1 .. SPDX-License-Identifier: GPL-2.0 2 3 ============================================== 4 The Definitive KVM (Kernel-based Virtual Machi 5 ============================================== 6 7 1. General description 8 ====================== 9 10 The kvm API is a set of ioctls that are issued 11 of a virtual machine. The ioctls belong to th 12 13 - System ioctls: These query and set global a 14 whole kvm subsystem. In addition a system 15 virtual machines. 16 17 - VM ioctls: These query and set attributes t 18 machine, for example memory layout. In add 19 create virtual cpus (vcpus) and devices. 20 21 VM ioctls must be issued from the same proc 22 used to create the VM. 23 24 - vcpu ioctls: These query and set attributes 25 of a single virtual cpu. 26 27 vcpu ioctls should be issued from the same 28 the vcpu, except for asynchronous vcpu ioct 29 the documentation. Otherwise, the first io 30 could see a performance impact. 31 32 - device ioctls: These query and set attribut 33 of a single device. 34 35 device ioctls must be issued from the same 36 was used to create the VM. 37 38 2. File descriptors 39 =================== 40 41 The kvm API is centered around file descriptor 42 open("/dev/kvm") obtains a handle to the kvm s 43 can be used to issue system ioctls. A KVM_CRE 44 handle will create a VM file descriptor which 45 ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVIC 46 create a virtual cpu or device and return a fi 47 the new resource. Finally, ioctls on a vcpu o 48 to control the vcpu or device. For vcpus, thi 49 task of actually running guest code. 50 51 In general file descriptors can be migrated am 52 of fork() and the SCM_RIGHTS facility of unix 53 kinds of tricks are explicitly not supported b 54 not cause harm to the host, their actual behav 55 the API. See "General description" for detail 56 model that is supported by KVM. 57 58 It is important to note that although VM ioctl 59 the process that created the VM, a VM's lifecy 60 file descriptor, not its creator (process). I 61 its resources, *including the associated addre 62 until the last reference to the VM's file desc 63 For example, if fork() is issued after ioctl(K 64 not be freed until both the parent (original) 65 put their references to the VM's file descript 66 67 Because a VM's resources are not freed until t 68 file descriptor is released, creating addition 69 via fork(), dup(), etc... without careful cons 70 discouraged and may have unwanted side effects 71 by and on behalf of the VM's process may not b 72 the VM is shut down. 73 74 75 3. Extensions 76 ============= 77 78 As of Linux 2.6.22, the KVM ABI has been stabi 79 incompatible change are allowed. However, the 80 facility that allows backward-compatible exten 81 queried and used. 82 83 The extension mechanism is not based on the Li 84 Instead, kvm defines extension identifiers and 85 whether a particular extension identifier is a 86 set of ioctls is available for application use 87 88 89 4. API description 90 ================== 91 92 This section describes ioctls that can be used 93 For each ioctl, the following information is p 94 description: 95 96 Capability: 97 which KVM extension provides this ioctl. 98 which means that is will be provided by 99 API version 12 (see section 4.1), a KVM_ 100 means availability needs to be checked w 101 (see section 4.4), or 'none' which means 102 support this ioctl, there's no capabilit 103 availability: for kernels that don't sup 104 the ioctl returns -ENOTTY. 105 106 Architectures: 107 which instruction set architectures prov 108 x86 includes both i386 and x86_64. 109 110 Type: 111 system, vm, or vcpu. 112 113 Parameters: 114 what parameters are accepted by the ioct 115 116 Returns: 117 the return value. General error numbers 118 are not detailed, but errors with specif 119 120 121 4.1 KVM_GET_API_VERSION 122 ----------------------- 123 124 :Capability: basic 125 :Architectures: all 126 :Type: system ioctl 127 :Parameters: none 128 :Returns: the constant KVM_API_VERSION (=12) 129 130 This identifies the API version as the stable 131 expected that this number will change. Howeve 132 2.6.21 report earlier versions; these are not 133 supported. Applications should refuse to run 134 returns a value other than 12. If this check 135 described as 'basic' will be available. 136 137 138 4.2 KVM_CREATE_VM 139 ----------------- 140 141 :Capability: basic 142 :Architectures: all 143 :Type: system ioctl 144 :Parameters: machine type identifier (KVM_VM_* 145 :Returns: a VM fd that can be used to control 146 147 The new VM has no virtual cpus and no memory. 148 You probably want to use 0 as machine type. 149 150 X86: 151 ^^^^ 152 153 Supported X86 VM types can be queried via KVM_ 154 155 S390: 156 ^^^^^ 157 158 In order to create user controlled virtual mac 159 KVM_CAP_S390_UCONTROL and use the flag KVM_VM_ 160 privileged user (CAP_SYS_ADMIN). 161 162 MIPS: 163 ^^^^^ 164 165 To use hardware assisted virtualization on MIP 166 the default trap & emulate implementation (whi 167 memory layout to fit in user mode), check KVM_ 168 flag KVM_VM_MIPS_VZ. 169 170 ARM64: 171 ^^^^^^ 172 173 On arm64, the physical address size for a VM ( 174 to 40bits by default. The limit can be configu 175 extension KVM_CAP_ARM_VM_IPA_SIZE. When suppor 176 KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the 177 identifier, where IPA_Bits is the maximum widt 178 address used by the VM. The IPA_Bits is encode 179 machine type identifier. 180 181 e.g, to configure a guest to use 48bit physica 182 183 vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_V 184 185 The requested size (IPA_Bits) must be: 186 187 == ======================================== 188 0 Implies default size, 40bits (for backwa 189 N Implies N bits, where N is a positive in 190 32 <= N <= Host_IPA_Limit 191 == ======================================== 192 193 Host_IPA_Limit is the maximum possible value f 194 is dependent on the CPU capability and the ker 195 be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of 196 ioctl() at run-time. 197 198 Creation of the VM will fail if the requested 199 implicit or explicit) is unsupported on the ho 200 201 Please note that configuring the IPA size does 202 exposed by the guest CPUs in ID_AA64MMFR0_EL1[ 203 size of the address translated by the stage2 l 204 host physical address translations). 205 206 207 4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATUR 208 ---------------------------------------------- 209 210 :Capability: basic, KVM_CAP_GET_MSR_FEATURES f 211 :Architectures: x86 212 :Type: system ioctl 213 :Parameters: struct kvm_msr_list (in/out) 214 :Returns: 0 on success; -1 on error 215 216 Errors: 217 218 ====== ================================= 219 EFAULT the msr index list cannot be read 220 E2BIG the msr index list is too big to 221 the user. 222 ====== ================================= 223 224 :: 225 226 struct kvm_msr_list { 227 __u32 nmsrs; /* number of msrs in entr 228 __u32 indices[0]; 229 }; 230 231 The user fills in the size of the indices arra 232 kvm adjusts nmsrs to reflect the actual number 233 indices array with their numbers. 234 235 KVM_GET_MSR_INDEX_LIST returns the guest msrs 236 varies by kvm version and host processor, but 237 238 Note: if kvm indicates supports MCE (KVM_CAP_M 239 not returned in the MSR list, as different vcp 240 of banks, as set via the KVM_X86_SETUP_MCE ioc 241 242 KVM_GET_MSR_FEATURE_INDEX_LIST returns the lis 243 to the KVM_GET_MSRS system ioctl. This lets u 244 and processor features that are exposed via MS 245 This list also varies by kvm version and host 246 otherwise. 247 248 249 4.4 KVM_CHECK_EXTENSION 250 ----------------------- 251 252 :Capability: basic, KVM_CAP_CHECK_EXTENSION_VM 253 :Architectures: all 254 :Type: system ioctl, vm ioctl 255 :Parameters: extension identifier (KVM_CAP_*) 256 :Returns: 0 if unsupported; 1 (or some other p 257 258 The API allows the application to query about 259 kvm API. Userspace passes an extension identi 260 receives an integer that describes the extensi 261 Generally 0 means no and 1 means yes, but some 262 additional information in the integer return v 263 264 Based on their initialization different VMs ma 265 It is thus encouraged to use the vm ioctl to q 266 with KVM_CAP_CHECK_EXTENSION_VM on the vm fd) 267 268 4.5 KVM_GET_VCPU_MMAP_SIZE 269 -------------------------- 270 271 :Capability: basic 272 :Architectures: all 273 :Type: system ioctl 274 :Parameters: none 275 :Returns: size of vcpu mmap area, in bytes 276 277 The KVM_RUN ioctl (cf.) communicates with user 278 memory region. This ioctl returns the size of 279 KVM_RUN documentation for details. 280 281 Besides the size of the KVM_RUN communication 282 the VCPU file descriptor can be mmap-ed, inclu 283 284 - if KVM_CAP_COALESCED_MMIO is available, a pa 285 KVM_COALESCED_MMIO_PAGE_OFFSET * PAGE_SIZE; 286 this page is included in the result of KVM_G 287 KVM_CAP_COALESCED_MMIO is not documented yet 288 289 - if KVM_CAP_DIRTY_LOG_RING is available, a nu 290 KVM_DIRTY_LOG_PAGE_OFFSET * PAGE_SIZE. For 291 KVM_CAP_DIRTY_LOG_RING, see section 8.3. 292 293 294 4.7 KVM_CREATE_VCPU 295 ------------------- 296 297 :Capability: basic 298 :Architectures: all 299 :Type: vm ioctl 300 :Parameters: vcpu id (apic id on x86) 301 :Returns: vcpu fd on success, -1 on error 302 303 This API adds a vcpu to a virtual machine. No 304 The vcpu id is an integer in the range [0, max 305 306 The recommended max_vcpus value can be retriev 307 the KVM_CHECK_EXTENSION ioctl() at run-time. 308 The maximum possible value for max_vcpus can b 309 KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION i 310 311 If the KVM_CAP_NR_VCPUS does not exist, you sh 312 cpus max. 313 If the KVM_CAP_MAX_VCPUS does not exist, you s 314 same as the value returned from KVM_CAP_NR_VCP 315 316 The maximum possible value for max_vcpu_id can 317 KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION 318 319 If the KVM_CAP_MAX_VCPU_ID does not exist, you 320 is the same as the value returned from KVM_CAP 321 322 On powerpc using book3s_hv mode, the vcpus are 323 threads in one or more virtual CPU cores. (Th 324 hardware requires all the hardware threads in 325 same partition.) The KVM_CAP_PPC_SMT capabili 326 of vcpus per virtual core (vcore). The vcore 327 dividing the vcpu id by the number of vcpus pe 328 given vcore will always be in the same physica 329 (though that might be a different physical cor 330 Userspace can control the threading (SMT) mode 331 allocation of vcpu ids. For example, if users 332 single-threaded guest vcpus, it should make al 333 of the number of vcpus per vcore. 334 335 For virtual cpus that have been created with S 336 machines, the resulting vcpu fd can be memory 337 KVM_S390_SIE_PAGE_OFFSET in order to obtain a 338 cpu's hardware control block. 339 340 341 4.8 KVM_GET_DIRTY_LOG (vm ioctl) 342 -------------------------------- 343 344 :Capability: basic 345 :Architectures: all 346 :Type: vm ioctl 347 :Parameters: struct kvm_dirty_log (in/out) 348 :Returns: 0 on success, -1 on error 349 350 :: 351 352 /* for KVM_GET_DIRTY_LOG */ 353 struct kvm_dirty_log { 354 __u32 slot; 355 __u32 padding; 356 union { 357 void __user *dirty_bitmap; /* 358 __u64 padding; 359 }; 360 }; 361 362 Given a memory slot, return a bitmap containin 363 since the last call to this ioctl. Bit 0 is t 364 memory slot. Ensure the entire structure is c 365 issues. 366 367 If KVM_CAP_MULTI_ADDRESS_SPACE is available, b 368 the address space for which you want to return 369 KVM_SET_USER_MEMORY_REGION for details on the 370 371 The bits in the dirty bitmap are cleared befor 372 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. 373 see the description of the capability. 374 375 Note that the Xen shared_info page, if configu 376 to be dirty. KVM will not explicitly mark it s 377 378 379 4.10 KVM_RUN 380 ------------ 381 382 :Capability: basic 383 :Architectures: all 384 :Type: vcpu ioctl 385 :Parameters: none 386 :Returns: 0 on success, -1 on error 387 388 Errors: 389 390 ======= ================================= 391 EINTR an unmasked signal is pending 392 ENOEXEC the vcpu hasn't been initialized 393 instructions from device memory ( 394 ENOSYS data abort outside memslots with 395 KVM_CAP_ARM_NISV_TO_USER not enab 396 EPERM SVE feature set but not finalized 397 ======= ================================= 398 399 This ioctl is used to run a guest virtual cpu. 400 explicit parameters, there is an implicit para 401 obtained by mmap()ing the vcpu fd at offset 0, 402 KVM_GET_VCPU_MMAP_SIZE. The parameter block i 403 kvm_run' (see below). 404 405 406 4.11 KVM_GET_REGS 407 ----------------- 408 409 :Capability: basic 410 :Architectures: all except arm64 411 :Type: vcpu ioctl 412 :Parameters: struct kvm_regs (out) 413 :Returns: 0 on success, -1 on error 414 415 Reads the general purpose registers from the v 416 417 :: 418 419 /* x86 */ 420 struct kvm_regs { 421 /* out (KVM_GET_REGS) / in (KVM_SET_RE 422 __u64 rax, rbx, rcx, rdx; 423 __u64 rsi, rdi, rsp, rbp; 424 __u64 r8, r9, r10, r11; 425 __u64 r12, r13, r14, r15; 426 __u64 rip, rflags; 427 }; 428 429 /* mips */ 430 struct kvm_regs { 431 /* out (KVM_GET_REGS) / in (KVM_SET_RE 432 __u64 gpr[32]; 433 __u64 hi; 434 __u64 lo; 435 __u64 pc; 436 }; 437 438 /* LoongArch */ 439 struct kvm_regs { 440 /* out (KVM_GET_REGS) / in (KVM_SET_RE 441 unsigned long gpr[32]; 442 unsigned long pc; 443 }; 444 445 446 4.12 KVM_SET_REGS 447 ----------------- 448 449 :Capability: basic 450 :Architectures: all except arm64 451 :Type: vcpu ioctl 452 :Parameters: struct kvm_regs (in) 453 :Returns: 0 on success, -1 on error 454 455 Writes the general purpose registers into the 456 457 See KVM_GET_REGS for the data structure. 458 459 460 4.13 KVM_GET_SREGS 461 ------------------ 462 463 :Capability: basic 464 :Architectures: x86, ppc 465 :Type: vcpu ioctl 466 :Parameters: struct kvm_sregs (out) 467 :Returns: 0 on success, -1 on error 468 469 Reads special registers from the vcpu. 470 471 :: 472 473 /* x86 */ 474 struct kvm_sregs { 475 struct kvm_segment cs, ds, es, fs, gs, 476 struct kvm_segment tr, ldt; 477 struct kvm_dtable gdt, idt; 478 __u64 cr0, cr2, cr3, cr4, cr8; 479 __u64 efer; 480 __u64 apic_base; 481 __u64 interrupt_bitmap[(KVM_NR_INTERRU 482 }; 483 484 /* ppc -- see arch/powerpc/include/uapi/asm/ 485 486 interrupt_bitmap is a bitmap of pending extern 487 one bit may be set. This interrupt has been a 488 but not yet injected into the cpu core. 489 490 491 4.14 KVM_SET_SREGS 492 ------------------ 493 494 :Capability: basic 495 :Architectures: x86, ppc 496 :Type: vcpu ioctl 497 :Parameters: struct kvm_sregs (in) 498 :Returns: 0 on success, -1 on error 499 500 Writes special registers into the vcpu. See K 501 data structures. 502 503 504 4.15 KVM_TRANSLATE 505 ------------------ 506 507 :Capability: basic 508 :Architectures: x86 509 :Type: vcpu ioctl 510 :Parameters: struct kvm_translation (in/out) 511 :Returns: 0 on success, -1 on error 512 513 Translates a virtual address according to the 514 translation mode. 515 516 :: 517 518 struct kvm_translation { 519 /* in */ 520 __u64 linear_address; 521 522 /* out */ 523 __u64 physical_address; 524 __u8 valid; 525 __u8 writeable; 526 __u8 usermode; 527 __u8 pad[5]; 528 }; 529 530 531 4.16 KVM_INTERRUPT 532 ------------------ 533 534 :Capability: basic 535 :Architectures: x86, ppc, mips, riscv, loongar 536 :Type: vcpu ioctl 537 :Parameters: struct kvm_interrupt (in) 538 :Returns: 0 on success, negative on failure. 539 540 Queues a hardware interrupt vector to be injec 541 542 :: 543 544 /* for KVM_INTERRUPT */ 545 struct kvm_interrupt { 546 /* in */ 547 __u32 irq; 548 }; 549 550 X86: 551 ^^^^ 552 553 :Returns: 554 555 ========= ============================ 556 0 on success, 557 -EEXIST if an interrupt is already e 558 -EINVAL the irq number is invalid 559 -ENXIO if the PIC is in the kernel 560 -EFAULT if the pointer is invalid 561 ========= ============================ 562 563 Note 'irq' is an interrupt vector, not an inte 564 ioctl is useful if the in-kernel PIC is not us 565 566 PPC: 567 ^^^^ 568 569 Queues an external interrupt to be injected. T 570 with 3 different irq values: 571 572 a) KVM_INTERRUPT_SET 573 574 This injects an edge type external interrup 575 to receive interrupts. When injected, the i 576 577 b) KVM_INTERRUPT_UNSET 578 579 This unsets any pending interrupt. 580 581 Only available with KVM_CAP_PPC_UNSET_IRQ. 582 583 c) KVM_INTERRUPT_SET_LEVEL 584 585 This injects a level type external interrup 586 interrupt stays pending until a specific io 587 is triggered. 588 589 Only available with KVM_CAP_PPC_IRQ_LEVEL. 590 591 Note that any value for 'irq' other than the o 592 and incurs unexpected behavior. 593 594 This is an asynchronous vcpu ioctl and can be 595 596 MIPS: 597 ^^^^^ 598 599 Queues an external interrupt to be injected in 600 interrupt number dequeues the interrupt. 601 602 This is an asynchronous vcpu ioctl and can be 603 604 RISC-V: 605 ^^^^^^^ 606 607 Queues an external interrupt to be injected in 608 is overloaded with 2 different irq values: 609 610 a) KVM_INTERRUPT_SET 611 612 This sets external interrupt for a virtual 613 once it is ready. 614 615 b) KVM_INTERRUPT_UNSET 616 617 This clears pending external interrupt for 618 619 This is an asynchronous vcpu ioctl and can be 620 621 LOONGARCH: 622 ^^^^^^^^^^ 623 624 Queues an external interrupt to be injected in 625 interrupt number dequeues the interrupt. 626 627 This is an asynchronous vcpu ioctl and can be 628 629 630 4.18 KVM_GET_MSRS 631 ----------------- 632 633 :Capability: basic (vcpu), KVM_CAP_GET_MSR_FEA 634 :Architectures: x86 635 :Type: system ioctl, vcpu ioctl 636 :Parameters: struct kvm_msrs (in/out) 637 :Returns: number of msrs successfully returned 638 -1 on error 639 640 When used as a system ioctl: 641 Reads the values of MSR-based features that ar 642 is similar to KVM_GET_SUPPORTED_CPUID, but it 643 The list of msr-based features can be obtained 644 in a system ioctl. 645 646 When used as a vcpu ioctl: 647 Reads model-specific registers from the vcpu. 648 be obtained using KVM_GET_MSR_INDEX_LIST in a 649 650 :: 651 652 struct kvm_msrs { 653 __u32 nmsrs; /* number of msrs in entr 654 __u32 pad; 655 656 struct kvm_msr_entry entries[0]; 657 }; 658 659 struct kvm_msr_entry { 660 __u32 index; 661 __u32 reserved; 662 __u64 data; 663 }; 664 665 Application code should set the 'nmsrs' member 666 size of the entries array) and the 'index' mem 667 kvm will fill in the 'data' member. 668 669 670 4.19 KVM_SET_MSRS 671 ----------------- 672 673 :Capability: basic 674 :Architectures: x86 675 :Type: vcpu ioctl 676 :Parameters: struct kvm_msrs (in) 677 :Returns: number of msrs successfully set (see 678 679 Writes model-specific registers to the vcpu. 680 data structures. 681 682 Application code should set the 'nmsrs' member 683 size of the entries array), and the 'index' an 684 array entry. 685 686 It tries to set the MSRs in array entries[] on 687 fails, e.g., due to setting reserved bits, the 688 by KVM, etc..., it stops processing the MSR li 689 MSRs that have been set successfully. 690 691 692 4.20 KVM_SET_CPUID 693 ------------------ 694 695 :Capability: basic 696 :Architectures: x86 697 :Type: vcpu ioctl 698 :Parameters: struct kvm_cpuid (in) 699 :Returns: 0 on success, -1 on error 700 701 Defines the vcpu responses to the cpuid instru 702 should use the KVM_SET_CPUID2 ioctl if availab 703 704 Caveat emptor: 705 - If this IOCTL fails, KVM gives no guarante 706 configuration (if there is) is not corrupt 707 of the resulting CPUID configuration throu 708 - Using KVM_SET_CPUID{,2} after KVM_RUN, i.e 709 after running the guest, may cause guest i 710 - Using heterogeneous CPUID configurations, 711 may cause guest instability. 712 713 :: 714 715 struct kvm_cpuid_entry { 716 __u32 function; 717 __u32 eax; 718 __u32 ebx; 719 __u32 ecx; 720 __u32 edx; 721 __u32 padding; 722 }; 723 724 /* for KVM_SET_CPUID */ 725 struct kvm_cpuid { 726 __u32 nent; 727 __u32 padding; 728 struct kvm_cpuid_entry entries[0]; 729 }; 730 731 732 4.21 KVM_SET_SIGNAL_MASK 733 ------------------------ 734 735 :Capability: basic 736 :Architectures: all 737 :Type: vcpu ioctl 738 :Parameters: struct kvm_signal_mask (in) 739 :Returns: 0 on success, -1 on error 740 741 Defines which signals are blocked during execu 742 signal mask temporarily overrides the threads 743 unblocked signal received (except SIGKILL and 744 their traditional behaviour) will cause KVM_RU 745 746 Note the signal will only be delivered if not 747 signal mask. 748 749 :: 750 751 /* for KVM_SET_SIGNAL_MASK */ 752 struct kvm_signal_mask { 753 __u32 len; 754 __u8 sigset[0]; 755 }; 756 757 758 4.22 KVM_GET_FPU 759 ---------------- 760 761 :Capability: basic 762 :Architectures: x86, loongarch 763 :Type: vcpu ioctl 764 :Parameters: struct kvm_fpu (out) 765 :Returns: 0 on success, -1 on error 766 767 Reads the floating point state from the vcpu. 768 769 :: 770 771 /* x86: for KVM_GET_FPU and KVM_SET_FPU */ 772 struct kvm_fpu { 773 __u8 fpr[8][16]; 774 __u16 fcw; 775 __u16 fsw; 776 __u8 ftwx; /* in fxsave format */ 777 __u8 pad1; 778 __u16 last_opcode; 779 __u64 last_ip; 780 __u64 last_dp; 781 __u8 xmm[16][16]; 782 __u32 mxcsr; 783 __u32 pad2; 784 }; 785 786 /* LoongArch: for KVM_GET_FPU and KVM_SET_FP 787 struct kvm_fpu { 788 __u32 fcsr; 789 __u64 fcc; 790 struct kvm_fpureg { 791 __u64 val64[4]; 792 }fpr[32]; 793 }; 794 795 796 4.23 KVM_SET_FPU 797 ---------------- 798 799 :Capability: basic 800 :Architectures: x86, loongarch 801 :Type: vcpu ioctl 802 :Parameters: struct kvm_fpu (in) 803 :Returns: 0 on success, -1 on error 804 805 Writes the floating point state to the vcpu. 806 807 :: 808 809 /* x86: for KVM_GET_FPU and KVM_SET_FPU */ 810 struct kvm_fpu { 811 __u8 fpr[8][16]; 812 __u16 fcw; 813 __u16 fsw; 814 __u8 ftwx; /* in fxsave format */ 815 __u8 pad1; 816 __u16 last_opcode; 817 __u64 last_ip; 818 __u64 last_dp; 819 __u8 xmm[16][16]; 820 __u32 mxcsr; 821 __u32 pad2; 822 }; 823 824 /* LoongArch: for KVM_GET_FPU and KVM_SET_FP 825 struct kvm_fpu { 826 __u32 fcsr; 827 __u64 fcc; 828 struct kvm_fpureg { 829 __u64 val64[4]; 830 }fpr[32]; 831 }; 832 833 834 4.24 KVM_CREATE_IRQCHIP 835 ----------------------- 836 837 :Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQ 838 :Architectures: x86, arm64, s390 839 :Type: vm ioctl 840 :Parameters: none 841 :Returns: 0 on success, -1 on error 842 843 Creates an interrupt controller model in the k 844 On x86, creates a virtual ioapic, a virtual PI 845 future vcpus to have a local APIC. IRQ routin 846 PIC and IOAPIC; GSI 16-23 only go to the IOAPI 847 On arm64, a GICv2 is created. Any other GIC ve 848 KVM_CREATE_DEVICE, which also supports creatin 849 KVM_CREATE_DEVICE is preferred over KVM_CREATE 850 On s390, a dummy irq routing table is created. 851 852 Note that on s390 the KVM_CAP_S390_IRQCHIP vm 853 before KVM_CREATE_IRQCHIP can be used. 854 855 856 4.25 KVM_IRQ_LINE 857 ----------------- 858 859 :Capability: KVM_CAP_IRQCHIP 860 :Architectures: x86, arm64 861 :Type: vm ioctl 862 :Parameters: struct kvm_irq_level 863 :Returns: 0 on success, -1 on error 864 865 Sets the level of a GSI input to the interrupt 866 On some architectures it is required that an i 867 been previously created with KVM_CREATE_IRQCHI 868 interrupts require the level to be set to 1 an 869 870 On real hardware, interrupt pins can be active 871 does not matter for the level field of struct 872 means active (asserted), 0 means inactive (dea 873 874 x86 allows the operating system to program the 875 (active-low/active-high) for level-triggered i 876 to consider the polarity. However, due to bit 877 active-low interrupts, the above convention is 878 This is signaled by KVM_CAP_X86_IOAPIC_POLARIT 879 should not present interrupts to the guest as 880 capability is present (or unless it is not usi 881 of course). 882 883 884 arm64 can signal an interrupt either at the CP 885 in-kernel irqchip (GIC), and for in-kernel irq 886 use PPIs designated for specific cpus. The ir 887 like this:: 888 889 bits: | 31 ... 28 | 27 ... 24 | 23 ... 1 890 field: | vcpu2_index | irq_type | vcpu_inde 891 892 The irq_type field has the following values: 893 894 - KVM_ARM_IRQ_TYPE_CPU: 895 out-of-kernel GIC: irq_id 0 is 896 - KVM_ARM_IRQ_TYPE_SPI: 897 in-kernel GIC: SPI, irq_id betw 898 (the vcpu_index field is ignore 899 - KVM_ARM_IRQ_TYPE_PPI: 900 in-kernel GIC: PPI, irq_id betw 901 902 (The irq_id field thus corresponds nicely to t 903 904 In both cases, level is used to assert/deasser 905 906 When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supporte 907 identified as (256 * vcpu2_index + vcpu_index) 908 must be zero. 909 910 Note that on arm64, the KVM_CAP_IRQCHIP capabi 911 injection of interrupts for the in-kernel irqc 912 be used for a userspace interrupt controller. 913 914 :: 915 916 struct kvm_irq_level { 917 union { 918 __u32 irq; /* GSI */ 919 __s32 status; /* not used for 920 }; 921 __u32 level; /* 0 or 1 */ 922 }; 923 924 925 4.26 KVM_GET_IRQCHIP 926 -------------------- 927 928 :Capability: KVM_CAP_IRQCHIP 929 :Architectures: x86 930 :Type: vm ioctl 931 :Parameters: struct kvm_irqchip (in/out) 932 :Returns: 0 on success, -1 on error 933 934 Reads the state of a kernel interrupt controll 935 KVM_CREATE_IRQCHIP into a buffer provided by t 936 937 :: 938 939 struct kvm_irqchip { 940 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 941 __u32 pad; 942 union { 943 char dummy[512]; /* reserving 944 struct kvm_pic_state pic; 945 struct kvm_ioapic_state ioapic 946 } chip; 947 }; 948 949 950 4.27 KVM_SET_IRQCHIP 951 -------------------- 952 953 :Capability: KVM_CAP_IRQCHIP 954 :Architectures: x86 955 :Type: vm ioctl 956 :Parameters: struct kvm_irqchip (in) 957 :Returns: 0 on success, -1 on error 958 959 Sets the state of a kernel interrupt controlle 960 KVM_CREATE_IRQCHIP from a buffer provided by t 961 962 :: 963 964 struct kvm_irqchip { 965 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 966 __u32 pad; 967 union { 968 char dummy[512]; /* reserving 969 struct kvm_pic_state pic; 970 struct kvm_ioapic_state ioapic 971 } chip; 972 }; 973 974 975 4.28 KVM_XEN_HVM_CONFIG 976 ----------------------- 977 978 :Capability: KVM_CAP_XEN_HVM 979 :Architectures: x86 980 :Type: vm ioctl 981 :Parameters: struct kvm_xen_hvm_config (in) 982 :Returns: 0 on success, -1 on error 983 984 Sets the MSR that the Xen HVM guest uses to in 985 page, and provides the starting address and si 986 blobs in userspace. When the guest writes the 987 page of a blob (32- or 64-bit, depending on th 988 memory. 989 990 :: 991 992 struct kvm_xen_hvm_config { 993 __u32 flags; 994 __u32 msr; 995 __u64 blob_addr_32; 996 __u64 blob_addr_64; 997 __u8 blob_size_32; 998 __u8 blob_size_64; 999 __u8 pad2[30]; 1000 }; 1001 1002 If certain flags are returned from the KVM_CA 1003 be set in the flags field of this ioctl: 1004 1005 The KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL flag r 1006 the contents of the hypercall page automatica 1007 intercepted and passed to userspace through K 1008 case, all of the blob size and address fields 1009 1010 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indic 1011 will always use the KVM_XEN_HVM_EVTCHN_SEND i 1012 channel interrupts rather than manipulating t 1013 structures directly. This, in turn, may allow 1014 such as intercepting the SCHEDOP_poll hyperca 1015 spinlock operation for the guest. Userspace m 1016 to deliver events if it was advertised, even 1017 send this indication that it will always do s 1018 1019 No other flags are currently valid in the str 1020 1021 4.29 KVM_GET_CLOCK 1022 ------------------ 1023 1024 :Capability: KVM_CAP_ADJUST_CLOCK 1025 :Architectures: x86 1026 :Type: vm ioctl 1027 :Parameters: struct kvm_clock_data (out) 1028 :Returns: 0 on success, -1 on error 1029 1030 Gets the current timestamp of kvmclock as see 1031 conjunction with KVM_SET_CLOCK, it is used to 1032 such as migration. 1033 1034 When KVM_CAP_ADJUST_CLOCK is passed to KVM_CH 1035 set of bits that KVM can return in struct kvm 1036 1037 The following flags are defined: 1038 1039 KVM_CLOCK_TSC_STABLE 1040 If set, the returned value is the exact kvm 1041 value seen by all VCPUs at the instant when 1042 If clear, the returned value is simply CLOC 1043 offset; the offset can be modified with KVM 1044 to make all VCPUs follow this clock, but th 1045 VCPU could differ, because the host TSC is 1046 1047 KVM_CLOCK_REALTIME 1048 If set, the `realtime` field in the kvm_clo 1049 structure is populated with the value of th 1050 clocksource at the instant when KVM_GET_CLO 1051 the `realtime` field does not contain a val 1052 1053 KVM_CLOCK_HOST_TSC 1054 If set, the `host_tsc` field in the kvm_clo 1055 structure is populated with the value of th 1056 at the instant when KVM_GET_CLOCK was calle 1057 does not contain a value. 1058 1059 :: 1060 1061 struct kvm_clock_data { 1062 __u64 clock; /* kvmclock current val 1063 __u32 flags; 1064 __u32 pad0; 1065 __u64 realtime; 1066 __u64 host_tsc; 1067 __u32 pad[4]; 1068 }; 1069 1070 1071 4.30 KVM_SET_CLOCK 1072 ------------------ 1073 1074 :Capability: KVM_CAP_ADJUST_CLOCK 1075 :Architectures: x86 1076 :Type: vm ioctl 1077 :Parameters: struct kvm_clock_data (in) 1078 :Returns: 0 on success, -1 on error 1079 1080 Sets the current timestamp of kvmclock to the 1081 In conjunction with KVM_GET_CLOCK, it is used 1082 such as migration. 1083 1084 The following flags can be passed: 1085 1086 KVM_CLOCK_REALTIME 1087 If set, KVM will compare the value of the ` 1088 with the value of the host's real time cloc 1089 KVM_SET_CLOCK was called. The difference in 1090 kvmclock value that will be provided to gue 1091 1092 Other flags returned by ``KVM_GET_CLOCK`` are 1093 1094 :: 1095 1096 struct kvm_clock_data { 1097 __u64 clock; /* kvmclock current val 1098 __u32 flags; 1099 __u32 pad0; 1100 __u64 realtime; 1101 __u64 host_tsc; 1102 __u32 pad[4]; 1103 }; 1104 1105 1106 4.31 KVM_GET_VCPU_EVENTS 1107 ------------------------ 1108 1109 :Capability: KVM_CAP_VCPU_EVENTS 1110 :Extended by: KVM_CAP_INTR_SHADOW 1111 :Architectures: x86, arm64 1112 :Type: vcpu ioctl 1113 :Parameters: struct kvm_vcpu_events (out) 1114 :Returns: 0 on success, -1 on error 1115 1116 X86: 1117 ^^^^ 1118 1119 Gets currently pending exceptions, interrupts 1120 states of the vcpu. 1121 1122 :: 1123 1124 struct kvm_vcpu_events { 1125 struct { 1126 __u8 injected; 1127 __u8 nr; 1128 __u8 has_error_code; 1129 __u8 pending; 1130 __u32 error_code; 1131 } exception; 1132 struct { 1133 __u8 injected; 1134 __u8 nr; 1135 __u8 soft; 1136 __u8 shadow; 1137 } interrupt; 1138 struct { 1139 __u8 injected; 1140 __u8 pending; 1141 __u8 masked; 1142 __u8 pad; 1143 } nmi; 1144 __u32 sipi_vector; 1145 __u32 flags; 1146 struct { 1147 __u8 smm; 1148 __u8 pending; 1149 __u8 smm_inside_nmi; 1150 __u8 latched_init; 1151 } smi; 1152 __u8 reserved[27]; 1153 __u8 exception_has_payload; 1154 __u64 exception_payload; 1155 }; 1156 1157 The following bits are defined in the flags f 1158 1159 - KVM_VCPUEVENT_VALID_SHADOW may be set to si 1160 interrupt.shadow contains a valid state. 1161 1162 - KVM_VCPUEVENT_VALID_SMM may be set to signa 1163 valid state. 1164 1165 - KVM_VCPUEVENT_VALID_PAYLOAD may be set to s 1166 exception_has_payload, exception_payload, a 1167 fields contain a valid state. This bit will 1168 KVM_CAP_EXCEPTION_PAYLOAD is enabled. 1169 1170 - KVM_VCPUEVENT_VALID_TRIPLE_FAULT may be set 1171 triple_fault_pending field contains a valid 1172 be set whenever KVM_CAP_X86_TRIPLE_FAULT_EV 1173 1174 ARM64: 1175 ^^^^^^ 1176 1177 If the guest accesses a device that is being 1178 such a way that a real device would generate 1179 a virtual SError pending for that VCPU. This 1180 pending until the guest takes the exception b 1181 1182 Running the VCPU may cause it to take a pendi 1183 causes an SError to become pending. The event 1184 the VPCU is not running. 1185 1186 This API provides a way to read and write the 1187 visible to the guest. To save, restore or mig 1188 the state can be read then written using this 1189 guest-visible registers. It is not possible t 1190 made pending. 1191 1192 A device being emulated in user-space may als 1193 this the events structure can be populated by 1194 should be read first, to ensure no existing S 1195 SError is pending, the architecture's 'Multip 1196 be followed. (2.5.3 of DDI0587.a "ARM Reliabi 1197 Serviceability (RAS) Specification"). 1198 1199 SError exceptions always have an ESR value. S 1200 specify what the virtual SError's ESR value s 1201 advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In t 1202 always have a non-zero value when read, and t 1203 should specify the ISS field in the lower 24 1204 the system supports KVM_CAP_ARM_INJECT_SERROR 1205 with exception.has_esr as zero, KVM will choo 1206 1207 Specifying exception.has_esr on a system that 1208 -EINVAL. Setting anything other than the lowe 1209 will return -EINVAL. 1210 1211 It is not possible to read back a pending ext 1212 KVM_SET_VCPU_EVENTS or otherwise) because suc 1213 directly to the virtual CPU). 1214 1215 :: 1216 1217 struct kvm_vcpu_events { 1218 struct { 1219 __u8 serror_pending; 1220 __u8 serror_has_esr; 1221 __u8 ext_dabt_pending; 1222 /* Align it to 8 bytes */ 1223 __u8 pad[5]; 1224 __u64 serror_esr; 1225 } exception; 1226 __u32 reserved[12]; 1227 }; 1228 1229 4.32 KVM_SET_VCPU_EVENTS 1230 ------------------------ 1231 1232 :Capability: KVM_CAP_VCPU_EVENTS 1233 :Extended by: KVM_CAP_INTR_SHADOW 1234 :Architectures: x86, arm64 1235 :Type: vcpu ioctl 1236 :Parameters: struct kvm_vcpu_events (in) 1237 :Returns: 0 on success, -1 on error 1238 1239 X86: 1240 ^^^^ 1241 1242 Set pending exceptions, interrupts, and NMIs 1243 vcpu. 1244 1245 See KVM_GET_VCPU_EVENTS for the data structur 1246 1247 Fields that may be modified asynchronously by 1248 from the update. These fields are nmi.pending 1249 smi.pending. Keep the corresponding bits in t 1250 suppress overwriting the current in-kernel st 1251 1252 =============================== ============ 1253 KVM_VCPUEVENT_VALID_NMI_PENDING transfer nmi 1254 KVM_VCPUEVENT_VALID_SIPI_VECTOR transfer sip 1255 KVM_VCPUEVENT_VALID_SMM transfer the 1256 =============================== ============ 1257 1258 If KVM_CAP_INTR_SHADOW is available, KVM_VCPU 1259 the flags field to signal that interrupt.shad 1260 shall be written into the VCPU. 1261 1262 KVM_VCPUEVENT_VALID_SMM can only be set if KV 1263 1264 If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_ 1265 can be set in the flags field to signal that 1266 exception_has_payload, exception_payload, and 1267 contain a valid state and shall be written in 1268 1269 If KVM_CAP_X86_TRIPLE_FAULT_EVENT is enabled, 1270 can be set in flags field to signal that the 1271 a valid state and shall be written into the V 1272 1273 ARM64: 1274 ^^^^^^ 1275 1276 User space may need to inject several types o 1277 1278 Set the pending SError exception state for th 1279 'cancel' an Serror that has been made pending 1280 1281 If the guest performed an access to I/O memor 1282 userspace, for example because of missing ins 1283 information or because there is no device map 1284 userspace can ask the kernel to inject an ext 1285 from the exiting fault on the VCPU. It is a p 1286 ext_dabt_pending after an exit which was not 1287 KVM_EXIT_ARM_NISV. This feature is only avail 1288 KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper 1289 how userspace reports accesses for the above 1290 userspace implementations. Nevertheless, user 1291 exceptions by manipulating individual registe 1292 1293 See KVM_GET_VCPU_EVENTS for the data structur 1294 1295 1296 4.33 KVM_GET_DEBUGREGS 1297 ---------------------- 1298 1299 :Capability: KVM_CAP_DEBUGREGS 1300 :Architectures: x86 1301 :Type: vm ioctl 1302 :Parameters: struct kvm_debugregs (out) 1303 :Returns: 0 on success, -1 on error 1304 1305 Reads debug registers from the vcpu. 1306 1307 :: 1308 1309 struct kvm_debugregs { 1310 __u64 db[4]; 1311 __u64 dr6; 1312 __u64 dr7; 1313 __u64 flags; 1314 __u64 reserved[9]; 1315 }; 1316 1317 1318 4.34 KVM_SET_DEBUGREGS 1319 ---------------------- 1320 1321 :Capability: KVM_CAP_DEBUGREGS 1322 :Architectures: x86 1323 :Type: vm ioctl 1324 :Parameters: struct kvm_debugregs (in) 1325 :Returns: 0 on success, -1 on error 1326 1327 Writes debug registers into the vcpu. 1328 1329 See KVM_GET_DEBUGREGS for the data structure. 1330 yet and must be cleared on entry. 1331 1332 1333 4.35 KVM_SET_USER_MEMORY_REGION 1334 ------------------------------- 1335 1336 :Capability: KVM_CAP_USER_MEMORY 1337 :Architectures: all 1338 :Type: vm ioctl 1339 :Parameters: struct kvm_userspace_memory_regi 1340 :Returns: 0 on success, -1 on error 1341 1342 :: 1343 1344 struct kvm_userspace_memory_region { 1345 __u32 slot; 1346 __u32 flags; 1347 __u64 guest_phys_addr; 1348 __u64 memory_size; /* bytes */ 1349 __u64 userspace_addr; /* start of the 1350 }; 1351 1352 /* for kvm_userspace_memory_region::flags * 1353 #define KVM_MEM_LOG_DIRTY_PAGES (1UL 1354 #define KVM_MEM_READONLY (1UL << 1) 1355 1356 This ioctl allows the user to create, modify 1357 memory slot. Bits 0-15 of "slot" specify the 1358 should be less than the maximum number of use 1359 VM. The maximum allowed slots can be queried 1360 Slots may not overlap in guest physical addre 1361 1362 If KVM_CAP_MULTI_ADDRESS_SPACE is available, 1363 specifies the address space which is being mo 1364 less than the value that KVM_CHECK_EXTENSION 1365 KVM_CAP_MULTI_ADDRESS_SPACE capability. Slot 1366 are unrelated; the restriction on overlapping 1367 each address space. 1368 1369 Deleting a slot is done by passing zero for m 1370 an existing slot, it may be moved in the gues 1371 or its flags may be modified, but it may not 1372 1373 Memory for the region is taken starting at th 1374 field userspace_addr, which must point at use 1375 the entire memory slot size. Any object may 1376 anonymous memory, ordinary files, and hugetlb 1377 1378 On architectures that support a form of addre 1379 be an untagged address. 1380 1381 It is recommended that the lower 21 bits of g 1382 be identical. This allows large pages in the 1383 pages in the host. 1384 1385 The flags field supports two flags: KVM_MEM_L 1386 KVM_MEM_READONLY. The former can be set to i 1387 writes to memory within the slot. See KVM_GE 1388 use it. The latter can be set, if KVM_CAP_RE 1389 to make a new slot read-only. In this case, 1390 posted to userspace as KVM_EXIT_MMIO exits. 1391 1392 When the KVM_CAP_SYNC_MMU capability is avail 1393 the memory region are automatically reflected 1394 mmap() that affects the region will be made v 1395 example is madvise(MADV_DROP). 1396 1397 Note: On arm64, a write generated by the page 1398 the Access and Dirty flags, for example) neve 1399 KVM_EXIT_MMIO exit when the slot has the KVM_ 1400 is because KVM cannot provide the data that w 1401 page-table walker, making it impossible to em 1402 Instead, an abort (data abort if the cause of 1403 was a load or a store, instruction abort if i 1404 fetch) is injected in the guest. 1405 1406 S390: 1407 ^^^^^ 1408 1409 Returns -EINVAL if the VM has the KVM_VM_S390 1410 Returns -EINVAL if called on a protected VM. 1411 1412 4.36 KVM_SET_TSS_ADDR 1413 --------------------- 1414 1415 :Capability: KVM_CAP_SET_TSS_ADDR 1416 :Architectures: x86 1417 :Type: vm ioctl 1418 :Parameters: unsigned long tss_address (in) 1419 :Returns: 0 on success, -1 on error 1420 1421 This ioctl defines the physical address of a 1422 physical address space. The region must be w 1423 guest physical address space and must not con 1424 or any mmio address. The guest may malfuncti 1425 region. 1426 1427 This ioctl is required on Intel-based hosts. 1428 because of a quirk in the virtualization impl 1429 documentation when it pops into existence). 1430 1431 1432 4.37 KVM_ENABLE_CAP 1433 ------------------- 1434 1435 :Capability: KVM_CAP_ENABLE_CAP 1436 :Architectures: mips, ppc, s390, x86, loongar 1437 :Type: vcpu ioctl 1438 :Parameters: struct kvm_enable_cap (in) 1439 :Returns: 0 on success; -1 on error 1440 1441 :Capability: KVM_CAP_ENABLE_CAP_VM 1442 :Architectures: all 1443 :Type: vm ioctl 1444 :Parameters: struct kvm_enable_cap (in) 1445 :Returns: 0 on success; -1 on error 1446 1447 .. note:: 1448 1449 Not all extensions are enabled by default. 1450 can enable an extension, making it availab 1451 1452 On systems that do not support this ioctl, it 1453 do support it, it only works for extensions t 1454 1455 To check if a capability can be enabled, the 1456 be used. 1457 1458 :: 1459 1460 struct kvm_enable_cap { 1461 /* in */ 1462 __u32 cap; 1463 1464 The capability that is supposed to get enable 1465 1466 :: 1467 1468 __u32 flags; 1469 1470 A bitfield indicating future enhancements. Ha 1471 1472 :: 1473 1474 __u64 args[4]; 1475 1476 Arguments for enabling a feature. If a featur 1477 function properly, this is the place to put t 1478 1479 :: 1480 1481 __u8 pad[64]; 1482 }; 1483 1484 The vcpu ioctl should be used for vcpu-specif 1485 for vm-wide capabilities. 1486 1487 4.38 KVM_GET_MP_STATE 1488 --------------------- 1489 1490 :Capability: KVM_CAP_MP_STATE 1491 :Architectures: x86, s390, arm64, riscv, loon 1492 :Type: vcpu ioctl 1493 :Parameters: struct kvm_mp_state (out) 1494 :Returns: 0 on success; -1 on error 1495 1496 :: 1497 1498 struct kvm_mp_state { 1499 __u32 mp_state; 1500 }; 1501 1502 Returns the vcpu's current "multiprocessing s 1503 uniprocessor guests). 1504 1505 Possible values are: 1506 1507 ========================== ============ 1508 KVM_MP_STATE_RUNNABLE the vcpu is 1509 [x86,arm64,r 1510 KVM_MP_STATE_UNINITIALIZED the vcpu is 1511 which has no 1512 KVM_MP_STATE_INIT_RECEIVED the vcpu has 1513 now ready fo 1514 KVM_MP_STATE_HALTED the vcpu has 1515 is waiting f 1516 KVM_MP_STATE_SIPI_RECEIVED the vcpu has 1517 accessible v 1518 KVM_MP_STATE_STOPPED the vcpu is 1519 KVM_MP_STATE_CHECK_STOP the vcpu is 1520 KVM_MP_STATE_OPERATING the vcpu is 1521 [s390] 1522 KVM_MP_STATE_LOAD the vcpu is 1523 [s390] 1524 KVM_MP_STATE_SUSPENDED the vcpu is 1525 for a wakeup 1526 ========================== ============ 1527 1528 On x86, this ioctl is only useful after KVM_C 1529 in-kernel irqchip, the multiprocessing state 1530 these architectures. 1531 1532 For arm64: 1533 ^^^^^^^^^^ 1534 1535 If a vCPU is in the KVM_MP_STATE_SUSPENDED st 1536 architectural execution of a WFI instruction. 1537 1538 If a wakeup event is recognized, KVM will exi 1539 KVM_SYSTEM_EVENT exit, where the event type i 1540 userspace wants to honor the wakeup, it must 1541 KVM_MP_STATE_RUNNABLE. If it does not, KVM wi 1542 event in subsequent calls to KVM_RUN. 1543 1544 .. warning:: 1545 1546 If userspace intends to keep the vCPU in 1547 strongly recommended that userspace take 1548 wakeup event (such as masking an interru 1549 calls to KVM_RUN will immediately exit w 1550 event and inadvertently waste CPU cycles 1551 1552 Additionally, if userspace takes action 1553 it is strongly recommended that it also 1554 original state when the vCPU is made RUN 1555 if userspace masked a pending interrupt 1556 the interrupt should be unmasked before 1557 guest. 1558 1559 For riscv: 1560 ^^^^^^^^^^ 1561 1562 The only states that are valid are KVM_MP_STA 1563 KVM_MP_STATE_RUNNABLE which reflect if the vc 1564 1565 On LoongArch, only the KVM_MP_STATE_RUNNABLE 1566 whether the vcpu is runnable. 1567 1568 4.39 KVM_SET_MP_STATE 1569 --------------------- 1570 1571 :Capability: KVM_CAP_MP_STATE 1572 :Architectures: x86, s390, arm64, riscv, loon 1573 :Type: vcpu ioctl 1574 :Parameters: struct kvm_mp_state (in) 1575 :Returns: 0 on success; -1 on error 1576 1577 Sets the vcpu's current "multiprocessing stat 1578 arguments. 1579 1580 On x86, this ioctl is only useful after KVM_C 1581 in-kernel irqchip, the multiprocessing state 1582 these architectures. 1583 1584 For arm64/riscv: 1585 ^^^^^^^^^^^^^^^^ 1586 1587 The only states that are valid are KVM_MP_STA 1588 KVM_MP_STATE_RUNNABLE which reflect if the vc 1589 1590 On LoongArch, only the KVM_MP_STATE_RUNNABLE 1591 whether the vcpu is runnable. 1592 1593 4.40 KVM_SET_IDENTITY_MAP_ADDR 1594 ------------------------------ 1595 1596 :Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR 1597 :Architectures: x86 1598 :Type: vm ioctl 1599 :Parameters: unsigned long identity (in) 1600 :Returns: 0 on success, -1 on error 1601 1602 This ioctl defines the physical address of a 1603 physical address space. The region must be w 1604 guest physical address space and must not con 1605 or any mmio address. The guest may malfuncti 1606 region. 1607 1608 Setting the address to 0 will result in reset 1609 (0xfffbc000). 1610 1611 This ioctl is required on Intel-based hosts. 1612 because of a quirk in the virtualization impl 1613 documentation when it pops into existence). 1614 1615 Fails if any VCPU has already been created. 1616 1617 4.41 KVM_SET_BOOT_CPU_ID 1618 ------------------------ 1619 1620 :Capability: KVM_CAP_SET_BOOT_CPU_ID 1621 :Architectures: x86 1622 :Type: vm ioctl 1623 :Parameters: unsigned long vcpu_id 1624 :Returns: 0 on success, -1 on error 1625 1626 Define which vcpu is the Bootstrap Processor 1627 as the vcpu id in KVM_CREATE_VCPU. If this i 1628 is vcpu 0. This ioctl has to be called before 1629 otherwise it will return EBUSY error. 1630 1631 1632 4.42 KVM_GET_XSAVE 1633 ------------------ 1634 1635 :Capability: KVM_CAP_XSAVE 1636 :Architectures: x86 1637 :Type: vcpu ioctl 1638 :Parameters: struct kvm_xsave (out) 1639 :Returns: 0 on success, -1 on error 1640 1641 1642 :: 1643 1644 struct kvm_xsave { 1645 __u32 region[1024]; 1646 __u32 extra[0]; 1647 }; 1648 1649 This ioctl would copy current vcpu's xsave st 1650 1651 1652 4.43 KVM_SET_XSAVE 1653 ------------------ 1654 1655 :Capability: KVM_CAP_XSAVE and KVM_CAP_XSAVE2 1656 :Architectures: x86 1657 :Type: vcpu ioctl 1658 :Parameters: struct kvm_xsave (in) 1659 :Returns: 0 on success, -1 on error 1660 1661 :: 1662 1663 1664 struct kvm_xsave { 1665 __u32 region[1024]; 1666 __u32 extra[0]; 1667 }; 1668 1669 This ioctl would copy userspace's xsave struc 1670 as many bytes as are returned by KVM_CHECK_EX 1671 when invoked on the vm file descriptor. The s 1672 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will alwa 1673 Currently, it is only greater than 4096 if a 1674 enabled with ``arch_prctl()``, but this may c 1675 1676 The offsets of the state save areas in struct 1677 contents of CPUID leaf 0xD on the host. 1678 1679 1680 4.44 KVM_GET_XCRS 1681 ----------------- 1682 1683 :Capability: KVM_CAP_XCRS 1684 :Architectures: x86 1685 :Type: vcpu ioctl 1686 :Parameters: struct kvm_xcrs (out) 1687 :Returns: 0 on success, -1 on error 1688 1689 :: 1690 1691 struct kvm_xcr { 1692 __u32 xcr; 1693 __u32 reserved; 1694 __u64 value; 1695 }; 1696 1697 struct kvm_xcrs { 1698 __u32 nr_xcrs; 1699 __u32 flags; 1700 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1701 __u64 padding[16]; 1702 }; 1703 1704 This ioctl would copy current vcpu's xcrs to 1705 1706 1707 4.45 KVM_SET_XCRS 1708 ----------------- 1709 1710 :Capability: KVM_CAP_XCRS 1711 :Architectures: x86 1712 :Type: vcpu ioctl 1713 :Parameters: struct kvm_xcrs (in) 1714 :Returns: 0 on success, -1 on error 1715 1716 :: 1717 1718 struct kvm_xcr { 1719 __u32 xcr; 1720 __u32 reserved; 1721 __u64 value; 1722 }; 1723 1724 struct kvm_xcrs { 1725 __u32 nr_xcrs; 1726 __u32 flags; 1727 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1728 __u64 padding[16]; 1729 }; 1730 1731 This ioctl would set vcpu's xcr to the value 1732 1733 1734 4.46 KVM_GET_SUPPORTED_CPUID 1735 ---------------------------- 1736 1737 :Capability: KVM_CAP_EXT_CPUID 1738 :Architectures: x86 1739 :Type: system ioctl 1740 :Parameters: struct kvm_cpuid2 (in/out) 1741 :Returns: 0 on success, -1 on error 1742 1743 :: 1744 1745 struct kvm_cpuid2 { 1746 __u32 nent; 1747 __u32 padding; 1748 struct kvm_cpuid_entry2 entries[0]; 1749 }; 1750 1751 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1752 #define KVM_CPUID_FLAG_STATEFUL_FUNC 1753 #define KVM_CPUID_FLAG_STATE_READ_NEXT 1754 1755 struct kvm_cpuid_entry2 { 1756 __u32 function; 1757 __u32 index; 1758 __u32 flags; 1759 __u32 eax; 1760 __u32 ebx; 1761 __u32 ecx; 1762 __u32 edx; 1763 __u32 padding[3]; 1764 }; 1765 1766 This ioctl returns x86 cpuid features which a 1767 hardware and kvm in its default configuration 1768 information returned by this ioctl to constru 1769 KVM_SET_CPUID2) that is consistent with hardw 1770 userspace capabilities, and with user require 1771 user may wish to constrain cpuid to emulate o 1772 feature consistency across a cluster). 1773 1774 Dynamically-enabled feature bits need to be r 1775 ``arch_prctl()`` before calling this ioctl. F 1776 been requested are excluded from the result. 1777 1778 Note that certain capabilities, such as KVM_C 1779 expose cpuid features (e.g. MONITOR) which ar 1780 its default configuration. If userspace enabl 1781 is responsible for modifying the results of t 1782 1783 Userspace invokes KVM_GET_SUPPORTED_CPUID by 1784 with the 'nent' field indicating the number o 1785 array 'entries'. If the number of entries is 1786 capabilities, an error (E2BIG) is returned. 1787 the 'nent' field is adjusted and an error (EN 1788 number is just right, the 'nent' field is adj 1789 entries in the 'entries' array, which is then 1790 1791 The entries returned are the host cpuid as re 1792 with unknown or unsupported features masked o 1793 x2apic), may not be present in the host cpu, 1794 emulate them efficiently. The fields in each 1795 1796 function: 1797 the eax value used to obtain the ent 1798 1799 index: 1800 the ecx value used to obtain the ent 1801 affected by ecx) 1802 1803 flags: 1804 an OR of zero or more of the following: 1805 1806 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 1807 if the index field is valid 1808 1809 eax, ebx, ecx, edx: 1810 the values returned by the cpuid ins 1811 this function/index combination 1812 1813 The TSC deadline timer feature (CPUID leaf 1, 1814 as false, since the feature depends on KVM_CR 1815 support. Instead it is reported via:: 1816 1817 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEAD 1818 1819 if that returns true and you use KVM_CREATE_I 1820 feature in userspace, then you can enable the 1821 1822 1823 4.47 KVM_PPC_GET_PVINFO 1824 ----------------------- 1825 1826 :Capability: KVM_CAP_PPC_GET_PVINFO 1827 :Architectures: ppc 1828 :Type: vm ioctl 1829 :Parameters: struct kvm_ppc_pvinfo (out) 1830 :Returns: 0 on success, !0 on error 1831 1832 :: 1833 1834 struct kvm_ppc_pvinfo { 1835 __u32 flags; 1836 __u32 hcall[4]; 1837 __u8 pad[108]; 1838 }; 1839 1840 This ioctl fetches PV specific information th 1841 using the device tree or other means from vm 1842 1843 The hcall array defines 4 instructions that m 1844 1845 If any additional field gets added to this st 1846 additional piece of information will be set i 1847 1848 The flags bitmap is defined as:: 1849 1850 /* the host supports the ePAPR idle hcall 1851 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1< 1852 1853 4.52 KVM_SET_GSI_ROUTING 1854 ------------------------ 1855 1856 :Capability: KVM_CAP_IRQ_ROUTING 1857 :Architectures: x86 s390 arm64 1858 :Type: vm ioctl 1859 :Parameters: struct kvm_irq_routing (in) 1860 :Returns: 0 on success, -1 on error 1861 1862 Sets the GSI routing table entries, overwriti 1863 1864 On arm64, GSI routing has the following limit 1865 1866 - GSI routing does not apply to KVM_IRQ_LINE 1867 1868 :: 1869 1870 struct kvm_irq_routing { 1871 __u32 nr; 1872 __u32 flags; 1873 struct kvm_irq_routing_entry entries[ 1874 }; 1875 1876 No flags are specified so far, the correspond 1877 1878 :: 1879 1880 struct kvm_irq_routing_entry { 1881 __u32 gsi; 1882 __u32 type; 1883 __u32 flags; 1884 __u32 pad; 1885 union { 1886 struct kvm_irq_routing_irqchi 1887 struct kvm_irq_routing_msi ms 1888 struct kvm_irq_routing_s390_a 1889 struct kvm_irq_routing_hv_sin 1890 struct kvm_irq_routing_xen_ev 1891 __u32 pad[8]; 1892 } u; 1893 }; 1894 1895 /* gsi routing entry types */ 1896 #define KVM_IRQ_ROUTING_IRQCHIP 1 1897 #define KVM_IRQ_ROUTING_MSI 2 1898 #define KVM_IRQ_ROUTING_S390_ADAPTER 3 1899 #define KVM_IRQ_ROUTING_HV_SINT 4 1900 #define KVM_IRQ_ROUTING_XEN_EVTCHN 5 1901 1902 flags: 1903 1904 - KVM_MSI_VALID_DEVID: used along with KVM_IR 1905 type, specifies that the devid field contai 1906 KVM_CAP_MSI_DEVID capability advertises the 1907 the device ID. If this capability is not a 1908 never set the KVM_MSI_VALID_DEVID flag as t 1909 - zero otherwise 1910 1911 :: 1912 1913 struct kvm_irq_routing_irqchip { 1914 __u32 irqchip; 1915 __u32 pin; 1916 }; 1917 1918 struct kvm_irq_routing_msi { 1919 __u32 address_lo; 1920 __u32 address_hi; 1921 __u32 data; 1922 union { 1923 __u32 pad; 1924 __u32 devid; 1925 }; 1926 }; 1927 1928 If KVM_MSI_VALID_DEVID is set, devid contains 1929 for the device that wrote the MSI message. F 1930 BDF identifier in the lower 16 bits. 1931 1932 On x86, address_hi is ignored unless the KVM_ 1933 feature of KVM_CAP_X2APIC_API capability is e 1934 address_hi bits 31-8 provide bits 31-8 of the 1935 address_hi must be zero. 1936 1937 :: 1938 1939 struct kvm_irq_routing_s390_adapter { 1940 __u64 ind_addr; 1941 __u64 summary_addr; 1942 __u64 ind_offset; 1943 __u32 summary_offset; 1944 __u32 adapter_id; 1945 }; 1946 1947 struct kvm_irq_routing_hv_sint { 1948 __u32 vcpu; 1949 __u32 sint; 1950 }; 1951 1952 struct kvm_irq_routing_xen_evtchn { 1953 __u32 port; 1954 __u32 vcpu; 1955 __u32 priority; 1956 }; 1957 1958 1959 When KVM_CAP_XEN_HVM includes the KVM_XEN_HVM 1960 in its indication of supported features, rout 1961 is supported. Although the priority field is 1962 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL is supported 1963 2 level event channels. FIFO event channel su 1964 the future. 1965 1966 1967 4.55 KVM_SET_TSC_KHZ 1968 -------------------- 1969 1970 :Capability: KVM_CAP_TSC_CONTROL / KVM_CAP_VM 1971 :Architectures: x86 1972 :Type: vcpu ioctl / vm ioctl 1973 :Parameters: virtual tsc_khz 1974 :Returns: 0 on success, -1 on error 1975 1976 Specifies the tsc frequency for the virtual m 1977 frequency is KHz. 1978 1979 If the KVM_CAP_VM_TSC_CONTROL capability is a 1980 be used as a vm ioctl to set the initial tsc 1981 created vCPUs. 1982 1983 4.56 KVM_GET_TSC_KHZ 1984 -------------------- 1985 1986 :Capability: KVM_CAP_GET_TSC_KHZ / KVM_CAP_VM 1987 :Architectures: x86 1988 :Type: vcpu ioctl / vm ioctl 1989 :Parameters: none 1990 :Returns: virtual tsc-khz on success, negativ 1991 1992 Returns the tsc frequency of the guest. The u 1993 KHz. If the host has unstable tsc this ioctl 1994 error. 1995 1996 1997 4.57 KVM_GET_LAPIC 1998 ------------------ 1999 2000 :Capability: KVM_CAP_IRQCHIP 2001 :Architectures: x86 2002 :Type: vcpu ioctl 2003 :Parameters: struct kvm_lapic_state (out) 2004 :Returns: 0 on success, -1 on error 2005 2006 :: 2007 2008 #define KVM_APIC_REG_SIZE 0x400 2009 struct kvm_lapic_state { 2010 char regs[KVM_APIC_REG_SIZE]; 2011 }; 2012 2013 Reads the Local APIC registers and copies the 2014 data format and layout are the same as docume 2015 2016 If KVM_X2APIC_API_USE_32BIT_IDS feature of KV 2017 enabled, then the format of APIC_ID register 2018 (reported by MSR_IA32_APICBASE) of its VCPU. 2019 the APIC_ID register (bytes 32-35). xAPIC on 2020 which is stored in bits 31-24 of the APIC reg 2021 byte 35 of struct kvm_lapic_state's regs fiel 2022 be called after MSR_IA32_APICBASE has been se 2023 2024 If KVM_X2APIC_API_USE_32BIT_IDS feature is di 2025 always uses xAPIC format. 2026 2027 2028 4.58 KVM_SET_LAPIC 2029 ------------------ 2030 2031 :Capability: KVM_CAP_IRQCHIP 2032 :Architectures: x86 2033 :Type: vcpu ioctl 2034 :Parameters: struct kvm_lapic_state (in) 2035 :Returns: 0 on success, -1 on error 2036 2037 :: 2038 2039 #define KVM_APIC_REG_SIZE 0x400 2040 struct kvm_lapic_state { 2041 char regs[KVM_APIC_REG_SIZE]; 2042 }; 2043 2044 Copies the input argument into the Local APIC 2045 and layout are the same as documented in the 2046 2047 The format of the APIC ID register (bytes 32- 2048 regs field) depends on the state of the KVM_C 2049 See the note in KVM_GET_LAPIC. 2050 2051 2052 4.59 KVM_IOEVENTFD 2053 ------------------ 2054 2055 :Capability: KVM_CAP_IOEVENTFD 2056 :Architectures: all 2057 :Type: vm ioctl 2058 :Parameters: struct kvm_ioeventfd (in) 2059 :Returns: 0 on success, !0 on error 2060 2061 This ioctl attaches or detaches an ioeventfd 2062 within the guest. A guest write in the regis 2063 provided event instead of triggering an exit. 2064 2065 :: 2066 2067 struct kvm_ioeventfd { 2068 __u64 datamatch; 2069 __u64 addr; /* legal pio/mmio 2070 __u32 len; /* 0, 1, 2, 4, or 2071 __s32 fd; 2072 __u32 flags; 2073 __u8 pad[36]; 2074 }; 2075 2076 For the special case of virtio-ccw devices on 2077 to a subchannel/virtqueue tuple instead. 2078 2079 The following flags are defined:: 2080 2081 #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << 2082 #define KVM_IOEVENTFD_FLAG_PIO (1 << 2083 #define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << 2084 #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIF 2085 (1 << kvm_ioeventfd_flag_nr_virtio_cc 2086 2087 If datamatch flag is set, the event will be s 2088 to the registered address is equal to datamat 2089 2090 For virtio-ccw devices, addr contains the sub 2091 virtqueue index. 2092 2093 With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero len 2094 the kernel will ignore the length of guest wr 2095 The speedup may only apply to specific archit 2096 work anyway. 2097 2098 4.60 KVM_DIRTY_TLB 2099 ------------------ 2100 2101 :Capability: KVM_CAP_SW_TLB 2102 :Architectures: ppc 2103 :Type: vcpu ioctl 2104 :Parameters: struct kvm_dirty_tlb (in) 2105 :Returns: 0 on success, -1 on error 2106 2107 :: 2108 2109 struct kvm_dirty_tlb { 2110 __u64 bitmap; 2111 __u32 num_dirty; 2112 }; 2113 2114 This must be called whenever userspace has ch 2115 TLB, prior to calling KVM_RUN on the associat 2116 2117 The "bitmap" field is the userspace address o 2118 consists of a number of bits, equal to the to 2119 determined by the last successful call to KVM 2120 nearest multiple of 64. 2121 2122 Each bit corresponds to one TLB entry, ordere 2123 array. 2124 2125 The array is little-endian: the bit 0 is the 2126 first byte, bit 8 is the least significant bi 2127 This avoids any complications with differing 2128 2129 The "num_dirty" field is a performance hint f 2130 should skip processing the bitmap and just in 2131 be set to the number of set bits in the bitma 2132 2133 2134 4.62 KVM_CREATE_SPAPR_TCE 2135 ------------------------- 2136 2137 :Capability: KVM_CAP_SPAPR_TCE 2138 :Architectures: powerpc 2139 :Type: vm ioctl 2140 :Parameters: struct kvm_create_spapr_tce (in) 2141 :Returns: file descriptor for manipulating th 2142 2143 This creates a virtual TCE (translation contr 2144 is an IOMMU for PAPR-style virtual I/O. It i 2145 logical addresses used in virtual I/O into gu 2146 and provides a scatter/gather capability for 2147 2148 :: 2149 2150 /* for KVM_CAP_SPAPR_TCE */ 2151 struct kvm_create_spapr_tce { 2152 __u64 liobn; 2153 __u32 window_size; 2154 }; 2155 2156 The liobn field gives the logical IO bus numb 2157 TCE table. The window_size field specifies t 2158 which this TCE table will translate - the tab 2159 bit TCE entry for every 4kiB of the DMA windo 2160 2161 When the guest issues an H_PUT_TCE hcall on a 2162 table has been created using this ioctl(), th 2163 in real mode, updating the TCE table. H_PUT_ 2164 liobns will cause a vm exit and must be handl 2165 2166 The return value is a file descriptor which c 2167 to map the created TCE table into userspace. 2168 the entries written by kernel-handled H_PUT_T 2169 userspace update the TCE table directly which 2170 circumstances. 2171 2172 2173 4.63 KVM_ALLOCATE_RMA 2174 --------------------- 2175 2176 :Capability: KVM_CAP_PPC_RMA 2177 :Architectures: powerpc 2178 :Type: vm ioctl 2179 :Parameters: struct kvm_allocate_rma (out) 2180 :Returns: file descriptor for mapping the all 2181 2182 This allocates a Real Mode Area (RMA) from th 2183 time by the kernel. An RMA is a physically-c 2184 of memory used on older POWER processors to p 2185 will be accessed by real-mode (MMU off) acces 2186 POWER processors support a set of sizes for t 2187 includes 64MB, 128MB, 256MB and some larger p 2188 2189 :: 2190 2191 /* for KVM_ALLOCATE_RMA */ 2192 struct kvm_allocate_rma { 2193 __u64 rma_size; 2194 }; 2195 2196 The return value is a file descriptor which c 2197 to map the allocated RMA into userspace. The 2198 passed to the KVM_SET_USER_MEMORY_REGION ioct 2199 RMA for a virtual machine. The size of the R 2200 fixed at host kernel boot time) is returned i 2201 the argument structure. 2202 2203 The KVM_CAP_PPC_RMA capability is 1 or 2 if t 2204 is supported; 2 if the processor requires all 2205 an RMA, or 1 if the processor can use an RMA 2206 because it supports the Virtual RMA (VRMA) fa 2207 2208 2209 4.64 KVM_NMI 2210 ------------ 2211 2212 :Capability: KVM_CAP_USER_NMI 2213 :Architectures: x86 2214 :Type: vcpu ioctl 2215 :Parameters: none 2216 :Returns: 0 on success, -1 on error 2217 2218 Queues an NMI on the thread's vcpu. Note thi 2219 when KVM_CREATE_IRQCHIP has not been called, 2220 between the virtual cpu core and virtual loca 2221 has been called, this interface is completely 2222 2223 To use this to emulate the LINT1 input with K 2224 following algorithm: 2225 2226 - pause the vcpu 2227 - read the local APIC's state (KVM_GET_LAPI 2228 - check whether changing LINT1 will queue a 2229 - if so, issue KVM_NMI 2230 - resume the vcpu 2231 2232 Some guests configure the LINT1 NMI input to 2233 debugging. 2234 2235 2236 4.65 KVM_S390_UCAS_MAP 2237 ---------------------- 2238 2239 :Capability: KVM_CAP_S390_UCONTROL 2240 :Architectures: s390 2241 :Type: vcpu ioctl 2242 :Parameters: struct kvm_s390_ucas_mapping (in 2243 :Returns: 0 in case of success 2244 2245 The parameter is defined like this:: 2246 2247 struct kvm_s390_ucas_mapping { 2248 __u64 user_addr; 2249 __u64 vcpu_addr; 2250 __u64 length; 2251 }; 2252 2253 This ioctl maps the memory at "user_addr" wit 2254 the vcpu's address space starting at "vcpu_ad 2255 be aligned by 1 megabyte. 2256 2257 2258 4.66 KVM_S390_UCAS_UNMAP 2259 ------------------------ 2260 2261 :Capability: KVM_CAP_S390_UCONTROL 2262 :Architectures: s390 2263 :Type: vcpu ioctl 2264 :Parameters: struct kvm_s390_ucas_mapping (in 2265 :Returns: 0 in case of success 2266 2267 The parameter is defined like this:: 2268 2269 struct kvm_s390_ucas_mapping { 2270 __u64 user_addr; 2271 __u64 vcpu_addr; 2272 __u64 length; 2273 }; 2274 2275 This ioctl unmaps the memory in the vcpu's ad 2276 "vcpu_addr" with the length "length". The fie 2277 All parameters need to be aligned by 1 megaby 2278 2279 2280 4.67 KVM_S390_VCPU_FAULT 2281 ------------------------ 2282 2283 :Capability: KVM_CAP_S390_UCONTROL 2284 :Architectures: s390 2285 :Type: vcpu ioctl 2286 :Parameters: vcpu absolute address (in) 2287 :Returns: 0 in case of success 2288 2289 This call creates a page table entry on the v 2290 (for user controlled virtual machines) or the 2291 space (for regular virtual machines). This on 2292 thus it's recommended to access subject memor 2293 table upfront. This is useful to handle valid 2294 controlled virtual machines to fault in the v 2295 prior to calling the KVM_RUN ioctl. 2296 2297 2298 4.68 KVM_SET_ONE_REG 2299 -------------------- 2300 2301 :Capability: KVM_CAP_ONE_REG 2302 :Architectures: all 2303 :Type: vcpu ioctl 2304 :Parameters: struct kvm_one_reg (in) 2305 :Returns: 0 on success, negative value on fai 2306 2307 Errors: 2308 2309 ====== ================================== 2310 ENOENT no such register 2311 EINVAL invalid register ID, or no such re 2312 protected virtualization mode on s 2313 EPERM (arm64) register access not allowe 2314 EBUSY (riscv) changing register value no 2315 has run at least once 2316 ====== ================================== 2317 2318 (These error codes are indicative only: do no 2319 code being returned in a specific situation.) 2320 2321 :: 2322 2323 struct kvm_one_reg { 2324 __u64 id; 2325 __u64 addr; 2326 }; 2327 2328 Using this ioctl, a single vcpu register can 2329 defined by user space with the passed in stru 2330 refers to the register identifier as describe 2331 to a variable with the respective size. There 2332 and architecture specific registers. Each hav 2333 and their own constants and width. To keep tr 2334 registers, find a list below: 2335 2336 ======= =============================== === 2337 Arch Register Wid 2338 ======= =============================== === 2339 PPC KVM_REG_PPC_HIOR 64 2340 PPC KVM_REG_PPC_IAC1 64 2341 PPC KVM_REG_PPC_IAC2 64 2342 PPC KVM_REG_PPC_IAC3 64 2343 PPC KVM_REG_PPC_IAC4 64 2344 PPC KVM_REG_PPC_DAC1 64 2345 PPC KVM_REG_PPC_DAC2 64 2346 PPC KVM_REG_PPC_DABR 64 2347 PPC KVM_REG_PPC_DSCR 64 2348 PPC KVM_REG_PPC_PURR 64 2349 PPC KVM_REG_PPC_SPURR 64 2350 PPC KVM_REG_PPC_DAR 64 2351 PPC KVM_REG_PPC_DSISR 32 2352 PPC KVM_REG_PPC_AMR 64 2353 PPC KVM_REG_PPC_UAMOR 64 2354 PPC KVM_REG_PPC_MMCR0 64 2355 PPC KVM_REG_PPC_MMCR1 64 2356 PPC KVM_REG_PPC_MMCRA 64 2357 PPC KVM_REG_PPC_MMCR2 64 2358 PPC KVM_REG_PPC_MMCRS 64 2359 PPC KVM_REG_PPC_MMCR3 64 2360 PPC KVM_REG_PPC_SIAR 64 2361 PPC KVM_REG_PPC_SDAR 64 2362 PPC KVM_REG_PPC_SIER 64 2363 PPC KVM_REG_PPC_SIER2 64 2364 PPC KVM_REG_PPC_SIER3 64 2365 PPC KVM_REG_PPC_PMC1 32 2366 PPC KVM_REG_PPC_PMC2 32 2367 PPC KVM_REG_PPC_PMC3 32 2368 PPC KVM_REG_PPC_PMC4 32 2369 PPC KVM_REG_PPC_PMC5 32 2370 PPC KVM_REG_PPC_PMC6 32 2371 PPC KVM_REG_PPC_PMC7 32 2372 PPC KVM_REG_PPC_PMC8 32 2373 PPC KVM_REG_PPC_FPR0 64 2374 ... 2375 PPC KVM_REG_PPC_FPR31 64 2376 PPC KVM_REG_PPC_VR0 128 2377 ... 2378 PPC KVM_REG_PPC_VR31 128 2379 PPC KVM_REG_PPC_VSR0 128 2380 ... 2381 PPC KVM_REG_PPC_VSR31 128 2382 PPC KVM_REG_PPC_FPSCR 64 2383 PPC KVM_REG_PPC_VSCR 32 2384 PPC KVM_REG_PPC_VPA_ADDR 64 2385 PPC KVM_REG_PPC_VPA_SLB 128 2386 PPC KVM_REG_PPC_VPA_DTL 128 2387 PPC KVM_REG_PPC_EPCR 32 2388 PPC KVM_REG_PPC_EPR 32 2389 PPC KVM_REG_PPC_TCR 32 2390 PPC KVM_REG_PPC_TSR 32 2391 PPC KVM_REG_PPC_OR_TSR 32 2392 PPC KVM_REG_PPC_CLEAR_TSR 32 2393 PPC KVM_REG_PPC_MAS0 32 2394 PPC KVM_REG_PPC_MAS1 32 2395 PPC KVM_REG_PPC_MAS2 64 2396 PPC KVM_REG_PPC_MAS7_3 64 2397 PPC KVM_REG_PPC_MAS4 32 2398 PPC KVM_REG_PPC_MAS6 32 2399 PPC KVM_REG_PPC_MMUCFG 32 2400 PPC KVM_REG_PPC_TLB0CFG 32 2401 PPC KVM_REG_PPC_TLB1CFG 32 2402 PPC KVM_REG_PPC_TLB2CFG 32 2403 PPC KVM_REG_PPC_TLB3CFG 32 2404 PPC KVM_REG_PPC_TLB0PS 32 2405 PPC KVM_REG_PPC_TLB1PS 32 2406 PPC KVM_REG_PPC_TLB2PS 32 2407 PPC KVM_REG_PPC_TLB3PS 32 2408 PPC KVM_REG_PPC_EPTCFG 32 2409 PPC KVM_REG_PPC_ICP_STATE 64 2410 PPC KVM_REG_PPC_VP_STATE 128 2411 PPC KVM_REG_PPC_TB_OFFSET 64 2412 PPC KVM_REG_PPC_SPMC1 32 2413 PPC KVM_REG_PPC_SPMC2 32 2414 PPC KVM_REG_PPC_IAMR 64 2415 PPC KVM_REG_PPC_TFHAR 64 2416 PPC KVM_REG_PPC_TFIAR 64 2417 PPC KVM_REG_PPC_TEXASR 64 2418 PPC KVM_REG_PPC_FSCR 64 2419 PPC KVM_REG_PPC_PSPB 32 2420 PPC KVM_REG_PPC_EBBHR 64 2421 PPC KVM_REG_PPC_EBBRR 64 2422 PPC KVM_REG_PPC_BESCR 64 2423 PPC KVM_REG_PPC_TAR 64 2424 PPC KVM_REG_PPC_DPDES 64 2425 PPC KVM_REG_PPC_DAWR 64 2426 PPC KVM_REG_PPC_DAWRX 64 2427 PPC KVM_REG_PPC_CIABR 64 2428 PPC KVM_REG_PPC_IC 64 2429 PPC KVM_REG_PPC_VTB 64 2430 PPC KVM_REG_PPC_CSIGR 64 2431 PPC KVM_REG_PPC_TACR 64 2432 PPC KVM_REG_PPC_TCSCR 64 2433 PPC KVM_REG_PPC_PID 64 2434 PPC KVM_REG_PPC_ACOP 64 2435 PPC KVM_REG_PPC_VRSAVE 32 2436 PPC KVM_REG_PPC_LPCR 32 2437 PPC KVM_REG_PPC_LPCR_64 64 2438 PPC KVM_REG_PPC_PPR 64 2439 PPC KVM_REG_PPC_ARCH_COMPAT 32 2440 PPC KVM_REG_PPC_DABRX 32 2441 PPC KVM_REG_PPC_WORT 64 2442 PPC KVM_REG_PPC_SPRG9 64 2443 PPC KVM_REG_PPC_DBSR 32 2444 PPC KVM_REG_PPC_TIDR 64 2445 PPC KVM_REG_PPC_PSSCR 64 2446 PPC KVM_REG_PPC_DEC_EXPIRY 64 2447 PPC KVM_REG_PPC_PTCR 64 2448 PPC KVM_REG_PPC_HASHKEYR 64 2449 PPC KVM_REG_PPC_HASHPKEYR 64 2450 PPC KVM_REG_PPC_DAWR1 64 2451 PPC KVM_REG_PPC_DAWRX1 64 2452 PPC KVM_REG_PPC_DEXCR 64 2453 PPC KVM_REG_PPC_TM_GPR0 64 2454 ... 2455 PPC KVM_REG_PPC_TM_GPR31 64 2456 PPC KVM_REG_PPC_TM_VSR0 128 2457 ... 2458 PPC KVM_REG_PPC_TM_VSR63 128 2459 PPC KVM_REG_PPC_TM_CR 64 2460 PPC KVM_REG_PPC_TM_LR 64 2461 PPC KVM_REG_PPC_TM_CTR 64 2462 PPC KVM_REG_PPC_TM_FPSCR 64 2463 PPC KVM_REG_PPC_TM_AMR 64 2464 PPC KVM_REG_PPC_TM_PPR 64 2465 PPC KVM_REG_PPC_TM_VRSAVE 64 2466 PPC KVM_REG_PPC_TM_VSCR 32 2467 PPC KVM_REG_PPC_TM_DSCR 64 2468 PPC KVM_REG_PPC_TM_TAR 64 2469 PPC KVM_REG_PPC_TM_XER 64 2470 2471 MIPS KVM_REG_MIPS_R0 64 2472 ... 2473 MIPS KVM_REG_MIPS_R31 64 2474 MIPS KVM_REG_MIPS_HI 64 2475 MIPS KVM_REG_MIPS_LO 64 2476 MIPS KVM_REG_MIPS_PC 64 2477 MIPS KVM_REG_MIPS_CP0_INDEX 32 2478 MIPS KVM_REG_MIPS_CP0_ENTRYLO0 64 2479 MIPS KVM_REG_MIPS_CP0_ENTRYLO1 64 2480 MIPS KVM_REG_MIPS_CP0_CONTEXT 64 2481 MIPS KVM_REG_MIPS_CP0_CONTEXTCONFIG 32 2482 MIPS KVM_REG_MIPS_CP0_USERLOCAL 64 2483 MIPS KVM_REG_MIPS_CP0_XCONTEXTCONFIG 64 2484 MIPS KVM_REG_MIPS_CP0_PAGEMASK 32 2485 MIPS KVM_REG_MIPS_CP0_PAGEGRAIN 32 2486 MIPS KVM_REG_MIPS_CP0_SEGCTL0 64 2487 MIPS KVM_REG_MIPS_CP0_SEGCTL1 64 2488 MIPS KVM_REG_MIPS_CP0_SEGCTL2 64 2489 MIPS KVM_REG_MIPS_CP0_PWBASE 64 2490 MIPS KVM_REG_MIPS_CP0_PWFIELD 64 2491 MIPS KVM_REG_MIPS_CP0_PWSIZE 64 2492 MIPS KVM_REG_MIPS_CP0_WIRED 32 2493 MIPS KVM_REG_MIPS_CP0_PWCTL 32 2494 MIPS KVM_REG_MIPS_CP0_HWRENA 32 2495 MIPS KVM_REG_MIPS_CP0_BADVADDR 64 2496 MIPS KVM_REG_MIPS_CP0_BADINSTR 32 2497 MIPS KVM_REG_MIPS_CP0_BADINSTRP 32 2498 MIPS KVM_REG_MIPS_CP0_COUNT 32 2499 MIPS KVM_REG_MIPS_CP0_ENTRYHI 64 2500 MIPS KVM_REG_MIPS_CP0_COMPARE 32 2501 MIPS KVM_REG_MIPS_CP0_STATUS 32 2502 MIPS KVM_REG_MIPS_CP0_INTCTL 32 2503 MIPS KVM_REG_MIPS_CP0_CAUSE 32 2504 MIPS KVM_REG_MIPS_CP0_EPC 64 2505 MIPS KVM_REG_MIPS_CP0_PRID 32 2506 MIPS KVM_REG_MIPS_CP0_EBASE 64 2507 MIPS KVM_REG_MIPS_CP0_CONFIG 32 2508 MIPS KVM_REG_MIPS_CP0_CONFIG1 32 2509 MIPS KVM_REG_MIPS_CP0_CONFIG2 32 2510 MIPS KVM_REG_MIPS_CP0_CONFIG3 32 2511 MIPS KVM_REG_MIPS_CP0_CONFIG4 32 2512 MIPS KVM_REG_MIPS_CP0_CONFIG5 32 2513 MIPS KVM_REG_MIPS_CP0_CONFIG7 32 2514 MIPS KVM_REG_MIPS_CP0_XCONTEXT 64 2515 MIPS KVM_REG_MIPS_CP0_ERROREPC 64 2516 MIPS KVM_REG_MIPS_CP0_KSCRATCH1 64 2517 MIPS KVM_REG_MIPS_CP0_KSCRATCH2 64 2518 MIPS KVM_REG_MIPS_CP0_KSCRATCH3 64 2519 MIPS KVM_REG_MIPS_CP0_KSCRATCH4 64 2520 MIPS KVM_REG_MIPS_CP0_KSCRATCH5 64 2521 MIPS KVM_REG_MIPS_CP0_KSCRATCH6 64 2522 MIPS KVM_REG_MIPS_CP0_MAAR(0..63) 64 2523 MIPS KVM_REG_MIPS_COUNT_CTL 64 2524 MIPS KVM_REG_MIPS_COUNT_RESUME 64 2525 MIPS KVM_REG_MIPS_COUNT_HZ 64 2526 MIPS KVM_REG_MIPS_FPR_32(0..31) 32 2527 MIPS KVM_REG_MIPS_FPR_64(0..31) 64 2528 MIPS KVM_REG_MIPS_VEC_128(0..31) 128 2529 MIPS KVM_REG_MIPS_FCR_IR 32 2530 MIPS KVM_REG_MIPS_FCR_CSR 32 2531 MIPS KVM_REG_MIPS_MSA_IR 32 2532 MIPS KVM_REG_MIPS_MSA_CSR 32 2533 ======= =============================== === 2534 2535 ARM registers are mapped using the lower 32 b 2536 is the register group type, or coprocessor nu 2537 2538 ARM core registers have the following id bit 2539 2540 0x4020 0000 0010 <index into the kvm_regs s 2541 2542 ARM 32-bit CP15 registers have the following 2543 2544 0x4020 0000 000F <zero:1> <crn:4> <crm:4> < 2545 2546 ARM 64-bit CP15 registers have the following 2547 2548 0x4030 0000 000F <zero:1> <zero:4> <crm:4> 2549 2550 ARM CCSIDR registers are demultiplexed by CSS 2551 2552 0x4020 0000 0011 00 <csselr:8> 2553 2554 ARM 32-bit VFP control registers have the fol 2555 2556 0x4020 0000 0012 1 <regno:12> 2557 2558 ARM 64-bit FP registers have the following id 2559 2560 0x4030 0000 0012 0 <regno:12> 2561 2562 ARM firmware pseudo-registers have the follow 2563 2564 0x4030 0000 0014 <regno:16> 2565 2566 2567 arm64 registers are mapped using the lower 32 2568 that is the register group type, or coprocess 2569 2570 arm64 core/FP-SIMD registers have the followi 2571 that the size of the access is variable, as t 2572 contains elements ranging from 32 to 128 bits 2573 value in the kvm_regs structure seen as a 32b 2574 2575 0x60x0 0000 0010 <index into the kvm_regs s 2576 2577 Specifically: 2578 2579 ======================= ========= ===== ===== 2580 Encoding Register Bits kvm_r 2581 ======================= ========= ===== ===== 2582 0x6030 0000 0010 0000 X0 64 regs. 2583 0x6030 0000 0010 0002 X1 64 regs. 2584 ... 2585 0x6030 0000 0010 003c X30 64 regs. 2586 0x6030 0000 0010 003e SP 64 regs. 2587 0x6030 0000 0010 0040 PC 64 regs. 2588 0x6030 0000 0010 0042 PSTATE 64 regs. 2589 0x6030 0000 0010 0044 SP_EL1 64 sp_el 2590 0x6030 0000 0010 0046 ELR_EL1 64 elr_e 2591 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[ 2592 0x6030 0000 0010 004a SPSR_ABT 64 spsr[ 2593 0x6030 0000 0010 004c SPSR_UND 64 spsr[ 2594 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[ 2595 0x6030 0000 0010 0050 SPSR_FIQ 64 spsr[ 2596 0x6040 0000 0010 0054 V0 128 fp_re 2597 0x6040 0000 0010 0058 V1 128 fp_re 2598 ... 2599 0x6040 0000 0010 00d0 V31 128 fp_re 2600 0x6020 0000 0010 00d4 FPSR 32 fp_re 2601 0x6020 0000 0010 00d5 FPCR 32 fp_re 2602 ======================= ========= ===== ===== 2603 2604 .. [1] These encodings are not accepted for S 2605 KVM_ARM_VCPU_INIT. 2606 2607 The equivalent register content can be 2608 the corresponding SVE Zn registers ins 2609 enabled (see below). 2610 2611 arm64 CCSIDR registers are demultiplexed by C 2612 2613 0x6020 0000 0011 00 <csselr:8> 2614 2615 arm64 system registers have the following id 2616 2617 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <c 2618 2619 .. warning:: 2620 2621 Two system register IDs do not follow th 2622 are KVM_REG_ARM_TIMER_CVAL and KVM_REG_A 2623 system registers CNTV_CVAL_EL0 and CNTVC 2624 two had their values accidentally swappe 2625 derived from the register encoding for C 2626 derived from the register encoding for C 2627 API, it must remain this way. 2628 2629 arm64 firmware pseudo-registers have the foll 2630 2631 0x6030 0000 0014 <regno:16> 2632 2633 arm64 SVE registers have the following bit pa 2634 2635 0x6080 0000 0015 00 <n:5> <slice:5> Zn bi 2636 0x6050 0000 0015 04 <n:4> <slice:5> Pn bi 2637 0x6050 0000 0015 060 <slice:5> FFR b 2638 0x6060 0000 0015 ffff KVM_R 2639 2640 Access to register IDs where 2048 * slice >= 2641 ENOENT. max_vq is the vcpu's maximum support 2642 quadwords: see [2]_ below. 2643 2644 These registers are only accessible on vcpus 2645 See KVM_ARM_VCPU_INIT for details. 2646 2647 In addition, except for KVM_REG_ARM64_SVE_VLS 2648 accessible until the vcpu's SVE configuration 2649 using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE) 2650 and KVM_ARM_VCPU_FINALIZE for more informatio 2651 2652 KVM_REG_ARM64_SVE_VLS is a pseudo-register th 2653 lengths supported by the vcpu to be discovere 2654 userspace. When transferred to or from user 2655 or KVM_SET_ONE_REG, the value of this registe 2656 __u64[KVM_ARM64_SVE_VLS_WORDS], and encodes t 2657 follows:: 2658 2659 __u64 vector_lengths[KVM_ARM64_SVE_VLS_WORD 2660 2661 if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX && 2662 ((vector_lengths[(vq - KVM_ARM64_SVE_VQ 2663 ((vq - KVM_ARM64_SVE_VQ_MIN) 2664 /* Vector length vq * 16 bytes suppor 2665 else 2666 /* Vector length vq * 16 bytes not su 2667 2668 .. [2] The maximum value vq for which the abo 2669 max_vq. This is the maximum vector le 2670 this vcpu, and determines which regist 2671 this ioctl interface. 2672 2673 (See Documentation/arch/arm64/sve.rst for an 2674 nomenclature.) 2675 2676 KVM_REG_ARM64_SVE_VLS is only accessible afte 2677 KVM_ARM_VCPU_INIT initialises it to the best 2678 the host supports. 2679 2680 Userspace may subsequently modify it if desir 2681 configuration is finalized using KVM_ARM_VCPU 2682 2683 Apart from simply removing all vector lengths 2684 exceed some value, support for arbitrarily ch 2685 is hardware-dependent and may not be availabl 2686 an invalid set of vector lengths via KVM_SET_ 2687 EINVAL. 2688 2689 After the vcpu's SVE configuration is finaliz 2690 write this register will fail with EPERM. 2691 2692 arm64 bitmap feature firmware pseudo-register 2693 2694 0x6030 0000 0016 <regno:16> 2695 2696 The bitmap feature firmware registers exposes 2697 are available for userspace to configure. The 2698 services that are available for the guests to 2699 sets all the supported bits during VM initial 2700 discover the available services via KVM_GET_O 2701 bitmap corresponding to the features that it 2702 KVM_SET_ONE_REG. 2703 2704 Note: These registers are immutable once any 2705 run at least once. A KVM_SET_ONE_REG in such 2706 a -EBUSY to userspace. 2707 2708 (See Documentation/virt/kvm/arm/hypercalls.rs 2709 2710 2711 MIPS registers are mapped using the lower 32 2712 the register group type: 2713 2714 MIPS core registers (see above) have the foll 2715 2716 0x7030 0000 0000 <reg:16> 2717 2718 MIPS CP0 registers (see KVM_REG_MIPS_CP0_* ab 2719 patterns depending on whether they're 32-bit 2720 2721 0x7020 0000 0001 00 <reg:5> <sel:3> (32-b 2722 0x7030 0000 0001 00 <reg:5> <sel:3> (64-b 2723 2724 Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_M 2725 versions of the EntryLo registers regardless 2726 hardware, host kernel, guest, and whether XPA 2727 with the RI and XI bits (if they exist) in bi 2728 the PFNX field starting at bit 30. 2729 2730 MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) abov 2731 patterns:: 2732 2733 0x7030 0000 0001 01 <reg:8> 2734 2735 MIPS KVM control registers (see above) have t 2736 2737 0x7030 0000 0002 <reg:16> 2738 2739 MIPS FPU registers (see KVM_REG_MIPS_FPR_{32, 2740 id bit patterns depending on the size of the 2741 always accessed according to the current gues 2742 Config5.FRE), i.e. as the guest would see the 2743 if the guest FPU mode is changed. MIPS SIMD A 2744 registers (see KVM_REG_MIPS_VEC_128() above) 2745 overlap the FPU registers:: 2746 2747 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit F 2748 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit F 2749 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit 2750 2751 MIPS FPU control registers (see KVM_REG_MIPS_ 2752 following id bit patterns:: 2753 2754 0x7020 0000 0003 01 <0:3> <reg:5> 2755 2756 MIPS MSA control registers (see KVM_REG_MIPS_ 2757 following id bit patterns:: 2758 2759 0x7020 0000 0003 02 <0:3> <reg:5> 2760 2761 RISC-V registers are mapped using the lower 3 2762 that is the register group type. 2763 2764 RISC-V config registers are meant for configu 2765 the following id bit patterns:: 2766 2767 0x8020 0000 01 <index into the kvm_riscv_co 2768 0x8030 0000 01 <index into the kvm_riscv_co 2769 2770 Following are the RISC-V config registers: 2771 2772 ======================= ========= =========== 2773 Encoding Register Description 2774 ======================= ========= =========== 2775 0x80x0 0000 0100 0000 isa ISA feature 2776 ======================= ========= =========== 2777 2778 The isa config register can be read anytime b 2779 a Guest VCPU runs. It will have ISA feature b 2780 set by default. 2781 2782 RISC-V core registers represent the general e 2783 and it has the following id bit patterns:: 2784 2785 0x8020 0000 02 <index into the kvm_riscv_co 2786 0x8030 0000 02 <index into the kvm_riscv_co 2787 2788 Following are the RISC-V core registers: 2789 2790 ======================= ========= =========== 2791 Encoding Register Description 2792 ======================= ========= =========== 2793 0x80x0 0000 0200 0000 regs.pc Program cou 2794 0x80x0 0000 0200 0001 regs.ra Return addr 2795 0x80x0 0000 0200 0002 regs.sp Stack point 2796 0x80x0 0000 0200 0003 regs.gp Global poin 2797 0x80x0 0000 0200 0004 regs.tp Task pointe 2798 0x80x0 0000 0200 0005 regs.t0 Caller save 2799 0x80x0 0000 0200 0006 regs.t1 Caller save 2800 0x80x0 0000 0200 0007 regs.t2 Caller save 2801 0x80x0 0000 0200 0008 regs.s0 Callee save 2802 0x80x0 0000 0200 0009 regs.s1 Callee save 2803 0x80x0 0000 0200 000a regs.a0 Function ar 2804 0x80x0 0000 0200 000b regs.a1 Function ar 2805 0x80x0 0000 0200 000c regs.a2 Function ar 2806 0x80x0 0000 0200 000d regs.a3 Function ar 2807 0x80x0 0000 0200 000e regs.a4 Function ar 2808 0x80x0 0000 0200 000f regs.a5 Function ar 2809 0x80x0 0000 0200 0010 regs.a6 Function ar 2810 0x80x0 0000 0200 0011 regs.a7 Function ar 2811 0x80x0 0000 0200 0012 regs.s2 Callee save 2812 0x80x0 0000 0200 0013 regs.s3 Callee save 2813 0x80x0 0000 0200 0014 regs.s4 Callee save 2814 0x80x0 0000 0200 0015 regs.s5 Callee save 2815 0x80x0 0000 0200 0016 regs.s6 Callee save 2816 0x80x0 0000 0200 0017 regs.s7 Callee save 2817 0x80x0 0000 0200 0018 regs.s8 Callee save 2818 0x80x0 0000 0200 0019 regs.s9 Callee save 2819 0x80x0 0000 0200 001a regs.s10 Callee save 2820 0x80x0 0000 0200 001b regs.s11 Callee save 2821 0x80x0 0000 0200 001c regs.t3 Caller save 2822 0x80x0 0000 0200 001d regs.t4 Caller save 2823 0x80x0 0000 0200 001e regs.t5 Caller save 2824 0x80x0 0000 0200 001f regs.t6 Caller save 2825 0x80x0 0000 0200 0020 mode Privilege m 2826 ======================= ========= =========== 2827 2828 RISC-V csr registers represent the supervisor 2829 of a Guest VCPU and it has the following id b 2830 2831 0x8020 0000 03 <index into the kvm_riscv_cs 2832 0x8030 0000 03 <index into the kvm_riscv_cs 2833 2834 Following are the RISC-V csr registers: 2835 2836 ======================= ========= =========== 2837 Encoding Register Description 2838 ======================= ========= =========== 2839 0x80x0 0000 0300 0000 sstatus Supervisor 2840 0x80x0 0000 0300 0001 sie Supervisor 2841 0x80x0 0000 0300 0002 stvec Supervisor 2842 0x80x0 0000 0300 0003 sscratch Supervisor 2843 0x80x0 0000 0300 0004 sepc Supervisor 2844 0x80x0 0000 0300 0005 scause Supervisor 2845 0x80x0 0000 0300 0006 stval Supervisor 2846 0x80x0 0000 0300 0007 sip Supervisor 2847 0x80x0 0000 0300 0008 satp Supervisor 2848 ======================= ========= =========== 2849 2850 RISC-V timer registers represent the timer st 2851 the following id bit patterns:: 2852 2853 0x8030 0000 04 <index into the kvm_riscv_ti 2854 2855 Following are the RISC-V timer registers: 2856 2857 ======================= ========= =========== 2858 Encoding Register Description 2859 ======================= ========= =========== 2860 0x8030 0000 0400 0000 frequency Time base f 2861 0x8030 0000 0400 0001 time Time value 2862 0x8030 0000 0400 0002 compare Time compar 2863 0x8030 0000 0400 0003 state Time compar 2864 ======================= ========= =========== 2865 2866 RISC-V F-extension registers represent the si 2867 state of a Guest VCPU and it has the followin 2868 2869 0x8020 0000 05 <index into the __riscv_f_ex 2870 2871 Following are the RISC-V F-extension register 2872 2873 ======================= ========= =========== 2874 Encoding Register Description 2875 ======================= ========= =========== 2876 0x8020 0000 0500 0000 f[0] Floating po 2877 ... 2878 0x8020 0000 0500 001f f[31] Floating po 2879 0x8020 0000 0500 0020 fcsr Floating po 2880 ======================= ========= =========== 2881 2882 RISC-V D-extension registers represent the do 2883 state of a Guest VCPU and it has the followin 2884 2885 0x8020 0000 06 <index into the __riscv_d_ex 2886 0x8030 0000 06 <index into the __riscv_d_ex 2887 2888 Following are the RISC-V D-extension register 2889 2890 ======================= ========= =========== 2891 Encoding Register Description 2892 ======================= ========= =========== 2893 0x8030 0000 0600 0000 f[0] Floating po 2894 ... 2895 0x8030 0000 0600 001f f[31] Floating po 2896 0x8020 0000 0600 0020 fcsr Floating po 2897 ======================= ========= =========== 2898 2899 LoongArch registers are mapped using the lowe 2900 that is the register group type. 2901 2902 LoongArch csr registers are used to control g 2903 cpu, and they have the following id bit patte 2904 2905 0x9030 0000 0001 00 <reg:5> <sel:3> (64-b 2906 2907 LoongArch KVM control registers are used to i 2908 such as set vcpu counter or reset vcpu, and t 2909 2910 0x9030 0000 0002 <reg:16> 2911 2912 2913 4.69 KVM_GET_ONE_REG 2914 -------------------- 2915 2916 :Capability: KVM_CAP_ONE_REG 2917 :Architectures: all 2918 :Type: vcpu ioctl 2919 :Parameters: struct kvm_one_reg (in and out) 2920 :Returns: 0 on success, negative value on fai 2921 2922 Errors include: 2923 2924 ======== ================================== 2925 ENOENT no such register 2926 EINVAL invalid register ID, or no such re 2927 protected virtualization mode on s 2928 EPERM (arm64) register access not allowe 2929 ======== ================================== 2930 2931 (These error codes are indicative only: do no 2932 code being returned in a specific situation.) 2933 2934 This ioctl allows to receive the value of a s 2935 in a vcpu. The register to read is indicated 2936 kvm_one_reg struct passed in. On success, the 2937 at the memory location pointed to by "addr". 2938 2939 The list of registers accessible using this i 2940 list in 4.68. 2941 2942 2943 4.70 KVM_KVMCLOCK_CTRL 2944 ---------------------- 2945 2946 :Capability: KVM_CAP_KVMCLOCK_CTRL 2947 :Architectures: Any that implement pvclocks ( 2948 :Type: vcpu ioctl 2949 :Parameters: None 2950 :Returns: 0 on success, -1 on error 2951 2952 This ioctl sets a flag accessible to the gues 2953 vCPU has been paused by the host userspace. 2954 2955 The host will set a flag in the pvclock struc 2956 soft lockup watchdog. The flag is part of th 2957 shared between guest and host, specifically t 2958 field of the pvclock_vcpu_time_info structure 2959 the host and read/cleared exclusively by the 2960 checking and clearing the flag must be an ato 2961 load-link/store-conditional, or equivalent mu 2962 where the guest will clear the flag: when the 2963 itself or when a soft lockup is detected. Th 2964 after pausing the vcpu, but before it is resu 2965 2966 2967 4.71 KVM_SIGNAL_MSI 2968 ------------------- 2969 2970 :Capability: KVM_CAP_SIGNAL_MSI 2971 :Architectures: x86 arm64 2972 :Type: vm ioctl 2973 :Parameters: struct kvm_msi (in) 2974 :Returns: >0 on delivery, 0 if guest blocked 2975 2976 Directly inject a MSI message. Only valid wit 2977 MSI messages. 2978 2979 :: 2980 2981 struct kvm_msi { 2982 __u32 address_lo; 2983 __u32 address_hi; 2984 __u32 data; 2985 __u32 flags; 2986 __u32 devid; 2987 __u8 pad[12]; 2988 }; 2989 2990 flags: 2991 KVM_MSI_VALID_DEVID: devid contains a valid 2992 KVM_CAP_MSI_DEVID capability advertises the 2993 the device ID. If this capability is not a 2994 should never set the KVM_MSI_VALID_DEVID fl 2995 2996 If KVM_MSI_VALID_DEVID is set, devid contains 2997 for the device that wrote the MSI message. F 2998 BDF identifier in the lower 16 bits. 2999 3000 On x86, address_hi is ignored unless the KVM_ 3001 feature of KVM_CAP_X2APIC_API capability is e 3002 address_hi bits 31-8 provide bits 31-8 of the 3003 address_hi must be zero. 3004 3005 3006 4.71 KVM_CREATE_PIT2 3007 -------------------- 3008 3009 :Capability: KVM_CAP_PIT2 3010 :Architectures: x86 3011 :Type: vm ioctl 3012 :Parameters: struct kvm_pit_config (in) 3013 :Returns: 0 on success, -1 on error 3014 3015 Creates an in-kernel device model for the i82 3016 after enabling in-kernel irqchip support via 3017 parameters have to be passed:: 3018 3019 struct kvm_pit_config { 3020 __u32 flags; 3021 __u32 pad[15]; 3022 }; 3023 3024 Valid flags are:: 3025 3026 #define KVM_PIT_SPEAKER_DUMMY 1 /* emul 3027 3028 PIT timer interrupts may use a per-VM kernel 3029 exists, this thread will have a name of the f 3030 3031 kvm-pit/<owner-process-pid> 3032 3033 When running a guest with elevated priorities 3034 this thread may have to be adjusted according 3035 3036 This IOCTL replaces the obsolete KVM_CREATE_P 3037 3038 3039 4.72 KVM_GET_PIT2 3040 ----------------- 3041 3042 :Capability: KVM_CAP_PIT_STATE2 3043 :Architectures: x86 3044 :Type: vm ioctl 3045 :Parameters: struct kvm_pit_state2 (out) 3046 :Returns: 0 on success, -1 on error 3047 3048 Retrieves the state of the in-kernel PIT mode 3049 KVM_CREATE_PIT2. The state is returned in the 3050 3051 struct kvm_pit_state2 { 3052 struct kvm_pit_channel_state channels 3053 __u32 flags; 3054 __u32 reserved[9]; 3055 }; 3056 3057 Valid flags are:: 3058 3059 /* disable PIT in HPET legacy mode */ 3060 #define KVM_PIT_FLAGS_HPET_LEGACY 0x000 3061 /* speaker port data bit enabled */ 3062 #define KVM_PIT_FLAGS_SPEAKER_DATA_ON 0x000 3063 3064 This IOCTL replaces the obsolete KVM_GET_PIT. 3065 3066 3067 4.73 KVM_SET_PIT2 3068 ----------------- 3069 3070 :Capability: KVM_CAP_PIT_STATE2 3071 :Architectures: x86 3072 :Type: vm ioctl 3073 :Parameters: struct kvm_pit_state2 (in) 3074 :Returns: 0 on success, -1 on error 3075 3076 Sets the state of the in-kernel PIT model. On 3077 See KVM_GET_PIT2 for details on struct kvm_pi 3078 3079 This IOCTL replaces the obsolete KVM_SET_PIT. 3080 3081 3082 4.74 KVM_PPC_GET_SMMU_INFO 3083 -------------------------- 3084 3085 :Capability: KVM_CAP_PPC_GET_SMMU_INFO 3086 :Architectures: powerpc 3087 :Type: vm ioctl 3088 :Parameters: None 3089 :Returns: 0 on success, -1 on error 3090 3091 This populates and returns a structure descri 3092 the "Server" class MMU emulation supported by 3093 This can in turn be used by userspace to gene 3094 device-tree properties for the guest operatin 3095 3096 The structure contains some global informatio 3097 array of supported segment page sizes:: 3098 3099 struct kvm_ppc_smmu_info { 3100 __u64 flags; 3101 __u32 slb_size; 3102 __u32 pad; 3103 struct kvm_ppc_one_seg_page_size 3104 }; 3105 3106 The supported flags are: 3107 3108 - KVM_PPC_PAGE_SIZES_REAL: 3109 When that flag is set, guest page siz 3110 store page sizes. When not set, any p 3111 be used regardless of how they are ba 3112 3113 - KVM_PPC_1T_SEGMENTS 3114 The emulated MMU supports 1T segments 3115 standard 256M ones. 3116 3117 - KVM_PPC_NO_HASH 3118 This flag indicates that HPT guests a 3119 thus all guests must use radix MMU mo 3120 3121 The "slb_size" field indicates how many SLB e 3122 3123 The "sps" array contains 8 entries indicating 3124 page sizes for a segment in increasing order. 3125 as follow:: 3126 3127 struct kvm_ppc_one_seg_page_size { 3128 __u32 page_shift; /* Base page 3129 __u32 slb_enc; /* SLB encodi 3130 struct kvm_ppc_one_page_size enc[KVM_ 3131 }; 3132 3133 An entry with a "page_shift" of 0 is unused. 3134 organized in increasing order, a lookup can s 3135 such an entry. 3136 3137 The "slb_enc" field provides the encoding to 3138 page size. The bits are in positions such as 3139 be OR'ed into the "vsid" argument of the slbm 3140 3141 The "enc" array is a list which for each of t 3142 size provides the list of supported actual pa 3143 only larger or equal to the base page size), 3144 corresponding encoding in the hash PTE. Simil 3145 8 entries sorted by increasing sizes and an e 3146 is an empty entry and a terminator:: 3147 3148 struct kvm_ppc_one_page_size { 3149 __u32 page_shift; /* Page shift 3150 __u32 pte_enc; /* Encoding i 3151 }; 3152 3153 The "pte_enc" field provides a value that can 3154 PTE's RPN field (ie, it needs to be shifted l 3155 into the hash PTE second double word). 3156 3157 4.75 KVM_IRQFD 3158 -------------- 3159 3160 :Capability: KVM_CAP_IRQFD 3161 :Architectures: x86 s390 arm64 3162 :Type: vm ioctl 3163 :Parameters: struct kvm_irqfd (in) 3164 :Returns: 0 on success, -1 on error 3165 3166 Allows setting an eventfd to directly trigger 3167 kvm_irqfd.fd specifies the file descriptor to 3168 kvm_irqfd.gsi specifies the irqchip pin toggl 3169 an event is triggered on the eventfd, an inte 3170 the guest using the specified gsi pin. The i 3171 the KVM_IRQFD_FLAG_DEASSIGN flag, specifying 3172 and kvm_irqfd.gsi. 3173 3174 With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD suppor 3175 mechanism allowing emulation of level-trigger 3176 interrupts. When KVM_IRQFD_FLAG_RESAMPLE is 3177 additional eventfd in the kvm_irqfd.resamplef 3178 in resample mode, posting of an interrupt thr 3179 the specified gsi in the irqchip. When the i 3180 as from an EOI, the gsi is de-asserted and th 3181 kvm_irqfd.resamplefd. It is the user's respo 3182 the interrupt if the device making use of it 3183 Note that closing the resamplefd is not suffi 3184 irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only n 3185 and need not be specified with KVM_IRQFD_FLAG 3186 3187 On arm64, gsi routing being supported, the fo 3188 3189 - in case no routing entry is associated to t 3190 - in case the gsi is associated to an irqchip 3191 irqchip.pin + 32 corresponds to the injecte 3192 - in case the gsi is associated to an MSI rou 3193 message and device ID are translated into a 3194 to GICv3 ITS in-kernel emulation). 3195 3196 4.76 KVM_PPC_ALLOCATE_HTAB 3197 -------------------------- 3198 3199 :Capability: KVM_CAP_PPC_ALLOC_HTAB 3200 :Architectures: powerpc 3201 :Type: vm ioctl 3202 :Parameters: Pointer to u32 containing hash t 3203 :Returns: 0 on success, -1 on error 3204 3205 This requests the host kernel to allocate an 3206 guest using the PAPR paravirtualization inter 3207 anything if the kernel is configured to use t 3208 virtualization. Otherwise the capability doe 3209 returns an ENOTTY error. The rest of this de 3210 HV. 3211 3212 There must be no vcpus running when this ioct 3213 are, it will do nothing and return an EBUSY e 3214 3215 The parameter is a pointer to a 32-bit unsign 3216 containing the order (log base 2) of the desi 3217 table, which must be between 18 and 46. On s 3218 ioctl, the value will not be changed by the k 3219 3220 If no hash table has been allocated when any 3221 (with the KVM_RUN ioctl), the host kernel wil 3222 default-sized hash table (16 MB). 3223 3224 If this ioctl is called when a hash table has 3225 with a different order from the existing hash 3226 table will be freed and a new one allocated. 3227 called when a hash table has already been all 3228 as specified, the kernel will clear out the e 3229 all HPTEs). In either case, if the guest is 3230 real-mode area (VRMA) facility, the kernel wi 3231 HPTEs on the next KVM_RUN of any vcpu. 3232 3233 4.77 KVM_S390_INTERRUPT 3234 ----------------------- 3235 3236 :Capability: basic 3237 :Architectures: s390 3238 :Type: vm ioctl, vcpu ioctl 3239 :Parameters: struct kvm_s390_interrupt (in) 3240 :Returns: 0 on success, -1 on error 3241 3242 Allows to inject an interrupt to the guest. I 3243 (vm ioctl) or per cpu (vcpu ioctl), depending 3244 3245 Interrupt parameters are passed via kvm_s390_ 3246 3247 struct kvm_s390_interrupt { 3248 __u32 type; 3249 __u32 parm; 3250 __u64 parm64; 3251 }; 3252 3253 type can be one of the following: 3254 3255 KVM_S390_SIGP_STOP (vcpu) 3256 - sigp stop; optional flags in parm 3257 KVM_S390_PROGRAM_INT (vcpu) 3258 - program check; code in parm 3259 KVM_S390_SIGP_SET_PREFIX (vcpu) 3260 - sigp set prefix; prefix address in parm 3261 KVM_S390_RESTART (vcpu) 3262 - restart 3263 KVM_S390_INT_CLOCK_COMP (vcpu) 3264 - clock comparator interrupt 3265 KVM_S390_INT_CPU_TIMER (vcpu) 3266 - CPU timer interrupt 3267 KVM_S390_INT_VIRTIO (vm) 3268 - virtio external interrupt; external int 3269 parameters in parm and parm64 3270 KVM_S390_INT_SERVICE (vm) 3271 - sclp external interrupt; sclp parameter 3272 KVM_S390_INT_EMERGENCY (vcpu) 3273 - sigp emergency; source cpu in parm 3274 KVM_S390_INT_EXTERNAL_CALL (vcpu) 3275 - sigp external call; source cpu in parm 3276 KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) 3277 - compound value to indicate an 3278 I/O interrupt (ai - adapter interrupt; 3279 I/O interruption parameters in parm (su 3280 interruption subclass) 3281 KVM_S390_MCHK (vm, vcpu) 3282 - machine check interrupt; cr 14 bits in 3283 code in parm64 (note that machine check 3284 supported by this ioctl) 3285 3286 This is an asynchronous vcpu ioctl and can be 3287 3288 4.78 KVM_PPC_GET_HTAB_FD 3289 ------------------------ 3290 3291 :Capability: KVM_CAP_PPC_HTAB_FD 3292 :Architectures: powerpc 3293 :Type: vm ioctl 3294 :Parameters: Pointer to struct kvm_get_htab_f 3295 :Returns: file descriptor number (>= 0) on su 3296 3297 This returns a file descriptor that can be us 3298 entries in the guest's hashed page table (HPT 3299 initialize the HPT. The returned fd can only 3300 KVM_GET_HTAB_WRITE bit is set in the flags fi 3301 can only be read if that bit is clear. The a 3302 this:: 3303 3304 /* For KVM_PPC_GET_HTAB_FD */ 3305 struct kvm_get_htab_fd { 3306 __u64 flags; 3307 __u64 start_index; 3308 __u64 reserved[2]; 3309 }; 3310 3311 /* Values for kvm_get_htab_fd.flags */ 3312 #define KVM_GET_HTAB_BOLTED_ONLY ((__u 3313 #define KVM_GET_HTAB_WRITE ((__u 3314 3315 The 'start_index' field gives the index in th 3316 which to start reading. It is ignored when w 3317 3318 Reads on the fd will initially supply informa 3319 "interesting" HPT entries. Interesting entri 3320 bolted bit set, if the KVM_GET_HTAB_BOLTED_ON 3321 all entries. When the end of the HPT is reac 3322 return. If read() is called again on the fd, 3323 the beginning of the HPT, but will only retur 3324 changed since they were last read. 3325 3326 Data read or written is structured as a heade 3327 series of valid HPT entries (16 bytes) each. 3328 many valid HPT entries there are and how many 3329 the valid entries. The invalid entries are n 3330 in the stream. The header format is:: 3331 3332 struct kvm_get_htab_header { 3333 __u32 index; 3334 __u16 n_valid; 3335 __u16 n_invalid; 3336 }; 3337 3338 Writes to the fd create HPT entries starting 3339 header; first 'n_valid' valid entries with co 3340 written, then 'n_invalid' invalid entries, in 3341 valid entries found. 3342 3343 4.79 KVM_CREATE_DEVICE 3344 ---------------------- 3345 3346 :Capability: KVM_CAP_DEVICE_CTRL 3347 :Architectures: all 3348 :Type: vm ioctl 3349 :Parameters: struct kvm_create_device (in/out 3350 :Returns: 0 on success, -1 on error 3351 3352 Errors: 3353 3354 ====== =================================== 3355 ENODEV The device type is unknown or unsup 3356 EEXIST Device already created, and this ty 3357 be instantiated multiple times 3358 ====== =================================== 3359 3360 Other error conditions may be defined by in 3361 have their standard meanings. 3362 3363 Creates an emulated device in the kernel. Th 3364 in fd can be used with KVM_SET/GET/HAS_DEVICE 3365 3366 If the KVM_CREATE_DEVICE_TEST flag is set, on 3367 device type is supported (not necessarily whe 3368 in the current vm). 3369 3370 Individual devices should not define flags. 3371 for specifying any behavior that is not impli 3372 number. 3373 3374 :: 3375 3376 struct kvm_create_device { 3377 __u32 type; /* in: KVM_DEV_TYPE_x 3378 __u32 fd; /* out: device handle 3379 __u32 flags; /* in: KVM_CREATE_DEV 3380 }; 3381 3382 4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR 3383 -------------------------------------------- 3384 3385 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ 3386 KVM_CAP_VCPU_ATTRIBUTES for vcpu 3387 KVM_CAP_SYS_ATTRIBUTES for syste 3388 :Architectures: x86, arm64, s390 3389 :Type: device ioctl, vm ioctl, vcpu ioctl 3390 :Parameters: struct kvm_device_attr 3391 :Returns: 0 on success, -1 on error 3392 3393 Errors: 3394 3395 ===== =================================== 3396 ENXIO The group or attribute is unknown/u 3397 or hardware support is missing. 3398 EPERM The attribute cannot (currently) be 3399 (e.g. read-only attribute, or attri 3400 sense when the device is in a diffe 3401 ===== =================================== 3402 3403 Other error conditions may be defined by in 3404 3405 Gets/sets a specified piece of device configu 3406 semantics are device-specific. See individua 3407 the "devices" directory. As with ONE_REG, th 3408 transferred is defined by the particular attr 3409 3410 :: 3411 3412 struct kvm_device_attr { 3413 __u32 flags; /* no flags c 3414 __u32 group; /* device-def 3415 __u64 attr; /* group-defi 3416 __u64 addr; /* userspace 3417 }; 3418 3419 4.81 KVM_HAS_DEVICE_ATTR 3420 ------------------------ 3421 3422 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ 3423 KVM_CAP_VCPU_ATTRIBUTES for vcpu 3424 KVM_CAP_SYS_ATTRIBUTES for syste 3425 :Type: device ioctl, vm ioctl, vcpu ioctl 3426 :Parameters: struct kvm_device_attr 3427 :Returns: 0 on success, -1 on error 3428 3429 Errors: 3430 3431 ===== =================================== 3432 ENXIO The group or attribute is unknown/u 3433 or hardware support is missing. 3434 ===== =================================== 3435 3436 Tests whether a device supports a particular 3437 return indicates the attribute is implemented 3438 indicate that the attribute can be read or wr 3439 current state. "addr" is ignored. 3440 3441 .. _KVM_ARM_VCPU_INIT: 3442 3443 4.82 KVM_ARM_VCPU_INIT 3444 ---------------------- 3445 3446 :Capability: basic 3447 :Architectures: arm64 3448 :Type: vcpu ioctl 3449 :Parameters: struct kvm_vcpu_init (in) 3450 :Returns: 0 on success; -1 on error 3451 3452 Errors: 3453 3454 ====== ================================ 3455 EINVAL the target is unknown, or the co 3456 ENOENT a features bit specified is unkn 3457 ====== ================================ 3458 3459 This tells KVM what type of CPU to present to 3460 optional features it should have. This will 3461 registers to their initial values. If this i 3462 return ENOEXEC for that vcpu. 3463 3464 The initial values are defined as: 3465 - Processor state: 3466 * AArch64: EL1h, D, A, I and 3467 are cleared. 3468 * AArch32: SVC, A, I and F bi 3469 cleared. 3470 - General Purpose registers, includin 3471 - FPSIMD/NEON registers: set to 0 3472 - SVE registers: set to 0 3473 - System registers: Reset to their ar 3474 values as for a warm reset to EL1 ( 3475 3476 Note that because some registers reflect mach 3477 should be created before this ioctl is invoke 3478 3479 Userspace can call this function multiple tim 3480 after the vcpu has been run. This will reset 3481 state. All calls to this function after the i 3482 target and same set of feature flags, otherwi 3483 3484 Possible features: 3485 3486 - KVM_ARM_VCPU_POWER_OFF: Starts the 3487 Depends on KVM_CAP_ARM_PSCI. If no 3488 and execute guest code when KVM_RUN 3489 - KVM_ARM_VCPU_EL1_32BIT: Starts the 3490 Depends on KVM_CAP_ARM_EL1_32BIT (a 3491 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI 3492 backward compatible with v0.2) for 3493 Depends on KVM_CAP_ARM_PSCI_0_2. 3494 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 3495 Depends on KVM_CAP_ARM_PMU_V3. 3496 3497 - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enabl 3498 for arm64 only. 3499 Depends on KVM_CAP_ARM_PTRAUTH_ADDR 3500 If KVM_CAP_ARM_PTRAUTH_ADDRESS and 3501 both present, then both KVM_ARM_VCP 3502 KVM_ARM_VCPU_PTRAUTH_GENERIC must b 3503 requested. 3504 3505 - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enabl 3506 for arm64 only. 3507 Depends on KVM_CAP_ARM_PTRAUTH_GENE 3508 If KVM_CAP_ARM_PTRAUTH_ADDRESS and 3509 both present, then both KVM_ARM_VCP 3510 KVM_ARM_VCPU_PTRAUTH_GENERIC must b 3511 requested. 3512 3513 - KVM_ARM_VCPU_SVE: Enables SVE for t 3514 Depends on KVM_CAP_ARM_SVE. 3515 Requires KVM_ARM_VCPU_FINALIZE(KVM_ 3516 3517 * After KVM_ARM_VCPU_INIT: 3518 3519 - KVM_REG_ARM64_SVE_VLS may be 3520 initial value of this pseudo- 3521 vector lengths possible for a 3522 3523 * Before KVM_ARM_VCPU_FINALIZE(KVM 3524 3525 - KVM_RUN and KVM_GET_REG_LIST 3526 3527 - KVM_GET_ONE_REG and KVM_SET_O 3528 the scalable architectural SV 3529 KVM_REG_ARM64_SVE_ZREG(), KVM 3530 KVM_REG_ARM64_SVE_FFR; 3531 3532 - KVM_REG_ARM64_SVE_VLS may opt 3533 KVM_SET_ONE_REG, to modify th 3534 for the vcpu. 3535 3536 * After KVM_ARM_VCPU_FINALIZE(KVM_ 3537 3538 - the KVM_REG_ARM64_SVE_VLS pse 3539 no longer be written using KV 3540 3541 4.83 KVM_ARM_PREFERRED_TARGET 3542 ----------------------------- 3543 3544 :Capability: basic 3545 :Architectures: arm64 3546 :Type: vm ioctl 3547 :Parameters: struct kvm_vcpu_init (out) 3548 :Returns: 0 on success; -1 on error 3549 3550 Errors: 3551 3552 ====== ================================ 3553 ENODEV no preferred target available fo 3554 ====== ================================ 3555 3556 This queries KVM for preferred CPU target typ 3557 by KVM on underlying host. 3558 3559 The ioctl returns struct kvm_vcpu_init instan 3560 about preferred CPU target type and recommend 3561 kvm_vcpu_init->features bitmap returned will 3562 the preferred target recommends setting these 3563 not mandatory. 3564 3565 The information returned by this ioctl can be 3566 of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT 3567 VCPU matching underlying host. 3568 3569 3570 4.84 KVM_GET_REG_LIST 3571 --------------------- 3572 3573 :Capability: basic 3574 :Architectures: arm64, mips, riscv 3575 :Type: vcpu ioctl 3576 :Parameters: struct kvm_reg_list (in/out) 3577 :Returns: 0 on success; -1 on error 3578 3579 Errors: 3580 3581 ===== ================================ 3582 E2BIG the reg index list is too big to 3583 the user (the number required wi 3584 ===== ================================ 3585 3586 :: 3587 3588 struct kvm_reg_list { 3589 __u64 n; /* number of registers in re 3590 __u64 reg[0]; 3591 }; 3592 3593 This ioctl returns the guest registers that a 3594 KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. 3595 3596 3597 4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated) 3598 ----------------------------------------- 3599 3600 :Capability: KVM_CAP_ARM_SET_DEVICE_ADDR 3601 :Architectures: arm64 3602 :Type: vm ioctl 3603 :Parameters: struct kvm_arm_device_address (i 3604 :Returns: 0 on success, -1 on error 3605 3606 Errors: 3607 3608 ====== =================================== 3609 ENODEV The device id is unknown 3610 ENXIO Device not supported on current sys 3611 EEXIST Address already set 3612 E2BIG Address outside guest physical addr 3613 EBUSY Address overlaps with other device 3614 ====== =================================== 3615 3616 :: 3617 3618 struct kvm_arm_device_addr { 3619 __u64 id; 3620 __u64 addr; 3621 }; 3622 3623 Specify a device address in the guest's physi 3624 can access emulated or directly exposed devic 3625 to know about. The id field is an architectur 3626 specific device. 3627 3628 arm64 divides the id field into two parts, a 3629 address type id specific to the individual de 3630 3631 bits: | 63 ... 32 | 31 ... 3632 field: | 0x00000000 | devic 3633 3634 arm64 currently only require this when using 3635 support for the hardware VGIC features, using 3636 as the device id. When setting the base addr 3637 mapping of the VGIC virtual CPU and distribut 3638 must be called after calling KVM_CREATE_IRQCH 3639 KVM_RUN on any of the VCPUs. Calling this io 3640 base addresses will return -EEXIST. 3641 3642 Note, this IOCTL is deprecated and the more f 3643 should be used instead. 3644 3645 3646 4.86 KVM_PPC_RTAS_DEFINE_TOKEN 3647 ------------------------------ 3648 3649 :Capability: KVM_CAP_PPC_RTAS 3650 :Architectures: ppc 3651 :Type: vm ioctl 3652 :Parameters: struct kvm_rtas_token_args 3653 :Returns: 0 on success, -1 on error 3654 3655 Defines a token value for a RTAS (Run Time Ab 3656 service in order to allow it to be handled in 3657 argument struct gives the name of the service 3658 of a service that has a kernel-side implement 3659 value is non-zero, it will be associated with 3660 subsequent RTAS calls by the guest specifying 3661 handled by the kernel. If the token value is 3662 associated with the service will be forgotten 3663 calls by the guest for that service will be p 3664 handled. 3665 3666 4.87 KVM_SET_GUEST_DEBUG 3667 ------------------------ 3668 3669 :Capability: KVM_CAP_SET_GUEST_DEBUG 3670 :Architectures: x86, s390, ppc, arm64 3671 :Type: vcpu ioctl 3672 :Parameters: struct kvm_guest_debug (in) 3673 :Returns: 0 on success; -1 on error 3674 3675 :: 3676 3677 struct kvm_guest_debug { 3678 __u32 control; 3679 __u32 pad; 3680 struct kvm_guest_debug_arch arch; 3681 }; 3682 3683 Set up the processor specific debug registers 3684 handling guest debug events. There are two pa 3685 first a control bitfield indicates the type o 3686 when running. Common control bits are: 3687 3688 - KVM_GUESTDBG_ENABLE: guest debuggi 3689 - KVM_GUESTDBG_SINGLESTEP: the next run 3690 3691 The top 16 bits of the control field are arch 3692 flags which can include the following: 3693 3694 - KVM_GUESTDBG_USE_SW_BP: using softwar 3695 - KVM_GUESTDBG_USE_HW_BP: using hardwar 3696 - KVM_GUESTDBG_USE_HW: using hardwar 3697 - KVM_GUESTDBG_INJECT_DB: inject DB typ 3698 - KVM_GUESTDBG_INJECT_BP: inject BP typ 3699 - KVM_GUESTDBG_EXIT_PENDING: trigger an im 3700 - KVM_GUESTDBG_BLOCKIRQ: avoid injecti 3701 3702 For example KVM_GUESTDBG_USE_SW_BP indicates 3703 are enabled in memory so we need to ensure br 3704 correctly trapped and the KVM run loop exits 3705 running off into the normal guest vector. For 3706 we need to ensure the guest vCPUs architectur 3707 updated to the correct (supplied) values. 3708 3709 The second part of the structure is architect 3710 typically contains a set of debug registers. 3711 3712 For arm64 the number of debug registers is im 3713 can be determined by querying the KVM_CAP_GUE 3714 KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which 3715 indicating the number of supported registers. 3716 3717 For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP ca 3718 the single-step debug event (KVM_GUESTDBG_SIN 3719 3720 Also when supported, KVM_CAP_SET_GUEST_DEBUG2 3721 supported KVM_GUESTDBG_* bits in the control 3722 3723 When debug events exit the main run loop with 3724 KVM_EXIT_DEBUG with the kvm_debug_exit_arch p 3725 structure containing architecture specific de 3726 3727 4.88 KVM_GET_EMULATED_CPUID 3728 --------------------------- 3729 3730 :Capability: KVM_CAP_EXT_EMUL_CPUID 3731 :Architectures: x86 3732 :Type: system ioctl 3733 :Parameters: struct kvm_cpuid2 (in/out) 3734 :Returns: 0 on success, -1 on error 3735 3736 :: 3737 3738 struct kvm_cpuid2 { 3739 __u32 nent; 3740 __u32 flags; 3741 struct kvm_cpuid_entry2 entries[0]; 3742 }; 3743 3744 The member 'flags' is used for passing flags 3745 3746 :: 3747 3748 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 3749 #define KVM_CPUID_FLAG_STATEFUL_FUNC 3750 #define KVM_CPUID_FLAG_STATE_READ_NEXT 3751 3752 struct kvm_cpuid_entry2 { 3753 __u32 function; 3754 __u32 index; 3755 __u32 flags; 3756 __u32 eax; 3757 __u32 ebx; 3758 __u32 ecx; 3759 __u32 edx; 3760 __u32 padding[3]; 3761 }; 3762 3763 This ioctl returns x86 cpuid features which a 3764 kvm.Userspace can use the information returne 3765 which features are emulated by kvm instead of 3766 3767 Userspace invokes KVM_GET_EMULATED_CPUID by p 3768 structure with the 'nent' field indicating th 3769 the variable-size array 'entries'. If the num 3770 to describe the cpu capabilities, an error (E 3771 number is too high, the 'nent' field is adjus 3772 is returned. If the number is just right, the 3773 to the number of valid entries in the 'entrie 3774 filled. 3775 3776 The entries returned are the set CPUID bits o 3777 which kvm emulates, as returned by the CPUID 3778 or unsupported feature bits cleared. 3779 3780 Features like x2apic, for example, may not be 3781 but are exposed by kvm in KVM_GET_SUPPORTED_C 3782 emulated efficiently and thus not included he 3783 3784 The fields in each entry are defined as follo 3785 3786 function: 3787 the eax value used to obtain the ent 3788 index: 3789 the ecx value used to obtain the ent 3790 affected by ecx) 3791 flags: 3792 an OR of zero or more of the following: 3793 3794 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 3795 if the index field is valid 3796 3797 eax, ebx, ecx, edx: 3798 3799 the values returned by the cpuid ins 3800 this function/index combination 3801 3802 4.89 KVM_S390_MEM_OP 3803 -------------------- 3804 3805 :Capability: KVM_CAP_S390_MEM_OP, KVM_CAP_S39 3806 :Architectures: s390 3807 :Type: vm ioctl, vcpu ioctl 3808 :Parameters: struct kvm_s390_mem_op (in) 3809 :Returns: = 0 on success, 3810 < 0 on generic error (e.g. -EFAULT 3811 16 bit program exception code if th 3812 3813 Read or write data from/to the VM's memory. 3814 The KVM_CAP_S390_MEM_OP_EXTENSION capability 3815 supported. 3816 3817 Parameters are specified via the following st 3818 3819 struct kvm_s390_mem_op { 3820 __u64 gaddr; /* the guest 3821 __u64 flags; /* flags */ 3822 __u32 size; /* amount of 3823 __u32 op; /* type of op 3824 __u64 buf; /* buffer in 3825 union { 3826 struct { 3827 __u8 ar; /* th 3828 __u8 key; /* ac 3829 __u8 pad1[6]; /* ig 3830 __u64 old_addr; /* ig 3831 }; 3832 __u32 sida_offset; /* offset 3833 __u8 reserved[32]; /* ignored 3834 }; 3835 }; 3836 3837 The start address of the memory region has to 3838 field, and the length of the region in the "s 3839 be 0). The maximum value for "size" can be ob 3840 KVM_CAP_S390_MEM_OP capability. "buf" is the 3841 userspace application where the read data sho 3842 a read access, or where the data that should 3843 a write access. The "reserved" field is mean 3844 Reserved and unused values are ignored. Futur 3845 introduce new flags. 3846 3847 The type of operation is specified in the "op 3848 their behavior can be set in the "flags" fiel 3849 be set to 0. 3850 3851 Possible operations are: 3852 * ``KVM_S390_MEMOP_LOGICAL_READ`` 3853 * ``KVM_S390_MEMOP_LOGICAL_WRITE`` 3854 * ``KVM_S390_MEMOP_ABSOLUTE_READ`` 3855 * ``KVM_S390_MEMOP_ABSOLUTE_WRITE`` 3856 * ``KVM_S390_MEMOP_SIDA_READ`` 3857 * ``KVM_S390_MEMOP_SIDA_WRITE`` 3858 * ``KVM_S390_MEMOP_ABSOLUTE_CMPXCHG`` 3859 3860 Logical read/write: 3861 ^^^^^^^^^^^^^^^^^^^ 3862 3863 Access logical memory, i.e. translate the giv 3864 address given the state of the VCPU and use t 3865 the access. "ar" designates the access regist 3866 range is 0..15. 3867 Logical accesses are permitted for the VCPU i 3868 Logical accesses are permitted for non-protec 3869 3870 Supported flags: 3871 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` 3872 * ``KVM_S390_MEMOP_F_INJECT_EXCEPTION`` 3873 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3874 3875 The KVM_S390_MEMOP_F_CHECK_ONLY flag can be s 3876 corresponding memory access would cause an ac 3877 no actual access to the data in memory at the 3878 In this case, "buf" is unused and can be NULL 3879 3880 In case an access exception occurred during t 3881 in case of KVM_S390_MEMOP_F_CHECK_ONLY), the 3882 error number indicating the type of exception 3883 raised directly at the corresponding VCPU if 3884 KVM_S390_MEMOP_F_INJECT_EXCEPTION is set. 3885 On protection exceptions, unless specified ot 3886 translation-exception identifier (TEID) indic 3887 3888 If the KVM_S390_MEMOP_F_SKEY_PROTECTION flag 3889 protection is also in effect and may cause ex 3890 prohibited given the access key designated by 3891 KVM_S390_MEMOP_F_SKEY_PROTECTION is available 3892 is > 0. 3893 Since the accessed memory may span multiple p 3894 different storage keys, it is possible that a 3895 after memory has been modified. In this case, 3896 the TEID does not indicate suppression. 3897 3898 Absolute read/write: 3899 ^^^^^^^^^^^^^^^^^^^^ 3900 3901 Access absolute memory. This operation is int 3902 KVM_S390_MEMOP_F_SKEY_PROTECTION flag, to all 3903 the checks required for storage key protectio 3904 user space getting the storage keys, performi 3905 memory thereafter, which could lead to a dela 3906 Absolute accesses are permitted for the VM io 3907 has the KVM_S390_MEMOP_EXTENSION_CAP_BASE bit 3908 Currently absolute accesses are not permitted 3909 Absolute accesses are permitted for non-prote 3910 3911 Supported flags: 3912 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` 3913 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3914 3915 The semantics of the flags common with logica 3916 accesses. 3917 3918 Absolute cmpxchg: 3919 ^^^^^^^^^^^^^^^^^ 3920 3921 Perform cmpxchg on absolute guest memory. Int 3922 KVM_S390_MEMOP_F_SKEY_PROTECTION flag. 3923 Instead of doing an unconditional write, the 3924 location contains the value pointed to by "ol 3925 This is performed as an atomic cmpxchg with t 3926 parameter. "size" must be a power of two up t 3927 If the exchange did not take place because th 3928 old value, the value "old_addr" points to is 3929 User space can tell if an exchange took place 3930 occurred. The cmpxchg op is permitted for the 3931 KVM_CAP_S390_MEM_OP_EXTENSION has flag KVM_S3 3932 3933 Supported flags: 3934 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3935 3936 SIDA read/write: 3937 ^^^^^^^^^^^^^^^^ 3938 3939 Access the secure instruction data area which 3940 for instruction emulation for protected guest 3941 SIDA accesses are available if the KVM_CAP_S3 3942 SIDA accesses are permitted for the VCPU ioct 3943 SIDA accesses are permitted for protected gue 3944 3945 No flags are supported. 3946 3947 4.90 KVM_S390_GET_SKEYS 3948 ----------------------- 3949 3950 :Capability: KVM_CAP_S390_SKEYS 3951 :Architectures: s390 3952 :Type: vm ioctl 3953 :Parameters: struct kvm_s390_skeys 3954 :Returns: 0 on success, KVM_S390_GET_SKEYS_NO 3955 keys, negative value on error 3956 3957 This ioctl is used to get guest storage key v 3958 architecture. The ioctl takes parameters via 3959 3960 struct kvm_s390_skeys { 3961 __u64 start_gfn; 3962 __u64 count; 3963 __u64 skeydata_addr; 3964 __u32 flags; 3965 __u32 reserved[9]; 3966 }; 3967 3968 The start_gfn field is the number of the firs 3969 you want to get. 3970 3971 The count field is the number of consecutive 3972 whose storage keys to get. The count field mu 3973 allowed value is defined as KVM_S390_SKEYS_MA 3974 will cause the ioctl to return -EINVAL. 3975 3976 The skeydata_addr field is the address to a b 3977 bytes. This buffer will be filled with storag 3978 3979 4.91 KVM_S390_SET_SKEYS 3980 ----------------------- 3981 3982 :Capability: KVM_CAP_S390_SKEYS 3983 :Architectures: s390 3984 :Type: vm ioctl 3985 :Parameters: struct kvm_s390_skeys 3986 :Returns: 0 on success, negative value on err 3987 3988 This ioctl is used to set guest storage key v 3989 architecture. The ioctl takes parameters via 3990 See section on KVM_S390_GET_SKEYS for struct 3991 3992 The start_gfn field is the number of the firs 3993 you want to set. 3994 3995 The count field is the number of consecutive 3996 whose storage keys to get. The count field mu 3997 allowed value is defined as KVM_S390_SKEYS_MA 3998 will cause the ioctl to return -EINVAL. 3999 4000 The skeydata_addr field is the address to a b 4001 storage keys. Each byte in the buffer will be 4002 single frame starting at start_gfn for count 4003 4004 Note: If any architecturally invalid key valu 4005 the ioctl will return -EINVAL. 4006 4007 4.92 KVM_S390_IRQ 4008 ----------------- 4009 4010 :Capability: KVM_CAP_S390_INJECT_IRQ 4011 :Architectures: s390 4012 :Type: vcpu ioctl 4013 :Parameters: struct kvm_s390_irq (in) 4014 :Returns: 0 on success, -1 on error 4015 4016 Errors: 4017 4018 4019 ====== =================================== 4020 EINVAL interrupt type is invalid 4021 type is KVM_S390_SIGP_STOP and flag 4022 type is KVM_S390_INT_EXTERNAL_CALL 4023 than the maximum of VCPUs 4024 EBUSY type is KVM_S390_SIGP_SET_PREFIX an 4025 type is KVM_S390_SIGP_STOP and a st 4026 type is KVM_S390_INT_EXTERNAL_CALL 4027 is already pending 4028 ====== =================================== 4029 4030 Allows to inject an interrupt to the guest. 4031 4032 Using struct kvm_s390_irq as a parameter allo 4033 to inject additional payload which is not 4034 possible via KVM_S390_INTERRUPT. 4035 4036 Interrupt parameters are passed via kvm_s390_ 4037 4038 struct kvm_s390_irq { 4039 __u64 type; 4040 union { 4041 struct kvm_s390_io_info io; 4042 struct kvm_s390_ext_info ext; 4043 struct kvm_s390_pgm_info pgm; 4044 struct kvm_s390_emerg_info em 4045 struct kvm_s390_extcall_info 4046 struct kvm_s390_prefix_info p 4047 struct kvm_s390_stop_info sto 4048 struct kvm_s390_mchk_info mch 4049 char reserved[64]; 4050 } u; 4051 }; 4052 4053 type can be one of the following: 4054 4055 - KVM_S390_SIGP_STOP - sigp stop; parameter i 4056 - KVM_S390_PROGRAM_INT - program check; param 4057 - KVM_S390_SIGP_SET_PREFIX - sigp set prefix; 4058 - KVM_S390_RESTART - restart; no parameters 4059 - KVM_S390_INT_CLOCK_COMP - clock comparator 4060 - KVM_S390_INT_CPU_TIMER - CPU timer interrup 4061 - KVM_S390_INT_EMERGENCY - sigp emergency; pa 4062 - KVM_S390_INT_EXTERNAL_CALL - sigp external 4063 - KVM_S390_MCHK - machine check interrupt; pa 4064 4065 This is an asynchronous vcpu ioctl and can be 4066 4067 4.94 KVM_S390_GET_IRQ_STATE 4068 --------------------------- 4069 4070 :Capability: KVM_CAP_S390_IRQ_STATE 4071 :Architectures: s390 4072 :Type: vcpu ioctl 4073 :Parameters: struct kvm_s390_irq_state (out) 4074 :Returns: >= number of bytes copied into buff 4075 -EINVAL if buffer size is 0, 4076 -ENOBUFS if buffer size is too smal 4077 -EFAULT if the buffer address was i 4078 4079 This ioctl allows userspace to retrieve the c 4080 pending interrupts in a single buffer. Use ca 4081 and introspection. The parameter structure co 4082 userspace buffer and its length:: 4083 4084 struct kvm_s390_irq_state { 4085 __u64 buf; 4086 __u32 flags; /* will stay unus 4087 __u32 len; 4088 __u32 reserved[4]; /* will stay unus 4089 }; 4090 4091 Userspace passes in the above struct and for 4092 struct kvm_s390_irq is copied to the provided 4093 4094 The structure contains a flags and a reserved 4095 the kernel never checked for flags == 0 and Q 4096 reserved, these fields can not be used in the 4097 compatibility. 4098 4099 If -ENOBUFS is returned the buffer provided w 4100 may retry with a bigger buffer. 4101 4102 4.95 KVM_S390_SET_IRQ_STATE 4103 --------------------------- 4104 4105 :Capability: KVM_CAP_S390_IRQ_STATE 4106 :Architectures: s390 4107 :Type: vcpu ioctl 4108 :Parameters: struct kvm_s390_irq_state (in) 4109 :Returns: 0 on success, 4110 -EFAULT if the buffer address was i 4111 -EINVAL for an invalid buffer lengt 4112 -EBUSY if there were already interr 4113 errors occurring when actually inje 4114 interrupt. See KVM_S390_IRQ. 4115 4116 This ioctl allows userspace to set the comple 4117 interrupts currently pending for the vcpu. It 4118 interrupt state after a migration. The input 4119 containing a struct kvm_s390_irq_state:: 4120 4121 struct kvm_s390_irq_state { 4122 __u64 buf; 4123 __u32 flags; /* will stay unus 4124 __u32 len; 4125 __u32 reserved[4]; /* will stay unus 4126 }; 4127 4128 The restrictions for flags and reserved apply 4129 (see KVM_S390_GET_IRQ_STATE) 4130 4131 The userspace memory referenced by buf contai 4132 for each interrupt to be injected into the gu 4133 If one of the interrupts could not be injecte 4134 ioctl aborts. 4135 4136 len must be a multiple of sizeof(struct kvm_s 4137 and it must not exceed (max_vcpus + 32) * siz 4138 which is the maximum number of possibly pendi 4139 4140 4.96 KVM_SMI 4141 ------------ 4142 4143 :Capability: KVM_CAP_X86_SMM 4144 :Architectures: x86 4145 :Type: vcpu ioctl 4146 :Parameters: none 4147 :Returns: 0 on success, -1 on error 4148 4149 Queues an SMI on the thread's vcpu. 4150 4151 4.97 KVM_X86_SET_MSR_FILTER 4152 ---------------------------- 4153 4154 :Capability: KVM_CAP_X86_MSR_FILTER 4155 :Architectures: x86 4156 :Type: vm ioctl 4157 :Parameters: struct kvm_msr_filter 4158 :Returns: 0 on success, < 0 on error 4159 4160 :: 4161 4162 struct kvm_msr_filter_range { 4163 #define KVM_MSR_FILTER_READ (1 << 0) 4164 #define KVM_MSR_FILTER_WRITE (1 << 1) 4165 __u32 flags; 4166 __u32 nmsrs; /* number of msrs in bit 4167 __u32 base; /* MSR index the bitmap 4168 __u8 *bitmap; /* a 1 bit allows the o 4169 }; 4170 4171 #define KVM_MSR_FILTER_MAX_RANGES 16 4172 struct kvm_msr_filter { 4173 #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 4174 #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 4175 __u32 flags; 4176 struct kvm_msr_filter_range ranges[KV 4177 }; 4178 4179 flags values for ``struct kvm_msr_filter_rang 4180 4181 ``KVM_MSR_FILTER_READ`` 4182 4183 Filter read accesses to MSRs using the give 4184 indicates that read accesses should be deni 4185 a read for a particular MSR should be allow 4186 filter action. 4187 4188 ``KVM_MSR_FILTER_WRITE`` 4189 4190 Filter write accesses to MSRs using the giv 4191 indicates that write accesses should be den 4192 a write for a particular MSR should be allo 4193 filter action. 4194 4195 flags values for ``struct kvm_msr_filter``: 4196 4197 ``KVM_MSR_FILTER_DEFAULT_ALLOW`` 4198 4199 If no filter range matches an MSR index tha 4200 allow accesses to all MSRs by default. 4201 4202 ``KVM_MSR_FILTER_DEFAULT_DENY`` 4203 4204 If no filter range matches an MSR index tha 4205 deny accesses to all MSRs by default. 4206 4207 This ioctl allows userspace to define up to 1 4208 guest MSR accesses that would normally be all 4209 covered by a specific range, the "default" fi 4210 bitmap range covers MSRs from [base .. base+n 4211 4212 If an MSR access is denied by userspace, the 4213 whether or not KVM_CAP_X86_USER_SPACE_MSR's K 4214 enabled. If KVM_MSR_EXIT_REASON_FILTER is en 4215 on denied accesses, i.e. userspace effectivel 4216 KVM_MSR_EXIT_REASON_FILTER is not enabled, KV 4217 on denied accesses. Note, if an MSR access i 4218 load/stores during VMX transitions, KVM ignor 4219 See the below warning for full details. 4220 4221 If an MSR access is allowed by userspace, KVM 4222 the access in accordance with the vCPU model. 4223 inject a #GP if an access is allowed by users 4224 the MSR, or to follow architectural behavior 4225 4226 By default, KVM operates in KVM_MSR_FILTER_DE 4227 filters. 4228 4229 Calling this ioctl with an empty set of range 4230 filtering. In that mode, ``KVM_MSR_FILTER_DEF 4231 an error. 4232 4233 .. warning:: 4234 MSR accesses that are side effects of inst 4235 native) are not filtered as hardware does 4236 RDMSR and WRMSR, and KVM mimics that behav 4237 to avoid pointless divergence from hardwar 4238 SYSENTER reads the SYSENTER MSRs, etc. 4239 4240 MSRs that are loaded/stored via dedicated 4241 part of VM-Enter/VM-Exit emulation. 4242 4243 MSRs that are loaded/store via VMX's load/ 4244 of VM-Enter/VM-Exit emulation. If an MSR 4245 synthesizes a consistency check VM-Exit(EX 4246 MSR access is denied on VM-Exit, KVM synth 4247 extends Intel's architectural list of MSRs 4248 the VM-Enter/VM-Exit MSR list. It is plat 4249 to communicate any such restrictions to th 4250 4251 x2APIC MSR accesses cannot be filtered (KV 4252 cover any x2APIC MSRs). 4253 4254 Note, invoking this ioctl while a vCPU is run 4255 KVM does guarantee that vCPUs will see either 4256 filter, e.g. MSRs with identical settings in 4257 have deterministic behavior. 4258 4259 Similarly, if userspace wishes to intercept o 4260 KVM_MSR_EXIT_REASON_FILTER must be enabled be 4261 left enabled until after all filters are deac 4262 result in KVM injecting a #GP instead of exit 4263 4264 4.98 KVM_CREATE_SPAPR_TCE_64 4265 ---------------------------- 4266 4267 :Capability: KVM_CAP_SPAPR_TCE_64 4268 :Architectures: powerpc 4269 :Type: vm ioctl 4270 :Parameters: struct kvm_create_spapr_tce_64 ( 4271 :Returns: file descriptor for manipulating th 4272 4273 This is an extension for KVM_CAP_SPAPR_TCE wh 4274 windows, described in 4.62 KVM_CREATE_SPAPR_T 4275 4276 This capability uses extended struct in ioctl 4277 4278 /* for KVM_CAP_SPAPR_TCE_64 */ 4279 struct kvm_create_spapr_tce_64 { 4280 __u64 liobn; 4281 __u32 page_shift; 4282 __u32 flags; 4283 __u64 offset; /* in pages */ 4284 __u64 size; /* in pages */ 4285 }; 4286 4287 The aim of extension is to support an additio 4288 a variable page size. 4289 KVM_CREATE_SPAPR_TCE_64 receives a 64bit wind 4290 a bus offset of the corresponding DMA window, 4291 of IOMMU pages. 4292 4293 @flags are not used at the moment. 4294 4295 The rest of functionality is identical to KVM 4296 4297 4.99 KVM_REINJECT_CONTROL 4298 ------------------------- 4299 4300 :Capability: KVM_CAP_REINJECT_CONTROL 4301 :Architectures: x86 4302 :Type: vm ioctl 4303 :Parameters: struct kvm_reinject_control (in) 4304 :Returns: 0 on success, 4305 -EFAULT if struct kvm_reinject_contr 4306 -ENXIO if KVM_CREATE_PIT or KVM_CREA 4307 4308 i8254 (PIT) has two modes, reinject and !rein 4309 where KVM queues elapsed i8254 ticks and moni 4310 vector(s) that i8254 injects. Reinject mode 4311 interrupt whenever there isn't a pending inte 4312 !reinject mode injects an interrupt as soon a 4313 4314 :: 4315 4316 struct kvm_reinject_control { 4317 __u8 pit_reinject; 4318 __u8 reserved[31]; 4319 }; 4320 4321 pit_reinject = 0 (!reinject mode) is recommen 4322 operating system that uses the PIT for timing 4323 4324 4.100 KVM_PPC_CONFIGURE_V3_MMU 4325 ------------------------------ 4326 4327 :Capability: KVM_CAP_PPC_MMU_RADIX or KVM_CAP 4328 :Architectures: ppc 4329 :Type: vm ioctl 4330 :Parameters: struct kvm_ppc_mmuv3_cfg (in) 4331 :Returns: 0 on success, 4332 -EFAULT if struct kvm_ppc_mmuv3_cfg 4333 -EINVAL if the configuration is inva 4334 4335 This ioctl controls whether the guest will us 4336 page table) translation, and sets the pointer 4337 the guest. 4338 4339 :: 4340 4341 struct kvm_ppc_mmuv3_cfg { 4342 __u64 flags; 4343 __u64 process_table; 4344 }; 4345 4346 There are two bits that can be set in flags; 4347 KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if 4348 to use radix tree translation, and if clear, 4349 KVM_PPC_MMUV3_GTSE, if set and if KVM permits 4350 to be able to use the global TLB and SLB inva 4351 if clear, the guest may not use these instruc 4352 4353 The process_table field specifies the address 4354 process table, which is in the guest's space. 4355 as the second doubleword of the partition tab 4356 the Power ISA V3.00, Book III section 5.7.6.1 4357 4358 4.101 KVM_PPC_GET_RMMU_INFO 4359 --------------------------- 4360 4361 :Capability: KVM_CAP_PPC_MMU_RADIX 4362 :Architectures: ppc 4363 :Type: vm ioctl 4364 :Parameters: struct kvm_ppc_rmmu_info (out) 4365 :Returns: 0 on success, 4366 -EFAULT if struct kvm_ppc_rmmu_info 4367 -EINVAL if no useful information can 4368 4369 This ioctl returns a structure containing two 4370 containing supported radix tree geometries, a 4371 page sizes to put in the "AP" (actual page si 4372 (TLB invalidate entry) instruction. 4373 4374 :: 4375 4376 struct kvm_ppc_rmmu_info { 4377 struct kvm_ppc_radix_geom { 4378 __u8 page_shift; 4379 __u8 level_bits[4]; 4380 __u8 pad[3]; 4381 } geometries[8]; 4382 __u32 ap_encodings[8]; 4383 }; 4384 4385 The geometries[] field gives up to 8 supporte 4386 radix page table, in terms of the log base 2 4387 size, and the number of bits indexed at each 4388 the PTE level up to the PGD level in that ord 4389 will have 0 in the page_shift field. 4390 4391 The ap_encodings gives the supported page siz 4392 encodings, encoded with the AP value in the t 4393 base 2 of the page size in the bottom 6 bits. 4394 4395 4.102 KVM_PPC_RESIZE_HPT_PREPARE 4396 -------------------------------- 4397 4398 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4399 :Architectures: powerpc 4400 :Type: vm ioctl 4401 :Parameters: struct kvm_ppc_resize_hpt (in) 4402 :Returns: 0 on successful completion, 4403 >0 if a new HPT is being prepared, t 4404 number of milliseconds until prepara 4405 -EFAULT if struct kvm_reinject_contr 4406 -EINVAL if the supplied shift or fla 4407 -ENOMEM if unable to allocate the ne 4408 4409 Used to implement the PAPR extension for runt 4410 Hashed Page Table (HPT). Specifically this s 4411 the preparation of a new potential HPT for th 4412 implementing the H_RESIZE_HPT_PREPARE hyperca 4413 4414 :: 4415 4416 struct kvm_ppc_resize_hpt { 4417 __u64 flags; 4418 __u32 shift; 4419 __u32 pad; 4420 }; 4421 4422 If called with shift > 0 when there is no pen 4423 this begins preparation of a new pending HPT 4424 It then returns a positive integer with the e 4425 milliseconds until preparation is complete. 4426 4427 If called when there is a pending HPT whose s 4428 requested in the parameters, discards the exi 4429 creates a new one as above. 4430 4431 If called when there is a pending HPT of the 4432 4433 * If preparation of the pending HPT is alre 4434 * If preparation of the pending HPT has fai 4435 code, then discard the pending HPT. 4436 * If preparation of the pending HPT is stil 4437 estimated number of milliseconds until pr 4438 4439 If called with shift == 0, discards any curre 4440 returns 0 (i.e. cancels any in-progress prepa 4441 4442 flags is reserved for future expansion, curre 4443 flags will result in an -EINVAL. 4444 4445 Normally this will be called repeatedly with 4446 it returns <= 0. The first call will initiat 4447 ones will monitor preparation until it comple 4448 4449 4.103 KVM_PPC_RESIZE_HPT_COMMIT 4450 ------------------------------- 4451 4452 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4453 :Architectures: powerpc 4454 :Type: vm ioctl 4455 :Parameters: struct kvm_ppc_resize_hpt (in) 4456 :Returns: 0 on successful completion, 4457 -EFAULT if struct kvm_reinject_contr 4458 -EINVAL if the supplied shift or fla 4459 -ENXIO is there is no pending HPT, o 4460 have the requested size, 4461 -EBUSY if the pending HPT is not ful 4462 -ENOSPC if there was a hash collisio 4463 HPT entries to the new HPT, 4464 -EIO on other error conditions 4465 4466 Used to implement the PAPR extension for runt 4467 Hashed Page Table (HPT). Specifically this r 4468 transferred to working with the new HPT, esse 4469 H_RESIZE_HPT_COMMIT hypercall. 4470 4471 :: 4472 4473 struct kvm_ppc_resize_hpt { 4474 __u64 flags; 4475 __u32 shift; 4476 __u32 pad; 4477 }; 4478 4479 This should only be called after KVM_PPC_RESI 4480 returned 0 with the same parameters. In othe 4481 KVM_PPC_RESIZE_HPT_COMMIT will return an erro 4482 -EBUSY, though others may be possible if the 4483 but failed). 4484 4485 This will have undefined effects on the guest 4486 placed itself in a quiescent state where no v 4487 memory accesses. 4488 4489 On successful completion, the pending HPT wil 4490 HPT and the previous HPT will be discarded. 4491 4492 On failure, the guest will still be operating 4493 4494 4.104 KVM_X86_GET_MCE_CAP_SUPPORTED 4495 ----------------------------------- 4496 4497 :Capability: KVM_CAP_MCE 4498 :Architectures: x86 4499 :Type: system ioctl 4500 :Parameters: u64 mce_cap (out) 4501 :Returns: 0 on success, -1 on error 4502 4503 Returns supported MCE capabilities. The u64 m 4504 has the same format as the MSR_IA32_MCG_CAP r 4505 capabilities will have the corresponding bits 4506 4507 4.105 KVM_X86_SETUP_MCE 4508 ----------------------- 4509 4510 :Capability: KVM_CAP_MCE 4511 :Architectures: x86 4512 :Type: vcpu ioctl 4513 :Parameters: u64 mcg_cap (in) 4514 :Returns: 0 on success, 4515 -EFAULT if u64 mcg_cap cannot be rea 4516 -EINVAL if the requested number of b 4517 -EINVAL if requested MCE capability 4518 4519 Initializes MCE support for use. The u64 mcg_ 4520 has the same format as the MSR_IA32_MCG_CAP r 4521 specifies which capabilities should be enable 4522 supported number of error-reporting banks can 4523 checking for KVM_CAP_MCE. The supported capab 4524 retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. 4525 4526 4.106 KVM_X86_SET_MCE 4527 --------------------- 4528 4529 :Capability: KVM_CAP_MCE 4530 :Architectures: x86 4531 :Type: vcpu ioctl 4532 :Parameters: struct kvm_x86_mce (in) 4533 :Returns: 0 on success, 4534 -EFAULT if struct kvm_x86_mce cannot 4535 -EINVAL if the bank number is invali 4536 -EINVAL if VAL bit is not set in sta 4537 4538 Inject a machine check error (MCE) into the g 4539 parameter is:: 4540 4541 struct kvm_x86_mce { 4542 __u64 status; 4543 __u64 addr; 4544 __u64 misc; 4545 __u64 mcg_status; 4546 __u8 bank; 4547 __u8 pad1[7]; 4548 __u64 pad2[3]; 4549 }; 4550 4551 If the MCE being reported is an uncorrected e 4552 inject it as an MCE exception into the guest. 4553 MCG_STATUS register reports that an MCE is in 4554 causes an KVM_EXIT_SHUTDOWN vmexit. 4555 4556 Otherwise, if the MCE is a corrected error, K 4557 store it in the corresponding bank (provided 4558 not holding a previously reported uncorrected 4559 4560 4.107 KVM_S390_GET_CMMA_BITS 4561 ---------------------------- 4562 4563 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4564 :Architectures: s390 4565 :Type: vm ioctl 4566 :Parameters: struct kvm_s390_cmma_log (in, ou 4567 :Returns: 0 on success, a negative value on e 4568 4569 Errors: 4570 4571 ====== ================================ 4572 ENOMEM not enough memory can be allocat 4573 ENXIO if CMMA is not enabled 4574 EINVAL if KVM_S390_CMMA_PEEK is not set 4575 EINVAL if KVM_S390_CMMA_PEEK is not set 4576 disabled (and thus migration mod 4577 EFAULT if the userspace address is inva 4578 present for the addresses (e.g. 4579 ====== ================================ 4580 4581 This ioctl is used to get the values of the C 4582 architecture. It is meant to be used in two s 4583 4584 - During live migration to save the CMMA valu 4585 to be enabled via the KVM_REQ_START_MIGRATI 4586 - To non-destructively peek at the CMMA value 4587 KVM_S390_CMMA_PEEK set. 4588 4589 The ioctl takes parameters via the kvm_s390_c 4590 values are written to a buffer whose location 4591 member in the kvm_s390_cmma_log struct. The 4592 also updated as needed. 4593 4594 Each CMMA value takes up one byte. 4595 4596 :: 4597 4598 struct kvm_s390_cmma_log { 4599 __u64 start_gfn; 4600 __u32 count; 4601 __u32 flags; 4602 union { 4603 __u64 remaining; 4604 __u64 mask; 4605 }; 4606 __u64 values; 4607 }; 4608 4609 start_gfn is the number of the first guest fr 4610 to be retrieved, 4611 4612 count is the length of the buffer in bytes, 4613 4614 values points to the buffer where the result 4615 4616 If count is greater than KVM_S390_SKEYS_MAX, 4617 KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re- 4618 other ioctls. 4619 4620 The result is written in the buffer pointed t 4621 the values of the input parameter are updated 4622 4623 Depending on the flags, different actions are 4624 supported flag so far is KVM_S390_CMMA_PEEK. 4625 4626 The default behaviour if KVM_S390_CMMA_PEEK i 4627 start_gfn will indicate the first page frame 4628 It is not necessarily the same as the one pas 4629 are skipped. 4630 4631 count will indicate the number of bytes actua 4632 It can (and very often will) be smaller than 4633 buffer is only filled until 16 bytes of clean 4634 are then not copied in the buffer). Since a C 4635 the base address and the length, for a total 4636 back some clean data if there is some dirty d 4637 the size of the clean data does not exceed th 4638 allows to minimize the amount of data to be s 4639 the network at the expense of more roundtrips 4640 invocation of the ioctl will skip over all th 4641 potentially more than just the 16 bytes we fo 4642 4643 If KVM_S390_CMMA_PEEK is set: 4644 the existing storage attributes are read even 4645 mode, and no other action is performed; 4646 4647 the output start_gfn will be equal to the inp 4648 4649 the output count will be equal to the input c 4650 memory has been reached. 4651 4652 In both cases: 4653 the field "remaining" will indicate the total 4654 still remaining, or 0 if KVM_S390_CMMA_PEEK i 4655 not enabled. 4656 4657 mask is unused. 4658 4659 values points to the userspace buffer where t 4660 4661 4.108 KVM_S390_SET_CMMA_BITS 4662 ---------------------------- 4663 4664 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4665 :Architectures: s390 4666 :Type: vm ioctl 4667 :Parameters: struct kvm_s390_cmma_log (in) 4668 :Returns: 0 on success, a negative value on e 4669 4670 This ioctl is used to set the values of the C 4671 architecture. It is meant to be used during l 4672 the CMMA values, but there are no restriction 4673 The ioctl takes parameters via the kvm_s390_c 4674 Each CMMA value takes up one byte. 4675 4676 :: 4677 4678 struct kvm_s390_cmma_log { 4679 __u64 start_gfn; 4680 __u32 count; 4681 __u32 flags; 4682 union { 4683 __u64 remaining; 4684 __u64 mask; 4685 }; 4686 __u64 values; 4687 }; 4688 4689 start_gfn indicates the starting guest frame 4690 4691 count indicates how many values are to be con 4692 4693 flags is not used and must be 0. 4694 4695 mask indicates which PGSTE bits are to be con 4696 4697 remaining is not used. 4698 4699 values points to the buffer in userspace wher 4700 4701 This ioctl can fail with -ENOMEM if not enoug 4702 complete the task, with -ENXIO if CMMA is not 4703 the count field is too large (e.g. more than 4704 if the flags field was not 0, with -EFAULT if 4705 invalid, if invalid pages are written to (e.g 4706 or if no page table is present for the addres 4707 hugepages). 4708 4709 4.109 KVM_PPC_GET_CPU_CHAR 4710 -------------------------- 4711 4712 :Capability: KVM_CAP_PPC_GET_CPU_CHAR 4713 :Architectures: powerpc 4714 :Type: vm ioctl 4715 :Parameters: struct kvm_ppc_cpu_char (out) 4716 :Returns: 0 on successful completion, 4717 -EFAULT if struct kvm_ppc_cpu_char c 4718 4719 This ioctl gives userspace information about 4720 of the CPU relating to speculative execution 4721 possible information leakage resulting from s 4722 CVE-2017-5715, CVE-2017-5753 and CVE-2017-575 4723 returned in struct kvm_ppc_cpu_char, which lo 4724 4725 struct kvm_ppc_cpu_char { 4726 __u64 character; /* ch 4727 __u64 behaviour; /* re 4728 __u64 character_mask; /* va 4729 __u64 behaviour_mask; /* va 4730 }; 4731 4732 For extensibility, the character_mask and beh 4733 indicate which bits of character and behaviou 4734 the kernel. If the set of defined bits is ex 4735 userspace will be able to tell whether it is 4736 knows about the new bits. 4737 4738 The character field describes attributes of t 4739 with preventing inadvertent information discl 4740 whether there is an instruction to flash-inva 4741 (ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether 4742 to a mode where entries can only be used by t 4743 them, whether the bcctr[l] instruction preven 4744 whether a speculation barrier instruction (or 4745 4746 The behaviour field describes actions that so 4747 prevent inadvertent information disclosure, a 4748 vulnerabilities the hardware is subject to; s 4749 L1 data cache should be flushed when returnin 4750 kernel, and whether a speculation barrier sho 4751 array bounds check and the array access. 4752 4753 These fields use the same bit definitions as 4754 H_GET_CPU_CHARACTERISTICS hypercall. 4755 4756 4.110 KVM_MEMORY_ENCRYPT_OP 4757 --------------------------- 4758 4759 :Capability: basic 4760 :Architectures: x86 4761 :Type: vm 4762 :Parameters: an opaque platform specific stru 4763 :Returns: 0 on success; -1 on error 4764 4765 If the platform supports creating encrypted V 4766 for issuing platform-specific memory encrypti 4767 encrypted VMs. 4768 4769 Currently, this ioctl is used for issuing Sec 4770 (SEV) commands on AMD Processors. The SEV com 4771 Documentation/virt/kvm/x86/amd-memory-encrypt 4772 4773 4.111 KVM_MEMORY_ENCRYPT_REG_REGION 4774 ----------------------------------- 4775 4776 :Capability: basic 4777 :Architectures: x86 4778 :Type: system 4779 :Parameters: struct kvm_enc_region (in) 4780 :Returns: 0 on success; -1 on error 4781 4782 This ioctl can be used to register a guest me 4783 contain encrypted data (e.g. guest RAM, SMRAM 4784 4785 It is used in the SEV-enabled guest. When enc 4786 memory region may contain encrypted data. The 4787 engine uses a tweak such that two identical p 4788 different locations will have differing ciphe 4789 moving ciphertext of those pages will not res 4790 swapped. So relocating (or migrating) physica 4791 guest will require some additional steps. 4792 4793 Note: The current SEV key management spec doe 4794 swap or migrate (move) ciphertext pages. Henc 4795 memory region registered with the ioctl. 4796 4797 4.112 KVM_MEMORY_ENCRYPT_UNREG_REGION 4798 ------------------------------------- 4799 4800 :Capability: basic 4801 :Architectures: x86 4802 :Type: system 4803 :Parameters: struct kvm_enc_region (in) 4804 :Returns: 0 on success; -1 on error 4805 4806 This ioctl can be used to unregister the gues 4807 with KVM_MEMORY_ENCRYPT_REG_REGION ioctl abov 4808 4809 4.113 KVM_HYPERV_EVENTFD 4810 ------------------------ 4811 4812 :Capability: KVM_CAP_HYPERV_EVENTFD 4813 :Architectures: x86 4814 :Type: vm ioctl 4815 :Parameters: struct kvm_hyperv_eventfd (in) 4816 4817 This ioctl (un)registers an eventfd to receiv 4818 the specified Hyper-V connection id through t 4819 causing a user exit. SIGNAL_EVENT hypercall 4820 (bits 24-31) still triggers a KVM_EXIT_HYPERV 4821 4822 :: 4823 4824 struct kvm_hyperv_eventfd { 4825 __u32 conn_id; 4826 __s32 fd; 4827 __u32 flags; 4828 __u32 padding[3]; 4829 }; 4830 4831 The conn_id field should fit within 24 bits:: 4832 4833 #define KVM_HYPERV_CONN_ID_MASK 4834 4835 The acceptable values for the flags field are 4836 4837 #define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 4838 4839 :Returns: 0 on success, 4840 -EINVAL if conn_id or flags is outs 4841 -ENOENT on deassign if the conn_id 4842 -EEXIST on assign if the conn_id is 4843 4844 4.114 KVM_GET_NESTED_STATE 4845 -------------------------- 4846 4847 :Capability: KVM_CAP_NESTED_STATE 4848 :Architectures: x86 4849 :Type: vcpu ioctl 4850 :Parameters: struct kvm_nested_state (in/out) 4851 :Returns: 0 on success, -1 on error 4852 4853 Errors: 4854 4855 ===== ================================ 4856 E2BIG the total state size exceeds the 4857 the user; the size required will 4858 ===== ================================ 4859 4860 :: 4861 4862 struct kvm_nested_state { 4863 __u16 flags; 4864 __u16 format; 4865 __u32 size; 4866 4867 union { 4868 struct kvm_vmx_nested_state_h 4869 struct kvm_svm_nested_state_h 4870 4871 /* Pad the header to 128 byte 4872 __u8 pad[120]; 4873 } hdr; 4874 4875 union { 4876 struct kvm_vmx_nested_state_d 4877 struct kvm_svm_nested_state_d 4878 } data; 4879 }; 4880 4881 #define KVM_STATE_NESTED_GUEST_MODE 4882 #define KVM_STATE_NESTED_RUN_PENDING 4883 #define KVM_STATE_NESTED_EVMCS 4884 4885 #define KVM_STATE_NESTED_FORMAT_VMX 4886 #define KVM_STATE_NESTED_FORMAT_SVM 4887 4888 #define KVM_STATE_NESTED_VMX_VMCS_SIZE 4889 4890 #define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 4891 #define KVM_STATE_NESTED_VMX_SMM_VMXON 4892 4893 #define KVM_STATE_VMX_PREEMPTION_TIMER_DEAD 4894 4895 struct kvm_vmx_nested_state_hdr { 4896 __u64 vmxon_pa; 4897 __u64 vmcs12_pa; 4898 4899 struct { 4900 __u16 flags; 4901 } smm; 4902 4903 __u32 flags; 4904 __u64 preemption_timer_deadline; 4905 }; 4906 4907 struct kvm_vmx_nested_state_data { 4908 __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS 4909 __u8 shadow_vmcs12[KVM_STATE_NESTED_V 4910 }; 4911 4912 This ioctl copies the vcpu's nested virtualiz 4913 userspace. 4914 4915 The maximum size of the state can be retrieve 4916 to the KVM_CHECK_EXTENSION ioctl(). 4917 4918 4.115 KVM_SET_NESTED_STATE 4919 -------------------------- 4920 4921 :Capability: KVM_CAP_NESTED_STATE 4922 :Architectures: x86 4923 :Type: vcpu ioctl 4924 :Parameters: struct kvm_nested_state (in) 4925 :Returns: 0 on success, -1 on error 4926 4927 This copies the vcpu's kvm_nested_state struc 4928 For the definition of struct kvm_nested_state 4929 4930 4.116 KVM_(UN)REGISTER_COALESCED_MMIO 4931 ------------------------------------- 4932 4933 :Capability: KVM_CAP_COALESCED_MMIO (for coal 4934 KVM_CAP_COALESCED_PIO (for coale 4935 :Architectures: all 4936 :Type: vm ioctl 4937 :Parameters: struct kvm_coalesced_mmio_zone 4938 :Returns: 0 on success, < 0 on error 4939 4940 Coalesced I/O is a performance optimization t 4941 register write emulation so that userspace ex 4942 typically used to reduce the overhead of emul 4943 hardware registers. 4944 4945 When a hardware register is configured for co 4946 do not exit to userspace and their value is r 4947 that is shared between kernel and userspace. 4948 4949 Coalesced I/O is used if one or more write ac 4950 register can be deferred until a read or a wr 4951 register on the same device. This last acces 4952 userspace will process accesses from the ring 4953 it. That will avoid exiting to userspace on r 4954 4955 Coalesced pio is based on coalesced mmio. The 4956 between coalesced mmio and pio except that co 4957 to I/O ports. 4958 4959 4.117 KVM_CLEAR_DIRTY_LOG (vm ioctl) 4960 ------------------------------------ 4961 4962 :Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT 4963 :Architectures: x86, arm64, mips 4964 :Type: vm ioctl 4965 :Parameters: struct kvm_clear_dirty_log (in) 4966 :Returns: 0 on success, -1 on error 4967 4968 :: 4969 4970 /* for KVM_CLEAR_DIRTY_LOG */ 4971 struct kvm_clear_dirty_log { 4972 __u32 slot; 4973 __u32 num_pages; 4974 __u64 first_page; 4975 union { 4976 void __user *dirty_bitmap; /* 4977 __u64 padding; 4978 }; 4979 }; 4980 4981 The ioctl clears the dirty status of pages in 4982 the bitmap that is passed in struct kvm_clear 4983 field. Bit 0 of the bitmap corresponds to pa 4984 memory slot, and num_pages is the size in bit 4985 first_page must be a multiple of 64; num_page 4986 64 unless first_page + num_pages is the size 4987 bit that is set in the input bitmap, the corr 4988 in KVM's dirty bitmap, and dirty tracking is 4989 (for example via write-protection, or by clea 4990 a page table entry). 4991 4992 If KVM_CAP_MULTI_ADDRESS_SPACE is available, 4993 the address space for which you want to clear 4994 KVM_SET_USER_MEMORY_REGION for details on the 4995 4996 This ioctl is mostly useful when KVM_CAP_MANU 4997 is enabled; for more information, see the des 4998 However, it can always be used as long as KVM 4999 that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is pre 5000 5001 4.118 KVM_GET_SUPPORTED_HV_CPUID 5002 -------------------------------- 5003 5004 :Capability: KVM_CAP_HYPERV_CPUID (vcpu), KVM 5005 :Architectures: x86 5006 :Type: system ioctl, vcpu ioctl 5007 :Parameters: struct kvm_cpuid2 (in/out) 5008 :Returns: 0 on success, -1 on error 5009 5010 :: 5011 5012 struct kvm_cpuid2 { 5013 __u32 nent; 5014 __u32 padding; 5015 struct kvm_cpuid_entry2 entries[0]; 5016 }; 5017 5018 struct kvm_cpuid_entry2 { 5019 __u32 function; 5020 __u32 index; 5021 __u32 flags; 5022 __u32 eax; 5023 __u32 ebx; 5024 __u32 ecx; 5025 __u32 edx; 5026 __u32 padding[3]; 5027 }; 5028 5029 This ioctl returns x86 cpuid features leaves 5030 KVM. Userspace can use the information retur 5031 cpuid information presented to guests consumi 5032 Windows or Hyper-V guests). 5033 5034 CPUID feature leaves returned by this ioctl a 5035 Functional Specification (TLFS). These leaves 5036 KVM_GET_SUPPORTED_CPUID ioctl because some of 5037 leaves (0x40000000, 0x40000001). 5038 5039 Currently, the following list of CPUID leaves 5040 5041 - HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS 5042 - HYPERV_CPUID_INTERFACE 5043 - HYPERV_CPUID_VERSION 5044 - HYPERV_CPUID_FEATURES 5045 - HYPERV_CPUID_ENLIGHTMENT_INFO 5046 - HYPERV_CPUID_IMPLEMENT_LIMITS 5047 - HYPERV_CPUID_NESTED_FEATURES 5048 - HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIO 5049 - HYPERV_CPUID_SYNDBG_INTERFACE 5050 - HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES 5051 5052 Userspace invokes KVM_GET_SUPPORTED_HV_CPUID 5053 with the 'nent' field indicating the number o 5054 array 'entries'. If the number of entries is 5055 feature leaves, an error (E2BIG) is returned. 5056 to the number of Hyper-V feature leaves, the 5057 number of valid entries in the 'entries' arra 5058 5059 'index' and 'flags' fields in 'struct kvm_cpu 5060 userspace should not expect to get any partic 5061 5062 Note, vcpu version of KVM_GET_SUPPORTED_HV_CP 5063 system ioctl which exposes all supported feat 5064 version has the following quirks: 5065 5066 - HYPERV_CPUID_NESTED_FEATURES leaf and HV_X6 5067 feature bit are only exposed when Enlighten 5068 on the corresponding vCPU (KVM_CAP_HYPERV_E 5069 - HV_STIMER_DIRECT_MODE_AVAILABLE bit is only 5070 (presumes KVM_CREATE_IRQCHIP has already be 5071 5072 4.119 KVM_ARM_VCPU_FINALIZE 5073 --------------------------- 5074 5075 :Architectures: arm64 5076 :Type: vcpu ioctl 5077 :Parameters: int feature (in) 5078 :Returns: 0 on success, -1 on error 5079 5080 Errors: 5081 5082 ====== ================================ 5083 EPERM feature not enabled, needs confi 5084 EINVAL feature unknown or not present 5085 ====== ================================ 5086 5087 Recognised values for feature: 5088 5089 ===== ================================ 5090 arm64 KVM_ARM_VCPU_SVE (requires KVM_C 5091 ===== ================================ 5092 5093 Finalizes the configuration of the specified 5094 5095 The vcpu must already have been initialised, 5096 means of a successful KVM_ARM_VCPU_INIT call 5097 features[]. 5098 5099 For affected vcpu features, this is a mandato 5100 before the vcpu is fully usable. 5101 5102 Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FI 5103 configured by use of ioctls such as KVM_SET_O 5104 that should be performed and how to do it are 5105 5106 Other calls that depend on a particular featu 5107 KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG an 5108 -EPERM unless the feature has already been fi 5109 KVM_ARM_VCPU_FINALIZE call. 5110 5111 See KVM_ARM_VCPU_INIT for details of vcpu fea 5112 using this ioctl. 5113 5114 4.120 KVM_SET_PMU_EVENT_FILTER 5115 ------------------------------ 5116 5117 :Capability: KVM_CAP_PMU_EVENT_FILTER 5118 :Architectures: x86 5119 :Type: vm ioctl 5120 :Parameters: struct kvm_pmu_event_filter (in) 5121 :Returns: 0 on success, -1 on error 5122 5123 Errors: 5124 5125 ====== ================================ 5126 EFAULT args[0] cannot be accessed 5127 EINVAL args[0] contains invalid data in 5128 E2BIG nevents is too large 5129 EBUSY not enough memory to allocate th 5130 ====== ================================ 5131 5132 :: 5133 5134 struct kvm_pmu_event_filter { 5135 __u32 action; 5136 __u32 nevents; 5137 __u32 fixed_counter_bitmap; 5138 __u32 flags; 5139 __u32 pad[4]; 5140 __u64 events[0]; 5141 }; 5142 5143 This ioctl restricts the set of PMU events th 5144 which event select and unit mask combinations 5145 5146 The argument holds a list of filter events wh 5147 5148 Filter events only control general purpose co 5149 are controlled by the fixed_counter_bitmap. 5150 5151 Valid values for 'flags':: 5152 5153 ``0`` 5154 5155 To use this mode, clear the 'flags' field. 5156 5157 In this mode each event will contain an event 5158 5159 When the guest attempts to program the PMU th 5160 unit mask is compared against the filter even 5161 guest should have access. 5162 5163 ``KVM_PMU_EVENT_FLAG_MASKED_EVENTS`` 5164 :Capability: KVM_CAP_PMU_EVENT_MASKED_EVENTS 5165 5166 In this mode each filter event will contain a 5167 exclude value. To encode a masked event use: 5168 5169 KVM_PMU_ENCODE_MASKED_ENTRY() 5170 5171 An encoded event will follow this layout:: 5172 5173 Bits Description 5174 ---- ----------- 5175 7:0 event select (low bits) 5176 15:8 umask match 5177 31:16 unused 5178 35:32 event select (high bits) 5179 36:54 unused 5180 55 exclude bit 5181 63:56 umask mask 5182 5183 When the guest attempts to program the PMU, t 5184 determining if the guest should have access: 5185 5186 1. Match the event select from the guest aga 5187 2. If a match is found, match the guest's un 5188 values of the included filter events. 5189 I.e. (unit mask & mask) == match && !excl 5190 3. If a match is found, match the guest's un 5191 values of the excluded filter events. 5192 I.e. (unit mask & mask) == match && exclu 5193 4. 5194 a. If an included match is found and an ex 5195 the event. 5196 b. For everything else, do not filter the 5197 5. 5198 a. If the event is filtered and it's an al 5199 program the event. 5200 b. If the event is filtered and it's a den 5201 program the event. 5202 5203 When setting a new pmu event filter, -EINVAL 5204 unused fields are set or if any of the high b 5205 select are set when called on Intel. 5206 5207 Valid values for 'action':: 5208 5209 #define KVM_PMU_EVENT_ALLOW 0 5210 #define KVM_PMU_EVENT_DENY 1 5211 5212 Via this API, KVM userspace can also control 5213 counters (if any) by configuring the "action" 5214 5215 Specifically, KVM follows the following pseud 5216 allow the guest FixCtr[i] to count its pre-de 5217 5218 FixCtr[i]_is_allowed = (action == ALLOW) && 5219 (action == DENY) && !(bitmap & BIT(i)); 5220 FixCtr[i]_is_denied = !FixCtr[i]_is_allowed 5221 5222 KVM always consumes fixed_counter_bitmap, it' 5223 ensure fixed_counter_bitmap is set correctly, 5224 a filter that only affects general purpose co 5225 5226 Note, the "events" field also applies to fixe 5227 and unit_mask values. "fixed_counter_bitmap" 5228 if there is a contradiction between the two. 5229 5230 4.121 KVM_PPC_SVM_OFF 5231 --------------------- 5232 5233 :Capability: basic 5234 :Architectures: powerpc 5235 :Type: vm ioctl 5236 :Parameters: none 5237 :Returns: 0 on successful completion, 5238 5239 Errors: 5240 5241 ====== ================================ 5242 EINVAL if ultravisor failed to terminat 5243 ENOMEM if hypervisor failed to allocate 5244 ====== ================================ 5245 5246 This ioctl is used to turn off the secure mod 5247 the guest from secure mode to normal mode. Th 5248 is reset. This has no effect if called for a 5249 5250 This ioctl issues an ultravisor call to termi 5251 unpins the VPA pages and releases all the dev 5252 track the secure pages by hypervisor. 5253 5254 4.122 KVM_S390_NORMAL_RESET 5255 --------------------------- 5256 5257 :Capability: KVM_CAP_S390_VCPU_RESETS 5258 :Architectures: s390 5259 :Type: vcpu ioctl 5260 :Parameters: none 5261 :Returns: 0 5262 5263 This ioctl resets VCPU registers and control 5264 the cpu reset definition in the POP (Principl 5265 5266 4.123 KVM_S390_INITIAL_RESET 5267 ---------------------------- 5268 5269 :Capability: none 5270 :Architectures: s390 5271 :Type: vcpu ioctl 5272 :Parameters: none 5273 :Returns: 0 5274 5275 This ioctl resets VCPU registers and control 5276 the initial cpu reset definition in the POP. 5277 put into ESA mode. This reset is a superset o 5278 5279 4.124 KVM_S390_CLEAR_RESET 5280 -------------------------- 5281 5282 :Capability: KVM_CAP_S390_VCPU_RESETS 5283 :Architectures: s390 5284 :Type: vcpu ioctl 5285 :Parameters: none 5286 :Returns: 0 5287 5288 This ioctl resets VCPU registers and control 5289 the clear cpu reset definition in the POP. Ho 5290 into ESA mode. This reset is a superset of th 5291 5292 5293 4.125 KVM_S390_PV_COMMAND 5294 ------------------------- 5295 5296 :Capability: KVM_CAP_S390_PROTECTED 5297 :Architectures: s390 5298 :Type: vm ioctl 5299 :Parameters: struct kvm_pv_cmd 5300 :Returns: 0 on success, < 0 on error 5301 5302 :: 5303 5304 struct kvm_pv_cmd { 5305 __u32 cmd; /* Command to be exec 5306 __u16 rc; /* Ultravisor return 5307 __u16 rrc; /* Ultravisor return 5308 __u64 data; /* Data or address */ 5309 __u32 flags; /* flags for future e 5310 __u32 reserved[3]; 5311 }; 5312 5313 **Ultravisor return codes** 5314 The Ultravisor return (reason) codes are prov 5315 Ultravisor call has been executed to achieve 5316 the command. Therefore they are independent o 5317 code. If KVM changes `rc`, its value will alw 5318 hence setting it to 0 before issuing a PV com 5319 able to detect a change of `rc`. 5320 5321 **cmd values:** 5322 5323 KVM_PV_ENABLE 5324 Allocate memory and register the VM with th 5325 donating memory to the Ultravisor that will 5326 KVM. All existing CPUs are converted to pro 5327 command has succeeded, any CPU added via ho 5328 protected during its creation as well. 5329 5330 Errors: 5331 5332 ===== ============================= 5333 EINTR an unmasked signal is pending 5334 ===== ============================= 5335 5336 KVM_PV_DISABLE 5337 Deregister the VM from the Ultravisor and r 5338 been donated to the Ultravisor, making it u 5339 All registered VCPUs are converted back to 5340 previous protected VM had been prepared for 5341 KVM_PV_ASYNC_CLEANUP_PREPARE and not subseq 5342 KVM_PV_ASYNC_CLEANUP_PERFORM, it will be to 5343 together with the current protected VM. 5344 5345 KVM_PV_VM_SET_SEC_PARMS 5346 Pass the image header from VM memory to the 5347 preparation of image unpacking and verifica 5348 5349 KVM_PV_VM_UNPACK 5350 Unpack (protect and decrypt) a page of the 5351 5352 KVM_PV_VM_VERIFY 5353 Verify the integrity of the unpacked image. 5354 KVM is allowed to start protected VCPUs. 5355 5356 KVM_PV_INFO 5357 :Capability: KVM_CAP_S390_PROTECTED_DUMP 5358 5359 Presents an API that provides Ultravisor re 5360 via subcommands. len_max is the size of the 5361 len_written is KVM's indication of how much 5362 were actually written to. len_written can b 5363 valid fields if more response fields are ad 5364 5365 :: 5366 5367 enum pv_cmd_info_id { 5368 KVM_PV_INFO_VM, 5369 KVM_PV_INFO_DUMP, 5370 }; 5371 5372 struct kvm_s390_pv_info_header { 5373 __u32 id; 5374 __u32 len_max; 5375 __u32 len_written; 5376 __u32 reserved; 5377 }; 5378 5379 struct kvm_s390_pv_info { 5380 struct kvm_s390_pv_info_header header 5381 struct kvm_s390_pv_info_dump dump; 5382 struct kvm_s390_pv_info_vm vm; 5383 }; 5384 5385 **subcommands:** 5386 5387 KVM_PV_INFO_VM 5388 This subcommand provides basic Ultravisor 5389 hosts. These values are likely also expor 5390 firmware UV query interface but they are 5391 programs in this API. 5392 5393 The installed calls and feature_indicatio 5394 installed UV calls and the UV's other fea 5395 5396 The max_* members provide information abo 5397 vcpus, PV guests and PV guest memory size 5398 5399 :: 5400 5401 struct kvm_s390_pv_info_vm { 5402 __u64 inst_calls_list[4]; 5403 __u64 max_cpus; 5404 __u64 max_guests; 5405 __u64 max_guest_addr; 5406 __u64 feature_indication; 5407 }; 5408 5409 5410 KVM_PV_INFO_DUMP 5411 This subcommand provides information rela 5412 5413 :: 5414 5415 struct kvm_s390_pv_info_dump { 5416 __u64 dump_cpu_buffer_len; 5417 __u64 dump_config_mem_buffer_per_1m; 5418 __u64 dump_config_finalize_len; 5419 }; 5420 5421 KVM_PV_DUMP 5422 :Capability: KVM_CAP_S390_PROTECTED_DUMP 5423 5424 Presents an API that provides calls which f 5425 protected VM. 5426 5427 :: 5428 5429 struct kvm_s390_pv_dmp { 5430 __u64 subcmd; 5431 __u64 buff_addr; 5432 __u64 buff_len; 5433 __u64 gaddr; /* For dump s 5434 }; 5435 5436 **subcommands:** 5437 5438 KVM_PV_DUMP_INIT 5439 Initializes the dump process of a protect 5440 not succeed all other subcommands will fa 5441 subcommand will return -EINVAL if a dump 5442 completed. 5443 5444 Not all PV vms can be dumped, the owner n 5445 allowed` PCF bit 34 in the SE header to a 5446 5447 KVM_PV_DUMP_CONFIG_STOR_STATE 5448 Stores `buff_len` bytes of tweak compone 5449 the 1MB block specified by the absolute 5450 (`gaddr`). `buff_len` needs to be `conf_ 5451 aligned and at least >= the `conf_dump_s 5452 provided by the dump uv_info data. buff_ 5453 even if an error rc is returned. For ins 5454 fault after writing the first page of da 5455 5456 KVM_PV_DUMP_COMPLETE 5457 If the subcommand succeeds it completes t 5458 KVM_PV_DUMP_INIT be called again. 5459 5460 On success `conf_dump_finalize_len` bytes 5461 stored to the `buff_addr`. The completion 5462 derivation seed, IV, tweak nonce and encr 5463 authentication tag all of which are neede 5464 later time. 5465 5466 KVM_PV_ASYNC_CLEANUP_PREPARE 5467 :Capability: KVM_CAP_S390_PROTECTED_ASYNC_D 5468 5469 Prepare the current protected VM for asynch 5470 resources used by the current protected VM 5471 subsequent asynchronous teardown. The curre 5472 resume execution immediately as non-protect 5473 one protected VM prepared for asynchronous 5474 a protected VM had already been prepared fo 5475 subsequently calling KVM_PV_ASYNC_CLEANUP_P 5476 fail. In that case, the userspace process s 5477 KVM_PV_DISABLE. The resources set aside wit 5478 be cleaned up with a subsequent call to KVM 5479 or KVM_PV_DISABLE, otherwise they will be c 5480 terminates. KVM_PV_ASYNC_CLEANUP_PREPARE ca 5481 as cleanup starts, i.e. before KVM_PV_ASYNC 5482 5483 KVM_PV_ASYNC_CLEANUP_PERFORM 5484 :Capability: KVM_CAP_S390_PROTECTED_ASYNC_D 5485 5486 Tear down the protected VM previously prepa 5487 KVM_PV_ASYNC_CLEANUP_PREPARE. The resources 5488 will be freed during the execution of this 5489 should ideally be issued by userspace from 5490 fatal signal is received (or the process te 5491 command will terminate immediately without 5492 KVM shutdown procedure will take care of cl 5493 protected VMs, including the ones whose tea 5494 process termination. 5495 5496 4.126 KVM_XEN_HVM_SET_ATTR 5497 -------------------------- 5498 5499 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5500 :Architectures: x86 5501 :Type: vm ioctl 5502 :Parameters: struct kvm_xen_hvm_attr 5503 :Returns: 0 on success, < 0 on error 5504 5505 :: 5506 5507 struct kvm_xen_hvm_attr { 5508 __u16 type; 5509 __u16 pad[3]; 5510 union { 5511 __u8 long_mode; 5512 __u8 vector; 5513 __u8 runstate_update_flag; 5514 union { 5515 __u64 gfn; 5516 __u64 hva; 5517 } shared_info; 5518 struct { 5519 __u32 send_port; 5520 __u32 type; /* EVTCHN 5521 __u32 flags; 5522 union { 5523 struct { 5524 __u32 5525 __u32 5526 __u32 5527 } port; 5528 struct { 5529 __u32 5530 __s32 5531 } eventfd; 5532 __u32 padding 5533 } deliver; 5534 } evtchn; 5535 __u32 xen_version; 5536 __u64 pad[8]; 5537 } u; 5538 }; 5539 5540 type values: 5541 5542 KVM_XEN_ATTR_TYPE_LONG_MODE 5543 Sets the ABI mode of the VM to 32-bit or 64 5544 determines the layout of the shared_info pa 5545 5546 KVM_XEN_ATTR_TYPE_SHARED_INFO 5547 Sets the guest physical frame number at whi 5548 page resides. Note that although Xen places 5549 32 vCPUs in the shared_info page, KVM does 5550 and instead requires that KVM_XEN_VCPU_ATTR 5551 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA be use 5552 the vcpu_info for a given vCPU resides at t 5553 in the shared_info page. This is because KV 5554 the Xen CPU id which is used as the index i 5555 array, so may know the correct default loca 5556 5557 Note that the shared_info page may be const 5558 it contains the event channel bitmap used t 5559 a Xen guest, amongst other things. It is ex 5560 mechanisms — KVM will not explicitly mark 5561 time an event channel interrupt is delivere 5562 userspace should always assume that the des 5563 any vCPU has been running or any event chan 5564 routed to the guest. 5565 5566 Setting the gfn to KVM_XEN_INVALID_GFN will 5567 page. 5568 5569 KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA 5570 If the KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA f 5571 Xen capabilities, then this attribute may b 5572 userspace address at which the shared_info 5573 will always be fixed in the VMM regardless 5574 in guest physical address space. This attri 5575 preference to KVM_XEN_ATTR_TYPE_SHARED_INFO 5576 unnecessary invalidation of an internal cac 5577 re-mapped in guest physcial address space. 5578 5579 Setting the hva to zero will disable the sh 5580 5581 KVM_XEN_ATTR_TYPE_UPCALL_VECTOR 5582 Sets the exception vector used to deliver X 5583 This is the HVM-wide vector injected direct 5584 (not through the local APIC), typically con 5585 HVM_PARAM_CALLBACK_IRQ. This can be disable 5586 SHUTDOWN_soft_reset) by setting it to zero. 5587 5588 KVM_XEN_ATTR_TYPE_EVTCHN 5589 This attribute is available when the KVM_CA 5590 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5591 an outbound port number for interception of 5592 from the guest. A given sending port number 5593 a specified vCPU (by APIC ID) / port / prio 5594 trigger events on an eventfd. The vCPU and 5595 by setting KVM_XEN_EVTCHN_UPDATE in a subse 5596 fields cannot change for a given sending po 5597 removed by using KVM_XEN_EVTCHN_DEASSIGN in 5598 KVM_XEN_EVTCHN_RESET in the flags field rem 5599 outbound event channels. The values of the 5600 exclusive and cannot be combined as a bitma 5601 5602 KVM_XEN_ATTR_TYPE_XEN_VERSION 5603 This attribute is available when the KVM_CA 5604 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5605 the 32-bit version code returned to the gue 5606 XENVER_version call; typically (XEN_MAJOR < 5607 Xen guests will often use this to as a dumm 5608 event channel delivery, so responding withi 5609 exiting to userspace is beneficial. 5610 5611 KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG 5612 This attribute is available when the KVM_CA 5613 support for KVM_XEN_HVM_CONFIG_RUNSTATE_UPD 5614 XEN_RUNSTATE_UPDATE flag which allows guest 5615 other vCPUs' vcpu_runstate_info. Xen guests 5616 the VMASST_TYPE_runstate_update_flag of the 5617 hypercall. 5618 5619 4.127 KVM_XEN_HVM_GET_ATTR 5620 -------------------------- 5621 5622 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5623 :Architectures: x86 5624 :Type: vm ioctl 5625 :Parameters: struct kvm_xen_hvm_attr 5626 :Returns: 0 on success, < 0 on error 5627 5628 Allows Xen VM attributes to be read. For the 5629 see KVM_XEN_HVM_SET_ATTR above. The KVM_XEN_A 5630 attribute cannot be read. 5631 5632 4.128 KVM_XEN_VCPU_SET_ATTR 5633 --------------------------- 5634 5635 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5636 :Architectures: x86 5637 :Type: vcpu ioctl 5638 :Parameters: struct kvm_xen_vcpu_attr 5639 :Returns: 0 on success, < 0 on error 5640 5641 :: 5642 5643 struct kvm_xen_vcpu_attr { 5644 __u16 type; 5645 __u16 pad[3]; 5646 union { 5647 __u64 gpa; 5648 __u64 pad[4]; 5649 struct { 5650 __u64 state; 5651 __u64 state_entry_tim 5652 __u64 time_running; 5653 __u64 time_runnable; 5654 __u64 time_blocked; 5655 __u64 time_offline; 5656 } runstate; 5657 __u32 vcpu_id; 5658 struct { 5659 __u32 port; 5660 __u32 priority; 5661 __u64 expires_ns; 5662 } timer; 5663 __u8 vector; 5664 } u; 5665 }; 5666 5667 type values: 5668 5669 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO 5670 Sets the guest physical address of the vcpu 5671 As with the shared_info page for the VM, th 5672 dirtied at any time if event channel interr 5673 userspace should always assume that the pag 5674 on dirty logging. Setting the gpa to KVM_XE 5675 the vcpu_info. 5676 5677 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA 5678 If the KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA f 5679 Xen capabilities, then this attribute may b 5680 userspace address of the vcpu_info for a gi 5681 only be used when the vcpu_info resides at 5682 in the shared_info page. In this case it is 5683 userspace address will not change, because 5684 an overlay on guest memory and remains at a 5685 regardless of where it is mapped in guest p 5686 and hence unnecessary invalidation of an in 5687 avoided if the guest memory layout is modif 5688 If the vcpu_info does not reside at the "de 5689 it is not guaranteed to remain at the same 5690 hence the aforementioned cache invalidation 5691 5692 KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO 5693 Sets the guest physical address of an addit 5694 for a given vCPU. This is typically used fo 5695 Setting the gpa to KVM_XEN_INVALID_GPA will 5696 5697 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR 5698 Sets the guest physical address of the vcpu 5699 vCPU. This is how a Xen guest tracks CPU st 5700 Setting the gpa to KVM_XEN_INVALID_GPA will 5701 5702 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT 5703 Sets the runstate (RUNSTATE_running/_runnab 5704 the given vCPU from the .u.runstate.state m 5705 KVM automatically accounts running and runn 5706 and offline states are only entered explici 5707 5708 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA 5709 Sets all fields of the vCPU runstate data f 5710 of the structure, including the current run 5711 must equal the sum of the other four times. 5712 5713 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST 5714 This *adds* the contents of the .u.runstate 5715 to the corresponding members of the given v 5716 permitting atomic adjustments to the runsta 5717 to the state_entry_time must equal the sum 5718 other four times. The state field must be s 5719 runstate value (RUNSTATE_running, RUNSTATE_ 5720 or RUNSTATE_offline) to set the current acc 5721 adjusted state_entry_time. 5722 5723 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID 5724 This attribute is available when the KVM_CA 5725 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5726 vCPU ID of the given vCPU, to allow timer-r 5727 be intercepted by KVM. 5728 5729 KVM_XEN_VCPU_ATTR_TYPE_TIMER 5730 This attribute is available when the KVM_CA 5731 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5732 event channel port/priority for the VIRQ_TI 5733 as allowing a pending timer to be saved/res 5734 port to zero disables kernel handling of th 5735 5736 KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR 5737 This attribute is available when the KVM_CA 5738 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5739 per-vCPU local APIC upcall vector, configur 5740 the HVMOP_set_evtchn_upcall_vector hypercal 5741 used by Windows guests, and is distinct fro 5742 vector configured with HVM_PARAM_CALLBACK_I 5743 setting the vector to zero. 5744 5745 5746 4.129 KVM_XEN_VCPU_GET_ATTR 5747 --------------------------- 5748 5749 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5750 :Architectures: x86 5751 :Type: vcpu ioctl 5752 :Parameters: struct kvm_xen_vcpu_attr 5753 :Returns: 0 on success, < 0 on error 5754 5755 Allows Xen vCPU attributes to be read. For th 5756 see KVM_XEN_VCPU_SET_ATTR above. 5757 5758 The KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST ty 5759 with the KVM_XEN_VCPU_GET_ATTR ioctl. 5760 5761 4.130 KVM_ARM_MTE_COPY_TAGS 5762 --------------------------- 5763 5764 :Capability: KVM_CAP_ARM_MTE 5765 :Architectures: arm64 5766 :Type: vm ioctl 5767 :Parameters: struct kvm_arm_copy_mte_tags 5768 :Returns: number of bytes copied, < 0 on erro 5769 arguments, -EFAULT if memory cannot 5770 5771 :: 5772 5773 struct kvm_arm_copy_mte_tags { 5774 __u64 guest_ipa; 5775 __u64 length; 5776 void __user *addr; 5777 __u64 flags; 5778 __u64 reserved[2]; 5779 }; 5780 5781 Copies Memory Tagging Extension (MTE) tags to 5782 ``guest_ipa`` and ``length`` fields must be ` 5783 ``length`` must not be bigger than 2^31 - PAG 5784 field must point to a buffer which the tags w 5785 5786 ``flags`` specifies the direction of copy, ei 5787 ``KVM_ARM_TAGS_FROM_GUEST``. 5788 5789 The size of the buffer to store the tags is ` 5790 (granules in MTE are 16 bytes long). Each byt 5791 value. This matches the format of ``PTRACE_PE 5792 ``PTRACE_POKEMTETAGS``. 5793 5794 If an error occurs before any data is copied 5795 returned. If some tags have been copied befor 5796 of bytes successfully copied is returned. If 5797 then ``length`` is returned. 5798 5799 4.131 KVM_GET_SREGS2 5800 -------------------- 5801 5802 :Capability: KVM_CAP_SREGS2 5803 :Architectures: x86 5804 :Type: vcpu ioctl 5805 :Parameters: struct kvm_sregs2 (out) 5806 :Returns: 0 on success, -1 on error 5807 5808 Reads special registers from the vcpu. 5809 This ioctl (when supported) replaces the KVM_ 5810 5811 :: 5812 5813 struct kvm_sregs2 { 5814 /* out (KVM_GET_SREGS2) / in 5815 struct kvm_segment cs, ds, es 5816 struct kvm_segment tr, ldt; 5817 struct kvm_dtable gdt, idt; 5818 __u64 cr0, cr2, cr3, cr4, cr8 5819 __u64 efer; 5820 __u64 apic_base; 5821 __u64 flags; 5822 __u64 pdptrs[4]; 5823 }; 5824 5825 flags values for ``kvm_sregs2``: 5826 5827 ``KVM_SREGS2_FLAGS_PDPTRS_VALID`` 5828 5829 Indicates that the struct contains valid PD 5830 5831 5832 4.132 KVM_SET_SREGS2 5833 -------------------- 5834 5835 :Capability: KVM_CAP_SREGS2 5836 :Architectures: x86 5837 :Type: vcpu ioctl 5838 :Parameters: struct kvm_sregs2 (in) 5839 :Returns: 0 on success, -1 on error 5840 5841 Writes special registers into the vcpu. 5842 See KVM_GET_SREGS2 for the data structures. 5843 This ioctl (when supported) replaces the KVM_ 5844 5845 4.133 KVM_GET_STATS_FD 5846 ---------------------- 5847 5848 :Capability: KVM_CAP_STATS_BINARY_FD 5849 :Architectures: all 5850 :Type: vm ioctl, vcpu ioctl 5851 :Parameters: none 5852 :Returns: statistics file descriptor on succe 5853 5854 Errors: 5855 5856 ====== ================================ 5857 ENOMEM if the fd could not be created d 5858 EMFILE if the number of opened files ex 5859 ====== ================================ 5860 5861 The returned file descriptor can be used to r 5862 binary format. The data in the file descripto 5863 organized as follows: 5864 5865 +-------------+ 5866 | Header | 5867 +-------------+ 5868 | id string | 5869 +-------------+ 5870 | Descriptors | 5871 +-------------+ 5872 | Stats Data | 5873 +-------------+ 5874 5875 Apart from the header starting at offset 0, p 5876 not guaranteed that the four blocks are adjac 5877 the offsets of the id, descriptors and data b 5878 header. However, all four blocks are aligned 5879 file and they do not overlap. 5880 5881 All blocks except the data block are immutabl 5882 only one time after retrieving the file descr 5883 ``lseek`` to read the statistics repeatedly. 5884 5885 All data is in system endianness. 5886 5887 The format of the header is as follows:: 5888 5889 struct kvm_stats_header { 5890 __u32 flags; 5891 __u32 name_size; 5892 __u32 num_desc; 5893 __u32 id_offset; 5894 __u32 desc_offset; 5895 __u32 data_offset; 5896 }; 5897 5898 The ``flags`` field is not used at the moment 5899 5900 The ``name_size`` field is the size (in byte) 5901 (including trailing '\0') which is contained 5902 appended at the end of every descriptor. 5903 5904 The ``num_desc`` field is the number of descr 5905 descriptor block. (The actual number of valu 5906 larger, since each descriptor may comprise mo 5907 5908 The ``id_offset`` field is the offset of the 5909 file indicated by the file descriptor. It is 5910 5911 The ``desc_offset`` field is the offset of th 5912 of the file indicated by the file descriptor. 5913 5914 The ``data_offset`` field is the offset of th 5915 of the file indicated by the file descriptor. 5916 5917 The id string block contains a string which i 5918 which KVM_GET_STATS_FD was invoked. The size 5919 trailing ``'\0'``, is indicated by the ``name 5920 5921 The descriptors block is only needed to be re 5922 file descriptor contains a sequence of ``stru 5923 by a string of size ``name_size``. 5924 :: 5925 5926 #define KVM_STATS_TYPE_SHIFT 5927 #define KVM_STATS_TYPE_MASK 5928 #define KVM_STATS_TYPE_CUMULATIVE 5929 #define KVM_STATS_TYPE_INSTANT 5930 #define KVM_STATS_TYPE_PEAK 5931 #define KVM_STATS_TYPE_LINEAR_HIST 5932 #define KVM_STATS_TYPE_LOG_HIST 5933 #define KVM_STATS_TYPE_MAX 5934 5935 #define KVM_STATS_UNIT_SHIFT 5936 #define KVM_STATS_UNIT_MASK 5937 #define KVM_STATS_UNIT_NONE 5938 #define KVM_STATS_UNIT_BYTES 5939 #define KVM_STATS_UNIT_SECONDS 5940 #define KVM_STATS_UNIT_CYCLES 5941 #define KVM_STATS_UNIT_BOOLEAN 5942 #define KVM_STATS_UNIT_MAX 5943 5944 #define KVM_STATS_BASE_SHIFT 5945 #define KVM_STATS_BASE_MASK 5946 #define KVM_STATS_BASE_POW10 5947 #define KVM_STATS_BASE_POW2 5948 #define KVM_STATS_BASE_MAX 5949 5950 struct kvm_stats_desc { 5951 __u32 flags; 5952 __s16 exponent; 5953 __u16 size; 5954 __u32 offset; 5955 __u32 bucket_size; 5956 char name[]; 5957 }; 5958 5959 The ``flags`` field contains the type and uni 5960 by this descriptor. Its endianness is CPU nat 5961 The following flags are supported: 5962 5963 Bits 0-3 of ``flags`` encode the type: 5964 5965 * ``KVM_STATS_TYPE_CUMULATIVE`` 5966 The statistics reports a cumulative count 5967 Most of the counters used in KVM are of t 5968 The corresponding ``size`` field for this 5969 All cumulative statistics data are read/w 5970 * ``KVM_STATS_TYPE_INSTANT`` 5971 The statistics reports an instantaneous v 5972 decreased. This type is usually used as a 5973 like the number of dirty pages, the numbe 5974 All instant statistics are read only. 5975 The corresponding ``size`` field for this 5976 * ``KVM_STATS_TYPE_PEAK`` 5977 The statistics data reports a peak value, 5978 of items in a hash table bucket, the long 5979 The value of data can only be increased. 5980 The corresponding ``size`` field for this 5981 * ``KVM_STATS_TYPE_LINEAR_HIST`` 5982 The statistic is reported as a linear his 5983 buckets is specified by the ``size`` fiel 5984 by the ``hist_param`` field. The range of 5985 is [``hist_param``*(N-1), ``hist_param``* 5986 bucket is [``hist_param``*(``size``-1), + 5987 value.) 5988 * ``KVM_STATS_TYPE_LOG_HIST`` 5989 The statistic is reported as a logarithmi 5990 buckets is specified by the ``size`` fiel 5991 [0, 1), while the range of the last bucke 5992 Otherwise, The Nth bucket (1 < N < ``size 5993 [pow(2, N-2), pow(2, N-1)). 5994 5995 Bits 4-7 of ``flags`` encode the unit: 5996 5997 * ``KVM_STATS_UNIT_NONE`` 5998 There is no unit for the value of statist 5999 the value is a simple counter of an event 6000 * ``KVM_STATS_UNIT_BYTES`` 6001 It indicates that the statistics data is 6002 unit of Byte, KiByte, MiByte, GiByte, etc 6003 determined by the ``exponent`` field in t 6004 * ``KVM_STATS_UNIT_SECONDS`` 6005 It indicates that the statistics data is 6006 * ``KVM_STATS_UNIT_CYCLES`` 6007 It indicates that the statistics data is 6008 * ``KVM_STATS_UNIT_BOOLEAN`` 6009 It indicates that the statistic will alwa 6010 statistics of "peak" type will never go b 6011 statistics can be linear histograms (with 6012 histograms. 6013 6014 Note that, in the case of histograms, the uni 6015 ranges, while the bucket value indicates how 6016 bucket's range. 6017 6018 Bits 8-11 of ``flags``, together with ``expon 6019 unit: 6020 6021 * ``KVM_STATS_BASE_POW10`` 6022 The scale is based on power of 10. It is 6023 CPU clock cycles. For example, an expone 6024 ``KVM_STATS_UNIT_SECONDS`` to express tha 6025 * ``KVM_STATS_BASE_POW2`` 6026 The scale is based on power of 2. It is u 6027 For example, an exponent of 20 can be use 6028 express that the unit is MiB. 6029 6030 The ``size`` field is the number of values of 6031 value is usually 1 for most of simple statist 6032 unsigned 64bit data. 6033 6034 The ``offset`` field is the offset from the s 6035 the corresponding statistics data. 6036 6037 The ``bucket_size`` field is used as a parame 6038 It is only used by linear histogram statistic 6039 bucket in the unit expressed by bits 4-11 of 6040 6041 The ``name`` field is the name string of the 6042 starts at the end of ``struct kvm_stats_desc` 6043 the trailing ``'\0'``, is indicated by ``name 6044 6045 The Stats Data block contains an array of 64- 6046 as the descriptors in Descriptors block. 6047 6048 4.134 KVM_GET_XSAVE2 6049 -------------------- 6050 6051 :Capability: KVM_CAP_XSAVE2 6052 :Architectures: x86 6053 :Type: vcpu ioctl 6054 :Parameters: struct kvm_xsave (out) 6055 :Returns: 0 on success, -1 on error 6056 6057 6058 :: 6059 6060 struct kvm_xsave { 6061 __u32 region[1024]; 6062 __u32 extra[0]; 6063 }; 6064 6065 This ioctl would copy current vcpu's xsave st 6066 copies as many bytes as are returned by KVM_C 6067 when invoked on the vm file descriptor. The s 6068 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will alwa 6069 Currently, it is only greater than 4096 if a 6070 enabled with ``arch_prctl()``, but this may c 6071 6072 The offsets of the state save areas in struct 6073 of CPUID leaf 0xD on the host. 6074 6075 4.135 KVM_XEN_HVM_EVTCHN_SEND 6076 ----------------------------- 6077 6078 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 6079 :Architectures: x86 6080 :Type: vm ioctl 6081 :Parameters: struct kvm_irq_routing_xen_evtch 6082 :Returns: 0 on success, < 0 on error 6083 6084 6085 :: 6086 6087 struct kvm_irq_routing_xen_evtchn { 6088 __u32 port; 6089 __u32 vcpu; 6090 __u32 priority; 6091 }; 6092 6093 This ioctl injects an event channel interrupt 6094 6095 4.136 KVM_S390_PV_CPU_COMMAND 6096 ----------------------------- 6097 6098 :Capability: KVM_CAP_S390_PROTECTED_DUMP 6099 :Architectures: s390 6100 :Type: vcpu ioctl 6101 :Parameters: none 6102 :Returns: 0 on success, < 0 on error 6103 6104 This ioctl closely mirrors `KVM_S390_PV_COMMA 6105 for vcpus. It re-uses the kvm_s390_pv_dmp str 6106 the command ids. 6107 6108 **command:** 6109 6110 KVM_PV_DUMP 6111 Presents an API that provides calls which f 6112 of a protected VM. 6113 6114 **subcommand:** 6115 6116 KVM_PV_DUMP_CPU 6117 Provides encrypted dump data like register 6118 The length of the returned data is provided 6119 6120 4.137 KVM_S390_ZPCI_OP 6121 ---------------------- 6122 6123 :Capability: KVM_CAP_S390_ZPCI_OP 6124 :Architectures: s390 6125 :Type: vm ioctl 6126 :Parameters: struct kvm_s390_zpci_op (in) 6127 :Returns: 0 on success, <0 on error 6128 6129 Used to manage hardware-assisted virtualizati 6130 6131 Parameters are specified via the following st 6132 6133 struct kvm_s390_zpci_op { 6134 /* in */ 6135 __u32 fh; /* target dev 6136 __u8 op; /* operation 6137 __u8 pad[3]; 6138 union { 6139 /* for KVM_S390_ZPCIOP_REG_AE 6140 struct { 6141 __u64 ibv; /* Gu 6142 __u64 sb; /* Gu 6143 __u32 flags; 6144 __u32 noi; /* Nu 6145 __u8 isc; /* Gu 6146 __u8 sbo; /* Of 6147 __u16 pad; 6148 } reg_aen; 6149 __u64 reserved[8]; 6150 } u; 6151 }; 6152 6153 The type of operation is specified in the "op 6154 KVM_S390_ZPCIOP_REG_AEN is used to register t 6155 notification interpretation, which will allow 6156 events directly to the vm, with KVM providing 6157 KVM_S390_ZPCIOP_DEREG_AEN is used to subseque 6158 adapter event notifications. 6159 6160 The target zPCI function must also be specifi 6161 KVM_S390_ZPCIOP_REG_AEN operation, additional 6162 delivery must be provided via the "reg_aen" s 6163 6164 The "pad" and "reserved" fields may be used f 6165 set to 0s by userspace. 6166 6167 4.138 KVM_ARM_SET_COUNTER_OFFSET 6168 -------------------------------- 6169 6170 :Capability: KVM_CAP_COUNTER_OFFSET 6171 :Architectures: arm64 6172 :Type: vm ioctl 6173 :Parameters: struct kvm_arm_counter_offset (i 6174 :Returns: 0 on success, < 0 on error 6175 6176 This capability indicates that userspace is a 6177 offset to both the virtual and physical count 6178 using the KVM_ARM_SET_CNT_OFFSET ioctl and th 6179 6180 :: 6181 6182 struct kvm_arm_counter_offset { 6183 __u64 counter_offset; 6184 __u64 reserved; 6185 }; 6186 6187 The offset describes a number of counter cycl 6188 both virtual and physical counter views (simi 6189 CNTVOFF_EL2 and CNTPOFF_EL2 system registers, 6190 always applies to all vcpus (already created 6191 for this VM. 6192 6193 It is userspace's responsibility to compute t 6194 on previous values of the guest counters. 6195 6196 Any value other than 0 for the "reserved" fie 6197 (-EINVAL) being returned. This ioctl can also 6198 ioctl is issued concurrently. 6199 6200 Note that using this ioctl results in KVM ign 6201 writes to the CNTVCT_EL0 and CNTPCT_EL0 regis 6202 interface. No error will be returned, but the 6203 applied. 6204 6205 .. _KVM_ARM_GET_REG_WRITABLE_MASKS: 6206 6207 4.139 KVM_ARM_GET_REG_WRITABLE_MASKS 6208 ------------------------------------------- 6209 6210 :Capability: KVM_CAP_ARM_SUPPORTED_REG_MASK_R 6211 :Architectures: arm64 6212 :Type: vm ioctl 6213 :Parameters: struct reg_mask_range (in/out) 6214 :Returns: 0 on success, < 0 on error 6215 6216 6217 :: 6218 6219 #define KVM_ARM_FEATURE_ID_RANGE 6220 #define KVM_ARM_FEATURE_ID_RANGE_SIZE 6221 6222 struct reg_mask_range { 6223 __u64 addr; /* Po 6224 __u32 range; /* Re 6225 __u32 reserved[13]; 6226 }; 6227 6228 This ioctl copies the writable masks for a se 6229 userspace. 6230 6231 The ``addr`` field is a pointer to the destin 6232 the writable masks. 6233 6234 The ``range`` field indicates the requested r 6235 ``KVM_CHECK_EXTENSION`` for the ``KVM_CAP_ARM 6236 capability returns the supported ranges, expr 6237 flag's bit index represents a possible value 6238 All other values are reserved for future use 6239 6240 The ``reserved[13]`` array is reserved for fu 6241 KVM may return an error. 6242 6243 KVM_ARM_FEATURE_ID_RANGE (0) 6244 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6245 6246 The Feature ID range is defined as the AArch6 6247 op0==3, op1=={0, 1, 3}, CRn==0, CRm=={0-7}, o 6248 6249 The mask returned array pointed to by ``addr` 6250 ``ARM64_FEATURE_ID_RANGE_IDX(op0, op1, crn, c 6251 to know what fields can be changed for the sy 6252 ``op0, op1, crn, crm, op2``. KVM rejects ID r 6253 superset of the features supported by the sys 6254 6255 4.140 KVM_SET_USER_MEMORY_REGION2 6256 --------------------------------- 6257 6258 :Capability: KVM_CAP_USER_MEMORY2 6259 :Architectures: all 6260 :Type: vm ioctl 6261 :Parameters: struct kvm_userspace_memory_regi 6262 :Returns: 0 on success, -1 on error 6263 6264 KVM_SET_USER_MEMORY_REGION2 is an extension t 6265 allows mapping guest_memfd memory into a gues 6266 KVM_SET_USER_MEMORY_REGION identically. User 6267 in flags to have KVM bind the memory region t 6268 [guest_memfd_offset, guest_memfd_offset + mem 6269 must point at a file created via KVM_CREATE_G 6270 the target range must not be bound to any oth 6271 bounds checks apply (use common sense). 6272 6273 :: 6274 6275 struct kvm_userspace_memory_region2 { 6276 __u32 slot; 6277 __u32 flags; 6278 __u64 guest_phys_addr; 6279 __u64 memory_size; /* bytes */ 6280 __u64 userspace_addr; /* start of the 6281 __u64 guest_memfd_offset; 6282 __u32 guest_memfd; 6283 __u32 pad1; 6284 __u64 pad2[14]; 6285 }; 6286 6287 A KVM_MEM_GUEST_MEMFD region _must_ have a va 6288 userspace_addr (shared memory). However, "va 6289 means that the address itself must be a legal 6290 mapping for userspace_addr is not required to 6291 KVM_SET_USER_MEMORY_REGION2, e.g. shared memo 6292 on-demand. 6293 6294 When mapping a gfn into the guest, KVM select 6295 userspace_addr vs. guest_memfd, based on the 6296 state. At VM creation time, all memory is sh 6297 is '0' for all gfns. Userspace can control w 6298 toggling KVM_MEMORY_ATTRIBUTE_PRIVATE via KVM 6299 6300 S390: 6301 ^^^^^ 6302 6303 Returns -EINVAL if the VM has the KVM_VM_S390 6304 Returns -EINVAL if called on a protected VM. 6305 6306 4.141 KVM_SET_MEMORY_ATTRIBUTES 6307 ------------------------------- 6308 6309 :Capability: KVM_CAP_MEMORY_ATTRIBUTES 6310 :Architectures: x86 6311 :Type: vm ioctl 6312 :Parameters: struct kvm_memory_attributes (in 6313 :Returns: 0 on success, <0 on error 6314 6315 KVM_SET_MEMORY_ATTRIBUTES allows userspace to 6316 of guest physical memory. 6317 6318 :: 6319 6320 struct kvm_memory_attributes { 6321 __u64 address; 6322 __u64 size; 6323 __u64 attributes; 6324 __u64 flags; 6325 }; 6326 6327 #define KVM_MEMORY_ATTRIBUTE_PRIVATE 6328 6329 The address and size must be page aligned. T 6330 retrieved via ioctl(KVM_CHECK_EXTENSION) on K 6331 executed on a VM, KVM_CAP_MEMORY_ATTRIBUTES p 6332 supported by that VM. If executed at system 6333 returns all attributes supported by KVM. The 6334 time is KVM_MEMORY_ATTRIBUTE_PRIVATE, which m 6335 guest private memory. 6336 6337 Note, there is no "get" API. Userspace is re 6338 the state of a gfn/page as needed. 6339 6340 The "flags" field is reserved for future exte 6341 6342 4.142 KVM_CREATE_GUEST_MEMFD 6343 ---------------------------- 6344 6345 :Capability: KVM_CAP_GUEST_MEMFD 6346 :Architectures: none 6347 :Type: vm ioctl 6348 :Parameters: struct kvm_create_guest_memfd(in 6349 :Returns: A file descriptor on success, <0 on 6350 6351 KVM_CREATE_GUEST_MEMFD creates an anonymous f 6352 that refers to it. guest_memfd files are rou 6353 via memfd_create(), e.g. guest_memfd files li 6354 and are automatically released when the last 6355 "regular" memfd_create() files, guest_memfd f 6356 virtual machine (see below), cannot be mapped 6357 and cannot be resized (guest_memfd files do 6358 6359 :: 6360 6361 struct kvm_create_guest_memfd { 6362 __u64 size; 6363 __u64 flags; 6364 __u64 reserved[6]; 6365 }; 6366 6367 Conceptually, the inode backing a guest_memfd 6368 i.e. is coupled to the virtual machine as a t 6369 file itself, which is bound to a "struct kvm" 6370 underlying memory, e.g. effectively provides 6371 to host memory. This allows for use cases wh 6372 used to manage a single virtual machine, e.g. 6373 migration of a virtual machine. 6374 6375 KVM currently only supports mapping guest_mem 6376 and more specifically via the guest_memfd and 6377 "struct kvm_userspace_memory_region2", where 6378 into the guest_memfd instance. For a given g 6379 most one mapping per page, i.e. binding multi 6380 guest_memfd range is not allowed (any number 6381 a single guest_memfd file, but the bound rang 6382 6383 See KVM_SET_USER_MEMORY_REGION2 for additiona 6384 6385 4.143 KVM_PRE_FAULT_MEMORY 6386 --------------------------- 6387 6388 :Capability: KVM_CAP_PRE_FAULT_MEMORY 6389 :Architectures: none 6390 :Type: vcpu ioctl 6391 :Parameters: struct kvm_pre_fault_memory (in/ 6392 :Returns: 0 if at least one page is processed 6393 6394 Errors: 6395 6396 ========== ================================ 6397 EINVAL The specified `gpa` and `size` w 6398 page aligned, causes an overflow 6399 ENOENT The specified `gpa` is outside d 6400 EINTR An unmasked signal is pending an 6401 EFAULT The parameter address was invali 6402 EOPNOTSUPP Mapping memory for a GPA is unsu 6403 hypervisor, and/or for the curre 6404 EIO unexpected error conditions (als 6405 ========== ================================ 6406 6407 :: 6408 6409 struct kvm_pre_fault_memory { 6410 /* in/out */ 6411 __u64 gpa; 6412 __u64 size; 6413 /* in */ 6414 __u64 flags; 6415 __u64 padding[5]; 6416 }; 6417 6418 KVM_PRE_FAULT_MEMORY populates KVM's stage-2 6419 for the current vCPU state. KVM maps memory 6420 stage-2 read page fault, e.g. faults in memor 6421 CoW. However, KVM does not mark any newly cr 6422 6423 In the case of confidential VM types where th 6424 private guest memory before the guest is 'fin 6425 should only be issued after completing all th 6426 guest into a 'finalized' state so that the ab 6427 ensured. 6428 6429 In some cases, multiple vCPUs might share the 6430 case, the ioctl can be called in parallel. 6431 6432 When the ioctl returns, the input values are 6433 remaining range. If `size` > 0 on return, th 6434 the ioctl again with the same `struct kvm_map 6435 6436 Shadow page tables cannot support this ioctl 6437 are indexed by virtual address or nested gues 6438 Calling this ioctl when the guest is using sh 6439 example because it is running a nested guest 6440 will fail with `EOPNOTSUPP` even if `KVM_CHEC 6441 the capability to be present. 6442 6443 `flags` must currently be zero. 6444 6445 6446 5. The kvm_run structure 6447 ======================== 6448 6449 Application code obtains a pointer to the kvm 6450 mmap()ing a vcpu fd. From that point, applic 6451 execution by changing fields in kvm_run prior 6452 ioctl, and obtain information about the reaso 6453 looking up structure members. 6454 6455 :: 6456 6457 struct kvm_run { 6458 /* in */ 6459 __u8 request_interrupt_window; 6460 6461 Request that KVM_RUN return when it becomes p 6462 interrupts into the guest. Useful in conjunc 6463 6464 :: 6465 6466 __u8 immediate_exit; 6467 6468 This field is polled once when KVM_RUN starts 6469 exits immediately, returning -EINTR. In the 6470 signal is used to "kick" a VCPU out of KVM_RU 6471 to avoid usage of KVM_SET_SIGNAL_MASK, which 6472 Rather than blocking the signal outside KVM_R 6473 a signal handler that sets run->immediate_exi 6474 6475 This field is ignored if KVM_CAP_IMMEDIATE_EX 6476 6477 :: 6478 6479 __u8 padding1[6]; 6480 6481 /* out */ 6482 __u32 exit_reason; 6483 6484 When KVM_RUN has returned successfully (retur 6485 application code why KVM_RUN has returned. A 6486 field are detailed below. 6487 6488 :: 6489 6490 __u8 ready_for_interrupt_injection; 6491 6492 If request_interrupt_window has been specifie 6493 an interrupt can be injected now with KVM_INT 6494 6495 :: 6496 6497 __u8 if_flag; 6498 6499 The value of the current interrupt flag. Onl 6500 local APIC is not used. 6501 6502 :: 6503 6504 __u16 flags; 6505 6506 More architecture-specific flags detailing st 6507 affect the device's behavior. Current defined 6508 6509 /* x86, set if the VCPU is in system manage 6510 #define KVM_RUN_X86_SMM (1 << 0) 6511 /* x86, set if bus lock detected in VM */ 6512 #define KVM_RUN_X86_BUS_LOCK (1 << 1) 6513 /* x86, set if the VCPU is executing a nest 6514 #define KVM_RUN_X86_GUEST_MODE (1 << 2) 6515 6516 /* arm64, set for KVM_EXIT_DEBUG */ 6517 #define KVM_DEBUG_ARCH_HSR_HIGH_VALID (1 < 6518 6519 :: 6520 6521 /* in (pre_kvm_run), out (post_kvm_ru 6522 __u64 cr8; 6523 6524 The value of the cr8 register. Only valid if 6525 not used. Both input and output. 6526 6527 :: 6528 6529 __u64 apic_base; 6530 6531 The value of the APIC BASE msr. Only valid i 6532 APIC is not used. Both input and output. 6533 6534 :: 6535 6536 union { 6537 /* KVM_EXIT_UNKNOWN */ 6538 struct { 6539 __u64 hardware_exit_r 6540 } hw; 6541 6542 If exit_reason is KVM_EXIT_UNKNOWN, the vcpu 6543 reasons. Further architecture-specific infor 6544 hardware_exit_reason. 6545 6546 :: 6547 6548 /* KVM_EXIT_FAIL_ENTRY */ 6549 struct { 6550 __u64 hardware_entry_ 6551 __u32 cpu; /* if KVM_ 6552 } fail_entry; 6553 6554 If exit_reason is KVM_EXIT_FAIL_ENTRY, the vc 6555 to unknown reasons. Further architecture-spe 6556 available in hardware_entry_failure_reason. 6557 6558 :: 6559 6560 /* KVM_EXIT_EXCEPTION */ 6561 struct { 6562 __u32 exception; 6563 __u32 error_code; 6564 } ex; 6565 6566 Unused. 6567 6568 :: 6569 6570 /* KVM_EXIT_IO */ 6571 struct { 6572 #define KVM_EXIT_IO_IN 0 6573 #define KVM_EXIT_IO_OUT 1 6574 __u8 direction; 6575 __u8 size; /* bytes * 6576 __u16 port; 6577 __u32 count; 6578 __u64 data_offset; /* 6579 } io; 6580 6581 If exit_reason is KVM_EXIT_IO, then the vcpu 6582 executed a port I/O instruction which could n 6583 data_offset describes where the data is locat 6584 where kvm expects application code to place t 6585 KVM_RUN invocation (KVM_EXIT_IO_IN). Data fo 6586 6587 :: 6588 6589 /* KVM_EXIT_DEBUG */ 6590 struct { 6591 struct kvm_debug_exit 6592 } debug; 6593 6594 If the exit_reason is KVM_EXIT_DEBUG, then a 6595 for which architecture specific information i 6596 6597 :: 6598 6599 /* KVM_EXIT_MMIO */ 6600 struct { 6601 __u64 phys_addr; 6602 __u8 data[8]; 6603 __u32 len; 6604 __u8 is_write; 6605 } mmio; 6606 6607 If exit_reason is KVM_EXIT_MMIO, then the vcp 6608 executed a memory-mapped I/O instruction whic 6609 by kvm. The 'data' member contains the writt 6610 true, and should be filled by application cod 6611 6612 The 'data' member contains, in its first 'len 6613 appear if the VCPU performed a load or store 6614 to the byte array. 6615 6616 .. note:: 6617 6618 For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXI 6619 KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KV 6620 operations are complete (and guest stat 6621 has re-entered the kernel with KVM_RUN. 6622 incomplete operations and then check fo 6623 6624 The pending state of the operation is n 6625 visible to userspace, thus userspace sh 6626 completed before performing a live migr 6627 guest with an unmasked signal pending o 6628 to complete pending operations without 6629 to be executed. 6630 6631 :: 6632 6633 /* KVM_EXIT_HYPERCALL */ 6634 struct { 6635 __u64 nr; 6636 __u64 args[6]; 6637 __u64 ret; 6638 __u64 flags; 6639 } hypercall; 6640 6641 6642 It is strongly recommended that userspace use 6643 ``KVM_EXIT_MMIO`` (all except s390) to implem 6644 requires a guest to interact with host usersp 6645 6646 .. note:: KVM_EXIT_IO is significantly faster 6647 6648 For arm64: 6649 ---------- 6650 6651 SMCCC exits can be enabled depending on the c 6652 filter. See the Documentation/virt/kvm/device 6653 ``KVM_ARM_SMCCC_FILTER`` for more details. 6654 6655 ``nr`` contains the function ID of the guest' 6656 expected to use the ``KVM_GET_ONE_REG`` ioctl 6657 parameters from the vCPU's GPRs. 6658 6659 Definition of ``flags``: 6660 - ``KVM_HYPERCALL_EXIT_SMC``: Indicates that 6661 conduit to initiate the SMCCC call. If thi 6662 used the HVC conduit for the SMCCC call. 6663 6664 - ``KVM_HYPERCALL_EXIT_16BIT``: Indicates th 6665 instruction to initiate the SMCCC call. If 6666 guest used a 32bit instruction. An AArch64 6667 bit set to 0. 6668 6669 At the point of exit, PC points to the instru 6670 the trapping instruction. 6671 6672 :: 6673 6674 /* KVM_EXIT_TPR_ACCESS */ 6675 struct { 6676 __u64 rip; 6677 __u32 is_write; 6678 __u32 pad; 6679 } tpr_access; 6680 6681 To be documented (KVM_TPR_ACCESS_REPORTING). 6682 6683 :: 6684 6685 /* KVM_EXIT_S390_SIEIC */ 6686 struct { 6687 __u8 icptcode; 6688 __u64 mask; /* psw up 6689 __u64 addr; /* psw lo 6690 __u16 ipa; 6691 __u32 ipb; 6692 } s390_sieic; 6693 6694 s390 specific. 6695 6696 :: 6697 6698 /* KVM_EXIT_S390_RESET */ 6699 #define KVM_S390_RESET_POR 1 6700 #define KVM_S390_RESET_CLEAR 2 6701 #define KVM_S390_RESET_SUBSYSTEM 4 6702 #define KVM_S390_RESET_CPU_INIT 8 6703 #define KVM_S390_RESET_IPL 16 6704 __u64 s390_reset_flags; 6705 6706 s390 specific. 6707 6708 :: 6709 6710 /* KVM_EXIT_S390_UCONTROL */ 6711 struct { 6712 __u64 trans_exc_code; 6713 __u32 pgm_code; 6714 } s390_ucontrol; 6715 6716 s390 specific. A page fault has occurred for 6717 machine (KVM_VM_S390_UNCONTROL) on its host p 6718 resolved by the kernel. 6719 The program code and the translation exceptio 6720 in the cpu's lowcore are presented here as de 6721 Principles of Operation Book in the Chapter f 6722 (DAT) 6723 6724 :: 6725 6726 /* KVM_EXIT_DCR */ 6727 struct { 6728 __u32 dcrn; 6729 __u32 data; 6730 __u8 is_write; 6731 } dcr; 6732 6733 Deprecated - was used for 440 KVM. 6734 6735 :: 6736 6737 /* KVM_EXIT_OSI */ 6738 struct { 6739 __u64 gprs[32]; 6740 } osi; 6741 6742 MOL uses a special hypercall interface it cal 6743 hypercalls and exit with this exit struct tha 6744 6745 If exit_reason is KVM_EXIT_OSI, then the vcpu 6746 Userspace can now handle the hypercall and wh 6747 necessary. Upon guest entry all guest GPRs wi 6748 in this struct. 6749 6750 :: 6751 6752 /* KVM_EXIT_PAPR_HCALL */ 6753 struct { 6754 __u64 nr; 6755 __u64 ret; 6756 __u64 args[9]; 6757 } papr_hcall; 6758 6759 This is used on 64-bit PowerPC when emulating 6760 e.g. with the 'pseries' machine type in qemu. 6761 guest does a hypercall using the 'sc 1' instr 6762 contains the hypercall number (from the guest 6763 the arguments (from the guest R4 - R12). Use 6764 return code in 'ret' and any extra returned v 6765 The possible hypercalls are defined in the Po 6766 Requirements (PAPR) document available from w 6767 developer registration required to access it) 6768 6769 :: 6770 6771 /* KVM_EXIT_S390_TSCH */ 6772 struct { 6773 __u16 subchannel_id; 6774 __u16 subchannel_nr; 6775 __u32 io_int_parm; 6776 __u32 io_int_word; 6777 __u32 ipb; 6778 __u8 dequeued; 6779 } s390_tsch; 6780 6781 s390 specific. This exit occurs when KVM_CAP_ 6782 and TEST SUBCHANNEL was intercepted. If deque 6783 interrupt for the target subchannel has been 6784 subchannel_nr, io_int_parm and io_int_word co 6785 interrupt. ipb is needed for instruction para 6786 6787 :: 6788 6789 /* KVM_EXIT_EPR */ 6790 struct { 6791 __u32 epr; 6792 } epr; 6793 6794 On FSL BookE PowerPC chips, the interrupt con 6795 interrupt acknowledge path to the core. When 6796 delivers an interrupt, it automatically popul 6797 the interrupt vector number and acknowledges 6798 the interrupt controller. 6799 6800 In case the interrupt controller lives in use 6801 the interrupt acknowledge cycle through it to 6802 delivered interrupt vector using this exit. 6803 6804 It gets triggered whenever both KVM_CAP_PPC_E 6805 external interrupt has just been delivered in 6806 should put the acknowledged interrupt vector 6807 6808 :: 6809 6810 /* KVM_EXIT_SYSTEM_EVENT */ 6811 struct { 6812 #define KVM_SYSTEM_EVENT_SHUTDOWN 1 6813 #define KVM_SYSTEM_EVENT_RESET 2 6814 #define KVM_SYSTEM_EVENT_CRASH 3 6815 #define KVM_SYSTEM_EVENT_WAKEUP 4 6816 #define KVM_SYSTEM_EVENT_SUSPEND 5 6817 #define KVM_SYSTEM_EVENT_SEV_TERM 6 6818 __u32 type; 6819 __u32 ndata; 6820 __u64 data[16]; 6821 } system_event; 6822 6823 If exit_reason is KVM_EXIT_SYSTEM_EVENT then 6824 a system-level event using some architecture 6825 or some special instruction). In case of ARM6 6826 HVC instruction based PSCI call from the vcpu 6827 6828 The 'type' field describes the system-level e 6829 Valid values for 'type' are: 6830 6831 - KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has 6832 VM. Userspace is not obliged to honour thi 6833 this does not need to destroy the VM synch 6834 KVM_RUN again before shutdown finally occu 6835 - KVM_SYSTEM_EVENT_RESET -- the guest has re 6836 As with SHUTDOWN, userspace can choose to 6837 to schedule the reset to occur in the futu 6838 - KVM_SYSTEM_EVENT_CRASH -- the guest crash 6839 has requested a crash condition maintenanc 6840 to ignore the request, or to gather VM mem 6841 reset/shutdown of the VM. 6842 - KVM_SYSTEM_EVENT_SEV_TERM -- an AMD SEV gu 6843 The guest physical address of the guest's 6844 - KVM_SYSTEM_EVENT_WAKEUP -- the exiting vCP 6845 KVM has recognized a wakeup event. Userspa 6846 marking the exiting vCPU as runnable, or d 6847 - KVM_SYSTEM_EVENT_SUSPEND -- the guest has 6848 the VM. 6849 6850 If KVM_CAP_SYSTEM_EVENT_DATA is present, the 6851 architecture specific information for the sys 6852 the first `ndata` items (possibly zero) of th 6853 6854 - for arm64, data[0] is set to KVM_SYSTEM_EV 6855 the guest issued a SYSTEM_RESET2 call acco 6856 specification. 6857 6858 - for RISC-V, data[0] is set to the value of 6859 ``sbi_system_reset`` call. 6860 6861 Previous versions of Linux defined a `flags` 6862 field is now aliased to `data[0]`. Userspace 6863 written if ndata is greater than 0. 6864 6865 For arm/arm64: 6866 -------------- 6867 6868 KVM_SYSTEM_EVENT_SUSPEND exits are enabled wi 6869 KVM_CAP_ARM_SYSTEM_SUSPEND VM capability. If 6870 SYSTEM_SUSPEND function, KVM will exit to use 6871 type. 6872 6873 It is the sole responsibility of userspace to 6874 SYSTEM_SUSPEND call according to ARM DEN0022D 6875 KVM does not change the vCPU's state before e 6876 the call parameters are left in-place in the 6877 6878 Userspace is _required_ to take action for su 6879 either: 6880 6881 - Honor the guest request to suspend the VM. 6882 in-kernel emulation of suspension by setti 6883 state to KVM_MP_STATE_SUSPENDED. Userspace 6884 state according to the parameters passed t 6885 the calling vCPU is resumed. See ARM DEN00 6886 for details on the function parameters. 6887 6888 - Deny the guest request to suspend the VM. 6889 "Caller responsibilities" for possible ret 6890 6891 :: 6892 6893 /* KVM_EXIT_IOAPIC_EOI */ 6894 struct { 6895 __u8 vector; 6896 } eoi; 6897 6898 Indicates that the VCPU's in-kernel local API 6899 level-triggered IOAPIC interrupt. This exit 6900 IOAPIC is implemented in userspace (i.e. KVM_ 6901 the userspace IOAPIC should process the EOI a 6902 it is still asserted. Vector is the LAPIC in 6903 EOI was received. 6904 6905 :: 6906 6907 struct kvm_hyperv_exit { 6908 #define KVM_EXIT_HYPERV_SYNIC 1 6909 #define KVM_EXIT_HYPERV_HCALL 2 6910 #define KVM_EXIT_HYPERV_SYNDBG 3 6911 __u32 type; 6912 __u32 pad1; 6913 union { 6914 struct { 6915 __u32 6916 __u32 6917 __u64 6918 __u64 6919 __u64 6920 } synic; 6921 struct { 6922 __u64 6923 __u64 6924 __u64 6925 } hcall; 6926 struct { 6927 __u32 6928 __u32 6929 __u64 6930 __u64 6931 __u64 6932 __u64 6933 __u64 6934 } syndbg; 6935 } u; 6936 }; 6937 /* KVM_EXIT_HYPERV */ 6938 struct kvm_hyperv_exit hyperv 6939 6940 Indicates that the VCPU exits into userspace 6941 related to Hyper-V emulation. 6942 6943 Valid values for 'type' are: 6944 6945 - KVM_EXIT_HYPERV_SYNIC -- synchronou 6946 6947 Hyper-V SynIC state change. Notification is u 6948 event/message pages and to enable/disable Syn 6949 in userspace. 6950 6951 - KVM_EXIT_HYPERV_SYNDBG -- synchrono 6952 6953 Hyper-V Synthetic debugger state change. Noti 6954 the pending_page location or to send a contro 6955 in send_page or recv a buffer to recv_page). 6956 6957 :: 6958 6959 /* KVM_EXIT_ARM_NISV */ 6960 struct { 6961 __u64 esr_iss; 6962 __u64 fault_ipa; 6963 } arm_nisv; 6964 6965 Used on arm64 systems. If a guest accesses me 6966 KVM will typically return to userspace and as 6967 behalf. However, for certain classes of instr 6968 (direction, length of memory access) is provi 6969 the instruction from the VM is overly complic 6970 6971 Historically, when this situation occurred, K 6972 the VM. KVM assumed that if the guest accesse 6973 trying to do I/O, which just couldn't be emul 6974 phrased accordingly. However, what happened m 6975 caused access outside the guest memory areas 6976 meaningful warning message and an external ab 6977 did not fall within an I/O window. 6978 6979 Userspace implementations can query for KVM_C 6980 this capability at VM creation. Once this is 6981 instead return to userspace with KVM_EXIT_ARM 6982 the ESR_EL2 in the esr_iss field, and the fau 6983 Userspace can either fix up the access if it' 6984 decoding the instruction from guest memory (i 6985 executing the guest, or it can decide to susp 6986 6987 Note that KVM does not skip the faulting inst 6988 KVM_EXIT_MMIO, but userspace has to emulate a 6989 if it decides to decode and emulate the instr 6990 6991 This feature isn't available to protected VMs 6992 have access to the state that is required to 6993 Instead, a data abort exception is directly i 6994 Note that although KVM_CAP_ARM_NISV_TO_USER w 6995 queried outside of a protected VM context, th 6996 exposed if queried on a protected VM file des 6997 6998 :: 6999 7000 /* KVM_EXIT_X86_RDMSR / KVM_E 7001 struct { 7002 __u8 error; /* user - 7003 __u8 pad[7]; 7004 __u32 reason; /* kern 7005 __u32 index; /* kerne 7006 __u64 data; /* kernel 7007 } msr; 7008 7009 Used on x86 systems. When the VM capability K 7010 enabled, MSR accesses to registers that would 7011 may instead trigger a KVM_EXIT_X86_RDMSR exit 7012 exit for writes. 7013 7014 The "reason" field specifies why the MSR inte 7015 only receive MSR exits when a particular reas 7016 ENABLE_CAP. Currently valid exit reasons are: 7017 7018 ============================ ================ 7019 KVM_MSR_EXIT_REASON_UNKNOWN access to MSR th 7020 KVM_MSR_EXIT_REASON_INVAL access to invali 7021 KVM_MSR_EXIT_REASON_FILTER access blocked b 7022 ============================ ================ 7023 7024 For KVM_EXIT_X86_RDMSR, the "index" field tel 7025 wants to read. To respond to this request wit 7026 writes the respective data into the "data" fi 7027 execution to ensure the read data is transfer 7028 7029 If the RDMSR request was unsuccessful, usersp 7030 the "error" field. This will inject a #GP int 7031 executed again. 7032 7033 For KVM_EXIT_X86_WRMSR, the "index" field tel 7034 wants to write. Once finished processing the 7035 vCPU execution. If the MSR write was unsucces 7036 "error" field to "1". 7037 7038 See KVM_X86_SET_MSR_FILTER for details on the 7039 7040 :: 7041 7042 7043 struct kvm_xen_exit { 7044 #define KVM_EXIT_XEN_HCALL 1 7045 __u32 type; 7046 union { 7047 struct { 7048 __u32 7049 __u32 7050 __u64 7051 __u64 7052 __u64 7053 } hcall; 7054 } u; 7055 }; 7056 /* KVM_EXIT_XEN */ 7057 struct kvm_hyperv_exit xen; 7058 7059 Indicates that the VCPU exits into userspace 7060 related to Xen emulation. 7061 7062 Valid values for 'type' are: 7063 7064 - KVM_EXIT_XEN_HCALL -- synchronously notif 7065 Userspace is expected to place the hyperc 7066 field before invoking KVM_RUN again. 7067 7068 :: 7069 7070 /* KVM_EXIT_RISCV_SBI */ 7071 struct { 7072 unsigned long extensi 7073 unsigned long functio 7074 unsigned long args[6] 7075 unsigned long ret[2]; 7076 } riscv_sbi; 7077 7078 If exit reason is KVM_EXIT_RISCV_SBI then it 7079 done a SBI call which is not handled by KVM R 7080 of the SBI call are available in 'riscv_sbi' 7081 'extension_id' field of 'riscv_sbi' represent 7082 'function_id' field represents function ID of 7083 array field of 'riscv_sbi' represents paramet 7084 array field represents return values. The use 7085 values of SBI call before resuming the VCPU. 7086 spec refer, https://github.com/riscv/riscv-sb 7087 7088 :: 7089 7090 /* KVM_EXIT_MEMORY_FAULT */ 7091 struct { 7092 #define KVM_MEMORY_EXIT_FLAG_PRIVATE (1ULL 7093 __u64 flags; 7094 __u64 gpa; 7095 __u64 size; 7096 } memory_fault; 7097 7098 KVM_EXIT_MEMORY_FAULT indicates the vCPU has 7099 could not be resolved by KVM. The 'gpa' and 7100 guest physical address range [gpa, gpa + size 7101 describes properties of the faulting access t 7102 7103 - KVM_MEMORY_EXIT_FLAG_PRIVATE - When set, i 7104 on a private memory access. When clear, i 7105 shared access. 7106 7107 Note! KVM_EXIT_MEMORY_FAULT is unique among 7108 accompanies a return code of '-1', not '0'! 7109 or EHWPOISON when KVM exits with KVM_EXIT_MEM 7110 kvm_run.exit_reason is stale/undefined for al 7111 7112 :: 7113 7114 /* KVM_EXIT_NOTIFY */ 7115 struct { 7116 #define KVM_NOTIFY_CONTEXT_INVALID (1 << 7117 __u32 flags; 7118 } notify; 7119 7120 Used on x86 systems. When the VM capability K 7121 enabled, a VM exit generated if no event wind 7122 for a specified amount of time. Once KVM_X86_ 7123 enabling the cap, it would exit to userspace 7124 KVM_EXIT_NOTIFY for further handling. The "fl 7125 detailed info. 7126 7127 The valid value for 'flags' is: 7128 7129 - KVM_NOTIFY_CONTEXT_INVALID -- the VM cont 7130 in VMCS. It would run into unknown result 7131 7132 :: 7133 7134 /* Fix the size of the union. 7135 char padding[256]; 7136 }; 7137 7138 /* 7139 * shared registers between kvm and u 7140 * kvm_valid_regs specifies the regis 7141 * kvm_dirty_regs specified the regis 7142 * struct kvm_sync_regs is architectu 7143 * bits for kvm_valid_regs and kvm_di 7144 */ 7145 __u64 kvm_valid_regs; 7146 __u64 kvm_dirty_regs; 7147 union { 7148 struct kvm_sync_regs regs; 7149 char padding[SYNC_REGS_SIZE_B 7150 } s; 7151 7152 If KVM_CAP_SYNC_REGS is defined, these fields 7153 certain guest registers without having to cal 7154 avoid some system call overhead if userspace 7155 Userspace can query the validity of the struc 7156 kvm_valid_regs for specific bits. These bits 7157 and usually define the validity of a groups o 7158 for general purpose registers) 7159 7160 Please note that the kernel is allowed to use 7161 primary storage for certain register types. T 7162 values in kvm_run even if the corresponding b 7163 7164 7165 6. Capabilities that can be enabled on vCPUs 7166 ============================================ 7167 7168 There are certain capabilities that change th 7169 the virtual machine when enabled. To enable t 7170 Below you can find a list of capabilities and 7171 the virtual machine is when enabling them. 7172 7173 The following information is provided along w 7174 7175 Architectures: 7176 which instruction set architectures pro 7177 x86 includes both i386 and x86_64. 7178 7179 Target: 7180 whether this is a per-vcpu or per-vm ca 7181 7182 Parameters: 7183 what parameters are accepted by the cap 7184 7185 Returns: 7186 the return value. General error number 7187 are not detailed, but errors with speci 7188 7189 7190 6.1 KVM_CAP_PPC_OSI 7191 ------------------- 7192 7193 :Architectures: ppc 7194 :Target: vcpu 7195 :Parameters: none 7196 :Returns: 0 on success; -1 on error 7197 7198 This capability enables interception of OSI h 7199 be treated as normal system calls to be injec 7200 were invented by Mac-on-Linux to have a stand 7201 between the guest and the host. 7202 7203 When this capability is enabled, KVM_EXIT_OSI 7204 7205 7206 6.2 KVM_CAP_PPC_PAPR 7207 -------------------- 7208 7209 :Architectures: ppc 7210 :Target: vcpu 7211 :Parameters: none 7212 :Returns: 0 on success; -1 on error 7213 7214 This capability enables interception of PAPR 7215 done using the hypercall instruction "sc 1". 7216 7217 It also sets the guest privilege level to "su 7218 runs in "hypervisor" privilege mode with a fe 7219 7220 In addition to the above, it changes the sema 7221 HTAB address part of SDR1 contains an HVA ins 7222 HTAB invisible to the guest. 7223 7224 When this capability is enabled, KVM_EXIT_PAP 7225 7226 7227 6.3 KVM_CAP_SW_TLB 7228 ------------------ 7229 7230 :Architectures: ppc 7231 :Target: vcpu 7232 :Parameters: args[0] is the address of a stru 7233 :Returns: 0 on success; -1 on error 7234 7235 :: 7236 7237 struct kvm_config_tlb { 7238 __u64 params; 7239 __u64 array; 7240 __u32 mmu_type; 7241 __u32 array_len; 7242 }; 7243 7244 Configures the virtual CPU's TLB array, estab 7245 between userspace and KVM. The "params" and 7246 addresses of mmu-type-specific data structure 7247 safety mechanism, and should be set to the si 7248 userspace has reserved for the array. It mus 7249 by "mmu_type" and "params". 7250 7251 While KVM_RUN is active, the shared region is 7252 contents are undefined, and any modification 7253 boundedly undefined behavior. 7254 7255 On return from KVM_RUN, the shared region wil 7256 the guest's TLB. If userspace makes any chan 7257 to tell KVM which entries have been changed, 7258 on this vcpu. 7259 7260 For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_ 7261 7262 - The "params" field is of type "struct kvm_ 7263 - The "array" field points to an array of ty 7264 kvm_book3e_206_tlb_entry". 7265 - The array consists of all entries in the f 7266 entries in the second TLB. 7267 - Within a TLB, entries are ordered first by 7268 set, entries are ordered by way (increasin 7269 - The hash for determining set number in TLB 7270 where "num_sets" is the tlb_sizes[] value 7271 - The tsize field of mas1 shall be set to 4K 7272 hardware ignores this value for TLB0. 7273 7274 6.4 KVM_CAP_S390_CSS_SUPPORT 7275 ---------------------------- 7276 7277 :Architectures: s390 7278 :Target: vcpu 7279 :Parameters: none 7280 :Returns: 0 on success; -1 on error 7281 7282 This capability enables support for handling 7283 7284 TEST PENDING INTERRUPTION and the interrupt p 7285 handled in-kernel, while the other I/O instru 7286 7287 When this capability is enabled, KVM_EXIT_S39 7288 SUBCHANNEL intercepts. 7289 7290 Note that even though this capability is enab 7291 virtual machine is affected. 7292 7293 6.5 KVM_CAP_PPC_EPR 7294 ------------------- 7295 7296 :Architectures: ppc 7297 :Target: vcpu 7298 :Parameters: args[0] defines whether the prox 7299 :Returns: 0 on success; -1 on error 7300 7301 This capability enables or disables the deliv 7302 external proxy facility. 7303 7304 When enabled (args[0] != 0), every time the g 7305 delivered, it automatically exits into user s 7306 to receive the topmost interrupt vector. 7307 7308 When disabled (args[0] == 0), behavior is as 7309 7310 When this capability is enabled, KVM_EXIT_EPR 7311 7312 6.6 KVM_CAP_IRQ_MPIC 7313 -------------------- 7314 7315 :Architectures: ppc 7316 :Parameters: args[0] is the MPIC device fd; 7317 args[1] is the MPIC CPU number f 7318 7319 This capability connects the vcpu to an in-ke 7320 7321 6.7 KVM_CAP_IRQ_XICS 7322 -------------------- 7323 7324 :Architectures: ppc 7325 :Target: vcpu 7326 :Parameters: args[0] is the XICS device fd; 7327 args[1] is the XICS CPU number ( 7328 7329 This capability connects the vcpu to an in-ke 7330 7331 6.8 KVM_CAP_S390_IRQCHIP 7332 ------------------------ 7333 7334 :Architectures: s390 7335 :Target: vm 7336 :Parameters: none 7337 7338 This capability enables the in-kernel irqchip 7339 "4.24 KVM_CREATE_IRQCHIP" for details. 7340 7341 6.9 KVM_CAP_MIPS_FPU 7342 -------------------- 7343 7344 :Architectures: mips 7345 :Target: vcpu 7346 :Parameters: args[0] is reserved for future u 7347 7348 This capability allows the use of the host Fl 7349 allows the Config1.FP bit to be set to enable 7350 done the ``KVM_REG_MIPS_FPR_*`` and ``KVM_REG 7351 accessed (depending on the current guest FPU 7352 Config5.FRE bits are accessible via the KVM A 7353 depending on them being supported by the FPU. 7354 7355 6.10 KVM_CAP_MIPS_MSA 7356 --------------------- 7357 7358 :Architectures: mips 7359 :Target: vcpu 7360 :Parameters: args[0] is reserved for future u 7361 7362 This capability allows the use of the MIPS SI 7363 It allows the Config3.MSAP bit to be set to e 7364 Once this is done the ``KVM_REG_MIPS_VEC_*`` 7365 registers can be accessed, and the Config5.MS 7366 KVM API and also from the guest. 7367 7368 6.74 KVM_CAP_SYNC_REGS 7369 ---------------------- 7370 7371 :Architectures: s390, x86 7372 :Target: s390: always enabled, x86: vcpu 7373 :Parameters: none 7374 :Returns: x86: KVM_CHECK_EXTENSION returns a 7375 sets are supported 7376 (bitfields defined in arch/x86/incl 7377 7378 As described above in the kvm_sync_regs struc 7379 KVM_CAP_SYNC_REGS "allow[s] userspace to acce 7380 without having to call SET/GET_*REGS". This r 7381 repeated ioctl calls for setting and/or getti 7382 particularly important when userspace is maki 7383 modifications, e.g. when emulating and/or int 7384 userspace. 7385 7386 For s390 specifics, please refer to the sourc 7387 7388 For x86: 7389 7390 - the register sets to be copied out to kvm_r 7391 by userspace (rather that all sets being co 7392 - vcpu_events are available in addition to re 7393 7394 For x86, the 'kvm_valid_regs' field of struct 7395 function as an input bit-array field set by u 7396 specific register sets to be copied out on th 7397 7398 To indicate when userspace has modified value 7399 the vCPU, the all architecture bitarray field 7400 This is done using the same bitflags as for t 7401 If the dirty bit is not set, then the registe 7402 into the vCPU even if they've been modified. 7403 7404 Unused bitfields in the bitarrays must be set 7405 7406 :: 7407 7408 struct kvm_sync_regs { 7409 struct kvm_regs regs; 7410 struct kvm_sregs sregs; 7411 struct kvm_vcpu_events events; 7412 }; 7413 7414 6.75 KVM_CAP_PPC_IRQ_XIVE 7415 ------------------------- 7416 7417 :Architectures: ppc 7418 :Target: vcpu 7419 :Parameters: args[0] is the XIVE device fd; 7420 args[1] is the XIVE CPU number ( 7421 7422 This capability connects the vcpu to an in-ke 7423 7424 7. Capabilities that can be enabled on VMs 7425 ========================================== 7426 7427 There are certain capabilities that change th 7428 machine when enabled. To enable them, please 7429 you can find a list of capabilities and what 7430 is when enabling them. 7431 7432 The following information is provided along w 7433 7434 Architectures: 7435 which instruction set architectures pro 7436 x86 includes both i386 and x86_64. 7437 7438 Parameters: 7439 what parameters are accepted by the cap 7440 7441 Returns: 7442 the return value. General error number 7443 are not detailed, but errors with speci 7444 7445 7446 7.1 KVM_CAP_PPC_ENABLE_HCALL 7447 ---------------------------- 7448 7449 :Architectures: ppc 7450 :Parameters: args[0] is the sPAPR hcall numbe 7451 args[1] is 0 to disable, 1 to en 7452 7453 This capability controls whether individual s 7454 get handled by the kernel or not. Enabling o 7455 handling of an hcall is effective across the 7456 initial set of hcalls are enabled for in-kern 7457 consists of those hcalls for which in-kernel 7458 before this capability was implemented. If d 7459 not to attempt to handle the hcall, but will 7460 to handle it. Note that it may not make sens 7461 disable others of a group of related hcalls, 7462 userspace from doing that. 7463 7464 If the hcall number specified is not one that 7465 implementation, the KVM_ENABLE_CAP ioctl will 7466 error. 7467 7468 7.2 KVM_CAP_S390_USER_SIGP 7469 -------------------------- 7470 7471 :Architectures: s390 7472 :Parameters: none 7473 7474 This capability controls which SIGP orders wi 7475 space. With this capability enabled, all fast 7476 in the kernel: 7477 7478 - SENSE 7479 - SENSE RUNNING 7480 - EXTERNAL CALL 7481 - EMERGENCY SIGNAL 7482 - CONDITIONAL EMERGENCY SIGNAL 7483 7484 All other orders will be handled completely i 7485 7486 Only privileged operation exceptions will be 7487 in the hardware prior to interception). If th 7488 old way of handling SIGP orders is used (part 7489 7490 7.3 KVM_CAP_S390_VECTOR_REGISTERS 7491 --------------------------------- 7492 7493 :Architectures: s390 7494 :Parameters: none 7495 :Returns: 0 on success, negative value on err 7496 7497 Allows use of the vector registers introduced 7498 provides for the synchronization between host 7499 return -EINVAL if the machine does not suppor 7500 7501 7.4 KVM_CAP_S390_USER_STSI 7502 -------------------------- 7503 7504 :Architectures: s390 7505 :Parameters: none 7506 7507 This capability allows post-handlers for the 7508 initial handling in the kernel, KVM exits to 7509 KVM_EXIT_S390_STSI to allow user space to ins 7510 7511 Before exiting to userspace, kvm handlers sho 7512 vcpu->run:: 7513 7514 struct { 7515 __u64 addr; 7516 __u8 ar; 7517 __u8 reserved; 7518 __u8 fc; 7519 __u8 sel1; 7520 __u16 sel2; 7521 } s390_stsi; 7522 7523 @addr - guest address of STSI SYSIB 7524 @fc - function code 7525 @sel1 - selector 1 7526 @sel2 - selector 2 7527 @ar - access register number 7528 7529 KVM handlers should exit to userspace with rc 7530 7531 7.5 KVM_CAP_SPLIT_IRQCHIP 7532 ------------------------- 7533 7534 :Architectures: x86 7535 :Parameters: args[0] - number of routes reser 7536 :Returns: 0 on success, -1 on error 7537 7538 Create a local apic for each processor in the 7539 instead of KVM_CREATE_IRQCHIP if the userspac 7540 IOAPIC and PIC (and also the PIT, even though 7541 separately). 7542 7543 This capability also enables in kernel routin 7544 when KVM_CAP_SPLIT_IRQCHIP only routes of KVM 7545 used in the IRQ routing table. The first arg 7546 for the IOAPIC pins. Whenever the LAPIC rece 7547 a KVM_EXIT_IOAPIC_EOI vmexit will be reported 7548 7549 Fails if VCPU has already been created, or if 7550 kernel (i.e. KVM_CREATE_IRQCHIP has already b 7551 7552 7.6 KVM_CAP_S390_RI 7553 ------------------- 7554 7555 :Architectures: s390 7556 :Parameters: none 7557 7558 Allows use of runtime-instrumentation introdu 7559 Will return -EINVAL if the machine does not s 7560 Will return -EBUSY if a VCPU has already been 7561 7562 7.7 KVM_CAP_X2APIC_API 7563 ---------------------- 7564 7565 :Architectures: x86 7566 :Parameters: args[0] - features that should b 7567 :Returns: 0 on success, -EINVAL when args[0] 7568 7569 Valid feature flags in args[0] are:: 7570 7571 #define KVM_X2APIC_API_USE_32BIT_IDS 7572 #define KVM_X2APIC_API_DISABLE_BROADCAST_QU 7573 7574 Enabling KVM_X2APIC_API_USE_32BIT_IDS changes 7575 KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_ 7576 allowing the use of 32-bit APIC IDs. See KVM 7577 respective sections. 7578 7579 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must b 7580 in logical mode or with more than 255 VCPUs. 7581 as a broadcast even in x2APIC mode in order t 7582 without interrupt remapping. This is undesir 7583 where 0xff represents CPUs 0-7 in cluster 0. 7584 7585 7.8 KVM_CAP_S390_USER_INSTR0 7586 ---------------------------- 7587 7588 :Architectures: s390 7589 :Parameters: none 7590 7591 With this capability enabled, all illegal ins 7592 be intercepted and forwarded to user space. U 7593 mechanism e.g. to realize 2-byte software bre 7594 not inject an operating exception for these i 7595 to take care of that. 7596 7597 This capability can be enabled dynamically ev 7598 created and are running. 7599 7600 7.9 KVM_CAP_S390_GS 7601 ------------------- 7602 7603 :Architectures: s390 7604 :Parameters: none 7605 :Returns: 0 on success; -EINVAL if the machin 7606 guarded storage; -EBUSY if a VCPU h 7607 7608 Allows use of guarded storage for the KVM gue 7609 7610 7.10 KVM_CAP_S390_AIS 7611 --------------------- 7612 7613 :Architectures: s390 7614 :Parameters: none 7615 7616 Allow use of adapter-interruption suppression 7617 :Returns: 0 on success; -EBUSY if a VCPU has 7618 7619 7.11 KVM_CAP_PPC_SMT 7620 -------------------- 7621 7622 :Architectures: ppc 7623 :Parameters: vsmt_mode, flags 7624 7625 Enabling this capability on a VM provides use 7626 the desired virtual SMT mode (i.e. the number 7627 virtual core). The virtual SMT mode, vsmt_mo 7628 between 1 and 8. On POWER8, vsmt_mode must a 7629 the number of threads per subcore for the hos 7630 be 0. A successful call to enable this capab 7631 vsmt_mode being returned when the KVM_CAP_PPC 7632 subsequently queried for the VM. This capabi 7633 HV KVM, and can only be set before any VCPUs 7634 The KVM_CAP_PPC_SMT_POSSIBLE capability indic 7635 modes are available. 7636 7637 7.12 KVM_CAP_PPC_FWNMI 7638 ---------------------- 7639 7640 :Architectures: ppc 7641 :Parameters: none 7642 7643 With this capability a machine check exceptio 7644 space will cause KVM to exit the guest with N 7645 enables QEMU to build error log and branch to 7646 machine check handling routine. Without this 7647 branch to guests' 0x200 interrupt vector. 7648 7649 7.13 KVM_CAP_X86_DISABLE_EXITS 7650 ------------------------------ 7651 7652 :Architectures: x86 7653 :Parameters: args[0] defines which exits are 7654 :Returns: 0 on success, -EINVAL when args[0] 7655 7656 Valid bits in args[0] are:: 7657 7658 #define KVM_X86_DISABLE_EXITS_MWAIT 7659 #define KVM_X86_DISABLE_EXITS_HLT 7660 #define KVM_X86_DISABLE_EXITS_PAUSE 7661 #define KVM_X86_DISABLE_EXITS_CSTATE 7662 7663 Enabling this capability on a VM provides use 7664 longer intercept some instructions for improv 7665 workloads, and is suggested when vCPUs are as 7666 physical CPUs. More bits can be added in the 7667 just pass the KVM_CHECK_EXTENSION result to K 7668 all such vmexits. 7669 7670 Do not enable KVM_FEATURE_PV_UNHALT if you di 7671 7672 7.14 KVM_CAP_S390_HPAGE_1M 7673 -------------------------- 7674 7675 :Architectures: s390 7676 :Parameters: none 7677 :Returns: 0 on success, -EINVAL if hpage modu 7678 or cmma is enabled, or the VM has t 7679 flag set 7680 7681 With this capability the KVM support for memo 7682 through hugetlbfs can be enabled for a VM. Af 7683 enabled, cmma can't be enabled anymore and pf 7684 interpretation are disabled. If cmma has alre 7685 hpage module parameter is not set to 1, -EINV 7686 7687 While it is generally possible to create a hu 7688 this capability, the VM will not be able to r 7689 7690 7.15 KVM_CAP_MSR_PLATFORM_INFO 7691 ------------------------------ 7692 7693 :Architectures: x86 7694 :Parameters: args[0] whether feature should b 7695 7696 With this capability, a guest may read the MS 7697 a #GP would be raised when the guest tries to 7698 capability does not enable write permissions 7699 7700 7.16 KVM_CAP_PPC_NESTED_HV 7701 -------------------------- 7702 7703 :Architectures: ppc 7704 :Parameters: none 7705 :Returns: 0 on success, -EINVAL when the impl 7706 nested-HV virtualization. 7707 7708 HV-KVM on POWER9 and later systems allows for 7709 virtualization, which provides a way for a gu 7710 can run using the CPU's supervisor mode (priv 7711 state). Enabling this capability on a VM dep 7712 the necessary functionality and on the facili 7713 kvm-hv module parameter. 7714 7715 7.17 KVM_CAP_EXCEPTION_PAYLOAD 7716 ------------------------------ 7717 7718 :Architectures: x86 7719 :Parameters: args[0] whether feature should b 7720 7721 With this capability enabled, CR2 will not be 7722 emulated VM-exit when L1 intercepts a #PF exc 7723 L2. Similarly, for kvm-intel only, DR6 will n 7724 the emulated VM-exit when L1 intercepts a #DB 7725 L2. As a result, when KVM_GET_VCPU_EVENTS rep 7726 #DB) exception for L2, exception.has_payload 7727 faulting address (or the new DR6 bits*) will 7728 exception_payload field. Similarly, when user 7729 #DB) into L2 using KVM_SET_VCPU_EVENTS, it is 7730 exception.has_payload and to put the faulting 7731 bits\ [#]_ - in the exception_payload field. 7732 7733 This capability also enables exception.pendin 7734 kvm_vcpu_events, which allows userspace to di 7735 and injected exceptions. 7736 7737 7738 .. [#] For the new DR6 bits, note that bit 16 7739 will clear DR6.RTM. 7740 7741 7.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 7742 -------------------------------------- 7743 7744 :Architectures: x86, arm64, mips 7745 :Parameters: args[0] whether feature should b 7746 7747 Valid flags are:: 7748 7749 #define KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 7750 #define KVM_DIRTY_LOG_INITIALLY_SET 7751 7752 With KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE is s 7753 automatically clear and write-protect all pag 7754 Rather, userspace will have to do this operat 7755 KVM_CLEAR_DIRTY_LOG. 7756 7757 At the cost of a slightly more complicated op 7758 scalability and responsiveness for two reason 7759 KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64 7760 than requiring to sync a full memslot; this e 7761 take spinlocks for an extended period of time 7762 large amount of time can pass between a call 7763 userspace actually using the data in the page 7764 during this time, which is inefficient for bo 7765 the guest will incur a higher penalty due to 7766 while userspace can see false reports of dirt 7767 helps reducing this time, improving guest per 7768 number of dirty log false positives. 7769 7770 With KVM_DIRTY_LOG_INITIALLY_SET set, all the 7771 will be initialized to 1 when created. This 7772 dirty logging can be enabled gradually in sma 7773 to KVM_CLEAR_DIRTY_LOG. KVM_DIRTY_LOG_INITIA 7774 KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (it is al 7775 x86 and arm64 for now). 7776 7777 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previou 7778 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the imp 7779 it hard or impossible to use it correctly. T 7780 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 signals tha 7781 Userspace should not try to use KVM_CAP_MANUA 7782 7783 7.19 KVM_CAP_PPC_SECURE_GUEST 7784 ------------------------------ 7785 7786 :Architectures: ppc 7787 7788 This capability indicates that KVM is running 7789 ultravisor firmware and thus can support a se 7790 system, a guest can ask the ultravisor to mak 7791 one whose memory is inaccessible to the host 7792 are explicitly requested to be shared with th 7793 notifies KVM when a guest requests to become 7794 has the opportunity to veto the transition. 7795 7796 If present, this capability can be enabled fo 7797 will allow the transition to secure guest mod 7798 veto the transition. 7799 7800 7.20 KVM_CAP_HALT_POLL 7801 ---------------------- 7802 7803 :Architectures: all 7804 :Target: VM 7805 :Parameters: args[0] is the maximum poll time 7806 :Returns: 0 on success; -1 on error 7807 7808 KVM_CAP_HALT_POLL overrides the kvm.halt_poll 7809 maximum halt-polling time for all vCPUs in th 7810 be invoked at any time and any number of time 7811 maximum halt-polling time. 7812 7813 See Documentation/virt/kvm/halt-polling.rst f 7814 polling. 7815 7816 7.21 KVM_CAP_X86_USER_SPACE_MSR 7817 ------------------------------- 7818 7819 :Architectures: x86 7820 :Target: VM 7821 :Parameters: args[0] contains the mask of KVM 7822 :Returns: 0 on success; -1 on error 7823 7824 This capability allows userspace to intercept 7825 access to an MSR is denied. By default, KVM 7826 7827 When a guest requests to read or write an MSR 7828 that are relevant to a respective system. It 7829 CPU type. 7830 7831 To allow more fine grained control over MSR h 7832 this capability. With it enabled, MSR accesse 7833 args[0] and would trigger a #GP inside the gu 7834 KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exi 7835 can then implement model specific MSR handlin 7836 to inform a user that an MSR was not emulated 7837 7838 The valid mask flags are: 7839 7840 ============================ ================ 7841 KVM_MSR_EXIT_REASON_UNKNOWN intercept access 7842 KVM_MSR_EXIT_REASON_INVAL intercept access 7843 invalid accordin 7844 KVM_MSR_EXIT_REASON_FILTER intercept access 7845 via KVM_X86_SET_ 7846 ============================ ================ 7847 7848 7.22 KVM_CAP_X86_BUS_LOCK_EXIT 7849 ------------------------------- 7850 7851 :Architectures: x86 7852 :Target: VM 7853 :Parameters: args[0] defines the policy used 7854 :Returns: 0 on success, -EINVAL when args[0] 7855 7856 Valid bits in args[0] are:: 7857 7858 #define KVM_BUS_LOCK_DETECTION_OFF (1 7859 #define KVM_BUS_LOCK_DETECTION_EXIT (1 7860 7861 Enabling this capability on a VM provides use 7862 policy to handle the bus locks detected in gu 7863 supported modes from the result of KVM_CHECK_ 7864 the KVM_ENABLE_CAP. The supported modes are m 7865 7866 This capability allows userspace to force VM 7867 guest, irrespective whether or not the host h 7868 (which triggers an #AC exception that KVM int 7869 intended to mitigate attacks where a maliciou 7870 locks to degrade the performance of the whole 7871 7872 If KVM_BUS_LOCK_DETECTION_OFF is set, KVM doe 7873 exit, although the host kernel's split-lock # 7874 enabled. 7875 7876 If KVM_BUS_LOCK_DETECTION_EXIT is set, KVM en 7877 bus locks in the guest trigger a VM exit, and 7878 such VM exits, e.g. to allow userspace to thr 7879 apply some other policy-based mitigation. Whe 7880 KVM_RUN_X86_BUS_LOCK in vcpu-run->flags, and 7881 to KVM_EXIT_X86_BUS_LOCK. 7882 7883 Note! Detected bus locks may be coincident wi 7884 KVM_RUN_X86_BUS_LOCK should be checked regard 7885 userspace wants to take action on all detecte 7886 7887 7.23 KVM_CAP_PPC_DAWR1 7888 ---------------------- 7889 7890 :Architectures: ppc 7891 :Parameters: none 7892 :Returns: 0 on success, -EINVAL when CPU does 7893 7894 This capability can be used to check / enable 7895 by POWER10 processor. 7896 7897 7898 7.24 KVM_CAP_VM_COPY_ENC_CONTEXT_FROM 7899 ------------------------------------- 7900 7901 Architectures: x86 SEV enabled 7902 Type: vm 7903 Parameters: args[0] is the fd of the source v 7904 Returns: 0 on success; ENOTTY on error 7905 7906 This capability enables userspace to copy enc 7907 indicated by the fd to the vm this is called 7908 7909 This is intended to support in-guest workload 7910 allows the in-guest workload to maintain its 7911 from accidentally clobbering each other with 7912 APIC/MSRs/etc). 7913 7914 7.25 KVM_CAP_SGX_ATTRIBUTE 7915 -------------------------- 7916 7917 :Architectures: x86 7918 :Target: VM 7919 :Parameters: args[0] is a file handle of a SG 7920 :Returns: 0 on success, -EINVAL if the file h 7921 attribute is not supported by KVM. 7922 7923 KVM_CAP_SGX_ATTRIBUTE enables a userspace VMM 7924 more privileged enclave attributes. args[0] 7925 SGX attribute file corresponding to an attrib 7926 by KVM (currently only PROVISIONKEY). 7927 7928 The SGX subsystem restricts access to a subse 7929 additional security for an uncompromised kern 7930 is restricted to deter malware from using the 7931 system fingerprint. To prevent userspace fro 7932 by running an enclave in a VM, KVM prevents a 7933 default. 7934 7935 See Documentation/arch/x86/sgx.rst for more d 7936 7937 7.26 KVM_CAP_PPC_RPT_INVALIDATE 7938 ------------------------------- 7939 7940 :Capability: KVM_CAP_PPC_RPT_INVALIDATE 7941 :Architectures: ppc 7942 :Type: vm 7943 7944 This capability indicates that the kernel is 7945 H_RPT_INVALIDATE hcall. 7946 7947 In order to enable the use of H_RPT_INVALIDAT 7948 user space might have to advertise it for the 7949 IBM pSeries (sPAPR) guest starts using it if 7950 present in the "ibm,hypertas-functions" devic 7951 7952 This capability is enabled for hypervisors on 7953 that support radix MMU. 7954 7955 7.27 KVM_CAP_EXIT_ON_EMULATION_FAILURE 7956 -------------------------------------- 7957 7958 :Architectures: x86 7959 :Parameters: args[0] whether the feature shou 7960 7961 When this capability is enabled, an emulation 7962 to userspace with KVM_INTERNAL_ERROR (except 7963 to handle a VMware backdoor instruction). Fur 7964 to 15 instruction bytes for any exit to users 7965 failure. When these exits to userspace occur 7966 instead of the internal struct. They both ha 7967 emulation_failure struct matches the content 7968 defines the 'flags' field which is used to de 7969 that are valid (ie: if KVM_INTERNAL_ERROR_EMU 7970 set in the 'flags' field then both 'insn_size 7971 in them.) 7972 7973 7.28 KVM_CAP_ARM_MTE 7974 -------------------- 7975 7976 :Architectures: arm64 7977 :Parameters: none 7978 7979 This capability indicates that KVM (and the h 7980 Memory Tagging Extensions (MTE) to the guest. 7981 VMM before creating any VCPUs to allow the gu 7982 available to a guest running in AArch64 mode 7983 cause attempts to create AArch32 VCPUs to fai 7984 7985 When enabled the guest is able to access tags 7986 to the guest. KVM will ensure that the tags a 7987 hibernation of the host; however the VMM need 7988 tags as appropriate if the VM is migrated. 7989 7990 When this capability is enabled all memory in 7991 ``MAP_ANONYMOUS`` or with a RAM-based file ma 7992 attempts to create a memslot with an invalid 7993 -EINVAL return. 7994 7995 When enabled the VMM may make use of the ``KV 7996 perform a bulk copy of tags to/from the guest 7997 7998 7.29 KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM 7999 ------------------------------------- 8000 8001 :Architectures: x86 SEV enabled 8002 :Type: vm 8003 :Parameters: args[0] is the fd of the source 8004 :Returns: 0 on success 8005 8006 This capability enables userspace to migrate 8007 indicated by the fd to the VM this is called 8008 8009 This is intended to support intra-host migrat 8010 upgrading the VMM process without interruptin 8011 8012 7.30 KVM_CAP_PPC_AIL_MODE_3 8013 ------------------------------- 8014 8015 :Capability: KVM_CAP_PPC_AIL_MODE_3 8016 :Architectures: ppc 8017 :Type: vm 8018 8019 This capability indicates that the kernel sup 8020 "Address Translation Mode on Interrupt" aka " 8021 resource that is controlled with the H_SET_MO 8022 8023 This capability allows a guest kernel to use 8024 handling interrupts and system calls. 8025 8026 7.31 KVM_CAP_DISABLE_QUIRKS2 8027 ---------------------------- 8028 8029 :Capability: KVM_CAP_DISABLE_QUIRKS2 8030 :Parameters: args[0] - set of KVM quirks to d 8031 :Architectures: x86 8032 :Type: vm 8033 8034 This capability, if enabled, will cause KVM t 8035 quirks. 8036 8037 Calling KVM_CHECK_EXTENSION for this capabili 8038 quirks that can be disabled in KVM. 8039 8040 The argument to KVM_ENABLE_CAP for this capab 8041 quirks to disable, and must be a subset of th 8042 KVM_CHECK_EXTENSION. 8043 8044 The valid bits in cap.args[0] are: 8045 8046 =================================== ========= 8047 KVM_X86_QUIRK_LINT0_REENABLED By defaul 8048 LINT0 reg 8049 When this 8050 is 0x1000 8051 8052 KVM_X86_QUIRK_CD_NW_CLEARED By defaul 8053 AMD CPUs 8054 that runs 8055 with cach 8056 8057 When this 8058 change th 8059 8060 KVM_X86_QUIRK_LAPIC_MMIO_HOLE By defaul 8061 available 8062 mode. Whe 8063 disables 8064 LAPIC is 8065 8066 KVM_X86_QUIRK_OUT_7E_INC_RIP By defaul 8067 exiting t 8068 to port 0 8069 KVM does 8070 exiting t 8071 8072 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT When this 8073 CPUID.01H 8074 IA32_MISC 8075 Additiona 8076 KVM clear 8077 IA32_MISC 8078 8079 KVM_X86_QUIRK_FIX_HYPERCALL_INSN By defaul 8080 VMMCALL/V 8081 vendor's 8082 system. W 8083 will no l 8084 hypercall 8085 incorrect 8086 generate 8087 8088 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS By defaul 8089 they are 8090 whether o 8091 according 8092 is disabl 8093 is not se 8094 KVM will 8095 they're u 8096 KVM will 8097 guest CPU 8098 KVM_X86_Q 8099 disabled. 8100 8101 KVM_X86_QUIRK_SLOT_ZAP_ALL By defaul 8102 invalidat 8103 address s 8104 moved. W 8105 VM type i 8106 ensures t 8107 or moved 8108 _may_ inv 8109 memslot. 8110 =================================== ========= 8111 8112 7.32 KVM_CAP_MAX_VCPU_ID 8113 ------------------------ 8114 8115 :Architectures: x86 8116 :Target: VM 8117 :Parameters: args[0] - maximum APIC ID value 8118 :Returns: 0 on success, -EINVAL if args[0] is 8119 supported in KVM or if it has been 8120 8121 This capability allows userspace to specify m 8122 assigned for current VM session prior to the 8123 memory for data structures indexed by the API 8124 to calculate the limit to APIC ID values from 8125 CPU topology. 8126 8127 The value can be changed only until KVM_ENABL 8128 value or until a vCPU is created. Upon creat 8129 if the value was set to zero or KVM_ENABLE_CA 8130 uses the return value of KVM_CHECK_EXTENSION( 8131 the maximum APIC ID. 8132 8133 7.33 KVM_CAP_X86_NOTIFY_VMEXIT 8134 ------------------------------ 8135 8136 :Architectures: x86 8137 :Target: VM 8138 :Parameters: args[0] is the value of notify w 8139 :Returns: 0 on success, -EINVAL if args[0] co 8140 VM exit is unsupported. 8141 8142 Bits 63:32 of args[0] are used for notify win 8143 Bits 31:0 of args[0] are for some flags. Vali 8144 8145 #define KVM_X86_NOTIFY_VMEXIT_ENABLED (1 8146 #define KVM_X86_NOTIFY_VMEXIT_USER (1 8147 8148 This capability allows userspace to configure 8149 in per-VM scope during VM creation. Notify VM 8150 When userspace sets KVM_X86_NOTIFY_VMEXIT_ENA 8151 enable this feature with the notify window pr 8152 a VM exit if no event window occurs in VM non 8153 time (notify window). 8154 8155 If KVM_X86_NOTIFY_VMEXIT_USER is set in args[ 8156 KVM would exit to userspace for handling. 8157 8158 This capability is aimed to mitigate the thre 8159 cause CPU stuck (due to event windows don't o 8160 unavailable to host or other VMs. 8161 8162 7.34 KVM_CAP_MEMORY_FAULT_INFO 8163 ------------------------------ 8164 8165 :Architectures: x86 8166 :Returns: Informational only, -EINVAL on dire 8167 8168 The presence of this capability indicates tha 8169 kvm_run.memory_fault if KVM cannot resolve a 8170 there is a valid memslot but no backing VMA f 8171 address. 8172 8173 The information in kvm_run.memory_fault is va 8174 an error with errno=EFAULT or errno=EHWPOISON 8175 to KVM_EXIT_MEMORY_FAULT. 8176 8177 Note: Userspaces which attempt to resolve mem 8178 KVM_RUN are encouraged to guard against repea 8179 error/annotated fault. 8180 8181 See KVM_EXIT_MEMORY_FAULT for more informatio 8182 8183 7.35 KVM_CAP_X86_APIC_BUS_CYCLES_NS 8184 ----------------------------------- 8185 8186 :Architectures: x86 8187 :Target: VM 8188 :Parameters: args[0] is the desired APIC bus 8189 :Returns: 0 on success, -EINVAL if args[0] co 8190 frequency or if any vCPUs have been 8191 local APIC has not been created usi 8192 8193 This capability sets the VM's APIC bus clock 8194 virtual APIC when emulating APIC timers. KVM 8195 by KVM_CHECK_EXTENSION. 8196 8197 Note: Userspace is responsible for correctly 8198 core crystal clock frequency, if a non-zero C 8199 8200 7.36 KVM_CAP_X86_GUEST_MODE 8201 ------------------------------ 8202 8203 :Architectures: x86 8204 :Returns: Informational only, -EINVAL on dire 8205 8206 The presence of this capability indicates tha 8207 KVM_RUN_X86_GUEST_MODE bit in kvm_run.flags t 8208 vCPU was executing nested guest code when it 8209 8210 KVM exits with the register state of either t 8211 depending on which executed at the time of an 8212 take care to differentiate between these case 8213 8214 8. Other capabilities. 8215 ====================== 8216 8217 This section lists capabilities that give inf 8218 features of the KVM implementation. 8219 8220 8.1 KVM_CAP_PPC_HWRNG 8221 --------------------- 8222 8223 :Architectures: ppc 8224 8225 This capability, if KVM_CHECK_EXTENSION indic 8226 available, means that the kernel has an imple 8227 H_RANDOM hypercall backed by a hardware rando 8228 If present, the kernel H_RANDOM handler can b 8229 with the KVM_CAP_PPC_ENABLE_HCALL capability. 8230 8231 8.2 KVM_CAP_HYPERV_SYNIC 8232 ------------------------ 8233 8234 :Architectures: x86 8235 8236 This capability, if KVM_CHECK_EXTENSION indic 8237 available, means that the kernel has an imple 8238 Hyper-V Synthetic interrupt controller(SynIC) 8239 used to support Windows Hyper-V based guest p 8240 8241 In order to use SynIC, it has to be activated 8242 capability via KVM_ENABLE_CAP ioctl on the vc 8243 will disable the use of APIC hardware virtual 8244 by the CPU, as it's incompatible with SynIC a 8245 8246 8.3 KVM_CAP_PPC_MMU_RADIX 8247 ------------------------- 8248 8249 :Architectures: ppc 8250 8251 This capability, if KVM_CHECK_EXTENSION indic 8252 available, means that the kernel can support 8253 radix MMU defined in Power ISA V3.00 (as impl 8254 processor). 8255 8256 8.4 KVM_CAP_PPC_MMU_HASH_V3 8257 --------------------------- 8258 8259 :Architectures: ppc 8260 8261 This capability, if KVM_CHECK_EXTENSION indic 8262 available, means that the kernel can support 8263 hashed page table MMU defined in Power ISA V3 8264 the POWER9 processor), including in-memory se 8265 8266 8.5 KVM_CAP_MIPS_VZ 8267 ------------------- 8268 8269 :Architectures: mips 8270 8271 This capability, if KVM_CHECK_EXTENSION on th 8272 it is available, means that full hardware ass 8273 of the hardware are available for use through 8274 KVM_VM_MIPS_* type must be passed to KVM_CREA 8275 utilises it. 8276 8277 If KVM_CHECK_EXTENSION on a kvm VM handle ind 8278 available, it means that the VM is using full 8279 capabilities of the hardware. This is useful 8280 KVM_VM_MIPS_DEFAULT. 8281 8282 The value returned by KVM_CHECK_EXTENSION sho 8283 values (see below). All other values are rese 8284 possibility of other hardware assisted virtua 8285 may be incompatible with the MIPS VZ ASE. 8286 8287 == ========================================= 8288 0 The trap & emulate implementation is in u 8289 mode. Guest virtual memory segments are r 8290 user mode address space. 8291 8292 1 The MIPS VZ ASE is in use, providing full 8293 virtualization, including standard guest 8294 == ========================================= 8295 8296 8.6 KVM_CAP_MIPS_TE 8297 ------------------- 8298 8299 :Architectures: mips 8300 8301 This capability, if KVM_CHECK_EXTENSION on th 8302 it is available, means that the trap & emulat 8303 run guest code in user mode, even if KVM_CAP_ 8304 assisted virtualisation is also available. KV 8305 to KVM_CREATE_VM to create a VM which utilise 8306 8307 If KVM_CHECK_EXTENSION on a kvm VM handle ind 8308 available, it means that the VM is using trap 8309 8310 8.7 KVM_CAP_MIPS_64BIT 8311 ---------------------- 8312 8313 :Architectures: mips 8314 8315 This capability indicates the supported archi 8316 supported register and address width. 8317 8318 The values returned when this capability is c 8319 kvm VM handle correspond roughly to the CP0_C 8320 be checked specifically against known values 8321 reserved. 8322 8323 == ========================================= 8324 0 MIPS32 or microMIPS32. 8325 Both registers and addresses are 32-bits 8326 It will only be possible to run 32-bit gu 8327 8328 1 MIPS64 or microMIPS64 with access only to 8329 Registers are 64-bits wide, but addresses 8330 64-bit guest code may run but cannot acce 8331 It will also be possible to run 32-bit gu 8332 8333 2 MIPS64 or microMIPS64 with access to all 8334 Both registers and addresses are 64-bits 8335 It will be possible to run 64-bit or 32-b 8336 == ========================================= 8337 8338 8.9 KVM_CAP_ARM_USER_IRQ 8339 ------------------------ 8340 8341 :Architectures: arm64 8342 8343 This capability, if KVM_CHECK_EXTENSION indic 8344 that if userspace creates a VM without an in- 8345 will be notified of changes to the output lev 8346 which can generate virtual interrupts, presen 8347 For such VMs, on every return to userspace, t 8348 updates the vcpu's run->s.regs.device_irq_lev 8349 output level of the device. 8350 8351 Whenever kvm detects a change in the device o 8352 least one return to userspace before running 8353 be a KVM_EXIT_INTR or any other exit event, l 8354 userspace can always sample the device output 8355 the userspace interrupt controller. Userspac 8356 of run->s.regs.device_irq_level on every kvm 8357 The value in run->s.regs.device_irq_level can 8358 triggered interrupt signals, depending on the 8359 signals will exit to userspace with the bit i 8360 set exactly once per edge signal. 8361 8362 The field run->s.regs.device_irq_level is ava 8363 run->kvm_valid_regs or run->kvm_dirty_regs bi 8364 8365 If KVM_CAP_ARM_USER_IRQ is supported, the KVM 8366 number larger than 0 indicating the version o 8367 and thereby which bits in run->s.regs.device_ 8368 8369 Currently the following bits are defined for 8370 8371 KVM_CAP_ARM_USER_IRQ >= 1: 8372 8373 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual tim 8374 KVM_ARM_DEV_EL1_PTIMER - EL1 physical ti 8375 KVM_ARM_DEV_PMU - ARM PMU overflo 8376 8377 Future versions of kvm may implement addition 8378 indicated by returning a higher number from K 8379 listed above. 8380 8381 8.10 KVM_CAP_PPC_SMT_POSSIBLE 8382 ----------------------------- 8383 8384 :Architectures: ppc 8385 8386 Querying this capability returns a bitmap ind 8387 virtual SMT modes that can be set using KVM_C 8388 (counting from the right) is set, then a virt 8389 available. 8390 8391 8.11 KVM_CAP_HYPERV_SYNIC2 8392 -------------------------- 8393 8394 :Architectures: x86 8395 8396 This capability enables a newer version of Hy 8397 controller (SynIC). The only difference with 8398 doesn't clear SynIC message and event flags p 8399 writing to the respective MSRs. 8400 8401 8.12 KVM_CAP_HYPERV_VP_INDEX 8402 ---------------------------- 8403 8404 :Architectures: x86 8405 8406 This capability indicates that userspace can 8407 value is used to denote the target vcpu for a 8408 compatibility, KVM initializes this msr to KV 8409 capability is absent, userspace can still que 8410 8411 8.13 KVM_CAP_S390_AIS_MIGRATION 8412 ------------------------------- 8413 8414 :Architectures: s390 8415 :Parameters: none 8416 8417 This capability indicates if the flic device 8418 AIS states for migration via the KVM_DEV_FLIC 8419 to discover this without having to create a f 8420 8421 8.14 KVM_CAP_S390_PSW 8422 --------------------- 8423 8424 :Architectures: s390 8425 8426 This capability indicates that the PSW is exp 8427 8428 8.15 KVM_CAP_S390_GMAP 8429 ---------------------- 8430 8431 :Architectures: s390 8432 8433 This capability indicates that the user space 8434 be anywhere in the user memory address space, 8435 aligned and sized to a segment (1MB) boundary 8436 8437 8.16 KVM_CAP_S390_COW 8438 --------------------- 8439 8440 :Architectures: s390 8441 8442 This capability indicates that the user space 8443 use copy-on-write semantics as well as dirty 8444 tables. 8445 8446 8.17 KVM_CAP_S390_BPB 8447 --------------------- 8448 8449 :Architectures: s390 8450 8451 This capability indicates that kvm will imple 8452 reset, migration and nested KVM for branch pr 8453 facility 82 should not be provided to the gue 8454 8455 8.18 KVM_CAP_HYPERV_TLBFLUSH 8456 ---------------------------- 8457 8458 :Architectures: x86 8459 8460 This capability indicates that KVM supports p 8461 hypercalls: 8462 HvFlushVirtualAddressSpace, HvFlushVirtualAdd 8463 HvFlushVirtualAddressList, HvFlushVirtualAddr 8464 8465 8.19 KVM_CAP_ARM_INJECT_SERROR_ESR 8466 ---------------------------------- 8467 8468 :Architectures: arm64 8469 8470 This capability indicates that userspace can 8471 KVM_SET_VCPU_EVENTS ioctl) the syndrome value 8472 takes a virtual SError interrupt exception. 8473 If KVM advertises this capability, userspace 8474 the ESR syndrome. Other parts of the ESR, suc 8475 CPU when the exception is taken. If this virt 8476 AArch64, this value will be reported in the I 8477 8478 See KVM_CAP_VCPU_EVENTS for more details. 8479 8480 8.20 KVM_CAP_HYPERV_SEND_IPI 8481 ---------------------------- 8482 8483 :Architectures: x86 8484 8485 This capability indicates that KVM supports p 8486 hypercalls: 8487 HvCallSendSyntheticClusterIpi, HvCallSendSynt 8488 8489 8.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH 8490 ----------------------------------- 8491 8492 :Architectures: x86 8493 8494 This capability indicates that KVM running on 8495 enables Direct TLB flush for its guests meani 8496 hypercalls are handled by Level 0 hypervisor 8497 Due to the different ABI for hypercall parame 8498 KVM, enabling this capability effectively dis 8499 handling by KVM (as some KVM hypercall may be 8500 flush hypercalls by Hyper-V) so userspace sho 8501 in CPUID and only exposes Hyper-V identificat 8502 thinks it's running on Hyper-V and only use H 8503 8504 8.22 KVM_CAP_S390_VCPU_RESETS 8505 ----------------------------- 8506 8507 :Architectures: s390 8508 8509 This capability indicates that the KVM_S390_N 8510 KVM_S390_CLEAR_RESET ioctls are available. 8511 8512 8.23 KVM_CAP_S390_PROTECTED 8513 --------------------------- 8514 8515 :Architectures: s390 8516 8517 This capability indicates that the Ultravisor 8518 KVM can therefore start protected VMs. 8519 This capability governs the KVM_S390_PV_COMMA 8520 KVM_MP_STATE_LOAD MP_STATE. KVM_SET_MP_STATE 8521 guests when the state change is invalid. 8522 8523 8.24 KVM_CAP_STEAL_TIME 8524 ----------------------- 8525 8526 :Architectures: arm64, x86 8527 8528 This capability indicates that KVM supports s 8529 When steal time accounting is supported it ma 8530 architecture-specific interfaces. This capab 8531 specific interfaces must be consistent, i.e. 8532 is supported, than the other should as well a 8533 see Documentation/virt/kvm/devices/vcpu.rst " 8534 For x86 see Documentation/virt/kvm/x86/msr.rs 8535 8536 8.25 KVM_CAP_S390_DIAG318 8537 ------------------------- 8538 8539 :Architectures: s390 8540 8541 This capability enables a guest to set inform 8542 (i.e. guest kernel type and version). The inf 8543 system/firmware service events, providing add 8544 environments running on the machine. 8545 8546 The information is associated with the DIAGNO 8547 an 8-byte value consisting of a one-byte Cont 8548 a 7-byte Control Program Version Code (CPVC). 8549 environment the control program is running in 8550 CPVC is used for information specific to OS ( 8551 distribution...) 8552 8553 If this capability is available, then the CPN 8554 between KVM and userspace via the sync regs m 8555 8556 8.26 KVM_CAP_X86_USER_SPACE_MSR 8557 ------------------------------- 8558 8559 :Architectures: x86 8560 8561 This capability indicates that KVM supports d 8562 writes to user space. It can be enabled on a 8563 accesses that would usually trigger a #GP by 8564 instead get bounced to user space through the 8565 KVM_EXIT_X86_WRMSR exit notifications. 8566 8567 8.27 KVM_CAP_X86_MSR_FILTER 8568 --------------------------- 8569 8570 :Architectures: x86 8571 8572 This capability indicates that KVM supports t 8573 may be rejected. With this capability exposed 8574 KVM_X86_SET_MSR_FILTER which user space can c 8575 ranges that KVM should deny access to. 8576 8577 In combination with KVM_CAP_X86_USER_SPACE_MS 8578 trap and emulate MSRs that are outside of the 8579 limit the attack surface on KVM's MSR emulati 8580 8581 8.28 KVM_CAP_ENFORCE_PV_FEATURE_CPUID 8582 ------------------------------------- 8583 8584 Architectures: x86 8585 8586 When enabled, KVM will disable paravirtual fe 8587 guest according to the bits in the KVM_CPUID_ 8588 (0x40000001). Otherwise, a guest may use the 8589 regardless of what has actually been exposed 8590 8591 8.29 KVM_CAP_DIRTY_LOG_RING/KVM_CAP_DIRTY_LOG 8592 --------------------------------------------- 8593 8594 :Architectures: x86, arm64 8595 :Parameters: args[0] - size of the dirty log 8596 8597 KVM is capable of tracking dirty memory using 8598 mmapped into userspace; there is one dirty ri 8599 8600 The dirty ring is available to userspace as a 8601 ``struct kvm_dirty_gfn``. Each dirty entry i 8602 8603 struct kvm_dirty_gfn { 8604 __u32 flags; 8605 __u32 slot; /* as_id | slot_id */ 8606 __u64 offset; 8607 }; 8608 8609 The following values are defined for the flag 8610 current state of the entry:: 8611 8612 #define KVM_DIRTY_GFN_F_DIRTY BIT 8613 #define KVM_DIRTY_GFN_F_RESET BIT 8614 #define KVM_DIRTY_GFN_F_MASK 0x3 8615 8616 Userspace should call KVM_ENABLE_CAP ioctl ri 8617 ioctl to enable this capability for the new g 8618 the rings. Enabling the capability is only a 8619 vCPU, and the size of the ring must be a powe 8620 ring buffer, the less likely the ring is full 8621 exit to userspace. The optimal size depends o 8622 recommended that it be at least 64 KiB (4096 8623 8624 Just like for dirty page bitmaps, the buffer 8625 all user memory regions for which the KVM_MEM 8626 set in KVM_SET_USER_MEMORY_REGION. Once a me 8627 with the flag set, userspace can start harves 8628 ring buffer. 8629 8630 An entry in the ring buffer can be unused (fl 8631 dirty (flag bits ``01``) or harvested (flag b 8632 state machine for the entry is as follows:: 8633 8634 dirtied harvested re 8635 00 -----------> 01 -------------> 1X --- 8636 ^ 8637 | 8638 +-------------------------------------- 8639 8640 To harvest the dirty pages, userspace accesse 8641 to read the dirty GFNs. If the flags has the 8642 the RESET bit must be cleared), then it means 8643 The userspace should harvest this GFN and mar 8644 ``01b`` to ``1Xb`` (bit 0 will be ignored by 8645 to show that this GFN is harvested and waitin 8646 on to the next GFN. The userspace should con 8647 flags of a GFN have the DIRTY bit cleared, me 8648 all the dirty GFNs that were available. 8649 8650 Note that on weakly ordered architectures, us 8651 ring buffer (and more specifically the 'flags 8652 using load-acquire/store-release accessors wh 8653 other memory barrier that will ensure this or 8654 8655 It's not necessary for userspace to harvest t 8656 However it must collect the dirty GFNs in seq 8657 program cannot skip one dirty GFN to collect 8658 8659 After processing one or more entries in the r 8660 calls the VM ioctl KVM_RESET_DIRTY_RINGS to n 8661 it, so that the kernel will reprotect those c 8662 Therefore, the ioctl must be called *before* 8663 the dirty pages. 8664 8665 The dirty ring can get full. When it happens 8666 vcpu will return with exit reason KVM_EXIT_DI 8667 8668 The dirty ring interface has a major differen 8669 KVM_GET_DIRTY_LOG interface in that, when rea 8670 userspace, it's still possible that the kerne 8671 processor's dirty page buffers into the kerne 8672 flushing is done by the KVM_GET_DIRTY_LOG ioc 8673 needs to kick the vcpu out of KVM_RUN using a 8674 vmexit ensures that all dirty GFNs are flushe 8675 8676 NOTE: KVM_CAP_DIRTY_LOG_RING_ACQ_REL is the o 8677 should be exposed by weakly ordered architect 8678 the additional memory ordering requirements i 8679 reading the state of an entry and mutating it 8680 Architecture with TSO-like ordering (such as 8681 expose both KVM_CAP_DIRTY_LOG_RING and KVM_CA 8682 to userspace. 8683 8684 After enabling the dirty rings, the userspace 8685 capability of KVM_CAP_DIRTY_LOG_RING_WITH_BIT 8686 ring structures can be backed by per-slot bit 8687 advertised, it means the architecture can dir 8688 vcpu/ring context, so that some of the dirty 8689 maintained in the bitmap structure. KVM_CAP_D 8690 can't be enabled if the capability of KVM_CAP 8691 hasn't been enabled, or any memslot has been 8692 8693 Note that the bitmap here is only a backup of 8694 use of the ring and bitmap combination is onl 8695 only a very small amount of memory that is di 8696 context. Otherwise, the stand-alone per-slot 8697 be considered. 8698 8699 To collect dirty bits in the backup bitmap, u 8700 KVM_GET_DIRTY_LOG ioctl. KVM_CLEAR_DIRTY_LOG 8701 the generation of the dirty bits is done in a 8702 the dirty bitmap should be the very last thin 8703 considering the state as complete. VMM needs 8704 state is final and avoid missing dirty pages 8705 after the bitmap collection. 8706 8707 NOTE: Multiple examples of using the backup b 8708 tables through command KVM_DEV_ARM_{VGIC_GRP_ 8709 KVM device "kvm-arm-vgic-its". (2) restore vg 8710 command KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_RESTO 8711 "kvm-arm-vgic-its". VGICv3 LPI pending status 8712 vgic3 pending table through KVM_DEV_ARM_VGIC_ 8713 command on KVM device "kvm-arm-vgic-v3". 8714 8715 8.30 KVM_CAP_XEN_HVM 8716 -------------------- 8717 8718 :Architectures: x86 8719 8720 This capability indicates the features that X 8721 PVHVM guests. Valid flags are:: 8722 8723 #define KVM_XEN_HVM_CONFIG_HYPERCALL_MSR 8724 #define KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL 8725 #define KVM_XEN_HVM_CONFIG_SHARED_INFO 8726 #define KVM_XEN_HVM_CONFIG_RUNSTATE 8727 #define KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL 8728 #define KVM_XEN_HVM_CONFIG_EVTCHN_SEND 8729 #define KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_ 8730 #define KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNST 8731 8732 The KVM_XEN_HVM_CONFIG_HYPERCALL_MSR flag ind 8733 ioctl is available, for the guest to set its 8734 8735 If KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL is also 8736 provided in the flags to KVM_XEN_HVM_CONFIG, 8737 contents, to request that KVM generate hyperc 8738 and also enable interception of guest hyperca 8739 8740 The KVM_XEN_HVM_CONFIG_SHARED_INFO flag indic 8741 KVM_XEN_HVM_SET_ATTR, KVM_XEN_HVM_GET_ATTR, K 8742 KVM_XEN_VCPU_GET_ATTR ioctls, as well as the 8743 for event channel upcalls when the evtchn_upc 8744 vcpu_info is set. 8745 8746 The KVM_XEN_HVM_CONFIG_RUNSTATE flag indicate 8747 features KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR 8748 supported by the KVM_XEN_VCPU_SET_ATTR/KVM_XE 8749 8750 The KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL flag ind 8751 of the type KVM_IRQ_ROUTING_XEN_EVTCHN are su 8752 field set to indicate 2 level event channel d 8753 8754 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indic 8755 injecting event channel events directly into 8756 KVM_XEN_HVM_EVTCHN_SEND ioctl. It also indica 8757 KVM_XEN_ATTR_TYPE_EVTCHN/XEN_VERSION HVM attr 8758 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID/TIMER/UPCALL_V 8759 related to event channel delivery, timers, an 8760 interception. 8761 8762 The KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG f 8763 the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG at 8764 and KVM_XEN_GET_ATTR ioctls. This controls wh 8765 XEN_RUNSTATE_UPDATE flag in guest memory mapp 8766 updates of the runstate information. Note tha 8767 the RUNSTATE feature above, but not the RUNST 8768 always set the XEN_RUNSTATE_UPDATE flag when 8769 which is perhaps counterintuitive. When this 8770 behave more correctly, not using the XEN_RUNS 8771 specifically enabled (by the guest making the 8772 to enable the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDA 8773 8774 The KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE f 8775 clearing the PVCLOCK_TSC_STABLE_BIT flag in X 8776 done when the KVM_CAP_XEN_HVM ioctl sets the 8777 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE flag. 8778 8779 8.31 KVM_CAP_PPC_MULTITCE 8780 ------------------------- 8781 8782 :Capability: KVM_CAP_PPC_MULTITCE 8783 :Architectures: ppc 8784 :Type: vm 8785 8786 This capability means the kernel is capable o 8787 H_PUT_TCE_INDIRECT and H_STUFF_TCE without pa 8788 space. This significantly accelerates DMA ope 8789 User space should expect that its handlers fo 8790 are not going to be called if user space prev 8791 in KVM (via KVM_CREATE_SPAPR_TCE or similar c 8792 8793 In order to enable H_PUT_TCE_INDIRECT and H_S 8794 user space might have to advertise it for the 8795 IBM pSeries (sPAPR) guest starts using them i 8796 present in the "ibm,hypertas-functions" devic 8797 8798 The hypercalls mentioned above may or may not 8799 in the kernel based fast path. If they can no 8800 they will get passed on to user space. So use 8801 an implementation for these despite the in ke 8802 8803 This capability is always enabled. 8804 8805 8.32 KVM_CAP_PTP_KVM 8806 -------------------- 8807 8808 :Architectures: arm64 8809 8810 This capability indicates that the KVM virtua 8811 supported in the host. A VMM can check whethe 8812 available to the guest on migration. 8813 8814 8.33 KVM_CAP_HYPERV_ENFORCE_CPUID 8815 --------------------------------- 8816 8817 Architectures: x86 8818 8819 When enabled, KVM will disable emulated Hyper 8820 guest according to the bits Hyper-V CPUID fea 8821 currently implemented Hyper-V features are pr 8822 Hyper-V identification is set in the HYPERV_C 8823 leaf. 8824 8825 8.34 KVM_CAP_EXIT_HYPERCALL 8826 --------------------------- 8827 8828 :Capability: KVM_CAP_EXIT_HYPERCALL 8829 :Architectures: x86 8830 :Type: vm 8831 8832 This capability, if enabled, will cause KVM t 8833 with KVM_EXIT_HYPERCALL exit reason to proces 8834 8835 Calling KVM_CHECK_EXTENSION for this capabili 8836 of hypercalls that can be configured to exit 8837 Right now, the only such hypercall is KVM_HC_ 8838 8839 The argument to KVM_ENABLE_CAP is also a bitm 8840 of the result of KVM_CHECK_EXTENSION. KVM wi 8841 the hypercalls whose corresponding bit is in 8842 ENOSYS for the others. 8843 8844 8.35 KVM_CAP_PMU_CAPABILITY 8845 --------------------------- 8846 8847 :Capability: KVM_CAP_PMU_CAPABILITY 8848 :Architectures: x86 8849 :Type: vm 8850 :Parameters: arg[0] is bitmask of PMU virtual 8851 :Returns: 0 on success, -EINVAL when arg[0] c 8852 8853 This capability alters PMU virtualization in 8854 8855 Calling KVM_CHECK_EXTENSION for this capabili 8856 PMU virtualization capabilities that can be a 8857 8858 The argument to KVM_ENABLE_CAP is also a bitm 8859 PMU virtualization capabilities to be applied 8860 only be invoked on a VM prior to the creation 8861 8862 At this time, KVM_PMU_CAP_DISABLE is the only 8863 this capability will disable PMU virtualizati 8864 should adjust CPUID leaf 0xA to reflect that 8865 8866 8.36 KVM_CAP_ARM_SYSTEM_SUSPEND 8867 ------------------------------- 8868 8869 :Capability: KVM_CAP_ARM_SYSTEM_SUSPEND 8870 :Architectures: arm64 8871 :Type: vm 8872 8873 When enabled, KVM will exit to userspace with 8874 type KVM_SYSTEM_EVENT_SUSPEND to process the 8875 8876 8.37 KVM_CAP_S390_PROTECTED_DUMP 8877 -------------------------------- 8878 8879 :Capability: KVM_CAP_S390_PROTECTED_DUMP 8880 :Architectures: s390 8881 :Type: vm 8882 8883 This capability indicates that KVM and the Ul 8884 PV guests. The `KVM_PV_DUMP` command is avail 8885 `KVM_S390_PV_COMMAND` ioctl and the `KVM_PV_I 8886 dump related UV data. Also the vcpu ioctl `KV 8887 available and supports the `KVM_PV_DUMP_CPU` 8888 8889 8.38 KVM_CAP_VM_DISABLE_NX_HUGE_PAGES 8890 ------------------------------------- 8891 8892 :Capability: KVM_CAP_VM_DISABLE_NX_HUGE_PAGES 8893 :Architectures: x86 8894 :Type: vm 8895 :Parameters: arg[0] must be 0. 8896 :Returns: 0 on success, -EPERM if the userspa 8897 have CAP_SYS_BOOT, -EINVAL if args[ 8898 created. 8899 8900 This capability disables the NX huge pages mi 8901 8902 The capability has no effect if the nx_huge_p 8903 8904 This capability may only be set before any vC 8905 8906 8.39 KVM_CAP_S390_CPU_TOPOLOGY 8907 ------------------------------ 8908 8909 :Capability: KVM_CAP_S390_CPU_TOPOLOGY 8910 :Architectures: s390 8911 :Type: vm 8912 8913 This capability indicates that KVM will provi 8914 facility which consist of the interpretation 8915 the function code 2 along with interception a 8916 PTF instruction with function codes 0 or 1 an 8917 instruction to the userland hypervisor. 8918 8919 The stfle facility 11, CPU Topology facility, 8920 to the guest without this capability. 8921 8922 When this capability is present, KVM provides 8923 on vm fd, KVM_S390_VM_CPU_TOPOLOGY. 8924 This new attribute allows to get, set or clea 8925 Topology Report (MTCR) bit of the SCA through 8926 structure. 8927 8928 When getting the Modified Change Topology Rep 8929 must point to a byte where the value will be 8930 8931 8.40 KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE 8932 --------------------------------------- 8933 8934 :Capability: KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SI 8935 :Architectures: arm64 8936 :Type: vm 8937 :Parameters: arg[0] is the new split chunk si 8938 :Returns: 0 on success, -EINVAL if any memslo 8939 8940 This capability sets the chunk size used in E 8941 8942 Eager Page Splitting improves the performance 8943 in live migrations) when guest memory is back 8944 avoids splitting huge-pages (into PAGE_SIZE p 8945 it eagerly when enabling dirty logging (with 8946 KVM_MEM_LOG_DIRTY_PAGES flag for a memory reg 8947 KVM_CLEAR_DIRTY_LOG. 8948 8949 The chunk size specifies how many pages to br 8950 single allocation for each chunk. Bigger the 8951 need to be allocated ahead of time. 8952 8953 The chunk size needs to be a valid block size 8954 block sizes is exposed in KVM_CAP_ARM_SUPPORT 8955 64-bit bitmap (each bit describing a block si 8956 0, to disable the eager page splitting. 8957 8958 8.41 KVM_CAP_VM_TYPES 8959 --------------------- 8960 8961 :Capability: KVM_CAP_MEMORY_ATTRIBUTES 8962 :Architectures: x86 8963 :Type: system ioctl 8964 8965 This capability returns a bitmap of support V 8966 means the VM type with value @n is supported. 8967 8968 #define KVM_X86_DEFAULT_VM 0 8969 #define KVM_X86_SW_PROTECTED_VM 1 8970 #define KVM_X86_SEV_VM 2 8971 #define KVM_X86_SEV_ES_VM 3 8972 8973 Note, KVM_X86_SW_PROTECTED_VM is currently on 8974 Do not use KVM_X86_SW_PROTECTED_VM for "real" 8975 production. The behavior and effective ABI f 8976 unstable. 8977 8978 9. Known KVM API problems 8979 ========================= 8980 8981 In some cases, KVM's API has some inconsisten 8982 that userspace need to be aware of. This sec 8983 these issues. 8984 8985 Most of them are architecture specific, so th 8986 architecture. 8987 8988 9.1. x86 8989 -------- 8990 8991 ``KVM_GET_SUPPORTED_CPUID`` issues 8992 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8993 8994 In general, ``KVM_GET_SUPPORTED_CPUID`` is de 8995 to take its result and pass it directly to `` 8996 documents some cases in which that requires s 8997 8998 Local APIC features 8999 ~~~~~~~~~~~~~~~~~~~ 9000 9001 CPU[EAX=1]:ECX[21] (X2APIC) is reported by `` 9002 but it can only be enabled if ``KVM_CREATE_IR 9003 ``KVM_ENABLE_CAP(KVM_CAP_IRQCHIP_SPLIT)`` are 9004 the local APIC. 9005 9006 The same is true for the ``KVM_FEATURE_PV_UNH 9007 9008 CPU[EAX=1]:ECX[24] (TSC_DEADLINE) is not repo 9009 It can be enabled if ``KVM_CAP_TSC_DEADLINE_T 9010 has enabled in-kernel emulation of the local 9011 9012 CPU topology 9013 ~~~~~~~~~~~~ 9014 9015 Several CPUID values include topology informa 9016 0x0b and 0x1f for Intel systems, 0x8000001e f 9017 versions of KVM return different values for t 9018 should not rely on it. Currently they return 9019 9020 If userspace wishes to set up a guest topolog 9021 the values of these three leaves differ for e 9022 the APIC ID is found in EDX for all subleaves 9023 for 0x8000001e; the latter also encodes the c 9024 7:0 of EBX and ECX respectively. 9025 9026 Obsolete ioctls and capabilities 9027 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9028 9029 KVM_CAP_DISABLE_QUIRKS does not let userspace 9030 available. Use ``KVM_CHECK_EXTENSION(KVM_CAP 9031 available. 9032 9033 Ordering of KVM_GET_*/KVM_SET_* ioctls 9034 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9035 9036 TBD
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.