIABR 64 2237 PPC KVM_REG_PPC_CIABR 64 2428 PPC KVM_REG_PPC_IC 64 2238 PPC KVM_REG_PPC_IC 64 2429 PPC KVM_REG_PPC_VTB 64 2239 PPC KVM_REG_PPC_VTB 64 2430 PPC KVM_REG_PPC_CSIGR 64 2240 PPC KVM_REG_PPC_CSIGR 64 2431 PPC KVM_REG_PPC_TACR 64 2241 PPC KVM_REG_PPC_TACR 64 2432 PPC KVM_REG_PPC_TCSCR 64 2242 PPC KVM_REG_PPC_TCSCR 64 2433 PPC KVM_REG_PPC_PID 64 2243 PPC KVM_REG_PPC_PID 64 2434 PPC KVM_REG_PPC_ACOP 64 2244 PPC KVM_REG_PPC_ACOP 64 2435 PPC KVM_REG_PPC_VRSAVE 32 2245 PPC KVM_REG_PPC_VRSAVE 32 2436 PPC KVM_REG_PPC_LPCR 32 2246 PPC KVM_REG_PPC_LPCR 32 2437 PPC KVM_REG_PPC_LPCR_64 64 2247 PPC KVM_REG_PPC_LPCR_64 64 2438 PPC KVM_REG_PPC_PPR 64 2248 PPC KVM_REG_PPC_PPR 64 2439 PPC KVM_REG_PPC_ARCH_COMPAT 32 2249 PPC KVM_REG_PPC_ARCH_COMPAT 32 2440 PPC KVM_REG_PPC_DABRX 32 2250 PPC KVM_REG_PPC_DABRX 32 2441 PPC KVM_REG_PPC_WORT 64 2251 PPC KVM_REG_PPC_WORT 64 2442 PPC KVM_REG_PPC_SPRG9 64 2252 PPC KVM_REG_PPC_SPRG9 64 2443 PPC KVM_REG_PPC_DBSR 32 2253 PPC KVM_REG_PPC_DBSR 32 2444 PPC KVM_REG_PPC_TIDR 64 2254 PPC KVM_REG_PPC_TIDR 64 2445 PPC KVM_REG_PPC_PSSCR 64 2255 PPC KVM_REG_PPC_PSSCR 64 2446 PPC KVM_REG_PPC_DEC_EXPIRY 64 2256 PPC KVM_REG_PPC_DEC_EXPIRY 64 2447 PPC KVM_REG_PPC_PTCR 64 2257 PPC KVM_REG_PPC_PTCR 64 2448 PPC KVM_REG_PPC_HASHKEYR 64 << 2449 PPC KVM_REG_PPC_HASHPKEYR 64 << 2450 PPC KVM_REG_PPC_DAWR1 64 << 2451 PPC KVM_REG_PPC_DAWRX1 64 << 2452 PPC KVM_REG_PPC_DEXCR 64 << 2453 PPC KVM_REG_PPC_TM_GPR0 64 2258 PPC KVM_REG_PPC_TM_GPR0 64 2454 ... 2259 ... 2455 PPC KVM_REG_PPC_TM_GPR31 64 2260 PPC KVM_REG_PPC_TM_GPR31 64 2456 PPC KVM_REG_PPC_TM_VSR0 128 2261 PPC KVM_REG_PPC_TM_VSR0 128 2457 ... 2262 ... 2458 PPC KVM_REG_PPC_TM_VSR63 128 2263 PPC KVM_REG_PPC_TM_VSR63 128 2459 PPC KVM_REG_PPC_TM_CR 64 2264 PPC KVM_REG_PPC_TM_CR 64 2460 PPC KVM_REG_PPC_TM_LR 64 2265 PPC KVM_REG_PPC_TM_LR 64 2461 PPC KVM_REG_PPC_TM_CTR 64 2266 PPC KVM_REG_PPC_TM_CTR 64 2462 PPC KVM_REG_PPC_TM_FPSCR 64 2267 PPC KVM_REG_PPC_TM_FPSCR 64 2463 PPC KVM_REG_PPC_TM_AMR 64 2268 PPC KVM_REG_PPC_TM_AMR 64 2464 PPC KVM_REG_PPC_TM_PPR 64 2269 PPC KVM_REG_PPC_TM_PPR 64 2465 PPC KVM_REG_PPC_TM_VRSAVE 64 2270 PPC KVM_REG_PPC_TM_VRSAVE 64 2466 PPC KVM_REG_PPC_TM_VSCR 32 2271 PPC KVM_REG_PPC_TM_VSCR 32 2467 PPC KVM_REG_PPC_TM_DSCR 64 2272 PPC KVM_REG_PPC_TM_DSCR 64 2468 PPC KVM_REG_PPC_TM_TAR 64 2273 PPC KVM_REG_PPC_TM_TAR 64 2469 PPC KVM_REG_PPC_TM_XER 64 2274 PPC KVM_REG_PPC_TM_XER 64 2470 2275 2471 MIPS KVM_REG_MIPS_R0 64 2276 MIPS KVM_REG_MIPS_R0 64 2472 ... 2277 ... 2473 MIPS KVM_REG_MIPS_R31 64 2278 MIPS KVM_REG_MIPS_R31 64 2474 MIPS KVM_REG_MIPS_HI 64 2279 MIPS KVM_REG_MIPS_HI 64 2475 MIPS KVM_REG_MIPS_LO 64 2280 MIPS KVM_REG_MIPS_LO 64 2476 MIPS KVM_REG_MIPS_PC 64 2281 MIPS KVM_REG_MIPS_PC 64 2477 MIPS KVM_REG_MIPS_CP0_INDEX 32 2282 MIPS KVM_REG_MIPS_CP0_INDEX 32 2478 MIPS KVM_REG_MIPS_CP0_ENTRYLO0 64 2283 MIPS KVM_REG_MIPS_CP0_ENTRYLO0 64 2479 MIPS KVM_REG_MIPS_CP0_ENTRYLO1 64 2284 MIPS KVM_REG_MIPS_CP0_ENTRYLO1 64 2480 MIPS KVM_REG_MIPS_CP0_CONTEXT 64 2285 MIPS KVM_REG_MIPS_CP0_CONTEXT 64 2481 MIPS KVM_REG_MIPS_CP0_CONTEXTCONFIG 32 2286 MIPS KVM_REG_MIPS_CP0_CONTEXTCONFIG 32 2482 MIPS KVM_REG_MIPS_CP0_USERLOCAL 64 2287 MIPS KVM_REG_MIPS_CP0_USERLOCAL 64 2483 MIPS KVM_REG_MIPS_CP0_XCONTEXTCONFIG 64 2288 MIPS KVM_REG_MIPS_CP0_XCONTEXTCONFIG 64 2484 MIPS KVM_REG_MIPS_CP0_PAGEMASK 32 2289 MIPS KVM_REG_MIPS_CP0_PAGEMASK 32 2485 MIPS KVM_REG_MIPS_CP0_PAGEGRAIN 32 2290 MIPS KVM_REG_MIPS_CP0_PAGEGRAIN 32 2486 MIPS KVM_REG_MIPS_CP0_SEGCTL0 64 2291 MIPS KVM_REG_MIPS_CP0_SEGCTL0 64 2487 MIPS KVM_REG_MIPS_CP0_SEGCTL1 64 2292 MIPS KVM_REG_MIPS_CP0_SEGCTL1 64 2488 MIPS KVM_REG_MIPS_CP0_SEGCTL2 64 2293 MIPS KVM_REG_MIPS_CP0_SEGCTL2 64 2489 MIPS KVM_REG_MIPS_CP0_PWBASE 64 2294 MIPS KVM_REG_MIPS_CP0_PWBASE 64 2490 MIPS KVM_REG_MIPS_CP0_PWFIELD 64 2295 MIPS KVM_REG_MIPS_CP0_PWFIELD 64 2491 MIPS KVM_REG_MIPS_CP0_PWSIZE 64 2296 MIPS KVM_REG_MIPS_CP0_PWSIZE 64 2492 MIPS KVM_REG_MIPS_CP0_WIRED 32 2297 MIPS KVM_REG_MIPS_CP0_WIRED 32 2493 MIPS KVM_REG_MIPS_CP0_PWCTL 32 2298 MIPS KVM_REG_MIPS_CP0_PWCTL 32 2494 MIPS KVM_REG_MIPS_CP0_HWRENA 32 2299 MIPS KVM_REG_MIPS_CP0_HWRENA 32 2495 MIPS KVM_REG_MIPS_CP0_BADVADDR 64 2300 MIPS KVM_REG_MIPS_CP0_BADVADDR 64 2496 MIPS KVM_REG_MIPS_CP0_BADINSTR 32 2301 MIPS KVM_REG_MIPS_CP0_BADINSTR 32 2497 MIPS KVM_REG_MIPS_CP0_BADINSTRP 32 2302 MIPS KVM_REG_MIPS_CP0_BADINSTRP 32 2498 MIPS KVM_REG_MIPS_CP0_COUNT 32 2303 MIPS KVM_REG_MIPS_CP0_COUNT 32 2499 MIPS KVM_REG_MIPS_CP0_ENTRYHI 64 2304 MIPS KVM_REG_MIPS_CP0_ENTRYHI 64 2500 MIPS KVM_REG_MIPS_CP0_COMPARE 32 2305 MIPS KVM_REG_MIPS_CP0_COMPARE 32 2501 MIPS KVM_REG_MIPS_CP0_STATUS 32 2306 MIPS KVM_REG_MIPS_CP0_STATUS 32 2502 MIPS KVM_REG_MIPS_CP0_INTCTL 32 2307 MIPS KVM_REG_MIPS_CP0_INTCTL 32 2503 MIPS KVM_REG_MIPS_CP0_CAUSE 32 2308 MIPS KVM_REG_MIPS_CP0_CAUSE 32 2504 MIPS KVM_REG_MIPS_CP0_EPC 64 2309 MIPS KVM_REG_MIPS_CP0_EPC 64 2505 MIPS KVM_REG_MIPS_CP0_PRID 32 2310 MIPS KVM_REG_MIPS_CP0_PRID 32 2506 MIPS KVM_REG_MIPS_CP0_EBASE 64 2311 MIPS KVM_REG_MIPS_CP0_EBASE 64 2507 MIPS KVM_REG_MIPS_CP0_CONFIG 32 2312 MIPS KVM_REG_MIPS_CP0_CONFIG 32 2508 MIPS KVM_REG_MIPS_CP0_CONFIG1 32 2313 MIPS KVM_REG_MIPS_CP0_CONFIG1 32 2509 MIPS KVM_REG_MIPS_CP0_CONFIG2 32 2314 MIPS KVM_REG_MIPS_CP0_CONFIG2 32 2510 MIPS KVM_REG_MIPS_CP0_CONFIG3 32 2315 MIPS KVM_REG_MIPS_CP0_CONFIG3 32 2511 MIPS KVM_REG_MIPS_CP0_CONFIG4 32 2316 MIPS KVM_REG_MIPS_CP0_CONFIG4 32 2512 MIPS KVM_REG_MIPS_CP0_CONFIG5 32 2317 MIPS KVM_REG_MIPS_CP0_CONFIG5 32 2513 MIPS KVM_REG_MIPS_CP0_CONFIG7 32 2318 MIPS KVM_REG_MIPS_CP0_CONFIG7 32 2514 MIPS KVM_REG_MIPS_CP0_XCONTEXT 64 2319 MIPS KVM_REG_MIPS_CP0_XCONTEXT 64 2515 MIPS KVM_REG_MIPS_CP0_ERROREPC 64 2320 MIPS KVM_REG_MIPS_CP0_ERROREPC 64 2516 MIPS KVM_REG_MIPS_CP0_KSCRATCH1 64 2321 MIPS KVM_REG_MIPS_CP0_KSCRATCH1 64 2517 MIPS KVM_REG_MIPS_CP0_KSCRATCH2 64 2322 MIPS KVM_REG_MIPS_CP0_KSCRATCH2 64 2518 MIPS KVM_REG_MIPS_CP0_KSCRATCH3 64 2323 MIPS KVM_REG_MIPS_CP0_KSCRATCH3 64 2519 MIPS KVM_REG_MIPS_CP0_KSCRATCH4 64 2324 MIPS KVM_REG_MIPS_CP0_KSCRATCH4 64 2520 MIPS KVM_REG_MIPS_CP0_KSCRATCH5 64 2325 MIPS KVM_REG_MIPS_CP0_KSCRATCH5 64 2521 MIPS KVM_REG_MIPS_CP0_KSCRATCH6 64 2326 MIPS KVM_REG_MIPS_CP0_KSCRATCH6 64 2522 MIPS KVM_REG_MIPS_CP0_MAAR(0..63) 64 2327 MIPS KVM_REG_MIPS_CP0_MAAR(0..63) 64 2523 MIPS KVM_REG_MIPS_COUNT_CTL 64 2328 MIPS KVM_REG_MIPS_COUNT_CTL 64 2524 MIPS KVM_REG_MIPS_COUNT_RESUME 64 2329 MIPS KVM_REG_MIPS_COUNT_RESUME 64 2525 MIPS KVM_REG_MIPS_COUNT_HZ 64 2330 MIPS KVM_REG_MIPS_COUNT_HZ 64 2526 MIPS KVM_REG_MIPS_FPR_32(0..31) 32 2331 MIPS KVM_REG_MIPS_FPR_32(0..31) 32 2527 MIPS KVM_REG_MIPS_FPR_64(0..31) 64 2332 MIPS KVM_REG_MIPS_FPR_64(0..31) 64 2528 MIPS KVM_REG_MIPS_VEC_128(0..31) 128 2333 MIPS KVM_REG_MIPS_VEC_128(0..31) 128 2529 MIPS KVM_REG_MIPS_FCR_IR 32 2334 MIPS KVM_REG_MIPS_FCR_IR 32 2530 MIPS KVM_REG_MIPS_FCR_CSR 32 2335 MIPS KVM_REG_MIPS_FCR_CSR 32 2531 MIPS KVM_REG_MIPS_MSA_IR 32 2336 MIPS KVM_REG_MIPS_MSA_IR 32 2532 MIPS KVM_REG_MIPS_MSA_CSR 32 2337 MIPS KVM_REG_MIPS_MSA_CSR 32 2533 ======= =============================== === 2338 ======= =============================== ============ 2534 2339 2535 ARM registers are mapped using the lower 32 b 2340 ARM registers are mapped using the lower 32 bits. The upper 16 of that 2536 is the register group type, or coprocessor nu 2341 is the register group type, or coprocessor number: 2537 2342 2538 ARM core registers have the following id bit 2343 ARM core registers have the following id bit patterns:: 2539 2344 2540 0x4020 0000 0010 <index into the kvm_regs s 2345 0x4020 0000 0010 <index into the kvm_regs struct:16> 2541 2346 2542 ARM 32-bit CP15 registers have the following 2347 ARM 32-bit CP15 registers have the following id bit patterns:: 2543 2348 2544 0x4020 0000 000F <zero:1> <crn:4> <crm:4> < 2349 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3> 2545 2350 2546 ARM 64-bit CP15 registers have the following 2351 ARM 64-bit CP15 registers have the following id bit patterns:: 2547 2352 2548 0x4030 0000 000F <zero:1> <zero:4> <crm:4> 2353 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3> 2549 2354 2550 ARM CCSIDR registers are demultiplexed by CSS 2355 ARM CCSIDR registers are demultiplexed by CSSELR value:: 2551 2356 2552 0x4020 0000 0011 00 <csselr:8> 2357 0x4020 0000 0011 00 <csselr:8> 2553 2358 2554 ARM 32-bit VFP control registers have the fol 2359 ARM 32-bit VFP control registers have the following id bit patterns:: 2555 2360 2556 0x4020 0000 0012 1 <regno:12> 2361 0x4020 0000 0012 1 <regno:12> 2557 2362 2558 ARM 64-bit FP registers have the following id 2363 ARM 64-bit FP registers have the following id bit patterns:: 2559 2364 2560 0x4030 0000 0012 0 <regno:12> 2365 0x4030 0000 0012 0 <regno:12> 2561 2366 2562 ARM firmware pseudo-registers have the follow 2367 ARM firmware pseudo-registers have the following bit pattern:: 2563 2368 2564 0x4030 0000 0014 <regno:16> 2369 0x4030 0000 0014 <regno:16> 2565 2370 2566 2371 2567 arm64 registers are mapped using the lower 32 2372 arm64 registers are mapped using the lower 32 bits. The upper 16 of 2568 that is the register group type, or coprocess 2373 that is the register group type, or coprocessor number: 2569 2374 2570 arm64 core/FP-SIMD registers have the followi 2375 arm64 core/FP-SIMD registers have the following id bit patterns. Note 2571 that the size of the access is variable, as t 2376 that the size of the access is variable, as the kvm_regs structure 2572 contains elements ranging from 32 to 128 bits 2377 contains elements ranging from 32 to 128 bits. The index is a 32bit 2573 value in the kvm_regs structure seen as a 32b 2378 value in the kvm_regs structure seen as a 32bit array:: 2574 2379 2575 0x60x0 0000 0010 <index into the kvm_regs s 2380 0x60x0 0000 0010 <index into the kvm_regs struct:16> 2576 2381 2577 Specifically: 2382 Specifically: 2578 2383 2579 ======================= ========= ===== ===== 2384 ======================= ========= ===== ======================================= 2580 Encoding Register Bits kvm_r 2385 Encoding Register Bits kvm_regs member 2581 ======================= ========= ===== ===== 2386 ======================= ========= ===== ======================================= 2582 0x6030 0000 0010 0000 X0 64 regs. 2387 0x6030 0000 0010 0000 X0 64 regs.regs[0] 2583 0x6030 0000 0010 0002 X1 64 regs. 2388 0x6030 0000 0010 0002 X1 64 regs.regs[1] 2584 ... 2389 ... 2585 0x6030 0000 0010 003c X30 64 regs. 2390 0x6030 0000 0010 003c X30 64 regs.regs[30] 2586 0x6030 0000 0010 003e SP 64 regs. 2391 0x6030 0000 0010 003e SP 64 regs.sp 2587 0x6030 0000 0010 0040 PC 64 regs. 2392 0x6030 0000 0010 0040 PC 64 regs.pc 2588 0x6030 0000 0010 0042 PSTATE 64 regs. 2393 0x6030 0000 0010 0042 PSTATE 64 regs.pstate 2589 0x6030 0000 0010 0044 SP_EL1 64 sp_el 2394 0x6030 0000 0010 0044 SP_EL1 64 sp_el1 2590 0x6030 0000 0010 0046 ELR_EL1 64 elr_e 2395 0x6030 0000 0010 0046 ELR_EL1 64 elr_el1 2591 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[ 2396 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[KVM_SPSR_EL1] (alias SPSR_SVC) 2592 0x6030 0000 0010 004a SPSR_ABT 64 spsr[ 2397 0x6030 0000 0010 004a SPSR_ABT 64 spsr[KVM_SPSR_ABT] 2593 0x6030 0000 0010 004c SPSR_UND 64 spsr[ 2398 0x6030 0000 0010 004c SPSR_UND 64 spsr[KVM_SPSR_UND] 2594 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[ 2399 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[KVM_SPSR_IRQ] 2595 0x6030 0000 0010 0050 SPSR_FIQ 64 spsr[ !! 2400 0x6060 0000 0010 0050 SPSR_FIQ 64 spsr[KVM_SPSR_FIQ] 2596 0x6040 0000 0010 0054 V0 128 fp_re 2401 0x6040 0000 0010 0054 V0 128 fp_regs.vregs[0] [1]_ 2597 0x6040 0000 0010 0058 V1 128 fp_re 2402 0x6040 0000 0010 0058 V1 128 fp_regs.vregs[1] [1]_ 2598 ... 2403 ... 2599 0x6040 0000 0010 00d0 V31 128 fp_re 2404 0x6040 0000 0010 00d0 V31 128 fp_regs.vregs[31] [1]_ 2600 0x6020 0000 0010 00d4 FPSR 32 fp_re 2405 0x6020 0000 0010 00d4 FPSR 32 fp_regs.fpsr 2601 0x6020 0000 0010 00d5 FPCR 32 fp_re 2406 0x6020 0000 0010 00d5 FPCR 32 fp_regs.fpcr 2602 ======================= ========= ===== ===== 2407 ======================= ========= ===== ======================================= 2603 2408 2604 .. [1] These encodings are not accepted for S 2409 .. [1] These encodings are not accepted for SVE-enabled vcpus. See 2605 KVM_ARM_VCPU_INIT. 2410 KVM_ARM_VCPU_INIT. 2606 2411 2607 The equivalent register content can be 2412 The equivalent register content can be accessed via bits [127:0] of 2608 the corresponding SVE Zn registers ins 2413 the corresponding SVE Zn registers instead for vcpus that have SVE 2609 enabled (see below). 2414 enabled (see below). 2610 2415 2611 arm64 CCSIDR registers are demultiplexed by C 2416 arm64 CCSIDR registers are demultiplexed by CSSELR value:: 2612 2417 2613 0x6020 0000 0011 00 <csselr:8> 2418 0x6020 0000 0011 00 <csselr:8> 2614 2419 2615 arm64 system registers have the following id 2420 arm64 system registers have the following id bit patterns:: 2616 2421 2617 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <c 2422 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3> 2618 2423 2619 .. warning:: 2424 .. warning:: 2620 2425 2621 Two system register IDs do not follow th 2426 Two system register IDs do not follow the specified pattern. These 2622 are KVM_REG_ARM_TIMER_CVAL and KVM_REG_A 2427 are KVM_REG_ARM_TIMER_CVAL and KVM_REG_ARM_TIMER_CNT, which map to 2623 system registers CNTV_CVAL_EL0 and CNTVC 2428 system registers CNTV_CVAL_EL0 and CNTVCT_EL0 respectively. These 2624 two had their values accidentally swappe 2429 two had their values accidentally swapped, which means TIMER_CVAL is 2625 derived from the register encoding for C 2430 derived from the register encoding for CNTVCT_EL0 and TIMER_CNT is 2626 derived from the register encoding for C 2431 derived from the register encoding for CNTV_CVAL_EL0. As this is 2627 API, it must remain this way. 2432 API, it must remain this way. 2628 2433 2629 arm64 firmware pseudo-registers have the foll 2434 arm64 firmware pseudo-registers have the following bit pattern:: 2630 2435 2631 0x6030 0000 0014 <regno:16> 2436 0x6030 0000 0014 <regno:16> 2632 2437 2633 arm64 SVE registers have the following bit pa 2438 arm64 SVE registers have the following bit patterns:: 2634 2439 2635 0x6080 0000 0015 00 <n:5> <slice:5> Zn bi 2440 0x6080 0000 0015 00 <n:5> <slice:5> Zn bits[2048*slice + 2047 : 2048*slice] 2636 0x6050 0000 0015 04 <n:4> <slice:5> Pn bi 2441 0x6050 0000 0015 04 <n:4> <slice:5> Pn bits[256*slice + 255 : 256*slice] 2637 0x6050 0000 0015 060 <slice:5> FFR b 2442 0x6050 0000 0015 060 <slice:5> FFR bits[256*slice + 255 : 256*slice] 2638 0x6060 0000 0015 ffff KVM_R 2443 0x6060 0000 0015 ffff KVM_REG_ARM64_SVE_VLS pseudo-register 2639 2444 2640 Access to register IDs where 2048 * slice >= 2445 Access to register IDs where 2048 * slice >= 128 * max_vq will fail with 2641 ENOENT. max_vq is the vcpu's maximum support 2446 ENOENT. max_vq is the vcpu's maximum supported vector length in 128-bit 2642 quadwords: see [2]_ below. 2447 quadwords: see [2]_ below. 2643 2448 2644 These registers are only accessible on vcpus 2449 These registers are only accessible on vcpus for which SVE is enabled. 2645 See KVM_ARM_VCPU_INIT for details. 2450 See KVM_ARM_VCPU_INIT for details. 2646 2451 2647 In addition, except for KVM_REG_ARM64_SVE_VLS 2452 In addition, except for KVM_REG_ARM64_SVE_VLS, these registers are not 2648 accessible until the vcpu's SVE configuration 2453 accessible until the vcpu's SVE configuration has been finalized 2649 using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE) 2454 using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). See KVM_ARM_VCPU_INIT 2650 and KVM_ARM_VCPU_FINALIZE for more informatio 2455 and KVM_ARM_VCPU_FINALIZE for more information about this procedure. 2651 2456 2652 KVM_REG_ARM64_SVE_VLS is a pseudo-register th 2457 KVM_REG_ARM64_SVE_VLS is a pseudo-register that allows the set of vector 2653 lengths supported by the vcpu to be discovere 2458 lengths supported by the vcpu to be discovered and configured by 2654 userspace. When transferred to or from user 2459 userspace. When transferred to or from user memory via KVM_GET_ONE_REG 2655 or KVM_SET_ONE_REG, the value of this registe 2460 or KVM_SET_ONE_REG, the value of this register is of type 2656 __u64[KVM_ARM64_SVE_VLS_WORDS], and encodes t 2461 __u64[KVM_ARM64_SVE_VLS_WORDS], and encodes the set of vector lengths as 2657 follows:: 2462 follows:: 2658 2463 2659 __u64 vector_lengths[KVM_ARM64_SVE_VLS_WORD 2464 __u64 vector_lengths[KVM_ARM64_SVE_VLS_WORDS]; 2660 2465 2661 if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX && 2466 if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX && 2662 ((vector_lengths[(vq - KVM_ARM64_SVE_VQ 2467 ((vector_lengths[(vq - KVM_ARM64_SVE_VQ_MIN) / 64] >> 2663 ((vq - KVM_ARM64_SVE_VQ_MIN) 2468 ((vq - KVM_ARM64_SVE_VQ_MIN) % 64)) & 1)) 2664 /* Vector length vq * 16 bytes suppor 2469 /* Vector length vq * 16 bytes supported */ 2665 else 2470 else 2666 /* Vector length vq * 16 bytes not su 2471 /* Vector length vq * 16 bytes not supported */ 2667 2472 2668 .. [2] The maximum value vq for which the abo 2473 .. [2] The maximum value vq for which the above condition is true is 2669 max_vq. This is the maximum vector le 2474 max_vq. This is the maximum vector length available to the guest on 2670 this vcpu, and determines which regist 2475 this vcpu, and determines which register slices are visible through 2671 this ioctl interface. 2476 this ioctl interface. 2672 2477 2673 (See Documentation/arch/arm64/sve.rst for an !! 2478 (See Documentation/arm64/sve.rst for an explanation of the "vq" 2674 nomenclature.) 2479 nomenclature.) 2675 2480 2676 KVM_REG_ARM64_SVE_VLS is only accessible afte 2481 KVM_REG_ARM64_SVE_VLS is only accessible after KVM_ARM_VCPU_INIT. 2677 KVM_ARM_VCPU_INIT initialises it to the best 2482 KVM_ARM_VCPU_INIT initialises it to the best set of vector lengths that 2678 the host supports. 2483 the host supports. 2679 2484 2680 Userspace may subsequently modify it if desir 2485 Userspace may subsequently modify it if desired until the vcpu's SVE 2681 configuration is finalized using KVM_ARM_VCPU 2486 configuration is finalized using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). 2682 2487 2683 Apart from simply removing all vector lengths 2488 Apart from simply removing all vector lengths from the host set that 2684 exceed some value, support for arbitrarily ch 2489 exceed some value, support for arbitrarily chosen sets of vector lengths 2685 is hardware-dependent and may not be availabl 2490 is hardware-dependent and may not be available. Attempting to configure 2686 an invalid set of vector lengths via KVM_SET_ 2491 an invalid set of vector lengths via KVM_SET_ONE_REG will fail with 2687 EINVAL. 2492 EINVAL. 2688 2493 2689 After the vcpu's SVE configuration is finaliz 2494 After the vcpu's SVE configuration is finalized, further attempts to 2690 write this register will fail with EPERM. 2495 write this register will fail with EPERM. 2691 2496 2692 arm64 bitmap feature firmware pseudo-register << 2693 << 2694 0x6030 0000 0016 <regno:16> << 2695 << 2696 The bitmap feature firmware registers exposes << 2697 are available for userspace to configure. The << 2698 services that are available for the guests to << 2699 sets all the supported bits during VM initial << 2700 discover the available services via KVM_GET_O << 2701 bitmap corresponding to the features that it << 2702 KVM_SET_ONE_REG. << 2703 << 2704 Note: These registers are immutable once any << 2705 run at least once. A KVM_SET_ONE_REG in such << 2706 a -EBUSY to userspace. << 2707 << 2708 (See Documentation/virt/kvm/arm/hypercalls.rs << 2709 << 2710 2497 2711 MIPS registers are mapped using the lower 32 2498 MIPS registers are mapped using the lower 32 bits. The upper 16 of that is 2712 the register group type: 2499 the register group type: 2713 2500 2714 MIPS core registers (see above) have the foll 2501 MIPS core registers (see above) have the following id bit patterns:: 2715 2502 2716 0x7030 0000 0000 <reg:16> 2503 0x7030 0000 0000 <reg:16> 2717 2504 2718 MIPS CP0 registers (see KVM_REG_MIPS_CP0_* ab 2505 MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit 2719 patterns depending on whether they're 32-bit 2506 patterns depending on whether they're 32-bit or 64-bit registers:: 2720 2507 2721 0x7020 0000 0001 00 <reg:5> <sel:3> (32-b 2508 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit) 2722 0x7030 0000 0001 00 <reg:5> <sel:3> (64-b 2509 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit) 2723 2510 2724 Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_M 2511 Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64 2725 versions of the EntryLo registers regardless 2512 versions of the EntryLo registers regardless of the word size of the host 2726 hardware, host kernel, guest, and whether XPA 2513 hardware, host kernel, guest, and whether XPA is present in the guest, i.e. 2727 with the RI and XI bits (if they exist) in bi 2514 with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and 2728 the PFNX field starting at bit 30. 2515 the PFNX field starting at bit 30. 2729 2516 2730 MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) abov 2517 MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit 2731 patterns:: 2518 patterns:: 2732 2519 2733 0x7030 0000 0001 01 <reg:8> 2520 0x7030 0000 0001 01 <reg:8> 2734 2521 2735 MIPS KVM control registers (see above) have t 2522 MIPS KVM control registers (see above) have the following id bit patterns:: 2736 2523 2737 0x7030 0000 0002 <reg:16> 2524 0x7030 0000 0002 <reg:16> 2738 2525 2739 MIPS FPU registers (see KVM_REG_MIPS_FPR_{32, 2526 MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following 2740 id bit patterns depending on the size of the 2527 id bit patterns depending on the size of the register being accessed. They are 2741 always accessed according to the current gues 2528 always accessed according to the current guest FPU mode (Status.FR and 2742 Config5.FRE), i.e. as the guest would see the 2529 Config5.FRE), i.e. as the guest would see them, and they become unpredictable 2743 if the guest FPU mode is changed. MIPS SIMD A 2530 if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector 2744 registers (see KVM_REG_MIPS_VEC_128() above) 2531 registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they 2745 overlap the FPU registers:: 2532 overlap the FPU registers:: 2746 2533 2747 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit F 2534 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers) 2748 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit F 2535 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers) 2749 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit 2536 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers) 2750 2537 2751 MIPS FPU control registers (see KVM_REG_MIPS_ 2538 MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the 2752 following id bit patterns:: 2539 following id bit patterns:: 2753 2540 2754 0x7020 0000 0003 01 <0:3> <reg:5> 2541 0x7020 0000 0003 01 <0:3> <reg:5> 2755 2542 2756 MIPS MSA control registers (see KVM_REG_MIPS_ 2543 MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the 2757 following id bit patterns:: 2544 following id bit patterns:: 2758 2545 2759 0x7020 0000 0003 02 <0:3> <reg:5> 2546 0x7020 0000 0003 02 <0:3> <reg:5> 2760 2547 2761 RISC-V registers are mapped using the lower 3 << 2762 that is the register group type. << 2763 << 2764 RISC-V config registers are meant for configu << 2765 the following id bit patterns:: << 2766 << 2767 0x8020 0000 01 <index into the kvm_riscv_co << 2768 0x8030 0000 01 <index into the kvm_riscv_co << 2769 << 2770 Following are the RISC-V config registers: << 2771 << 2772 ======================= ========= =========== << 2773 Encoding Register Description << 2774 ======================= ========= =========== << 2775 0x80x0 0000 0100 0000 isa ISA feature << 2776 ======================= ========= =========== << 2777 << 2778 The isa config register can be read anytime b << 2779 a Guest VCPU runs. It will have ISA feature b << 2780 set by default. << 2781 << 2782 RISC-V core registers represent the general e << 2783 and it has the following id bit patterns:: << 2784 << 2785 0x8020 0000 02 <index into the kvm_riscv_co << 2786 0x8030 0000 02 <index into the kvm_riscv_co << 2787 << 2788 Following are the RISC-V core registers: << 2789 << 2790 ======================= ========= =========== << 2791 Encoding Register Description << 2792 ======================= ========= =========== << 2793 0x80x0 0000 0200 0000 regs.pc Program cou << 2794 0x80x0 0000 0200 0001 regs.ra Return addr << 2795 0x80x0 0000 0200 0002 regs.sp Stack point << 2796 0x80x0 0000 0200 0003 regs.gp Global poin << 2797 0x80x0 0000 0200 0004 regs.tp Task pointe << 2798 0x80x0 0000 0200 0005 regs.t0 Caller save << 2799 0x80x0 0000 0200 0006 regs.t1 Caller save << 2800 0x80x0 0000 0200 0007 regs.t2 Caller save << 2801 0x80x0 0000 0200 0008 regs.s0 Callee save << 2802 0x80x0 0000 0200 0009 regs.s1 Callee save << 2803 0x80x0 0000 0200 000a regs.a0 Function ar << 2804 0x80x0 0000 0200 000b regs.a1 Function ar << 2805 0x80x0 0000 0200 000c regs.a2 Function ar << 2806 0x80x0 0000 0200 000d regs.a3 Function ar << 2807 0x80x0 0000 0200 000e regs.a4 Function ar << 2808 0x80x0 0000 0200 000f regs.a5 Function ar << 2809 0x80x0 0000 0200 0010 regs.a6 Function ar << 2810 0x80x0 0000 0200 0011 regs.a7 Function ar << 2811 0x80x0 0000 0200 0012 regs.s2 Callee save << 2812 0x80x0 0000 0200 0013 regs.s3 Callee save << 2813 0x80x0 0000 0200 0014 regs.s4 Callee save << 2814 0x80x0 0000 0200 0015 regs.s5 Callee save << 2815 0x80x0 0000 0200 0016 regs.s6 Callee save << 2816 0x80x0 0000 0200 0017 regs.s7 Callee save << 2817 0x80x0 0000 0200 0018 regs.s8 Callee save << 2818 0x80x0 0000 0200 0019 regs.s9 Callee save << 2819 0x80x0 0000 0200 001a regs.s10 Callee save << 2820 0x80x0 0000 0200 001b regs.s11 Callee save << 2821 0x80x0 0000 0200 001c regs.t3 Caller save << 2822 0x80x0 0000 0200 001d regs.t4 Caller save << 2823 0x80x0 0000 0200 001e regs.t5 Caller save << 2824 0x80x0 0000 0200 001f regs.t6 Caller save << 2825 0x80x0 0000 0200 0020 mode Privilege m << 2826 ======================= ========= =========== << 2827 << 2828 RISC-V csr registers represent the supervisor << 2829 of a Guest VCPU and it has the following id b << 2830 << 2831 0x8020 0000 03 <index into the kvm_riscv_cs << 2832 0x8030 0000 03 <index into the kvm_riscv_cs << 2833 << 2834 Following are the RISC-V csr registers: << 2835 << 2836 ======================= ========= =========== << 2837 Encoding Register Description << 2838 ======================= ========= =========== << 2839 0x80x0 0000 0300 0000 sstatus Supervisor << 2840 0x80x0 0000 0300 0001 sie Supervisor << 2841 0x80x0 0000 0300 0002 stvec Supervisor << 2842 0x80x0 0000 0300 0003 sscratch Supervisor << 2843 0x80x0 0000 0300 0004 sepc Supervisor << 2844 0x80x0 0000 0300 0005 scause Supervisor << 2845 0x80x0 0000 0300 0006 stval Supervisor << 2846 0x80x0 0000 0300 0007 sip Supervisor << 2847 0x80x0 0000 0300 0008 satp Supervisor << 2848 ======================= ========= =========== << 2849 << 2850 RISC-V timer registers represent the timer st << 2851 the following id bit patterns:: << 2852 << 2853 0x8030 0000 04 <index into the kvm_riscv_ti << 2854 << 2855 Following are the RISC-V timer registers: << 2856 << 2857 ======================= ========= =========== << 2858 Encoding Register Description << 2859 ======================= ========= =========== << 2860 0x8030 0000 0400 0000 frequency Time base f << 2861 0x8030 0000 0400 0001 time Time value << 2862 0x8030 0000 0400 0002 compare Time compar << 2863 0x8030 0000 0400 0003 state Time compar << 2864 ======================= ========= =========== << 2865 << 2866 RISC-V F-extension registers represent the si << 2867 state of a Guest VCPU and it has the followin << 2868 << 2869 0x8020 0000 05 <index into the __riscv_f_ex << 2870 << 2871 Following are the RISC-V F-extension register << 2872 << 2873 ======================= ========= =========== << 2874 Encoding Register Description << 2875 ======================= ========= =========== << 2876 0x8020 0000 0500 0000 f[0] Floating po << 2877 ... << 2878 0x8020 0000 0500 001f f[31] Floating po << 2879 0x8020 0000 0500 0020 fcsr Floating po << 2880 ======================= ========= =========== << 2881 << 2882 RISC-V D-extension registers represent the do << 2883 state of a Guest VCPU and it has the followin << 2884 << 2885 0x8020 0000 06 <index into the __riscv_d_ex << 2886 0x8030 0000 06 <index into the __riscv_d_ex << 2887 << 2888 Following are the RISC-V D-extension register << 2889 << 2890 ======================= ========= =========== << 2891 Encoding Register Description << 2892 ======================= ========= =========== << 2893 0x8030 0000 0600 0000 f[0] Floating po << 2894 ... << 2895 0x8030 0000 0600 001f f[31] Floating po << 2896 0x8020 0000 0600 0020 fcsr Floating po << 2897 ======================= ========= =========== << 2898 << 2899 LoongArch registers are mapped using the lowe << 2900 that is the register group type. << 2901 << 2902 LoongArch csr registers are used to control g << 2903 cpu, and they have the following id bit patte << 2904 << 2905 0x9030 0000 0001 00 <reg:5> <sel:3> (64-b << 2906 << 2907 LoongArch KVM control registers are used to i << 2908 such as set vcpu counter or reset vcpu, and t << 2909 << 2910 0x9030 0000 0002 <reg:16> << 2911 << 2912 2548 2913 4.69 KVM_GET_ONE_REG 2549 4.69 KVM_GET_ONE_REG 2914 -------------------- 2550 -------------------- 2915 2551 2916 :Capability: KVM_CAP_ONE_REG 2552 :Capability: KVM_CAP_ONE_REG 2917 :Architectures: all 2553 :Architectures: all 2918 :Type: vcpu ioctl 2554 :Type: vcpu ioctl 2919 :Parameters: struct kvm_one_reg (in and out) 2555 :Parameters: struct kvm_one_reg (in and out) 2920 :Returns: 0 on success, negative value on fai 2556 :Returns: 0 on success, negative value on failure 2921 2557 2922 Errors include: 2558 Errors include: 2923 2559 2924 ======== ================================== 2560 ======== ============================================================ 2925 ENOENT no such register !! 2561  ENOENT   no such register 2926 EINVAL invalid register ID, or no such re !! 2562  EINVAL   invalid register ID, or no such register or used with VMs in 2927 protected virtualization mode on s 2563 protected virtualization mode on s390 2928 EPERM (arm64) register access not allowe !! 2564  EPERM    (arm64) register access not allowed before vcpu finalization 2929 ======== ================================== 2565 ======== ============================================================ 2930 2566 2931 (These error codes are indicative only: do no 2567 (These error codes are indicative only: do not rely on a specific error 2932 code being returned in a specific situation.) 2568 code being returned in a specific situation.) 2933 2569 2934 This ioctl allows to receive the value of a s 2570 This ioctl allows to receive the value of a single register implemented 2935 in a vcpu. The register to read is indicated 2571 in a vcpu. The register to read is indicated by the "id" field of the 2936 kvm_one_reg struct passed in. On success, the 2572 kvm_one_reg struct passed in. On success, the register value can be found 2937 at the memory location pointed to by "addr". 2573 at the memory location pointed to by "addr". 2938 2574 2939 The list of registers accessible using this i 2575 The list of registers accessible using this interface is identical to the 2940 list in 4.68. 2576 list in 4.68. 2941 2577 2942 2578 2943 4.70 KVM_KVMCLOCK_CTRL 2579 4.70 KVM_KVMCLOCK_CTRL 2944 ---------------------- 2580 ---------------------- 2945 2581 2946 :Capability: KVM_CAP_KVMCLOCK_CTRL 2582 :Capability: KVM_CAP_KVMCLOCK_CTRL 2947 :Architectures: Any that implement pvclocks ( 2583 :Architectures: Any that implement pvclocks (currently x86 only) 2948 :Type: vcpu ioctl 2584 :Type: vcpu ioctl 2949 :Parameters: None 2585 :Parameters: None 2950 :Returns: 0 on success, -1 on error 2586 :Returns: 0 on success, -1 on error 2951 2587 2952 This ioctl sets a flag accessible to the gues 2588 This ioctl sets a flag accessible to the guest indicating that the specified 2953 vCPU has been paused by the host userspace. 2589 vCPU has been paused by the host userspace. 2954 2590 2955 The host will set a flag in the pvclock struc 2591 The host will set a flag in the pvclock structure that is checked from the 2956 soft lockup watchdog. The flag is part of th 2592 soft lockup watchdog. The flag is part of the pvclock structure that is 2957 shared between guest and host, specifically t 2593 shared between guest and host, specifically the second bit of the flags 2958 field of the pvclock_vcpu_time_info structure 2594 field of the pvclock_vcpu_time_info structure. It will be set exclusively by 2959 the host and read/cleared exclusively by the 2595 the host and read/cleared exclusively by the guest. The guest operation of 2960 checking and clearing the flag must be an ato 2596 checking and clearing the flag must be an atomic operation so 2961 load-link/store-conditional, or equivalent mu 2597 load-link/store-conditional, or equivalent must be used. There are two cases 2962 where the guest will clear the flag: when the 2598 where the guest will clear the flag: when the soft lockup watchdog timer resets 2963 itself or when a soft lockup is detected. Th 2599 itself or when a soft lockup is detected. This ioctl can be called any time 2964 after pausing the vcpu, but before it is resu 2600 after pausing the vcpu, but before it is resumed. 2965 2601 2966 2602 2967 4.71 KVM_SIGNAL_MSI 2603 4.71 KVM_SIGNAL_MSI 2968 ------------------- 2604 ------------------- 2969 2605 2970 :Capability: KVM_CAP_SIGNAL_MSI 2606 :Capability: KVM_CAP_SIGNAL_MSI 2971 :Architectures: x86 arm64 !! 2607 :Architectures: x86 arm arm64 2972 :Type: vm ioctl 2608 :Type: vm ioctl 2973 :Parameters: struct kvm_msi (in) 2609 :Parameters: struct kvm_msi (in) 2974 :Returns: >0 on delivery, 0 if guest blocked 2610 :Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error 2975 2611 2976 Directly inject a MSI message. Only valid wit 2612 Directly inject a MSI message. Only valid with in-kernel irqchip that handles 2977 MSI messages. 2613 MSI messages. 2978 2614 2979 :: 2615 :: 2980 2616 2981 struct kvm_msi { 2617 struct kvm_msi { 2982 __u32 address_lo; 2618 __u32 address_lo; 2983 __u32 address_hi; 2619 __u32 address_hi; 2984 __u32 data; 2620 __u32 data; 2985 __u32 flags; 2621 __u32 flags; 2986 __u32 devid; 2622 __u32 devid; 2987 __u8 pad[12]; 2623 __u8 pad[12]; 2988 }; 2624 }; 2989 2625 2990 flags: 2626 flags: 2991 KVM_MSI_VALID_DEVID: devid contains a valid 2627 KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM 2992 KVM_CAP_MSI_DEVID capability advertises the 2628 KVM_CAP_MSI_DEVID capability advertises the requirement to provide 2993 the device ID. If this capability is not a 2629 the device ID. If this capability is not available, userspace 2994 should never set the KVM_MSI_VALID_DEVID fl 2630 should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. 2995 2631 2996 If KVM_MSI_VALID_DEVID is set, devid contains 2632 If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier 2997 for the device that wrote the MSI message. F 2633 for the device that wrote the MSI message. For PCI, this is usually a 2998 BDF identifier in the lower 16 bits. !! 2634 BFD identifier in the lower 16 bits. 2999 2635 3000 On x86, address_hi is ignored unless the KVM_ 2636 On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS 3001 feature of KVM_CAP_X2APIC_API capability is e 2637 feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, 3002 address_hi bits 31-8 provide bits 31-8 of the 2638 address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of 3003 address_hi must be zero. 2639 address_hi must be zero. 3004 2640 3005 2641 3006 4.71 KVM_CREATE_PIT2 2642 4.71 KVM_CREATE_PIT2 3007 -------------------- 2643 -------------------- 3008 2644 3009 :Capability: KVM_CAP_PIT2 2645 :Capability: KVM_CAP_PIT2 3010 :Architectures: x86 2646 :Architectures: x86 3011 :Type: vm ioctl 2647 :Type: vm ioctl 3012 :Parameters: struct kvm_pit_config (in) 2648 :Parameters: struct kvm_pit_config (in) 3013 :Returns: 0 on success, -1 on error 2649 :Returns: 0 on success, -1 on error 3014 2650 3015 Creates an in-kernel device model for the i82 2651 Creates an in-kernel device model for the i8254 PIT. This call is only valid 3016 after enabling in-kernel irqchip support via 2652 after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following 3017 parameters have to be passed:: 2653 parameters have to be passed:: 3018 2654 3019 struct kvm_pit_config { 2655 struct kvm_pit_config { 3020 __u32 flags; 2656 __u32 flags; 3021 __u32 pad[15]; 2657 __u32 pad[15]; 3022 }; 2658 }; 3023 2659 3024 Valid flags are:: 2660 Valid flags are:: 3025 2661 3026 #define KVM_PIT_SPEAKER_DUMMY 1 /* emul 2662 #define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */ 3027 2663 3028 PIT timer interrupts may use a per-VM kernel 2664 PIT timer interrupts may use a per-VM kernel thread for injection. If it 3029 exists, this thread will have a name of the f 2665 exists, this thread will have a name of the following pattern:: 3030 2666 3031 kvm-pit/<owner-process-pid> 2667 kvm-pit/<owner-process-pid> 3032 2668 3033 When running a guest with elevated priorities 2669 When running a guest with elevated priorities, the scheduling parameters of 3034 this thread may have to be adjusted according 2670 this thread may have to be adjusted accordingly. 3035 2671 3036 This IOCTL replaces the obsolete KVM_CREATE_P 2672 This IOCTL replaces the obsolete KVM_CREATE_PIT. 3037 2673 3038 2674 3039 4.72 KVM_GET_PIT2 2675 4.72 KVM_GET_PIT2 3040 ----------------- 2676 ----------------- 3041 2677 3042 :Capability: KVM_CAP_PIT_STATE2 2678 :Capability: KVM_CAP_PIT_STATE2 3043 :Architectures: x86 2679 :Architectures: x86 3044 :Type: vm ioctl 2680 :Type: vm ioctl 3045 :Parameters: struct kvm_pit_state2 (out) 2681 :Parameters: struct kvm_pit_state2 (out) 3046 :Returns: 0 on success, -1 on error 2682 :Returns: 0 on success, -1 on error 3047 2683 3048 Retrieves the state of the in-kernel PIT mode 2684 Retrieves the state of the in-kernel PIT model. Only valid after 3049 KVM_CREATE_PIT2. The state is returned in the 2685 KVM_CREATE_PIT2. The state is returned in the following structure:: 3050 2686 3051 struct kvm_pit_state2 { 2687 struct kvm_pit_state2 { 3052 struct kvm_pit_channel_state channels 2688 struct kvm_pit_channel_state channels[3]; 3053 __u32 flags; 2689 __u32 flags; 3054 __u32 reserved[9]; 2690 __u32 reserved[9]; 3055 }; 2691 }; 3056 2692 3057 Valid flags are:: 2693 Valid flags are:: 3058 2694 3059 /* disable PIT in HPET legacy mode */ 2695 /* disable PIT in HPET legacy mode */ 3060 #define KVM_PIT_FLAGS_HPET_LEGACY 0x000 !! 2696 #define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001 3061 /* speaker port data bit enabled */ << 3062 #define KVM_PIT_FLAGS_SPEAKER_DATA_ON 0x000 << 3063 2697 3064 This IOCTL replaces the obsolete KVM_GET_PIT. 2698 This IOCTL replaces the obsolete KVM_GET_PIT. 3065 2699 3066 2700 3067 4.73 KVM_SET_PIT2 2701 4.73 KVM_SET_PIT2 3068 ----------------- 2702 ----------------- 3069 2703 3070 :Capability: KVM_CAP_PIT_STATE2 2704 :Capability: KVM_CAP_PIT_STATE2 3071 :Architectures: x86 2705 :Architectures: x86 3072 :Type: vm ioctl 2706 :Type: vm ioctl 3073 :Parameters: struct kvm_pit_state2 (in) 2707 :Parameters: struct kvm_pit_state2 (in) 3074 :Returns: 0 on success, -1 on error 2708 :Returns: 0 on success, -1 on error 3075 2709 3076 Sets the state of the in-kernel PIT model. On 2710 Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2. 3077 See KVM_GET_PIT2 for details on struct kvm_pi 2711 See KVM_GET_PIT2 for details on struct kvm_pit_state2. 3078 2712 3079 This IOCTL replaces the obsolete KVM_SET_PIT. 2713 This IOCTL replaces the obsolete KVM_SET_PIT. 3080 2714 3081 2715 3082 4.74 KVM_PPC_GET_SMMU_INFO 2716 4.74 KVM_PPC_GET_SMMU_INFO 3083 -------------------------- 2717 -------------------------- 3084 2718 3085 :Capability: KVM_CAP_PPC_GET_SMMU_INFO 2719 :Capability: KVM_CAP_PPC_GET_SMMU_INFO 3086 :Architectures: powerpc 2720 :Architectures: powerpc 3087 :Type: vm ioctl 2721 :Type: vm ioctl 3088 :Parameters: None 2722 :Parameters: None 3089 :Returns: 0 on success, -1 on error 2723 :Returns: 0 on success, -1 on error 3090 2724 3091 This populates and returns a structure descri 2725 This populates and returns a structure describing the features of 3092 the "Server" class MMU emulation supported by 2726 the "Server" class MMU emulation supported by KVM. 3093 This can in turn be used by userspace to gene 2727 This can in turn be used by userspace to generate the appropriate 3094 device-tree properties for the guest operatin 2728 device-tree properties for the guest operating system. 3095 2729 3096 The structure contains some global informatio 2730 The structure contains some global information, followed by an 3097 array of supported segment page sizes:: 2731 array of supported segment page sizes:: 3098 2732 3099 struct kvm_ppc_smmu_info { 2733 struct kvm_ppc_smmu_info { 3100 __u64 flags; 2734 __u64 flags; 3101 __u32 slb_size; 2735 __u32 slb_size; 3102 __u32 pad; 2736 __u32 pad; 3103 struct kvm_ppc_one_seg_page_size 2737 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ]; 3104 }; 2738 }; 3105 2739 3106 The supported flags are: 2740 The supported flags are: 3107 2741 3108 - KVM_PPC_PAGE_SIZES_REAL: 2742 - KVM_PPC_PAGE_SIZES_REAL: 3109 When that flag is set, guest page siz 2743 When that flag is set, guest page sizes must "fit" the backing 3110 store page sizes. When not set, any p 2744 store page sizes. When not set, any page size in the list can 3111 be used regardless of how they are ba 2745 be used regardless of how they are backed by userspace. 3112 2746 3113 - KVM_PPC_1T_SEGMENTS 2747 - KVM_PPC_1T_SEGMENTS 3114 The emulated MMU supports 1T segments 2748 The emulated MMU supports 1T segments in addition to the 3115 standard 256M ones. 2749 standard 256M ones. 3116 2750 3117 - KVM_PPC_NO_HASH 2751 - KVM_PPC_NO_HASH 3118 This flag indicates that HPT guests a 2752 This flag indicates that HPT guests are not supported by KVM, 3119 thus all guests must use radix MMU mo 2753 thus all guests must use radix MMU mode. 3120 2754 3121 The "slb_size" field indicates how many SLB e 2755 The "slb_size" field indicates how many SLB entries are supported 3122 2756 3123 The "sps" array contains 8 entries indicating 2757 The "sps" array contains 8 entries indicating the supported base 3124 page sizes for a segment in increasing order. 2758 page sizes for a segment in increasing order. Each entry is defined 3125 as follow:: 2759 as follow:: 3126 2760 3127 struct kvm_ppc_one_seg_page_size { 2761 struct kvm_ppc_one_seg_page_size { 3128 __u32 page_shift; /* Base page 2762 __u32 page_shift; /* Base page shift of segment (or 0) */ 3129 __u32 slb_enc; /* SLB encodi 2763 __u32 slb_enc; /* SLB encoding for BookS */ 3130 struct kvm_ppc_one_page_size enc[KVM_ 2764 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ]; 3131 }; 2765 }; 3132 2766 3133 An entry with a "page_shift" of 0 is unused. 2767 An entry with a "page_shift" of 0 is unused. Because the array is 3134 organized in increasing order, a lookup can s !! 2768 organized in increasing order, a lookup can stop when encoutering 3135 such an entry. 2769 such an entry. 3136 2770 3137 The "slb_enc" field provides the encoding to 2771 The "slb_enc" field provides the encoding to use in the SLB for the 3138 page size. The bits are in positions such as 2772 page size. The bits are in positions such as the value can directly 3139 be OR'ed into the "vsid" argument of the slbm 2773 be OR'ed into the "vsid" argument of the slbmte instruction. 3140 2774 3141 The "enc" array is a list which for each of t 2775 The "enc" array is a list which for each of those segment base page 3142 size provides the list of supported actual pa 2776 size provides the list of supported actual page sizes (which can be 3143 only larger or equal to the base page size), 2777 only larger or equal to the base page size), along with the 3144 corresponding encoding in the hash PTE. Simil 2778 corresponding encoding in the hash PTE. Similarly, the array is 3145 8 entries sorted by increasing sizes and an e 2779 8 entries sorted by increasing sizes and an entry with a "0" shift 3146 is an empty entry and a terminator:: 2780 is an empty entry and a terminator:: 3147 2781 3148 struct kvm_ppc_one_page_size { 2782 struct kvm_ppc_one_page_size { 3149 __u32 page_shift; /* Page shift 2783 __u32 page_shift; /* Page shift (or 0) */ 3150 __u32 pte_enc; /* Encoding i 2784 __u32 pte_enc; /* Encoding in the HPTE (>>12) */ 3151 }; 2785 }; 3152 2786 3153 The "pte_enc" field provides a value that can 2787 The "pte_enc" field provides a value that can OR'ed into the hash 3154 PTE's RPN field (ie, it needs to be shifted l 2788 PTE's RPN field (ie, it needs to be shifted left by 12 to OR it 3155 into the hash PTE second double word). 2789 into the hash PTE second double word). 3156 2790 3157 4.75 KVM_IRQFD 2791 4.75 KVM_IRQFD 3158 -------------- 2792 -------------- 3159 2793 3160 :Capability: KVM_CAP_IRQFD 2794 :Capability: KVM_CAP_IRQFD 3161 :Architectures: x86 s390 arm64 !! 2795 :Architectures: x86 s390 arm arm64 3162 :Type: vm ioctl 2796 :Type: vm ioctl 3163 :Parameters: struct kvm_irqfd (in) 2797 :Parameters: struct kvm_irqfd (in) 3164 :Returns: 0 on success, -1 on error 2798 :Returns: 0 on success, -1 on error 3165 2799 3166 Allows setting an eventfd to directly trigger 2800 Allows setting an eventfd to directly trigger a guest interrupt. 3167 kvm_irqfd.fd specifies the file descriptor to 2801 kvm_irqfd.fd specifies the file descriptor to use as the eventfd and 3168 kvm_irqfd.gsi specifies the irqchip pin toggl 2802 kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When 3169 an event is triggered on the eventfd, an inte 2803 an event is triggered on the eventfd, an interrupt is injected into 3170 the guest using the specified gsi pin. The i 2804 the guest using the specified gsi pin. The irqfd is removed using 3171 the KVM_IRQFD_FLAG_DEASSIGN flag, specifying 2805 the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd 3172 and kvm_irqfd.gsi. 2806 and kvm_irqfd.gsi. 3173 2807 3174 With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD suppor 2808 With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify 3175 mechanism allowing emulation of level-trigger 2809 mechanism allowing emulation of level-triggered, irqfd-based 3176 interrupts. When KVM_IRQFD_FLAG_RESAMPLE is 2810 interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an 3177 additional eventfd in the kvm_irqfd.resamplef 2811 additional eventfd in the kvm_irqfd.resamplefd field. When operating 3178 in resample mode, posting of an interrupt thr 2812 in resample mode, posting of an interrupt through kvm_irq.fd asserts 3179 the specified gsi in the irqchip. When the i 2813 the specified gsi in the irqchip. When the irqchip is resampled, such 3180 as from an EOI, the gsi is de-asserted and th 2814 as from an EOI, the gsi is de-asserted and the user is notified via 3181 kvm_irqfd.resamplefd. It is the user's respo 2815 kvm_irqfd.resamplefd. It is the user's responsibility to re-queue 3182 the interrupt if the device making use of it 2816 the interrupt if the device making use of it still requires service. 3183 Note that closing the resamplefd is not suffi 2817 Note that closing the resamplefd is not sufficient to disable the 3184 irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only n 2818 irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment 3185 and need not be specified with KVM_IRQFD_FLAG 2819 and need not be specified with KVM_IRQFD_FLAG_DEASSIGN. 3186 2820 3187 On arm64, gsi routing being supported, the fo !! 2821 On arm/arm64, gsi routing being supported, the following can happen: 3188 2822 3189 - in case no routing entry is associated to t 2823 - in case no routing entry is associated to this gsi, injection fails 3190 - in case the gsi is associated to an irqchip 2824 - in case the gsi is associated to an irqchip routing entry, 3191 irqchip.pin + 32 corresponds to the injecte 2825 irqchip.pin + 32 corresponds to the injected SPI ID. 3192 - in case the gsi is associated to an MSI rou 2826 - in case the gsi is associated to an MSI routing entry, the MSI 3193 message and device ID are translated into a 2827 message and device ID are translated into an LPI (support restricted 3194 to GICv3 ITS in-kernel emulation). 2828 to GICv3 ITS in-kernel emulation). 3195 2829 3196 4.76 KVM_PPC_ALLOCATE_HTAB 2830 4.76 KVM_PPC_ALLOCATE_HTAB 3197 -------------------------- 2831 -------------------------- 3198 2832 3199 :Capability: KVM_CAP_PPC_ALLOC_HTAB 2833 :Capability: KVM_CAP_PPC_ALLOC_HTAB 3200 :Architectures: powerpc 2834 :Architectures: powerpc 3201 :Type: vm ioctl 2835 :Type: vm ioctl 3202 :Parameters: Pointer to u32 containing hash t 2836 :Parameters: Pointer to u32 containing hash table order (in/out) 3203 :Returns: 0 on success, -1 on error 2837 :Returns: 0 on success, -1 on error 3204 2838 3205 This requests the host kernel to allocate an 2839 This requests the host kernel to allocate an MMU hash table for a 3206 guest using the PAPR paravirtualization inter 2840 guest using the PAPR paravirtualization interface. This only does 3207 anything if the kernel is configured to use t 2841 anything if the kernel is configured to use the Book 3S HV style of 3208 virtualization. Otherwise the capability doe 2842 virtualization. Otherwise the capability doesn't exist and the ioctl 3209 returns an ENOTTY error. The rest of this de 2843 returns an ENOTTY error. The rest of this description assumes Book 3S 3210 HV. 2844 HV. 3211 2845 3212 There must be no vcpus running when this ioct 2846 There must be no vcpus running when this ioctl is called; if there 3213 are, it will do nothing and return an EBUSY e 2847 are, it will do nothing and return an EBUSY error. 3214 2848 3215 The parameter is a pointer to a 32-bit unsign 2849 The parameter is a pointer to a 32-bit unsigned integer variable 3216 containing the order (log base 2) of the desi 2850 containing the order (log base 2) of the desired size of the hash 3217 table, which must be between 18 and 46. On s 2851 table, which must be between 18 and 46. On successful return from the 3218 ioctl, the value will not be changed by the k 2852 ioctl, the value will not be changed by the kernel. 3219 2853 3220 If no hash table has been allocated when any 2854 If no hash table has been allocated when any vcpu is asked to run 3221 (with the KVM_RUN ioctl), the host kernel wil 2855 (with the KVM_RUN ioctl), the host kernel will allocate a 3222 default-sized hash table (16 MB). 2856 default-sized hash table (16 MB). 3223 2857 3224 If this ioctl is called when a hash table has 2858 If this ioctl is called when a hash table has already been allocated, 3225 with a different order from the existing hash 2859 with a different order from the existing hash table, the existing hash 3226 table will be freed and a new one allocated. 2860 table will be freed and a new one allocated. If this is ioctl is 3227 called when a hash table has already been all 2861 called when a hash table has already been allocated of the same order 3228 as specified, the kernel will clear out the e 2862 as specified, the kernel will clear out the existing hash table (zero 3229 all HPTEs). In either case, if the guest is 2863 all HPTEs). In either case, if the guest is using the virtualized 3230 real-mode area (VRMA) facility, the kernel wi 2864 real-mode area (VRMA) facility, the kernel will re-create the VMRA 3231 HPTEs on the next KVM_RUN of any vcpu. 2865 HPTEs on the next KVM_RUN of any vcpu. 3232 2866 3233 4.77 KVM_S390_INTERRUPT 2867 4.77 KVM_S390_INTERRUPT 3234 ----------------------- 2868 ----------------------- 3235 2869 3236 :Capability: basic 2870 :Capability: basic 3237 :Architectures: s390 2871 :Architectures: s390 3238 :Type: vm ioctl, vcpu ioctl 2872 :Type: vm ioctl, vcpu ioctl 3239 :Parameters: struct kvm_s390_interrupt (in) 2873 :Parameters: struct kvm_s390_interrupt (in) 3240 :Returns: 0 on success, -1 on error 2874 :Returns: 0 on success, -1 on error 3241 2875 3242 Allows to inject an interrupt to the guest. I 2876 Allows to inject an interrupt to the guest. Interrupts can be floating 3243 (vm ioctl) or per cpu (vcpu ioctl), depending 2877 (vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type. 3244 2878 3245 Interrupt parameters are passed via kvm_s390_ 2879 Interrupt parameters are passed via kvm_s390_interrupt:: 3246 2880 3247 struct kvm_s390_interrupt { 2881 struct kvm_s390_interrupt { 3248 __u32 type; 2882 __u32 type; 3249 __u32 parm; 2883 __u32 parm; 3250 __u64 parm64; 2884 __u64 parm64; 3251 }; 2885 }; 3252 2886 3253 type can be one of the following: 2887 type can be one of the following: 3254 2888 3255 KVM_S390_SIGP_STOP (vcpu) 2889 KVM_S390_SIGP_STOP (vcpu) 3256 - sigp stop; optional flags in parm 2890 - sigp stop; optional flags in parm 3257 KVM_S390_PROGRAM_INT (vcpu) 2891 KVM_S390_PROGRAM_INT (vcpu) 3258 - program check; code in parm 2892 - program check; code in parm 3259 KVM_S390_SIGP_SET_PREFIX (vcpu) 2893 KVM_S390_SIGP_SET_PREFIX (vcpu) 3260 - sigp set prefix; prefix address in parm 2894 - sigp set prefix; prefix address in parm 3261 KVM_S390_RESTART (vcpu) 2895 KVM_S390_RESTART (vcpu) 3262 - restart 2896 - restart 3263 KVM_S390_INT_CLOCK_COMP (vcpu) 2897 KVM_S390_INT_CLOCK_COMP (vcpu) 3264 - clock comparator interrupt 2898 - clock comparator interrupt 3265 KVM_S390_INT_CPU_TIMER (vcpu) 2899 KVM_S390_INT_CPU_TIMER (vcpu) 3266 - CPU timer interrupt 2900 - CPU timer interrupt 3267 KVM_S390_INT_VIRTIO (vm) 2901 KVM_S390_INT_VIRTIO (vm) 3268 - virtio external interrupt; external int 2902 - virtio external interrupt; external interrupt 3269 parameters in parm and parm64 2903 parameters in parm and parm64 3270 KVM_S390_INT_SERVICE (vm) 2904 KVM_S390_INT_SERVICE (vm) 3271 - sclp external interrupt; sclp parameter 2905 - sclp external interrupt; sclp parameter in parm 3272 KVM_S390_INT_EMERGENCY (vcpu) 2906 KVM_S390_INT_EMERGENCY (vcpu) 3273 - sigp emergency; source cpu in parm 2907 - sigp emergency; source cpu in parm 3274 KVM_S390_INT_EXTERNAL_CALL (vcpu) 2908 KVM_S390_INT_EXTERNAL_CALL (vcpu) 3275 - sigp external call; source cpu in parm 2909 - sigp external call; source cpu in parm 3276 KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) 2910 KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) 3277 - compound value to indicate an 2911 - compound value to indicate an 3278 I/O interrupt (ai - adapter interrupt; 2912 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel); 3279 I/O interruption parameters in parm (su 2913 I/O interruption parameters in parm (subchannel) and parm64 (intparm, 3280 interruption subclass) 2914 interruption subclass) 3281 KVM_S390_MCHK (vm, vcpu) 2915 KVM_S390_MCHK (vm, vcpu) 3282 - machine check interrupt; cr 14 bits in 2916 - machine check interrupt; cr 14 bits in parm, machine check interrupt 3283 code in parm64 (note that machine check 2917 code in parm64 (note that machine checks needing further payload are not 3284 supported by this ioctl) 2918 supported by this ioctl) 3285 2919 3286 This is an asynchronous vcpu ioctl and can be 2920 This is an asynchronous vcpu ioctl and can be invoked from any thread. 3287 2921 3288 4.78 KVM_PPC_GET_HTAB_FD 2922 4.78 KVM_PPC_GET_HTAB_FD 3289 ------------------------ 2923 ------------------------ 3290 2924 3291 :Capability: KVM_CAP_PPC_HTAB_FD 2925 :Capability: KVM_CAP_PPC_HTAB_FD 3292 :Architectures: powerpc 2926 :Architectures: powerpc 3293 :Type: vm ioctl 2927 :Type: vm ioctl 3294 :Parameters: Pointer to struct kvm_get_htab_f 2928 :Parameters: Pointer to struct kvm_get_htab_fd (in) 3295 :Returns: file descriptor number (>= 0) on su 2929 :Returns: file descriptor number (>= 0) on success, -1 on error 3296 2930 3297 This returns a file descriptor that can be us 2931 This returns a file descriptor that can be used either to read out the 3298 entries in the guest's hashed page table (HPT 2932 entries in the guest's hashed page table (HPT), or to write entries to 3299 initialize the HPT. The returned fd can only 2933 initialize the HPT. The returned fd can only be written to if the 3300 KVM_GET_HTAB_WRITE bit is set in the flags fi 2934 KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and 3301 can only be read if that bit is clear. The a 2935 can only be read if that bit is clear. The argument struct looks like 3302 this:: 2936 this:: 3303 2937 3304 /* For KVM_PPC_GET_HTAB_FD */ 2938 /* For KVM_PPC_GET_HTAB_FD */ 3305 struct kvm_get_htab_fd { 2939 struct kvm_get_htab_fd { 3306 __u64 flags; 2940 __u64 flags; 3307 __u64 start_index; 2941 __u64 start_index; 3308 __u64 reserved[2]; 2942 __u64 reserved[2]; 3309 }; 2943 }; 3310 2944 3311 /* Values for kvm_get_htab_fd.flags */ 2945 /* Values for kvm_get_htab_fd.flags */ 3312 #define KVM_GET_HTAB_BOLTED_ONLY ((__u 2946 #define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1) 3313 #define KVM_GET_HTAB_WRITE ((__u 2947 #define KVM_GET_HTAB_WRITE ((__u64)0x2) 3314 2948 3315 The 'start_index' field gives the index in th 2949 The 'start_index' field gives the index in the HPT of the entry at 3316 which to start reading. It is ignored when w 2950 which to start reading. It is ignored when writing. 3317 2951 3318 Reads on the fd will initially supply informa 2952 Reads on the fd will initially supply information about all 3319 "interesting" HPT entries. Interesting entri 2953 "interesting" HPT entries. Interesting entries are those with the 3320 bolted bit set, if the KVM_GET_HTAB_BOLTED_ON 2954 bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise 3321 all entries. When the end of the HPT is reac 2955 all entries. When the end of the HPT is reached, the read() will 3322 return. If read() is called again on the fd, 2956 return. If read() is called again on the fd, it will start again from 3323 the beginning of the HPT, but will only retur 2957 the beginning of the HPT, but will only return HPT entries that have 3324 changed since they were last read. 2958 changed since they were last read. 3325 2959 3326 Data read or written is structured as a heade 2960 Data read or written is structured as a header (8 bytes) followed by a 3327 series of valid HPT entries (16 bytes) each. 2961 series of valid HPT entries (16 bytes) each. The header indicates how 3328 many valid HPT entries there are and how many 2962 many valid HPT entries there are and how many invalid entries follow 3329 the valid entries. The invalid entries are n 2963 the valid entries. The invalid entries are not represented explicitly 3330 in the stream. The header format is:: 2964 in the stream. The header format is:: 3331 2965 3332 struct kvm_get_htab_header { 2966 struct kvm_get_htab_header { 3333 __u32 index; 2967 __u32 index; 3334 __u16 n_valid; 2968 __u16 n_valid; 3335 __u16 n_invalid; 2969 __u16 n_invalid; 3336 }; 2970 }; 3337 2971 3338 Writes to the fd create HPT entries starting 2972 Writes to the fd create HPT entries starting at the index given in the 3339 header; first 'n_valid' valid entries with co 2973 header; first 'n_valid' valid entries with contents from the data 3340 written, then 'n_invalid' invalid entries, in 2974 written, then 'n_invalid' invalid entries, invalidating any previously 3341 valid entries found. 2975 valid entries found. 3342 2976 3343 4.79 KVM_CREATE_DEVICE 2977 4.79 KVM_CREATE_DEVICE 3344 ---------------------- 2978 ---------------------- 3345 2979 3346 :Capability: KVM_CAP_DEVICE_CTRL 2980 :Capability: KVM_CAP_DEVICE_CTRL 3347 :Architectures: all << 3348 :Type: vm ioctl 2981 :Type: vm ioctl 3349 :Parameters: struct kvm_create_device (in/out 2982 :Parameters: struct kvm_create_device (in/out) 3350 :Returns: 0 on success, -1 on error 2983 :Returns: 0 on success, -1 on error 3351 2984 3352 Errors: 2985 Errors: 3353 2986 3354 ====== =================================== 2987 ====== ======================================================= 3355 ENODEV The device type is unknown or unsup 2988 ENODEV The device type is unknown or unsupported 3356 EEXIST Device already created, and this ty 2989 EEXIST Device already created, and this type of device may not 3357 be instantiated multiple times 2990 be instantiated multiple times 3358 ====== =================================== 2991 ====== ======================================================= 3359 2992 3360 Other error conditions may be defined by in 2993 Other error conditions may be defined by individual device types or 3361 have their standard meanings. 2994 have their standard meanings. 3362 2995 3363 Creates an emulated device in the kernel. Th 2996 Creates an emulated device in the kernel. The file descriptor returned 3364 in fd can be used with KVM_SET/GET/HAS_DEVICE 2997 in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR. 3365 2998 3366 If the KVM_CREATE_DEVICE_TEST flag is set, on 2999 If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the 3367 device type is supported (not necessarily whe 3000 device type is supported (not necessarily whether it can be created 3368 in the current vm). 3001 in the current vm). 3369 3002 3370 Individual devices should not define flags. 3003 Individual devices should not define flags. Attributes should be used 3371 for specifying any behavior that is not impli 3004 for specifying any behavior that is not implied by the device type 3372 number. 3005 number. 3373 3006 3374 :: 3007 :: 3375 3008 3376 struct kvm_create_device { 3009 struct kvm_create_device { 3377 __u32 type; /* in: KVM_DEV_TYPE_x 3010 __u32 type; /* in: KVM_DEV_TYPE_xxx */ 3378 __u32 fd; /* out: device handle 3011 __u32 fd; /* out: device handle */ 3379 __u32 flags; /* in: KVM_CREATE_DEV 3012 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */ 3380 }; 3013 }; 3381 3014 3382 4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR 3015 4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR 3383 -------------------------------------------- 3016 -------------------------------------------- 3384 3017 3385 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ 3018 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, 3386 KVM_CAP_VCPU_ATTRIBUTES for vcpu 3019 KVM_CAP_VCPU_ATTRIBUTES for vcpu device 3387 KVM_CAP_SYS_ATTRIBUTES for syste << 3388 :Architectures: x86, arm64, s390 << 3389 :Type: device ioctl, vm ioctl, vcpu ioctl 3020 :Type: device ioctl, vm ioctl, vcpu ioctl 3390 :Parameters: struct kvm_device_attr 3021 :Parameters: struct kvm_device_attr 3391 :Returns: 0 on success, -1 on error 3022 :Returns: 0 on success, -1 on error 3392 3023 3393 Errors: 3024 Errors: 3394 3025 3395 ===== =================================== 3026 ===== ============================================================= 3396 ENXIO The group or attribute is unknown/u 3027 ENXIO The group or attribute is unknown/unsupported for this device 3397 or hardware support is missing. 3028 or hardware support is missing. 3398 EPERM The attribute cannot (currently) be 3029 EPERM The attribute cannot (currently) be accessed this way 3399 (e.g. read-only attribute, or attri 3030 (e.g. read-only attribute, or attribute that only makes 3400 sense when the device is in a diffe 3031 sense when the device is in a different state) 3401 ===== =================================== 3032 ===== ============================================================= 3402 3033 3403 Other error conditions may be defined by in 3034 Other error conditions may be defined by individual device types. 3404 3035 3405 Gets/sets a specified piece of device configu 3036 Gets/sets a specified piece of device configuration and/or state. The 3406 semantics are device-specific. See individua 3037 semantics are device-specific. See individual device documentation in 3407 the "devices" directory. As with ONE_REG, th 3038 the "devices" directory. As with ONE_REG, the size of the data 3408 transferred is defined by the particular attr 3039 transferred is defined by the particular attribute. 3409 3040 3410 :: 3041 :: 3411 3042 3412 struct kvm_device_attr { 3043 struct kvm_device_attr { 3413 __u32 flags; /* no flags c 3044 __u32 flags; /* no flags currently defined */ 3414 __u32 group; /* device-def 3045 __u32 group; /* device-defined */ 3415 __u64 attr; /* group-defi 3046 __u64 attr; /* group-defined */ 3416 __u64 addr; /* userspace 3047 __u64 addr; /* userspace address of attr data */ 3417 }; 3048 }; 3418 3049 3419 4.81 KVM_HAS_DEVICE_ATTR 3050 4.81 KVM_HAS_DEVICE_ATTR 3420 ------------------------ 3051 ------------------------ 3421 3052 3422 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ 3053 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, 3423 KVM_CAP_VCPU_ATTRIBUTES for vcpu !! 3054 KVM_CAP_VCPU_ATTRIBUTES for vcpu device 3424 KVM_CAP_SYS_ATTRIBUTES for syste << 3425 :Type: device ioctl, vm ioctl, vcpu ioctl 3055 :Type: device ioctl, vm ioctl, vcpu ioctl 3426 :Parameters: struct kvm_device_attr 3056 :Parameters: struct kvm_device_attr 3427 :Returns: 0 on success, -1 on error 3057 :Returns: 0 on success, -1 on error 3428 3058 3429 Errors: 3059 Errors: 3430 3060 3431 ===== =================================== 3061 ===== ============================================================= 3432 ENXIO The group or attribute is unknown/u 3062 ENXIO The group or attribute is unknown/unsupported for this device 3433 or hardware support is missing. 3063 or hardware support is missing. 3434 ===== =================================== 3064 ===== ============================================================= 3435 3065 3436 Tests whether a device supports a particular 3066 Tests whether a device supports a particular attribute. A successful 3437 return indicates the attribute is implemented 3067 return indicates the attribute is implemented. It does not necessarily 3438 indicate that the attribute can be read or wr 3068 indicate that the attribute can be read or written in the device's 3439 current state. "addr" is ignored. 3069 current state. "addr" is ignored. 3440 3070 3441 .. _KVM_ARM_VCPU_INIT: << 3442 << 3443 4.82 KVM_ARM_VCPU_INIT 3071 4.82 KVM_ARM_VCPU_INIT 3444 ---------------------- 3072 ---------------------- 3445 3073 3446 :Capability: basic 3074 :Capability: basic 3447 :Architectures: arm64 !! 3075 :Architectures: arm, arm64 3448 :Type: vcpu ioctl 3076 :Type: vcpu ioctl 3449 :Parameters: struct kvm_vcpu_init (in) 3077 :Parameters: struct kvm_vcpu_init (in) 3450 :Returns: 0 on success; -1 on error 3078 :Returns: 0 on success; -1 on error 3451 3079 3452 Errors: 3080 Errors: 3453 3081 3454 ====== ================================ 3082 ====== ================================================================= 3455 EINVAL the target is unknown, or the co !! 3083  EINVAL    the target is unknown, or the combination of features is invalid. 3456 ENOENT a features bit specified is unkn !! 3084  ENOENT    a features bit specified is unknown. 3457 ====== ================================ 3085 ====== ================================================================= 3458 3086 3459 This tells KVM what type of CPU to present to 3087 This tells KVM what type of CPU to present to the guest, and what 3460 optional features it should have. This will !! 3088 optional features it should have.  This will cause a reset of the cpu 3461 registers to their initial values. If this i !! 3089 registers to their initial values.  If this is not called, KVM_RUN will 3462 return ENOEXEC for that vcpu. 3090 return ENOEXEC for that vcpu. 3463 3091 3464 The initial values are defined as: << 3465 - Processor state: << 3466 * AArch64: EL1h, D, A, I and << 3467 are cleared. << 3468 * AArch32: SVC, A, I and F bi << 3469 cleared. << 3470 - General Purpose registers, includin << 3471 - FPSIMD/NEON registers: set to 0 << 3472 - SVE registers: set to 0 << 3473 - System registers: Reset to their ar << 3474 values as for a warm reset to EL1 ( << 3475 << 3476 Note that because some registers reflect mach 3092 Note that because some registers reflect machine topology, all vcpus 3477 should be created before this ioctl is invoke 3093 should be created before this ioctl is invoked. 3478 3094 3479 Userspace can call this function multiple tim 3095 Userspace can call this function multiple times for a given vcpu, including 3480 after the vcpu has been run. This will reset 3096 after the vcpu has been run. This will reset the vcpu to its initial 3481 state. All calls to this function after the i 3097 state. All calls to this function after the initial call must use the same 3482 target and same set of feature flags, otherwi 3098 target and same set of feature flags, otherwise EINVAL will be returned. 3483 3099 3484 Possible features: 3100 Possible features: 3485 3101 3486 - KVM_ARM_VCPU_POWER_OFF: Starts the 3102 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state. 3487 Depends on KVM_CAP_ARM_PSCI. If no 3103 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on 3488 and execute guest code when KVM_RUN 3104 and execute guest code when KVM_RUN is called. 3489 - KVM_ARM_VCPU_EL1_32BIT: Starts the 3105 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode. 3490 Depends on KVM_CAP_ARM_EL1_32BIT (a 3106 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only). 3491 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI 3107 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 (or a future revision 3492 backward compatible with v0.2) for 3108 backward compatible with v0.2) for the CPU. 3493 Depends on KVM_CAP_ARM_PSCI_0_2. 3109 Depends on KVM_CAP_ARM_PSCI_0_2. 3494 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 3110 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU. 3495 Depends on KVM_CAP_ARM_PMU_V3. 3111 Depends on KVM_CAP_ARM_PMU_V3. 3496 3112 3497 - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enabl 3113 - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enables Address Pointer authentication 3498 for arm64 only. 3114 for arm64 only. 3499 Depends on KVM_CAP_ARM_PTRAUTH_ADDR 3115 Depends on KVM_CAP_ARM_PTRAUTH_ADDRESS. 3500 If KVM_CAP_ARM_PTRAUTH_ADDRESS and 3116 If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are 3501 both present, then both KVM_ARM_VCP 3117 both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and 3502 KVM_ARM_VCPU_PTRAUTH_GENERIC must b 3118 KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be 3503 requested. 3119 requested. 3504 3120 3505 - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enabl 3121 - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enables Generic Pointer authentication 3506 for arm64 only. 3122 for arm64 only. 3507 Depends on KVM_CAP_ARM_PTRAUTH_GENE 3123 Depends on KVM_CAP_ARM_PTRAUTH_GENERIC. 3508 If KVM_CAP_ARM_PTRAUTH_ADDRESS and 3124 If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are 3509 both present, then both KVM_ARM_VCP 3125 both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and 3510 KVM_ARM_VCPU_PTRAUTH_GENERIC must b 3126 KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be 3511 requested. 3127 requested. 3512 3128 3513 - KVM_ARM_VCPU_SVE: Enables SVE for t 3129 - KVM_ARM_VCPU_SVE: Enables SVE for the CPU (arm64 only). 3514 Depends on KVM_CAP_ARM_SVE. 3130 Depends on KVM_CAP_ARM_SVE. 3515 Requires KVM_ARM_VCPU_FINALIZE(KVM_ 3131 Requires KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3516 3132 3517 * After KVM_ARM_VCPU_INIT: 3133 * After KVM_ARM_VCPU_INIT: 3518 3134 3519 - KVM_REG_ARM64_SVE_VLS may be 3135 - KVM_REG_ARM64_SVE_VLS may be read using KVM_GET_ONE_REG: the 3520 initial value of this pseudo- 3136 initial value of this pseudo-register indicates the best set of 3521 vector lengths possible for a 3137 vector lengths possible for a vcpu on this host. 3522 3138 3523 * Before KVM_ARM_VCPU_FINALIZE(KVM 3139 * Before KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3524 3140 3525 - KVM_RUN and KVM_GET_REG_LIST 3141 - KVM_RUN and KVM_GET_REG_LIST are not available; 3526 3142 3527 - KVM_GET_ONE_REG and KVM_SET_O 3143 - KVM_GET_ONE_REG and KVM_SET_ONE_REG cannot be used to access 3528 the scalable architectural SV !! 3144 the scalable archietctural SVE registers 3529 KVM_REG_ARM64_SVE_ZREG(), KVM 3145 KVM_REG_ARM64_SVE_ZREG(), KVM_REG_ARM64_SVE_PREG() or 3530 KVM_REG_ARM64_SVE_FFR; 3146 KVM_REG_ARM64_SVE_FFR; 3531 3147 3532 - KVM_REG_ARM64_SVE_VLS may opt 3148 - KVM_REG_ARM64_SVE_VLS may optionally be written using 3533 KVM_SET_ONE_REG, to modify th 3149 KVM_SET_ONE_REG, to modify the set of vector lengths available 3534 for the vcpu. 3150 for the vcpu. 3535 3151 3536 * After KVM_ARM_VCPU_FINALIZE(KVM_ 3152 * After KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3537 3153 3538 - the KVM_REG_ARM64_SVE_VLS pse 3154 - the KVM_REG_ARM64_SVE_VLS pseudo-register is immutable, and can 3539 no longer be written using KV 3155 no longer be written using KVM_SET_ONE_REG. 3540 3156 3541 4.83 KVM_ARM_PREFERRED_TARGET 3157 4.83 KVM_ARM_PREFERRED_TARGET 3542 ----------------------------- 3158 ----------------------------- 3543 3159 3544 :Capability: basic 3160 :Capability: basic 3545 :Architectures: arm64 !! 3161 :Architectures: arm, arm64 3546 :Type: vm ioctl 3162 :Type: vm ioctl 3547 :Parameters: struct kvm_vcpu_init (out) 3163 :Parameters: struct kvm_vcpu_init (out) 3548 :Returns: 0 on success; -1 on error 3164 :Returns: 0 on success; -1 on error 3549 3165 3550 Errors: 3166 Errors: 3551 3167 3552 ====== ================================ 3168 ====== ========================================== 3553 ENODEV no preferred target available fo 3169 ENODEV no preferred target available for the host 3554 ====== ================================ 3170 ====== ========================================== 3555 3171 3556 This queries KVM for preferred CPU target typ 3172 This queries KVM for preferred CPU target type which can be emulated 3557 by KVM on underlying host. 3173 by KVM on underlying host. 3558 3174 3559 The ioctl returns struct kvm_vcpu_init instan 3175 The ioctl returns struct kvm_vcpu_init instance containing information 3560 about preferred CPU target type and recommend 3176 about preferred CPU target type and recommended features for it. The 3561 kvm_vcpu_init->features bitmap returned will 3177 kvm_vcpu_init->features bitmap returned will have feature bits set if 3562 the preferred target recommends setting these 3178 the preferred target recommends setting these features, but this is 3563 not mandatory. 3179 not mandatory. 3564 3180 3565 The information returned by this ioctl can be 3181 The information returned by this ioctl can be used to prepare an instance 3566 of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT 3182 of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in 3567 VCPU matching underlying host. 3183 VCPU matching underlying host. 3568 3184 3569 3185 3570 4.84 KVM_GET_REG_LIST 3186 4.84 KVM_GET_REG_LIST 3571 --------------------- 3187 --------------------- 3572 3188 3573 :Capability: basic 3189 :Capability: basic 3574 :Architectures: arm64, mips, riscv !! 3190 :Architectures: arm, arm64, mips 3575 :Type: vcpu ioctl 3191 :Type: vcpu ioctl 3576 :Parameters: struct kvm_reg_list (in/out) 3192 :Parameters: struct kvm_reg_list (in/out) 3577 :Returns: 0 on success; -1 on error 3193 :Returns: 0 on success; -1 on error 3578 3194 3579 Errors: 3195 Errors: 3580 3196 3581 ===== ================================ 3197 ===== ============================================================== 3582 E2BIG the reg index list is too big to !! 3198  E2BIG     the reg index list is too big to fit in the array specified by 3583 the user (the number required wi !! 3199             the user (the number required will be written into n). 3584 ===== ================================ 3200 ===== ============================================================== 3585 3201 3586 :: 3202 :: 3587 3203 3588 struct kvm_reg_list { 3204 struct kvm_reg_list { 3589 __u64 n; /* number of registers in re 3205 __u64 n; /* number of registers in reg[] */ 3590 __u64 reg[0]; 3206 __u64 reg[0]; 3591 }; 3207 }; 3592 3208 3593 This ioctl returns the guest registers that a 3209 This ioctl returns the guest registers that are supported for the 3594 KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. 3210 KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. 3595 3211 3596 3212 3597 4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated) 3213 4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated) 3598 ----------------------------------------- 3214 ----------------------------------------- 3599 3215 3600 :Capability: KVM_CAP_ARM_SET_DEVICE_ADDR 3216 :Capability: KVM_CAP_ARM_SET_DEVICE_ADDR 3601 :Architectures: arm64 !! 3217 :Architectures: arm, arm64 3602 :Type: vm ioctl 3218 :Type: vm ioctl 3603 :Parameters: struct kvm_arm_device_address (i 3219 :Parameters: struct kvm_arm_device_address (in) 3604 :Returns: 0 on success, -1 on error 3220 :Returns: 0 on success, -1 on error 3605 3221 3606 Errors: 3222 Errors: 3607 3223 3608 ====== =================================== 3224 ====== ============================================ 3609 ENODEV The device id is unknown 3225 ENODEV The device id is unknown 3610 ENXIO Device not supported on current sys 3226 ENXIO Device not supported on current system 3611 EEXIST Address already set 3227 EEXIST Address already set 3612 E2BIG Address outside guest physical addr 3228 E2BIG Address outside guest physical address space 3613 EBUSY Address overlaps with other device 3229 EBUSY Address overlaps with other device range 3614 ====== =================================== 3230 ====== ============================================ 3615 3231 3616 :: 3232 :: 3617 3233 3618 struct kvm_arm_device_addr { 3234 struct kvm_arm_device_addr { 3619 __u64 id; 3235 __u64 id; 3620 __u64 addr; 3236 __u64 addr; 3621 }; 3237 }; 3622 3238 3623 Specify a device address in the guest's physi 3239 Specify a device address in the guest's physical address space where guests 3624 can access emulated or directly exposed devic 3240 can access emulated or directly exposed devices, which the host kernel needs 3625 to know about. The id field is an architectur 3241 to know about. The id field is an architecture specific identifier for a 3626 specific device. 3242 specific device. 3627 3243 3628 arm64 divides the id field into two parts, a !! 3244 ARM/arm64 divides the id field into two parts, a device id and an 3629 address type id specific to the individual de 3245 address type id specific to the individual device:: 3630 3246 3631 bits: | 63 ... 32 | 31 ... !! 3247  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 | 3632 field: | 0x00000000 | devic 3248 field: | 0x00000000 | device id | addr type id | 3633 3249 3634 arm64 currently only require this when using !! 3250 ARM/arm64 currently only require this when using the in-kernel GIC 3635 support for the hardware VGIC features, using 3251 support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2 3636 as the device id. When setting the base addr 3252 as the device id. When setting the base address for the guest's 3637 mapping of the VGIC virtual CPU and distribut 3253 mapping of the VGIC virtual CPU and distributor interface, the ioctl 3638 must be called after calling KVM_CREATE_IRQCH 3254 must be called after calling KVM_CREATE_IRQCHIP, but before calling 3639 KVM_RUN on any of the VCPUs. Calling this io 3255 KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the 3640 base addresses will return -EEXIST. 3256 base addresses will return -EEXIST. 3641 3257 3642 Note, this IOCTL is deprecated and the more f 3258 Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API 3643 should be used instead. 3259 should be used instead. 3644 3260 3645 3261 3646 4.86 KVM_PPC_RTAS_DEFINE_TOKEN 3262 4.86 KVM_PPC_RTAS_DEFINE_TOKEN 3647 ------------------------------ 3263 ------------------------------ 3648 3264 3649 :Capability: KVM_CAP_PPC_RTAS 3265 :Capability: KVM_CAP_PPC_RTAS 3650 :Architectures: ppc 3266 :Architectures: ppc 3651 :Type: vm ioctl 3267 :Type: vm ioctl 3652 :Parameters: struct kvm_rtas_token_args 3268 :Parameters: struct kvm_rtas_token_args 3653 :Returns: 0 on success, -1 on error 3269 :Returns: 0 on success, -1 on error 3654 3270 3655 Defines a token value for a RTAS (Run Time Ab 3271 Defines a token value for a RTAS (Run Time Abstraction Services) 3656 service in order to allow it to be handled in 3272 service in order to allow it to be handled in the kernel. The 3657 argument struct gives the name of the service 3273 argument struct gives the name of the service, which must be the name 3658 of a service that has a kernel-side implement 3274 of a service that has a kernel-side implementation. If the token 3659 value is non-zero, it will be associated with 3275 value is non-zero, it will be associated with that service, and 3660 subsequent RTAS calls by the guest specifying 3276 subsequent RTAS calls by the guest specifying that token will be 3661 handled by the kernel. If the token value is 3277 handled by the kernel. If the token value is 0, then any token 3662 associated with the service will be forgotten 3278 associated with the service will be forgotten, and subsequent RTAS 3663 calls by the guest for that service will be p 3279 calls by the guest for that service will be passed to userspace to be 3664 handled. 3280 handled. 3665 3281 3666 4.87 KVM_SET_GUEST_DEBUG 3282 4.87 KVM_SET_GUEST_DEBUG 3667 ------------------------ 3283 ------------------------ 3668 3284 3669 :Capability: KVM_CAP_SET_GUEST_DEBUG 3285 :Capability: KVM_CAP_SET_GUEST_DEBUG 3670 :Architectures: x86, s390, ppc, arm64 3286 :Architectures: x86, s390, ppc, arm64 3671 :Type: vcpu ioctl 3287 :Type: vcpu ioctl 3672 :Parameters: struct kvm_guest_debug (in) 3288 :Parameters: struct kvm_guest_debug (in) 3673 :Returns: 0 on success; -1 on error 3289 :Returns: 0 on success; -1 on error 3674 3290 3675 :: 3291 :: 3676 3292 3677 struct kvm_guest_debug { 3293 struct kvm_guest_debug { 3678 __u32 control; 3294 __u32 control; 3679 __u32 pad; 3295 __u32 pad; 3680 struct kvm_guest_debug_arch arch; 3296 struct kvm_guest_debug_arch arch; 3681 }; 3297 }; 3682 3298 3683 Set up the processor specific debug registers 3299 Set up the processor specific debug registers and configure vcpu for 3684 handling guest debug events. There are two pa 3300 handling guest debug events. There are two parts to the structure, the 3685 first a control bitfield indicates the type o 3301 first a control bitfield indicates the type of debug events to handle 3686 when running. Common control bits are: 3302 when running. Common control bits are: 3687 3303 3688 - KVM_GUESTDBG_ENABLE: guest debuggi 3304 - KVM_GUESTDBG_ENABLE: guest debugging is enabled 3689 - KVM_GUESTDBG_SINGLESTEP: the next run 3305 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step 3690 3306 3691 The top 16 bits of the control field are arch 3307 The top 16 bits of the control field are architecture specific control 3692 flags which can include the following: 3308 flags which can include the following: 3693 3309 3694 - KVM_GUESTDBG_USE_SW_BP: using softwar 3310 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64] 3695 - KVM_GUESTDBG_USE_HW_BP: using hardwar !! 3311 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64] 3696 - KVM_GUESTDBG_USE_HW: using hardwar << 3697 - KVM_GUESTDBG_INJECT_DB: inject DB typ 3312 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86] 3698 - KVM_GUESTDBG_INJECT_BP: inject BP typ 3313 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86] 3699 - KVM_GUESTDBG_EXIT_PENDING: trigger an im 3314 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390] 3700 - KVM_GUESTDBG_BLOCKIRQ: avoid injecti << 3701 3315 3702 For example KVM_GUESTDBG_USE_SW_BP indicates 3316 For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints 3703 are enabled in memory so we need to ensure br 3317 are enabled in memory so we need to ensure breakpoint exceptions are 3704 correctly trapped and the KVM run loop exits 3318 correctly trapped and the KVM run loop exits at the breakpoint and not 3705 running off into the normal guest vector. For 3319 running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP 3706 we need to ensure the guest vCPUs architectur 3320 we need to ensure the guest vCPUs architecture specific registers are 3707 updated to the correct (supplied) values. 3321 updated to the correct (supplied) values. 3708 3322 3709 The second part of the structure is architect 3323 The second part of the structure is architecture specific and 3710 typically contains a set of debug registers. 3324 typically contains a set of debug registers. 3711 3325 3712 For arm64 the number of debug registers is im 3326 For arm64 the number of debug registers is implementation defined and 3713 can be determined by querying the KVM_CAP_GUE 3327 can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and 3714 KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which 3328 KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number 3715 indicating the number of supported registers. 3329 indicating the number of supported registers. 3716 3330 3717 For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP ca 3331 For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP capability indicates whether 3718 the single-step debug event (KVM_GUESTDBG_SIN 3332 the single-step debug event (KVM_GUESTDBG_SINGLESTEP) is supported. 3719 3333 3720 Also when supported, KVM_CAP_SET_GUEST_DEBUG2 << 3721 supported KVM_GUESTDBG_* bits in the control << 3722 << 3723 When debug events exit the main run loop with 3334 When debug events exit the main run loop with the reason 3724 KVM_EXIT_DEBUG with the kvm_debug_exit_arch p 3335 KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run 3725 structure containing architecture specific de 3336 structure containing architecture specific debug information. 3726 3337 3727 4.88 KVM_GET_EMULATED_CPUID 3338 4.88 KVM_GET_EMULATED_CPUID 3728 --------------------------- 3339 --------------------------- 3729 3340 3730 :Capability: KVM_CAP_EXT_EMUL_CPUID 3341 :Capability: KVM_CAP_EXT_EMUL_CPUID 3731 :Architectures: x86 3342 :Architectures: x86 3732 :Type: system ioctl 3343 :Type: system ioctl 3733 :Parameters: struct kvm_cpuid2 (in/out) 3344 :Parameters: struct kvm_cpuid2 (in/out) 3734 :Returns: 0 on success, -1 on error 3345 :Returns: 0 on success, -1 on error 3735 3346 3736 :: 3347 :: 3737 3348 3738 struct kvm_cpuid2 { 3349 struct kvm_cpuid2 { 3739 __u32 nent; 3350 __u32 nent; 3740 __u32 flags; 3351 __u32 flags; 3741 struct kvm_cpuid_entry2 entries[0]; 3352 struct kvm_cpuid_entry2 entries[0]; 3742 }; 3353 }; 3743 3354 3744 The member 'flags' is used for passing flags 3355 The member 'flags' is used for passing flags from userspace. 3745 3356 3746 :: 3357 :: 3747 3358 3748 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 3359 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) 3749 #define KVM_CPUID_FLAG_STATEFUL_FUNC 3360 #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) /* deprecated */ 3750 #define KVM_CPUID_FLAG_STATE_READ_NEXT 3361 #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) /* deprecated */ 3751 3362 3752 struct kvm_cpuid_entry2 { 3363 struct kvm_cpuid_entry2 { 3753 __u32 function; 3364 __u32 function; 3754 __u32 index; 3365 __u32 index; 3755 __u32 flags; 3366 __u32 flags; 3756 __u32 eax; 3367 __u32 eax; 3757 __u32 ebx; 3368 __u32 ebx; 3758 __u32 ecx; 3369 __u32 ecx; 3759 __u32 edx; 3370 __u32 edx; 3760 __u32 padding[3]; 3371 __u32 padding[3]; 3761 }; 3372 }; 3762 3373 3763 This ioctl returns x86 cpuid features which a 3374 This ioctl returns x86 cpuid features which are emulated by 3764 kvm.Userspace can use the information returne 3375 kvm.Userspace can use the information returned by this ioctl to query 3765 which features are emulated by kvm instead of 3376 which features are emulated by kvm instead of being present natively. 3766 3377 3767 Userspace invokes KVM_GET_EMULATED_CPUID by p 3378 Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2 3768 structure with the 'nent' field indicating th 3379 structure with the 'nent' field indicating the number of entries in 3769 the variable-size array 'entries'. If the num 3380 the variable-size array 'entries'. If the number of entries is too low 3770 to describe the cpu capabilities, an error (E 3381 to describe the cpu capabilities, an error (E2BIG) is returned. If the 3771 number is too high, the 'nent' field is adjus 3382 number is too high, the 'nent' field is adjusted and an error (ENOMEM) 3772 is returned. If the number is just right, the 3383 is returned. If the number is just right, the 'nent' field is adjusted 3773 to the number of valid entries in the 'entrie 3384 to the number of valid entries in the 'entries' array, which is then 3774 filled. 3385 filled. 3775 3386 3776 The entries returned are the set CPUID bits o 3387 The entries returned are the set CPUID bits of the respective features 3777 which kvm emulates, as returned by the CPUID 3388 which kvm emulates, as returned by the CPUID instruction, with unknown 3778 or unsupported feature bits cleared. 3389 or unsupported feature bits cleared. 3779 3390 3780 Features like x2apic, for example, may not be 3391 Features like x2apic, for example, may not be present in the host cpu 3781 but are exposed by kvm in KVM_GET_SUPPORTED_C 3392 but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be 3782 emulated efficiently and thus not included he 3393 emulated efficiently and thus not included here. 3783 3394 3784 The fields in each entry are defined as follo 3395 The fields in each entry are defined as follows: 3785 3396 3786 function: 3397 function: 3787 the eax value used to obtain the ent 3398 the eax value used to obtain the entry 3788 index: 3399 index: 3789 the ecx value used to obtain the ent 3400 the ecx value used to obtain the entry (for entries that are 3790 affected by ecx) 3401 affected by ecx) 3791 flags: 3402 flags: 3792 an OR of zero or more of the following: 3403 an OR of zero or more of the following: 3793 3404 3794 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 3405 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 3795 if the index field is valid 3406 if the index field is valid 3796 3407 3797 eax, ebx, ecx, edx: 3408 eax, ebx, ecx, edx: 3798 3409 3799 the values returned by the cpuid ins 3410 the values returned by the cpuid instruction for 3800 this function/index combination 3411 this function/index combination 3801 3412 3802 4.89 KVM_S390_MEM_OP 3413 4.89 KVM_S390_MEM_OP 3803 -------------------- 3414 -------------------- 3804 3415 3805 :Capability: KVM_CAP_S390_MEM_OP, KVM_CAP_S39 !! 3416 :Capability: KVM_CAP_S390_MEM_OP 3806 :Architectures: s390 3417 :Architectures: s390 3807 :Type: vm ioctl, vcpu ioctl !! 3418 :Type: vcpu ioctl 3808 :Parameters: struct kvm_s390_mem_op (in) 3419 :Parameters: struct kvm_s390_mem_op (in) 3809 :Returns: = 0 on success, 3420 :Returns: = 0 on success, 3810 < 0 on generic error (e.g. -EFAULT 3421 < 0 on generic error (e.g. -EFAULT or -ENOMEM), 3811 16 bit program exception code if th !! 3422 > 0 if an exception occurred while walking the page tables 3812 3423 3813 Read or write data from/to the VM's memory. !! 3424 Read or write data from/to the logical (virtual) memory of a VCPU. 3814 The KVM_CAP_S390_MEM_OP_EXTENSION capability << 3815 supported. << 3816 3425 3817 Parameters are specified via the following st 3426 Parameters are specified via the following structure:: 3818 3427 3819 struct kvm_s390_mem_op { 3428 struct kvm_s390_mem_op { 3820 __u64 gaddr; /* the guest 3429 __u64 gaddr; /* the guest address */ 3821 __u64 flags; /* flags */ 3430 __u64 flags; /* flags */ 3822 __u32 size; /* amount of 3431 __u32 size; /* amount of bytes */ 3823 __u32 op; /* type of op 3432 __u32 op; /* type of operation */ 3824 __u64 buf; /* buffer in 3433 __u64 buf; /* buffer in userspace */ 3825 union { !! 3434 __u8 ar; /* the access register number */ 3826 struct { !! 3435 __u8 reserved[31]; /* should be set to 0 */ 3827 __u8 ar; /* th << 3828 __u8 key; /* ac << 3829 __u8 pad1[6]; /* ig << 3830 __u64 old_addr; /* ig << 3831 }; << 3832 __u32 sida_offset; /* offset << 3833 __u8 reserved[32]; /* ignored << 3834 }; << 3835 }; 3436 }; 3836 3437 >> 3438 The type of operation is specified in the "op" field. It is either >> 3439 KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or >> 3440 KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The >> 3441 KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check >> 3442 whether the corresponding memory access would create an access exception >> 3443 (without touching the data in the memory at the destination). In case an >> 3444 access exception occurred while walking the MMU tables of the guest, the >> 3445 ioctl returns a positive error number to indicate the type of exception. >> 3446 This exception is also raised directly at the corresponding VCPU if the >> 3447 flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field. >> 3448 3837 The start address of the memory region has to 3449 The start address of the memory region has to be specified in the "gaddr" 3838 field, and the length of the region in the "s 3450 field, and the length of the region in the "size" field (which must not 3839 be 0). The maximum value for "size" can be ob 3451 be 0). The maximum value for "size" can be obtained by checking the 3840 KVM_CAP_S390_MEM_OP capability. "buf" is the 3452 KVM_CAP_S390_MEM_OP capability. "buf" is the buffer supplied by the 3841 userspace application where the read data sho 3453 userspace application where the read data should be written to for 3842 a read access, or where the data that should !! 3454 KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written is 3843 a write access. The "reserved" field is mean !! 3455 stored for a KVM_S390_MEMOP_LOGICAL_WRITE. When KVM_S390_MEMOP_F_CHECK_ONLY 3844 Reserved and unused values are ignored. Futur !! 3456 is specified, "buf" is unused and can be NULL. "ar" designates the access 3845 introduce new flags. !! 3457 register number to be used; the valid range is 0..15. 3846 << 3847 The type of operation is specified in the "op << 3848 their behavior can be set in the "flags" fiel << 3849 be set to 0. << 3850 << 3851 Possible operations are: << 3852 * ``KVM_S390_MEMOP_LOGICAL_READ`` << 3853 * ``KVM_S390_MEMOP_LOGICAL_WRITE`` << 3854 * ``KVM_S390_MEMOP_ABSOLUTE_READ`` << 3855 * ``KVM_S390_MEMOP_ABSOLUTE_WRITE`` << 3856 * ``KVM_S390_MEMOP_SIDA_READ`` << 3857 * ``KVM_S390_MEMOP_SIDA_WRITE`` << 3858 * ``KVM_S390_MEMOP_ABSOLUTE_CMPXCHG`` << 3859 << 3860 Logical read/write: << 3861 ^^^^^^^^^^^^^^^^^^^ << 3862 << 3863 Access logical memory, i.e. translate the giv << 3864 address given the state of the VCPU and use t << 3865 the access. "ar" designates the access regist << 3866 range is 0..15. << 3867 Logical accesses are permitted for the VCPU i << 3868 Logical accesses are permitted for non-protec << 3869 << 3870 Supported flags: << 3871 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` << 3872 * ``KVM_S390_MEMOP_F_INJECT_EXCEPTION`` << 3873 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` << 3874 << 3875 The KVM_S390_MEMOP_F_CHECK_ONLY flag can be s << 3876 corresponding memory access would cause an ac << 3877 no actual access to the data in memory at the << 3878 In this case, "buf" is unused and can be NULL << 3879 << 3880 In case an access exception occurred during t << 3881 in case of KVM_S390_MEMOP_F_CHECK_ONLY), the << 3882 error number indicating the type of exception << 3883 raised directly at the corresponding VCPU if << 3884 KVM_S390_MEMOP_F_INJECT_EXCEPTION is set. << 3885 On protection exceptions, unless specified ot << 3886 translation-exception identifier (TEID) indic << 3887 << 3888 If the KVM_S390_MEMOP_F_SKEY_PROTECTION flag << 3889 protection is also in effect and may cause ex << 3890 prohibited given the access key designated by << 3891 KVM_S390_MEMOP_F_SKEY_PROTECTION is available << 3892 is > 0. << 3893 Since the accessed memory may span multiple p << 3894 different storage keys, it is possible that a << 3895 after memory has been modified. In this case, << 3896 the TEID does not indicate suppression. << 3897 << 3898 Absolute read/write: << 3899 ^^^^^^^^^^^^^^^^^^^^ << 3900 << 3901 Access absolute memory. This operation is int << 3902 KVM_S390_MEMOP_F_SKEY_PROTECTION flag, to all << 3903 the checks required for storage key protectio << 3904 user space getting the storage keys, performi << 3905 memory thereafter, which could lead to a dela << 3906 Absolute accesses are permitted for the VM io << 3907 has the KVM_S390_MEMOP_EXTENSION_CAP_BASE bit << 3908 Currently absolute accesses are not permitted << 3909 Absolute accesses are permitted for non-prote << 3910 << 3911 Supported flags: << 3912 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` << 3913 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` << 3914 << 3915 The semantics of the flags common with logica << 3916 accesses. << 3917 << 3918 Absolute cmpxchg: << 3919 ^^^^^^^^^^^^^^^^^ << 3920 << 3921 Perform cmpxchg on absolute guest memory. Int << 3922 KVM_S390_MEMOP_F_SKEY_PROTECTION flag. << 3923 Instead of doing an unconditional write, the << 3924 location contains the value pointed to by "ol << 3925 This is performed as an atomic cmpxchg with t << 3926 parameter. "size" must be a power of two up t << 3927 If the exchange did not take place because th << 3928 old value, the value "old_addr" points to is << 3929 User space can tell if an exchange took place << 3930 occurred. The cmpxchg op is permitted for the << 3931 KVM_CAP_S390_MEM_OP_EXTENSION has flag KVM_S3 << 3932 << 3933 Supported flags: << 3934 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` << 3935 << 3936 SIDA read/write: << 3937 ^^^^^^^^^^^^^^^^ << 3938 << 3939 Access the secure instruction data area which << 3940 for instruction emulation for protected guest << 3941 SIDA accesses are available if the KVM_CAP_S3 << 3942 SIDA accesses are permitted for the VCPU ioct << 3943 SIDA accesses are permitted for protected gue << 3944 3458 3945 No flags are supported. !! 3459 The "reserved" field is meant for future extensions. It is not used by >> 3460 KVM with the currently defined set of flags. 3946 3461 3947 4.90 KVM_S390_GET_SKEYS 3462 4.90 KVM_S390_GET_SKEYS 3948 ----------------------- 3463 ----------------------- 3949 3464 3950 :Capability: KVM_CAP_S390_SKEYS 3465 :Capability: KVM_CAP_S390_SKEYS 3951 :Architectures: s390 3466 :Architectures: s390 3952 :Type: vm ioctl 3467 :Type: vm ioctl 3953 :Parameters: struct kvm_s390_skeys 3468 :Parameters: struct kvm_s390_skeys 3954 :Returns: 0 on success, KVM_S390_GET_SKEYS_NO !! 3469 :Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage 3955 keys, negative value on error 3470 keys, negative value on error 3956 3471 3957 This ioctl is used to get guest storage key v 3472 This ioctl is used to get guest storage key values on the s390 3958 architecture. The ioctl takes parameters via 3473 architecture. The ioctl takes parameters via the kvm_s390_skeys struct:: 3959 3474 3960 struct kvm_s390_skeys { 3475 struct kvm_s390_skeys { 3961 __u64 start_gfn; 3476 __u64 start_gfn; 3962 __u64 count; 3477 __u64 count; 3963 __u64 skeydata_addr; 3478 __u64 skeydata_addr; 3964 __u32 flags; 3479 __u32 flags; 3965 __u32 reserved[9]; 3480 __u32 reserved[9]; 3966 }; 3481 }; 3967 3482 3968 The start_gfn field is the number of the firs 3483 The start_gfn field is the number of the first guest frame whose storage keys 3969 you want to get. 3484 you want to get. 3970 3485 3971 The count field is the number of consecutive 3486 The count field is the number of consecutive frames (starting from start_gfn) 3972 whose storage keys to get. The count field mu 3487 whose storage keys to get. The count field must be at least 1 and the maximum 3973 allowed value is defined as KVM_S390_SKEYS_MA !! 3488 allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range 3974 will cause the ioctl to return -EINVAL. 3489 will cause the ioctl to return -EINVAL. 3975 3490 3976 The skeydata_addr field is the address to a b 3491 The skeydata_addr field is the address to a buffer large enough to hold count 3977 bytes. This buffer will be filled with storag 3492 bytes. This buffer will be filled with storage key data by the ioctl. 3978 3493 3979 4.91 KVM_S390_SET_SKEYS 3494 4.91 KVM_S390_SET_SKEYS 3980 ----------------------- 3495 ----------------------- 3981 3496 3982 :Capability: KVM_CAP_S390_SKEYS 3497 :Capability: KVM_CAP_S390_SKEYS 3983 :Architectures: s390 3498 :Architectures: s390 3984 :Type: vm ioctl 3499 :Type: vm ioctl 3985 :Parameters: struct kvm_s390_skeys 3500 :Parameters: struct kvm_s390_skeys 3986 :Returns: 0 on success, negative value on err 3501 :Returns: 0 on success, negative value on error 3987 3502 3988 This ioctl is used to set guest storage key v 3503 This ioctl is used to set guest storage key values on the s390 3989 architecture. The ioctl takes parameters via 3504 architecture. The ioctl takes parameters via the kvm_s390_skeys struct. 3990 See section on KVM_S390_GET_SKEYS for struct 3505 See section on KVM_S390_GET_SKEYS for struct definition. 3991 3506 3992 The start_gfn field is the number of the firs 3507 The start_gfn field is the number of the first guest frame whose storage keys 3993 you want to set. 3508 you want to set. 3994 3509 3995 The count field is the number of consecutive 3510 The count field is the number of consecutive frames (starting from start_gfn) 3996 whose storage keys to get. The count field mu 3511 whose storage keys to get. The count field must be at least 1 and the maximum 3997 allowed value is defined as KVM_S390_SKEYS_MA !! 3512 allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range 3998 will cause the ioctl to return -EINVAL. 3513 will cause the ioctl to return -EINVAL. 3999 3514 4000 The skeydata_addr field is the address to a b 3515 The skeydata_addr field is the address to a buffer containing count bytes of 4001 storage keys. Each byte in the buffer will be 3516 storage keys. Each byte in the buffer will be set as the storage key for a 4002 single frame starting at start_gfn for count 3517 single frame starting at start_gfn for count frames. 4003 3518 4004 Note: If any architecturally invalid key valu 3519 Note: If any architecturally invalid key value is found in the given data then 4005 the ioctl will return -EINVAL. 3520 the ioctl will return -EINVAL. 4006 3521 4007 4.92 KVM_S390_IRQ 3522 4.92 KVM_S390_IRQ 4008 ----------------- 3523 ----------------- 4009 3524 4010 :Capability: KVM_CAP_S390_INJECT_IRQ 3525 :Capability: KVM_CAP_S390_INJECT_IRQ 4011 :Architectures: s390 3526 :Architectures: s390 4012 :Type: vcpu ioctl 3527 :Type: vcpu ioctl 4013 :Parameters: struct kvm_s390_irq (in) 3528 :Parameters: struct kvm_s390_irq (in) 4014 :Returns: 0 on success, -1 on error 3529 :Returns: 0 on success, -1 on error 4015 3530 4016 Errors: 3531 Errors: 4017 3532 4018 3533 4019 ====== =================================== 3534 ====== ================================================================= 4020 EINVAL interrupt type is invalid 3535 EINVAL interrupt type is invalid 4021 type is KVM_S390_SIGP_STOP and flag 3536 type is KVM_S390_SIGP_STOP and flag parameter is invalid value, 4022 type is KVM_S390_INT_EXTERNAL_CALL 3537 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger 4023 than the maximum of VCPUs 3538 than the maximum of VCPUs 4024 EBUSY type is KVM_S390_SIGP_SET_PREFIX an 3539 EBUSY type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped, 4025 type is KVM_S390_SIGP_STOP and a st 3540 type is KVM_S390_SIGP_STOP and a stop irq is already pending, 4026 type is KVM_S390_INT_EXTERNAL_CALL 3541 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt 4027 is already pending 3542 is already pending 4028 ====== =================================== 3543 ====== ================================================================= 4029 3544 4030 Allows to inject an interrupt to the guest. 3545 Allows to inject an interrupt to the guest. 4031 3546 4032 Using struct kvm_s390_irq as a parameter allo 3547 Using struct kvm_s390_irq as a parameter allows 4033 to inject additional payload which is not 3548 to inject additional payload which is not 4034 possible via KVM_S390_INTERRUPT. 3549 possible via KVM_S390_INTERRUPT. 4035 3550 4036 Interrupt parameters are passed via kvm_s390_ 3551 Interrupt parameters are passed via kvm_s390_irq:: 4037 3552 4038 struct kvm_s390_irq { 3553 struct kvm_s390_irq { 4039 __u64 type; 3554 __u64 type; 4040 union { 3555 union { 4041 struct kvm_s390_io_info io; 3556 struct kvm_s390_io_info io; 4042 struct kvm_s390_ext_info ext; 3557 struct kvm_s390_ext_info ext; 4043 struct kvm_s390_pgm_info pgm; 3558 struct kvm_s390_pgm_info pgm; 4044 struct kvm_s390_emerg_info em 3559 struct kvm_s390_emerg_info emerg; 4045 struct kvm_s390_extcall_info 3560 struct kvm_s390_extcall_info extcall; 4046 struct kvm_s390_prefix_info p 3561 struct kvm_s390_prefix_info prefix; 4047 struct kvm_s390_stop_info sto 3562 struct kvm_s390_stop_info stop; 4048 struct kvm_s390_mchk_info mch 3563 struct kvm_s390_mchk_info mchk; 4049 char reserved[64]; 3564 char reserved[64]; 4050 } u; 3565 } u; 4051 }; 3566 }; 4052 3567 4053 type can be one of the following: 3568 type can be one of the following: 4054 3569 4055 - KVM_S390_SIGP_STOP - sigp stop; parameter i 3570 - KVM_S390_SIGP_STOP - sigp stop; parameter in .stop 4056 - KVM_S390_PROGRAM_INT - program check; param 3571 - KVM_S390_PROGRAM_INT - program check; parameters in .pgm 4057 - KVM_S390_SIGP_SET_PREFIX - sigp set prefix; 3572 - KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix 4058 - KVM_S390_RESTART - restart; no parameters 3573 - KVM_S390_RESTART - restart; no parameters 4059 - KVM_S390_INT_CLOCK_COMP - clock comparator 3574 - KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters 4060 - KVM_S390_INT_CPU_TIMER - CPU timer interrup 3575 - KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters 4061 - KVM_S390_INT_EMERGENCY - sigp emergency; pa 3576 - KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg 4062 - KVM_S390_INT_EXTERNAL_CALL - sigp external 3577 - KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall 4063 - KVM_S390_MCHK - machine check interrupt; pa 3578 - KVM_S390_MCHK - machine check interrupt; parameters in .mchk 4064 3579 4065 This is an asynchronous vcpu ioctl and can be 3580 This is an asynchronous vcpu ioctl and can be invoked from any thread. 4066 3581 4067 4.94 KVM_S390_GET_IRQ_STATE 3582 4.94 KVM_S390_GET_IRQ_STATE 4068 --------------------------- 3583 --------------------------- 4069 3584 4070 :Capability: KVM_CAP_S390_IRQ_STATE 3585 :Capability: KVM_CAP_S390_IRQ_STATE 4071 :Architectures: s390 3586 :Architectures: s390 4072 :Type: vcpu ioctl 3587 :Type: vcpu ioctl 4073 :Parameters: struct kvm_s390_irq_state (out) 3588 :Parameters: struct kvm_s390_irq_state (out) 4074 :Returns: >= number of bytes copied into buff 3589 :Returns: >= number of bytes copied into buffer, 4075 -EINVAL if buffer size is 0, 3590 -EINVAL if buffer size is 0, 4076 -ENOBUFS if buffer size is too smal 3591 -ENOBUFS if buffer size is too small to fit all pending interrupts, 4077 -EFAULT if the buffer address was i 3592 -EFAULT if the buffer address was invalid 4078 3593 4079 This ioctl allows userspace to retrieve the c 3594 This ioctl allows userspace to retrieve the complete state of all currently 4080 pending interrupts in a single buffer. Use ca 3595 pending interrupts in a single buffer. Use cases include migration 4081 and introspection. The parameter structure co 3596 and introspection. The parameter structure contains the address of a 4082 userspace buffer and its length:: 3597 userspace buffer and its length:: 4083 3598 4084 struct kvm_s390_irq_state { 3599 struct kvm_s390_irq_state { 4085 __u64 buf; 3600 __u64 buf; 4086 __u32 flags; /* will stay unus 3601 __u32 flags; /* will stay unused for compatibility reasons */ 4087 __u32 len; 3602 __u32 len; 4088 __u32 reserved[4]; /* will stay unus 3603 __u32 reserved[4]; /* will stay unused for compatibility reasons */ 4089 }; 3604 }; 4090 3605 4091 Userspace passes in the above struct and for 3606 Userspace passes in the above struct and for each pending interrupt a 4092 struct kvm_s390_irq is copied to the provided 3607 struct kvm_s390_irq is copied to the provided buffer. 4093 3608 4094 The structure contains a flags and a reserved 3609 The structure contains a flags and a reserved field for future extensions. As 4095 the kernel never checked for flags == 0 and Q 3610 the kernel never checked for flags == 0 and QEMU never pre-zeroed flags and 4096 reserved, these fields can not be used in the 3611 reserved, these fields can not be used in the future without breaking 4097 compatibility. 3612 compatibility. 4098 3613 4099 If -ENOBUFS is returned the buffer provided w 3614 If -ENOBUFS is returned the buffer provided was too small and userspace 4100 may retry with a bigger buffer. 3615 may retry with a bigger buffer. 4101 3616 4102 4.95 KVM_S390_SET_IRQ_STATE 3617 4.95 KVM_S390_SET_IRQ_STATE 4103 --------------------------- 3618 --------------------------- 4104 3619 4105 :Capability: KVM_CAP_S390_IRQ_STATE 3620 :Capability: KVM_CAP_S390_IRQ_STATE 4106 :Architectures: s390 3621 :Architectures: s390 4107 :Type: vcpu ioctl 3622 :Type: vcpu ioctl 4108 :Parameters: struct kvm_s390_irq_state (in) 3623 :Parameters: struct kvm_s390_irq_state (in) 4109 :Returns: 0 on success, 3624 :Returns: 0 on success, 4110 -EFAULT if the buffer address was i 3625 -EFAULT if the buffer address was invalid, 4111 -EINVAL for an invalid buffer lengt 3626 -EINVAL for an invalid buffer length (see below), 4112 -EBUSY if there were already interr 3627 -EBUSY if there were already interrupts pending, 4113 errors occurring when actually inje 3628 errors occurring when actually injecting the 4114 interrupt. See KVM_S390_IRQ. 3629 interrupt. See KVM_S390_IRQ. 4115 3630 4116 This ioctl allows userspace to set the comple 3631 This ioctl allows userspace to set the complete state of all cpu-local 4117 interrupts currently pending for the vcpu. It 3632 interrupts currently pending for the vcpu. It is intended for restoring 4118 interrupt state after a migration. The input 3633 interrupt state after a migration. The input parameter is a userspace buffer 4119 containing a struct kvm_s390_irq_state:: 3634 containing a struct kvm_s390_irq_state:: 4120 3635 4121 struct kvm_s390_irq_state { 3636 struct kvm_s390_irq_state { 4122 __u64 buf; 3637 __u64 buf; 4123 __u32 flags; /* will stay unus 3638 __u32 flags; /* will stay unused for compatibility reasons */ 4124 __u32 len; 3639 __u32 len; 4125 __u32 reserved[4]; /* will stay unus 3640 __u32 reserved[4]; /* will stay unused for compatibility reasons */ 4126 }; 3641 }; 4127 3642 4128 The restrictions for flags and reserved apply 3643 The restrictions for flags and reserved apply as well. 4129 (see KVM_S390_GET_IRQ_STATE) 3644 (see KVM_S390_GET_IRQ_STATE) 4130 3645 4131 The userspace memory referenced by buf contai 3646 The userspace memory referenced by buf contains a struct kvm_s390_irq 4132 for each interrupt to be injected into the gu 3647 for each interrupt to be injected into the guest. 4133 If one of the interrupts could not be injecte 3648 If one of the interrupts could not be injected for some reason the 4134 ioctl aborts. 3649 ioctl aborts. 4135 3650 4136 len must be a multiple of sizeof(struct kvm_s 3651 len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0 4137 and it must not exceed (max_vcpus + 32) * siz 3652 and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq), 4138 which is the maximum number of possibly pendi 3653 which is the maximum number of possibly pending cpu-local interrupts. 4139 3654 4140 4.96 KVM_SMI 3655 4.96 KVM_SMI 4141 ------------ 3656 ------------ 4142 3657 4143 :Capability: KVM_CAP_X86_SMM 3658 :Capability: KVM_CAP_X86_SMM 4144 :Architectures: x86 3659 :Architectures: x86 4145 :Type: vcpu ioctl 3660 :Type: vcpu ioctl 4146 :Parameters: none 3661 :Parameters: none 4147 :Returns: 0 on success, -1 on error 3662 :Returns: 0 on success, -1 on error 4148 3663 4149 Queues an SMI on the thread's vcpu. 3664 Queues an SMI on the thread's vcpu. 4150 3665 4151 4.97 KVM_X86_SET_MSR_FILTER !! 3666 4.97 KVM_CAP_PPC_MULTITCE 4152 ---------------------------- !! 3667 ------------------------- 4153 << 4154 :Capability: KVM_CAP_X86_MSR_FILTER << 4155 :Architectures: x86 << 4156 :Type: vm ioctl << 4157 :Parameters: struct kvm_msr_filter << 4158 :Returns: 0 on success, < 0 on error << 4159 << 4160 :: << 4161 << 4162 struct kvm_msr_filter_range { << 4163 #define KVM_MSR_FILTER_READ (1 << 0) << 4164 #define KVM_MSR_FILTER_WRITE (1 << 1) << 4165 __u32 flags; << 4166 __u32 nmsrs; /* number of msrs in bit << 4167 __u32 base; /* MSR index the bitmap << 4168 __u8 *bitmap; /* a 1 bit allows the o << 4169 }; << 4170 << 4171 #define KVM_MSR_FILTER_MAX_RANGES 16 << 4172 struct kvm_msr_filter { << 4173 #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << << 4174 #define KVM_MSR_FILTER_DEFAULT_DENY (1 << << 4175 __u32 flags; << 4176 struct kvm_msr_filter_range ranges[KV << 4177 }; << 4178 << 4179 flags values for ``struct kvm_msr_filter_rang << 4180 << 4181 ``KVM_MSR_FILTER_READ`` << 4182 << 4183 Filter read accesses to MSRs using the give << 4184 indicates that read accesses should be deni << 4185 a read for a particular MSR should be allow << 4186 filter action. << 4187 << 4188 ``KVM_MSR_FILTER_WRITE`` << 4189 << 4190 Filter write accesses to MSRs using the giv << 4191 indicates that write accesses should be den << 4192 a write for a particular MSR should be allo << 4193 filter action. << 4194 << 4195 flags values for ``struct kvm_msr_filter``: << 4196 << 4197 ``KVM_MSR_FILTER_DEFAULT_ALLOW`` << 4198 << 4199 If no filter range matches an MSR index tha << 4200 allow accesses to all MSRs by default. << 4201 << 4202 ``KVM_MSR_FILTER_DEFAULT_DENY`` << 4203 << 4204 If no filter range matches an MSR index tha << 4205 deny accesses to all MSRs by default. << 4206 << 4207 This ioctl allows userspace to define up to 1 << 4208 guest MSR accesses that would normally be all << 4209 covered by a specific range, the "default" fi << 4210 bitmap range covers MSRs from [base .. base+n << 4211 << 4212 If an MSR access is denied by userspace, the << 4213 whether or not KVM_CAP_X86_USER_SPACE_MSR's K << 4214 enabled. If KVM_MSR_EXIT_REASON_FILTER is en << 4215 on denied accesses, i.e. userspace effectivel << 4216 KVM_MSR_EXIT_REASON_FILTER is not enabled, KV << 4217 on denied accesses. Note, if an MSR access i << 4218 load/stores during VMX transitions, KVM ignor << 4219 See the below warning for full details. << 4220 << 4221 If an MSR access is allowed by userspace, KVM << 4222 the access in accordance with the vCPU model. << 4223 inject a #GP if an access is allowed by users << 4224 the MSR, or to follow architectural behavior << 4225 << 4226 By default, KVM operates in KVM_MSR_FILTER_DE << 4227 filters. << 4228 3668 4229 Calling this ioctl with an empty set of range !! 3669 :Capability: KVM_CAP_PPC_MULTITCE 4230 filtering. In that mode, ``KVM_MSR_FILTER_DEF !! 3670 :Architectures: ppc 4231 an error. !! 3671 :Type: vm 4232 3672 4233 .. warning:: !! 3673 This capability means the kernel is capable of handling hypercalls 4234 MSR accesses that are side effects of inst !! 3674 H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user 4235 native) are not filtered as hardware does !! 3675 space. This significantly accelerates DMA operations for PPC KVM guests. 4236 RDMSR and WRMSR, and KVM mimics that behav !! 3676 User space should expect that its handlers for these hypercalls 4237 to avoid pointless divergence from hardwar !! 3677 are not going to be called if user space previously registered LIOBN 4238 SYSENTER reads the SYSENTER MSRs, etc. !! 3678 in KVM (via KVM_CREATE_SPAPR_TCE or similar calls). 4239 << 4240 MSRs that are loaded/stored via dedicated << 4241 part of VM-Enter/VM-Exit emulation. << 4242 << 4243 MSRs that are loaded/store via VMX's load/ << 4244 of VM-Enter/VM-Exit emulation. If an MSR << 4245 synthesizes a consistency check VM-Exit(EX << 4246 MSR access is denied on VM-Exit, KVM synth << 4247 extends Intel's architectural list of MSRs << 4248 the VM-Enter/VM-Exit MSR list. It is plat << 4249 to communicate any such restrictions to th << 4250 3679 4251 x2APIC MSR accesses cannot be filtered (KV !! 3680 In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest, 4252 cover any x2APIC MSRs). !! 3681 user space might have to advertise it for the guest. For example, >> 3682 IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is >> 3683 present in the "ibm,hypertas-functions" device-tree property. 4253 3684 4254 Note, invoking this ioctl while a vCPU is run !! 3685 The hypercalls mentioned above may or may not be processed successfully 4255 KVM does guarantee that vCPUs will see either !! 3686 in the kernel based fast path. If they can not be handled by the kernel, 4256 filter, e.g. MSRs with identical settings in !! 3687 they will get passed on to user space. So user space still has to have 4257 have deterministic behavior. !! 3688 an implementation for these despite the in kernel acceleration. 4258 3689 4259 Similarly, if userspace wishes to intercept o !! 3690 This capability is always enabled. 4260 KVM_MSR_EXIT_REASON_FILTER must be enabled be << 4261 left enabled until after all filters are deac << 4262 result in KVM injecting a #GP instead of exit << 4263 3691 4264 4.98 KVM_CREATE_SPAPR_TCE_64 3692 4.98 KVM_CREATE_SPAPR_TCE_64 4265 ---------------------------- 3693 ---------------------------- 4266 3694 4267 :Capability: KVM_CAP_SPAPR_TCE_64 3695 :Capability: KVM_CAP_SPAPR_TCE_64 4268 :Architectures: powerpc 3696 :Architectures: powerpc 4269 :Type: vm ioctl 3697 :Type: vm ioctl 4270 :Parameters: struct kvm_create_spapr_tce_64 ( 3698 :Parameters: struct kvm_create_spapr_tce_64 (in) 4271 :Returns: file descriptor for manipulating th 3699 :Returns: file descriptor for manipulating the created TCE table 4272 3700 4273 This is an extension for KVM_CAP_SPAPR_TCE wh 3701 This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit 4274 windows, described in 4.62 KVM_CREATE_SPAPR_T 3702 windows, described in 4.62 KVM_CREATE_SPAPR_TCE 4275 3703 4276 This capability uses extended struct in ioctl 3704 This capability uses extended struct in ioctl interface:: 4277 3705 4278 /* for KVM_CAP_SPAPR_TCE_64 */ 3706 /* for KVM_CAP_SPAPR_TCE_64 */ 4279 struct kvm_create_spapr_tce_64 { 3707 struct kvm_create_spapr_tce_64 { 4280 __u64 liobn; 3708 __u64 liobn; 4281 __u32 page_shift; 3709 __u32 page_shift; 4282 __u32 flags; 3710 __u32 flags; 4283 __u64 offset; /* in pages */ 3711 __u64 offset; /* in pages */ 4284 __u64 size; /* in pages */ 3712 __u64 size; /* in pages */ 4285 }; 3713 }; 4286 3714 4287 The aim of extension is to support an additio 3715 The aim of extension is to support an additional bigger DMA window with 4288 a variable page size. 3716 a variable page size. 4289 KVM_CREATE_SPAPR_TCE_64 receives a 64bit wind 3717 KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and 4290 a bus offset of the corresponding DMA window, 3718 a bus offset of the corresponding DMA window, @size and @offset are numbers 4291 of IOMMU pages. 3719 of IOMMU pages. 4292 3720 4293 @flags are not used at the moment. 3721 @flags are not used at the moment. 4294 3722 4295 The rest of functionality is identical to KVM 3723 The rest of functionality is identical to KVM_CREATE_SPAPR_TCE. 4296 3724 4297 4.99 KVM_REINJECT_CONTROL 3725 4.99 KVM_REINJECT_CONTROL 4298 ------------------------- 3726 ------------------------- 4299 3727 4300 :Capability: KVM_CAP_REINJECT_CONTROL 3728 :Capability: KVM_CAP_REINJECT_CONTROL 4301 :Architectures: x86 3729 :Architectures: x86 4302 :Type: vm ioctl 3730 :Type: vm ioctl 4303 :Parameters: struct kvm_reinject_control (in) 3731 :Parameters: struct kvm_reinject_control (in) 4304 :Returns: 0 on success, 3732 :Returns: 0 on success, 4305 -EFAULT if struct kvm_reinject_contr 3733 -EFAULT if struct kvm_reinject_control cannot be read, 4306 -ENXIO if KVM_CREATE_PIT or KVM_CREA 3734 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier. 4307 3735 4308 i8254 (PIT) has two modes, reinject and !rein 3736 i8254 (PIT) has two modes, reinject and !reinject. The default is reinject, 4309 where KVM queues elapsed i8254 ticks and moni 3737 where KVM queues elapsed i8254 ticks and monitors completion of interrupt from 4310 vector(s) that i8254 injects. Reinject mode 3738 vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its 4311 interrupt whenever there isn't a pending inte 3739 interrupt whenever there isn't a pending interrupt from i8254. 4312 !reinject mode injects an interrupt as soon a 3740 !reinject mode injects an interrupt as soon as a tick arrives. 4313 3741 4314 :: 3742 :: 4315 3743 4316 struct kvm_reinject_control { 3744 struct kvm_reinject_control { 4317 __u8 pit_reinject; 3745 __u8 pit_reinject; 4318 __u8 reserved[31]; 3746 __u8 reserved[31]; 4319 }; 3747 }; 4320 3748 4321 pit_reinject = 0 (!reinject mode) is recommen 3749 pit_reinject = 0 (!reinject mode) is recommended, unless running an old 4322 operating system that uses the PIT for timing 3750 operating system that uses the PIT for timing (e.g. Linux 2.4.x). 4323 3751 4324 4.100 KVM_PPC_CONFIGURE_V3_MMU 3752 4.100 KVM_PPC_CONFIGURE_V3_MMU 4325 ------------------------------ 3753 ------------------------------ 4326 3754 4327 :Capability: KVM_CAP_PPC_MMU_RADIX or KVM_CAP !! 3755 :Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3 4328 :Architectures: ppc 3756 :Architectures: ppc 4329 :Type: vm ioctl 3757 :Type: vm ioctl 4330 :Parameters: struct kvm_ppc_mmuv3_cfg (in) 3758 :Parameters: struct kvm_ppc_mmuv3_cfg (in) 4331 :Returns: 0 on success, 3759 :Returns: 0 on success, 4332 -EFAULT if struct kvm_ppc_mmuv3_cfg 3760 -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read, 4333 -EINVAL if the configuration is inva 3761 -EINVAL if the configuration is invalid 4334 3762 4335 This ioctl controls whether the guest will us 3763 This ioctl controls whether the guest will use radix or HPT (hashed 4336 page table) translation, and sets the pointer 3764 page table) translation, and sets the pointer to the process table for 4337 the guest. 3765 the guest. 4338 3766 4339 :: 3767 :: 4340 3768 4341 struct kvm_ppc_mmuv3_cfg { 3769 struct kvm_ppc_mmuv3_cfg { 4342 __u64 flags; 3770 __u64 flags; 4343 __u64 process_table; 3771 __u64 process_table; 4344 }; 3772 }; 4345 3773 4346 There are two bits that can be set in flags; 3774 There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and 4347 KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if 3775 KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest 4348 to use radix tree translation, and if clear, 3776 to use radix tree translation, and if clear, to use HPT translation. 4349 KVM_PPC_MMUV3_GTSE, if set and if KVM permits 3777 KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest 4350 to be able to use the global TLB and SLB inva 3778 to be able to use the global TLB and SLB invalidation instructions; 4351 if clear, the guest may not use these instruc 3779 if clear, the guest may not use these instructions. 4352 3780 4353 The process_table field specifies the address 3781 The process_table field specifies the address and size of the guest 4354 process table, which is in the guest's space. 3782 process table, which is in the guest's space. This field is formatted 4355 as the second doubleword of the partition tab 3783 as the second doubleword of the partition table entry, as defined in 4356 the Power ISA V3.00, Book III section 5.7.6.1 3784 the Power ISA V3.00, Book III section 5.7.6.1. 4357 3785 4358 4.101 KVM_PPC_GET_RMMU_INFO 3786 4.101 KVM_PPC_GET_RMMU_INFO 4359 --------------------------- 3787 --------------------------- 4360 3788 4361 :Capability: KVM_CAP_PPC_MMU_RADIX !! 3789 :Capability: KVM_CAP_PPC_RADIX_MMU 4362 :Architectures: ppc 3790 :Architectures: ppc 4363 :Type: vm ioctl 3791 :Type: vm ioctl 4364 :Parameters: struct kvm_ppc_rmmu_info (out) 3792 :Parameters: struct kvm_ppc_rmmu_info (out) 4365 :Returns: 0 on success, 3793 :Returns: 0 on success, 4366 -EFAULT if struct kvm_ppc_rmmu_info 3794 -EFAULT if struct kvm_ppc_rmmu_info cannot be written, 4367 -EINVAL if no useful information can 3795 -EINVAL if no useful information can be returned 4368 3796 4369 This ioctl returns a structure containing two 3797 This ioctl returns a structure containing two things: (a) a list 4370 containing supported radix tree geometries, a 3798 containing supported radix tree geometries, and (b) a list that maps 4371 page sizes to put in the "AP" (actual page si 3799 page sizes to put in the "AP" (actual page size) field for the tlbie 4372 (TLB invalidate entry) instruction. 3800 (TLB invalidate entry) instruction. 4373 3801 4374 :: 3802 :: 4375 3803 4376 struct kvm_ppc_rmmu_info { 3804 struct kvm_ppc_rmmu_info { 4377 struct kvm_ppc_radix_geom { 3805 struct kvm_ppc_radix_geom { 4378 __u8 page_shift; 3806 __u8 page_shift; 4379 __u8 level_bits[4]; 3807 __u8 level_bits[4]; 4380 __u8 pad[3]; 3808 __u8 pad[3]; 4381 } geometries[8]; 3809 } geometries[8]; 4382 __u32 ap_encodings[8]; 3810 __u32 ap_encodings[8]; 4383 }; 3811 }; 4384 3812 4385 The geometries[] field gives up to 8 supporte 3813 The geometries[] field gives up to 8 supported geometries for the 4386 radix page table, in terms of the log base 2 3814 radix page table, in terms of the log base 2 of the smallest page 4387 size, and the number of bits indexed at each 3815 size, and the number of bits indexed at each level of the tree, from 4388 the PTE level up to the PGD level in that ord 3816 the PTE level up to the PGD level in that order. Any unused entries 4389 will have 0 in the page_shift field. 3817 will have 0 in the page_shift field. 4390 3818 4391 The ap_encodings gives the supported page siz 3819 The ap_encodings gives the supported page sizes and their AP field 4392 encodings, encoded with the AP value in the t 3820 encodings, encoded with the AP value in the top 3 bits and the log 4393 base 2 of the page size in the bottom 6 bits. 3821 base 2 of the page size in the bottom 6 bits. 4394 3822 4395 4.102 KVM_PPC_RESIZE_HPT_PREPARE 3823 4.102 KVM_PPC_RESIZE_HPT_PREPARE 4396 -------------------------------- 3824 -------------------------------- 4397 3825 4398 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 3826 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4399 :Architectures: powerpc 3827 :Architectures: powerpc 4400 :Type: vm ioctl 3828 :Type: vm ioctl 4401 :Parameters: struct kvm_ppc_resize_hpt (in) 3829 :Parameters: struct kvm_ppc_resize_hpt (in) 4402 :Returns: 0 on successful completion, 3830 :Returns: 0 on successful completion, 4403 >0 if a new HPT is being prepared, t 3831 >0 if a new HPT is being prepared, the value is an estimated 4404 number of milliseconds until prepara 3832 number of milliseconds until preparation is complete, 4405 -EFAULT if struct kvm_reinject_contr 3833 -EFAULT if struct kvm_reinject_control cannot be read, 4406 -EINVAL if the supplied shift or fla 3834 -EINVAL if the supplied shift or flags are invalid, 4407 -ENOMEM if unable to allocate the ne 3835 -ENOMEM if unable to allocate the new HPT, >> 3836 -ENOSPC if there was a hash collision >> 3837 >> 3838 :: >> 3839 >> 3840 struct kvm_ppc_rmmu_info { >> 3841 struct kvm_ppc_radix_geom { >> 3842 __u8 page_shift; >> 3843 __u8 level_bits[4]; >> 3844 __u8 pad[3]; >> 3845 } geometries[8]; >> 3846 __u32 ap_encodings[8]; >> 3847 }; >> 3848 >> 3849 The geometries[] field gives up to 8 supported geometries for the >> 3850 radix page table, in terms of the log base 2 of the smallest page >> 3851 size, and the number of bits indexed at each level of the tree, from >> 3852 the PTE level up to the PGD level in that order. Any unused entries >> 3853 will have 0 in the page_shift field. >> 3854 >> 3855 The ap_encodings gives the supported page sizes and their AP field >> 3856 encodings, encoded with the AP value in the top 3 bits and the log >> 3857 base 2 of the page size in the bottom 6 bits. >> 3858 >> 3859 4.102 KVM_PPC_RESIZE_HPT_PREPARE >> 3860 -------------------------------- >> 3861 >> 3862 :Capability: KVM_CAP_SPAPR_RESIZE_HPT >> 3863 :Architectures: powerpc >> 3864 :Type: vm ioctl >> 3865 :Parameters: struct kvm_ppc_resize_hpt (in) >> 3866 :Returns: 0 on successful completion, >> 3867 >0 if a new HPT is being prepared, the value is an estimated >> 3868 number of milliseconds until preparation is complete, >> 3869 -EFAULT if struct kvm_reinject_control cannot be read, >> 3870 -EINVAL if the supplied shift or flags are invalid,when moving existing >> 3871 HPT entries to the new HPT, >> 3872 -EIO on other error conditions 4408 3873 4409 Used to implement the PAPR extension for runt 3874 Used to implement the PAPR extension for runtime resizing of a guest's 4410 Hashed Page Table (HPT). Specifically this s 3875 Hashed Page Table (HPT). Specifically this starts, stops or monitors 4411 the preparation of a new potential HPT for th 3876 the preparation of a new potential HPT for the guest, essentially 4412 implementing the H_RESIZE_HPT_PREPARE hyperca 3877 implementing the H_RESIZE_HPT_PREPARE hypercall. 4413 3878 4414 :: << 4415 << 4416 struct kvm_ppc_resize_hpt { << 4417 __u64 flags; << 4418 __u32 shift; << 4419 __u32 pad; << 4420 }; << 4421 << 4422 If called with shift > 0 when there is no pen 3879 If called with shift > 0 when there is no pending HPT for the guest, 4423 this begins preparation of a new pending HPT 3880 this begins preparation of a new pending HPT of size 2^(shift) bytes. 4424 It then returns a positive integer with the e 3881 It then returns a positive integer with the estimated number of 4425 milliseconds until preparation is complete. 3882 milliseconds until preparation is complete. 4426 3883 4427 If called when there is a pending HPT whose s 3884 If called when there is a pending HPT whose size does not match that 4428 requested in the parameters, discards the exi 3885 requested in the parameters, discards the existing pending HPT and 4429 creates a new one as above. 3886 creates a new one as above. 4430 3887 4431 If called when there is a pending HPT of the 3888 If called when there is a pending HPT of the size requested, will: 4432 3889 4433 * If preparation of the pending HPT is alre 3890 * If preparation of the pending HPT is already complete, return 0 4434 * If preparation of the pending HPT has fai 3891 * If preparation of the pending HPT has failed, return an error 4435 code, then discard the pending HPT. 3892 code, then discard the pending HPT. 4436 * If preparation of the pending HPT is stil 3893 * If preparation of the pending HPT is still in progress, return an 4437 estimated number of milliseconds until pr 3894 estimated number of milliseconds until preparation is complete. 4438 3895 4439 If called with shift == 0, discards any curre 3896 If called with shift == 0, discards any currently pending HPT and 4440 returns 0 (i.e. cancels any in-progress prepa 3897 returns 0 (i.e. cancels any in-progress preparation). 4441 3898 4442 flags is reserved for future expansion, curre 3899 flags is reserved for future expansion, currently setting any bits in 4443 flags will result in an -EINVAL. 3900 flags will result in an -EINVAL. 4444 3901 4445 Normally this will be called repeatedly with 3902 Normally this will be called repeatedly with the same parameters until 4446 it returns <= 0. The first call will initiat 3903 it returns <= 0. The first call will initiate preparation, subsequent 4447 ones will monitor preparation until it comple 3904 ones will monitor preparation until it completes or fails. 4448 3905 >> 3906 :: >> 3907 >> 3908 struct kvm_ppc_resize_hpt { >> 3909 __u64 flags; >> 3910 __u32 shift; >> 3911 __u32 pad; >> 3912 }; >> 3913 4449 4.103 KVM_PPC_RESIZE_HPT_COMMIT 3914 4.103 KVM_PPC_RESIZE_HPT_COMMIT 4450 ------------------------------- 3915 ------------------------------- 4451 3916 4452 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 3917 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4453 :Architectures: powerpc 3918 :Architectures: powerpc 4454 :Type: vm ioctl 3919 :Type: vm ioctl 4455 :Parameters: struct kvm_ppc_resize_hpt (in) 3920 :Parameters: struct kvm_ppc_resize_hpt (in) 4456 :Returns: 0 on successful completion, 3921 :Returns: 0 on successful completion, 4457 -EFAULT if struct kvm_reinject_contr 3922 -EFAULT if struct kvm_reinject_control cannot be read, 4458 -EINVAL if the supplied shift or fla 3923 -EINVAL if the supplied shift or flags are invalid, 4459 -ENXIO is there is no pending HPT, o 3924 -ENXIO is there is no pending HPT, or the pending HPT doesn't 4460 have the requested size, 3925 have the requested size, 4461 -EBUSY if the pending HPT is not ful 3926 -EBUSY if the pending HPT is not fully prepared, 4462 -ENOSPC if there was a hash collisio 3927 -ENOSPC if there was a hash collision when moving existing 4463 HPT entries to the new HPT, 3928 HPT entries to the new HPT, 4464 -EIO on other error conditions 3929 -EIO on other error conditions 4465 3930 4466 Used to implement the PAPR extension for runt 3931 Used to implement the PAPR extension for runtime resizing of a guest's 4467 Hashed Page Table (HPT). Specifically this r 3932 Hashed Page Table (HPT). Specifically this requests that the guest be 4468 transferred to working with the new HPT, esse 3933 transferred to working with the new HPT, essentially implementing the 4469 H_RESIZE_HPT_COMMIT hypercall. 3934 H_RESIZE_HPT_COMMIT hypercall. 4470 3935 4471 :: << 4472 << 4473 struct kvm_ppc_resize_hpt { << 4474 __u64 flags; << 4475 __u32 shift; << 4476 __u32 pad; << 4477 }; << 4478 << 4479 This should only be called after KVM_PPC_RESI 3936 This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has 4480 returned 0 with the same parameters. In othe 3937 returned 0 with the same parameters. In other cases 4481 KVM_PPC_RESIZE_HPT_COMMIT will return an erro 3938 KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or 4482 -EBUSY, though others may be possible if the 3939 -EBUSY, though others may be possible if the preparation was started, 4483 but failed). 3940 but failed). 4484 3941 4485 This will have undefined effects on the guest 3942 This will have undefined effects on the guest if it has not already 4486 placed itself in a quiescent state where no v 3943 placed itself in a quiescent state where no vcpu will make MMU enabled 4487 memory accesses. 3944 memory accesses. 4488 3945 4489 On successful completion, the pending HPT wil !! 3946 On succsful completion, the pending HPT will become the guest's active 4490 HPT and the previous HPT will be discarded. 3947 HPT and the previous HPT will be discarded. 4491 3948 4492 On failure, the guest will still be operating 3949 On failure, the guest will still be operating on its previous HPT. 4493 3950 >> 3951 :: >> 3952 >> 3953 struct kvm_ppc_resize_hpt { >> 3954 __u64 flags; >> 3955 __u32 shift; >> 3956 __u32 pad; >> 3957 }; >> 3958 4494 4.104 KVM_X86_GET_MCE_CAP_SUPPORTED 3959 4.104 KVM_X86_GET_MCE_CAP_SUPPORTED 4495 ----------------------------------- 3960 ----------------------------------- 4496 3961 4497 :Capability: KVM_CAP_MCE 3962 :Capability: KVM_CAP_MCE 4498 :Architectures: x86 3963 :Architectures: x86 4499 :Type: system ioctl 3964 :Type: system ioctl 4500 :Parameters: u64 mce_cap (out) 3965 :Parameters: u64 mce_cap (out) 4501 :Returns: 0 on success, -1 on error 3966 :Returns: 0 on success, -1 on error 4502 3967 4503 Returns supported MCE capabilities. The u64 m 3968 Returns supported MCE capabilities. The u64 mce_cap parameter 4504 has the same format as the MSR_IA32_MCG_CAP r 3969 has the same format as the MSR_IA32_MCG_CAP register. Supported 4505 capabilities will have the corresponding bits 3970 capabilities will have the corresponding bits set. 4506 3971 4507 4.105 KVM_X86_SETUP_MCE 3972 4.105 KVM_X86_SETUP_MCE 4508 ----------------------- 3973 ----------------------- 4509 3974 4510 :Capability: KVM_CAP_MCE 3975 :Capability: KVM_CAP_MCE 4511 :Architectures: x86 3976 :Architectures: x86 4512 :Type: vcpu ioctl 3977 :Type: vcpu ioctl 4513 :Parameters: u64 mcg_cap (in) 3978 :Parameters: u64 mcg_cap (in) 4514 :Returns: 0 on success, 3979 :Returns: 0 on success, 4515 -EFAULT if u64 mcg_cap cannot be rea 3980 -EFAULT if u64 mcg_cap cannot be read, 4516 -EINVAL if the requested number of b 3981 -EINVAL if the requested number of banks is invalid, 4517 -EINVAL if requested MCE capability 3982 -EINVAL if requested MCE capability is not supported. 4518 3983 4519 Initializes MCE support for use. The u64 mcg_ 3984 Initializes MCE support for use. The u64 mcg_cap parameter 4520 has the same format as the MSR_IA32_MCG_CAP r 3985 has the same format as the MSR_IA32_MCG_CAP register and 4521 specifies which capabilities should be enable 3986 specifies which capabilities should be enabled. The maximum 4522 supported number of error-reporting banks can 3987 supported number of error-reporting banks can be retrieved when 4523 checking for KVM_CAP_MCE. The supported capab 3988 checking for KVM_CAP_MCE. The supported capabilities can be 4524 retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. 3989 retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. 4525 3990 4526 4.106 KVM_X86_SET_MCE 3991 4.106 KVM_X86_SET_MCE 4527 --------------------- 3992 --------------------- 4528 3993 4529 :Capability: KVM_CAP_MCE 3994 :Capability: KVM_CAP_MCE 4530 :Architectures: x86 3995 :Architectures: x86 4531 :Type: vcpu ioctl 3996 :Type: vcpu ioctl 4532 :Parameters: struct kvm_x86_mce (in) 3997 :Parameters: struct kvm_x86_mce (in) 4533 :Returns: 0 on success, 3998 :Returns: 0 on success, 4534 -EFAULT if struct kvm_x86_mce cannot 3999 -EFAULT if struct kvm_x86_mce cannot be read, 4535 -EINVAL if the bank number is invali 4000 -EINVAL if the bank number is invalid, 4536 -EINVAL if VAL bit is not set in sta 4001 -EINVAL if VAL bit is not set in status field. 4537 4002 4538 Inject a machine check error (MCE) into the g 4003 Inject a machine check error (MCE) into the guest. The input 4539 parameter is:: 4004 parameter is:: 4540 4005 4541 struct kvm_x86_mce { 4006 struct kvm_x86_mce { 4542 __u64 status; 4007 __u64 status; 4543 __u64 addr; 4008 __u64 addr; 4544 __u64 misc; 4009 __u64 misc; 4545 __u64 mcg_status; 4010 __u64 mcg_status; 4546 __u8 bank; 4011 __u8 bank; 4547 __u8 pad1[7]; 4012 __u8 pad1[7]; 4548 __u64 pad2[3]; 4013 __u64 pad2[3]; 4549 }; 4014 }; 4550 4015 4551 If the MCE being reported is an uncorrected e 4016 If the MCE being reported is an uncorrected error, KVM will 4552 inject it as an MCE exception into the guest. 4017 inject it as an MCE exception into the guest. If the guest 4553 MCG_STATUS register reports that an MCE is in 4018 MCG_STATUS register reports that an MCE is in progress, KVM 4554 causes an KVM_EXIT_SHUTDOWN vmexit. 4019 causes an KVM_EXIT_SHUTDOWN vmexit. 4555 4020 4556 Otherwise, if the MCE is a corrected error, K 4021 Otherwise, if the MCE is a corrected error, KVM will just 4557 store it in the corresponding bank (provided 4022 store it in the corresponding bank (provided this bank is 4558 not holding a previously reported uncorrected 4023 not holding a previously reported uncorrected error). 4559 4024 4560 4.107 KVM_S390_GET_CMMA_BITS 4025 4.107 KVM_S390_GET_CMMA_BITS 4561 ---------------------------- 4026 ---------------------------- 4562 4027 4563 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4028 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4564 :Architectures: s390 4029 :Architectures: s390 4565 :Type: vm ioctl 4030 :Type: vm ioctl 4566 :Parameters: struct kvm_s390_cmma_log (in, ou 4031 :Parameters: struct kvm_s390_cmma_log (in, out) 4567 :Returns: 0 on success, a negative value on e 4032 :Returns: 0 on success, a negative value on error 4568 4033 4569 Errors: 4034 Errors: 4570 4035 4571 ====== ================================ 4036 ====== ============================================================= 4572 ENOMEM not enough memory can be allocat 4037 ENOMEM not enough memory can be allocated to complete the task 4573 ENXIO if CMMA is not enabled 4038 ENXIO if CMMA is not enabled 4574 EINVAL if KVM_S390_CMMA_PEEK is not set 4039 EINVAL if KVM_S390_CMMA_PEEK is not set but migration mode was not enabled 4575 EINVAL if KVM_S390_CMMA_PEEK is not set 4040 EINVAL if KVM_S390_CMMA_PEEK is not set but dirty tracking has been 4576 disabled (and thus migration mod 4041 disabled (and thus migration mode was automatically disabled) 4577 EFAULT if the userspace address is inva 4042 EFAULT if the userspace address is invalid or if no page table is 4578 present for the addresses (e.g. 4043 present for the addresses (e.g. when using hugepages). 4579 ====== ================================ 4044 ====== ============================================================= 4580 4045 4581 This ioctl is used to get the values of the C 4046 This ioctl is used to get the values of the CMMA bits on the s390 4582 architecture. It is meant to be used in two s 4047 architecture. It is meant to be used in two scenarios: 4583 4048 4584 - During live migration to save the CMMA valu 4049 - During live migration to save the CMMA values. Live migration needs 4585 to be enabled via the KVM_REQ_START_MIGRATI 4050 to be enabled via the KVM_REQ_START_MIGRATION VM property. 4586 - To non-destructively peek at the CMMA value 4051 - To non-destructively peek at the CMMA values, with the flag 4587 KVM_S390_CMMA_PEEK set. 4052 KVM_S390_CMMA_PEEK set. 4588 4053 4589 The ioctl takes parameters via the kvm_s390_c 4054 The ioctl takes parameters via the kvm_s390_cmma_log struct. The desired 4590 values are written to a buffer whose location 4055 values are written to a buffer whose location is indicated via the "values" 4591 member in the kvm_s390_cmma_log struct. The 4056 member in the kvm_s390_cmma_log struct. The values in the input struct are 4592 also updated as needed. 4057 also updated as needed. 4593 4058 4594 Each CMMA value takes up one byte. 4059 Each CMMA value takes up one byte. 4595 4060 4596 :: 4061 :: 4597 4062 4598 struct kvm_s390_cmma_log { 4063 struct kvm_s390_cmma_log { 4599 __u64 start_gfn; 4064 __u64 start_gfn; 4600 __u32 count; 4065 __u32 count; 4601 __u32 flags; 4066 __u32 flags; 4602 union { 4067 union { 4603 __u64 remaining; 4068 __u64 remaining; 4604 __u64 mask; 4069 __u64 mask; 4605 }; 4070 }; 4606 __u64 values; 4071 __u64 values; 4607 }; 4072 }; 4608 4073 4609 start_gfn is the number of the first guest fr 4074 start_gfn is the number of the first guest frame whose CMMA values are 4610 to be retrieved, 4075 to be retrieved, 4611 4076 4612 count is the length of the buffer in bytes, 4077 count is the length of the buffer in bytes, 4613 4078 4614 values points to the buffer where the result 4079 values points to the buffer where the result will be written to. 4615 4080 4616 If count is greater than KVM_S390_SKEYS_MAX, 4081 If count is greater than KVM_S390_SKEYS_MAX, then it is considered to be 4617 KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re- 4082 KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re-used for consistency with 4618 other ioctls. 4083 other ioctls. 4619 4084 4620 The result is written in the buffer pointed t 4085 The result is written in the buffer pointed to by the field values, and 4621 the values of the input parameter are updated 4086 the values of the input parameter are updated as follows. 4622 4087 4623 Depending on the flags, different actions are 4088 Depending on the flags, different actions are performed. The only 4624 supported flag so far is KVM_S390_CMMA_PEEK. 4089 supported flag so far is KVM_S390_CMMA_PEEK. 4625 4090 4626 The default behaviour if KVM_S390_CMMA_PEEK i 4091 The default behaviour if KVM_S390_CMMA_PEEK is not set is: 4627 start_gfn will indicate the first page frame 4092 start_gfn will indicate the first page frame whose CMMA bits were dirty. 4628 It is not necessarily the same as the one pas 4093 It is not necessarily the same as the one passed as input, as clean pages 4629 are skipped. 4094 are skipped. 4630 4095 4631 count will indicate the number of bytes actua 4096 count will indicate the number of bytes actually written in the buffer. 4632 It can (and very often will) be smaller than 4097 It can (and very often will) be smaller than the input value, since the 4633 buffer is only filled until 16 bytes of clean 4098 buffer is only filled until 16 bytes of clean values are found (which 4634 are then not copied in the buffer). Since a C 4099 are then not copied in the buffer). Since a CMMA migration block needs 4635 the base address and the length, for a total 4100 the base address and the length, for a total of 16 bytes, we will send 4636 back some clean data if there is some dirty d 4101 back some clean data if there is some dirty data afterwards, as long as 4637 the size of the clean data does not exceed th 4102 the size of the clean data does not exceed the size of the header. This 4638 allows to minimize the amount of data to be s 4103 allows to minimize the amount of data to be saved or transferred over 4639 the network at the expense of more roundtrips 4104 the network at the expense of more roundtrips to userspace. The next 4640 invocation of the ioctl will skip over all th 4105 invocation of the ioctl will skip over all the clean values, saving 4641 potentially more than just the 16 bytes we fo 4106 potentially more than just the 16 bytes we found. 4642 4107 4643 If KVM_S390_CMMA_PEEK is set: 4108 If KVM_S390_CMMA_PEEK is set: 4644 the existing storage attributes are read even 4109 the existing storage attributes are read even when not in migration 4645 mode, and no other action is performed; 4110 mode, and no other action is performed; 4646 4111 4647 the output start_gfn will be equal to the inp 4112 the output start_gfn will be equal to the input start_gfn, 4648 4113 4649 the output count will be equal to the input c 4114 the output count will be equal to the input count, except if the end of 4650 memory has been reached. 4115 memory has been reached. 4651 4116 4652 In both cases: 4117 In both cases: 4653 the field "remaining" will indicate the total 4118 the field "remaining" will indicate the total number of dirty CMMA values 4654 still remaining, or 0 if KVM_S390_CMMA_PEEK i 4119 still remaining, or 0 if KVM_S390_CMMA_PEEK is set and migration mode is 4655 not enabled. 4120 not enabled. 4656 4121 4657 mask is unused. 4122 mask is unused. 4658 4123 4659 values points to the userspace buffer where t 4124 values points to the userspace buffer where the result will be stored. 4660 4125 4661 4.108 KVM_S390_SET_CMMA_BITS 4126 4.108 KVM_S390_SET_CMMA_BITS 4662 ---------------------------- 4127 ---------------------------- 4663 4128 4664 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4129 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4665 :Architectures: s390 4130 :Architectures: s390 4666 :Type: vm ioctl 4131 :Type: vm ioctl 4667 :Parameters: struct kvm_s390_cmma_log (in) 4132 :Parameters: struct kvm_s390_cmma_log (in) 4668 :Returns: 0 on success, a negative value on e 4133 :Returns: 0 on success, a negative value on error 4669 4134 4670 This ioctl is used to set the values of the C 4135 This ioctl is used to set the values of the CMMA bits on the s390 4671 architecture. It is meant to be used during l 4136 architecture. It is meant to be used during live migration to restore 4672 the CMMA values, but there are no restriction 4137 the CMMA values, but there are no restrictions on its use. 4673 The ioctl takes parameters via the kvm_s390_c 4138 The ioctl takes parameters via the kvm_s390_cmma_values struct. 4674 Each CMMA value takes up one byte. 4139 Each CMMA value takes up one byte. 4675 4140 4676 :: 4141 :: 4677 4142 4678 struct kvm_s390_cmma_log { 4143 struct kvm_s390_cmma_log { 4679 __u64 start_gfn; 4144 __u64 start_gfn; 4680 __u32 count; 4145 __u32 count; 4681 __u32 flags; 4146 __u32 flags; 4682 union { 4147 union { 4683 __u64 remaining; 4148 __u64 remaining; 4684 __u64 mask; 4149 __u64 mask; 4685 }; 4150 }; 4686 __u64 values; 4151 __u64 values; 4687 }; 4152 }; 4688 4153 4689 start_gfn indicates the starting guest frame 4154 start_gfn indicates the starting guest frame number, 4690 4155 4691 count indicates how many values are to be con 4156 count indicates how many values are to be considered in the buffer, 4692 4157 4693 flags is not used and must be 0. 4158 flags is not used and must be 0. 4694 4159 4695 mask indicates which PGSTE bits are to be con 4160 mask indicates which PGSTE bits are to be considered. 4696 4161 4697 remaining is not used. 4162 remaining is not used. 4698 4163 4699 values points to the buffer in userspace wher 4164 values points to the buffer in userspace where to store the values. 4700 4165 4701 This ioctl can fail with -ENOMEM if not enoug 4166 This ioctl can fail with -ENOMEM if not enough memory can be allocated to 4702 complete the task, with -ENXIO if CMMA is not 4167 complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if 4703 the count field is too large (e.g. more than 4168 the count field is too large (e.g. more than KVM_S390_CMMA_SIZE_MAX) or 4704 if the flags field was not 0, with -EFAULT if 4169 if the flags field was not 0, with -EFAULT if the userspace address is 4705 invalid, if invalid pages are written to (e.g 4170 invalid, if invalid pages are written to (e.g. after the end of memory) 4706 or if no page table is present for the addres 4171 or if no page table is present for the addresses (e.g. when using 4707 hugepages). 4172 hugepages). 4708 4173 4709 4.109 KVM_PPC_GET_CPU_CHAR 4174 4.109 KVM_PPC_GET_CPU_CHAR 4710 -------------------------- 4175 -------------------------- 4711 4176 4712 :Capability: KVM_CAP_PPC_GET_CPU_CHAR 4177 :Capability: KVM_CAP_PPC_GET_CPU_CHAR 4713 :Architectures: powerpc 4178 :Architectures: powerpc 4714 :Type: vm ioctl 4179 :Type: vm ioctl 4715 :Parameters: struct kvm_ppc_cpu_char (out) 4180 :Parameters: struct kvm_ppc_cpu_char (out) 4716 :Returns: 0 on successful completion, 4181 :Returns: 0 on successful completion, 4717 -EFAULT if struct kvm_ppc_cpu_char c 4182 -EFAULT if struct kvm_ppc_cpu_char cannot be written 4718 4183 4719 This ioctl gives userspace information about 4184 This ioctl gives userspace information about certain characteristics 4720 of the CPU relating to speculative execution 4185 of the CPU relating to speculative execution of instructions and 4721 possible information leakage resulting from s 4186 possible information leakage resulting from speculative execution (see 4722 CVE-2017-5715, CVE-2017-5753 and CVE-2017-575 4187 CVE-2017-5715, CVE-2017-5753 and CVE-2017-5754). The information is 4723 returned in struct kvm_ppc_cpu_char, which lo 4188 returned in struct kvm_ppc_cpu_char, which looks like this:: 4724 4189 4725 struct kvm_ppc_cpu_char { 4190 struct kvm_ppc_cpu_char { 4726 __u64 character; /* ch 4191 __u64 character; /* characteristics of the CPU */ 4727 __u64 behaviour; /* re 4192 __u64 behaviour; /* recommended software behaviour */ 4728 __u64 character_mask; /* va 4193 __u64 character_mask; /* valid bits in character */ 4729 __u64 behaviour_mask; /* va 4194 __u64 behaviour_mask; /* valid bits in behaviour */ 4730 }; 4195 }; 4731 4196 4732 For extensibility, the character_mask and beh 4197 For extensibility, the character_mask and behaviour_mask fields 4733 indicate which bits of character and behaviou 4198 indicate which bits of character and behaviour have been filled in by 4734 the kernel. If the set of defined bits is ex 4199 the kernel. If the set of defined bits is extended in future then 4735 userspace will be able to tell whether it is 4200 userspace will be able to tell whether it is running on a kernel that 4736 knows about the new bits. 4201 knows about the new bits. 4737 4202 4738 The character field describes attributes of t 4203 The character field describes attributes of the CPU which can help 4739 with preventing inadvertent information discl 4204 with preventing inadvertent information disclosure - specifically, 4740 whether there is an instruction to flash-inva 4205 whether there is an instruction to flash-invalidate the L1 data cache 4741 (ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether 4206 (ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether the L1 data cache is set 4742 to a mode where entries can only be used by t 4207 to a mode where entries can only be used by the thread that created 4743 them, whether the bcctr[l] instruction preven 4208 them, whether the bcctr[l] instruction prevents speculation, and 4744 whether a speculation barrier instruction (or 4209 whether a speculation barrier instruction (ori 31,31,0) is provided. 4745 4210 4746 The behaviour field describes actions that so 4211 The behaviour field describes actions that software should take to 4747 prevent inadvertent information disclosure, a 4212 prevent inadvertent information disclosure, and thus describes which 4748 vulnerabilities the hardware is subject to; s 4213 vulnerabilities the hardware is subject to; specifically whether the 4749 L1 data cache should be flushed when returnin 4214 L1 data cache should be flushed when returning to user mode from the 4750 kernel, and whether a speculation barrier sho 4215 kernel, and whether a speculation barrier should be placed between an 4751 array bounds check and the array access. 4216 array bounds check and the array access. 4752 4217 4753 These fields use the same bit definitions as 4218 These fields use the same bit definitions as the new 4754 H_GET_CPU_CHARACTERISTICS hypercall. 4219 H_GET_CPU_CHARACTERISTICS hypercall. 4755 4220 4756 4.110 KVM_MEMORY_ENCRYPT_OP 4221 4.110 KVM_MEMORY_ENCRYPT_OP 4757 --------------------------- 4222 --------------------------- 4758 4223 4759 :Capability: basic 4224 :Capability: basic 4760 :Architectures: x86 4225 :Architectures: x86 4761 :Type: vm 4226 :Type: vm 4762 :Parameters: an opaque platform specific stru 4227 :Parameters: an opaque platform specific structure (in/out) 4763 :Returns: 0 on success; -1 on error 4228 :Returns: 0 on success; -1 on error 4764 4229 4765 If the platform supports creating encrypted V 4230 If the platform supports creating encrypted VMs then this ioctl can be used 4766 for issuing platform-specific memory encrypti 4231 for issuing platform-specific memory encryption commands to manage those 4767 encrypted VMs. 4232 encrypted VMs. 4768 4233 4769 Currently, this ioctl is used for issuing Sec 4234 Currently, this ioctl is used for issuing Secure Encrypted Virtualization 4770 (SEV) commands on AMD Processors. The SEV com 4235 (SEV) commands on AMD Processors. The SEV commands are defined in 4771 Documentation/virt/kvm/x86/amd-memory-encrypt !! 4236 Documentation/virt/kvm/amd-memory-encryption.rst. 4772 4237 4773 4.111 KVM_MEMORY_ENCRYPT_REG_REGION 4238 4.111 KVM_MEMORY_ENCRYPT_REG_REGION 4774 ----------------------------------- 4239 ----------------------------------- 4775 4240 4776 :Capability: basic 4241 :Capability: basic 4777 :Architectures: x86 4242 :Architectures: x86 4778 :Type: system 4243 :Type: system 4779 :Parameters: struct kvm_enc_region (in) 4244 :Parameters: struct kvm_enc_region (in) 4780 :Returns: 0 on success; -1 on error 4245 :Returns: 0 on success; -1 on error 4781 4246 4782 This ioctl can be used to register a guest me 4247 This ioctl can be used to register a guest memory region which may 4783 contain encrypted data (e.g. guest RAM, SMRAM 4248 contain encrypted data (e.g. guest RAM, SMRAM etc). 4784 4249 4785 It is used in the SEV-enabled guest. When enc 4250 It is used in the SEV-enabled guest. When encryption is enabled, a guest 4786 memory region may contain encrypted data. The 4251 memory region may contain encrypted data. The SEV memory encryption 4787 engine uses a tweak such that two identical p 4252 engine uses a tweak such that two identical plaintext pages, each at 4788 different locations will have differing ciphe 4253 different locations will have differing ciphertexts. So swapping or 4789 moving ciphertext of those pages will not res 4254 moving ciphertext of those pages will not result in plaintext being 4790 swapped. So relocating (or migrating) physica 4255 swapped. So relocating (or migrating) physical backing pages for the SEV 4791 guest will require some additional steps. 4256 guest will require some additional steps. 4792 4257 4793 Note: The current SEV key management spec doe 4258 Note: The current SEV key management spec does not provide commands to 4794 swap or migrate (move) ciphertext pages. Henc 4259 swap or migrate (move) ciphertext pages. Hence, for now we pin the guest 4795 memory region registered with the ioctl. 4260 memory region registered with the ioctl. 4796 4261 4797 4.112 KVM_MEMORY_ENCRYPT_UNREG_REGION 4262 4.112 KVM_MEMORY_ENCRYPT_UNREG_REGION 4798 ------------------------------------- 4263 ------------------------------------- 4799 4264 4800 :Capability: basic 4265 :Capability: basic 4801 :Architectures: x86 4266 :Architectures: x86 4802 :Type: system 4267 :Type: system 4803 :Parameters: struct kvm_enc_region (in) 4268 :Parameters: struct kvm_enc_region (in) 4804 :Returns: 0 on success; -1 on error 4269 :Returns: 0 on success; -1 on error 4805 4270 4806 This ioctl can be used to unregister the gues 4271 This ioctl can be used to unregister the guest memory region registered 4807 with KVM_MEMORY_ENCRYPT_REG_REGION ioctl abov 4272 with KVM_MEMORY_ENCRYPT_REG_REGION ioctl above. 4808 4273 4809 4.113 KVM_HYPERV_EVENTFD 4274 4.113 KVM_HYPERV_EVENTFD 4810 ------------------------ 4275 ------------------------ 4811 4276 4812 :Capability: KVM_CAP_HYPERV_EVENTFD 4277 :Capability: KVM_CAP_HYPERV_EVENTFD 4813 :Architectures: x86 4278 :Architectures: x86 4814 :Type: vm ioctl 4279 :Type: vm ioctl 4815 :Parameters: struct kvm_hyperv_eventfd (in) 4280 :Parameters: struct kvm_hyperv_eventfd (in) 4816 4281 4817 This ioctl (un)registers an eventfd to receiv 4282 This ioctl (un)registers an eventfd to receive notifications from the guest on 4818 the specified Hyper-V connection id through t 4283 the specified Hyper-V connection id through the SIGNAL_EVENT hypercall, without 4819 causing a user exit. SIGNAL_EVENT hypercall 4284 causing a user exit. SIGNAL_EVENT hypercall with non-zero event flag number 4820 (bits 24-31) still triggers a KVM_EXIT_HYPERV 4285 (bits 24-31) still triggers a KVM_EXIT_HYPERV_HCALL user exit. 4821 4286 4822 :: 4287 :: 4823 4288 4824 struct kvm_hyperv_eventfd { 4289 struct kvm_hyperv_eventfd { 4825 __u32 conn_id; 4290 __u32 conn_id; 4826 __s32 fd; 4291 __s32 fd; 4827 __u32 flags; 4292 __u32 flags; 4828 __u32 padding[3]; 4293 __u32 padding[3]; 4829 }; 4294 }; 4830 4295 4831 The conn_id field should fit within 24 bits:: 4296 The conn_id field should fit within 24 bits:: 4832 4297 4833 #define KVM_HYPERV_CONN_ID_MASK 4298 #define KVM_HYPERV_CONN_ID_MASK 0x00ffffff 4834 4299 4835 The acceptable values for the flags field are 4300 The acceptable values for the flags field are:: 4836 4301 4837 #define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 4302 #define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 0) 4838 4303 4839 :Returns: 0 on success, 4304 :Returns: 0 on success, 4840 -EINVAL if conn_id or flags is outs 4305 -EINVAL if conn_id or flags is outside the allowed range, 4841 -ENOENT on deassign if the conn_id 4306 -ENOENT on deassign if the conn_id isn't registered, 4842 -EEXIST on assign if the conn_id is 4307 -EEXIST on assign if the conn_id is already registered 4843 4308 4844 4.114 KVM_GET_NESTED_STATE 4309 4.114 KVM_GET_NESTED_STATE 4845 -------------------------- 4310 -------------------------- 4846 4311 4847 :Capability: KVM_CAP_NESTED_STATE 4312 :Capability: KVM_CAP_NESTED_STATE 4848 :Architectures: x86 4313 :Architectures: x86 4849 :Type: vcpu ioctl 4314 :Type: vcpu ioctl 4850 :Parameters: struct kvm_nested_state (in/out) 4315 :Parameters: struct kvm_nested_state (in/out) 4851 :Returns: 0 on success, -1 on error 4316 :Returns: 0 on success, -1 on error 4852 4317 4853 Errors: 4318 Errors: 4854 4319 4855 ===== ================================ 4320 ===== ============================================================= 4856 E2BIG the total state size exceeds the 4321 E2BIG the total state size exceeds the value of 'size' specified by 4857 the user; the size required will 4322 the user; the size required will be written into size. 4858 ===== ================================ 4323 ===== ============================================================= 4859 4324 4860 :: 4325 :: 4861 4326 4862 struct kvm_nested_state { 4327 struct kvm_nested_state { 4863 __u16 flags; 4328 __u16 flags; 4864 __u16 format; 4329 __u16 format; 4865 __u32 size; 4330 __u32 size; 4866 4331 4867 union { 4332 union { 4868 struct kvm_vmx_nested_state_h 4333 struct kvm_vmx_nested_state_hdr vmx; 4869 struct kvm_svm_nested_state_h 4334 struct kvm_svm_nested_state_hdr svm; 4870 4335 4871 /* Pad the header to 128 byte 4336 /* Pad the header to 128 bytes. */ 4872 __u8 pad[120]; 4337 __u8 pad[120]; 4873 } hdr; 4338 } hdr; 4874 4339 4875 union { 4340 union { 4876 struct kvm_vmx_nested_state_d 4341 struct kvm_vmx_nested_state_data vmx[0]; 4877 struct kvm_svm_nested_state_d 4342 struct kvm_svm_nested_state_data svm[0]; 4878 } data; 4343 } data; 4879 }; 4344 }; 4880 4345 4881 #define KVM_STATE_NESTED_GUEST_MODE 4346 #define KVM_STATE_NESTED_GUEST_MODE 0x00000001 4882 #define KVM_STATE_NESTED_RUN_PENDING 4347 #define KVM_STATE_NESTED_RUN_PENDING 0x00000002 4883 #define KVM_STATE_NESTED_EVMCS 4348 #define KVM_STATE_NESTED_EVMCS 0x00000004 4884 4349 4885 #define KVM_STATE_NESTED_FORMAT_VMX 4350 #define KVM_STATE_NESTED_FORMAT_VMX 0 4886 #define KVM_STATE_NESTED_FORMAT_SVM 4351 #define KVM_STATE_NESTED_FORMAT_SVM 1 4887 4352 4888 #define KVM_STATE_NESTED_VMX_VMCS_SIZE 4353 #define KVM_STATE_NESTED_VMX_VMCS_SIZE 0x1000 4889 4354 4890 #define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 4355 #define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 0x00000001 4891 #define KVM_STATE_NESTED_VMX_SMM_VMXON 4356 #define KVM_STATE_NESTED_VMX_SMM_VMXON 0x00000002 4892 4357 4893 #define KVM_STATE_VMX_PREEMPTION_TIMER_DEAD 4358 #define KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE 0x00000001 4894 4359 4895 struct kvm_vmx_nested_state_hdr { 4360 struct kvm_vmx_nested_state_hdr { 4896 __u64 vmxon_pa; 4361 __u64 vmxon_pa; 4897 __u64 vmcs12_pa; 4362 __u64 vmcs12_pa; 4898 4363 4899 struct { 4364 struct { 4900 __u16 flags; 4365 __u16 flags; 4901 } smm; 4366 } smm; 4902 4367 4903 __u32 flags; 4368 __u32 flags; 4904 __u64 preemption_timer_deadline; 4369 __u64 preemption_timer_deadline; 4905 }; 4370 }; 4906 4371 4907 struct kvm_vmx_nested_state_data { 4372 struct kvm_vmx_nested_state_data { 4908 __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS 4373 __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE]; 4909 __u8 shadow_vmcs12[KVM_STATE_NESTED_V 4374 __u8 shadow_vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE]; 4910 }; 4375 }; 4911 4376 4912 This ioctl copies the vcpu's nested virtualiz 4377 This ioctl copies the vcpu's nested virtualization state from the kernel to 4913 userspace. 4378 userspace. 4914 4379 4915 The maximum size of the state can be retrieve 4380 The maximum size of the state can be retrieved by passing KVM_CAP_NESTED_STATE 4916 to the KVM_CHECK_EXTENSION ioctl(). 4381 to the KVM_CHECK_EXTENSION ioctl(). 4917 4382 4918 4.115 KVM_SET_NESTED_STATE 4383 4.115 KVM_SET_NESTED_STATE 4919 -------------------------- 4384 -------------------------- 4920 4385 4921 :Capability: KVM_CAP_NESTED_STATE 4386 :Capability: KVM_CAP_NESTED_STATE 4922 :Architectures: x86 4387 :Architectures: x86 4923 :Type: vcpu ioctl 4388 :Type: vcpu ioctl 4924 :Parameters: struct kvm_nested_state (in) 4389 :Parameters: struct kvm_nested_state (in) 4925 :Returns: 0 on success, -1 on error 4390 :Returns: 0 on success, -1 on error 4926 4391 4927 This copies the vcpu's kvm_nested_state struc 4392 This copies the vcpu's kvm_nested_state struct from userspace to the kernel. 4928 For the definition of struct kvm_nested_state 4393 For the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE. 4929 4394 4930 4.116 KVM_(UN)REGISTER_COALESCED_MMIO 4395 4.116 KVM_(UN)REGISTER_COALESCED_MMIO 4931 ------------------------------------- 4396 ------------------------------------- 4932 4397 4933 :Capability: KVM_CAP_COALESCED_MMIO (for coal 4398 :Capability: KVM_CAP_COALESCED_MMIO (for coalesced mmio) 4934 KVM_CAP_COALESCED_PIO (for coale 4399 KVM_CAP_COALESCED_PIO (for coalesced pio) 4935 :Architectures: all 4400 :Architectures: all 4936 :Type: vm ioctl 4401 :Type: vm ioctl 4937 :Parameters: struct kvm_coalesced_mmio_zone 4402 :Parameters: struct kvm_coalesced_mmio_zone 4938 :Returns: 0 on success, < 0 on error 4403 :Returns: 0 on success, < 0 on error 4939 4404 4940 Coalesced I/O is a performance optimization t 4405 Coalesced I/O is a performance optimization that defers hardware 4941 register write emulation so that userspace ex 4406 register write emulation so that userspace exits are avoided. It is 4942 typically used to reduce the overhead of emul 4407 typically used to reduce the overhead of emulating frequently accessed 4943 hardware registers. 4408 hardware registers. 4944 4409 4945 When a hardware register is configured for co 4410 When a hardware register is configured for coalesced I/O, write accesses 4946 do not exit to userspace and their value is r 4411 do not exit to userspace and their value is recorded in a ring buffer 4947 that is shared between kernel and userspace. 4412 that is shared between kernel and userspace. 4948 4413 4949 Coalesced I/O is used if one or more write ac 4414 Coalesced I/O is used if one or more write accesses to a hardware 4950 register can be deferred until a read or a wr 4415 register can be deferred until a read or a write to another hardware 4951 register on the same device. This last acces 4416 register on the same device. This last access will cause a vmexit and 4952 userspace will process accesses from the ring 4417 userspace will process accesses from the ring buffer before emulating 4953 it. That will avoid exiting to userspace on r 4418 it. That will avoid exiting to userspace on repeated writes. 4954 4419 4955 Coalesced pio is based on coalesced mmio. The 4420 Coalesced pio is based on coalesced mmio. There is little difference 4956 between coalesced mmio and pio except that co 4421 between coalesced mmio and pio except that coalesced pio records accesses 4957 to I/O ports. 4422 to I/O ports. 4958 4423 4959 4.117 KVM_CLEAR_DIRTY_LOG (vm ioctl) 4424 4.117 KVM_CLEAR_DIRTY_LOG (vm ioctl) 4960 ------------------------------------ 4425 ------------------------------------ 4961 4426 4962 :Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT 4427 :Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 4963 :Architectures: x86, arm64, mips !! 4428 :Architectures: x86, arm, arm64, mips 4964 :Type: vm ioctl 4429 :Type: vm ioctl 4965 :Parameters: struct kvm_clear_dirty_log (in) !! 4430 :Parameters: struct kvm_dirty_log (in) 4966 :Returns: 0 on success, -1 on error 4431 :Returns: 0 on success, -1 on error 4967 4432 4968 :: 4433 :: 4969 4434 4970 /* for KVM_CLEAR_DIRTY_LOG */ 4435 /* for KVM_CLEAR_DIRTY_LOG */ 4971 struct kvm_clear_dirty_log { 4436 struct kvm_clear_dirty_log { 4972 __u32 slot; 4437 __u32 slot; 4973 __u32 num_pages; 4438 __u32 num_pages; 4974 __u64 first_page; 4439 __u64 first_page; 4975 union { 4440 union { 4976 void __user *dirty_bitmap; /* 4441 void __user *dirty_bitmap; /* one bit per page */ 4977 __u64 padding; 4442 __u64 padding; 4978 }; 4443 }; 4979 }; 4444 }; 4980 4445 4981 The ioctl clears the dirty status of pages in 4446 The ioctl clears the dirty status of pages in a memory slot, according to 4982 the bitmap that is passed in struct kvm_clear 4447 the bitmap that is passed in struct kvm_clear_dirty_log's dirty_bitmap 4983 field. Bit 0 of the bitmap corresponds to pa 4448 field. Bit 0 of the bitmap corresponds to page "first_page" in the 4984 memory slot, and num_pages is the size in bit 4449 memory slot, and num_pages is the size in bits of the input bitmap. 4985 first_page must be a multiple of 64; num_page 4450 first_page must be a multiple of 64; num_pages must also be a multiple of 4986 64 unless first_page + num_pages is the size 4451 64 unless first_page + num_pages is the size of the memory slot. For each 4987 bit that is set in the input bitmap, the corr 4452 bit that is set in the input bitmap, the corresponding page is marked "clean" 4988 in KVM's dirty bitmap, and dirty tracking is 4453 in KVM's dirty bitmap, and dirty tracking is re-enabled for that page 4989 (for example via write-protection, or by clea 4454 (for example via write-protection, or by clearing the dirty bit in 4990 a page table entry). 4455 a page table entry). 4991 4456 4992 If KVM_CAP_MULTI_ADDRESS_SPACE is available, !! 4457 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies 4993 the address space for which you want to clear !! 4458 the address space for which you want to return the dirty bitmap. 4994 KVM_SET_USER_MEMORY_REGION for details on the !! 4459 They must be less than the value that KVM_CHECK_EXTENSION returns for >> 4460 the KVM_CAP_MULTI_ADDRESS_SPACE capability. 4995 4461 4996 This ioctl is mostly useful when KVM_CAP_MANU 4462 This ioctl is mostly useful when KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 4997 is enabled; for more information, see the des 4463 is enabled; for more information, see the description of the capability. 4998 However, it can always be used as long as KVM 4464 However, it can always be used as long as KVM_CHECK_EXTENSION confirms 4999 that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is pre 4465 that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is present. 5000 4466 5001 4.118 KVM_GET_SUPPORTED_HV_CPUID 4467 4.118 KVM_GET_SUPPORTED_HV_CPUID 5002 -------------------------------- 4468 -------------------------------- 5003 4469 5004 :Capability: KVM_CAP_HYPERV_CPUID (vcpu), KVM !! 4470 :Capability: KVM_CAP_HYPERV_CPUID 5005 :Architectures: x86 4471 :Architectures: x86 5006 :Type: system ioctl, vcpu ioctl !! 4472 :Type: vcpu ioctl 5007 :Parameters: struct kvm_cpuid2 (in/out) 4473 :Parameters: struct kvm_cpuid2 (in/out) 5008 :Returns: 0 on success, -1 on error 4474 :Returns: 0 on success, -1 on error 5009 4475 5010 :: 4476 :: 5011 4477 5012 struct kvm_cpuid2 { 4478 struct kvm_cpuid2 { 5013 __u32 nent; 4479 __u32 nent; 5014 __u32 padding; 4480 __u32 padding; 5015 struct kvm_cpuid_entry2 entries[0]; 4481 struct kvm_cpuid_entry2 entries[0]; 5016 }; 4482 }; 5017 4483 5018 struct kvm_cpuid_entry2 { 4484 struct kvm_cpuid_entry2 { 5019 __u32 function; 4485 __u32 function; 5020 __u32 index; 4486 __u32 index; 5021 __u32 flags; 4487 __u32 flags; 5022 __u32 eax; 4488 __u32 eax; 5023 __u32 ebx; 4489 __u32 ebx; 5024 __u32 ecx; 4490 __u32 ecx; 5025 __u32 edx; 4491 __u32 edx; 5026 __u32 padding[3]; 4492 __u32 padding[3]; 5027 }; 4493 }; 5028 4494 5029 This ioctl returns x86 cpuid features leaves 4495 This ioctl returns x86 cpuid features leaves related to Hyper-V emulation in 5030 KVM. Userspace can use the information retur 4496 KVM. Userspace can use the information returned by this ioctl to construct 5031 cpuid information presented to guests consumi 4497 cpuid information presented to guests consuming Hyper-V enlightenments (e.g. 5032 Windows or Hyper-V guests). 4498 Windows or Hyper-V guests). 5033 4499 5034 CPUID feature leaves returned by this ioctl a 4500 CPUID feature leaves returned by this ioctl are defined by Hyper-V Top Level 5035 Functional Specification (TLFS). These leaves 4501 Functional Specification (TLFS). These leaves can't be obtained with 5036 KVM_GET_SUPPORTED_CPUID ioctl because some of 4502 KVM_GET_SUPPORTED_CPUID ioctl because some of them intersect with KVM feature 5037 leaves (0x40000000, 0x40000001). 4503 leaves (0x40000000, 0x40000001). 5038 4504 5039 Currently, the following list of CPUID leaves 4505 Currently, the following list of CPUID leaves are returned: 5040 << 5041 - HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS 4506 - HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS 5042 - HYPERV_CPUID_INTERFACE 4507 - HYPERV_CPUID_INTERFACE 5043 - HYPERV_CPUID_VERSION 4508 - HYPERV_CPUID_VERSION 5044 - HYPERV_CPUID_FEATURES 4509 - HYPERV_CPUID_FEATURES 5045 - HYPERV_CPUID_ENLIGHTMENT_INFO 4510 - HYPERV_CPUID_ENLIGHTMENT_INFO 5046 - HYPERV_CPUID_IMPLEMENT_LIMITS 4511 - HYPERV_CPUID_IMPLEMENT_LIMITS 5047 - HYPERV_CPUID_NESTED_FEATURES 4512 - HYPERV_CPUID_NESTED_FEATURES 5048 - HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIO 4513 - HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS 5049 - HYPERV_CPUID_SYNDBG_INTERFACE 4514 - HYPERV_CPUID_SYNDBG_INTERFACE 5050 - HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES 4515 - HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES 5051 4516 >> 4517 HYPERV_CPUID_NESTED_FEATURES leaf is only exposed when Enlightened VMCS was >> 4518 enabled on the corresponding vCPU (KVM_CAP_HYPERV_ENLIGHTENED_VMCS). >> 4519 5052 Userspace invokes KVM_GET_SUPPORTED_HV_CPUID 4520 Userspace invokes KVM_GET_SUPPORTED_HV_CPUID by passing a kvm_cpuid2 structure 5053 with the 'nent' field indicating the number o 4521 with the 'nent' field indicating the number of entries in the variable-size 5054 array 'entries'. If the number of entries is 4522 array 'entries'. If the number of entries is too low to describe all Hyper-V 5055 feature leaves, an error (E2BIG) is returned. 4523 feature leaves, an error (E2BIG) is returned. If the number is more or equal 5056 to the number of Hyper-V feature leaves, the 4524 to the number of Hyper-V feature leaves, the 'nent' field is adjusted to the 5057 number of valid entries in the 'entries' arra 4525 number of valid entries in the 'entries' array, which is then filled. 5058 4526 5059 'index' and 'flags' fields in 'struct kvm_cpu 4527 'index' and 'flags' fields in 'struct kvm_cpuid_entry2' are currently reserved, 5060 userspace should not expect to get any partic 4528 userspace should not expect to get any particular value there. 5061 4529 5062 Note, vcpu version of KVM_GET_SUPPORTED_HV_CP << 5063 system ioctl which exposes all supported feat << 5064 version has the following quirks: << 5065 << 5066 - HYPERV_CPUID_NESTED_FEATURES leaf and HV_X6 << 5067 feature bit are only exposed when Enlighten << 5068 on the corresponding vCPU (KVM_CAP_HYPERV_E << 5069 - HV_STIMER_DIRECT_MODE_AVAILABLE bit is only << 5070 (presumes KVM_CREATE_IRQCHIP has already be << 5071 << 5072 4.119 KVM_ARM_VCPU_FINALIZE 4530 4.119 KVM_ARM_VCPU_FINALIZE 5073 --------------------------- 4531 --------------------------- 5074 4532 5075 :Architectures: arm64 !! 4533 :Architectures: arm, arm64 5076 :Type: vcpu ioctl 4534 :Type: vcpu ioctl 5077 :Parameters: int feature (in) 4535 :Parameters: int feature (in) 5078 :Returns: 0 on success, -1 on error 4536 :Returns: 0 on success, -1 on error 5079 4537 5080 Errors: 4538 Errors: 5081 4539 5082 ====== ================================ 4540 ====== ============================================================== 5083 EPERM feature not enabled, needs confi 4541 EPERM feature not enabled, needs configuration, or already finalized 5084 EINVAL feature unknown or not present 4542 EINVAL feature unknown or not present 5085 ====== ================================ 4543 ====== ============================================================== 5086 4544 5087 Recognised values for feature: 4545 Recognised values for feature: 5088 4546 5089 ===== ================================ 4547 ===== =========================================== 5090 arm64 KVM_ARM_VCPU_SVE (requires KVM_C 4548 arm64 KVM_ARM_VCPU_SVE (requires KVM_CAP_ARM_SVE) 5091 ===== ================================ 4549 ===== =========================================== 5092 4550 5093 Finalizes the configuration of the specified 4551 Finalizes the configuration of the specified vcpu feature. 5094 4552 5095 The vcpu must already have been initialised, 4553 The vcpu must already have been initialised, enabling the affected feature, by 5096 means of a successful KVM_ARM_VCPU_INIT call 4554 means of a successful KVM_ARM_VCPU_INIT call with the appropriate flag set in 5097 features[]. 4555 features[]. 5098 4556 5099 For affected vcpu features, this is a mandato 4557 For affected vcpu features, this is a mandatory step that must be performed 5100 before the vcpu is fully usable. 4558 before the vcpu is fully usable. 5101 4559 5102 Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FI 4560 Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FINALIZE, the feature may be 5103 configured by use of ioctls such as KVM_SET_O 4561 configured by use of ioctls such as KVM_SET_ONE_REG. The exact configuration 5104 that should be performed and how to do it are !! 4562 that should be performaned and how to do it are feature-dependent. 5105 4563 5106 Other calls that depend on a particular featu 4564 Other calls that depend on a particular feature being finalized, such as 5107 KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG an 4565 KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG and KVM_SET_ONE_REG, will fail with 5108 -EPERM unless the feature has already been fi 4566 -EPERM unless the feature has already been finalized by means of a 5109 KVM_ARM_VCPU_FINALIZE call. 4567 KVM_ARM_VCPU_FINALIZE call. 5110 4568 5111 See KVM_ARM_VCPU_INIT for details of vcpu fea 4569 See KVM_ARM_VCPU_INIT for details of vcpu features that require finalization 5112 using this ioctl. 4570 using this ioctl. 5113 4571 5114 4.120 KVM_SET_PMU_EVENT_FILTER 4572 4.120 KVM_SET_PMU_EVENT_FILTER 5115 ------------------------------ 4573 ------------------------------ 5116 4574 5117 :Capability: KVM_CAP_PMU_EVENT_FILTER 4575 :Capability: KVM_CAP_PMU_EVENT_FILTER 5118 :Architectures: x86 4576 :Architectures: x86 5119 :Type: vm ioctl 4577 :Type: vm ioctl 5120 :Parameters: struct kvm_pmu_event_filter (in) 4578 :Parameters: struct kvm_pmu_event_filter (in) 5121 :Returns: 0 on success, -1 on error 4579 :Returns: 0 on success, -1 on error 5122 4580 5123 Errors: << 5124 << 5125 ====== ================================ << 5126 EFAULT args[0] cannot be accessed << 5127 EINVAL args[0] contains invalid data in << 5128 E2BIG nevents is too large << 5129 EBUSY not enough memory to allocate th << 5130 ====== ================================ << 5131 << 5132 :: 4581 :: 5133 4582 5134 struct kvm_pmu_event_filter { 4583 struct kvm_pmu_event_filter { 5135 __u32 action; 4584 __u32 action; 5136 __u32 nevents; 4585 __u32 nevents; 5137 __u32 fixed_counter_bitmap; 4586 __u32 fixed_counter_bitmap; 5138 __u32 flags; 4587 __u32 flags; 5139 __u32 pad[4]; 4588 __u32 pad[4]; 5140 __u64 events[0]; 4589 __u64 events[0]; 5141 }; 4590 }; 5142 4591 5143 This ioctl restricts the set of PMU events th !! 4592 This ioctl restricts the set of PMU events that the guest can program. 5144 which event select and unit mask combinations !! 4593 The argument holds a list of events which will be allowed or denied. 5145 !! 4594 The eventsel+umask of each event the guest attempts to program is compared 5146 The argument holds a list of filter events wh !! 4595 against the events field to determine whether the guest should have access. 5147 !! 4596 The events field only controls general purpose counters; fixed purpose 5148 Filter events only control general purpose co !! 4597 counters are controlled by the fixed_counter_bitmap. 5149 are controlled by the fixed_counter_bitmap. << 5150 4598 5151 Valid values for 'flags':: !! 4599 No flags are defined yet, the field must be zero. 5152 << 5153 ``0`` << 5154 << 5155 To use this mode, clear the 'flags' field. << 5156 << 5157 In this mode each event will contain an event << 5158 << 5159 When the guest attempts to program the PMU th << 5160 unit mask is compared against the filter even << 5161 guest should have access. << 5162 << 5163 ``KVM_PMU_EVENT_FLAG_MASKED_EVENTS`` << 5164 :Capability: KVM_CAP_PMU_EVENT_MASKED_EVENTS << 5165 << 5166 In this mode each filter event will contain a << 5167 exclude value. To encode a masked event use: << 5168 << 5169 KVM_PMU_ENCODE_MASKED_ENTRY() << 5170 << 5171 An encoded event will follow this layout:: << 5172 << 5173 Bits Description << 5174 ---- ----------- << 5175 7:0 event select (low bits) << 5176 15:8 umask match << 5177 31:16 unused << 5178 35:32 event select (high bits) << 5179 36:54 unused << 5180 55 exclude bit << 5181 63:56 umask mask << 5182 << 5183 When the guest attempts to program the PMU, t << 5184 determining if the guest should have access: << 5185 << 5186 1. Match the event select from the guest aga << 5187 2. If a match is found, match the guest's un << 5188 values of the included filter events. << 5189 I.e. (unit mask & mask) == match && !excl << 5190 3. If a match is found, match the guest's un << 5191 values of the excluded filter events. << 5192 I.e. (unit mask & mask) == match && exclu << 5193 4. << 5194 a. If an included match is found and an ex << 5195 the event. << 5196 b. For everything else, do not filter the << 5197 5. << 5198 a. If the event is filtered and it's an al << 5199 program the event. << 5200 b. If the event is filtered and it's a den << 5201 program the event. << 5202 << 5203 When setting a new pmu event filter, -EINVAL << 5204 unused fields are set or if any of the high b << 5205 select are set when called on Intel. << 5206 4600 5207 Valid values for 'action':: 4601 Valid values for 'action':: 5208 4602 5209 #define KVM_PMU_EVENT_ALLOW 0 4603 #define KVM_PMU_EVENT_ALLOW 0 5210 #define KVM_PMU_EVENT_DENY 1 4604 #define KVM_PMU_EVENT_DENY 1 5211 4605 5212 Via this API, KVM userspace can also control << 5213 counters (if any) by configuring the "action" << 5214 << 5215 Specifically, KVM follows the following pseud << 5216 allow the guest FixCtr[i] to count its pre-de << 5217 << 5218 FixCtr[i]_is_allowed = (action == ALLOW) && << 5219 (action == DENY) && !(bitmap & BIT(i)); << 5220 FixCtr[i]_is_denied = !FixCtr[i]_is_allowed << 5221 << 5222 KVM always consumes fixed_counter_bitmap, it' << 5223 ensure fixed_counter_bitmap is set correctly, << 5224 a filter that only affects general purpose co << 5225 << 5226 Note, the "events" field also applies to fixe << 5227 and unit_mask values. "fixed_counter_bitmap" << 5228 if there is a contradiction between the two. << 5229 << 5230 4.121 KVM_PPC_SVM_OFF 4606 4.121 KVM_PPC_SVM_OFF 5231 --------------------- 4607 --------------------- 5232 4608 5233 :Capability: basic 4609 :Capability: basic 5234 :Architectures: powerpc 4610 :Architectures: powerpc 5235 :Type: vm ioctl 4611 :Type: vm ioctl 5236 :Parameters: none 4612 :Parameters: none 5237 :Returns: 0 on successful completion, 4613 :Returns: 0 on successful completion, 5238 4614 5239 Errors: 4615 Errors: 5240 4616 5241 ====== ================================ 4617 ====== ================================================================ 5242 EINVAL if ultravisor failed to terminat 4618 EINVAL if ultravisor failed to terminate the secure guest 5243 ENOMEM if hypervisor failed to allocate 4619 ENOMEM if hypervisor failed to allocate new radix page tables for guest 5244 ====== ================================ 4620 ====== ================================================================ 5245 4621 5246 This ioctl is used to turn off the secure mod 4622 This ioctl is used to turn off the secure mode of the guest or transition 5247 the guest from secure mode to normal mode. Th 4623 the guest from secure mode to normal mode. This is invoked when the guest 5248 is reset. This has no effect if called for a 4624 is reset. This has no effect if called for a normal guest. 5249 4625 5250 This ioctl issues an ultravisor call to termi 4626 This ioctl issues an ultravisor call to terminate the secure guest, 5251 unpins the VPA pages and releases all the dev 4627 unpins the VPA pages and releases all the device pages that are used to 5252 track the secure pages by hypervisor. 4628 track the secure pages by hypervisor. 5253 4629 5254 4.122 KVM_S390_NORMAL_RESET 4630 4.122 KVM_S390_NORMAL_RESET 5255 --------------------------- 4631 --------------------------- 5256 4632 5257 :Capability: KVM_CAP_S390_VCPU_RESETS 4633 :Capability: KVM_CAP_S390_VCPU_RESETS 5258 :Architectures: s390 4634 :Architectures: s390 5259 :Type: vcpu ioctl 4635 :Type: vcpu ioctl 5260 :Parameters: none 4636 :Parameters: none 5261 :Returns: 0 4637 :Returns: 0 5262 4638 5263 This ioctl resets VCPU registers and control 4639 This ioctl resets VCPU registers and control structures according to 5264 the cpu reset definition in the POP (Principl 4640 the cpu reset definition in the POP (Principles Of Operation). 5265 4641 5266 4.123 KVM_S390_INITIAL_RESET 4642 4.123 KVM_S390_INITIAL_RESET 5267 ---------------------------- 4643 ---------------------------- 5268 4644 5269 :Capability: none 4645 :Capability: none 5270 :Architectures: s390 4646 :Architectures: s390 5271 :Type: vcpu ioctl 4647 :Type: vcpu ioctl 5272 :Parameters: none 4648 :Parameters: none 5273 :Returns: 0 4649 :Returns: 0 5274 4650 5275 This ioctl resets VCPU registers and control 4651 This ioctl resets VCPU registers and control structures according to 5276 the initial cpu reset definition in the POP. 4652 the initial cpu reset definition in the POP. However, the cpu is not 5277 put into ESA mode. This reset is a superset o 4653 put into ESA mode. This reset is a superset of the normal reset. 5278 4654 5279 4.124 KVM_S390_CLEAR_RESET 4655 4.124 KVM_S390_CLEAR_RESET 5280 -------------------------- 4656 -------------------------- 5281 4657 5282 :Capability: KVM_CAP_S390_VCPU_RESETS 4658 :Capability: KVM_CAP_S390_VCPU_RESETS 5283 :Architectures: s390 4659 :Architectures: s390 5284 :Type: vcpu ioctl 4660 :Type: vcpu ioctl 5285 :Parameters: none 4661 :Parameters: none 5286 :Returns: 0 4662 :Returns: 0 5287 4663 5288 This ioctl resets VCPU registers and control 4664 This ioctl resets VCPU registers and control structures according to 5289 the clear cpu reset definition in the POP. Ho 4665 the clear cpu reset definition in the POP. However, the cpu is not put 5290 into ESA mode. This reset is a superset of th 4666 into ESA mode. This reset is a superset of the initial reset. 5291 4667 5292 4668 5293 4.125 KVM_S390_PV_COMMAND 4669 4.125 KVM_S390_PV_COMMAND 5294 ------------------------- 4670 ------------------------- 5295 4671 5296 :Capability: KVM_CAP_S390_PROTECTED 4672 :Capability: KVM_CAP_S390_PROTECTED 5297 :Architectures: s390 4673 :Architectures: s390 5298 :Type: vm ioctl 4674 :Type: vm ioctl 5299 :Parameters: struct kvm_pv_cmd 4675 :Parameters: struct kvm_pv_cmd 5300 :Returns: 0 on success, < 0 on error 4676 :Returns: 0 on success, < 0 on error 5301 4677 5302 :: 4678 :: 5303 4679 5304 struct kvm_pv_cmd { 4680 struct kvm_pv_cmd { 5305 __u32 cmd; /* Command to be exec 4681 __u32 cmd; /* Command to be executed */ 5306 __u16 rc; /* Ultravisor return 4682 __u16 rc; /* Ultravisor return code */ 5307 __u16 rrc; /* Ultravisor return 4683 __u16 rrc; /* Ultravisor return reason code */ 5308 __u64 data; /* Data or address */ 4684 __u64 data; /* Data or address */ 5309 __u32 flags; /* flags for future e 4685 __u32 flags; /* flags for future extensions. Must be 0 for now */ 5310 __u32 reserved[3]; 4686 __u32 reserved[3]; 5311 }; 4687 }; 5312 4688 5313 **Ultravisor return codes** !! 4689 cmd values: 5314 The Ultravisor return (reason) codes are prov << 5315 Ultravisor call has been executed to achieve << 5316 the command. Therefore they are independent o << 5317 code. If KVM changes `rc`, its value will alw << 5318 hence setting it to 0 before issuing a PV com << 5319 able to detect a change of `rc`. << 5320 << 5321 **cmd values:** << 5322 4690 5323 KVM_PV_ENABLE 4691 KVM_PV_ENABLE 5324 Allocate memory and register the VM with th 4692 Allocate memory and register the VM with the Ultravisor, thereby 5325 donating memory to the Ultravisor that will 4693 donating memory to the Ultravisor that will become inaccessible to 5326 KVM. All existing CPUs are converted to pro 4694 KVM. All existing CPUs are converted to protected ones. After this 5327 command has succeeded, any CPU added via ho 4695 command has succeeded, any CPU added via hotplug will become 5328 protected during its creation as well. 4696 protected during its creation as well. 5329 4697 5330 Errors: 4698 Errors: 5331 4699 5332 ===== ============================= 4700 ===== ============================= 5333 EINTR an unmasked signal is pending 4701 EINTR an unmasked signal is pending 5334 ===== ============================= 4702 ===== ============================= 5335 4703 5336 KVM_PV_DISABLE 4704 KVM_PV_DISABLE 5337 Deregister the VM from the Ultravisor and r !! 4705 5338 been donated to the Ultravisor, making it u !! 4706 Deregister the VM from the Ultravisor and reclaim the memory that 5339 All registered VCPUs are converted back to !! 4707 had been donated to the Ultravisor, making it usable by the kernel 5340 previous protected VM had been prepared for !! 4708 again. All registered VCPUs are converted back to non-protected 5341 KVM_PV_ASYNC_CLEANUP_PREPARE and not subseq !! 4709 ones. 5342 KVM_PV_ASYNC_CLEANUP_PERFORM, it will be to << 5343 together with the current protected VM. << 5344 4710 5345 KVM_PV_VM_SET_SEC_PARMS 4711 KVM_PV_VM_SET_SEC_PARMS 5346 Pass the image header from VM memory to the 4712 Pass the image header from VM memory to the Ultravisor in 5347 preparation of image unpacking and verifica 4713 preparation of image unpacking and verification. 5348 4714 5349 KVM_PV_VM_UNPACK 4715 KVM_PV_VM_UNPACK 5350 Unpack (protect and decrypt) a page of the 4716 Unpack (protect and decrypt) a page of the encrypted boot image. 5351 4717 5352 KVM_PV_VM_VERIFY 4718 KVM_PV_VM_VERIFY 5353 Verify the integrity of the unpacked image. 4719 Verify the integrity of the unpacked image. Only if this succeeds, 5354 KVM is allowed to start protected VCPUs. 4720 KVM is allowed to start protected VCPUs. 5355 4721 5356 KVM_PV_INFO !! 4722 4.126 KVM_X86_SET_MSR_FILTER 5357 :Capability: KVM_CAP_S390_PROTECTED_DUMP !! 4723 ---------------------------- 5358 << 5359 Presents an API that provides Ultravisor re << 5360 via subcommands. len_max is the size of the << 5361 len_written is KVM's indication of how much << 5362 were actually written to. len_written can b << 5363 valid fields if more response fields are ad << 5364 << 5365 :: << 5366 << 5367 enum pv_cmd_info_id { << 5368 KVM_PV_INFO_VM, << 5369 KVM_PV_INFO_DUMP, << 5370 }; << 5371 << 5372 struct kvm_s390_pv_info_header { << 5373 __u32 id; << 5374 __u32 len_max; << 5375 __u32 len_written; << 5376 __u32 reserved; << 5377 }; << 5378 << 5379 struct kvm_s390_pv_info { << 5380 struct kvm_s390_pv_info_header header << 5381 struct kvm_s390_pv_info_dump dump; << 5382 struct kvm_s390_pv_info_vm vm; << 5383 }; << 5384 << 5385 **subcommands:** << 5386 << 5387 KVM_PV_INFO_VM << 5388 This subcommand provides basic Ultravisor << 5389 hosts. These values are likely also expor << 5390 firmware UV query interface but they are << 5391 programs in this API. << 5392 << 5393 The installed calls and feature_indicatio << 5394 installed UV calls and the UV's other fea << 5395 << 5396 The max_* members provide information abo << 5397 vcpus, PV guests and PV guest memory size << 5398 << 5399 :: << 5400 << 5401 struct kvm_s390_pv_info_vm { << 5402 __u64 inst_calls_list[4]; << 5403 __u64 max_cpus; << 5404 __u64 max_guests; << 5405 __u64 max_guest_addr; << 5406 __u64 feature_indication; << 5407 }; << 5408 << 5409 << 5410 KVM_PV_INFO_DUMP << 5411 This subcommand provides information rela << 5412 << 5413 :: << 5414 << 5415 struct kvm_s390_pv_info_dump { << 5416 __u64 dump_cpu_buffer_len; << 5417 __u64 dump_config_mem_buffer_per_1m; << 5418 __u64 dump_config_finalize_len; << 5419 }; << 5420 << 5421 KVM_PV_DUMP << 5422 :Capability: KVM_CAP_S390_PROTECTED_DUMP << 5423 << 5424 Presents an API that provides calls which f << 5425 protected VM. << 5426 << 5427 :: << 5428 << 5429 struct kvm_s390_pv_dmp { << 5430 __u64 subcmd; << 5431 __u64 buff_addr; << 5432 __u64 buff_len; << 5433 __u64 gaddr; /* For dump s << 5434 }; << 5435 << 5436 **subcommands:** << 5437 << 5438 KVM_PV_DUMP_INIT << 5439 Initializes the dump process of a protect << 5440 not succeed all other subcommands will fa << 5441 subcommand will return -EINVAL if a dump << 5442 completed. << 5443 << 5444 Not all PV vms can be dumped, the owner n << 5445 allowed` PCF bit 34 in the SE header to a << 5446 << 5447 KVM_PV_DUMP_CONFIG_STOR_STATE << 5448 Stores `buff_len` bytes of tweak compone << 5449 the 1MB block specified by the absolute << 5450 (`gaddr`). `buff_len` needs to be `conf_ << 5451 aligned and at least >= the `conf_dump_s << 5452 provided by the dump uv_info data. buff_ << 5453 even if an error rc is returned. For ins << 5454 fault after writing the first page of da << 5455 << 5456 KVM_PV_DUMP_COMPLETE << 5457 If the subcommand succeeds it completes t << 5458 KVM_PV_DUMP_INIT be called again. << 5459 << 5460 On success `conf_dump_finalize_len` bytes << 5461 stored to the `buff_addr`. The completion << 5462 derivation seed, IV, tweak nonce and encr << 5463 authentication tag all of which are neede << 5464 later time. << 5465 << 5466 KVM_PV_ASYNC_CLEANUP_PREPARE << 5467 :Capability: KVM_CAP_S390_PROTECTED_ASYNC_D << 5468 << 5469 Prepare the current protected VM for asynch << 5470 resources used by the current protected VM << 5471 subsequent asynchronous teardown. The curre << 5472 resume execution immediately as non-protect << 5473 one protected VM prepared for asynchronous << 5474 a protected VM had already been prepared fo << 5475 subsequently calling KVM_PV_ASYNC_CLEANUP_P << 5476 fail. In that case, the userspace process s << 5477 KVM_PV_DISABLE. The resources set aside wit << 5478 be cleaned up with a subsequent call to KVM << 5479 or KVM_PV_DISABLE, otherwise they will be c << 5480 terminates. KVM_PV_ASYNC_CLEANUP_PREPARE ca << 5481 as cleanup starts, i.e. before KVM_PV_ASYNC << 5482 << 5483 KVM_PV_ASYNC_CLEANUP_PERFORM << 5484 :Capability: KVM_CAP_S390_PROTECTED_ASYNC_D << 5485 << 5486 Tear down the protected VM previously prepa << 5487 KVM_PV_ASYNC_CLEANUP_PREPARE. The resources << 5488 will be freed during the execution of this << 5489 should ideally be issued by userspace from << 5490 fatal signal is received (or the process te << 5491 command will terminate immediately without << 5492 KVM shutdown procedure will take care of cl << 5493 protected VMs, including the ones whose tea << 5494 process termination. << 5495 << 5496 4.126 KVM_XEN_HVM_SET_ATTR << 5497 -------------------------- << 5498 << 5499 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO << 5500 :Architectures: x86 << 5501 :Type: vm ioctl << 5502 :Parameters: struct kvm_xen_hvm_attr << 5503 :Returns: 0 on success, < 0 on error << 5504 << 5505 :: << 5506 << 5507 struct kvm_xen_hvm_attr { << 5508 __u16 type; << 5509 __u16 pad[3]; << 5510 union { << 5511 __u8 long_mode; << 5512 __u8 vector; << 5513 __u8 runstate_update_flag; << 5514 union { << 5515 __u64 gfn; << 5516 __u64 hva; << 5517 } shared_info; << 5518 struct { << 5519 __u32 send_port; << 5520 __u32 type; /* EVTCHN << 5521 __u32 flags; << 5522 union { << 5523 struct { << 5524 __u32 << 5525 __u32 << 5526 __u32 << 5527 } port; << 5528 struct { << 5529 __u32 << 5530 __s32 << 5531 } eventfd; << 5532 __u32 padding << 5533 } deliver; << 5534 } evtchn; << 5535 __u32 xen_version; << 5536 __u64 pad[8]; << 5537 } u; << 5538 }; << 5539 << 5540 type values: << 5541 << 5542 KVM_XEN_ATTR_TYPE_LONG_MODE << 5543 Sets the ABI mode of the VM to 32-bit or 64 << 5544 determines the layout of the shared_info pa << 5545 << 5546 KVM_XEN_ATTR_TYPE_SHARED_INFO << 5547 Sets the guest physical frame number at whi << 5548 page resides. Note that although Xen places << 5549 32 vCPUs in the shared_info page, KVM does << 5550 and instead requires that KVM_XEN_VCPU_ATTR << 5551 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA be use << 5552 the vcpu_info for a given vCPU resides at t << 5553 in the shared_info page. This is because KV << 5554 the Xen CPU id which is used as the index i << 5555 array, so may know the correct default loca << 5556 << 5557 Note that the shared_info page may be const << 5558 it contains the event channel bitmap used t << 5559 a Xen guest, amongst other things. It is ex << 5560 mechanisms — KVM will not explicitly mark << 5561 time an event channel interrupt is delivere << 5562 userspace should always assume that the des << 5563 any vCPU has been running or any event chan << 5564 routed to the guest. << 5565 << 5566 Setting the gfn to KVM_XEN_INVALID_GFN will << 5567 page. << 5568 << 5569 KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA << 5570 If the KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA f << 5571 Xen capabilities, then this attribute may b << 5572 userspace address at which the shared_info << 5573 will always be fixed in the VMM regardless << 5574 in guest physical address space. This attri << 5575 preference to KVM_XEN_ATTR_TYPE_SHARED_INFO << 5576 unnecessary invalidation of an internal cac << 5577 re-mapped in guest physcial address space. << 5578 << 5579 Setting the hva to zero will disable the sh << 5580 << 5581 KVM_XEN_ATTR_TYPE_UPCALL_VECTOR << 5582 Sets the exception vector used to deliver X << 5583 This is the HVM-wide vector injected direct << 5584 (not through the local APIC), typically con << 5585 HVM_PARAM_CALLBACK_IRQ. This can be disable << 5586 SHUTDOWN_soft_reset) by setting it to zero. << 5587 << 5588 KVM_XEN_ATTR_TYPE_EVTCHN << 5589 This attribute is available when the KVM_CA << 5590 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5591 an outbound port number for interception of << 5592 from the guest. A given sending port number << 5593 a specified vCPU (by APIC ID) / port / prio << 5594 trigger events on an eventfd. The vCPU and << 5595 by setting KVM_XEN_EVTCHN_UPDATE in a subse << 5596 fields cannot change for a given sending po << 5597 removed by using KVM_XEN_EVTCHN_DEASSIGN in << 5598 KVM_XEN_EVTCHN_RESET in the flags field rem << 5599 outbound event channels. The values of the << 5600 exclusive and cannot be combined as a bitma << 5601 << 5602 KVM_XEN_ATTR_TYPE_XEN_VERSION << 5603 This attribute is available when the KVM_CA << 5604 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5605 the 32-bit version code returned to the gue << 5606 XENVER_version call; typically (XEN_MAJOR < << 5607 Xen guests will often use this to as a dumm << 5608 event channel delivery, so responding withi << 5609 exiting to userspace is beneficial. << 5610 << 5611 KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG << 5612 This attribute is available when the KVM_CA << 5613 support for KVM_XEN_HVM_CONFIG_RUNSTATE_UPD << 5614 XEN_RUNSTATE_UPDATE flag which allows guest << 5615 other vCPUs' vcpu_runstate_info. Xen guests << 5616 the VMASST_TYPE_runstate_update_flag of the << 5617 hypercall. << 5618 << 5619 4.127 KVM_XEN_HVM_GET_ATTR << 5620 -------------------------- << 5621 << 5622 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO << 5623 :Architectures: x86 << 5624 :Type: vm ioctl << 5625 :Parameters: struct kvm_xen_hvm_attr << 5626 :Returns: 0 on success, < 0 on error << 5627 << 5628 Allows Xen VM attributes to be read. For the << 5629 see KVM_XEN_HVM_SET_ATTR above. The KVM_XEN_A << 5630 attribute cannot be read. << 5631 << 5632 4.128 KVM_XEN_VCPU_SET_ATTR << 5633 --------------------------- << 5634 << 5635 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO << 5636 :Architectures: x86 << 5637 :Type: vcpu ioctl << 5638 :Parameters: struct kvm_xen_vcpu_attr << 5639 :Returns: 0 on success, < 0 on error << 5640 << 5641 :: << 5642 << 5643 struct kvm_xen_vcpu_attr { << 5644 __u16 type; << 5645 __u16 pad[3]; << 5646 union { << 5647 __u64 gpa; << 5648 __u64 pad[4]; << 5649 struct { << 5650 __u64 state; << 5651 __u64 state_entry_tim << 5652 __u64 time_running; << 5653 __u64 time_runnable; << 5654 __u64 time_blocked; << 5655 __u64 time_offline; << 5656 } runstate; << 5657 __u32 vcpu_id; << 5658 struct { << 5659 __u32 port; << 5660 __u32 priority; << 5661 __u64 expires_ns; << 5662 } timer; << 5663 __u8 vector; << 5664 } u; << 5665 }; << 5666 << 5667 type values: << 5668 << 5669 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO << 5670 Sets the guest physical address of the vcpu << 5671 As with the shared_info page for the VM, th << 5672 dirtied at any time if event channel interr << 5673 userspace should always assume that the pag << 5674 on dirty logging. Setting the gpa to KVM_XE << 5675 the vcpu_info. << 5676 << 5677 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA << 5678 If the KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA f << 5679 Xen capabilities, then this attribute may b << 5680 userspace address of the vcpu_info for a gi << 5681 only be used when the vcpu_info resides at << 5682 in the shared_info page. In this case it is << 5683 userspace address will not change, because << 5684 an overlay on guest memory and remains at a << 5685 regardless of where it is mapped in guest p << 5686 and hence unnecessary invalidation of an in << 5687 avoided if the guest memory layout is modif << 5688 If the vcpu_info does not reside at the "de << 5689 it is not guaranteed to remain at the same << 5690 hence the aforementioned cache invalidation << 5691 << 5692 KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO << 5693 Sets the guest physical address of an addit << 5694 for a given vCPU. This is typically used fo << 5695 Setting the gpa to KVM_XEN_INVALID_GPA will << 5696 << 5697 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR << 5698 Sets the guest physical address of the vcpu << 5699 vCPU. This is how a Xen guest tracks CPU st << 5700 Setting the gpa to KVM_XEN_INVALID_GPA will << 5701 << 5702 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT << 5703 Sets the runstate (RUNSTATE_running/_runnab << 5704 the given vCPU from the .u.runstate.state m << 5705 KVM automatically accounts running and runn << 5706 and offline states are only entered explici << 5707 << 5708 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA << 5709 Sets all fields of the vCPU runstate data f << 5710 of the structure, including the current run << 5711 must equal the sum of the other four times. << 5712 << 5713 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST << 5714 This *adds* the contents of the .u.runstate << 5715 to the corresponding members of the given v << 5716 permitting atomic adjustments to the runsta << 5717 to the state_entry_time must equal the sum << 5718 other four times. The state field must be s << 5719 runstate value (RUNSTATE_running, RUNSTATE_ << 5720 or RUNSTATE_offline) to set the current acc << 5721 adjusted state_entry_time. << 5722 << 5723 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID << 5724 This attribute is available when the KVM_CA << 5725 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5726 vCPU ID of the given vCPU, to allow timer-r << 5727 be intercepted by KVM. << 5728 << 5729 KVM_XEN_VCPU_ATTR_TYPE_TIMER << 5730 This attribute is available when the KVM_CA << 5731 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5732 event channel port/priority for the VIRQ_TI << 5733 as allowing a pending timer to be saved/res << 5734 port to zero disables kernel handling of th << 5735 << 5736 KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR << 5737 This attribute is available when the KVM_CA << 5738 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5739 per-vCPU local APIC upcall vector, configur << 5740 the HVMOP_set_evtchn_upcall_vector hypercal << 5741 used by Windows guests, and is distinct fro << 5742 vector configured with HVM_PARAM_CALLBACK_I << 5743 setting the vector to zero. << 5744 << 5745 << 5746 4.129 KVM_XEN_VCPU_GET_ATTR << 5747 --------------------------- << 5748 << 5749 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO << 5750 :Architectures: x86 << 5751 :Type: vcpu ioctl << 5752 :Parameters: struct kvm_xen_vcpu_attr << 5753 :Returns: 0 on success, < 0 on error << 5754 << 5755 Allows Xen vCPU attributes to be read. For th << 5756 see KVM_XEN_VCPU_SET_ATTR above. << 5757 << 5758 The KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST ty << 5759 with the KVM_XEN_VCPU_GET_ATTR ioctl. << 5760 << 5761 4.130 KVM_ARM_MTE_COPY_TAGS << 5762 --------------------------- << 5763 << 5764 :Capability: KVM_CAP_ARM_MTE << 5765 :Architectures: arm64 << 5766 :Type: vm ioctl << 5767 :Parameters: struct kvm_arm_copy_mte_tags << 5768 :Returns: number of bytes copied, < 0 on erro << 5769 arguments, -EFAULT if memory cannot << 5770 << 5771 :: << 5772 << 5773 struct kvm_arm_copy_mte_tags { << 5774 __u64 guest_ipa; << 5775 __u64 length; << 5776 void __user *addr; << 5777 __u64 flags; << 5778 __u64 reserved[2]; << 5779 }; << 5780 << 5781 Copies Memory Tagging Extension (MTE) tags to << 5782 ``guest_ipa`` and ``length`` fields must be ` << 5783 ``length`` must not be bigger than 2^31 - PAG << 5784 field must point to a buffer which the tags w << 5785 << 5786 ``flags`` specifies the direction of copy, ei << 5787 ``KVM_ARM_TAGS_FROM_GUEST``. << 5788 << 5789 The size of the buffer to store the tags is ` << 5790 (granules in MTE are 16 bytes long). Each byt << 5791 value. This matches the format of ``PTRACE_PE << 5792 ``PTRACE_POKEMTETAGS``. << 5793 << 5794 If an error occurs before any data is copied << 5795 returned. If some tags have been copied befor << 5796 of bytes successfully copied is returned. If << 5797 then ``length`` is returned. << 5798 << 5799 4.131 KVM_GET_SREGS2 << 5800 -------------------- << 5801 << 5802 :Capability: KVM_CAP_SREGS2 << 5803 :Architectures: x86 << 5804 :Type: vcpu ioctl << 5805 :Parameters: struct kvm_sregs2 (out) << 5806 :Returns: 0 on success, -1 on error << 5807 << 5808 Reads special registers from the vcpu. << 5809 This ioctl (when supported) replaces the KVM_ << 5810 << 5811 :: << 5812 << 5813 struct kvm_sregs2 { << 5814 /* out (KVM_GET_SREGS2) / in << 5815 struct kvm_segment cs, ds, es << 5816 struct kvm_segment tr, ldt; << 5817 struct kvm_dtable gdt, idt; << 5818 __u64 cr0, cr2, cr3, cr4, cr8 << 5819 __u64 efer; << 5820 __u64 apic_base; << 5821 __u64 flags; << 5822 __u64 pdptrs[4]; << 5823 }; << 5824 << 5825 flags values for ``kvm_sregs2``: << 5826 << 5827 ``KVM_SREGS2_FLAGS_PDPTRS_VALID`` << 5828 << 5829 Indicates that the struct contains valid PD << 5830 << 5831 << 5832 4.132 KVM_SET_SREGS2 << 5833 -------------------- << 5834 << 5835 :Capability: KVM_CAP_SREGS2 << 5836 :Architectures: x86 << 5837 :Type: vcpu ioctl << 5838 :Parameters: struct kvm_sregs2 (in) << 5839 :Returns: 0 on success, -1 on error << 5840 << 5841 Writes special registers into the vcpu. << 5842 See KVM_GET_SREGS2 for the data structures. << 5843 This ioctl (when supported) replaces the KVM_ << 5844 << 5845 4.133 KVM_GET_STATS_FD << 5846 ---------------------- << 5847 << 5848 :Capability: KVM_CAP_STATS_BINARY_FD << 5849 :Architectures: all << 5850 :Type: vm ioctl, vcpu ioctl << 5851 :Parameters: none << 5852 :Returns: statistics file descriptor on succe << 5853 << 5854 Errors: << 5855 << 5856 ====== ================================ << 5857 ENOMEM if the fd could not be created d << 5858 EMFILE if the number of opened files ex << 5859 ====== ================================ << 5860 << 5861 The returned file descriptor can be used to r << 5862 binary format. The data in the file descripto << 5863 organized as follows: << 5864 << 5865 +-------------+ << 5866 | Header | << 5867 +-------------+ << 5868 | id string | << 5869 +-------------+ << 5870 | Descriptors | << 5871 +-------------+ << 5872 | Stats Data | << 5873 +-------------+ << 5874 << 5875 Apart from the header starting at offset 0, p << 5876 not guaranteed that the four blocks are adjac << 5877 the offsets of the id, descriptors and data b << 5878 header. However, all four blocks are aligned << 5879 file and they do not overlap. << 5880 << 5881 All blocks except the data block are immutabl << 5882 only one time after retrieving the file descr << 5883 ``lseek`` to read the statistics repeatedly. << 5884 << 5885 All data is in system endianness. << 5886 << 5887 The format of the header is as follows:: << 5888 << 5889 struct kvm_stats_header { << 5890 __u32 flags; << 5891 __u32 name_size; << 5892 __u32 num_desc; << 5893 __u32 id_offset; << 5894 __u32 desc_offset; << 5895 __u32 data_offset; << 5896 }; << 5897 << 5898 The ``flags`` field is not used at the moment << 5899 << 5900 The ``name_size`` field is the size (in byte) << 5901 (including trailing '\0') which is contained << 5902 appended at the end of every descriptor. << 5903 << 5904 The ``num_desc`` field is the number of descr << 5905 descriptor block. (The actual number of valu << 5906 larger, since each descriptor may comprise mo << 5907 << 5908 The ``id_offset`` field is the offset of the << 5909 file indicated by the file descriptor. It is << 5910 << 5911 The ``desc_offset`` field is the offset of th << 5912 of the file indicated by the file descriptor. << 5913 << 5914 The ``data_offset`` field is the offset of th << 5915 of the file indicated by the file descriptor. << 5916 << 5917 The id string block contains a string which i << 5918 which KVM_GET_STATS_FD was invoked. The size << 5919 trailing ``'\0'``, is indicated by the ``name << 5920 << 5921 The descriptors block is only needed to be re << 5922 file descriptor contains a sequence of ``stru << 5923 by a string of size ``name_size``. << 5924 :: << 5925 << 5926 #define KVM_STATS_TYPE_SHIFT << 5927 #define KVM_STATS_TYPE_MASK << 5928 #define KVM_STATS_TYPE_CUMULATIVE << 5929 #define KVM_STATS_TYPE_INSTANT << 5930 #define KVM_STATS_TYPE_PEAK << 5931 #define KVM_STATS_TYPE_LINEAR_HIST << 5932 #define KVM_STATS_TYPE_LOG_HIST << 5933 #define KVM_STATS_TYPE_MAX << 5934 << 5935 #define KVM_STATS_UNIT_SHIFT << 5936 #define KVM_STATS_UNIT_MASK << 5937 #define KVM_STATS_UNIT_NONE << 5938 #define KVM_STATS_UNIT_BYTES << 5939 #define KVM_STATS_UNIT_SECONDS << 5940 #define KVM_STATS_UNIT_CYCLES << 5941 #define KVM_STATS_UNIT_BOOLEAN << 5942 #define KVM_STATS_UNIT_MAX << 5943 << 5944 #define KVM_STATS_BASE_SHIFT << 5945 #define KVM_STATS_BASE_MASK << 5946 #define KVM_STATS_BASE_POW10 << 5947 #define KVM_STATS_BASE_POW2 << 5948 #define KVM_STATS_BASE_MAX << 5949 << 5950 struct kvm_stats_desc { << 5951 __u32 flags; << 5952 __s16 exponent; << 5953 __u16 size; << 5954 __u32 offset; << 5955 __u32 bucket_size; << 5956 char name[]; << 5957 }; << 5958 << 5959 The ``flags`` field contains the type and uni << 5960 by this descriptor. Its endianness is CPU nat << 5961 The following flags are supported: << 5962 << 5963 Bits 0-3 of ``flags`` encode the type: << 5964 << 5965 * ``KVM_STATS_TYPE_CUMULATIVE`` << 5966 The statistics reports a cumulative count << 5967 Most of the counters used in KVM are of t << 5968 The corresponding ``size`` field for this << 5969 All cumulative statistics data are read/w << 5970 * ``KVM_STATS_TYPE_INSTANT`` << 5971 The statistics reports an instantaneous v << 5972 decreased. This type is usually used as a << 5973 like the number of dirty pages, the numbe << 5974 All instant statistics are read only. << 5975 The corresponding ``size`` field for this << 5976 * ``KVM_STATS_TYPE_PEAK`` << 5977 The statistics data reports a peak value, << 5978 of items in a hash table bucket, the long << 5979 The value of data can only be increased. << 5980 The corresponding ``size`` field for this << 5981 * ``KVM_STATS_TYPE_LINEAR_HIST`` << 5982 The statistic is reported as a linear his << 5983 buckets is specified by the ``size`` fiel << 5984 by the ``hist_param`` field. The range of << 5985 is [``hist_param``*(N-1), ``hist_param``* << 5986 bucket is [``hist_param``*(``size``-1), + << 5987 value.) << 5988 * ``KVM_STATS_TYPE_LOG_HIST`` << 5989 The statistic is reported as a logarithmi << 5990 buckets is specified by the ``size`` fiel << 5991 [0, 1), while the range of the last bucke << 5992 Otherwise, The Nth bucket (1 < N < ``size << 5993 [pow(2, N-2), pow(2, N-1)). << 5994 << 5995 Bits 4-7 of ``flags`` encode the unit: << 5996 << 5997 * ``KVM_STATS_UNIT_NONE`` << 5998 There is no unit for the value of statist << 5999 the value is a simple counter of an event << 6000 * ``KVM_STATS_UNIT_BYTES`` << 6001 It indicates that the statistics data is << 6002 unit of Byte, KiByte, MiByte, GiByte, etc << 6003 determined by the ``exponent`` field in t << 6004 * ``KVM_STATS_UNIT_SECONDS`` << 6005 It indicates that the statistics data is << 6006 * ``KVM_STATS_UNIT_CYCLES`` << 6007 It indicates that the statistics data is << 6008 * ``KVM_STATS_UNIT_BOOLEAN`` << 6009 It indicates that the statistic will alwa << 6010 statistics of "peak" type will never go b << 6011 statistics can be linear histograms (with << 6012 histograms. << 6013 << 6014 Note that, in the case of histograms, the uni << 6015 ranges, while the bucket value indicates how << 6016 bucket's range. << 6017 << 6018 Bits 8-11 of ``flags``, together with ``expon << 6019 unit: << 6020 << 6021 * ``KVM_STATS_BASE_POW10`` << 6022 The scale is based on power of 10. It is << 6023 CPU clock cycles. For example, an expone << 6024 ``KVM_STATS_UNIT_SECONDS`` to express tha << 6025 * ``KVM_STATS_BASE_POW2`` << 6026 The scale is based on power of 2. It is u << 6027 For example, an exponent of 20 can be use << 6028 express that the unit is MiB. << 6029 << 6030 The ``size`` field is the number of values of << 6031 value is usually 1 for most of simple statist << 6032 unsigned 64bit data. << 6033 << 6034 The ``offset`` field is the offset from the s << 6035 the corresponding statistics data. << 6036 << 6037 The ``bucket_size`` field is used as a parame << 6038 It is only used by linear histogram statistic << 6039 bucket in the unit expressed by bits 4-11 of << 6040 << 6041 The ``name`` field is the name string of the << 6042 starts at the end of ``struct kvm_stats_desc` << 6043 the trailing ``'\0'``, is indicated by ``name << 6044 << 6045 The Stats Data block contains an array of 64- << 6046 as the descriptors in Descriptors block. << 6047 << 6048 4.134 KVM_GET_XSAVE2 << 6049 -------------------- << 6050 << 6051 :Capability: KVM_CAP_XSAVE2 << 6052 :Architectures: x86 << 6053 :Type: vcpu ioctl << 6054 :Parameters: struct kvm_xsave (out) << 6055 :Returns: 0 on success, -1 on error << 6056 << 6057 << 6058 :: << 6059 << 6060 struct kvm_xsave { << 6061 __u32 region[1024]; << 6062 __u32 extra[0]; << 6063 }; << 6064 << 6065 This ioctl would copy current vcpu's xsave st << 6066 copies as many bytes as are returned by KVM_C << 6067 when invoked on the vm file descriptor. The s << 6068 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will alwa << 6069 Currently, it is only greater than 4096 if a << 6070 enabled with ``arch_prctl()``, but this may c << 6071 << 6072 The offsets of the state save areas in struct << 6073 of CPUID leaf 0xD on the host. << 6074 << 6075 4.135 KVM_XEN_HVM_EVTCHN_SEND << 6076 ----------------------------- << 6077 4724 6078 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO !! 4725 :Capability: KVM_X86_SET_MSR_FILTER 6079 :Architectures: x86 4726 :Architectures: x86 6080 :Type: vm ioctl 4727 :Type: vm ioctl 6081 :Parameters: struct kvm_irq_routing_xen_evtch !! 4728 :Parameters: struct kvm_msr_filter 6082 :Returns: 0 on success, < 0 on error 4729 :Returns: 0 on success, < 0 on error 6083 4730 6084 << 6085 :: 4731 :: 6086 4732 6087 struct kvm_irq_routing_xen_evtchn { !! 4733 struct kvm_msr_filter_range { 6088 __u32 port; !! 4734 #define KVM_MSR_FILTER_READ (1 << 0) 6089 __u32 vcpu; !! 4735 #define KVM_MSR_FILTER_WRITE (1 << 1) 6090 __u32 priority; !! 4736 __u32 flags; 6091 }; !! 4737 __u32 nmsrs; /* number of msrs in bitmap */ 6092 !! 4738 __u32 base; /* MSR index the bitmap starts at */ 6093 This ioctl injects an event channel interrupt !! 4739 __u8 *bitmap; /* a 1 bit allows the operations in flags, 0 denies */ 6094 << 6095 4.136 KVM_S390_PV_CPU_COMMAND << 6096 ----------------------------- << 6097 << 6098 :Capability: KVM_CAP_S390_PROTECTED_DUMP << 6099 :Architectures: s390 << 6100 :Type: vcpu ioctl << 6101 :Parameters: none << 6102 :Returns: 0 on success, < 0 on error << 6103 << 6104 This ioctl closely mirrors `KVM_S390_PV_COMMA << 6105 for vcpus. It re-uses the kvm_s390_pv_dmp str << 6106 the command ids. << 6107 << 6108 **command:** << 6109 << 6110 KVM_PV_DUMP << 6111 Presents an API that provides calls which f << 6112 of a protected VM. << 6113 << 6114 **subcommand:** << 6115 << 6116 KVM_PV_DUMP_CPU << 6117 Provides encrypted dump data like register << 6118 The length of the returned data is provided << 6119 << 6120 4.137 KVM_S390_ZPCI_OP << 6121 ---------------------- << 6122 << 6123 :Capability: KVM_CAP_S390_ZPCI_OP << 6124 :Architectures: s390 << 6125 :Type: vm ioctl << 6126 :Parameters: struct kvm_s390_zpci_op (in) << 6127 :Returns: 0 on success, <0 on error << 6128 << 6129 Used to manage hardware-assisted virtualizati << 6130 << 6131 Parameters are specified via the following st << 6132 << 6133 struct kvm_s390_zpci_op { << 6134 /* in */ << 6135 __u32 fh; /* target dev << 6136 __u8 op; /* operation << 6137 __u8 pad[3]; << 6138 union { << 6139 /* for KVM_S390_ZPCIOP_REG_AE << 6140 struct { << 6141 __u64 ibv; /* Gu << 6142 __u64 sb; /* Gu << 6143 __u32 flags; << 6144 __u32 noi; /* Nu << 6145 __u8 isc; /* Gu << 6146 __u8 sbo; /* Of << 6147 __u16 pad; << 6148 } reg_aen; << 6149 __u64 reserved[8]; << 6150 } u; << 6151 }; 4740 }; 6152 4741 6153 The type of operation is specified in the "op !! 4742 #define KVM_MSR_FILTER_MAX_RANGES 16 6154 KVM_S390_ZPCIOP_REG_AEN is used to register t !! 4743 struct kvm_msr_filter { 6155 notification interpretation, which will allow !! 4744 #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 0) 6156 events directly to the vm, with KVM providing !! 4745 #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 0) 6157 KVM_S390_ZPCIOP_DEREG_AEN is used to subseque << 6158 adapter event notifications. << 6159 << 6160 The target zPCI function must also be specifi << 6161 KVM_S390_ZPCIOP_REG_AEN operation, additional << 6162 delivery must be provided via the "reg_aen" s << 6163 << 6164 The "pad" and "reserved" fields may be used f << 6165 set to 0s by userspace. << 6166 << 6167 4.138 KVM_ARM_SET_COUNTER_OFFSET << 6168 -------------------------------- << 6169 << 6170 :Capability: KVM_CAP_COUNTER_OFFSET << 6171 :Architectures: arm64 << 6172 :Type: vm ioctl << 6173 :Parameters: struct kvm_arm_counter_offset (i << 6174 :Returns: 0 on success, < 0 on error << 6175 << 6176 This capability indicates that userspace is a << 6177 offset to both the virtual and physical count << 6178 using the KVM_ARM_SET_CNT_OFFSET ioctl and th << 6179 << 6180 :: << 6181 << 6182 struct kvm_arm_counter_offset { << 6183 __u64 counter_offset; << 6184 __u64 reserved; << 6185 }; << 6186 << 6187 The offset describes a number of counter cycl << 6188 both virtual and physical counter views (simi << 6189 CNTVOFF_EL2 and CNTPOFF_EL2 system registers, << 6190 always applies to all vcpus (already created << 6191 for this VM. << 6192 << 6193 It is userspace's responsibility to compute t << 6194 on previous values of the guest counters. << 6195 << 6196 Any value other than 0 for the "reserved" fie << 6197 (-EINVAL) being returned. This ioctl can also << 6198 ioctl is issued concurrently. << 6199 << 6200 Note that using this ioctl results in KVM ign << 6201 writes to the CNTVCT_EL0 and CNTPCT_EL0 regis << 6202 interface. No error will be returned, but the << 6203 applied. << 6204 << 6205 .. _KVM_ARM_GET_REG_WRITABLE_MASKS: << 6206 << 6207 4.139 KVM_ARM_GET_REG_WRITABLE_MASKS << 6208 ------------------------------------------- << 6209 << 6210 :Capability: KVM_CAP_ARM_SUPPORTED_REG_MASK_R << 6211 :Architectures: arm64 << 6212 :Type: vm ioctl << 6213 :Parameters: struct reg_mask_range (in/out) << 6214 :Returns: 0 on success, < 0 on error << 6215 << 6216 << 6217 :: << 6218 << 6219 #define KVM_ARM_FEATURE_ID_RANGE << 6220 #define KVM_ARM_FEATURE_ID_RANGE_SIZE << 6221 << 6222 struct reg_mask_range { << 6223 __u64 addr; /* Po << 6224 __u32 range; /* Re << 6225 __u32 reserved[13]; << 6226 }; << 6227 << 6228 This ioctl copies the writable masks for a se << 6229 userspace. << 6230 << 6231 The ``addr`` field is a pointer to the destin << 6232 the writable masks. << 6233 << 6234 The ``range`` field indicates the requested r << 6235 ``KVM_CHECK_EXTENSION`` for the ``KVM_CAP_ARM << 6236 capability returns the supported ranges, expr << 6237 flag's bit index represents a possible value << 6238 All other values are reserved for future use << 6239 << 6240 The ``reserved[13]`` array is reserved for fu << 6241 KVM may return an error. << 6242 << 6243 KVM_ARM_FEATURE_ID_RANGE (0) << 6244 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ << 6245 << 6246 The Feature ID range is defined as the AArch6 << 6247 op0==3, op1=={0, 1, 3}, CRn==0, CRm=={0-7}, o << 6248 << 6249 The mask returned array pointed to by ``addr` << 6250 ``ARM64_FEATURE_ID_RANGE_IDX(op0, op1, crn, c << 6251 to know what fields can be changed for the sy << 6252 ``op0, op1, crn, crm, op2``. KVM rejects ID r << 6253 superset of the features supported by the sys << 6254 << 6255 4.140 KVM_SET_USER_MEMORY_REGION2 << 6256 --------------------------------- << 6257 << 6258 :Capability: KVM_CAP_USER_MEMORY2 << 6259 :Architectures: all << 6260 :Type: vm ioctl << 6261 :Parameters: struct kvm_userspace_memory_regi << 6262 :Returns: 0 on success, -1 on error << 6263 << 6264 KVM_SET_USER_MEMORY_REGION2 is an extension t << 6265 allows mapping guest_memfd memory into a gues << 6266 KVM_SET_USER_MEMORY_REGION identically. User << 6267 in flags to have KVM bind the memory region t << 6268 [guest_memfd_offset, guest_memfd_offset + mem << 6269 must point at a file created via KVM_CREATE_G << 6270 the target range must not be bound to any oth << 6271 bounds checks apply (use common sense). << 6272 << 6273 :: << 6274 << 6275 struct kvm_userspace_memory_region2 { << 6276 __u32 slot; << 6277 __u32 flags; 4746 __u32 flags; 6278 __u64 guest_phys_addr; !! 4747 struct kvm_msr_filter_range ranges[KVM_MSR_FILTER_MAX_RANGES]; 6279 __u64 memory_size; /* bytes */ << 6280 __u64 userspace_addr; /* start of the << 6281 __u64 guest_memfd_offset; << 6282 __u32 guest_memfd; << 6283 __u32 pad1; << 6284 __u64 pad2[14]; << 6285 }; << 6286 << 6287 A KVM_MEM_GUEST_MEMFD region _must_ have a va << 6288 userspace_addr (shared memory). However, "va << 6289 means that the address itself must be a legal << 6290 mapping for userspace_addr is not required to << 6291 KVM_SET_USER_MEMORY_REGION2, e.g. shared memo << 6292 on-demand. << 6293 << 6294 When mapping a gfn into the guest, KVM select << 6295 userspace_addr vs. guest_memfd, based on the << 6296 state. At VM creation time, all memory is sh << 6297 is '0' for all gfns. Userspace can control w << 6298 toggling KVM_MEMORY_ATTRIBUTE_PRIVATE via KVM << 6299 << 6300 S390: << 6301 ^^^^^ << 6302 << 6303 Returns -EINVAL if the VM has the KVM_VM_S390 << 6304 Returns -EINVAL if called on a protected VM. << 6305 << 6306 4.141 KVM_SET_MEMORY_ATTRIBUTES << 6307 ------------------------------- << 6308 << 6309 :Capability: KVM_CAP_MEMORY_ATTRIBUTES << 6310 :Architectures: x86 << 6311 :Type: vm ioctl << 6312 :Parameters: struct kvm_memory_attributes (in << 6313 :Returns: 0 on success, <0 on error << 6314 << 6315 KVM_SET_MEMORY_ATTRIBUTES allows userspace to << 6316 of guest physical memory. << 6317 << 6318 :: << 6319 << 6320 struct kvm_memory_attributes { << 6321 __u64 address; << 6322 __u64 size; << 6323 __u64 attributes; << 6324 __u64 flags; << 6325 }; 4748 }; 6326 4749 6327 #define KVM_MEMORY_ATTRIBUTE_PRIVATE !! 4750 flags values for ``struct kvm_msr_filter_range``: 6328 << 6329 The address and size must be page aligned. T << 6330 retrieved via ioctl(KVM_CHECK_EXTENSION) on K << 6331 executed on a VM, KVM_CAP_MEMORY_ATTRIBUTES p << 6332 supported by that VM. If executed at system << 6333 returns all attributes supported by KVM. The << 6334 time is KVM_MEMORY_ATTRIBUTE_PRIVATE, which m << 6335 guest private memory. << 6336 << 6337 Note, there is no "get" API. Userspace is re << 6338 the state of a gfn/page as needed. << 6339 4751 6340 The "flags" field is reserved for future exte !! 4752 ``KVM_MSR_FILTER_READ`` 6341 4753 6342 4.142 KVM_CREATE_GUEST_MEMFD !! 4754 Filter read accesses to MSRs using the given bitmap. A 0 in the bitmap 6343 ---------------------------- !! 4755 indicates that a read should immediately fail, while a 1 indicates that >> 4756 a read for a particular MSR should be handled regardless of the default >> 4757 filter action. 6344 4758 6345 :Capability: KVM_CAP_GUEST_MEMFD !! 4759 ``KVM_MSR_FILTER_WRITE`` 6346 :Architectures: none << 6347 :Type: vm ioctl << 6348 :Parameters: struct kvm_create_guest_memfd(in << 6349 :Returns: A file descriptor on success, <0 on << 6350 4760 6351 KVM_CREATE_GUEST_MEMFD creates an anonymous f !! 4761 Filter write accesses to MSRs using the given bitmap. A 0 in the bitmap 6352 that refers to it. guest_memfd files are rou !! 4762 indicates that a write should immediately fail, while a 1 indicates that 6353 via memfd_create(), e.g. guest_memfd files li !! 4763 a write for a particular MSR should be handled regardless of the default 6354 and are automatically released when the last !! 4764 filter action. 6355 "regular" memfd_create() files, guest_memfd f << 6356 virtual machine (see below), cannot be mapped << 6357 and cannot be resized (guest_memfd files do << 6358 4765 6359 :: !! 4766 ``KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE`` 6360 4767 6361 struct kvm_create_guest_memfd { !! 4768 Filter both read and write accesses to MSRs using the given bitmap. A 0 6362 __u64 size; !! 4769 in the bitmap indicates that both reads and writes should immediately fail, 6363 __u64 flags; !! 4770 while a 1 indicates that reads and writes for a particular MSR are not 6364 __u64 reserved[6]; !! 4771 filtered by this range. 6365 }; << 6366 4772 6367 Conceptually, the inode backing a guest_memfd !! 4773 flags values for ``struct kvm_msr_filter``: 6368 i.e. is coupled to the virtual machine as a t << 6369 file itself, which is bound to a "struct kvm" << 6370 underlying memory, e.g. effectively provides << 6371 to host memory. This allows for use cases wh << 6372 used to manage a single virtual machine, e.g. << 6373 migration of a virtual machine. << 6374 << 6375 KVM currently only supports mapping guest_mem << 6376 and more specifically via the guest_memfd and << 6377 "struct kvm_userspace_memory_region2", where << 6378 into the guest_memfd instance. For a given g << 6379 most one mapping per page, i.e. binding multi << 6380 guest_memfd range is not allowed (any number << 6381 a single guest_memfd file, but the bound rang << 6382 4774 6383 See KVM_SET_USER_MEMORY_REGION2 for additiona !! 4775 ``KVM_MSR_FILTER_DEFAULT_ALLOW`` 6384 4776 6385 4.143 KVM_PRE_FAULT_MEMORY !! 4777 If no filter range matches an MSR index that is getting accessed, KVM will 6386 --------------------------- !! 4778 fall back to allowing access to the MSR. 6387 4779 6388 :Capability: KVM_CAP_PRE_FAULT_MEMORY !! 4780 ``KVM_MSR_FILTER_DEFAULT_DENY`` 6389 :Architectures: none << 6390 :Type: vcpu ioctl << 6391 :Parameters: struct kvm_pre_fault_memory (in/ << 6392 :Returns: 0 if at least one page is processed << 6393 4781 6394 Errors: !! 4782 If no filter range matches an MSR index that is getting accessed, KVM will >> 4783 fall back to rejecting access to the MSR. In this mode, all MSRs that should >> 4784 be processed by KVM need to explicitly be marked as allowed in the bitmaps. 6395 4785 6396 ========== ================================ !! 4786 This ioctl allows user space to define up to 16 bitmaps of MSR ranges to 6397 EINVAL The specified `gpa` and `size` w !! 4787 specify whether a certain MSR access should be explicitly filtered for or not. 6398 page aligned, causes an overflow << 6399 ENOENT The specified `gpa` is outside d << 6400 EINTR An unmasked signal is pending an << 6401 EFAULT The parameter address was invali << 6402 EOPNOTSUPP Mapping memory for a GPA is unsu << 6403 hypervisor, and/or for the curre << 6404 EIO unexpected error conditions (als << 6405 ========== ================================ << 6406 4788 6407 :: !! 4789 If this ioctl has never been invoked, MSR accesses are not guarded and the >> 4790 default KVM in-kernel emulation behavior is fully preserved. 6408 4791 6409 struct kvm_pre_fault_memory { !! 4792 Calling this ioctl with an empty set of ranges (all nmsrs == 0) disables MSR 6410 /* in/out */ !! 4793 filtering. In that mode, ``KVM_MSR_FILTER_DEFAULT_DENY`` is invalid and causes 6411 __u64 gpa; !! 4794 an error. 6412 __u64 size; << 6413 /* in */ << 6414 __u64 flags; << 6415 __u64 padding[5]; << 6416 }; << 6417 4795 6418 KVM_PRE_FAULT_MEMORY populates KVM's stage-2 !! 4796 As soon as the filtering is in place, every MSR access is processed through 6419 for the current vCPU state. KVM maps memory !! 4797 the filtering except for accesses to the x2APIC MSRs (from 0x800 to 0x8ff); 6420 stage-2 read page fault, e.g. faults in memor !! 4798 x2APIC MSRs are always allowed, independent of the ``default_allow`` setting, 6421 CoW. However, KVM does not mark any newly cr !! 4799 and their behavior depends on the ``X2APIC_ENABLE`` bit of the APIC base 6422 !! 4800 register. 6423 In the case of confidential VM types where th !! 4801 6424 private guest memory before the guest is 'fin !! 4802 If a bit is within one of the defined ranges, read and write accesses are 6425 should only be issued after completing all th !! 4803 guarded by the bitmap's value for the MSR index if the kind of access 6426 guest into a 'finalized' state so that the ab !! 4804 is included in the ``struct kvm_msr_filter_range`` flags. If no range 6427 ensured. !! 4805 cover this particular access, the behavior is determined by the flags 6428 !! 4806 field in the kvm_msr_filter struct: ``KVM_MSR_FILTER_DEFAULT_ALLOW`` 6429 In some cases, multiple vCPUs might share the !! 4807 and ``KVM_MSR_FILTER_DEFAULT_DENY``. 6430 case, the ioctl can be called in parallel. !! 4808 6431 !! 4809 Each bitmap range specifies a range of MSRs to potentially allow access on. 6432 When the ioctl returns, the input values are !! 4810 The range goes from MSR index [base .. base+nmsrs]. The flags field 6433 remaining range. If `size` > 0 on return, th !! 4811 indicates whether reads, writes or both reads and writes are filtered 6434 the ioctl again with the same `struct kvm_map !! 4812 by setting a 1 bit in the bitmap for the corresponding MSR index. 6435 !! 4813 6436 Shadow page tables cannot support this ioctl !! 4814 If an MSR access is not permitted through the filtering, it generates a 6437 are indexed by virtual address or nested gues !! 4815 #GP inside the guest. When combined with KVM_CAP_X86_USER_SPACE_MSR, that 6438 Calling this ioctl when the guest is using sh !! 4816 allows user space to deflect and potentially handle various MSR accesses 6439 example because it is running a nested guest !! 4817 into user space. 6440 will fail with `EOPNOTSUPP` even if `KVM_CHEC << 6441 the capability to be present. << 6442 4818 6443 `flags` must currently be zero. !! 4819 Note, invoking this ioctl with a vCPU is running is inherently racy. However, >> 4820 KVM does guarantee that vCPUs will see either the previous filter or the new >> 4821 filter, e.g. MSRs with identical settings in both the old and new filter will >> 4822 have deterministic behavior. 6444 4823 6445 4824 6446 5. The kvm_run structure 4825 5. The kvm_run structure 6447 ======================== 4826 ======================== 6448 4827 6449 Application code obtains a pointer to the kvm 4828 Application code obtains a pointer to the kvm_run structure by 6450 mmap()ing a vcpu fd. From that point, applic 4829 mmap()ing a vcpu fd. From that point, application code can control 6451 execution by changing fields in kvm_run prior 4830 execution by changing fields in kvm_run prior to calling the KVM_RUN 6452 ioctl, and obtain information about the reaso 4831 ioctl, and obtain information about the reason KVM_RUN returned by 6453 looking up structure members. 4832 looking up structure members. 6454 4833 6455 :: 4834 :: 6456 4835 6457 struct kvm_run { 4836 struct kvm_run { 6458 /* in */ 4837 /* in */ 6459 __u8 request_interrupt_window; 4838 __u8 request_interrupt_window; 6460 4839 6461 Request that KVM_RUN return when it becomes p 4840 Request that KVM_RUN return when it becomes possible to inject external 6462 interrupts into the guest. Useful in conjunc 4841 interrupts into the guest. Useful in conjunction with KVM_INTERRUPT. 6463 4842 6464 :: 4843 :: 6465 4844 6466 __u8 immediate_exit; 4845 __u8 immediate_exit; 6467 4846 6468 This field is polled once when KVM_RUN starts 4847 This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN 6469 exits immediately, returning -EINTR. In the 4848 exits immediately, returning -EINTR. In the common scenario where a 6470 signal is used to "kick" a VCPU out of KVM_RU 4849 signal is used to "kick" a VCPU out of KVM_RUN, this field can be used 6471 to avoid usage of KVM_SET_SIGNAL_MASK, which 4850 to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability. 6472 Rather than blocking the signal outside KVM_R 4851 Rather than blocking the signal outside KVM_RUN, userspace can set up 6473 a signal handler that sets run->immediate_exi 4852 a signal handler that sets run->immediate_exit to a non-zero value. 6474 4853 6475 This field is ignored if KVM_CAP_IMMEDIATE_EX 4854 This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available. 6476 4855 6477 :: 4856 :: 6478 4857 6479 __u8 padding1[6]; 4858 __u8 padding1[6]; 6480 4859 6481 /* out */ 4860 /* out */ 6482 __u32 exit_reason; 4861 __u32 exit_reason; 6483 4862 6484 When KVM_RUN has returned successfully (retur 4863 When KVM_RUN has returned successfully (return value 0), this informs 6485 application code why KVM_RUN has returned. A 4864 application code why KVM_RUN has returned. Allowable values for this 6486 field are detailed below. 4865 field are detailed below. 6487 4866 6488 :: 4867 :: 6489 4868 6490 __u8 ready_for_interrupt_injection; 4869 __u8 ready_for_interrupt_injection; 6491 4870 6492 If request_interrupt_window has been specifie 4871 If request_interrupt_window has been specified, this field indicates 6493 an interrupt can be injected now with KVM_INT 4872 an interrupt can be injected now with KVM_INTERRUPT. 6494 4873 6495 :: 4874 :: 6496 4875 6497 __u8 if_flag; 4876 __u8 if_flag; 6498 4877 6499 The value of the current interrupt flag. Onl 4878 The value of the current interrupt flag. Only valid if in-kernel 6500 local APIC is not used. 4879 local APIC is not used. 6501 4880 6502 :: 4881 :: 6503 4882 6504 __u16 flags; 4883 __u16 flags; 6505 4884 6506 More architecture-specific flags detailing st 4885 More architecture-specific flags detailing state of the VCPU that may 6507 affect the device's behavior. Current defined !! 4886 affect the device's behavior. The only currently defined flag is 6508 !! 4887 KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the 6509 /* x86, set if the VCPU is in system manage !! 4888 VCPU is in system management mode. 6510 #define KVM_RUN_X86_SMM (1 << 0) << 6511 /* x86, set if bus lock detected in VM */ << 6512 #define KVM_RUN_X86_BUS_LOCK (1 << 1) << 6513 /* x86, set if the VCPU is executing a nest << 6514 #define KVM_RUN_X86_GUEST_MODE (1 << 2) << 6515 << 6516 /* arm64, set for KVM_EXIT_DEBUG */ << 6517 #define KVM_DEBUG_ARCH_HSR_HIGH_VALID (1 < << 6518 4889 6519 :: 4890 :: 6520 4891 6521 /* in (pre_kvm_run), out (post_kvm_ru 4892 /* in (pre_kvm_run), out (post_kvm_run) */ 6522 __u64 cr8; 4893 __u64 cr8; 6523 4894 6524 The value of the cr8 register. Only valid if 4895 The value of the cr8 register. Only valid if in-kernel local APIC is 6525 not used. Both input and output. 4896 not used. Both input and output. 6526 4897 6527 :: 4898 :: 6528 4899 6529 __u64 apic_base; 4900 __u64 apic_base; 6530 4901 6531 The value of the APIC BASE msr. Only valid i 4902 The value of the APIC BASE msr. Only valid if in-kernel local 6532 APIC is not used. Both input and output. 4903 APIC is not used. Both input and output. 6533 4904 6534 :: 4905 :: 6535 4906 6536 union { 4907 union { 6537 /* KVM_EXIT_UNKNOWN */ 4908 /* KVM_EXIT_UNKNOWN */ 6538 struct { 4909 struct { 6539 __u64 hardware_exit_r 4910 __u64 hardware_exit_reason; 6540 } hw; 4911 } hw; 6541 4912 6542 If exit_reason is KVM_EXIT_UNKNOWN, the vcpu 4913 If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown 6543 reasons. Further architecture-specific infor 4914 reasons. Further architecture-specific information is available in 6544 hardware_exit_reason. 4915 hardware_exit_reason. 6545 4916 6546 :: 4917 :: 6547 4918 6548 /* KVM_EXIT_FAIL_ENTRY */ 4919 /* KVM_EXIT_FAIL_ENTRY */ 6549 struct { 4920 struct { 6550 __u64 hardware_entry_ 4921 __u64 hardware_entry_failure_reason; 6551 __u32 cpu; /* if KVM_ 4922 __u32 cpu; /* if KVM_LAST_CPU */ 6552 } fail_entry; 4923 } fail_entry; 6553 4924 6554 If exit_reason is KVM_EXIT_FAIL_ENTRY, the vc 4925 If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due 6555 to unknown reasons. Further architecture-spe 4926 to unknown reasons. Further architecture-specific information is 6556 available in hardware_entry_failure_reason. 4927 available in hardware_entry_failure_reason. 6557 4928 6558 :: 4929 :: 6559 4930 6560 /* KVM_EXIT_EXCEPTION */ 4931 /* KVM_EXIT_EXCEPTION */ 6561 struct { 4932 struct { 6562 __u32 exception; 4933 __u32 exception; 6563 __u32 error_code; 4934 __u32 error_code; 6564 } ex; 4935 } ex; 6565 4936 6566 Unused. 4937 Unused. 6567 4938 6568 :: 4939 :: 6569 4940 6570 /* KVM_EXIT_IO */ 4941 /* KVM_EXIT_IO */ 6571 struct { 4942 struct { 6572 #define KVM_EXIT_IO_IN 0 4943 #define KVM_EXIT_IO_IN 0 6573 #define KVM_EXIT_IO_OUT 1 4944 #define KVM_EXIT_IO_OUT 1 6574 __u8 direction; 4945 __u8 direction; 6575 __u8 size; /* bytes * 4946 __u8 size; /* bytes */ 6576 __u16 port; 4947 __u16 port; 6577 __u32 count; 4948 __u32 count; 6578 __u64 data_offset; /* 4949 __u64 data_offset; /* relative to kvm_run start */ 6579 } io; 4950 } io; 6580 4951 6581 If exit_reason is KVM_EXIT_IO, then the vcpu 4952 If exit_reason is KVM_EXIT_IO, then the vcpu has 6582 executed a port I/O instruction which could n 4953 executed a port I/O instruction which could not be satisfied by kvm. 6583 data_offset describes where the data is locat 4954 data_offset describes where the data is located (KVM_EXIT_IO_OUT) or 6584 where kvm expects application code to place t 4955 where kvm expects application code to place the data for the next 6585 KVM_RUN invocation (KVM_EXIT_IO_IN). Data fo 4956 KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array. 6586 4957 6587 :: 4958 :: 6588 4959 6589 /* KVM_EXIT_DEBUG */ 4960 /* KVM_EXIT_DEBUG */ 6590 struct { 4961 struct { 6591 struct kvm_debug_exit 4962 struct kvm_debug_exit_arch arch; 6592 } debug; 4963 } debug; 6593 4964 6594 If the exit_reason is KVM_EXIT_DEBUG, then a 4965 If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event 6595 for which architecture specific information i 4966 for which architecture specific information is returned. 6596 4967 6597 :: 4968 :: 6598 4969 6599 /* KVM_EXIT_MMIO */ 4970 /* KVM_EXIT_MMIO */ 6600 struct { 4971 struct { 6601 __u64 phys_addr; 4972 __u64 phys_addr; 6602 __u8 data[8]; 4973 __u8 data[8]; 6603 __u32 len; 4974 __u32 len; 6604 __u8 is_write; 4975 __u8 is_write; 6605 } mmio; 4976 } mmio; 6606 4977 6607 If exit_reason is KVM_EXIT_MMIO, then the vcp 4978 If exit_reason is KVM_EXIT_MMIO, then the vcpu has 6608 executed a memory-mapped I/O instruction whic 4979 executed a memory-mapped I/O instruction which could not be satisfied 6609 by kvm. The 'data' member contains the writt 4980 by kvm. The 'data' member contains the written data if 'is_write' is 6610 true, and should be filled by application cod 4981 true, and should be filled by application code otherwise. 6611 4982 6612 The 'data' member contains, in its first 'len 4983 The 'data' member contains, in its first 'len' bytes, the value as it would 6613 appear if the VCPU performed a load or store 4984 appear if the VCPU performed a load or store of the appropriate width directly 6614 to the byte array. 4985 to the byte array. 6615 4986 6616 .. note:: 4987 .. note:: 6617 4988 6618 For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXI !! 4989 For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR, 6619 KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KV 4990 KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR the corresponding 6620 operations are complete (and guest stat 4991 operations are complete (and guest state is consistent) only after userspace 6621 has re-entered the kernel with KVM_RUN. 4992 has re-entered the kernel with KVM_RUN. The kernel side will first finish 6622 incomplete operations and then check fo !! 4993 incomplete operations and then check for pending signals. Userspace 6623 !! 4994 can re-enter the guest with an unmasked signal pending to complete 6624 The pending state of the operation is n !! 4995 pending operations. 6625 visible to userspace, thus userspace sh << 6626 completed before performing a live migr << 6627 guest with an unmasked signal pending o << 6628 to complete pending operations without << 6629 to be executed. << 6630 4996 6631 :: 4997 :: 6632 4998 6633 /* KVM_EXIT_HYPERCALL */ 4999 /* KVM_EXIT_HYPERCALL */ 6634 struct { 5000 struct { 6635 __u64 nr; 5001 __u64 nr; 6636 __u64 args[6]; 5002 __u64 args[6]; 6637 __u64 ret; 5003 __u64 ret; 6638 __u64 flags; !! 5004 __u32 longmode; >> 5005 __u32 pad; 6639 } hypercall; 5006 } hypercall; 6640 5007 6641 !! 5008 Unused. This was once used for 'hypercall to userspace'. To implement 6642 It is strongly recommended that userspace use !! 5009 such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390). 6643 ``KVM_EXIT_MMIO`` (all except s390) to implem << 6644 requires a guest to interact with host usersp << 6645 5010 6646 .. note:: KVM_EXIT_IO is significantly faster 5011 .. note:: KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO. 6647 5012 6648 For arm64: << 6649 ---------- << 6650 << 6651 SMCCC exits can be enabled depending on the c << 6652 filter. See the Documentation/virt/kvm/device << 6653 ``KVM_ARM_SMCCC_FILTER`` for more details. << 6654 << 6655 ``nr`` contains the function ID of the guest' << 6656 expected to use the ``KVM_GET_ONE_REG`` ioctl << 6657 parameters from the vCPU's GPRs. << 6658 << 6659 Definition of ``flags``: << 6660 - ``KVM_HYPERCALL_EXIT_SMC``: Indicates that << 6661 conduit to initiate the SMCCC call. If thi << 6662 used the HVC conduit for the SMCCC call. << 6663 << 6664 - ``KVM_HYPERCALL_EXIT_16BIT``: Indicates th << 6665 instruction to initiate the SMCCC call. If << 6666 guest used a 32bit instruction. An AArch64 << 6667 bit set to 0. << 6668 << 6669 At the point of exit, PC points to the instru << 6670 the trapping instruction. << 6671 << 6672 :: 5013 :: 6673 5014 6674 /* KVM_EXIT_TPR_ACCESS */ 5015 /* KVM_EXIT_TPR_ACCESS */ 6675 struct { 5016 struct { 6676 __u64 rip; 5017 __u64 rip; 6677 __u32 is_write; 5018 __u32 is_write; 6678 __u32 pad; 5019 __u32 pad; 6679 } tpr_access; 5020 } tpr_access; 6680 5021 6681 To be documented (KVM_TPR_ACCESS_REPORTING). 5022 To be documented (KVM_TPR_ACCESS_REPORTING). 6682 5023 6683 :: 5024 :: 6684 5025 6685 /* KVM_EXIT_S390_SIEIC */ 5026 /* KVM_EXIT_S390_SIEIC */ 6686 struct { 5027 struct { 6687 __u8 icptcode; 5028 __u8 icptcode; 6688 __u64 mask; /* psw up 5029 __u64 mask; /* psw upper half */ 6689 __u64 addr; /* psw lo 5030 __u64 addr; /* psw lower half */ 6690 __u16 ipa; 5031 __u16 ipa; 6691 __u32 ipb; 5032 __u32 ipb; 6692 } s390_sieic; 5033 } s390_sieic; 6693 5034 6694 s390 specific. 5035 s390 specific. 6695 5036 6696 :: 5037 :: 6697 5038 6698 /* KVM_EXIT_S390_RESET */ 5039 /* KVM_EXIT_S390_RESET */ 6699 #define KVM_S390_RESET_POR 1 5040 #define KVM_S390_RESET_POR 1 6700 #define KVM_S390_RESET_CLEAR 2 5041 #define KVM_S390_RESET_CLEAR 2 6701 #define KVM_S390_RESET_SUBSYSTEM 4 5042 #define KVM_S390_RESET_SUBSYSTEM 4 6702 #define KVM_S390_RESET_CPU_INIT 8 5043 #define KVM_S390_RESET_CPU_INIT 8 6703 #define KVM_S390_RESET_IPL 16 5044 #define KVM_S390_RESET_IPL 16 6704 __u64 s390_reset_flags; 5045 __u64 s390_reset_flags; 6705 5046 6706 s390 specific. 5047 s390 specific. 6707 5048 6708 :: 5049 :: 6709 5050 6710 /* KVM_EXIT_S390_UCONTROL */ 5051 /* KVM_EXIT_S390_UCONTROL */ 6711 struct { 5052 struct { 6712 __u64 trans_exc_code; 5053 __u64 trans_exc_code; 6713 __u32 pgm_code; 5054 __u32 pgm_code; 6714 } s390_ucontrol; 5055 } s390_ucontrol; 6715 5056 6716 s390 specific. A page fault has occurred for 5057 s390 specific. A page fault has occurred for a user controlled virtual 6717 machine (KVM_VM_S390_UNCONTROL) on its host p !! 5058 machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be 6718 resolved by the kernel. 5059 resolved by the kernel. 6719 The program code and the translation exceptio 5060 The program code and the translation exception code that were placed 6720 in the cpu's lowcore are presented here as de 5061 in the cpu's lowcore are presented here as defined by the z Architecture 6721 Principles of Operation Book in the Chapter f 5062 Principles of Operation Book in the Chapter for Dynamic Address Translation 6722 (DAT) 5063 (DAT) 6723 5064 6724 :: 5065 :: 6725 5066 6726 /* KVM_EXIT_DCR */ 5067 /* KVM_EXIT_DCR */ 6727 struct { 5068 struct { 6728 __u32 dcrn; 5069 __u32 dcrn; 6729 __u32 data; 5070 __u32 data; 6730 __u8 is_write; 5071 __u8 is_write; 6731 } dcr; 5072 } dcr; 6732 5073 6733 Deprecated - was used for 440 KVM. 5074 Deprecated - was used for 440 KVM. 6734 5075 6735 :: 5076 :: 6736 5077 6737 /* KVM_EXIT_OSI */ 5078 /* KVM_EXIT_OSI */ 6738 struct { 5079 struct { 6739 __u64 gprs[32]; 5080 __u64 gprs[32]; 6740 } osi; 5081 } osi; 6741 5082 6742 MOL uses a special hypercall interface it cal 5083 MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch 6743 hypercalls and exit with this exit struct tha 5084 hypercalls and exit with this exit struct that contains all the guest gprs. 6744 5085 6745 If exit_reason is KVM_EXIT_OSI, then the vcpu 5086 If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall. 6746 Userspace can now handle the hypercall and wh 5087 Userspace can now handle the hypercall and when it's done modify the gprs as 6747 necessary. Upon guest entry all guest GPRs wi 5088 necessary. Upon guest entry all guest GPRs will then be replaced by the values 6748 in this struct. 5089 in this struct. 6749 5090 6750 :: 5091 :: 6751 5092 6752 /* KVM_EXIT_PAPR_HCALL */ 5093 /* KVM_EXIT_PAPR_HCALL */ 6753 struct { 5094 struct { 6754 __u64 nr; 5095 __u64 nr; 6755 __u64 ret; 5096 __u64 ret; 6756 __u64 args[9]; 5097 __u64 args[9]; 6757 } papr_hcall; 5098 } papr_hcall; 6758 5099 6759 This is used on 64-bit PowerPC when emulating 5100 This is used on 64-bit PowerPC when emulating a pSeries partition, 6760 e.g. with the 'pseries' machine type in qemu. 5101 e.g. with the 'pseries' machine type in qemu. It occurs when the 6761 guest does a hypercall using the 'sc 1' instr 5102 guest does a hypercall using the 'sc 1' instruction. The 'nr' field 6762 contains the hypercall number (from the guest 5103 contains the hypercall number (from the guest R3), and 'args' contains 6763 the arguments (from the guest R4 - R12). Use 5104 the arguments (from the guest R4 - R12). Userspace should put the 6764 return code in 'ret' and any extra returned v 5105 return code in 'ret' and any extra returned values in args[]. 6765 The possible hypercalls are defined in the Po 5106 The possible hypercalls are defined in the Power Architecture Platform 6766 Requirements (PAPR) document available from w 5107 Requirements (PAPR) document available from www.power.org (free 6767 developer registration required to access it) 5108 developer registration required to access it). 6768 5109 6769 :: 5110 :: 6770 5111 6771 /* KVM_EXIT_S390_TSCH */ 5112 /* KVM_EXIT_S390_TSCH */ 6772 struct { 5113 struct { 6773 __u16 subchannel_id; 5114 __u16 subchannel_id; 6774 __u16 subchannel_nr; 5115 __u16 subchannel_nr; 6775 __u32 io_int_parm; 5116 __u32 io_int_parm; 6776 __u32 io_int_word; 5117 __u32 io_int_word; 6777 __u32 ipb; 5118 __u32 ipb; 6778 __u8 dequeued; 5119 __u8 dequeued; 6779 } s390_tsch; 5120 } s390_tsch; 6780 5121 6781 s390 specific. This exit occurs when KVM_CAP_ 5122 s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled 6782 and TEST SUBCHANNEL was intercepted. If deque 5123 and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O 6783 interrupt for the target subchannel has been 5124 interrupt for the target subchannel has been dequeued and subchannel_id, 6784 subchannel_nr, io_int_parm and io_int_word co 5125 subchannel_nr, io_int_parm and io_int_word contain the parameters for that 6785 interrupt. ipb is needed for instruction para 5126 interrupt. ipb is needed for instruction parameter decoding. 6786 5127 6787 :: 5128 :: 6788 5129 6789 /* KVM_EXIT_EPR */ 5130 /* KVM_EXIT_EPR */ 6790 struct { 5131 struct { 6791 __u32 epr; 5132 __u32 epr; 6792 } epr; 5133 } epr; 6793 5134 6794 On FSL BookE PowerPC chips, the interrupt con 5135 On FSL BookE PowerPC chips, the interrupt controller has a fast patch 6795 interrupt acknowledge path to the core. When 5136 interrupt acknowledge path to the core. When the core successfully 6796 delivers an interrupt, it automatically popul 5137 delivers an interrupt, it automatically populates the EPR register with 6797 the interrupt vector number and acknowledges 5138 the interrupt vector number and acknowledges the interrupt inside 6798 the interrupt controller. 5139 the interrupt controller. 6799 5140 6800 In case the interrupt controller lives in use 5141 In case the interrupt controller lives in user space, we need to do 6801 the interrupt acknowledge cycle through it to 5142 the interrupt acknowledge cycle through it to fetch the next to be 6802 delivered interrupt vector using this exit. 5143 delivered interrupt vector using this exit. 6803 5144 6804 It gets triggered whenever both KVM_CAP_PPC_E 5145 It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an 6805 external interrupt has just been delivered in 5146 external interrupt has just been delivered into the guest. User space 6806 should put the acknowledged interrupt vector 5147 should put the acknowledged interrupt vector into the 'epr' field. 6807 5148 6808 :: 5149 :: 6809 5150 6810 /* KVM_EXIT_SYSTEM_EVENT */ 5151 /* KVM_EXIT_SYSTEM_EVENT */ 6811 struct { 5152 struct { 6812 #define KVM_SYSTEM_EVENT_SHUTDOWN 1 5153 #define KVM_SYSTEM_EVENT_SHUTDOWN 1 6813 #define KVM_SYSTEM_EVENT_RESET 2 5154 #define KVM_SYSTEM_EVENT_RESET 2 6814 #define KVM_SYSTEM_EVENT_CRASH 3 5155 #define KVM_SYSTEM_EVENT_CRASH 3 6815 #define KVM_SYSTEM_EVENT_WAKEUP 4 << 6816 #define KVM_SYSTEM_EVENT_SUSPEND 5 << 6817 #define KVM_SYSTEM_EVENT_SEV_TERM 6 << 6818 __u32 type; 5156 __u32 type; 6819 __u32 ndata; !! 5157 __u64 flags; 6820 __u64 data[16]; << 6821 } system_event; 5158 } system_event; 6822 5159 6823 If exit_reason is KVM_EXIT_SYSTEM_EVENT then 5160 If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered 6824 a system-level event using some architecture 5161 a system-level event using some architecture specific mechanism (hypercall 6825 or some special instruction). In case of ARM6 !! 5162 or some special instruction). In case of ARM/ARM64, this is triggered using 6826 HVC instruction based PSCI call from the vcpu !! 5163 HVC instruction based PSCI call from the vcpu. The 'type' field describes >> 5164 the system-level event type. The 'flags' field describes architecture >> 5165 specific flags for the system-level event. 6827 5166 6828 The 'type' field describes the system-level e << 6829 Valid values for 'type' are: 5167 Valid values for 'type' are: 6830 5168 6831 - KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has 5169 - KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the 6832 VM. Userspace is not obliged to honour thi 5170 VM. Userspace is not obliged to honour this, and if it does honour 6833 this does not need to destroy the VM synch 5171 this does not need to destroy the VM synchronously (ie it may call 6834 KVM_RUN again before shutdown finally occu 5172 KVM_RUN again before shutdown finally occurs). 6835 - KVM_SYSTEM_EVENT_RESET -- the guest has re 5173 - KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM. 6836 As with SHUTDOWN, userspace can choose to 5174 As with SHUTDOWN, userspace can choose to ignore the request, or 6837 to schedule the reset to occur in the futu 5175 to schedule the reset to occur in the future and may call KVM_RUN again. 6838 - KVM_SYSTEM_EVENT_CRASH -- the guest crash 5176 - KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest 6839 has requested a crash condition maintenanc 5177 has requested a crash condition maintenance. Userspace can choose 6840 to ignore the request, or to gather VM mem 5178 to ignore the request, or to gather VM memory core dump and/or 6841 reset/shutdown of the VM. 5179 reset/shutdown of the VM. 6842 - KVM_SYSTEM_EVENT_SEV_TERM -- an AMD SEV gu << 6843 The guest physical address of the guest's << 6844 - KVM_SYSTEM_EVENT_WAKEUP -- the exiting vCP << 6845 KVM has recognized a wakeup event. Userspa << 6846 marking the exiting vCPU as runnable, or d << 6847 - KVM_SYSTEM_EVENT_SUSPEND -- the guest has << 6848 the VM. << 6849 << 6850 If KVM_CAP_SYSTEM_EVENT_DATA is present, the << 6851 architecture specific information for the sys << 6852 the first `ndata` items (possibly zero) of th << 6853 << 6854 - for arm64, data[0] is set to KVM_SYSTEM_EV << 6855 the guest issued a SYSTEM_RESET2 call acco << 6856 specification. << 6857 << 6858 - for RISC-V, data[0] is set to the value of << 6859 ``sbi_system_reset`` call. << 6860 << 6861 Previous versions of Linux defined a `flags` << 6862 field is now aliased to `data[0]`. Userspace << 6863 written if ndata is greater than 0. << 6864 << 6865 For arm/arm64: << 6866 -------------- << 6867 << 6868 KVM_SYSTEM_EVENT_SUSPEND exits are enabled wi << 6869 KVM_CAP_ARM_SYSTEM_SUSPEND VM capability. If << 6870 SYSTEM_SUSPEND function, KVM will exit to use << 6871 type. << 6872 << 6873 It is the sole responsibility of userspace to << 6874 SYSTEM_SUSPEND call according to ARM DEN0022D << 6875 KVM does not change the vCPU's state before e << 6876 the call parameters are left in-place in the << 6877 << 6878 Userspace is _required_ to take action for su << 6879 either: << 6880 << 6881 - Honor the guest request to suspend the VM. << 6882 in-kernel emulation of suspension by setti << 6883 state to KVM_MP_STATE_SUSPENDED. Userspace << 6884 state according to the parameters passed t << 6885 the calling vCPU is resumed. See ARM DEN00 << 6886 for details on the function parameters. << 6887 << 6888 - Deny the guest request to suspend the VM. << 6889 "Caller responsibilities" for possible ret << 6890 5180 6891 :: 5181 :: 6892 5182 6893 /* KVM_EXIT_IOAPIC_EOI */ 5183 /* KVM_EXIT_IOAPIC_EOI */ 6894 struct { 5184 struct { 6895 __u8 vector; 5185 __u8 vector; 6896 } eoi; 5186 } eoi; 6897 5187 6898 Indicates that the VCPU's in-kernel local API 5188 Indicates that the VCPU's in-kernel local APIC received an EOI for a 6899 level-triggered IOAPIC interrupt. This exit 5189 level-triggered IOAPIC interrupt. This exit only triggers when the 6900 IOAPIC is implemented in userspace (i.e. KVM_ 5190 IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled); 6901 the userspace IOAPIC should process the EOI a 5191 the userspace IOAPIC should process the EOI and retrigger the interrupt if 6902 it is still asserted. Vector is the LAPIC in 5192 it is still asserted. Vector is the LAPIC interrupt vector for which the 6903 EOI was received. 5193 EOI was received. 6904 5194 6905 :: 5195 :: 6906 5196 6907 struct kvm_hyperv_exit { 5197 struct kvm_hyperv_exit { 6908 #define KVM_EXIT_HYPERV_SYNIC 1 5198 #define KVM_EXIT_HYPERV_SYNIC 1 6909 #define KVM_EXIT_HYPERV_HCALL 2 5199 #define KVM_EXIT_HYPERV_HCALL 2 6910 #define KVM_EXIT_HYPERV_SYNDBG 3 5200 #define KVM_EXIT_HYPERV_SYNDBG 3 6911 __u32 type; 5201 __u32 type; 6912 __u32 pad1; 5202 __u32 pad1; 6913 union { 5203 union { 6914 struct { 5204 struct { 6915 __u32 5205 __u32 msr; 6916 __u32 5206 __u32 pad2; 6917 __u64 5207 __u64 control; 6918 __u64 5208 __u64 evt_page; 6919 __u64 5209 __u64 msg_page; 6920 } synic; 5210 } synic; 6921 struct { 5211 struct { 6922 __u64 5212 __u64 input; 6923 __u64 5213 __u64 result; 6924 __u64 5214 __u64 params[2]; 6925 } hcall; 5215 } hcall; 6926 struct { 5216 struct { 6927 __u32 5217 __u32 msr; 6928 __u32 5218 __u32 pad2; 6929 __u64 5219 __u64 control; 6930 __u64 5220 __u64 status; 6931 __u64 5221 __u64 send_page; 6932 __u64 5222 __u64 recv_page; 6933 __u64 5223 __u64 pending_page; 6934 } syndbg; 5224 } syndbg; 6935 } u; 5225 } u; 6936 }; 5226 }; 6937 /* KVM_EXIT_HYPERV */ 5227 /* KVM_EXIT_HYPERV */ 6938 struct kvm_hyperv_exit hyperv 5228 struct kvm_hyperv_exit hyperv; 6939 5229 6940 Indicates that the VCPU exits into userspace 5230 Indicates that the VCPU exits into userspace to process some tasks 6941 related to Hyper-V emulation. 5231 related to Hyper-V emulation. 6942 5232 6943 Valid values for 'type' are: 5233 Valid values for 'type' are: 6944 5234 6945 - KVM_EXIT_HYPERV_SYNIC -- synchronou 5235 - KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about 6946 5236 6947 Hyper-V SynIC state change. Notification is u 5237 Hyper-V SynIC state change. Notification is used to remap SynIC 6948 event/message pages and to enable/disable Syn 5238 event/message pages and to enable/disable SynIC messages/events processing 6949 in userspace. 5239 in userspace. 6950 5240 6951 - KVM_EXIT_HYPERV_SYNDBG -- synchrono 5241 - KVM_EXIT_HYPERV_SYNDBG -- synchronously notify user-space about 6952 5242 6953 Hyper-V Synthetic debugger state change. Noti 5243 Hyper-V Synthetic debugger state change. Notification is used to either update 6954 the pending_page location or to send a contro 5244 the pending_page location or to send a control command (send the buffer located 6955 in send_page or recv a buffer to recv_page). 5245 in send_page or recv a buffer to recv_page). 6956 5246 6957 :: 5247 :: 6958 5248 6959 /* KVM_EXIT_ARM_NISV */ 5249 /* KVM_EXIT_ARM_NISV */ 6960 struct { 5250 struct { 6961 __u64 esr_iss; 5251 __u64 esr_iss; 6962 __u64 fault_ipa; 5252 __u64 fault_ipa; 6963 } arm_nisv; 5253 } arm_nisv; 6964 5254 6965 Used on arm64 systems. If a guest accesses me !! 5255 Used on arm and arm64 systems. If a guest accesses memory not in a memslot, 6966 KVM will typically return to userspace and as 5256 KVM will typically return to userspace and ask it to do MMIO emulation on its 6967 behalf. However, for certain classes of instr 5257 behalf. However, for certain classes of instructions, no instruction decode 6968 (direction, length of memory access) is provi 5258 (direction, length of memory access) is provided, and fetching and decoding 6969 the instruction from the VM is overly complic 5259 the instruction from the VM is overly complicated to live in the kernel. 6970 5260 6971 Historically, when this situation occurred, K 5261 Historically, when this situation occurred, KVM would print a warning and kill 6972 the VM. KVM assumed that if the guest accesse 5262 the VM. KVM assumed that if the guest accessed non-memslot memory, it was 6973 trying to do I/O, which just couldn't be emul 5263 trying to do I/O, which just couldn't be emulated, and the warning message was 6974 phrased accordingly. However, what happened m 5264 phrased accordingly. However, what happened more often was that a guest bug 6975 caused access outside the guest memory areas 5265 caused access outside the guest memory areas which should lead to a more 6976 meaningful warning message and an external ab 5266 meaningful warning message and an external abort in the guest, if the access 6977 did not fall within an I/O window. 5267 did not fall within an I/O window. 6978 5268 6979 Userspace implementations can query for KVM_C 5269 Userspace implementations can query for KVM_CAP_ARM_NISV_TO_USER, and enable 6980 this capability at VM creation. Once this is 5270 this capability at VM creation. Once this is done, these types of errors will 6981 instead return to userspace with KVM_EXIT_ARM 5271 instead return to userspace with KVM_EXIT_ARM_NISV, with the valid bits from 6982 the ESR_EL2 in the esr_iss field, and the fau !! 5272 the HSR (arm) and ESR_EL2 (arm64) in the esr_iss field, and the faulting IPA 6983 Userspace can either fix up the access if it' !! 5273 in the fault_ipa field. Userspace can either fix up the access if it's 6984 decoding the instruction from guest memory (i !! 5274 actually an I/O access by decoding the instruction from guest memory (if it's 6985 executing the guest, or it can decide to susp !! 5275 very brave) and continue executing the guest, or it can decide to suspend, >> 5276 dump, or restart the guest. 6986 5277 6987 Note that KVM does not skip the faulting inst 5278 Note that KVM does not skip the faulting instruction as it does for 6988 KVM_EXIT_MMIO, but userspace has to emulate a 5279 KVM_EXIT_MMIO, but userspace has to emulate any change to the processing state 6989 if it decides to decode and emulate the instr 5280 if it decides to decode and emulate the instruction. 6990 5281 6991 This feature isn't available to protected VMs << 6992 have access to the state that is required to << 6993 Instead, a data abort exception is directly i << 6994 Note that although KVM_CAP_ARM_NISV_TO_USER w << 6995 queried outside of a protected VM context, th << 6996 exposed if queried on a protected VM file des << 6997 << 6998 :: 5282 :: 6999 5283 7000 /* KVM_EXIT_X86_RDMSR / KVM_E 5284 /* KVM_EXIT_X86_RDMSR / KVM_EXIT_X86_WRMSR */ 7001 struct { 5285 struct { 7002 __u8 error; /* user - 5286 __u8 error; /* user -> kernel */ 7003 __u8 pad[7]; 5287 __u8 pad[7]; 7004 __u32 reason; /* kern 5288 __u32 reason; /* kernel -> user */ 7005 __u32 index; /* kerne 5289 __u32 index; /* kernel -> user */ 7006 __u64 data; /* kernel 5290 __u64 data; /* kernel <-> user */ 7007 } msr; 5291 } msr; 7008 5292 7009 Used on x86 systems. When the VM capability K 5293 Used on x86 systems. When the VM capability KVM_CAP_X86_USER_SPACE_MSR is 7010 enabled, MSR accesses to registers that would 5294 enabled, MSR accesses to registers that would invoke a #GP by KVM kernel code 7011 may instead trigger a KVM_EXIT_X86_RDMSR exit !! 5295 will instead trigger a KVM_EXIT_X86_RDMSR exit for reads and KVM_EXIT_X86_WRMSR 7012 exit for writes. 5296 exit for writes. 7013 5297 7014 The "reason" field specifies why the MSR inte !! 5298 The "reason" field specifies why the MSR trap occurred. User space will only 7015 only receive MSR exits when a particular reas !! 5299 receive MSR exit traps when a particular reason was requested during through 7016 ENABLE_CAP. Currently valid exit reasons are: 5300 ENABLE_CAP. Currently valid exit reasons are: 7017 5301 7018 ============================ ================ !! 5302 KVM_MSR_EXIT_REASON_UNKNOWN - access to MSR that is unknown to KVM 7019 KVM_MSR_EXIT_REASON_UNKNOWN access to MSR th !! 5303 KVM_MSR_EXIT_REASON_INVAL - access to invalid MSRs or reserved bits 7020 KVM_MSR_EXIT_REASON_INVAL access to invali !! 5304 KVM_MSR_EXIT_REASON_FILTER - access blocked by KVM_X86_SET_MSR_FILTER 7021 KVM_MSR_EXIT_REASON_FILTER access blocked b << 7022 ============================ ================ << 7023 5305 7024 For KVM_EXIT_X86_RDMSR, the "index" field tel !! 5306 For KVM_EXIT_X86_RDMSR, the "index" field tells user space which MSR the guest 7025 wants to read. To respond to this request wit !! 5307 wants to read. To respond to this request with a successful read, user space 7026 writes the respective data into the "data" fi 5308 writes the respective data into the "data" field and must continue guest 7027 execution to ensure the read data is transfer 5309 execution to ensure the read data is transferred into guest register state. 7028 5310 7029 If the RDMSR request was unsuccessful, usersp !! 5311 If the RDMSR request was unsuccessful, user space indicates that with a "1" in 7030 the "error" field. This will inject a #GP int 5312 the "error" field. This will inject a #GP into the guest when the VCPU is 7031 executed again. 5313 executed again. 7032 5314 7033 For KVM_EXIT_X86_WRMSR, the "index" field tel !! 5315 For KVM_EXIT_X86_WRMSR, the "index" field tells user space which MSR the guest 7034 wants to write. Once finished processing the !! 5316 wants to write. Once finished processing the event, user space must continue 7035 vCPU execution. If the MSR write was unsucces !! 5317 vCPU execution. If the MSR write was unsuccessful, user space also sets the 7036 "error" field to "1". 5318 "error" field to "1". 7037 5319 7038 See KVM_X86_SET_MSR_FILTER for details on the << 7039 << 7040 :: << 7041 << 7042 << 7043 struct kvm_xen_exit { << 7044 #define KVM_EXIT_XEN_HCALL 1 << 7045 __u32 type; << 7046 union { << 7047 struct { << 7048 __u32 << 7049 __u32 << 7050 __u64 << 7051 __u64 << 7052 __u64 << 7053 } hcall; << 7054 } u; << 7055 }; << 7056 /* KVM_EXIT_XEN */ << 7057 struct kvm_hyperv_exit xen; << 7058 << 7059 Indicates that the VCPU exits into userspace << 7060 related to Xen emulation. << 7061 << 7062 Valid values for 'type' are: << 7063 << 7064 - KVM_EXIT_XEN_HCALL -- synchronously notif << 7065 Userspace is expected to place the hyperc << 7066 field before invoking KVM_RUN again. << 7067 << 7068 :: << 7069 << 7070 /* KVM_EXIT_RISCV_SBI */ << 7071 struct { << 7072 unsigned long extensi << 7073 unsigned long functio << 7074 unsigned long args[6] << 7075 unsigned long ret[2]; << 7076 } riscv_sbi; << 7077 << 7078 If exit reason is KVM_EXIT_RISCV_SBI then it << 7079 done a SBI call which is not handled by KVM R << 7080 of the SBI call are available in 'riscv_sbi' << 7081 'extension_id' field of 'riscv_sbi' represent << 7082 'function_id' field represents function ID of << 7083 array field of 'riscv_sbi' represents paramet << 7084 array field represents return values. The use << 7085 values of SBI call before resuming the VCPU. << 7086 spec refer, https://github.com/riscv/riscv-sb << 7087 << 7088 :: << 7089 << 7090 /* KVM_EXIT_MEMORY_FAULT */ << 7091 struct { << 7092 #define KVM_MEMORY_EXIT_FLAG_PRIVATE (1ULL << 7093 __u64 flags; << 7094 __u64 gpa; << 7095 __u64 size; << 7096 } memory_fault; << 7097 << 7098 KVM_EXIT_MEMORY_FAULT indicates the vCPU has << 7099 could not be resolved by KVM. The 'gpa' and << 7100 guest physical address range [gpa, gpa + size << 7101 describes properties of the faulting access t << 7102 << 7103 - KVM_MEMORY_EXIT_FLAG_PRIVATE - When set, i << 7104 on a private memory access. When clear, i << 7105 shared access. << 7106 << 7107 Note! KVM_EXIT_MEMORY_FAULT is unique among << 7108 accompanies a return code of '-1', not '0'! << 7109 or EHWPOISON when KVM exits with KVM_EXIT_MEM << 7110 kvm_run.exit_reason is stale/undefined for al << 7111 << 7112 :: << 7113 << 7114 /* KVM_EXIT_NOTIFY */ << 7115 struct { << 7116 #define KVM_NOTIFY_CONTEXT_INVALID (1 << << 7117 __u32 flags; << 7118 } notify; << 7119 << 7120 Used on x86 systems. When the VM capability K << 7121 enabled, a VM exit generated if no event wind << 7122 for a specified amount of time. Once KVM_X86_ << 7123 enabling the cap, it would exit to userspace << 7124 KVM_EXIT_NOTIFY for further handling. The "fl << 7125 detailed info. << 7126 << 7127 The valid value for 'flags' is: << 7128 << 7129 - KVM_NOTIFY_CONTEXT_INVALID -- the VM cont << 7130 in VMCS. It would run into unknown result << 7131 << 7132 :: 5320 :: 7133 5321 7134 /* Fix the size of the union. 5322 /* Fix the size of the union. */ 7135 char padding[256]; 5323 char padding[256]; 7136 }; 5324 }; 7137 5325 7138 /* 5326 /* 7139 * shared registers between kvm and u 5327 * shared registers between kvm and userspace. 7140 * kvm_valid_regs specifies the regis 5328 * kvm_valid_regs specifies the register classes set by the host 7141 * kvm_dirty_regs specified the regis 5329 * kvm_dirty_regs specified the register classes dirtied by userspace 7142 * struct kvm_sync_regs is architectu 5330 * struct kvm_sync_regs is architecture specific, as well as the 7143 * bits for kvm_valid_regs and kvm_di 5331 * bits for kvm_valid_regs and kvm_dirty_regs 7144 */ 5332 */ 7145 __u64 kvm_valid_regs; 5333 __u64 kvm_valid_regs; 7146 __u64 kvm_dirty_regs; 5334 __u64 kvm_dirty_regs; 7147 union { 5335 union { 7148 struct kvm_sync_regs regs; 5336 struct kvm_sync_regs regs; 7149 char padding[SYNC_REGS_SIZE_B 5337 char padding[SYNC_REGS_SIZE_BYTES]; 7150 } s; 5338 } s; 7151 5339 7152 If KVM_CAP_SYNC_REGS is defined, these fields 5340 If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access 7153 certain guest registers without having to cal 5341 certain guest registers without having to call SET/GET_*REGS. Thus we can 7154 avoid some system call overhead if userspace 5342 avoid some system call overhead if userspace has to handle the exit. 7155 Userspace can query the validity of the struc 5343 Userspace can query the validity of the structure by checking 7156 kvm_valid_regs for specific bits. These bits 5344 kvm_valid_regs for specific bits. These bits are architecture specific 7157 and usually define the validity of a groups o 5345 and usually define the validity of a groups of registers. (e.g. one bit 7158 for general purpose registers) 5346 for general purpose registers) 7159 5347 7160 Please note that the kernel is allowed to use 5348 Please note that the kernel is allowed to use the kvm_run structure as the 7161 primary storage for certain register types. T 5349 primary storage for certain register types. Therefore, the kernel may use the 7162 values in kvm_run even if the corresponding b 5350 values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set. 7163 5351 >> 5352 :: >> 5353 >> 5354 }; >> 5355 >> 5356 7164 5357 7165 6. Capabilities that can be enabled on vCPUs 5358 6. Capabilities that can be enabled on vCPUs 7166 ============================================ 5359 ============================================ 7167 5360 7168 There are certain capabilities that change th 5361 There are certain capabilities that change the behavior of the virtual CPU or 7169 the virtual machine when enabled. To enable t 5362 the virtual machine when enabled. To enable them, please see section 4.37. 7170 Below you can find a list of capabilities and 5363 Below you can find a list of capabilities and what their effect on the vCPU or 7171 the virtual machine is when enabling them. 5364 the virtual machine is when enabling them. 7172 5365 7173 The following information is provided along w 5366 The following information is provided along with the description: 7174 5367 7175 Architectures: 5368 Architectures: 7176 which instruction set architectures pro 5369 which instruction set architectures provide this ioctl. 7177 x86 includes both i386 and x86_64. 5370 x86 includes both i386 and x86_64. 7178 5371 7179 Target: 5372 Target: 7180 whether this is a per-vcpu or per-vm ca 5373 whether this is a per-vcpu or per-vm capability. 7181 5374 7182 Parameters: 5375 Parameters: 7183 what parameters are accepted by the cap 5376 what parameters are accepted by the capability. 7184 5377 7185 Returns: 5378 Returns: 7186 the return value. General error number 5379 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 7187 are not detailed, but errors with speci 5380 are not detailed, but errors with specific meanings are. 7188 5381 7189 5382 7190 6.1 KVM_CAP_PPC_OSI 5383 6.1 KVM_CAP_PPC_OSI 7191 ------------------- 5384 ------------------- 7192 5385 7193 :Architectures: ppc 5386 :Architectures: ppc 7194 :Target: vcpu 5387 :Target: vcpu 7195 :Parameters: none 5388 :Parameters: none 7196 :Returns: 0 on success; -1 on error 5389 :Returns: 0 on success; -1 on error 7197 5390 7198 This capability enables interception of OSI h 5391 This capability enables interception of OSI hypercalls that otherwise would 7199 be treated as normal system calls to be injec 5392 be treated as normal system calls to be injected into the guest. OSI hypercalls 7200 were invented by Mac-on-Linux to have a stand 5393 were invented by Mac-on-Linux to have a standardized communication mechanism 7201 between the guest and the host. 5394 between the guest and the host. 7202 5395 7203 When this capability is enabled, KVM_EXIT_OSI 5396 When this capability is enabled, KVM_EXIT_OSI can occur. 7204 5397 7205 5398 7206 6.2 KVM_CAP_PPC_PAPR 5399 6.2 KVM_CAP_PPC_PAPR 7207 -------------------- 5400 -------------------- 7208 5401 7209 :Architectures: ppc 5402 :Architectures: ppc 7210 :Target: vcpu 5403 :Target: vcpu 7211 :Parameters: none 5404 :Parameters: none 7212 :Returns: 0 on success; -1 on error 5405 :Returns: 0 on success; -1 on error 7213 5406 7214 This capability enables interception of PAPR 5407 This capability enables interception of PAPR hypercalls. PAPR hypercalls are 7215 done using the hypercall instruction "sc 1". 5408 done using the hypercall instruction "sc 1". 7216 5409 7217 It also sets the guest privilege level to "su 5410 It also sets the guest privilege level to "supervisor" mode. Usually the guest 7218 runs in "hypervisor" privilege mode with a fe 5411 runs in "hypervisor" privilege mode with a few missing features. 7219 5412 7220 In addition to the above, it changes the sema 5413 In addition to the above, it changes the semantics of SDR1. In this mode, the 7221 HTAB address part of SDR1 contains an HVA ins 5414 HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the 7222 HTAB invisible to the guest. 5415 HTAB invisible to the guest. 7223 5416 7224 When this capability is enabled, KVM_EXIT_PAP 5417 When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur. 7225 5418 7226 5419 7227 6.3 KVM_CAP_SW_TLB 5420 6.3 KVM_CAP_SW_TLB 7228 ------------------ 5421 ------------------ 7229 5422 7230 :Architectures: ppc 5423 :Architectures: ppc 7231 :Target: vcpu 5424 :Target: vcpu 7232 :Parameters: args[0] is the address of a stru 5425 :Parameters: args[0] is the address of a struct kvm_config_tlb 7233 :Returns: 0 on success; -1 on error 5426 :Returns: 0 on success; -1 on error 7234 5427 7235 :: 5428 :: 7236 5429 7237 struct kvm_config_tlb { 5430 struct kvm_config_tlb { 7238 __u64 params; 5431 __u64 params; 7239 __u64 array; 5432 __u64 array; 7240 __u32 mmu_type; 5433 __u32 mmu_type; 7241 __u32 array_len; 5434 __u32 array_len; 7242 }; 5435 }; 7243 5436 7244 Configures the virtual CPU's TLB array, estab 5437 Configures the virtual CPU's TLB array, establishing a shared memory area 7245 between userspace and KVM. The "params" and 5438 between userspace and KVM. The "params" and "array" fields are userspace 7246 addresses of mmu-type-specific data structure 5439 addresses of mmu-type-specific data structures. The "array_len" field is an 7247 safety mechanism, and should be set to the si 5440 safety mechanism, and should be set to the size in bytes of the memory that 7248 userspace has reserved for the array. It mus 5441 userspace has reserved for the array. It must be at least the size dictated 7249 by "mmu_type" and "params". 5442 by "mmu_type" and "params". 7250 5443 7251 While KVM_RUN is active, the shared region is 5444 While KVM_RUN is active, the shared region is under control of KVM. Its 7252 contents are undefined, and any modification 5445 contents are undefined, and any modification by userspace results in 7253 boundedly undefined behavior. 5446 boundedly undefined behavior. 7254 5447 7255 On return from KVM_RUN, the shared region wil 5448 On return from KVM_RUN, the shared region will reflect the current state of 7256 the guest's TLB. If userspace makes any chan 5449 the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB 7257 to tell KVM which entries have been changed, 5450 to tell KVM which entries have been changed, prior to calling KVM_RUN again 7258 on this vcpu. 5451 on this vcpu. 7259 5452 7260 For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_ 5453 For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV: 7261 5454 7262 - The "params" field is of type "struct kvm_ 5455 - The "params" field is of type "struct kvm_book3e_206_tlb_params". 7263 - The "array" field points to an array of ty 5456 - The "array" field points to an array of type "struct 7264 kvm_book3e_206_tlb_entry". 5457 kvm_book3e_206_tlb_entry". 7265 - The array consists of all entries in the f 5458 - The array consists of all entries in the first TLB, followed by all 7266 entries in the second TLB. 5459 entries in the second TLB. 7267 - Within a TLB, entries are ordered first by 5460 - Within a TLB, entries are ordered first by increasing set number. Within a 7268 set, entries are ordered by way (increasin 5461 set, entries are ordered by way (increasing ESEL). 7269 - The hash for determining set number in TLB 5462 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1) 7270 where "num_sets" is the tlb_sizes[] value 5463 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value. 7271 - The tsize field of mas1 shall be set to 4K 5464 - The tsize field of mas1 shall be set to 4K on TLB0, even though the 7272 hardware ignores this value for TLB0. 5465 hardware ignores this value for TLB0. 7273 5466 7274 6.4 KVM_CAP_S390_CSS_SUPPORT 5467 6.4 KVM_CAP_S390_CSS_SUPPORT 7275 ---------------------------- 5468 ---------------------------- 7276 5469 7277 :Architectures: s390 5470 :Architectures: s390 7278 :Target: vcpu 5471 :Target: vcpu 7279 :Parameters: none 5472 :Parameters: none 7280 :Returns: 0 on success; -1 on error 5473 :Returns: 0 on success; -1 on error 7281 5474 7282 This capability enables support for handling 5475 This capability enables support for handling of channel I/O instructions. 7283 5476 7284 TEST PENDING INTERRUPTION and the interrupt p 5477 TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are 7285 handled in-kernel, while the other I/O instru 5478 handled in-kernel, while the other I/O instructions are passed to userspace. 7286 5479 7287 When this capability is enabled, KVM_EXIT_S39 5480 When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST 7288 SUBCHANNEL intercepts. 5481 SUBCHANNEL intercepts. 7289 5482 7290 Note that even though this capability is enab 5483 Note that even though this capability is enabled per-vcpu, the complete 7291 virtual machine is affected. 5484 virtual machine is affected. 7292 5485 7293 6.5 KVM_CAP_PPC_EPR 5486 6.5 KVM_CAP_PPC_EPR 7294 ------------------- 5487 ------------------- 7295 5488 7296 :Architectures: ppc 5489 :Architectures: ppc 7297 :Target: vcpu 5490 :Target: vcpu 7298 :Parameters: args[0] defines whether the prox 5491 :Parameters: args[0] defines whether the proxy facility is active 7299 :Returns: 0 on success; -1 on error 5492 :Returns: 0 on success; -1 on error 7300 5493 7301 This capability enables or disables the deliv 5494 This capability enables or disables the delivery of interrupts through the 7302 external proxy facility. 5495 external proxy facility. 7303 5496 7304 When enabled (args[0] != 0), every time the g 5497 When enabled (args[0] != 0), every time the guest gets an external interrupt 7305 delivered, it automatically exits into user s 5498 delivered, it automatically exits into user space with a KVM_EXIT_EPR exit 7306 to receive the topmost interrupt vector. 5499 to receive the topmost interrupt vector. 7307 5500 7308 When disabled (args[0] == 0), behavior is as 5501 When disabled (args[0] == 0), behavior is as if this facility is unsupported. 7309 5502 7310 When this capability is enabled, KVM_EXIT_EPR 5503 When this capability is enabled, KVM_EXIT_EPR can occur. 7311 5504 7312 6.6 KVM_CAP_IRQ_MPIC 5505 6.6 KVM_CAP_IRQ_MPIC 7313 -------------------- 5506 -------------------- 7314 5507 7315 :Architectures: ppc 5508 :Architectures: ppc 7316 :Parameters: args[0] is the MPIC device fd; 5509 :Parameters: args[0] is the MPIC device fd; 7317 args[1] is the MPIC CPU number f 5510 args[1] is the MPIC CPU number for this vcpu 7318 5511 7319 This capability connects the vcpu to an in-ke 5512 This capability connects the vcpu to an in-kernel MPIC device. 7320 5513 7321 6.7 KVM_CAP_IRQ_XICS 5514 6.7 KVM_CAP_IRQ_XICS 7322 -------------------- 5515 -------------------- 7323 5516 7324 :Architectures: ppc 5517 :Architectures: ppc 7325 :Target: vcpu 5518 :Target: vcpu 7326 :Parameters: args[0] is the XICS device fd; 5519 :Parameters: args[0] is the XICS device fd; 7327 args[1] is the XICS CPU number ( 5520 args[1] is the XICS CPU number (server ID) for this vcpu 7328 5521 7329 This capability connects the vcpu to an in-ke 5522 This capability connects the vcpu to an in-kernel XICS device. 7330 5523 7331 6.8 KVM_CAP_S390_IRQCHIP 5524 6.8 KVM_CAP_S390_IRQCHIP 7332 ------------------------ 5525 ------------------------ 7333 5526 7334 :Architectures: s390 5527 :Architectures: s390 7335 :Target: vm 5528 :Target: vm 7336 :Parameters: none 5529 :Parameters: none 7337 5530 7338 This capability enables the in-kernel irqchip 5531 This capability enables the in-kernel irqchip for s390. Please refer to 7339 "4.24 KVM_CREATE_IRQCHIP" for details. 5532 "4.24 KVM_CREATE_IRQCHIP" for details. 7340 5533 7341 6.9 KVM_CAP_MIPS_FPU 5534 6.9 KVM_CAP_MIPS_FPU 7342 -------------------- 5535 -------------------- 7343 5536 7344 :Architectures: mips 5537 :Architectures: mips 7345 :Target: vcpu 5538 :Target: vcpu 7346 :Parameters: args[0] is reserved for future u 5539 :Parameters: args[0] is reserved for future use (should be 0). 7347 5540 7348 This capability allows the use of the host Fl 5541 This capability allows the use of the host Floating Point Unit by the guest. It 7349 allows the Config1.FP bit to be set to enable 5542 allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is 7350 done the ``KVM_REG_MIPS_FPR_*`` and ``KVM_REG 5543 done the ``KVM_REG_MIPS_FPR_*`` and ``KVM_REG_MIPS_FCR_*`` registers can be 7351 accessed (depending on the current guest FPU 5544 accessed (depending on the current guest FPU register mode), and the Status.FR, 7352 Config5.FRE bits are accessible via the KVM A 5545 Config5.FRE bits are accessible via the KVM API and also from the guest, 7353 depending on them being supported by the FPU. 5546 depending on them being supported by the FPU. 7354 5547 7355 6.10 KVM_CAP_MIPS_MSA 5548 6.10 KVM_CAP_MIPS_MSA 7356 --------------------- 5549 --------------------- 7357 5550 7358 :Architectures: mips 5551 :Architectures: mips 7359 :Target: vcpu 5552 :Target: vcpu 7360 :Parameters: args[0] is reserved for future u 5553 :Parameters: args[0] is reserved for future use (should be 0). 7361 5554 7362 This capability allows the use of the MIPS SI 5555 This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest. 7363 It allows the Config3.MSAP bit to be set to e 5556 It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest. 7364 Once this is done the ``KVM_REG_MIPS_VEC_*`` 5557 Once this is done the ``KVM_REG_MIPS_VEC_*`` and ``KVM_REG_MIPS_MSA_*`` 7365 registers can be accessed, and the Config5.MS 5558 registers can be accessed, and the Config5.MSAEn bit is accessible via the 7366 KVM API and also from the guest. 5559 KVM API and also from the guest. 7367 5560 7368 6.74 KVM_CAP_SYNC_REGS 5561 6.74 KVM_CAP_SYNC_REGS 7369 ---------------------- 5562 ---------------------- 7370 5563 7371 :Architectures: s390, x86 5564 :Architectures: s390, x86 7372 :Target: s390: always enabled, x86: vcpu 5565 :Target: s390: always enabled, x86: vcpu 7373 :Parameters: none 5566 :Parameters: none 7374 :Returns: x86: KVM_CHECK_EXTENSION returns a 5567 :Returns: x86: KVM_CHECK_EXTENSION returns a bit-array indicating which register 7375 sets are supported 5568 sets are supported 7376 (bitfields defined in arch/x86/incl 5569 (bitfields defined in arch/x86/include/uapi/asm/kvm.h). 7377 5570 7378 As described above in the kvm_sync_regs struc 5571 As described above in the kvm_sync_regs struct info in section 5 (kvm_run): 7379 KVM_CAP_SYNC_REGS "allow[s] userspace to acce 5572 KVM_CAP_SYNC_REGS "allow[s] userspace to access certain guest registers 7380 without having to call SET/GET_*REGS". This r 5573 without having to call SET/GET_*REGS". This reduces overhead by eliminating 7381 repeated ioctl calls for setting and/or getti 5574 repeated ioctl calls for setting and/or getting register values. This is 7382 particularly important when userspace is maki 5575 particularly important when userspace is making synchronous guest state 7383 modifications, e.g. when emulating and/or int 5576 modifications, e.g. when emulating and/or intercepting instructions in 7384 userspace. 5577 userspace. 7385 5578 7386 For s390 specifics, please refer to the sourc 5579 For s390 specifics, please refer to the source code. 7387 5580 7388 For x86: 5581 For x86: 7389 5582 7390 - the register sets to be copied out to kvm_r 5583 - the register sets to be copied out to kvm_run are selectable 7391 by userspace (rather that all sets being co 5584 by userspace (rather that all sets being copied out for every exit). 7392 - vcpu_events are available in addition to re 5585 - vcpu_events are available in addition to regs and sregs. 7393 5586 7394 For x86, the 'kvm_valid_regs' field of struct 5587 For x86, the 'kvm_valid_regs' field of struct kvm_run is overloaded to 7395 function as an input bit-array field set by u 5588 function as an input bit-array field set by userspace to indicate the 7396 specific register sets to be copied out on th 5589 specific register sets to be copied out on the next exit. 7397 5590 7398 To indicate when userspace has modified value 5591 To indicate when userspace has modified values that should be copied into 7399 the vCPU, the all architecture bitarray field 5592 the vCPU, the all architecture bitarray field, 'kvm_dirty_regs' must be set. 7400 This is done using the same bitflags as for t 5593 This is done using the same bitflags as for the 'kvm_valid_regs' field. 7401 If the dirty bit is not set, then the registe 5594 If the dirty bit is not set, then the register set values will not be copied 7402 into the vCPU even if they've been modified. 5595 into the vCPU even if they've been modified. 7403 5596 7404 Unused bitfields in the bitarrays must be set 5597 Unused bitfields in the bitarrays must be set to zero. 7405 5598 7406 :: 5599 :: 7407 5600 7408 struct kvm_sync_regs { 5601 struct kvm_sync_regs { 7409 struct kvm_regs regs; 5602 struct kvm_regs regs; 7410 struct kvm_sregs sregs; 5603 struct kvm_sregs sregs; 7411 struct kvm_vcpu_events events; 5604 struct kvm_vcpu_events events; 7412 }; 5605 }; 7413 5606 7414 6.75 KVM_CAP_PPC_IRQ_XIVE 5607 6.75 KVM_CAP_PPC_IRQ_XIVE 7415 ------------------------- 5608 ------------------------- 7416 5609 7417 :Architectures: ppc 5610 :Architectures: ppc 7418 :Target: vcpu 5611 :Target: vcpu 7419 :Parameters: args[0] is the XIVE device fd; 5612 :Parameters: args[0] is the XIVE device fd; 7420 args[1] is the XIVE CPU number ( 5613 args[1] is the XIVE CPU number (server ID) for this vcpu 7421 5614 7422 This capability connects the vcpu to an in-ke 5615 This capability connects the vcpu to an in-kernel XIVE device. 7423 5616 7424 7. Capabilities that can be enabled on VMs 5617 7. Capabilities that can be enabled on VMs 7425 ========================================== 5618 ========================================== 7426 5619 7427 There are certain capabilities that change th 5620 There are certain capabilities that change the behavior of the virtual 7428 machine when enabled. To enable them, please 5621 machine when enabled. To enable them, please see section 4.37. Below 7429 you can find a list of capabilities and what 5622 you can find a list of capabilities and what their effect on the VM 7430 is when enabling them. 5623 is when enabling them. 7431 5624 7432 The following information is provided along w 5625 The following information is provided along with the description: 7433 5626 7434 Architectures: 5627 Architectures: 7435 which instruction set architectures pro 5628 which instruction set architectures provide this ioctl. 7436 x86 includes both i386 and x86_64. 5629 x86 includes both i386 and x86_64. 7437 5630 7438 Parameters: 5631 Parameters: 7439 what parameters are accepted by the cap 5632 what parameters are accepted by the capability. 7440 5633 7441 Returns: 5634 Returns: 7442 the return value. General error number 5635 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 7443 are not detailed, but errors with speci 5636 are not detailed, but errors with specific meanings are. 7444 5637 7445 5638 7446 7.1 KVM_CAP_PPC_ENABLE_HCALL 5639 7.1 KVM_CAP_PPC_ENABLE_HCALL 7447 ---------------------------- 5640 ---------------------------- 7448 5641 7449 :Architectures: ppc 5642 :Architectures: ppc 7450 :Parameters: args[0] is the sPAPR hcall numbe 5643 :Parameters: args[0] is the sPAPR hcall number; 7451 args[1] is 0 to disable, 1 to en 5644 args[1] is 0 to disable, 1 to enable in-kernel handling 7452 5645 7453 This capability controls whether individual s 5646 This capability controls whether individual sPAPR hypercalls (hcalls) 7454 get handled by the kernel or not. Enabling o 5647 get handled by the kernel or not. Enabling or disabling in-kernel 7455 handling of an hcall is effective across the 5648 handling of an hcall is effective across the VM. On creation, an 7456 initial set of hcalls are enabled for in-kern 5649 initial set of hcalls are enabled for in-kernel handling, which 7457 consists of those hcalls for which in-kernel 5650 consists of those hcalls for which in-kernel handlers were implemented 7458 before this capability was implemented. If d 5651 before this capability was implemented. If disabled, the kernel will 7459 not to attempt to handle the hcall, but will 5652 not to attempt to handle the hcall, but will always exit to userspace 7460 to handle it. Note that it may not make sens 5653 to handle it. Note that it may not make sense to enable some and 7461 disable others of a group of related hcalls, 5654 disable others of a group of related hcalls, but KVM does not prevent 7462 userspace from doing that. 5655 userspace from doing that. 7463 5656 7464 If the hcall number specified is not one that 5657 If the hcall number specified is not one that has an in-kernel 7465 implementation, the KVM_ENABLE_CAP ioctl will 5658 implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL 7466 error. 5659 error. 7467 5660 7468 7.2 KVM_CAP_S390_USER_SIGP 5661 7.2 KVM_CAP_S390_USER_SIGP 7469 -------------------------- 5662 -------------------------- 7470 5663 7471 :Architectures: s390 5664 :Architectures: s390 7472 :Parameters: none 5665 :Parameters: none 7473 5666 7474 This capability controls which SIGP orders wi 5667 This capability controls which SIGP orders will be handled completely in user 7475 space. With this capability enabled, all fast 5668 space. With this capability enabled, all fast orders will be handled completely 7476 in the kernel: 5669 in the kernel: 7477 5670 7478 - SENSE 5671 - SENSE 7479 - SENSE RUNNING 5672 - SENSE RUNNING 7480 - EXTERNAL CALL 5673 - EXTERNAL CALL 7481 - EMERGENCY SIGNAL 5674 - EMERGENCY SIGNAL 7482 - CONDITIONAL EMERGENCY SIGNAL 5675 - CONDITIONAL EMERGENCY SIGNAL 7483 5676 7484 All other orders will be handled completely i 5677 All other orders will be handled completely in user space. 7485 5678 7486 Only privileged operation exceptions will be 5679 Only privileged operation exceptions will be checked for in the kernel (or even 7487 in the hardware prior to interception). If th 5680 in the hardware prior to interception). If this capability is not enabled, the 7488 old way of handling SIGP orders is used (part 5681 old way of handling SIGP orders is used (partially in kernel and user space). 7489 5682 7490 7.3 KVM_CAP_S390_VECTOR_REGISTERS 5683 7.3 KVM_CAP_S390_VECTOR_REGISTERS 7491 --------------------------------- 5684 --------------------------------- 7492 5685 7493 :Architectures: s390 5686 :Architectures: s390 7494 :Parameters: none 5687 :Parameters: none 7495 :Returns: 0 on success, negative value on err 5688 :Returns: 0 on success, negative value on error 7496 5689 7497 Allows use of the vector registers introduced 5690 Allows use of the vector registers introduced with z13 processor, and 7498 provides for the synchronization between host 5691 provides for the synchronization between host and user space. Will 7499 return -EINVAL if the machine does not suppor 5692 return -EINVAL if the machine does not support vectors. 7500 5693 7501 7.4 KVM_CAP_S390_USER_STSI 5694 7.4 KVM_CAP_S390_USER_STSI 7502 -------------------------- 5695 -------------------------- 7503 5696 7504 :Architectures: s390 5697 :Architectures: s390 7505 :Parameters: none 5698 :Parameters: none 7506 5699 7507 This capability allows post-handlers for the 5700 This capability allows post-handlers for the STSI instruction. After 7508 initial handling in the kernel, KVM exits to 5701 initial handling in the kernel, KVM exits to user space with 7509 KVM_EXIT_S390_STSI to allow user space to ins 5702 KVM_EXIT_S390_STSI to allow user space to insert further data. 7510 5703 7511 Before exiting to userspace, kvm handlers sho 5704 Before exiting to userspace, kvm handlers should fill in s390_stsi field of 7512 vcpu->run:: 5705 vcpu->run:: 7513 5706 7514 struct { 5707 struct { 7515 __u64 addr; 5708 __u64 addr; 7516 __u8 ar; 5709 __u8 ar; 7517 __u8 reserved; 5710 __u8 reserved; 7518 __u8 fc; 5711 __u8 fc; 7519 __u8 sel1; 5712 __u8 sel1; 7520 __u16 sel2; 5713 __u16 sel2; 7521 } s390_stsi; 5714 } s390_stsi; 7522 5715 7523 @addr - guest address of STSI SYSIB 5716 @addr - guest address of STSI SYSIB 7524 @fc - function code 5717 @fc - function code 7525 @sel1 - selector 1 5718 @sel1 - selector 1 7526 @sel2 - selector 2 5719 @sel2 - selector 2 7527 @ar - access register number 5720 @ar - access register number 7528 5721 7529 KVM handlers should exit to userspace with rc 5722 KVM handlers should exit to userspace with rc = -EREMOTE. 7530 5723 7531 7.5 KVM_CAP_SPLIT_IRQCHIP 5724 7.5 KVM_CAP_SPLIT_IRQCHIP 7532 ------------------------- 5725 ------------------------- 7533 5726 7534 :Architectures: x86 5727 :Architectures: x86 7535 :Parameters: args[0] - number of routes reser 5728 :Parameters: args[0] - number of routes reserved for userspace IOAPICs 7536 :Returns: 0 on success, -1 on error 5729 :Returns: 0 on success, -1 on error 7537 5730 7538 Create a local apic for each processor in the 5731 Create a local apic for each processor in the kernel. This can be used 7539 instead of KVM_CREATE_IRQCHIP if the userspac 5732 instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the 7540 IOAPIC and PIC (and also the PIT, even though 5733 IOAPIC and PIC (and also the PIT, even though this has to be enabled 7541 separately). 5734 separately). 7542 5735 7543 This capability also enables in kernel routin 5736 This capability also enables in kernel routing of interrupt requests; 7544 when KVM_CAP_SPLIT_IRQCHIP only routes of KVM 5737 when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are 7545 used in the IRQ routing table. The first arg 5738 used in the IRQ routing table. The first args[0] MSI routes are reserved 7546 for the IOAPIC pins. Whenever the LAPIC rece 5739 for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes, 7547 a KVM_EXIT_IOAPIC_EOI vmexit will be reported 5740 a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace. 7548 5741 7549 Fails if VCPU has already been created, or if 5742 Fails if VCPU has already been created, or if the irqchip is already in the 7550 kernel (i.e. KVM_CREATE_IRQCHIP has already b 5743 kernel (i.e. KVM_CREATE_IRQCHIP has already been called). 7551 5744 7552 7.6 KVM_CAP_S390_RI 5745 7.6 KVM_CAP_S390_RI 7553 ------------------- 5746 ------------------- 7554 5747 7555 :Architectures: s390 5748 :Architectures: s390 7556 :Parameters: none 5749 :Parameters: none 7557 5750 7558 Allows use of runtime-instrumentation introdu 5751 Allows use of runtime-instrumentation introduced with zEC12 processor. 7559 Will return -EINVAL if the machine does not s 5752 Will return -EINVAL if the machine does not support runtime-instrumentation. 7560 Will return -EBUSY if a VCPU has already been 5753 Will return -EBUSY if a VCPU has already been created. 7561 5754 7562 7.7 KVM_CAP_X2APIC_API 5755 7.7 KVM_CAP_X2APIC_API 7563 ---------------------- 5756 ---------------------- 7564 5757 7565 :Architectures: x86 5758 :Architectures: x86 7566 :Parameters: args[0] - features that should b 5759 :Parameters: args[0] - features that should be enabled 7567 :Returns: 0 on success, -EINVAL when args[0] 5760 :Returns: 0 on success, -EINVAL when args[0] contains invalid features 7568 5761 7569 Valid feature flags in args[0] are:: 5762 Valid feature flags in args[0] are:: 7570 5763 7571 #define KVM_X2APIC_API_USE_32BIT_IDS 5764 #define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0) 7572 #define KVM_X2APIC_API_DISABLE_BROADCAST_QU 5765 #define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1) 7573 5766 7574 Enabling KVM_X2APIC_API_USE_32BIT_IDS changes 5767 Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of 7575 KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_ 5768 KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC, 7576 allowing the use of 32-bit APIC IDs. See KVM 5769 allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their 7577 respective sections. 5770 respective sections. 7578 5771 7579 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must b 5772 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work 7580 in logical mode or with more than 255 VCPUs. 5773 in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff 7581 as a broadcast even in x2APIC mode in order t 5774 as a broadcast even in x2APIC mode in order to support physical x2APIC 7582 without interrupt remapping. This is undesir 5775 without interrupt remapping. This is undesirable in logical mode, 7583 where 0xff represents CPUs 0-7 in cluster 0. 5776 where 0xff represents CPUs 0-7 in cluster 0. 7584 5777 7585 7.8 KVM_CAP_S390_USER_INSTR0 5778 7.8 KVM_CAP_S390_USER_INSTR0 7586 ---------------------------- 5779 ---------------------------- 7587 5780 7588 :Architectures: s390 5781 :Architectures: s390 7589 :Parameters: none 5782 :Parameters: none 7590 5783 7591 With this capability enabled, all illegal ins 5784 With this capability enabled, all illegal instructions 0x0000 (2 bytes) will 7592 be intercepted and forwarded to user space. U 5785 be intercepted and forwarded to user space. User space can use this 7593 mechanism e.g. to realize 2-byte software bre 5786 mechanism e.g. to realize 2-byte software breakpoints. The kernel will 7594 not inject an operating exception for these i 5787 not inject an operating exception for these instructions, user space has 7595 to take care of that. 5788 to take care of that. 7596 5789 7597 This capability can be enabled dynamically ev 5790 This capability can be enabled dynamically even if VCPUs were already 7598 created and are running. 5791 created and are running. 7599 5792 7600 7.9 KVM_CAP_S390_GS 5793 7.9 KVM_CAP_S390_GS 7601 ------------------- 5794 ------------------- 7602 5795 7603 :Architectures: s390 5796 :Architectures: s390 7604 :Parameters: none 5797 :Parameters: none 7605 :Returns: 0 on success; -EINVAL if the machin 5798 :Returns: 0 on success; -EINVAL if the machine does not support 7606 guarded storage; -EBUSY if a VCPU h 5799 guarded storage; -EBUSY if a VCPU has already been created. 7607 5800 7608 Allows use of guarded storage for the KVM gue 5801 Allows use of guarded storage for the KVM guest. 7609 5802 7610 7.10 KVM_CAP_S390_AIS 5803 7.10 KVM_CAP_S390_AIS 7611 --------------------- 5804 --------------------- 7612 5805 7613 :Architectures: s390 5806 :Architectures: s390 7614 :Parameters: none 5807 :Parameters: none 7615 5808 7616 Allow use of adapter-interruption suppression 5809 Allow use of adapter-interruption suppression. 7617 :Returns: 0 on success; -EBUSY if a VCPU has 5810 :Returns: 0 on success; -EBUSY if a VCPU has already been created. 7618 5811 7619 7.11 KVM_CAP_PPC_SMT 5812 7.11 KVM_CAP_PPC_SMT 7620 -------------------- 5813 -------------------- 7621 5814 7622 :Architectures: ppc 5815 :Architectures: ppc 7623 :Parameters: vsmt_mode, flags 5816 :Parameters: vsmt_mode, flags 7624 5817 7625 Enabling this capability on a VM provides use 5818 Enabling this capability on a VM provides userspace with a way to set 7626 the desired virtual SMT mode (i.e. the number 5819 the desired virtual SMT mode (i.e. the number of virtual CPUs per 7627 virtual core). The virtual SMT mode, vsmt_mo 5820 virtual core). The virtual SMT mode, vsmt_mode, must be a power of 2 7628 between 1 and 8. On POWER8, vsmt_mode must a 5821 between 1 and 8. On POWER8, vsmt_mode must also be no greater than 7629 the number of threads per subcore for the hos 5822 the number of threads per subcore for the host. Currently flags must 7630 be 0. A successful call to enable this capab 5823 be 0. A successful call to enable this capability will result in 7631 vsmt_mode being returned when the KVM_CAP_PPC 5824 vsmt_mode being returned when the KVM_CAP_PPC_SMT capability is 7632 subsequently queried for the VM. This capabi 5825 subsequently queried for the VM. This capability is only supported by 7633 HV KVM, and can only be set before any VCPUs 5826 HV KVM, and can only be set before any VCPUs have been created. 7634 The KVM_CAP_PPC_SMT_POSSIBLE capability indic 5827 The KVM_CAP_PPC_SMT_POSSIBLE capability indicates which virtual SMT 7635 modes are available. 5828 modes are available. 7636 5829 7637 7.12 KVM_CAP_PPC_FWNMI 5830 7.12 KVM_CAP_PPC_FWNMI 7638 ---------------------- 5831 ---------------------- 7639 5832 7640 :Architectures: ppc 5833 :Architectures: ppc 7641 :Parameters: none 5834 :Parameters: none 7642 5835 7643 With this capability a machine check exceptio 5836 With this capability a machine check exception in the guest address 7644 space will cause KVM to exit the guest with N 5837 space will cause KVM to exit the guest with NMI exit reason. This 7645 enables QEMU to build error log and branch to 5838 enables QEMU to build error log and branch to guest kernel registered 7646 machine check handling routine. Without this 5839 machine check handling routine. Without this capability KVM will 7647 branch to guests' 0x200 interrupt vector. 5840 branch to guests' 0x200 interrupt vector. 7648 5841 7649 7.13 KVM_CAP_X86_DISABLE_EXITS 5842 7.13 KVM_CAP_X86_DISABLE_EXITS 7650 ------------------------------ 5843 ------------------------------ 7651 5844 7652 :Architectures: x86 5845 :Architectures: x86 7653 :Parameters: args[0] defines which exits are 5846 :Parameters: args[0] defines which exits are disabled 7654 :Returns: 0 on success, -EINVAL when args[0] 5847 :Returns: 0 on success, -EINVAL when args[0] contains invalid exits 7655 5848 7656 Valid bits in args[0] are:: 5849 Valid bits in args[0] are:: 7657 5850 7658 #define KVM_X86_DISABLE_EXITS_MWAIT 5851 #define KVM_X86_DISABLE_EXITS_MWAIT (1 << 0) 7659 #define KVM_X86_DISABLE_EXITS_HLT 5852 #define KVM_X86_DISABLE_EXITS_HLT (1 << 1) 7660 #define KVM_X86_DISABLE_EXITS_PAUSE 5853 #define KVM_X86_DISABLE_EXITS_PAUSE (1 << 2) 7661 #define KVM_X86_DISABLE_EXITS_CSTATE 5854 #define KVM_X86_DISABLE_EXITS_CSTATE (1 << 3) 7662 5855 7663 Enabling this capability on a VM provides use 5856 Enabling this capability on a VM provides userspace with a way to no 7664 longer intercept some instructions for improv 5857 longer intercept some instructions for improved latency in some 7665 workloads, and is suggested when vCPUs are as 5858 workloads, and is suggested when vCPUs are associated to dedicated 7666 physical CPUs. More bits can be added in the 5859 physical CPUs. More bits can be added in the future; userspace can 7667 just pass the KVM_CHECK_EXTENSION result to K 5860 just pass the KVM_CHECK_EXTENSION result to KVM_ENABLE_CAP to disable 7668 all such vmexits. 5861 all such vmexits. 7669 5862 7670 Do not enable KVM_FEATURE_PV_UNHALT if you di 5863 Do not enable KVM_FEATURE_PV_UNHALT if you disable HLT exits. 7671 5864 7672 7.14 KVM_CAP_S390_HPAGE_1M 5865 7.14 KVM_CAP_S390_HPAGE_1M 7673 -------------------------- 5866 -------------------------- 7674 5867 7675 :Architectures: s390 5868 :Architectures: s390 7676 :Parameters: none 5869 :Parameters: none 7677 :Returns: 0 on success, -EINVAL if hpage modu 5870 :Returns: 0 on success, -EINVAL if hpage module parameter was not set 7678 or cmma is enabled, or the VM has t 5871 or cmma is enabled, or the VM has the KVM_VM_S390_UCONTROL 7679 flag set 5872 flag set 7680 5873 7681 With this capability the KVM support for memo 5874 With this capability the KVM support for memory backing with 1m pages 7682 through hugetlbfs can be enabled for a VM. Af 5875 through hugetlbfs can be enabled for a VM. After the capability is 7683 enabled, cmma can't be enabled anymore and pf 5876 enabled, cmma can't be enabled anymore and pfmfi and the storage key 7684 interpretation are disabled. If cmma has alre 5877 interpretation are disabled. If cmma has already been enabled or the 7685 hpage module parameter is not set to 1, -EINV 5878 hpage module parameter is not set to 1, -EINVAL is returned. 7686 5879 7687 While it is generally possible to create a hu 5880 While it is generally possible to create a huge page backed VM without 7688 this capability, the VM will not be able to r 5881 this capability, the VM will not be able to run. 7689 5882 7690 7.15 KVM_CAP_MSR_PLATFORM_INFO 5883 7.15 KVM_CAP_MSR_PLATFORM_INFO 7691 ------------------------------ 5884 ------------------------------ 7692 5885 7693 :Architectures: x86 5886 :Architectures: x86 7694 :Parameters: args[0] whether feature should b 5887 :Parameters: args[0] whether feature should be enabled or not 7695 5888 7696 With this capability, a guest may read the MS 5889 With this capability, a guest may read the MSR_PLATFORM_INFO MSR. Otherwise, 7697 a #GP would be raised when the guest tries to 5890 a #GP would be raised when the guest tries to access. Currently, this 7698 capability does not enable write permissions 5891 capability does not enable write permissions of this MSR for the guest. 7699 5892 7700 7.16 KVM_CAP_PPC_NESTED_HV 5893 7.16 KVM_CAP_PPC_NESTED_HV 7701 -------------------------- 5894 -------------------------- 7702 5895 7703 :Architectures: ppc 5896 :Architectures: ppc 7704 :Parameters: none 5897 :Parameters: none 7705 :Returns: 0 on success, -EINVAL when the impl 5898 :Returns: 0 on success, -EINVAL when the implementation doesn't support 7706 nested-HV virtualization. 5899 nested-HV virtualization. 7707 5900 7708 HV-KVM on POWER9 and later systems allows for 5901 HV-KVM on POWER9 and later systems allows for "nested-HV" 7709 virtualization, which provides a way for a gu 5902 virtualization, which provides a way for a guest VM to run guests that 7710 can run using the CPU's supervisor mode (priv 5903 can run using the CPU's supervisor mode (privileged non-hypervisor 7711 state). Enabling this capability on a VM dep 5904 state). Enabling this capability on a VM depends on the CPU having 7712 the necessary functionality and on the facili 5905 the necessary functionality and on the facility being enabled with a 7713 kvm-hv module parameter. 5906 kvm-hv module parameter. 7714 5907 7715 7.17 KVM_CAP_EXCEPTION_PAYLOAD 5908 7.17 KVM_CAP_EXCEPTION_PAYLOAD 7716 ------------------------------ 5909 ------------------------------ 7717 5910 7718 :Architectures: x86 5911 :Architectures: x86 7719 :Parameters: args[0] whether feature should b 5912 :Parameters: args[0] whether feature should be enabled or not 7720 5913 7721 With this capability enabled, CR2 will not be 5914 With this capability enabled, CR2 will not be modified prior to the 7722 emulated VM-exit when L1 intercepts a #PF exc 5915 emulated VM-exit when L1 intercepts a #PF exception that occurs in 7723 L2. Similarly, for kvm-intel only, DR6 will n 5916 L2. Similarly, for kvm-intel only, DR6 will not be modified prior to 7724 the emulated VM-exit when L1 intercepts a #DB 5917 the emulated VM-exit when L1 intercepts a #DB exception that occurs in 7725 L2. As a result, when KVM_GET_VCPU_EVENTS rep 5918 L2. As a result, when KVM_GET_VCPU_EVENTS reports a pending #PF (or 7726 #DB) exception for L2, exception.has_payload 5919 #DB) exception for L2, exception.has_payload will be set and the 7727 faulting address (or the new DR6 bits*) will 5920 faulting address (or the new DR6 bits*) will be reported in the 7728 exception_payload field. Similarly, when user 5921 exception_payload field. Similarly, when userspace injects a #PF (or 7729 #DB) into L2 using KVM_SET_VCPU_EVENTS, it is 5922 #DB) into L2 using KVM_SET_VCPU_EVENTS, it is expected to set 7730 exception.has_payload and to put the faulting 5923 exception.has_payload and to put the faulting address - or the new DR6 7731 bits\ [#]_ - in the exception_payload field. 5924 bits\ [#]_ - in the exception_payload field. 7732 5925 7733 This capability also enables exception.pendin 5926 This capability also enables exception.pending in struct 7734 kvm_vcpu_events, which allows userspace to di 5927 kvm_vcpu_events, which allows userspace to distinguish between pending 7735 and injected exceptions. 5928 and injected exceptions. 7736 5929 7737 5930 7738 .. [#] For the new DR6 bits, note that bit 16 5931 .. [#] For the new DR6 bits, note that bit 16 is set iff the #DB exception 7739 will clear DR6.RTM. 5932 will clear DR6.RTM. 7740 5933 7741 7.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 5934 7.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 7742 -------------------------------------- << 7743 5935 7744 :Architectures: x86, arm64, mips !! 5936 :Architectures: x86, arm, arm64, mips 7745 :Parameters: args[0] whether feature should b 5937 :Parameters: args[0] whether feature should be enabled or not 7746 5938 7747 Valid flags are:: 5939 Valid flags are:: 7748 5940 7749 #define KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 5941 #define KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (1 << 0) 7750 #define KVM_DIRTY_LOG_INITIALLY_SET 5942 #define KVM_DIRTY_LOG_INITIALLY_SET (1 << 1) 7751 5943 7752 With KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE is s 5944 With KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE is set, KVM_GET_DIRTY_LOG will not 7753 automatically clear and write-protect all pag 5945 automatically clear and write-protect all pages that are returned as dirty. 7754 Rather, userspace will have to do this operat 5946 Rather, userspace will have to do this operation separately using 7755 KVM_CLEAR_DIRTY_LOG. 5947 KVM_CLEAR_DIRTY_LOG. 7756 5948 7757 At the cost of a slightly more complicated op 5949 At the cost of a slightly more complicated operation, this provides better 7758 scalability and responsiveness for two reason 5950 scalability and responsiveness for two reasons. First, 7759 KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64 5951 KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64-page granularity rather 7760 than requiring to sync a full memslot; this e 5952 than requiring to sync a full memslot; this ensures that KVM does not 7761 take spinlocks for an extended period of time 5953 take spinlocks for an extended period of time. Second, in some cases a 7762 large amount of time can pass between a call 5954 large amount of time can pass between a call to KVM_GET_DIRTY_LOG and 7763 userspace actually using the data in the page 5955 userspace actually using the data in the page. Pages can be modified 7764 during this time, which is inefficient for bo 5956 during this time, which is inefficient for both the guest and userspace: 7765 the guest will incur a higher penalty due to 5957 the guest will incur a higher penalty due to write protection faults, 7766 while userspace can see false reports of dirt 5958 while userspace can see false reports of dirty pages. Manual reprotection 7767 helps reducing this time, improving guest per 5959 helps reducing this time, improving guest performance and reducing the 7768 number of dirty log false positives. 5960 number of dirty log false positives. 7769 5961 7770 With KVM_DIRTY_LOG_INITIALLY_SET set, all the 5962 With KVM_DIRTY_LOG_INITIALLY_SET set, all the bits of the dirty bitmap 7771 will be initialized to 1 when created. This 5963 will be initialized to 1 when created. This also improves performance because 7772 dirty logging can be enabled gradually in sma 5964 dirty logging can be enabled gradually in small chunks on the first call 7773 to KVM_CLEAR_DIRTY_LOG. KVM_DIRTY_LOG_INITIA 5965 to KVM_CLEAR_DIRTY_LOG. KVM_DIRTY_LOG_INITIALLY_SET depends on 7774 KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (it is al 5966 KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (it is also only available on 7775 x86 and arm64 for now). 5967 x86 and arm64 for now). 7776 5968 7777 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previou 5969 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previously available under the name 7778 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the imp 5970 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the implementation had bugs that make 7779 it hard or impossible to use it correctly. T 5971 it hard or impossible to use it correctly. The availability of 7780 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 signals tha 5972 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 signals that those bugs are fixed. 7781 Userspace should not try to use KVM_CAP_MANUA 5973 Userspace should not try to use KVM_CAP_MANUAL_DIRTY_LOG_PROTECT. 7782 5974 7783 7.19 KVM_CAP_PPC_SECURE_GUEST 5975 7.19 KVM_CAP_PPC_SECURE_GUEST 7784 ------------------------------ 5976 ------------------------------ 7785 5977 7786 :Architectures: ppc 5978 :Architectures: ppc 7787 5979 7788 This capability indicates that KVM is running 5980 This capability indicates that KVM is running on a host that has 7789 ultravisor firmware and thus can support a se 5981 ultravisor firmware and thus can support a secure guest. On such a 7790 system, a guest can ask the ultravisor to mak 5982 system, a guest can ask the ultravisor to make it a secure guest, 7791 one whose memory is inaccessible to the host 5983 one whose memory is inaccessible to the host except for pages which 7792 are explicitly requested to be shared with th 5984 are explicitly requested to be shared with the host. The ultravisor 7793 notifies KVM when a guest requests to become 5985 notifies KVM when a guest requests to become a secure guest, and KVM 7794 has the opportunity to veto the transition. 5986 has the opportunity to veto the transition. 7795 5987 7796 If present, this capability can be enabled fo 5988 If present, this capability can be enabled for a VM, meaning that KVM 7797 will allow the transition to secure guest mod 5989 will allow the transition to secure guest mode. Otherwise KVM will 7798 veto the transition. 5990 veto the transition. 7799 5991 7800 7.20 KVM_CAP_HALT_POLL 5992 7.20 KVM_CAP_HALT_POLL 7801 ---------------------- 5993 ---------------------- 7802 5994 7803 :Architectures: all 5995 :Architectures: all 7804 :Target: VM 5996 :Target: VM 7805 :Parameters: args[0] is the maximum poll time 5997 :Parameters: args[0] is the maximum poll time in nanoseconds 7806 :Returns: 0 on success; -1 on error 5998 :Returns: 0 on success; -1 on error 7807 5999 7808 KVM_CAP_HALT_POLL overrides the kvm.halt_poll !! 6000 This capability overrides the kvm module parameter halt_poll_ns for the 7809 maximum halt-polling time for all vCPUs in th !! 6001 target VM. 7810 be invoked at any time and any number of time << 7811 maximum halt-polling time. << 7812 6002 7813 See Documentation/virt/kvm/halt-polling.rst f !! 6003 VCPU polling allows a VCPU to poll for wakeup events instead of immediately 7814 polling. !! 6004 scheduling during guest halts. The maximum time a VCPU can spend polling is >> 6005 controlled by the kvm module parameter halt_poll_ns. This capability allows >> 6006 the maximum halt time to specified on a per-VM basis, effectively overriding >> 6007 the module parameter for the target VM. 7815 6008 7816 7.21 KVM_CAP_X86_USER_SPACE_MSR 6009 7.21 KVM_CAP_X86_USER_SPACE_MSR 7817 ------------------------------- 6010 ------------------------------- 7818 6011 7819 :Architectures: x86 6012 :Architectures: x86 7820 :Target: VM 6013 :Target: VM 7821 :Parameters: args[0] contains the mask of KVM 6014 :Parameters: args[0] contains the mask of KVM_MSR_EXIT_REASON_* events to report 7822 :Returns: 0 on success; -1 on error 6015 :Returns: 0 on success; -1 on error 7823 6016 7824 This capability allows userspace to intercept !! 6017 This capability enables trapping of #GP invoking RDMSR and WRMSR instructions 7825 access to an MSR is denied. By default, KVM !! 6018 into user space. 7826 6019 7827 When a guest requests to read or write an MSR 6020 When a guest requests to read or write an MSR, KVM may not implement all MSRs 7828 that are relevant to a respective system. It 6021 that are relevant to a respective system. It also does not differentiate by 7829 CPU type. 6022 CPU type. 7830 6023 7831 To allow more fine grained control over MSR h !! 6024 To allow more fine grained control over MSR handling, user space may enable 7832 this capability. With it enabled, MSR accesse 6025 this capability. With it enabled, MSR accesses that match the mask specified in 7833 args[0] and would trigger a #GP inside the gu !! 6026 args[0] and trigger a #GP event inside the guest by KVM will instead trigger 7834 KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exi !! 6027 KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exit notifications which user space 7835 can then implement model specific MSR handlin !! 6028 can then handle to implement model specific MSR handling and/or user notifications 7836 to inform a user that an MSR was not emulated !! 6029 to inform a user that an MSR was not handled. 7837 << 7838 The valid mask flags are: << 7839 << 7840 ============================ ================ << 7841 KVM_MSR_EXIT_REASON_UNKNOWN intercept access << 7842 KVM_MSR_EXIT_REASON_INVAL intercept access << 7843 invalid accordin << 7844 KVM_MSR_EXIT_REASON_FILTER intercept access << 7845 via KVM_X86_SET_ << 7846 ============================ ================ << 7847 << 7848 7.22 KVM_CAP_X86_BUS_LOCK_EXIT << 7849 ------------------------------- << 7850 << 7851 :Architectures: x86 << 7852 :Target: VM << 7853 :Parameters: args[0] defines the policy used << 7854 :Returns: 0 on success, -EINVAL when args[0] << 7855 << 7856 Valid bits in args[0] are:: << 7857 << 7858 #define KVM_BUS_LOCK_DETECTION_OFF (1 << 7859 #define KVM_BUS_LOCK_DETECTION_EXIT (1 << 7860 << 7861 Enabling this capability on a VM provides use << 7862 policy to handle the bus locks detected in gu << 7863 supported modes from the result of KVM_CHECK_ << 7864 the KVM_ENABLE_CAP. The supported modes are m << 7865 << 7866 This capability allows userspace to force VM << 7867 guest, irrespective whether or not the host h << 7868 (which triggers an #AC exception that KVM int << 7869 intended to mitigate attacks where a maliciou << 7870 locks to degrade the performance of the whole << 7871 << 7872 If KVM_BUS_LOCK_DETECTION_OFF is set, KVM doe << 7873 exit, although the host kernel's split-lock # << 7874 enabled. << 7875 << 7876 If KVM_BUS_LOCK_DETECTION_EXIT is set, KVM en << 7877 bus locks in the guest trigger a VM exit, and << 7878 such VM exits, e.g. to allow userspace to thr << 7879 apply some other policy-based mitigation. Whe << 7880 KVM_RUN_X86_BUS_LOCK in vcpu-run->flags, and << 7881 to KVM_EXIT_X86_BUS_LOCK. << 7882 << 7883 Note! Detected bus locks may be coincident wi << 7884 KVM_RUN_X86_BUS_LOCK should be checked regard << 7885 userspace wants to take action on all detecte << 7886 << 7887 7.23 KVM_CAP_PPC_DAWR1 << 7888 ---------------------- << 7889 << 7890 :Architectures: ppc << 7891 :Parameters: none << 7892 :Returns: 0 on success, -EINVAL when CPU does << 7893 << 7894 This capability can be used to check / enable << 7895 by POWER10 processor. << 7896 << 7897 << 7898 7.24 KVM_CAP_VM_COPY_ENC_CONTEXT_FROM << 7899 ------------------------------------- << 7900 << 7901 Architectures: x86 SEV enabled << 7902 Type: vm << 7903 Parameters: args[0] is the fd of the source v << 7904 Returns: 0 on success; ENOTTY on error << 7905 << 7906 This capability enables userspace to copy enc << 7907 indicated by the fd to the vm this is called << 7908 << 7909 This is intended to support in-guest workload << 7910 allows the in-guest workload to maintain its << 7911 from accidentally clobbering each other with << 7912 APIC/MSRs/etc). << 7913 << 7914 7.25 KVM_CAP_SGX_ATTRIBUTE << 7915 -------------------------- << 7916 << 7917 :Architectures: x86 << 7918 :Target: VM << 7919 :Parameters: args[0] is a file handle of a SG << 7920 :Returns: 0 on success, -EINVAL if the file h << 7921 attribute is not supported by KVM. << 7922 << 7923 KVM_CAP_SGX_ATTRIBUTE enables a userspace VMM << 7924 more privileged enclave attributes. args[0] << 7925 SGX attribute file corresponding to an attrib << 7926 by KVM (currently only PROVISIONKEY). << 7927 << 7928 The SGX subsystem restricts access to a subse << 7929 additional security for an uncompromised kern << 7930 is restricted to deter malware from using the << 7931 system fingerprint. To prevent userspace fro << 7932 by running an enclave in a VM, KVM prevents a << 7933 default. << 7934 << 7935 See Documentation/arch/x86/sgx.rst for more d << 7936 << 7937 7.26 KVM_CAP_PPC_RPT_INVALIDATE << 7938 ------------------------------- << 7939 << 7940 :Capability: KVM_CAP_PPC_RPT_INVALIDATE << 7941 :Architectures: ppc << 7942 :Type: vm << 7943 << 7944 This capability indicates that the kernel is << 7945 H_RPT_INVALIDATE hcall. << 7946 << 7947 In order to enable the use of H_RPT_INVALIDAT << 7948 user space might have to advertise it for the << 7949 IBM pSeries (sPAPR) guest starts using it if << 7950 present in the "ibm,hypertas-functions" devic << 7951 << 7952 This capability is enabled for hypervisors on << 7953 that support radix MMU. << 7954 << 7955 7.27 KVM_CAP_EXIT_ON_EMULATION_FAILURE << 7956 -------------------------------------- << 7957 << 7958 :Architectures: x86 << 7959 :Parameters: args[0] whether the feature shou << 7960 << 7961 When this capability is enabled, an emulation << 7962 to userspace with KVM_INTERNAL_ERROR (except << 7963 to handle a VMware backdoor instruction). Fur << 7964 to 15 instruction bytes for any exit to users << 7965 failure. When these exits to userspace occur << 7966 instead of the internal struct. They both ha << 7967 emulation_failure struct matches the content << 7968 defines the 'flags' field which is used to de << 7969 that are valid (ie: if KVM_INTERNAL_ERROR_EMU << 7970 set in the 'flags' field then both 'insn_size << 7971 in them.) << 7972 << 7973 7.28 KVM_CAP_ARM_MTE << 7974 -------------------- << 7975 << 7976 :Architectures: arm64 << 7977 :Parameters: none << 7978 << 7979 This capability indicates that KVM (and the h << 7980 Memory Tagging Extensions (MTE) to the guest. << 7981 VMM before creating any VCPUs to allow the gu << 7982 available to a guest running in AArch64 mode << 7983 cause attempts to create AArch32 VCPUs to fai << 7984 << 7985 When enabled the guest is able to access tags << 7986 to the guest. KVM will ensure that the tags a << 7987 hibernation of the host; however the VMM need << 7988 tags as appropriate if the VM is migrated. << 7989 << 7990 When this capability is enabled all memory in << 7991 ``MAP_ANONYMOUS`` or with a RAM-based file ma << 7992 attempts to create a memslot with an invalid << 7993 -EINVAL return. << 7994 << 7995 When enabled the VMM may make use of the ``KV << 7996 perform a bulk copy of tags to/from the guest << 7997 << 7998 7.29 KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM << 7999 ------------------------------------- << 8000 << 8001 :Architectures: x86 SEV enabled << 8002 :Type: vm << 8003 :Parameters: args[0] is the fd of the source << 8004 :Returns: 0 on success << 8005 << 8006 This capability enables userspace to migrate << 8007 indicated by the fd to the VM this is called << 8008 << 8009 This is intended to support intra-host migrat << 8010 upgrading the VMM process without interruptin << 8011 << 8012 7.30 KVM_CAP_PPC_AIL_MODE_3 << 8013 ------------------------------- << 8014 << 8015 :Capability: KVM_CAP_PPC_AIL_MODE_3 << 8016 :Architectures: ppc << 8017 :Type: vm << 8018 << 8019 This capability indicates that the kernel sup << 8020 "Address Translation Mode on Interrupt" aka " << 8021 resource that is controlled with the H_SET_MO << 8022 << 8023 This capability allows a guest kernel to use << 8024 handling interrupts and system calls. << 8025 << 8026 7.31 KVM_CAP_DISABLE_QUIRKS2 << 8027 ---------------------------- << 8028 << 8029 :Capability: KVM_CAP_DISABLE_QUIRKS2 << 8030 :Parameters: args[0] - set of KVM quirks to d << 8031 :Architectures: x86 << 8032 :Type: vm << 8033 << 8034 This capability, if enabled, will cause KVM t << 8035 quirks. << 8036 << 8037 Calling KVM_CHECK_EXTENSION for this capabili << 8038 quirks that can be disabled in KVM. << 8039 << 8040 The argument to KVM_ENABLE_CAP for this capab << 8041 quirks to disable, and must be a subset of th << 8042 KVM_CHECK_EXTENSION. << 8043 << 8044 The valid bits in cap.args[0] are: << 8045 << 8046 =================================== ========= << 8047 KVM_X86_QUIRK_LINT0_REENABLED By defaul << 8048 LINT0 reg << 8049 When this << 8050 is 0x1000 << 8051 << 8052 KVM_X86_QUIRK_CD_NW_CLEARED By defaul << 8053 AMD CPUs << 8054 that runs << 8055 with cach << 8056 << 8057 When this << 8058 change th << 8059 << 8060 KVM_X86_QUIRK_LAPIC_MMIO_HOLE By defaul << 8061 available << 8062 mode. Whe << 8063 disables << 8064 LAPIC is << 8065 << 8066 KVM_X86_QUIRK_OUT_7E_INC_RIP By defaul << 8067 exiting t << 8068 to port 0 << 8069 KVM does << 8070 exiting t << 8071 << 8072 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT When this << 8073 CPUID.01H << 8074 IA32_MISC << 8075 Additiona << 8076 KVM clear << 8077 IA32_MISC << 8078 << 8079 KVM_X86_QUIRK_FIX_HYPERCALL_INSN By defaul << 8080 VMMCALL/V << 8081 vendor's << 8082 system. W << 8083 will no l << 8084 hypercall << 8085 incorrect << 8086 generate << 8087 << 8088 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS By defaul << 8089 they are << 8090 whether o << 8091 according << 8092 is disabl << 8093 is not se << 8094 KVM will << 8095 they're u << 8096 KVM will << 8097 guest CPU << 8098 KVM_X86_Q << 8099 disabled. << 8100 << 8101 KVM_X86_QUIRK_SLOT_ZAP_ALL By defaul << 8102 invalidat << 8103 address s << 8104 moved. W << 8105 VM type i << 8106 ensures t << 8107 or moved << 8108 _may_ inv << 8109 memslot. << 8110 =================================== ========= << 8111 << 8112 7.32 KVM_CAP_MAX_VCPU_ID << 8113 ------------------------ << 8114 << 8115 :Architectures: x86 << 8116 :Target: VM << 8117 :Parameters: args[0] - maximum APIC ID value << 8118 :Returns: 0 on success, -EINVAL if args[0] is << 8119 supported in KVM or if it has been << 8120 << 8121 This capability allows userspace to specify m << 8122 assigned for current VM session prior to the << 8123 memory for data structures indexed by the API << 8124 to calculate the limit to APIC ID values from << 8125 CPU topology. << 8126 << 8127 The value can be changed only until KVM_ENABL << 8128 value or until a vCPU is created. Upon creat << 8129 if the value was set to zero or KVM_ENABLE_CA << 8130 uses the return value of KVM_CHECK_EXTENSION( << 8131 the maximum APIC ID. << 8132 << 8133 7.33 KVM_CAP_X86_NOTIFY_VMEXIT << 8134 ------------------------------ << 8135 << 8136 :Architectures: x86 << 8137 :Target: VM << 8138 :Parameters: args[0] is the value of notify w << 8139 :Returns: 0 on success, -EINVAL if args[0] co << 8140 VM exit is unsupported. << 8141 << 8142 Bits 63:32 of args[0] are used for notify win << 8143 Bits 31:0 of args[0] are for some flags. Vali << 8144 << 8145 #define KVM_X86_NOTIFY_VMEXIT_ENABLED (1 << 8146 #define KVM_X86_NOTIFY_VMEXIT_USER (1 << 8147 << 8148 This capability allows userspace to configure << 8149 in per-VM scope during VM creation. Notify VM << 8150 When userspace sets KVM_X86_NOTIFY_VMEXIT_ENA << 8151 enable this feature with the notify window pr << 8152 a VM exit if no event window occurs in VM non << 8153 time (notify window). << 8154 << 8155 If KVM_X86_NOTIFY_VMEXIT_USER is set in args[ << 8156 KVM would exit to userspace for handling. << 8157 << 8158 This capability is aimed to mitigate the thre << 8159 cause CPU stuck (due to event windows don't o << 8160 unavailable to host or other VMs. << 8161 << 8162 7.34 KVM_CAP_MEMORY_FAULT_INFO << 8163 ------------------------------ << 8164 << 8165 :Architectures: x86 << 8166 :Returns: Informational only, -EINVAL on dire << 8167 << 8168 The presence of this capability indicates tha << 8169 kvm_run.memory_fault if KVM cannot resolve a << 8170 there is a valid memslot but no backing VMA f << 8171 address. << 8172 << 8173 The information in kvm_run.memory_fault is va << 8174 an error with errno=EFAULT or errno=EHWPOISON << 8175 to KVM_EXIT_MEMORY_FAULT. << 8176 << 8177 Note: Userspaces which attempt to resolve mem << 8178 KVM_RUN are encouraged to guard against repea << 8179 error/annotated fault. << 8180 << 8181 See KVM_EXIT_MEMORY_FAULT for more informatio << 8182 << 8183 7.35 KVM_CAP_X86_APIC_BUS_CYCLES_NS << 8184 ----------------------------------- << 8185 << 8186 :Architectures: x86 << 8187 :Target: VM << 8188 :Parameters: args[0] is the desired APIC bus << 8189 :Returns: 0 on success, -EINVAL if args[0] co << 8190 frequency or if any vCPUs have been << 8191 local APIC has not been created usi << 8192 << 8193 This capability sets the VM's APIC bus clock << 8194 virtual APIC when emulating APIC timers. KVM << 8195 by KVM_CHECK_EXTENSION. << 8196 << 8197 Note: Userspace is responsible for correctly << 8198 core crystal clock frequency, if a non-zero C << 8199 << 8200 7.36 KVM_CAP_X86_GUEST_MODE << 8201 ------------------------------ << 8202 << 8203 :Architectures: x86 << 8204 :Returns: Informational only, -EINVAL on dire << 8205 << 8206 The presence of this capability indicates tha << 8207 KVM_RUN_X86_GUEST_MODE bit in kvm_run.flags t << 8208 vCPU was executing nested guest code when it << 8209 << 8210 KVM exits with the register state of either t << 8211 depending on which executed at the time of an << 8212 take care to differentiate between these case << 8213 6030 8214 8. Other capabilities. 6031 8. Other capabilities. 8215 ====================== 6032 ====================== 8216 6033 8217 This section lists capabilities that give inf 6034 This section lists capabilities that give information about other 8218 features of the KVM implementation. 6035 features of the KVM implementation. 8219 6036 8220 8.1 KVM_CAP_PPC_HWRNG 6037 8.1 KVM_CAP_PPC_HWRNG 8221 --------------------- 6038 --------------------- 8222 6039 8223 :Architectures: ppc 6040 :Architectures: ppc 8224 6041 8225 This capability, if KVM_CHECK_EXTENSION indic 6042 This capability, if KVM_CHECK_EXTENSION indicates that it is 8226 available, means that the kernel has an imple 6043 available, means that the kernel has an implementation of the 8227 H_RANDOM hypercall backed by a hardware rando 6044 H_RANDOM hypercall backed by a hardware random-number generator. 8228 If present, the kernel H_RANDOM handler can b 6045 If present, the kernel H_RANDOM handler can be enabled for guest use 8229 with the KVM_CAP_PPC_ENABLE_HCALL capability. 6046 with the KVM_CAP_PPC_ENABLE_HCALL capability. 8230 6047 8231 8.2 KVM_CAP_HYPERV_SYNIC 6048 8.2 KVM_CAP_HYPERV_SYNIC 8232 ------------------------ 6049 ------------------------ 8233 6050 8234 :Architectures: x86 6051 :Architectures: x86 8235 6052 8236 This capability, if KVM_CHECK_EXTENSION indic 6053 This capability, if KVM_CHECK_EXTENSION indicates that it is 8237 available, means that the kernel has an imple 6054 available, means that the kernel has an implementation of the 8238 Hyper-V Synthetic interrupt controller(SynIC) 6055 Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is 8239 used to support Windows Hyper-V based guest p 6056 used to support Windows Hyper-V based guest paravirt drivers(VMBus). 8240 6057 8241 In order to use SynIC, it has to be activated 6058 In order to use SynIC, it has to be activated by setting this 8242 capability via KVM_ENABLE_CAP ioctl on the vc 6059 capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this 8243 will disable the use of APIC hardware virtual 6060 will disable the use of APIC hardware virtualization even if supported 8244 by the CPU, as it's incompatible with SynIC a 6061 by the CPU, as it's incompatible with SynIC auto-EOI behavior. 8245 6062 8246 8.3 KVM_CAP_PPC_MMU_RADIX !! 6063 8.3 KVM_CAP_PPC_RADIX_MMU 8247 ------------------------- 6064 ------------------------- 8248 6065 8249 :Architectures: ppc 6066 :Architectures: ppc 8250 6067 8251 This capability, if KVM_CHECK_EXTENSION indic 6068 This capability, if KVM_CHECK_EXTENSION indicates that it is 8252 available, means that the kernel can support 6069 available, means that the kernel can support guests using the 8253 radix MMU defined in Power ISA V3.00 (as impl 6070 radix MMU defined in Power ISA V3.00 (as implemented in the POWER9 8254 processor). 6071 processor). 8255 6072 8256 8.4 KVM_CAP_PPC_MMU_HASH_V3 !! 6073 8.4 KVM_CAP_PPC_HASH_MMU_V3 8257 --------------------------- 6074 --------------------------- 8258 6075 8259 :Architectures: ppc 6076 :Architectures: ppc 8260 6077 8261 This capability, if KVM_CHECK_EXTENSION indic 6078 This capability, if KVM_CHECK_EXTENSION indicates that it is 8262 available, means that the kernel can support 6079 available, means that the kernel can support guests using the 8263 hashed page table MMU defined in Power ISA V3 6080 hashed page table MMU defined in Power ISA V3.00 (as implemented in 8264 the POWER9 processor), including in-memory se 6081 the POWER9 processor), including in-memory segment tables. 8265 6082 8266 8.5 KVM_CAP_MIPS_VZ 6083 8.5 KVM_CAP_MIPS_VZ 8267 ------------------- 6084 ------------------- 8268 6085 8269 :Architectures: mips 6086 :Architectures: mips 8270 6087 8271 This capability, if KVM_CHECK_EXTENSION on th 6088 This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that 8272 it is available, means that full hardware ass 6089 it is available, means that full hardware assisted virtualization capabilities 8273 of the hardware are available for use through 6090 of the hardware are available for use through KVM. An appropriate 8274 KVM_VM_MIPS_* type must be passed to KVM_CREA 6091 KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which 8275 utilises it. 6092 utilises it. 8276 6093 8277 If KVM_CHECK_EXTENSION on a kvm VM handle ind 6094 If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is 8278 available, it means that the VM is using full 6095 available, it means that the VM is using full hardware assisted virtualization 8279 capabilities of the hardware. This is useful 6096 capabilities of the hardware. This is useful to check after creating a VM with 8280 KVM_VM_MIPS_DEFAULT. 6097 KVM_VM_MIPS_DEFAULT. 8281 6098 8282 The value returned by KVM_CHECK_EXTENSION sho 6099 The value returned by KVM_CHECK_EXTENSION should be compared against known 8283 values (see below). All other values are rese 6100 values (see below). All other values are reserved. This is to allow for the 8284 possibility of other hardware assisted virtua 6101 possibility of other hardware assisted virtualization implementations which 8285 may be incompatible with the MIPS VZ ASE. 6102 may be incompatible with the MIPS VZ ASE. 8286 6103 8287 == ========================================= 6104 == ========================================================================== 8288 0 The trap & emulate implementation is in u 6105 0 The trap & emulate implementation is in use to run guest code in user 8289 mode. Guest virtual memory segments are r 6106 mode. Guest virtual memory segments are rearranged to fit the guest in the 8290 user mode address space. 6107 user mode address space. 8291 6108 8292 1 The MIPS VZ ASE is in use, providing full 6109 1 The MIPS VZ ASE is in use, providing full hardware assisted 8293 virtualization, including standard guest 6110 virtualization, including standard guest virtual memory segments. 8294 == ========================================= 6111 == ========================================================================== 8295 6112 8296 8.6 KVM_CAP_MIPS_TE 6113 8.6 KVM_CAP_MIPS_TE 8297 ------------------- 6114 ------------------- 8298 6115 8299 :Architectures: mips 6116 :Architectures: mips 8300 6117 8301 This capability, if KVM_CHECK_EXTENSION on th 6118 This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that 8302 it is available, means that the trap & emulat 6119 it is available, means that the trap & emulate implementation is available to 8303 run guest code in user mode, even if KVM_CAP_ 6120 run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware 8304 assisted virtualisation is also available. KV 6121 assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed 8305 to KVM_CREATE_VM to create a VM which utilise 6122 to KVM_CREATE_VM to create a VM which utilises it. 8306 6123 8307 If KVM_CHECK_EXTENSION on a kvm VM handle ind 6124 If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is 8308 available, it means that the VM is using trap 6125 available, it means that the VM is using trap & emulate. 8309 6126 8310 8.7 KVM_CAP_MIPS_64BIT 6127 8.7 KVM_CAP_MIPS_64BIT 8311 ---------------------- 6128 ---------------------- 8312 6129 8313 :Architectures: mips 6130 :Architectures: mips 8314 6131 8315 This capability indicates the supported archi 6132 This capability indicates the supported architecture type of the guest, i.e. the 8316 supported register and address width. 6133 supported register and address width. 8317 6134 8318 The values returned when this capability is c 6135 The values returned when this capability is checked by KVM_CHECK_EXTENSION on a 8319 kvm VM handle correspond roughly to the CP0_C 6136 kvm VM handle correspond roughly to the CP0_Config.AT register field, and should 8320 be checked specifically against known values 6137 be checked specifically against known values (see below). All other values are 8321 reserved. 6138 reserved. 8322 6139 8323 == ========================================= 6140 == ======================================================================== 8324 0 MIPS32 or microMIPS32. 6141 0 MIPS32 or microMIPS32. 8325 Both registers and addresses are 32-bits 6142 Both registers and addresses are 32-bits wide. 8326 It will only be possible to run 32-bit gu 6143 It will only be possible to run 32-bit guest code. 8327 6144 8328 1 MIPS64 or microMIPS64 with access only to 6145 1 MIPS64 or microMIPS64 with access only to 32-bit compatibility segments. 8329 Registers are 64-bits wide, but addresses 6146 Registers are 64-bits wide, but addresses are 32-bits wide. 8330 64-bit guest code may run but cannot acce 6147 64-bit guest code may run but cannot access MIPS64 memory segments. 8331 It will also be possible to run 32-bit gu 6148 It will also be possible to run 32-bit guest code. 8332 6149 8333 2 MIPS64 or microMIPS64 with access to all 6150 2 MIPS64 or microMIPS64 with access to all address segments. 8334 Both registers and addresses are 64-bits 6151 Both registers and addresses are 64-bits wide. 8335 It will be possible to run 64-bit or 32-b 6152 It will be possible to run 64-bit or 32-bit guest code. 8336 == ========================================= 6153 == ======================================================================== 8337 6154 8338 8.9 KVM_CAP_ARM_USER_IRQ 6155 8.9 KVM_CAP_ARM_USER_IRQ 8339 ------------------------ 6156 ------------------------ 8340 6157 8341 :Architectures: arm64 !! 6158 :Architectures: arm, arm64 8342 6159 8343 This capability, if KVM_CHECK_EXTENSION indic 6160 This capability, if KVM_CHECK_EXTENSION indicates that it is available, means 8344 that if userspace creates a VM without an in- 6161 that if userspace creates a VM without an in-kernel interrupt controller, it 8345 will be notified of changes to the output lev 6162 will be notified of changes to the output level of in-kernel emulated devices, 8346 which can generate virtual interrupts, presen 6163 which can generate virtual interrupts, presented to the VM. 8347 For such VMs, on every return to userspace, t 6164 For such VMs, on every return to userspace, the kernel 8348 updates the vcpu's run->s.regs.device_irq_lev 6165 updates the vcpu's run->s.regs.device_irq_level field to represent the actual 8349 output level of the device. 6166 output level of the device. 8350 6167 8351 Whenever kvm detects a change in the device o 6168 Whenever kvm detects a change in the device output level, kvm guarantees at 8352 least one return to userspace before running 6169 least one return to userspace before running the VM. This exit could either 8353 be a KVM_EXIT_INTR or any other exit event, l 6170 be a KVM_EXIT_INTR or any other exit event, like KVM_EXIT_MMIO. This way, 8354 userspace can always sample the device output 6171 userspace can always sample the device output level and re-compute the state of 8355 the userspace interrupt controller. Userspac 6172 the userspace interrupt controller. Userspace should always check the state 8356 of run->s.regs.device_irq_level on every kvm 6173 of run->s.regs.device_irq_level on every kvm exit. 8357 The value in run->s.regs.device_irq_level can 6174 The value in run->s.regs.device_irq_level can represent both level and edge 8358 triggered interrupt signals, depending on the 6175 triggered interrupt signals, depending on the device. Edge triggered interrupt 8359 signals will exit to userspace with the bit i 6176 signals will exit to userspace with the bit in run->s.regs.device_irq_level 8360 set exactly once per edge signal. 6177 set exactly once per edge signal. 8361 6178 8362 The field run->s.regs.device_irq_level is ava 6179 The field run->s.regs.device_irq_level is available independent of 8363 run->kvm_valid_regs or run->kvm_dirty_regs bi 6180 run->kvm_valid_regs or run->kvm_dirty_regs bits. 8364 6181 8365 If KVM_CAP_ARM_USER_IRQ is supported, the KVM 6182 If KVM_CAP_ARM_USER_IRQ is supported, the KVM_CHECK_EXTENSION ioctl returns a 8366 number larger than 0 indicating the version o 6183 number larger than 0 indicating the version of this capability is implemented 8367 and thereby which bits in run->s.regs.device_ 6184 and thereby which bits in run->s.regs.device_irq_level can signal values. 8368 6185 8369 Currently the following bits are defined for 6186 Currently the following bits are defined for the device_irq_level bitmap:: 8370 6187 8371 KVM_CAP_ARM_USER_IRQ >= 1: 6188 KVM_CAP_ARM_USER_IRQ >= 1: 8372 6189 8373 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual tim 6190 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual timer 8374 KVM_ARM_DEV_EL1_PTIMER - EL1 physical ti 6191 KVM_ARM_DEV_EL1_PTIMER - EL1 physical timer 8375 KVM_ARM_DEV_PMU - ARM PMU overflo 6192 KVM_ARM_DEV_PMU - ARM PMU overflow interrupt signal 8376 6193 8377 Future versions of kvm may implement addition 6194 Future versions of kvm may implement additional events. These will get 8378 indicated by returning a higher number from K 6195 indicated by returning a higher number from KVM_CHECK_EXTENSION and will be 8379 listed above. 6196 listed above. 8380 6197 8381 8.10 KVM_CAP_PPC_SMT_POSSIBLE 6198 8.10 KVM_CAP_PPC_SMT_POSSIBLE 8382 ----------------------------- 6199 ----------------------------- 8383 6200 8384 :Architectures: ppc 6201 :Architectures: ppc 8385 6202 8386 Querying this capability returns a bitmap ind 6203 Querying this capability returns a bitmap indicating the possible 8387 virtual SMT modes that can be set using KVM_C 6204 virtual SMT modes that can be set using KVM_CAP_PPC_SMT. If bit N 8388 (counting from the right) is set, then a virt 6205 (counting from the right) is set, then a virtual SMT mode of 2^N is 8389 available. 6206 available. 8390 6207 8391 8.11 KVM_CAP_HYPERV_SYNIC2 6208 8.11 KVM_CAP_HYPERV_SYNIC2 8392 -------------------------- 6209 -------------------------- 8393 6210 8394 :Architectures: x86 6211 :Architectures: x86 8395 6212 8396 This capability enables a newer version of Hy 6213 This capability enables a newer version of Hyper-V Synthetic interrupt 8397 controller (SynIC). The only difference with 6214 controller (SynIC). The only difference with KVM_CAP_HYPERV_SYNIC is that KVM 8398 doesn't clear SynIC message and event flags p 6215 doesn't clear SynIC message and event flags pages when they are enabled by 8399 writing to the respective MSRs. 6216 writing to the respective MSRs. 8400 6217 8401 8.12 KVM_CAP_HYPERV_VP_INDEX 6218 8.12 KVM_CAP_HYPERV_VP_INDEX 8402 ---------------------------- 6219 ---------------------------- 8403 6220 8404 :Architectures: x86 6221 :Architectures: x86 8405 6222 8406 This capability indicates that userspace can 6223 This capability indicates that userspace can load HV_X64_MSR_VP_INDEX msr. Its 8407 value is used to denote the target vcpu for a 6224 value is used to denote the target vcpu for a SynIC interrupt. For 8408 compatibility, KVM initializes this msr to KV !! 6225 compatibilty, KVM initializes this msr to KVM's internal vcpu index. When this 8409 capability is absent, userspace can still que 6226 capability is absent, userspace can still query this msr's value. 8410 6227 8411 8.13 KVM_CAP_S390_AIS_MIGRATION 6228 8.13 KVM_CAP_S390_AIS_MIGRATION 8412 ------------------------------- 6229 ------------------------------- 8413 6230 8414 :Architectures: s390 6231 :Architectures: s390 8415 :Parameters: none 6232 :Parameters: none 8416 6233 8417 This capability indicates if the flic device 6234 This capability indicates if the flic device will be able to get/set the 8418 AIS states for migration via the KVM_DEV_FLIC 6235 AIS states for migration via the KVM_DEV_FLIC_AISM_ALL attribute and allows 8419 to discover this without having to create a f 6236 to discover this without having to create a flic device. 8420 6237 8421 8.14 KVM_CAP_S390_PSW 6238 8.14 KVM_CAP_S390_PSW 8422 --------------------- 6239 --------------------- 8423 6240 8424 :Architectures: s390 6241 :Architectures: s390 8425 6242 8426 This capability indicates that the PSW is exp 6243 This capability indicates that the PSW is exposed via the kvm_run structure. 8427 6244 8428 8.15 KVM_CAP_S390_GMAP 6245 8.15 KVM_CAP_S390_GMAP 8429 ---------------------- 6246 ---------------------- 8430 6247 8431 :Architectures: s390 6248 :Architectures: s390 8432 6249 8433 This capability indicates that the user space 6250 This capability indicates that the user space memory used as guest mapping can 8434 be anywhere in the user memory address space, 6251 be anywhere in the user memory address space, as long as the memory slots are 8435 aligned and sized to a segment (1MB) boundary 6252 aligned and sized to a segment (1MB) boundary. 8436 6253 8437 8.16 KVM_CAP_S390_COW 6254 8.16 KVM_CAP_S390_COW 8438 --------------------- 6255 --------------------- 8439 6256 8440 :Architectures: s390 6257 :Architectures: s390 8441 6258 8442 This capability indicates that the user space 6259 This capability indicates that the user space memory used as guest mapping can 8443 use copy-on-write semantics as well as dirty 6260 use copy-on-write semantics as well as dirty pages tracking via read-only page 8444 tables. 6261 tables. 8445 6262 8446 8.17 KVM_CAP_S390_BPB 6263 8.17 KVM_CAP_S390_BPB 8447 --------------------- 6264 --------------------- 8448 6265 8449 :Architectures: s390 6266 :Architectures: s390 8450 6267 8451 This capability indicates that kvm will imple 6268 This capability indicates that kvm will implement the interfaces to handle 8452 reset, migration and nested KVM for branch pr 6269 reset, migration and nested KVM for branch prediction blocking. The stfle 8453 facility 82 should not be provided to the gue 6270 facility 82 should not be provided to the guest without this capability. 8454 6271 8455 8.18 KVM_CAP_HYPERV_TLBFLUSH 6272 8.18 KVM_CAP_HYPERV_TLBFLUSH 8456 ---------------------------- 6273 ---------------------------- 8457 6274 8458 :Architectures: x86 6275 :Architectures: x86 8459 6276 8460 This capability indicates that KVM supports p 6277 This capability indicates that KVM supports paravirtualized Hyper-V TLB Flush 8461 hypercalls: 6278 hypercalls: 8462 HvFlushVirtualAddressSpace, HvFlushVirtualAdd 6279 HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx, 8463 HvFlushVirtualAddressList, HvFlushVirtualAddr 6280 HvFlushVirtualAddressList, HvFlushVirtualAddressListEx. 8464 6281 8465 8.19 KVM_CAP_ARM_INJECT_SERROR_ESR 6282 8.19 KVM_CAP_ARM_INJECT_SERROR_ESR 8466 ---------------------------------- 6283 ---------------------------------- 8467 6284 8468 :Architectures: arm64 !! 6285 :Architectures: arm, arm64 8469 6286 8470 This capability indicates that userspace can 6287 This capability indicates that userspace can specify (via the 8471 KVM_SET_VCPU_EVENTS ioctl) the syndrome value 6288 KVM_SET_VCPU_EVENTS ioctl) the syndrome value reported to the guest when it 8472 takes a virtual SError interrupt exception. 6289 takes a virtual SError interrupt exception. 8473 If KVM advertises this capability, userspace 6290 If KVM advertises this capability, userspace can only specify the ISS field for 8474 the ESR syndrome. Other parts of the ESR, suc 6291 the ESR syndrome. Other parts of the ESR, such as the EC are generated by the 8475 CPU when the exception is taken. If this virt 6292 CPU when the exception is taken. If this virtual SError is taken to EL1 using 8476 AArch64, this value will be reported in the I 6293 AArch64, this value will be reported in the ISS field of ESR_ELx. 8477 6294 8478 See KVM_CAP_VCPU_EVENTS for more details. 6295 See KVM_CAP_VCPU_EVENTS for more details. 8479 6296 8480 8.20 KVM_CAP_HYPERV_SEND_IPI 6297 8.20 KVM_CAP_HYPERV_SEND_IPI 8481 ---------------------------- 6298 ---------------------------- 8482 6299 8483 :Architectures: x86 6300 :Architectures: x86 8484 6301 8485 This capability indicates that KVM supports p 6302 This capability indicates that KVM supports paravirtualized Hyper-V IPI send 8486 hypercalls: 6303 hypercalls: 8487 HvCallSendSyntheticClusterIpi, HvCallSendSynt 6304 HvCallSendSyntheticClusterIpi, HvCallSendSyntheticClusterIpiEx. 8488 6305 8489 8.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH 6306 8.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH 8490 ----------------------------------- 6307 ----------------------------------- 8491 6308 8492 :Architectures: x86 6309 :Architectures: x86 8493 6310 8494 This capability indicates that KVM running on 6311 This capability indicates that KVM running on top of Hyper-V hypervisor 8495 enables Direct TLB flush for its guests meani 6312 enables Direct TLB flush for its guests meaning that TLB flush 8496 hypercalls are handled by Level 0 hypervisor 6313 hypercalls are handled by Level 0 hypervisor (Hyper-V) bypassing KVM. 8497 Due to the different ABI for hypercall parame 6314 Due to the different ABI for hypercall parameters between Hyper-V and 8498 KVM, enabling this capability effectively dis 6315 KVM, enabling this capability effectively disables all hypercall 8499 handling by KVM (as some KVM hypercall may be 6316 handling by KVM (as some KVM hypercall may be mistakenly treated as TLB 8500 flush hypercalls by Hyper-V) so userspace sho 6317 flush hypercalls by Hyper-V) so userspace should disable KVM identification 8501 in CPUID and only exposes Hyper-V identificat 6318 in CPUID and only exposes Hyper-V identification. In this case, guest 8502 thinks it's running on Hyper-V and only use H 6319 thinks it's running on Hyper-V and only use Hyper-V hypercalls. 8503 6320 8504 8.22 KVM_CAP_S390_VCPU_RESETS 6321 8.22 KVM_CAP_S390_VCPU_RESETS 8505 ----------------------------- 6322 ----------------------------- 8506 6323 8507 :Architectures: s390 6324 :Architectures: s390 8508 6325 8509 This capability indicates that the KVM_S390_N 6326 This capability indicates that the KVM_S390_NORMAL_RESET and 8510 KVM_S390_CLEAR_RESET ioctls are available. 6327 KVM_S390_CLEAR_RESET ioctls are available. 8511 6328 8512 8.23 KVM_CAP_S390_PROTECTED 6329 8.23 KVM_CAP_S390_PROTECTED 8513 --------------------------- 6330 --------------------------- 8514 6331 8515 :Architectures: s390 6332 :Architectures: s390 8516 6333 8517 This capability indicates that the Ultravisor 6334 This capability indicates that the Ultravisor has been initialized and 8518 KVM can therefore start protected VMs. 6335 KVM can therefore start protected VMs. 8519 This capability governs the KVM_S390_PV_COMMA 6336 This capability governs the KVM_S390_PV_COMMAND ioctl and the 8520 KVM_MP_STATE_LOAD MP_STATE. KVM_SET_MP_STATE 6337 KVM_MP_STATE_LOAD MP_STATE. KVM_SET_MP_STATE can fail for protected 8521 guests when the state change is invalid. 6338 guests when the state change is invalid. 8522 6339 8523 8.24 KVM_CAP_STEAL_TIME 6340 8.24 KVM_CAP_STEAL_TIME 8524 ----------------------- 6341 ----------------------- 8525 6342 8526 :Architectures: arm64, x86 6343 :Architectures: arm64, x86 8527 6344 8528 This capability indicates that KVM supports s 6345 This capability indicates that KVM supports steal time accounting. 8529 When steal time accounting is supported it ma 6346 When steal time accounting is supported it may be enabled with 8530 architecture-specific interfaces. This capab 6347 architecture-specific interfaces. This capability and the architecture- 8531 specific interfaces must be consistent, i.e. 6348 specific interfaces must be consistent, i.e. if one says the feature 8532 is supported, than the other should as well a 6349 is supported, than the other should as well and vice versa. For arm64 8533 see Documentation/virt/kvm/devices/vcpu.rst " 6350 see Documentation/virt/kvm/devices/vcpu.rst "KVM_ARM_VCPU_PVTIME_CTRL". 8534 For x86 see Documentation/virt/kvm/x86/msr.rs !! 6351 For x86 see Documentation/virt/kvm/msr.rst "MSR_KVM_STEAL_TIME". 8535 6352 8536 8.25 KVM_CAP_S390_DIAG318 6353 8.25 KVM_CAP_S390_DIAG318 8537 ------------------------- 6354 ------------------------- 8538 6355 8539 :Architectures: s390 6356 :Architectures: s390 8540 6357 8541 This capability enables a guest to set inform 6358 This capability enables a guest to set information about its control program 8542 (i.e. guest kernel type and version). The inf 6359 (i.e. guest kernel type and version). The information is helpful during 8543 system/firmware service events, providing add 6360 system/firmware service events, providing additional data about the guest 8544 environments running on the machine. 6361 environments running on the machine. 8545 6362 8546 The information is associated with the DIAGNO 6363 The information is associated with the DIAGNOSE 0x318 instruction, which sets 8547 an 8-byte value consisting of a one-byte Cont 6364 an 8-byte value consisting of a one-byte Control Program Name Code (CPNC) and 8548 a 7-byte Control Program Version Code (CPVC). 6365 a 7-byte Control Program Version Code (CPVC). The CPNC determines what 8549 environment the control program is running in 6366 environment the control program is running in (e.g. Linux, z/VM...), and the 8550 CPVC is used for information specific to OS ( 6367 CPVC is used for information specific to OS (e.g. Linux version, Linux 8551 distribution...) 6368 distribution...) 8552 6369 8553 If this capability is available, then the CPN 6370 If this capability is available, then the CPNC and CPVC can be synchronized 8554 between KVM and userspace via the sync regs m 6371 between KVM and userspace via the sync regs mechanism (KVM_SYNC_DIAG318). 8555 6372 8556 8.26 KVM_CAP_X86_USER_SPACE_MSR 6373 8.26 KVM_CAP_X86_USER_SPACE_MSR 8557 ------------------------------- 6374 ------------------------------- 8558 6375 8559 :Architectures: x86 6376 :Architectures: x86 8560 6377 8561 This capability indicates that KVM supports d 6378 This capability indicates that KVM supports deflection of MSR reads and 8562 writes to user space. It can be enabled on a 6379 writes to user space. It can be enabled on a VM level. If enabled, MSR 8563 accesses that would usually trigger a #GP by 6380 accesses that would usually trigger a #GP by KVM into the guest will 8564 instead get bounced to user space through the 6381 instead get bounced to user space through the KVM_EXIT_X86_RDMSR and 8565 KVM_EXIT_X86_WRMSR exit notifications. 6382 KVM_EXIT_X86_WRMSR exit notifications. 8566 6383 8567 8.27 KVM_CAP_X86_MSR_FILTER !! 6384 8.27 KVM_X86_SET_MSR_FILTER 8568 --------------------------- 6385 --------------------------- 8569 6386 8570 :Architectures: x86 6387 :Architectures: x86 8571 6388 8572 This capability indicates that KVM supports t 6389 This capability indicates that KVM supports that accesses to user defined MSRs 8573 may be rejected. With this capability exposed 6390 may be rejected. With this capability exposed, KVM exports new VM ioctl 8574 KVM_X86_SET_MSR_FILTER which user space can c 6391 KVM_X86_SET_MSR_FILTER which user space can call to specify bitmaps of MSR 8575 ranges that KVM should deny access to. !! 6392 ranges that KVM should reject access to. 8576 6393 8577 In combination with KVM_CAP_X86_USER_SPACE_MS 6394 In combination with KVM_CAP_X86_USER_SPACE_MSR, this allows user space to 8578 trap and emulate MSRs that are outside of the 6395 trap and emulate MSRs that are outside of the scope of KVM as well as 8579 limit the attack surface on KVM's MSR emulati 6396 limit the attack surface on KVM's MSR emulation code. 8580 6397 8581 8.28 KVM_CAP_ENFORCE_PV_FEATURE_CPUID !! 6398 8.28 KVM_CAP_ENFORCE_PV_CPUID 8582 ------------------------------------- !! 6399 ----------------------------- 8583 6400 8584 Architectures: x86 6401 Architectures: x86 8585 6402 8586 When enabled, KVM will disable paravirtual fe 6403 When enabled, KVM will disable paravirtual features provided to the 8587 guest according to the bits in the KVM_CPUID_ 6404 guest according to the bits in the KVM_CPUID_FEATURES CPUID leaf 8588 (0x40000001). Otherwise, a guest may use the 6405 (0x40000001). Otherwise, a guest may use the paravirtual features 8589 regardless of what has actually been exposed 6406 regardless of what has actually been exposed through the CPUID leaf. 8590 << 8591 8.29 KVM_CAP_DIRTY_LOG_RING/KVM_CAP_DIRTY_LOG << 8592 --------------------------------------------- << 8593 << 8594 :Architectures: x86, arm64 << 8595 :Parameters: args[0] - size of the dirty log << 8596 << 8597 KVM is capable of tracking dirty memory using << 8598 mmapped into userspace; there is one dirty ri << 8599 << 8600 The dirty ring is available to userspace as a << 8601 ``struct kvm_dirty_gfn``. Each dirty entry i << 8602 << 8603 struct kvm_dirty_gfn { << 8604 __u32 flags; << 8605 __u32 slot; /* as_id | slot_id */ << 8606 __u64 offset; << 8607 }; << 8608 << 8609 The following values are defined for the flag << 8610 current state of the entry:: << 8611 << 8612 #define KVM_DIRTY_GFN_F_DIRTY BIT << 8613 #define KVM_DIRTY_GFN_F_RESET BIT << 8614 #define KVM_DIRTY_GFN_F_MASK 0x3 << 8615 << 8616 Userspace should call KVM_ENABLE_CAP ioctl ri << 8617 ioctl to enable this capability for the new g << 8618 the rings. Enabling the capability is only a << 8619 vCPU, and the size of the ring must be a powe << 8620 ring buffer, the less likely the ring is full << 8621 exit to userspace. The optimal size depends o << 8622 recommended that it be at least 64 KiB (4096 << 8623 << 8624 Just like for dirty page bitmaps, the buffer << 8625 all user memory regions for which the KVM_MEM << 8626 set in KVM_SET_USER_MEMORY_REGION. Once a me << 8627 with the flag set, userspace can start harves << 8628 ring buffer. << 8629 << 8630 An entry in the ring buffer can be unused (fl << 8631 dirty (flag bits ``01``) or harvested (flag b << 8632 state machine for the entry is as follows:: << 8633 << 8634 dirtied harvested re << 8635 00 -----------> 01 -------------> 1X --- << 8636 ^ << 8637 | << 8638 +-------------------------------------- << 8639 << 8640 To harvest the dirty pages, userspace accesse << 8641 to read the dirty GFNs. If the flags has the << 8642 the RESET bit must be cleared), then it means << 8643 The userspace should harvest this GFN and mar << 8644 ``01b`` to ``1Xb`` (bit 0 will be ignored by << 8645 to show that this GFN is harvested and waitin << 8646 on to the next GFN. The userspace should con << 8647 flags of a GFN have the DIRTY bit cleared, me << 8648 all the dirty GFNs that were available. << 8649 << 8650 Note that on weakly ordered architectures, us << 8651 ring buffer (and more specifically the 'flags << 8652 using load-acquire/store-release accessors wh << 8653 other memory barrier that will ensure this or << 8654 << 8655 It's not necessary for userspace to harvest t << 8656 However it must collect the dirty GFNs in seq << 8657 program cannot skip one dirty GFN to collect << 8658 << 8659 After processing one or more entries in the r << 8660 calls the VM ioctl KVM_RESET_DIRTY_RINGS to n << 8661 it, so that the kernel will reprotect those c << 8662 Therefore, the ioctl must be called *before* << 8663 the dirty pages. << 8664 << 8665 The dirty ring can get full. When it happens << 8666 vcpu will return with exit reason KVM_EXIT_DI << 8667 << 8668 The dirty ring interface has a major differen << 8669 KVM_GET_DIRTY_LOG interface in that, when rea << 8670 userspace, it's still possible that the kerne << 8671 processor's dirty page buffers into the kerne << 8672 flushing is done by the KVM_GET_DIRTY_LOG ioc << 8673 needs to kick the vcpu out of KVM_RUN using a << 8674 vmexit ensures that all dirty GFNs are flushe << 8675 << 8676 NOTE: KVM_CAP_DIRTY_LOG_RING_ACQ_REL is the o << 8677 should be exposed by weakly ordered architect << 8678 the additional memory ordering requirements i << 8679 reading the state of an entry and mutating it << 8680 Architecture with TSO-like ordering (such as << 8681 expose both KVM_CAP_DIRTY_LOG_RING and KVM_CA << 8682 to userspace. << 8683 << 8684 After enabling the dirty rings, the userspace << 8685 capability of KVM_CAP_DIRTY_LOG_RING_WITH_BIT << 8686 ring structures can be backed by per-slot bit << 8687 advertised, it means the architecture can dir << 8688 vcpu/ring context, so that some of the dirty << 8689 maintained in the bitmap structure. KVM_CAP_D << 8690 can't be enabled if the capability of KVM_CAP << 8691 hasn't been enabled, or any memslot has been << 8692 << 8693 Note that the bitmap here is only a backup of << 8694 use of the ring and bitmap combination is onl << 8695 only a very small amount of memory that is di << 8696 context. Otherwise, the stand-alone per-slot << 8697 be considered. << 8698 << 8699 To collect dirty bits in the backup bitmap, u << 8700 KVM_GET_DIRTY_LOG ioctl. KVM_CLEAR_DIRTY_LOG << 8701 the generation of the dirty bits is done in a << 8702 the dirty bitmap should be the very last thin << 8703 considering the state as complete. VMM needs << 8704 state is final and avoid missing dirty pages << 8705 after the bitmap collection. << 8706 << 8707 NOTE: Multiple examples of using the backup b << 8708 tables through command KVM_DEV_ARM_{VGIC_GRP_ << 8709 KVM device "kvm-arm-vgic-its". (2) restore vg << 8710 command KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_RESTO << 8711 "kvm-arm-vgic-its". VGICv3 LPI pending status << 8712 vgic3 pending table through KVM_DEV_ARM_VGIC_ << 8713 command on KVM device "kvm-arm-vgic-v3". << 8714 << 8715 8.30 KVM_CAP_XEN_HVM << 8716 -------------------- << 8717 << 8718 :Architectures: x86 << 8719 << 8720 This capability indicates the features that X << 8721 PVHVM guests. Valid flags are:: << 8722 << 8723 #define KVM_XEN_HVM_CONFIG_HYPERCALL_MSR << 8724 #define KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL << 8725 #define KVM_XEN_HVM_CONFIG_SHARED_INFO << 8726 #define KVM_XEN_HVM_CONFIG_RUNSTATE << 8727 #define KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL << 8728 #define KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 8729 #define KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_ << 8730 #define KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNST << 8731 << 8732 The KVM_XEN_HVM_CONFIG_HYPERCALL_MSR flag ind << 8733 ioctl is available, for the guest to set its << 8734 << 8735 If KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL is also << 8736 provided in the flags to KVM_XEN_HVM_CONFIG, << 8737 contents, to request that KVM generate hyperc << 8738 and also enable interception of guest hyperca << 8739 << 8740 The KVM_XEN_HVM_CONFIG_SHARED_INFO flag indic << 8741 KVM_XEN_HVM_SET_ATTR, KVM_XEN_HVM_GET_ATTR, K << 8742 KVM_XEN_VCPU_GET_ATTR ioctls, as well as the << 8743 for event channel upcalls when the evtchn_upc << 8744 vcpu_info is set. << 8745 << 8746 The KVM_XEN_HVM_CONFIG_RUNSTATE flag indicate << 8747 features KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR << 8748 supported by the KVM_XEN_VCPU_SET_ATTR/KVM_XE << 8749 << 8750 The KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL flag ind << 8751 of the type KVM_IRQ_ROUTING_XEN_EVTCHN are su << 8752 field set to indicate 2 level event channel d << 8753 << 8754 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indic << 8755 injecting event channel events directly into << 8756 KVM_XEN_HVM_EVTCHN_SEND ioctl. It also indica << 8757 KVM_XEN_ATTR_TYPE_EVTCHN/XEN_VERSION HVM attr << 8758 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID/TIMER/UPCALL_V << 8759 related to event channel delivery, timers, an << 8760 interception. << 8761 << 8762 The KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG f << 8763 the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG at << 8764 and KVM_XEN_GET_ATTR ioctls. This controls wh << 8765 XEN_RUNSTATE_UPDATE flag in guest memory mapp << 8766 updates of the runstate information. Note tha << 8767 the RUNSTATE feature above, but not the RUNST << 8768 always set the XEN_RUNSTATE_UPDATE flag when << 8769 which is perhaps counterintuitive. When this << 8770 behave more correctly, not using the XEN_RUNS << 8771 specifically enabled (by the guest making the << 8772 to enable the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDA << 8773 << 8774 The KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE f << 8775 clearing the PVCLOCK_TSC_STABLE_BIT flag in X << 8776 done when the KVM_CAP_XEN_HVM ioctl sets the << 8777 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE flag. << 8778 << 8779 8.31 KVM_CAP_PPC_MULTITCE << 8780 ------------------------- << 8781 << 8782 :Capability: KVM_CAP_PPC_MULTITCE << 8783 :Architectures: ppc << 8784 :Type: vm << 8785 << 8786 This capability means the kernel is capable o << 8787 H_PUT_TCE_INDIRECT and H_STUFF_TCE without pa << 8788 space. This significantly accelerates DMA ope << 8789 User space should expect that its handlers fo << 8790 are not going to be called if user space prev << 8791 in KVM (via KVM_CREATE_SPAPR_TCE or similar c << 8792 << 8793 In order to enable H_PUT_TCE_INDIRECT and H_S << 8794 user space might have to advertise it for the << 8795 IBM pSeries (sPAPR) guest starts using them i << 8796 present in the "ibm,hypertas-functions" devic << 8797 << 8798 The hypercalls mentioned above may or may not << 8799 in the kernel based fast path. If they can no << 8800 they will get passed on to user space. So use << 8801 an implementation for these despite the in ke << 8802 << 8803 This capability is always enabled. << 8804 << 8805 8.32 KVM_CAP_PTP_KVM << 8806 -------------------- << 8807 << 8808 :Architectures: arm64 << 8809 << 8810 This capability indicates that the KVM virtua << 8811 supported in the host. A VMM can check whethe << 8812 available to the guest on migration. << 8813 << 8814 8.33 KVM_CAP_HYPERV_ENFORCE_CPUID << 8815 --------------------------------- << 8816 << 8817 Architectures: x86 << 8818 << 8819 When enabled, KVM will disable emulated Hyper << 8820 guest according to the bits Hyper-V CPUID fea << 8821 currently implemented Hyper-V features are pr << 8822 Hyper-V identification is set in the HYPERV_C << 8823 leaf. << 8824 << 8825 8.34 KVM_CAP_EXIT_HYPERCALL << 8826 --------------------------- << 8827 << 8828 :Capability: KVM_CAP_EXIT_HYPERCALL << 8829 :Architectures: x86 << 8830 :Type: vm << 8831 << 8832 This capability, if enabled, will cause KVM t << 8833 with KVM_EXIT_HYPERCALL exit reason to proces << 8834 << 8835 Calling KVM_CHECK_EXTENSION for this capabili << 8836 of hypercalls that can be configured to exit << 8837 Right now, the only such hypercall is KVM_HC_ << 8838 << 8839 The argument to KVM_ENABLE_CAP is also a bitm << 8840 of the result of KVM_CHECK_EXTENSION. KVM wi << 8841 the hypercalls whose corresponding bit is in << 8842 ENOSYS for the others. << 8843 << 8844 8.35 KVM_CAP_PMU_CAPABILITY << 8845 --------------------------- << 8846 << 8847 :Capability: KVM_CAP_PMU_CAPABILITY << 8848 :Architectures: x86 << 8849 :Type: vm << 8850 :Parameters: arg[0] is bitmask of PMU virtual << 8851 :Returns: 0 on success, -EINVAL when arg[0] c << 8852 << 8853 This capability alters PMU virtualization in << 8854 << 8855 Calling KVM_CHECK_EXTENSION for this capabili << 8856 PMU virtualization capabilities that can be a << 8857 << 8858 The argument to KVM_ENABLE_CAP is also a bitm << 8859 PMU virtualization capabilities to be applied << 8860 only be invoked on a VM prior to the creation << 8861 << 8862 At this time, KVM_PMU_CAP_DISABLE is the only << 8863 this capability will disable PMU virtualizati << 8864 should adjust CPUID leaf 0xA to reflect that << 8865 << 8866 8.36 KVM_CAP_ARM_SYSTEM_SUSPEND << 8867 ------------------------------- << 8868 << 8869 :Capability: KVM_CAP_ARM_SYSTEM_SUSPEND << 8870 :Architectures: arm64 << 8871 :Type: vm << 8872 << 8873 When enabled, KVM will exit to userspace with << 8874 type KVM_SYSTEM_EVENT_SUSPEND to process the << 8875 << 8876 8.37 KVM_CAP_S390_PROTECTED_DUMP << 8877 -------------------------------- << 8878 << 8879 :Capability: KVM_CAP_S390_PROTECTED_DUMP << 8880 :Architectures: s390 << 8881 :Type: vm << 8882 << 8883 This capability indicates that KVM and the Ul << 8884 PV guests. The `KVM_PV_DUMP` command is avail << 8885 `KVM_S390_PV_COMMAND` ioctl and the `KVM_PV_I << 8886 dump related UV data. Also the vcpu ioctl `KV << 8887 available and supports the `KVM_PV_DUMP_CPU` << 8888 << 8889 8.38 KVM_CAP_VM_DISABLE_NX_HUGE_PAGES << 8890 ------------------------------------- << 8891 << 8892 :Capability: KVM_CAP_VM_DISABLE_NX_HUGE_PAGES << 8893 :Architectures: x86 << 8894 :Type: vm << 8895 :Parameters: arg[0] must be 0. << 8896 :Returns: 0 on success, -EPERM if the userspa << 8897 have CAP_SYS_BOOT, -EINVAL if args[ << 8898 created. << 8899 << 8900 This capability disables the NX huge pages mi << 8901 << 8902 The capability has no effect if the nx_huge_p << 8903 << 8904 This capability may only be set before any vC << 8905 << 8906 8.39 KVM_CAP_S390_CPU_TOPOLOGY << 8907 ------------------------------ << 8908 << 8909 :Capability: KVM_CAP_S390_CPU_TOPOLOGY << 8910 :Architectures: s390 << 8911 :Type: vm << 8912 << 8913 This capability indicates that KVM will provi << 8914 facility which consist of the interpretation << 8915 the function code 2 along with interception a << 8916 PTF instruction with function codes 0 or 1 an << 8917 instruction to the userland hypervisor. << 8918 << 8919 The stfle facility 11, CPU Topology facility, << 8920 to the guest without this capability. << 8921 << 8922 When this capability is present, KVM provides << 8923 on vm fd, KVM_S390_VM_CPU_TOPOLOGY. << 8924 This new attribute allows to get, set or clea << 8925 Topology Report (MTCR) bit of the SCA through << 8926 structure. << 8927 << 8928 When getting the Modified Change Topology Rep << 8929 must point to a byte where the value will be << 8930 << 8931 8.40 KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE << 8932 --------------------------------------- << 8933 << 8934 :Capability: KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SI << 8935 :Architectures: arm64 << 8936 :Type: vm << 8937 :Parameters: arg[0] is the new split chunk si << 8938 :Returns: 0 on success, -EINVAL if any memslo << 8939 << 8940 This capability sets the chunk size used in E << 8941 << 8942 Eager Page Splitting improves the performance << 8943 in live migrations) when guest memory is back << 8944 avoids splitting huge-pages (into PAGE_SIZE p << 8945 it eagerly when enabling dirty logging (with << 8946 KVM_MEM_LOG_DIRTY_PAGES flag for a memory reg << 8947 KVM_CLEAR_DIRTY_LOG. << 8948 << 8949 The chunk size specifies how many pages to br << 8950 single allocation for each chunk. Bigger the << 8951 need to be allocated ahead of time. << 8952 << 8953 The chunk size needs to be a valid block size << 8954 block sizes is exposed in KVM_CAP_ARM_SUPPORT << 8955 64-bit bitmap (each bit describing a block si << 8956 0, to disable the eager page splitting. << 8957 << 8958 8.41 KVM_CAP_VM_TYPES << 8959 --------------------- << 8960 << 8961 :Capability: KVM_CAP_MEMORY_ATTRIBUTES << 8962 :Architectures: x86 << 8963 :Type: system ioctl << 8964 << 8965 This capability returns a bitmap of support V << 8966 means the VM type with value @n is supported. << 8967 << 8968 #define KVM_X86_DEFAULT_VM 0 << 8969 #define KVM_X86_SW_PROTECTED_VM 1 << 8970 #define KVM_X86_SEV_VM 2 << 8971 #define KVM_X86_SEV_ES_VM 3 << 8972 << 8973 Note, KVM_X86_SW_PROTECTED_VM is currently on << 8974 Do not use KVM_X86_SW_PROTECTED_VM for "real" << 8975 production. The behavior and effective ABI f << 8976 unstable. << 8977 6407 8978 9. Known KVM API problems 6408 9. Known KVM API problems 8979 ========================= 6409 ========================= 8980 6410 8981 In some cases, KVM's API has some inconsisten 6411 In some cases, KVM's API has some inconsistencies or common pitfalls 8982 that userspace need to be aware of. This sec 6412 that userspace need to be aware of. This section details some of 8983 these issues. 6413 these issues. 8984 6414 8985 Most of them are architecture specific, so th 6415 Most of them are architecture specific, so the section is split by 8986 architecture. 6416 architecture. 8987 6417 8988 9.1. x86 6418 9.1. x86 8989 -------- 6419 -------- 8990 6420 8991 ``KVM_GET_SUPPORTED_CPUID`` issues 6421 ``KVM_GET_SUPPORTED_CPUID`` issues 8992 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6422 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8993 6423 8994 In general, ``KVM_GET_SUPPORTED_CPUID`` is de 6424 In general, ``KVM_GET_SUPPORTED_CPUID`` is designed so that it is possible 8995 to take its result and pass it directly to `` 6425 to take its result and pass it directly to ``KVM_SET_CPUID2``. This section 8996 documents some cases in which that requires s 6426 documents some cases in which that requires some care. 8997 6427 8998 Local APIC features 6428 Local APIC features 8999 ~~~~~~~~~~~~~~~~~~~ 6429 ~~~~~~~~~~~~~~~~~~~ 9000 6430 9001 CPU[EAX=1]:ECX[21] (X2APIC) is reported by `` 6431 CPU[EAX=1]:ECX[21] (X2APIC) is reported by ``KVM_GET_SUPPORTED_CPUID``, 9002 but it can only be enabled if ``KVM_CREATE_IR 6432 but it can only be enabled if ``KVM_CREATE_IRQCHIP`` or 9003 ``KVM_ENABLE_CAP(KVM_CAP_IRQCHIP_SPLIT)`` are 6433 ``KVM_ENABLE_CAP(KVM_CAP_IRQCHIP_SPLIT)`` are used to enable in-kernel emulation of 9004 the local APIC. 6434 the local APIC. 9005 6435 9006 The same is true for the ``KVM_FEATURE_PV_UNH 6436 The same is true for the ``KVM_FEATURE_PV_UNHALT`` paravirtualized feature. 9007 6437 9008 CPU[EAX=1]:ECX[24] (TSC_DEADLINE) is not repo 6438 CPU[EAX=1]:ECX[24] (TSC_DEADLINE) is not reported by ``KVM_GET_SUPPORTED_CPUID``. 9009 It can be enabled if ``KVM_CAP_TSC_DEADLINE_T 6439 It can be enabled if ``KVM_CAP_TSC_DEADLINE_TIMER`` is present and the kernel 9010 has enabled in-kernel emulation of the local 6440 has enabled in-kernel emulation of the local APIC. 9011 6441 9012 CPU topology 6442 CPU topology 9013 ~~~~~~~~~~~~ 6443 ~~~~~~~~~~~~ 9014 6444 9015 Several CPUID values include topology informa 6445 Several CPUID values include topology information for the host CPU: 9016 0x0b and 0x1f for Intel systems, 0x8000001e f 6446 0x0b and 0x1f for Intel systems, 0x8000001e for AMD systems. Different 9017 versions of KVM return different values for t 6447 versions of KVM return different values for this information and userspace 9018 should not rely on it. Currently they return 6448 should not rely on it. Currently they return all zeroes. 9019 6449 9020 If userspace wishes to set up a guest topolog 6450 If userspace wishes to set up a guest topology, it should be careful that 9021 the values of these three leaves differ for e 6451 the values of these three leaves differ for each CPU. In particular, 9022 the APIC ID is found in EDX for all subleaves 6452 the APIC ID is found in EDX for all subleaves of 0x0b and 0x1f, and in EAX 9023 for 0x8000001e; the latter also encodes the c 6453 for 0x8000001e; the latter also encodes the core id and node id in bits 9024 7:0 of EBX and ECX respectively. 6454 7:0 of EBX and ECX respectively. 9025 6455 9026 Obsolete ioctls and capabilities 6456 Obsolete ioctls and capabilities 9027 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6457 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9028 6458 9029 KVM_CAP_DISABLE_QUIRKS does not let userspace 6459 KVM_CAP_DISABLE_QUIRKS does not let userspace know which quirks are actually 9030 available. Use ``KVM_CHECK_EXTENSION(KVM_CAP 6460 available. Use ``KVM_CHECK_EXTENSION(KVM_CAP_DISABLE_QUIRKS2)`` instead if 9031 available. 6461 available. 9032 6462 9033 Ordering of KVM_GET_*/KVM_SET_* ioctls 6463 Ordering of KVM_GET_*/KVM_SET_* ioctls 9034 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6464 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9035 6465 9036 TBD 6466 TBD
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.