1 .. SPDX-License-Identifier: GPL-2.0 1 .. SPDX-License-Identifier: GPL-2.0 2 2 3 ============================================== 3 =================================================================== 4 The Definitive KVM (Kernel-based Virtual Machi 4 The Definitive KVM (Kernel-based Virtual Machine) API Documentation 5 ============================================== 5 =================================================================== 6 6 7 1. General description 7 1. General description 8 ====================== 8 ====================== 9 9 10 The kvm API is a set of ioctls that are issued 10 The kvm API is a set of ioctls that are issued to control various aspects 11 of a virtual machine. The ioctls belong to th 11 of a virtual machine. The ioctls belong to the following classes: 12 12 13 - System ioctls: These query and set global a 13 - System ioctls: These query and set global attributes which affect the 14 whole kvm subsystem. In addition a system 14 whole kvm subsystem. In addition a system ioctl is used to create 15 virtual machines. 15 virtual machines. 16 16 17 - VM ioctls: These query and set attributes t 17 - VM ioctls: These query and set attributes that affect an entire virtual 18 machine, for example memory layout. In add 18 machine, for example memory layout. In addition a VM ioctl is used to 19 create virtual cpus (vcpus) and devices. 19 create virtual cpus (vcpus) and devices. 20 20 21 VM ioctls must be issued from the same proc 21 VM ioctls must be issued from the same process (address space) that was 22 used to create the VM. 22 used to create the VM. 23 23 24 - vcpu ioctls: These query and set attributes 24 - vcpu ioctls: These query and set attributes that control the operation 25 of a single virtual cpu. 25 of a single virtual cpu. 26 26 27 vcpu ioctls should be issued from the same 27 vcpu ioctls should be issued from the same thread that was used to create 28 the vcpu, except for asynchronous vcpu ioct 28 the vcpu, except for asynchronous vcpu ioctl that are marked as such in 29 the documentation. Otherwise, the first io 29 the documentation. Otherwise, the first ioctl after switching threads 30 could see a performance impact. 30 could see a performance impact. 31 31 32 - device ioctls: These query and set attribut 32 - device ioctls: These query and set attributes that control the operation 33 of a single device. 33 of a single device. 34 34 35 device ioctls must be issued from the same 35 device ioctls must be issued from the same process (address space) that 36 was used to create the VM. 36 was used to create the VM. 37 37 38 2. File descriptors 38 2. File descriptors 39 =================== 39 =================== 40 40 41 The kvm API is centered around file descriptor 41 The kvm API is centered around file descriptors. An initial 42 open("/dev/kvm") obtains a handle to the kvm s 42 open("/dev/kvm") obtains a handle to the kvm subsystem; this handle 43 can be used to issue system ioctls. A KVM_CRE 43 can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this 44 handle will create a VM file descriptor which 44 handle will create a VM file descriptor which can be used to issue VM 45 ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVIC 45 ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVICE ioctl on a VM fd will 46 create a virtual cpu or device and return a fi 46 create a virtual cpu or device and return a file descriptor pointing to 47 the new resource. Finally, ioctls on a vcpu o 47 the new resource. Finally, ioctls on a vcpu or device fd can be used 48 to control the vcpu or device. For vcpus, thi 48 to control the vcpu or device. For vcpus, this includes the important 49 task of actually running guest code. 49 task of actually running guest code. 50 50 51 In general file descriptors can be migrated am 51 In general file descriptors can be migrated among processes by means 52 of fork() and the SCM_RIGHTS facility of unix 52 of fork() and the SCM_RIGHTS facility of unix domain socket. These 53 kinds of tricks are explicitly not supported b 53 kinds of tricks are explicitly not supported by kvm. While they will 54 not cause harm to the host, their actual behav 54 not cause harm to the host, their actual behavior is not guaranteed by 55 the API. See "General description" for detail 55 the API. See "General description" for details on the ioctl usage 56 model that is supported by KVM. 56 model that is supported by KVM. 57 57 58 It is important to note that although VM ioctl !! 58 It is important to note that althought VM ioctls may only be issued from 59 the process that created the VM, a VM's lifecy 59 the process that created the VM, a VM's lifecycle is associated with its 60 file descriptor, not its creator (process). I 60 file descriptor, not its creator (process). In other words, the VM and 61 its resources, *including the associated addre 61 its resources, *including the associated address space*, are not freed 62 until the last reference to the VM's file desc 62 until the last reference to the VM's file descriptor has been released. 63 For example, if fork() is issued after ioctl(K 63 For example, if fork() is issued after ioctl(KVM_CREATE_VM), the VM will 64 not be freed until both the parent (original) 64 not be freed until both the parent (original) process and its child have 65 put their references to the VM's file descript 65 put their references to the VM's file descriptor. 66 66 67 Because a VM's resources are not freed until t 67 Because a VM's resources are not freed until the last reference to its 68 file descriptor is released, creating addition !! 68 file descriptor is released, creating additional references to a VM via 69 via fork(), dup(), etc... without careful cons 69 via fork(), dup(), etc... without careful consideration is strongly 70 discouraged and may have unwanted side effects 70 discouraged and may have unwanted side effects, e.g. memory allocated 71 by and on behalf of the VM's process may not b 71 by and on behalf of the VM's process may not be freed/unaccounted when 72 the VM is shut down. 72 the VM is shut down. 73 73 74 74 75 3. Extensions 75 3. Extensions 76 ============= 76 ============= 77 77 78 As of Linux 2.6.22, the KVM ABI has been stabi 78 As of Linux 2.6.22, the KVM ABI has been stabilized: no backward 79 incompatible change are allowed. However, the 79 incompatible change are allowed. However, there is an extension 80 facility that allows backward-compatible exten 80 facility that allows backward-compatible extensions to the API to be 81 queried and used. 81 queried and used. 82 82 83 The extension mechanism is not based on the Li 83 The extension mechanism is not based on the Linux version number. 84 Instead, kvm defines extension identifiers and 84 Instead, kvm defines extension identifiers and a facility to query 85 whether a particular extension identifier is a 85 whether a particular extension identifier is available. If it is, a 86 set of ioctls is available for application use 86 set of ioctls is available for application use. 87 87 88 88 89 4. API description 89 4. API description 90 ================== 90 ================== 91 91 92 This section describes ioctls that can be used 92 This section describes ioctls that can be used to control kvm guests. 93 For each ioctl, the following information is p 93 For each ioctl, the following information is provided along with a 94 description: 94 description: 95 95 96 Capability: 96 Capability: 97 which KVM extension provides this ioctl. 97 which KVM extension provides this ioctl. Can be 'basic', 98 which means that is will be provided by 98 which means that is will be provided by any kernel that supports 99 API version 12 (see section 4.1), a KVM_ 99 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which 100 means availability needs to be checked w 100 means availability needs to be checked with KVM_CHECK_EXTENSION 101 (see section 4.4), or 'none' which means 101 (see section 4.4), or 'none' which means that while not all kernels 102 support this ioctl, there's no capabilit 102 support this ioctl, there's no capability bit to check its 103 availability: for kernels that don't sup 103 availability: for kernels that don't support the ioctl, 104 the ioctl returns -ENOTTY. 104 the ioctl returns -ENOTTY. 105 105 106 Architectures: 106 Architectures: 107 which instruction set architectures prov 107 which instruction set architectures provide this ioctl. 108 x86 includes both i386 and x86_64. 108 x86 includes both i386 and x86_64. 109 109 110 Type: 110 Type: 111 system, vm, or vcpu. 111 system, vm, or vcpu. 112 112 113 Parameters: 113 Parameters: 114 what parameters are accepted by the ioct 114 what parameters are accepted by the ioctl. 115 115 116 Returns: 116 Returns: 117 the return value. General error numbers 117 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 118 are not detailed, but errors with specif 118 are not detailed, but errors with specific meanings are. 119 119 120 120 121 4.1 KVM_GET_API_VERSION 121 4.1 KVM_GET_API_VERSION 122 ----------------------- 122 ----------------------- 123 123 124 :Capability: basic 124 :Capability: basic 125 :Architectures: all 125 :Architectures: all 126 :Type: system ioctl 126 :Type: system ioctl 127 :Parameters: none 127 :Parameters: none 128 :Returns: the constant KVM_API_VERSION (=12) 128 :Returns: the constant KVM_API_VERSION (=12) 129 129 130 This identifies the API version as the stable 130 This identifies the API version as the stable kvm API. It is not 131 expected that this number will change. Howeve 131 expected that this number will change. However, Linux 2.6.20 and 132 2.6.21 report earlier versions; these are not 132 2.6.21 report earlier versions; these are not documented and not 133 supported. Applications should refuse to run 133 supported. Applications should refuse to run if KVM_GET_API_VERSION 134 returns a value other than 12. If this check 134 returns a value other than 12. If this check passes, all ioctls 135 described as 'basic' will be available. 135 described as 'basic' will be available. 136 136 137 137 138 4.2 KVM_CREATE_VM 138 4.2 KVM_CREATE_VM 139 ----------------- 139 ----------------- 140 140 141 :Capability: basic 141 :Capability: basic 142 :Architectures: all 142 :Architectures: all 143 :Type: system ioctl 143 :Type: system ioctl 144 :Parameters: machine type identifier (KVM_VM_* 144 :Parameters: machine type identifier (KVM_VM_*) 145 :Returns: a VM fd that can be used to control 145 :Returns: a VM fd that can be used to control the new virtual machine. 146 146 147 The new VM has no virtual cpus and no memory. 147 The new VM has no virtual cpus and no memory. 148 You probably want to use 0 as machine type. 148 You probably want to use 0 as machine type. 149 149 150 X86: << 151 ^^^^ << 152 << 153 Supported X86 VM types can be queried via KVM_ << 154 << 155 S390: << 156 ^^^^^ << 157 << 158 In order to create user controlled virtual mac 150 In order to create user controlled virtual machines on S390, check 159 KVM_CAP_S390_UCONTROL and use the flag KVM_VM_ 151 KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as 160 privileged user (CAP_SYS_ADMIN). 152 privileged user (CAP_SYS_ADMIN). 161 153 162 MIPS: << 163 ^^^^^ << 164 << 165 To use hardware assisted virtualization on MIP 154 To use hardware assisted virtualization on MIPS (VZ ASE) rather than 166 the default trap & emulate implementation (whi 155 the default trap & emulate implementation (which changes the virtual 167 memory layout to fit in user mode), check KVM_ 156 memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the 168 flag KVM_VM_MIPS_VZ. 157 flag KVM_VM_MIPS_VZ. 169 158 170 ARM64: << 171 ^^^^^^ << 172 159 173 On arm64, the physical address size for a VM ( 160 On arm64, the physical address size for a VM (IPA Size limit) is limited 174 to 40bits by default. The limit can be configu 161 to 40bits by default. The limit can be configured if the host supports the 175 extension KVM_CAP_ARM_VM_IPA_SIZE. When suppor 162 extension KVM_CAP_ARM_VM_IPA_SIZE. When supported, use 176 KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the 163 KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the size in the machine type 177 identifier, where IPA_Bits is the maximum widt 164 identifier, where IPA_Bits is the maximum width of any physical 178 address used by the VM. The IPA_Bits is encode 165 address used by the VM. The IPA_Bits is encoded in bits[7-0] of the 179 machine type identifier. 166 machine type identifier. 180 167 181 e.g, to configure a guest to use 48bit physica 168 e.g, to configure a guest to use 48bit physical address size:: 182 169 183 vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_V 170 vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_VM_TYPE_ARM_IPA_SIZE(48)); 184 171 185 The requested size (IPA_Bits) must be: 172 The requested size (IPA_Bits) must be: 186 173 187 == ======================================== 174 == ========================================================= 188 0 Implies default size, 40bits (for backwa 175 0 Implies default size, 40bits (for backward compatibility) 189 N Implies N bits, where N is a positive in 176 N Implies N bits, where N is a positive integer such that, 190 32 <= N <= Host_IPA_Limit 177 32 <= N <= Host_IPA_Limit 191 == ======================================== 178 == ========================================================= 192 179 193 Host_IPA_Limit is the maximum possible value f 180 Host_IPA_Limit is the maximum possible value for IPA_Bits on the host and 194 is dependent on the CPU capability and the ker 181 is dependent on the CPU capability and the kernel configuration. The limit can 195 be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of 182 be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of the KVM_CHECK_EXTENSION 196 ioctl() at run-time. 183 ioctl() at run-time. 197 184 198 Creation of the VM will fail if the requested << 199 implicit or explicit) is unsupported on the ho << 200 << 201 Please note that configuring the IPA size does 185 Please note that configuring the IPA size does not affect the capability 202 exposed by the guest CPUs in ID_AA64MMFR0_EL1[ 186 exposed by the guest CPUs in ID_AA64MMFR0_EL1[PARange]. It only affects 203 size of the address translated by the stage2 l 187 size of the address translated by the stage2 level (guest physical to 204 host physical address translations). 188 host physical address translations). 205 189 206 190 207 4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATUR 191 4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST 208 ---------------------------------------------- 192 ---------------------------------------------------------- 209 193 210 :Capability: basic, KVM_CAP_GET_MSR_FEATURES f 194 :Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST 211 :Architectures: x86 195 :Architectures: x86 212 :Type: system ioctl 196 :Type: system ioctl 213 :Parameters: struct kvm_msr_list (in/out) 197 :Parameters: struct kvm_msr_list (in/out) 214 :Returns: 0 on success; -1 on error 198 :Returns: 0 on success; -1 on error 215 199 216 Errors: 200 Errors: 217 201 218 ====== ================================= 202 ====== ============================================================ 219 EFAULT the msr index list cannot be read 203 EFAULT the msr index list cannot be read from or written to 220 E2BIG the msr index list is too big to !! 204 E2BIG the msr index list is to be to fit in the array specified by 221 the user. 205 the user. 222 ====== ================================= 206 ====== ============================================================ 223 207 224 :: 208 :: 225 209 226 struct kvm_msr_list { 210 struct kvm_msr_list { 227 __u32 nmsrs; /* number of msrs in entr 211 __u32 nmsrs; /* number of msrs in entries */ 228 __u32 indices[0]; 212 __u32 indices[0]; 229 }; 213 }; 230 214 231 The user fills in the size of the indices arra 215 The user fills in the size of the indices array in nmsrs, and in return 232 kvm adjusts nmsrs to reflect the actual number 216 kvm adjusts nmsrs to reflect the actual number of msrs and fills in the 233 indices array with their numbers. 217 indices array with their numbers. 234 218 235 KVM_GET_MSR_INDEX_LIST returns the guest msrs 219 KVM_GET_MSR_INDEX_LIST returns the guest msrs that are supported. The list 236 varies by kvm version and host processor, but 220 varies by kvm version and host processor, but does not change otherwise. 237 221 238 Note: if kvm indicates supports MCE (KVM_CAP_M 222 Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are 239 not returned in the MSR list, as different vcp 223 not returned in the MSR list, as different vcpus can have a different number 240 of banks, as set via the KVM_X86_SETUP_MCE ioc 224 of banks, as set via the KVM_X86_SETUP_MCE ioctl. 241 225 242 KVM_GET_MSR_FEATURE_INDEX_LIST returns the lis 226 KVM_GET_MSR_FEATURE_INDEX_LIST returns the list of MSRs that can be passed 243 to the KVM_GET_MSRS system ioctl. This lets u 227 to the KVM_GET_MSRS system ioctl. This lets userspace probe host capabilities 244 and processor features that are exposed via MS 228 and processor features that are exposed via MSRs (e.g., VMX capabilities). 245 This list also varies by kvm version and host 229 This list also varies by kvm version and host processor, but does not change 246 otherwise. 230 otherwise. 247 231 248 232 249 4.4 KVM_CHECK_EXTENSION 233 4.4 KVM_CHECK_EXTENSION 250 ----------------------- 234 ----------------------- 251 235 252 :Capability: basic, KVM_CAP_CHECK_EXTENSION_VM 236 :Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl 253 :Architectures: all 237 :Architectures: all 254 :Type: system ioctl, vm ioctl 238 :Type: system ioctl, vm ioctl 255 :Parameters: extension identifier (KVM_CAP_*) 239 :Parameters: extension identifier (KVM_CAP_*) 256 :Returns: 0 if unsupported; 1 (or some other p 240 :Returns: 0 if unsupported; 1 (or some other positive integer) if supported 257 241 258 The API allows the application to query about 242 The API allows the application to query about extensions to the core 259 kvm API. Userspace passes an extension identi 243 kvm API. Userspace passes an extension identifier (an integer) and 260 receives an integer that describes the extensi 244 receives an integer that describes the extension availability. 261 Generally 0 means no and 1 means yes, but some 245 Generally 0 means no and 1 means yes, but some extensions may report 262 additional information in the integer return v 246 additional information in the integer return value. 263 247 264 Based on their initialization different VMs ma 248 Based on their initialization different VMs may have different capabilities. 265 It is thus encouraged to use the vm ioctl to q 249 It is thus encouraged to use the vm ioctl to query for capabilities (available 266 with KVM_CAP_CHECK_EXTENSION_VM on the vm fd) 250 with KVM_CAP_CHECK_EXTENSION_VM on the vm fd) 267 251 268 4.5 KVM_GET_VCPU_MMAP_SIZE 252 4.5 KVM_GET_VCPU_MMAP_SIZE 269 -------------------------- 253 -------------------------- 270 254 271 :Capability: basic 255 :Capability: basic 272 :Architectures: all 256 :Architectures: all 273 :Type: system ioctl 257 :Type: system ioctl 274 :Parameters: none 258 :Parameters: none 275 :Returns: size of vcpu mmap area, in bytes 259 :Returns: size of vcpu mmap area, in bytes 276 260 277 The KVM_RUN ioctl (cf.) communicates with user 261 The KVM_RUN ioctl (cf.) communicates with userspace via a shared 278 memory region. This ioctl returns the size of 262 memory region. This ioctl returns the size of that region. See the 279 KVM_RUN documentation for details. 263 KVM_RUN documentation for details. 280 264 281 Besides the size of the KVM_RUN communication << 282 the VCPU file descriptor can be mmap-ed, inclu << 283 265 284 - if KVM_CAP_COALESCED_MMIO is available, a pa !! 266 4.6 KVM_SET_MEMORY_REGION 285 KVM_COALESCED_MMIO_PAGE_OFFSET * PAGE_SIZE; !! 267 ------------------------- 286 this page is included in the result of KVM_G !! 268 287 KVM_CAP_COALESCED_MMIO is not documented yet !! 269 :Capability: basic 288 !! 270 :Architectures: all 289 - if KVM_CAP_DIRTY_LOG_RING is available, a nu !! 271 :Type: vm ioctl 290 KVM_DIRTY_LOG_PAGE_OFFSET * PAGE_SIZE. For !! 272 :Parameters: struct kvm_memory_region (in) 291 KVM_CAP_DIRTY_LOG_RING, see section 8.3. !! 273 :Returns: 0 on success, -1 on error >> 274 >> 275 This ioctl is obsolete and has been removed. 292 276 293 277 294 4.7 KVM_CREATE_VCPU 278 4.7 KVM_CREATE_VCPU 295 ------------------- 279 ------------------- 296 280 297 :Capability: basic 281 :Capability: basic 298 :Architectures: all 282 :Architectures: all 299 :Type: vm ioctl 283 :Type: vm ioctl 300 :Parameters: vcpu id (apic id on x86) 284 :Parameters: vcpu id (apic id on x86) 301 :Returns: vcpu fd on success, -1 on error 285 :Returns: vcpu fd on success, -1 on error 302 286 303 This API adds a vcpu to a virtual machine. No 287 This API adds a vcpu to a virtual machine. No more than max_vcpus may be added. 304 The vcpu id is an integer in the range [0, max 288 The vcpu id is an integer in the range [0, max_vcpu_id). 305 289 306 The recommended max_vcpus value can be retriev 290 The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of 307 the KVM_CHECK_EXTENSION ioctl() at run-time. 291 the KVM_CHECK_EXTENSION ioctl() at run-time. 308 The maximum possible value for max_vcpus can b 292 The maximum possible value for max_vcpus can be retrieved using the 309 KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION i 293 KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time. 310 294 311 If the KVM_CAP_NR_VCPUS does not exist, you sh 295 If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4 312 cpus max. 296 cpus max. 313 If the KVM_CAP_MAX_VCPUS does not exist, you s 297 If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is 314 same as the value returned from KVM_CAP_NR_VCP 298 same as the value returned from KVM_CAP_NR_VCPUS. 315 299 316 The maximum possible value for max_vcpu_id can 300 The maximum possible value for max_vcpu_id can be retrieved using the 317 KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION 301 KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time. 318 302 319 If the KVM_CAP_MAX_VCPU_ID does not exist, you 303 If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id 320 is the same as the value returned from KVM_CAP 304 is the same as the value returned from KVM_CAP_MAX_VCPUS. 321 305 322 On powerpc using book3s_hv mode, the vcpus are 306 On powerpc using book3s_hv mode, the vcpus are mapped onto virtual 323 threads in one or more virtual CPU cores. (Th 307 threads in one or more virtual CPU cores. (This is because the 324 hardware requires all the hardware threads in 308 hardware requires all the hardware threads in a CPU core to be in the 325 same partition.) The KVM_CAP_PPC_SMT capabili 309 same partition.) The KVM_CAP_PPC_SMT capability indicates the number 326 of vcpus per virtual core (vcore). The vcore 310 of vcpus per virtual core (vcore). The vcore id is obtained by 327 dividing the vcpu id by the number of vcpus pe 311 dividing the vcpu id by the number of vcpus per vcore. The vcpus in a 328 given vcore will always be in the same physica 312 given vcore will always be in the same physical core as each other 329 (though that might be a different physical cor 313 (though that might be a different physical core from time to time). 330 Userspace can control the threading (SMT) mode 314 Userspace can control the threading (SMT) mode of the guest by its 331 allocation of vcpu ids. For example, if users 315 allocation of vcpu ids. For example, if userspace wants 332 single-threaded guest vcpus, it should make al 316 single-threaded guest vcpus, it should make all vcpu ids be a multiple 333 of the number of vcpus per vcore. 317 of the number of vcpus per vcore. 334 318 335 For virtual cpus that have been created with S 319 For virtual cpus that have been created with S390 user controlled virtual 336 machines, the resulting vcpu fd can be memory 320 machines, the resulting vcpu fd can be memory mapped at page offset 337 KVM_S390_SIE_PAGE_OFFSET in order to obtain a 321 KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual 338 cpu's hardware control block. 322 cpu's hardware control block. 339 323 340 324 341 4.8 KVM_GET_DIRTY_LOG (vm ioctl) 325 4.8 KVM_GET_DIRTY_LOG (vm ioctl) 342 -------------------------------- 326 -------------------------------- 343 327 344 :Capability: basic 328 :Capability: basic 345 :Architectures: all 329 :Architectures: all 346 :Type: vm ioctl 330 :Type: vm ioctl 347 :Parameters: struct kvm_dirty_log (in/out) 331 :Parameters: struct kvm_dirty_log (in/out) 348 :Returns: 0 on success, -1 on error 332 :Returns: 0 on success, -1 on error 349 333 350 :: 334 :: 351 335 352 /* for KVM_GET_DIRTY_LOG */ 336 /* for KVM_GET_DIRTY_LOG */ 353 struct kvm_dirty_log { 337 struct kvm_dirty_log { 354 __u32 slot; 338 __u32 slot; 355 __u32 padding; 339 __u32 padding; 356 union { 340 union { 357 void __user *dirty_bitmap; /* 341 void __user *dirty_bitmap; /* one bit per page */ 358 __u64 padding; 342 __u64 padding; 359 }; 343 }; 360 }; 344 }; 361 345 362 Given a memory slot, return a bitmap containin 346 Given a memory slot, return a bitmap containing any pages dirtied 363 since the last call to this ioctl. Bit 0 is t 347 since the last call to this ioctl. Bit 0 is the first page in the 364 memory slot. Ensure the entire structure is c 348 memory slot. Ensure the entire structure is cleared to avoid padding 365 issues. 349 issues. 366 350 367 If KVM_CAP_MULTI_ADDRESS_SPACE is available, b !! 351 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies 368 the address space for which you want to return !! 352 the address space for which you want to return the dirty bitmap. 369 KVM_SET_USER_MEMORY_REGION for details on the !! 353 They must be less than the value that KVM_CHECK_EXTENSION returns for >> 354 the KVM_CAP_MULTI_ADDRESS_SPACE capability. 370 355 371 The bits in the dirty bitmap are cleared befor 356 The bits in the dirty bitmap are cleared before the ioctl returns, unless 372 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. 357 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. For more information, 373 see the description of the capability. 358 see the description of the capability. 374 359 375 Note that the Xen shared_info page, if configu !! 360 4.9 KVM_SET_MEMORY_ALIAS 376 to be dirty. KVM will not explicitly mark it s !! 361 ------------------------ >> 362 >> 363 :Capability: basic >> 364 :Architectures: x86 >> 365 :Type: vm ioctl >> 366 :Parameters: struct kvm_memory_alias (in) >> 367 :Returns: 0 (success), -1 (error) >> 368 >> 369 This ioctl is obsolete and has been removed. 377 370 378 371 379 4.10 KVM_RUN 372 4.10 KVM_RUN 380 ------------ 373 ------------ 381 374 382 :Capability: basic 375 :Capability: basic 383 :Architectures: all 376 :Architectures: all 384 :Type: vcpu ioctl 377 :Type: vcpu ioctl 385 :Parameters: none 378 :Parameters: none 386 :Returns: 0 on success, -1 on error 379 :Returns: 0 on success, -1 on error 387 380 388 Errors: 381 Errors: 389 382 390 ======= ================================= !! 383 ===== ============================= 391 EINTR an unmasked signal is pending 384 EINTR an unmasked signal is pending 392 ENOEXEC the vcpu hasn't been initialized !! 385 ===== ============================= 393 instructions from device memory ( << 394 ENOSYS data abort outside memslots with << 395 KVM_CAP_ARM_NISV_TO_USER not enab << 396 EPERM SVE feature set but not finalized << 397 ======= ================================= << 398 386 399 This ioctl is used to run a guest virtual cpu. 387 This ioctl is used to run a guest virtual cpu. While there are no 400 explicit parameters, there is an implicit para 388 explicit parameters, there is an implicit parameter block that can be 401 obtained by mmap()ing the vcpu fd at offset 0, 389 obtained by mmap()ing the vcpu fd at offset 0, with the size given by 402 KVM_GET_VCPU_MMAP_SIZE. The parameter block i 390 KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct 403 kvm_run' (see below). 391 kvm_run' (see below). 404 392 405 393 406 4.11 KVM_GET_REGS 394 4.11 KVM_GET_REGS 407 ----------------- 395 ----------------- 408 396 409 :Capability: basic 397 :Capability: basic 410 :Architectures: all except arm64 !! 398 :Architectures: all except ARM, arm64 411 :Type: vcpu ioctl 399 :Type: vcpu ioctl 412 :Parameters: struct kvm_regs (out) 400 :Parameters: struct kvm_regs (out) 413 :Returns: 0 on success, -1 on error 401 :Returns: 0 on success, -1 on error 414 402 415 Reads the general purpose registers from the v 403 Reads the general purpose registers from the vcpu. 416 404 417 :: 405 :: 418 406 419 /* x86 */ 407 /* x86 */ 420 struct kvm_regs { 408 struct kvm_regs { 421 /* out (KVM_GET_REGS) / in (KVM_SET_RE 409 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ 422 __u64 rax, rbx, rcx, rdx; 410 __u64 rax, rbx, rcx, rdx; 423 __u64 rsi, rdi, rsp, rbp; 411 __u64 rsi, rdi, rsp, rbp; 424 __u64 r8, r9, r10, r11; 412 __u64 r8, r9, r10, r11; 425 __u64 r12, r13, r14, r15; 413 __u64 r12, r13, r14, r15; 426 __u64 rip, rflags; 414 __u64 rip, rflags; 427 }; 415 }; 428 416 429 /* mips */ 417 /* mips */ 430 struct kvm_regs { 418 struct kvm_regs { 431 /* out (KVM_GET_REGS) / in (KVM_SET_RE 419 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ 432 __u64 gpr[32]; 420 __u64 gpr[32]; 433 __u64 hi; 421 __u64 hi; 434 __u64 lo; 422 __u64 lo; 435 __u64 pc; 423 __u64 pc; 436 }; 424 }; 437 425 438 /* LoongArch */ << 439 struct kvm_regs { << 440 /* out (KVM_GET_REGS) / in (KVM_SET_RE << 441 unsigned long gpr[32]; << 442 unsigned long pc; << 443 }; << 444 << 445 426 446 4.12 KVM_SET_REGS 427 4.12 KVM_SET_REGS 447 ----------------- 428 ----------------- 448 429 449 :Capability: basic 430 :Capability: basic 450 :Architectures: all except arm64 !! 431 :Architectures: all except ARM, arm64 451 :Type: vcpu ioctl 432 :Type: vcpu ioctl 452 :Parameters: struct kvm_regs (in) 433 :Parameters: struct kvm_regs (in) 453 :Returns: 0 on success, -1 on error 434 :Returns: 0 on success, -1 on error 454 435 455 Writes the general purpose registers into the 436 Writes the general purpose registers into the vcpu. 456 437 457 See KVM_GET_REGS for the data structure. 438 See KVM_GET_REGS for the data structure. 458 439 459 440 460 4.13 KVM_GET_SREGS 441 4.13 KVM_GET_SREGS 461 ------------------ 442 ------------------ 462 443 463 :Capability: basic 444 :Capability: basic 464 :Architectures: x86, ppc 445 :Architectures: x86, ppc 465 :Type: vcpu ioctl 446 :Type: vcpu ioctl 466 :Parameters: struct kvm_sregs (out) 447 :Parameters: struct kvm_sregs (out) 467 :Returns: 0 on success, -1 on error 448 :Returns: 0 on success, -1 on error 468 449 469 Reads special registers from the vcpu. 450 Reads special registers from the vcpu. 470 451 471 :: 452 :: 472 453 473 /* x86 */ 454 /* x86 */ 474 struct kvm_sregs { 455 struct kvm_sregs { 475 struct kvm_segment cs, ds, es, fs, gs, 456 struct kvm_segment cs, ds, es, fs, gs, ss; 476 struct kvm_segment tr, ldt; 457 struct kvm_segment tr, ldt; 477 struct kvm_dtable gdt, idt; 458 struct kvm_dtable gdt, idt; 478 __u64 cr0, cr2, cr3, cr4, cr8; 459 __u64 cr0, cr2, cr3, cr4, cr8; 479 __u64 efer; 460 __u64 efer; 480 __u64 apic_base; 461 __u64 apic_base; 481 __u64 interrupt_bitmap[(KVM_NR_INTERRU 462 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64]; 482 }; 463 }; 483 464 484 /* ppc -- see arch/powerpc/include/uapi/asm/ 465 /* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */ 485 466 486 interrupt_bitmap is a bitmap of pending extern 467 interrupt_bitmap is a bitmap of pending external interrupts. At most 487 one bit may be set. This interrupt has been a 468 one bit may be set. This interrupt has been acknowledged by the APIC 488 but not yet injected into the cpu core. 469 but not yet injected into the cpu core. 489 470 490 471 491 4.14 KVM_SET_SREGS 472 4.14 KVM_SET_SREGS 492 ------------------ 473 ------------------ 493 474 494 :Capability: basic 475 :Capability: basic 495 :Architectures: x86, ppc 476 :Architectures: x86, ppc 496 :Type: vcpu ioctl 477 :Type: vcpu ioctl 497 :Parameters: struct kvm_sregs (in) 478 :Parameters: struct kvm_sregs (in) 498 :Returns: 0 on success, -1 on error 479 :Returns: 0 on success, -1 on error 499 480 500 Writes special registers into the vcpu. See K 481 Writes special registers into the vcpu. See KVM_GET_SREGS for the 501 data structures. 482 data structures. 502 483 503 484 504 4.15 KVM_TRANSLATE 485 4.15 KVM_TRANSLATE 505 ------------------ 486 ------------------ 506 487 507 :Capability: basic 488 :Capability: basic 508 :Architectures: x86 489 :Architectures: x86 509 :Type: vcpu ioctl 490 :Type: vcpu ioctl 510 :Parameters: struct kvm_translation (in/out) 491 :Parameters: struct kvm_translation (in/out) 511 :Returns: 0 on success, -1 on error 492 :Returns: 0 on success, -1 on error 512 493 513 Translates a virtual address according to the 494 Translates a virtual address according to the vcpu's current address 514 translation mode. 495 translation mode. 515 496 516 :: 497 :: 517 498 518 struct kvm_translation { 499 struct kvm_translation { 519 /* in */ 500 /* in */ 520 __u64 linear_address; 501 __u64 linear_address; 521 502 522 /* out */ 503 /* out */ 523 __u64 physical_address; 504 __u64 physical_address; 524 __u8 valid; 505 __u8 valid; 525 __u8 writeable; 506 __u8 writeable; 526 __u8 usermode; 507 __u8 usermode; 527 __u8 pad[5]; 508 __u8 pad[5]; 528 }; 509 }; 529 510 530 511 531 4.16 KVM_INTERRUPT 512 4.16 KVM_INTERRUPT 532 ------------------ 513 ------------------ 533 514 534 :Capability: basic 515 :Capability: basic 535 :Architectures: x86, ppc, mips, riscv, loongar !! 516 :Architectures: x86, ppc, mips 536 :Type: vcpu ioctl 517 :Type: vcpu ioctl 537 :Parameters: struct kvm_interrupt (in) 518 :Parameters: struct kvm_interrupt (in) 538 :Returns: 0 on success, negative on failure. 519 :Returns: 0 on success, negative on failure. 539 520 540 Queues a hardware interrupt vector to be injec 521 Queues a hardware interrupt vector to be injected. 541 522 542 :: 523 :: 543 524 544 /* for KVM_INTERRUPT */ 525 /* for KVM_INTERRUPT */ 545 struct kvm_interrupt { 526 struct kvm_interrupt { 546 /* in */ 527 /* in */ 547 __u32 irq; 528 __u32 irq; 548 }; 529 }; 549 530 550 X86: 531 X86: 551 ^^^^ 532 ^^^^ 552 533 553 :Returns: 534 :Returns: 554 535 555 ========= ============================ 536 ========= =================================== 556 0 on success, 537 0 on success, 557 -EEXIST if an interrupt is already e 538 -EEXIST if an interrupt is already enqueued 558 -EINVAL the irq number is invalid !! 539 -EINVAL the the irq number is invalid 559 -ENXIO if the PIC is in the kernel 540 -ENXIO if the PIC is in the kernel 560 -EFAULT if the pointer is invalid 541 -EFAULT if the pointer is invalid 561 ========= ============================ 542 ========= =================================== 562 543 563 Note 'irq' is an interrupt vector, not an inte 544 Note 'irq' is an interrupt vector, not an interrupt pin or line. This 564 ioctl is useful if the in-kernel PIC is not us 545 ioctl is useful if the in-kernel PIC is not used. 565 546 566 PPC: 547 PPC: 567 ^^^^ 548 ^^^^ 568 549 569 Queues an external interrupt to be injected. T !! 550 Queues an external interrupt to be injected. This ioctl is overleaded 570 with 3 different irq values: 551 with 3 different irq values: 571 552 572 a) KVM_INTERRUPT_SET 553 a) KVM_INTERRUPT_SET 573 554 574 This injects an edge type external interrup 555 This injects an edge type external interrupt into the guest once it's ready 575 to receive interrupts. When injected, the i 556 to receive interrupts. When injected, the interrupt is done. 576 557 577 b) KVM_INTERRUPT_UNSET 558 b) KVM_INTERRUPT_UNSET 578 559 579 This unsets any pending interrupt. 560 This unsets any pending interrupt. 580 561 581 Only available with KVM_CAP_PPC_UNSET_IRQ. 562 Only available with KVM_CAP_PPC_UNSET_IRQ. 582 563 583 c) KVM_INTERRUPT_SET_LEVEL 564 c) KVM_INTERRUPT_SET_LEVEL 584 565 585 This injects a level type external interrup 566 This injects a level type external interrupt into the guest context. The 586 interrupt stays pending until a specific io 567 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET 587 is triggered. 568 is triggered. 588 569 589 Only available with KVM_CAP_PPC_IRQ_LEVEL. 570 Only available with KVM_CAP_PPC_IRQ_LEVEL. 590 571 591 Note that any value for 'irq' other than the o 572 Note that any value for 'irq' other than the ones stated above is invalid 592 and incurs unexpected behavior. 573 and incurs unexpected behavior. 593 574 594 This is an asynchronous vcpu ioctl and can be 575 This is an asynchronous vcpu ioctl and can be invoked from any thread. 595 576 596 MIPS: 577 MIPS: 597 ^^^^^ 578 ^^^^^ 598 579 599 Queues an external interrupt to be injected in 580 Queues an external interrupt to be injected into the virtual CPU. A negative 600 interrupt number dequeues the interrupt. 581 interrupt number dequeues the interrupt. 601 582 602 This is an asynchronous vcpu ioctl and can be 583 This is an asynchronous vcpu ioctl and can be invoked from any thread. 603 584 604 RISC-V: << 605 ^^^^^^^ << 606 << 607 Queues an external interrupt to be injected in << 608 is overloaded with 2 different irq values: << 609 << 610 a) KVM_INTERRUPT_SET << 611 << 612 This sets external interrupt for a virtual << 613 once it is ready. << 614 << 615 b) KVM_INTERRUPT_UNSET << 616 << 617 This clears pending external interrupt for << 618 << 619 This is an asynchronous vcpu ioctl and can be << 620 585 621 LOONGARCH: !! 586 4.17 KVM_DEBUG_GUEST 622 ^^^^^^^^^^ !! 587 -------------------- 623 588 624 Queues an external interrupt to be injected in !! 589 :Capability: basic 625 interrupt number dequeues the interrupt. !! 590 :Architectures: none >> 591 :Type: vcpu ioctl >> 592 :Parameters: none) >> 593 :Returns: -1 on error 626 594 627 This is an asynchronous vcpu ioctl and can be !! 595 Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead. 628 596 629 597 630 4.18 KVM_GET_MSRS 598 4.18 KVM_GET_MSRS 631 ----------------- 599 ----------------- 632 600 633 :Capability: basic (vcpu), KVM_CAP_GET_MSR_FEA 601 :Capability: basic (vcpu), KVM_CAP_GET_MSR_FEATURES (system) 634 :Architectures: x86 602 :Architectures: x86 635 :Type: system ioctl, vcpu ioctl 603 :Type: system ioctl, vcpu ioctl 636 :Parameters: struct kvm_msrs (in/out) 604 :Parameters: struct kvm_msrs (in/out) 637 :Returns: number of msrs successfully returned 605 :Returns: number of msrs successfully returned; 638 -1 on error 606 -1 on error 639 607 640 When used as a system ioctl: 608 When used as a system ioctl: 641 Reads the values of MSR-based features that ar 609 Reads the values of MSR-based features that are available for the VM. This 642 is similar to KVM_GET_SUPPORTED_CPUID, but it 610 is similar to KVM_GET_SUPPORTED_CPUID, but it returns MSR indices and values. 643 The list of msr-based features can be obtained 611 The list of msr-based features can be obtained using KVM_GET_MSR_FEATURE_INDEX_LIST 644 in a system ioctl. 612 in a system ioctl. 645 613 646 When used as a vcpu ioctl: 614 When used as a vcpu ioctl: 647 Reads model-specific registers from the vcpu. 615 Reads model-specific registers from the vcpu. Supported msr indices can 648 be obtained using KVM_GET_MSR_INDEX_LIST in a 616 be obtained using KVM_GET_MSR_INDEX_LIST in a system ioctl. 649 617 650 :: 618 :: 651 619 652 struct kvm_msrs { 620 struct kvm_msrs { 653 __u32 nmsrs; /* number of msrs in entr 621 __u32 nmsrs; /* number of msrs in entries */ 654 __u32 pad; 622 __u32 pad; 655 623 656 struct kvm_msr_entry entries[0]; 624 struct kvm_msr_entry entries[0]; 657 }; 625 }; 658 626 659 struct kvm_msr_entry { 627 struct kvm_msr_entry { 660 __u32 index; 628 __u32 index; 661 __u32 reserved; 629 __u32 reserved; 662 __u64 data; 630 __u64 data; 663 }; 631 }; 664 632 665 Application code should set the 'nmsrs' member 633 Application code should set the 'nmsrs' member (which indicates the 666 size of the entries array) and the 'index' mem 634 size of the entries array) and the 'index' member of each array entry. 667 kvm will fill in the 'data' member. 635 kvm will fill in the 'data' member. 668 636 669 637 670 4.19 KVM_SET_MSRS 638 4.19 KVM_SET_MSRS 671 ----------------- 639 ----------------- 672 640 673 :Capability: basic 641 :Capability: basic 674 :Architectures: x86 642 :Architectures: x86 675 :Type: vcpu ioctl 643 :Type: vcpu ioctl 676 :Parameters: struct kvm_msrs (in) 644 :Parameters: struct kvm_msrs (in) 677 :Returns: number of msrs successfully set (see 645 :Returns: number of msrs successfully set (see below), -1 on error 678 646 679 Writes model-specific registers to the vcpu. 647 Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the 680 data structures. 648 data structures. 681 649 682 Application code should set the 'nmsrs' member 650 Application code should set the 'nmsrs' member (which indicates the 683 size of the entries array), and the 'index' an 651 size of the entries array), and the 'index' and 'data' members of each 684 array entry. 652 array entry. 685 653 686 It tries to set the MSRs in array entries[] on 654 It tries to set the MSRs in array entries[] one by one. If setting an MSR 687 fails, e.g., due to setting reserved bits, the 655 fails, e.g., due to setting reserved bits, the MSR isn't supported/emulated 688 by KVM, etc..., it stops processing the MSR li 656 by KVM, etc..., it stops processing the MSR list and returns the number of 689 MSRs that have been set successfully. 657 MSRs that have been set successfully. 690 658 691 659 692 4.20 KVM_SET_CPUID 660 4.20 KVM_SET_CPUID 693 ------------------ 661 ------------------ 694 662 695 :Capability: basic 663 :Capability: basic 696 :Architectures: x86 664 :Architectures: x86 697 :Type: vcpu ioctl 665 :Type: vcpu ioctl 698 :Parameters: struct kvm_cpuid (in) 666 :Parameters: struct kvm_cpuid (in) 699 :Returns: 0 on success, -1 on error 667 :Returns: 0 on success, -1 on error 700 668 701 Defines the vcpu responses to the cpuid instru 669 Defines the vcpu responses to the cpuid instruction. Applications 702 should use the KVM_SET_CPUID2 ioctl if availab 670 should use the KVM_SET_CPUID2 ioctl if available. 703 671 704 Caveat emptor: << 705 - If this IOCTL fails, KVM gives no guarante << 706 configuration (if there is) is not corrupt << 707 of the resulting CPUID configuration throu << 708 - Using KVM_SET_CPUID{,2} after KVM_RUN, i.e << 709 after running the guest, may cause guest i << 710 - Using heterogeneous CPUID configurations, << 711 may cause guest instability. << 712 << 713 :: 672 :: 714 673 715 struct kvm_cpuid_entry { 674 struct kvm_cpuid_entry { 716 __u32 function; 675 __u32 function; 717 __u32 eax; 676 __u32 eax; 718 __u32 ebx; 677 __u32 ebx; 719 __u32 ecx; 678 __u32 ecx; 720 __u32 edx; 679 __u32 edx; 721 __u32 padding; 680 __u32 padding; 722 }; 681 }; 723 682 724 /* for KVM_SET_CPUID */ 683 /* for KVM_SET_CPUID */ 725 struct kvm_cpuid { 684 struct kvm_cpuid { 726 __u32 nent; 685 __u32 nent; 727 __u32 padding; 686 __u32 padding; 728 struct kvm_cpuid_entry entries[0]; 687 struct kvm_cpuid_entry entries[0]; 729 }; 688 }; 730 689 731 690 732 4.21 KVM_SET_SIGNAL_MASK 691 4.21 KVM_SET_SIGNAL_MASK 733 ------------------------ 692 ------------------------ 734 693 735 :Capability: basic 694 :Capability: basic 736 :Architectures: all 695 :Architectures: all 737 :Type: vcpu ioctl 696 :Type: vcpu ioctl 738 :Parameters: struct kvm_signal_mask (in) 697 :Parameters: struct kvm_signal_mask (in) 739 :Returns: 0 on success, -1 on error 698 :Returns: 0 on success, -1 on error 740 699 741 Defines which signals are blocked during execu 700 Defines which signals are blocked during execution of KVM_RUN. This 742 signal mask temporarily overrides the threads 701 signal mask temporarily overrides the threads signal mask. Any 743 unblocked signal received (except SIGKILL and 702 unblocked signal received (except SIGKILL and SIGSTOP, which retain 744 their traditional behaviour) will cause KVM_RU 703 their traditional behaviour) will cause KVM_RUN to return with -EINTR. 745 704 746 Note the signal will only be delivered if not 705 Note the signal will only be delivered if not blocked by the original 747 signal mask. 706 signal mask. 748 707 749 :: 708 :: 750 709 751 /* for KVM_SET_SIGNAL_MASK */ 710 /* for KVM_SET_SIGNAL_MASK */ 752 struct kvm_signal_mask { 711 struct kvm_signal_mask { 753 __u32 len; 712 __u32 len; 754 __u8 sigset[0]; 713 __u8 sigset[0]; 755 }; 714 }; 756 715 757 716 758 4.22 KVM_GET_FPU 717 4.22 KVM_GET_FPU 759 ---------------- 718 ---------------- 760 719 761 :Capability: basic 720 :Capability: basic 762 :Architectures: x86, loongarch !! 721 :Architectures: x86 763 :Type: vcpu ioctl 722 :Type: vcpu ioctl 764 :Parameters: struct kvm_fpu (out) 723 :Parameters: struct kvm_fpu (out) 765 :Returns: 0 on success, -1 on error 724 :Returns: 0 on success, -1 on error 766 725 767 Reads the floating point state from the vcpu. 726 Reads the floating point state from the vcpu. 768 727 769 :: 728 :: 770 729 771 /* x86: for KVM_GET_FPU and KVM_SET_FPU */ !! 730 /* for KVM_GET_FPU and KVM_SET_FPU */ 772 struct kvm_fpu { 731 struct kvm_fpu { 773 __u8 fpr[8][16]; 732 __u8 fpr[8][16]; 774 __u16 fcw; 733 __u16 fcw; 775 __u16 fsw; 734 __u16 fsw; 776 __u8 ftwx; /* in fxsave format */ 735 __u8 ftwx; /* in fxsave format */ 777 __u8 pad1; 736 __u8 pad1; 778 __u16 last_opcode; 737 __u16 last_opcode; 779 __u64 last_ip; 738 __u64 last_ip; 780 __u64 last_dp; 739 __u64 last_dp; 781 __u8 xmm[16][16]; 740 __u8 xmm[16][16]; 782 __u32 mxcsr; 741 __u32 mxcsr; 783 __u32 pad2; 742 __u32 pad2; 784 }; 743 }; 785 744 786 /* LoongArch: for KVM_GET_FPU and KVM_SET_FP << 787 struct kvm_fpu { << 788 __u32 fcsr; << 789 __u64 fcc; << 790 struct kvm_fpureg { << 791 __u64 val64[4]; << 792 }fpr[32]; << 793 }; << 794 << 795 745 796 4.23 KVM_SET_FPU 746 4.23 KVM_SET_FPU 797 ---------------- 747 ---------------- 798 748 799 :Capability: basic 749 :Capability: basic 800 :Architectures: x86, loongarch !! 750 :Architectures: x86 801 :Type: vcpu ioctl 751 :Type: vcpu ioctl 802 :Parameters: struct kvm_fpu (in) 752 :Parameters: struct kvm_fpu (in) 803 :Returns: 0 on success, -1 on error 753 :Returns: 0 on success, -1 on error 804 754 805 Writes the floating point state to the vcpu. 755 Writes the floating point state to the vcpu. 806 756 807 :: 757 :: 808 758 809 /* x86: for KVM_GET_FPU and KVM_SET_FPU */ !! 759 /* for KVM_GET_FPU and KVM_SET_FPU */ 810 struct kvm_fpu { 760 struct kvm_fpu { 811 __u8 fpr[8][16]; 761 __u8 fpr[8][16]; 812 __u16 fcw; 762 __u16 fcw; 813 __u16 fsw; 763 __u16 fsw; 814 __u8 ftwx; /* in fxsave format */ 764 __u8 ftwx; /* in fxsave format */ 815 __u8 pad1; 765 __u8 pad1; 816 __u16 last_opcode; 766 __u16 last_opcode; 817 __u64 last_ip; 767 __u64 last_ip; 818 __u64 last_dp; 768 __u64 last_dp; 819 __u8 xmm[16][16]; 769 __u8 xmm[16][16]; 820 __u32 mxcsr; 770 __u32 mxcsr; 821 __u32 pad2; 771 __u32 pad2; 822 }; 772 }; 823 773 824 /* LoongArch: for KVM_GET_FPU and KVM_SET_FP << 825 struct kvm_fpu { << 826 __u32 fcsr; << 827 __u64 fcc; << 828 struct kvm_fpureg { << 829 __u64 val64[4]; << 830 }fpr[32]; << 831 }; << 832 << 833 774 834 4.24 KVM_CREATE_IRQCHIP 775 4.24 KVM_CREATE_IRQCHIP 835 ----------------------- 776 ----------------------- 836 777 837 :Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQ 778 :Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390) 838 :Architectures: x86, arm64, s390 !! 779 :Architectures: x86, ARM, arm64, s390 839 :Type: vm ioctl 780 :Type: vm ioctl 840 :Parameters: none 781 :Parameters: none 841 :Returns: 0 on success, -1 on error 782 :Returns: 0 on success, -1 on error 842 783 843 Creates an interrupt controller model in the k 784 Creates an interrupt controller model in the kernel. 844 On x86, creates a virtual ioapic, a virtual PI 785 On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up 845 future vcpus to have a local APIC. IRQ routin 786 future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both 846 PIC and IOAPIC; GSI 16-23 only go to the IOAPI 787 PIC and IOAPIC; GSI 16-23 only go to the IOAPIC. 847 On arm64, a GICv2 is created. Any other GIC ve !! 788 On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of 848 KVM_CREATE_DEVICE, which also supports creatin 789 KVM_CREATE_DEVICE, which also supports creating a GICv2. Using 849 KVM_CREATE_DEVICE is preferred over KVM_CREATE 790 KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2. 850 On s390, a dummy irq routing table is created. 791 On s390, a dummy irq routing table is created. 851 792 852 Note that on s390 the KVM_CAP_S390_IRQCHIP vm 793 Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled 853 before KVM_CREATE_IRQCHIP can be used. 794 before KVM_CREATE_IRQCHIP can be used. 854 795 855 796 856 4.25 KVM_IRQ_LINE 797 4.25 KVM_IRQ_LINE 857 ----------------- 798 ----------------- 858 799 859 :Capability: KVM_CAP_IRQCHIP 800 :Capability: KVM_CAP_IRQCHIP 860 :Architectures: x86, arm64 !! 801 :Architectures: x86, arm, arm64 861 :Type: vm ioctl 802 :Type: vm ioctl 862 :Parameters: struct kvm_irq_level 803 :Parameters: struct kvm_irq_level 863 :Returns: 0 on success, -1 on error 804 :Returns: 0 on success, -1 on error 864 805 865 Sets the level of a GSI input to the interrupt 806 Sets the level of a GSI input to the interrupt controller model in the kernel. 866 On some architectures it is required that an i 807 On some architectures it is required that an interrupt controller model has 867 been previously created with KVM_CREATE_IRQCHI 808 been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered 868 interrupts require the level to be set to 1 an 809 interrupts require the level to be set to 1 and then back to 0. 869 810 870 On real hardware, interrupt pins can be active 811 On real hardware, interrupt pins can be active-low or active-high. This 871 does not matter for the level field of struct 812 does not matter for the level field of struct kvm_irq_level: 1 always 872 means active (asserted), 0 means inactive (dea 813 means active (asserted), 0 means inactive (deasserted). 873 814 874 x86 allows the operating system to program the 815 x86 allows the operating system to program the interrupt polarity 875 (active-low/active-high) for level-triggered i 816 (active-low/active-high) for level-triggered interrupts, and KVM used 876 to consider the polarity. However, due to bit 817 to consider the polarity. However, due to bitrot in the handling of 877 active-low interrupts, the above convention is 818 active-low interrupts, the above convention is now valid on x86 too. 878 This is signaled by KVM_CAP_X86_IOAPIC_POLARIT 819 This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace 879 should not present interrupts to the guest as 820 should not present interrupts to the guest as active-low unless this 880 capability is present (or unless it is not usi 821 capability is present (or unless it is not using the in-kernel irqchip, 881 of course). 822 of course). 882 823 883 824 884 arm64 can signal an interrupt either at the CP !! 825 ARM/arm64 can signal an interrupt either at the CPU level, or at the 885 in-kernel irqchip (GIC), and for in-kernel irq 826 in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to 886 use PPIs designated for specific cpus. The ir 827 use PPIs designated for specific cpus. The irq field is interpreted 887 like this:: 828 like this:: 888 829 889 bits: | 31 ... 28 | 27 ... 24 | 23 ... 1 !! 830  bits: | 31 ... 28 | 27 ... 24 | 23 ... 16 | 15 ... 0 | 890 field: | vcpu2_index | irq_type | vcpu_inde 831 field: | vcpu2_index | irq_type | vcpu_index | irq_id | 891 832 892 The irq_type field has the following values: 833 The irq_type field has the following values: 893 834 894 - KVM_ARM_IRQ_TYPE_CPU: !! 835 - irq_type[0]: 895 out-of-kernel GIC: irq_id 0 is 836 out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ 896 - KVM_ARM_IRQ_TYPE_SPI: !! 837 - irq_type[1]: 897 in-kernel GIC: SPI, irq_id betw 838 in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.) 898 (the vcpu_index field is ignore 839 (the vcpu_index field is ignored) 899 - KVM_ARM_IRQ_TYPE_PPI: !! 840 - irq_type[2]: 900 in-kernel GIC: PPI, irq_id betw 841 in-kernel GIC: PPI, irq_id between 16 and 31 (incl.) 901 842 902 (The irq_id field thus corresponds nicely to t 843 (The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs) 903 844 904 In both cases, level is used to assert/deasser 845 In both cases, level is used to assert/deassert the line. 905 846 906 When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supporte 847 When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supported, the target vcpu is 907 identified as (256 * vcpu2_index + vcpu_index) 848 identified as (256 * vcpu2_index + vcpu_index). Otherwise, vcpu2_index 908 must be zero. 849 must be zero. 909 850 910 Note that on arm64, the KVM_CAP_IRQCHIP capabi !! 851 Note that on arm/arm64, the KVM_CAP_IRQCHIP capability only conditions 911 injection of interrupts for the in-kernel irqc 852 injection of interrupts for the in-kernel irqchip. KVM_IRQ_LINE can always 912 be used for a userspace interrupt controller. 853 be used for a userspace interrupt controller. 913 854 914 :: 855 :: 915 856 916 struct kvm_irq_level { 857 struct kvm_irq_level { 917 union { 858 union { 918 __u32 irq; /* GSI */ 859 __u32 irq; /* GSI */ 919 __s32 status; /* not used for 860 __s32 status; /* not used for KVM_IRQ_LEVEL */ 920 }; 861 }; 921 __u32 level; /* 0 or 1 */ 862 __u32 level; /* 0 or 1 */ 922 }; 863 }; 923 864 924 865 925 4.26 KVM_GET_IRQCHIP 866 4.26 KVM_GET_IRQCHIP 926 -------------------- 867 -------------------- 927 868 928 :Capability: KVM_CAP_IRQCHIP 869 :Capability: KVM_CAP_IRQCHIP 929 :Architectures: x86 870 :Architectures: x86 930 :Type: vm ioctl 871 :Type: vm ioctl 931 :Parameters: struct kvm_irqchip (in/out) 872 :Parameters: struct kvm_irqchip (in/out) 932 :Returns: 0 on success, -1 on error 873 :Returns: 0 on success, -1 on error 933 874 934 Reads the state of a kernel interrupt controll 875 Reads the state of a kernel interrupt controller created with 935 KVM_CREATE_IRQCHIP into a buffer provided by t 876 KVM_CREATE_IRQCHIP into a buffer provided by the caller. 936 877 937 :: 878 :: 938 879 939 struct kvm_irqchip { 880 struct kvm_irqchip { 940 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 881 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ 941 __u32 pad; 882 __u32 pad; 942 union { 883 union { 943 char dummy[512]; /* reserving 884 char dummy[512]; /* reserving space */ 944 struct kvm_pic_state pic; 885 struct kvm_pic_state pic; 945 struct kvm_ioapic_state ioapic 886 struct kvm_ioapic_state ioapic; 946 } chip; 887 } chip; 947 }; 888 }; 948 889 949 890 950 4.27 KVM_SET_IRQCHIP 891 4.27 KVM_SET_IRQCHIP 951 -------------------- 892 -------------------- 952 893 953 :Capability: KVM_CAP_IRQCHIP 894 :Capability: KVM_CAP_IRQCHIP 954 :Architectures: x86 895 :Architectures: x86 955 :Type: vm ioctl 896 :Type: vm ioctl 956 :Parameters: struct kvm_irqchip (in) 897 :Parameters: struct kvm_irqchip (in) 957 :Returns: 0 on success, -1 on error 898 :Returns: 0 on success, -1 on error 958 899 959 Sets the state of a kernel interrupt controlle 900 Sets the state of a kernel interrupt controller created with 960 KVM_CREATE_IRQCHIP from a buffer provided by t 901 KVM_CREATE_IRQCHIP from a buffer provided by the caller. 961 902 962 :: 903 :: 963 904 964 struct kvm_irqchip { 905 struct kvm_irqchip { 965 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 906 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ 966 __u32 pad; 907 __u32 pad; 967 union { 908 union { 968 char dummy[512]; /* reserving 909 char dummy[512]; /* reserving space */ 969 struct kvm_pic_state pic; 910 struct kvm_pic_state pic; 970 struct kvm_ioapic_state ioapic 911 struct kvm_ioapic_state ioapic; 971 } chip; 912 } chip; 972 }; 913 }; 973 914 974 915 975 4.28 KVM_XEN_HVM_CONFIG 916 4.28 KVM_XEN_HVM_CONFIG 976 ----------------------- 917 ----------------------- 977 918 978 :Capability: KVM_CAP_XEN_HVM 919 :Capability: KVM_CAP_XEN_HVM 979 :Architectures: x86 920 :Architectures: x86 980 :Type: vm ioctl 921 :Type: vm ioctl 981 :Parameters: struct kvm_xen_hvm_config (in) 922 :Parameters: struct kvm_xen_hvm_config (in) 982 :Returns: 0 on success, -1 on error 923 :Returns: 0 on success, -1 on error 983 924 984 Sets the MSR that the Xen HVM guest uses to in 925 Sets the MSR that the Xen HVM guest uses to initialize its hypercall 985 page, and provides the starting address and si 926 page, and provides the starting address and size of the hypercall 986 blobs in userspace. When the guest writes the 927 blobs in userspace. When the guest writes the MSR, kvm copies one 987 page of a blob (32- or 64-bit, depending on th 928 page of a blob (32- or 64-bit, depending on the vcpu mode) to guest 988 memory. 929 memory. 989 930 990 :: 931 :: 991 932 992 struct kvm_xen_hvm_config { 933 struct kvm_xen_hvm_config { 993 __u32 flags; 934 __u32 flags; 994 __u32 msr; 935 __u32 msr; 995 __u64 blob_addr_32; 936 __u64 blob_addr_32; 996 __u64 blob_addr_64; 937 __u64 blob_addr_64; 997 __u8 blob_size_32; 938 __u8 blob_size_32; 998 __u8 blob_size_64; 939 __u8 blob_size_64; 999 __u8 pad2[30]; 940 __u8 pad2[30]; 1000 }; 941 }; 1001 942 1002 If certain flags are returned from the KVM_CA << 1003 be set in the flags field of this ioctl: << 1004 << 1005 The KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL flag r << 1006 the contents of the hypercall page automatica << 1007 intercepted and passed to userspace through K << 1008 case, all of the blob size and address fields << 1009 << 1010 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indic << 1011 will always use the KVM_XEN_HVM_EVTCHN_SEND i << 1012 channel interrupts rather than manipulating t << 1013 structures directly. This, in turn, may allow << 1014 such as intercepting the SCHEDOP_poll hyperca << 1015 spinlock operation for the guest. Userspace m << 1016 to deliver events if it was advertised, even << 1017 send this indication that it will always do s << 1018 << 1019 No other flags are currently valid in the str << 1020 943 1021 4.29 KVM_GET_CLOCK 944 4.29 KVM_GET_CLOCK 1022 ------------------ 945 ------------------ 1023 946 1024 :Capability: KVM_CAP_ADJUST_CLOCK 947 :Capability: KVM_CAP_ADJUST_CLOCK 1025 :Architectures: x86 948 :Architectures: x86 1026 :Type: vm ioctl 949 :Type: vm ioctl 1027 :Parameters: struct kvm_clock_data (out) 950 :Parameters: struct kvm_clock_data (out) 1028 :Returns: 0 on success, -1 on error 951 :Returns: 0 on success, -1 on error 1029 952 1030 Gets the current timestamp of kvmclock as see 953 Gets the current timestamp of kvmclock as seen by the current guest. In 1031 conjunction with KVM_SET_CLOCK, it is used to 954 conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios 1032 such as migration. 955 such as migration. 1033 956 1034 When KVM_CAP_ADJUST_CLOCK is passed to KVM_CH 957 When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the 1035 set of bits that KVM can return in struct kvm 958 set of bits that KVM can return in struct kvm_clock_data's flag member. 1036 959 1037 The following flags are defined: !! 960 The only flag defined now is KVM_CLOCK_TSC_STABLE. If set, the returned 1038 !! 961 value is the exact kvmclock value seen by all VCPUs at the instant 1039 KVM_CLOCK_TSC_STABLE !! 962 when KVM_GET_CLOCK was called. If clear, the returned value is simply 1040 If set, the returned value is the exact kvm !! 963 CLOCK_MONOTONIC plus a constant offset; the offset can be modified 1041 value seen by all VCPUs at the instant when !! 964 with KVM_SET_CLOCK. KVM will try to make all VCPUs follow this clock, 1042 If clear, the returned value is simply CLOC !! 965 but the exact value read by each VCPU could differ, because the host 1043 offset; the offset can be modified with KVM !! 966 TSC is not stable. 1044 to make all VCPUs follow this clock, but th << 1045 VCPU could differ, because the host TSC is << 1046 << 1047 KVM_CLOCK_REALTIME << 1048 If set, the `realtime` field in the kvm_clo << 1049 structure is populated with the value of th << 1050 clocksource at the instant when KVM_GET_CLO << 1051 the `realtime` field does not contain a val << 1052 << 1053 KVM_CLOCK_HOST_TSC << 1054 If set, the `host_tsc` field in the kvm_clo << 1055 structure is populated with the value of th << 1056 at the instant when KVM_GET_CLOCK was calle << 1057 does not contain a value. << 1058 967 1059 :: 968 :: 1060 969 1061 struct kvm_clock_data { 970 struct kvm_clock_data { 1062 __u64 clock; /* kvmclock current val 971 __u64 clock; /* kvmclock current value */ 1063 __u32 flags; 972 __u32 flags; 1064 __u32 pad0; !! 973 __u32 pad[9]; 1065 __u64 realtime; << 1066 __u64 host_tsc; << 1067 __u32 pad[4]; << 1068 }; 974 }; 1069 975 1070 976 1071 4.30 KVM_SET_CLOCK 977 4.30 KVM_SET_CLOCK 1072 ------------------ 978 ------------------ 1073 979 1074 :Capability: KVM_CAP_ADJUST_CLOCK 980 :Capability: KVM_CAP_ADJUST_CLOCK 1075 :Architectures: x86 981 :Architectures: x86 1076 :Type: vm ioctl 982 :Type: vm ioctl 1077 :Parameters: struct kvm_clock_data (in) 983 :Parameters: struct kvm_clock_data (in) 1078 :Returns: 0 on success, -1 on error 984 :Returns: 0 on success, -1 on error 1079 985 1080 Sets the current timestamp of kvmclock to the 986 Sets the current timestamp of kvmclock to the value specified in its parameter. 1081 In conjunction with KVM_GET_CLOCK, it is used 987 In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios 1082 such as migration. 988 such as migration. 1083 989 1084 The following flags can be passed: << 1085 << 1086 KVM_CLOCK_REALTIME << 1087 If set, KVM will compare the value of the ` << 1088 with the value of the host's real time cloc << 1089 KVM_SET_CLOCK was called. The difference in << 1090 kvmclock value that will be provided to gue << 1091 << 1092 Other flags returned by ``KVM_GET_CLOCK`` are << 1093 << 1094 :: 990 :: 1095 991 1096 struct kvm_clock_data { 992 struct kvm_clock_data { 1097 __u64 clock; /* kvmclock current val 993 __u64 clock; /* kvmclock current value */ 1098 __u32 flags; 994 __u32 flags; 1099 __u32 pad0; !! 995 __u32 pad[9]; 1100 __u64 realtime; << 1101 __u64 host_tsc; << 1102 __u32 pad[4]; << 1103 }; 996 }; 1104 997 1105 998 1106 4.31 KVM_GET_VCPU_EVENTS 999 4.31 KVM_GET_VCPU_EVENTS 1107 ------------------------ 1000 ------------------------ 1108 1001 1109 :Capability: KVM_CAP_VCPU_EVENTS 1002 :Capability: KVM_CAP_VCPU_EVENTS 1110 :Extended by: KVM_CAP_INTR_SHADOW 1003 :Extended by: KVM_CAP_INTR_SHADOW 1111 :Architectures: x86, arm64 !! 1004 :Architectures: x86, arm, arm64 1112 :Type: vcpu ioctl 1005 :Type: vcpu ioctl 1113 :Parameters: struct kvm_vcpu_events (out) !! 1006 :Parameters: struct kvm_vcpu_event (out) 1114 :Returns: 0 on success, -1 on error 1007 :Returns: 0 on success, -1 on error 1115 1008 1116 X86: 1009 X86: 1117 ^^^^ 1010 ^^^^ 1118 1011 1119 Gets currently pending exceptions, interrupts 1012 Gets currently pending exceptions, interrupts, and NMIs as well as related 1120 states of the vcpu. 1013 states of the vcpu. 1121 1014 1122 :: 1015 :: 1123 1016 1124 struct kvm_vcpu_events { 1017 struct kvm_vcpu_events { 1125 struct { 1018 struct { 1126 __u8 injected; 1019 __u8 injected; 1127 __u8 nr; 1020 __u8 nr; 1128 __u8 has_error_code; 1021 __u8 has_error_code; 1129 __u8 pending; 1022 __u8 pending; 1130 __u32 error_code; 1023 __u32 error_code; 1131 } exception; 1024 } exception; 1132 struct { 1025 struct { 1133 __u8 injected; 1026 __u8 injected; 1134 __u8 nr; 1027 __u8 nr; 1135 __u8 soft; 1028 __u8 soft; 1136 __u8 shadow; 1029 __u8 shadow; 1137 } interrupt; 1030 } interrupt; 1138 struct { 1031 struct { 1139 __u8 injected; 1032 __u8 injected; 1140 __u8 pending; 1033 __u8 pending; 1141 __u8 masked; 1034 __u8 masked; 1142 __u8 pad; 1035 __u8 pad; 1143 } nmi; 1036 } nmi; 1144 __u32 sipi_vector; 1037 __u32 sipi_vector; 1145 __u32 flags; 1038 __u32 flags; 1146 struct { 1039 struct { 1147 __u8 smm; 1040 __u8 smm; 1148 __u8 pending; 1041 __u8 pending; 1149 __u8 smm_inside_nmi; 1042 __u8 smm_inside_nmi; 1150 __u8 latched_init; 1043 __u8 latched_init; 1151 } smi; 1044 } smi; 1152 __u8 reserved[27]; 1045 __u8 reserved[27]; 1153 __u8 exception_has_payload; 1046 __u8 exception_has_payload; 1154 __u64 exception_payload; 1047 __u64 exception_payload; 1155 }; 1048 }; 1156 1049 1157 The following bits are defined in the flags f 1050 The following bits are defined in the flags field: 1158 1051 1159 - KVM_VCPUEVENT_VALID_SHADOW may be set to si 1052 - KVM_VCPUEVENT_VALID_SHADOW may be set to signal that 1160 interrupt.shadow contains a valid state. 1053 interrupt.shadow contains a valid state. 1161 1054 1162 - KVM_VCPUEVENT_VALID_SMM may be set to signa 1055 - KVM_VCPUEVENT_VALID_SMM may be set to signal that smi contains a 1163 valid state. 1056 valid state. 1164 1057 1165 - KVM_VCPUEVENT_VALID_PAYLOAD may be set to s 1058 - KVM_VCPUEVENT_VALID_PAYLOAD may be set to signal that the 1166 exception_has_payload, exception_payload, a 1059 exception_has_payload, exception_payload, and exception.pending 1167 fields contain a valid state. This bit will 1060 fields contain a valid state. This bit will be set whenever 1168 KVM_CAP_EXCEPTION_PAYLOAD is enabled. 1061 KVM_CAP_EXCEPTION_PAYLOAD is enabled. 1169 1062 1170 - KVM_VCPUEVENT_VALID_TRIPLE_FAULT may be set !! 1063 ARM/ARM64: 1171 triple_fault_pending field contains a valid !! 1064 ^^^^^^^^^^ 1172 be set whenever KVM_CAP_X86_TRIPLE_FAULT_EV << 1173 << 1174 ARM64: << 1175 ^^^^^^ << 1176 1065 1177 If the guest accesses a device that is being 1066 If the guest accesses a device that is being emulated by the host kernel in 1178 such a way that a real device would generate 1067 such a way that a real device would generate a physical SError, KVM may make 1179 a virtual SError pending for that VCPU. This 1068 a virtual SError pending for that VCPU. This system error interrupt remains 1180 pending until the guest takes the exception b 1069 pending until the guest takes the exception by unmasking PSTATE.A. 1181 1070 1182 Running the VCPU may cause it to take a pendi 1071 Running the VCPU may cause it to take a pending SError, or make an access that 1183 causes an SError to become pending. The event 1072 causes an SError to become pending. The event's description is only valid while 1184 the VPCU is not running. 1073 the VPCU is not running. 1185 1074 1186 This API provides a way to read and write the 1075 This API provides a way to read and write the pending 'event' state that is not 1187 visible to the guest. To save, restore or mig 1076 visible to the guest. To save, restore or migrate a VCPU the struct representing 1188 the state can be read then written using this 1077 the state can be read then written using this GET/SET API, along with the other 1189 guest-visible registers. It is not possible t 1078 guest-visible registers. It is not possible to 'cancel' an SError that has been 1190 made pending. 1079 made pending. 1191 1080 1192 A device being emulated in user-space may als 1081 A device being emulated in user-space may also wish to generate an SError. To do 1193 this the events structure can be populated by 1082 this the events structure can be populated by user-space. The current state 1194 should be read first, to ensure no existing S 1083 should be read first, to ensure no existing SError is pending. If an existing 1195 SError is pending, the architecture's 'Multip 1084 SError is pending, the architecture's 'Multiple SError interrupts' rules should 1196 be followed. (2.5.3 of DDI0587.a "ARM Reliabi 1085 be followed. (2.5.3 of DDI0587.a "ARM Reliability, Availability, and 1197 Serviceability (RAS) Specification"). 1086 Serviceability (RAS) Specification"). 1198 1087 1199 SError exceptions always have an ESR value. S 1088 SError exceptions always have an ESR value. Some CPUs have the ability to 1200 specify what the virtual SError's ESR value s 1089 specify what the virtual SError's ESR value should be. These systems will 1201 advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In t 1090 advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In this case exception.has_esr will 1202 always have a non-zero value when read, and t 1091 always have a non-zero value when read, and the agent making an SError pending 1203 should specify the ISS field in the lower 24 1092 should specify the ISS field in the lower 24 bits of exception.serror_esr. If 1204 the system supports KVM_CAP_ARM_INJECT_SERROR 1093 the system supports KVM_CAP_ARM_INJECT_SERROR_ESR, but user-space sets the events 1205 with exception.has_esr as zero, KVM will choo 1094 with exception.has_esr as zero, KVM will choose an ESR. 1206 1095 1207 Specifying exception.has_esr on a system that 1096 Specifying exception.has_esr on a system that does not support it will return 1208 -EINVAL. Setting anything other than the lowe 1097 -EINVAL. Setting anything other than the lower 24bits of exception.serror_esr 1209 will return -EINVAL. 1098 will return -EINVAL. 1210 1099 1211 It is not possible to read back a pending ext 1100 It is not possible to read back a pending external abort (injected via 1212 KVM_SET_VCPU_EVENTS or otherwise) because suc 1101 KVM_SET_VCPU_EVENTS or otherwise) because such an exception is always delivered 1213 directly to the virtual CPU). 1102 directly to the virtual CPU). 1214 1103 1215 :: 1104 :: 1216 1105 1217 struct kvm_vcpu_events { 1106 struct kvm_vcpu_events { 1218 struct { 1107 struct { 1219 __u8 serror_pending; 1108 __u8 serror_pending; 1220 __u8 serror_has_esr; 1109 __u8 serror_has_esr; 1221 __u8 ext_dabt_pending; 1110 __u8 ext_dabt_pending; 1222 /* Align it to 8 bytes */ 1111 /* Align it to 8 bytes */ 1223 __u8 pad[5]; 1112 __u8 pad[5]; 1224 __u64 serror_esr; 1113 __u64 serror_esr; 1225 } exception; 1114 } exception; 1226 __u32 reserved[12]; 1115 __u32 reserved[12]; 1227 }; 1116 }; 1228 1117 1229 4.32 KVM_SET_VCPU_EVENTS 1118 4.32 KVM_SET_VCPU_EVENTS 1230 ------------------------ 1119 ------------------------ 1231 1120 1232 :Capability: KVM_CAP_VCPU_EVENTS 1121 :Capability: KVM_CAP_VCPU_EVENTS 1233 :Extended by: KVM_CAP_INTR_SHADOW 1122 :Extended by: KVM_CAP_INTR_SHADOW 1234 :Architectures: x86, arm64 !! 1123 :Architectures: x86, arm, arm64 1235 :Type: vcpu ioctl 1124 :Type: vcpu ioctl 1236 :Parameters: struct kvm_vcpu_events (in) !! 1125 :Parameters: struct kvm_vcpu_event (in) 1237 :Returns: 0 on success, -1 on error 1126 :Returns: 0 on success, -1 on error 1238 1127 1239 X86: 1128 X86: 1240 ^^^^ 1129 ^^^^ 1241 1130 1242 Set pending exceptions, interrupts, and NMIs 1131 Set pending exceptions, interrupts, and NMIs as well as related states of the 1243 vcpu. 1132 vcpu. 1244 1133 1245 See KVM_GET_VCPU_EVENTS for the data structur 1134 See KVM_GET_VCPU_EVENTS for the data structure. 1246 1135 1247 Fields that may be modified asynchronously by 1136 Fields that may be modified asynchronously by running VCPUs can be excluded 1248 from the update. These fields are nmi.pending 1137 from the update. These fields are nmi.pending, sipi_vector, smi.smm, 1249 smi.pending. Keep the corresponding bits in t 1138 smi.pending. Keep the corresponding bits in the flags field cleared to 1250 suppress overwriting the current in-kernel st 1139 suppress overwriting the current in-kernel state. The bits are: 1251 1140 1252 =============================== ============ 1141 =============================== ================================== 1253 KVM_VCPUEVENT_VALID_NMI_PENDING transfer nmi 1142 KVM_VCPUEVENT_VALID_NMI_PENDING transfer nmi.pending to the kernel 1254 KVM_VCPUEVENT_VALID_SIPI_VECTOR transfer sip 1143 KVM_VCPUEVENT_VALID_SIPI_VECTOR transfer sipi_vector 1255 KVM_VCPUEVENT_VALID_SMM transfer the 1144 KVM_VCPUEVENT_VALID_SMM transfer the smi sub-struct. 1256 =============================== ============ 1145 =============================== ================================== 1257 1146 1258 If KVM_CAP_INTR_SHADOW is available, KVM_VCPU 1147 If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in 1259 the flags field to signal that interrupt.shad 1148 the flags field to signal that interrupt.shadow contains a valid state and 1260 shall be written into the VCPU. 1149 shall be written into the VCPU. 1261 1150 1262 KVM_VCPUEVENT_VALID_SMM can only be set if KV 1151 KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available. 1263 1152 1264 If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_ 1153 If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_VCPUEVENT_VALID_PAYLOAD 1265 can be set in the flags field to signal that 1154 can be set in the flags field to signal that the 1266 exception_has_payload, exception_payload, and 1155 exception_has_payload, exception_payload, and exception.pending fields 1267 contain a valid state and shall be written in 1156 contain a valid state and shall be written into the VCPU. 1268 1157 1269 If KVM_CAP_X86_TRIPLE_FAULT_EVENT is enabled, !! 1158 ARM/ARM64: 1270 can be set in flags field to signal that the !! 1159 ^^^^^^^^^^ 1271 a valid state and shall be written into the V << 1272 << 1273 ARM64: << 1274 ^^^^^^ << 1275 1160 1276 User space may need to inject several types o 1161 User space may need to inject several types of events to the guest. 1277 1162 1278 Set the pending SError exception state for th 1163 Set the pending SError exception state for this VCPU. It is not possible to 1279 'cancel' an Serror that has been made pending 1164 'cancel' an Serror that has been made pending. 1280 1165 1281 If the guest performed an access to I/O memor 1166 If the guest performed an access to I/O memory which could not be handled by 1282 userspace, for example because of missing ins 1167 userspace, for example because of missing instruction syndrome decode 1283 information or because there is no device map 1168 information or because there is no device mapped at the accessed IPA, then 1284 userspace can ask the kernel to inject an ext 1169 userspace can ask the kernel to inject an external abort using the address 1285 from the exiting fault on the VCPU. It is a p 1170 from the exiting fault on the VCPU. It is a programming error to set 1286 ext_dabt_pending after an exit which was not 1171 ext_dabt_pending after an exit which was not either KVM_EXIT_MMIO or 1287 KVM_EXIT_ARM_NISV. This feature is only avail 1172 KVM_EXIT_ARM_NISV. This feature is only available if the system supports 1288 KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper 1173 KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper which provides commonality in 1289 how userspace reports accesses for the above 1174 how userspace reports accesses for the above cases to guests, across different 1290 userspace implementations. Nevertheless, user 1175 userspace implementations. Nevertheless, userspace can still emulate all Arm 1291 exceptions by manipulating individual registe 1176 exceptions by manipulating individual registers using the KVM_SET_ONE_REG API. 1292 1177 1293 See KVM_GET_VCPU_EVENTS for the data structur 1178 See KVM_GET_VCPU_EVENTS for the data structure. 1294 1179 1295 1180 1296 4.33 KVM_GET_DEBUGREGS 1181 4.33 KVM_GET_DEBUGREGS 1297 ---------------------- 1182 ---------------------- 1298 1183 1299 :Capability: KVM_CAP_DEBUGREGS 1184 :Capability: KVM_CAP_DEBUGREGS 1300 :Architectures: x86 1185 :Architectures: x86 1301 :Type: vm ioctl 1186 :Type: vm ioctl 1302 :Parameters: struct kvm_debugregs (out) 1187 :Parameters: struct kvm_debugregs (out) 1303 :Returns: 0 on success, -1 on error 1188 :Returns: 0 on success, -1 on error 1304 1189 1305 Reads debug registers from the vcpu. 1190 Reads debug registers from the vcpu. 1306 1191 1307 :: 1192 :: 1308 1193 1309 struct kvm_debugregs { 1194 struct kvm_debugregs { 1310 __u64 db[4]; 1195 __u64 db[4]; 1311 __u64 dr6; 1196 __u64 dr6; 1312 __u64 dr7; 1197 __u64 dr7; 1313 __u64 flags; 1198 __u64 flags; 1314 __u64 reserved[9]; 1199 __u64 reserved[9]; 1315 }; 1200 }; 1316 1201 1317 1202 1318 4.34 KVM_SET_DEBUGREGS 1203 4.34 KVM_SET_DEBUGREGS 1319 ---------------------- 1204 ---------------------- 1320 1205 1321 :Capability: KVM_CAP_DEBUGREGS 1206 :Capability: KVM_CAP_DEBUGREGS 1322 :Architectures: x86 1207 :Architectures: x86 1323 :Type: vm ioctl 1208 :Type: vm ioctl 1324 :Parameters: struct kvm_debugregs (in) 1209 :Parameters: struct kvm_debugregs (in) 1325 :Returns: 0 on success, -1 on error 1210 :Returns: 0 on success, -1 on error 1326 1211 1327 Writes debug registers into the vcpu. 1212 Writes debug registers into the vcpu. 1328 1213 1329 See KVM_GET_DEBUGREGS for the data structure. 1214 See KVM_GET_DEBUGREGS for the data structure. The flags field is unused 1330 yet and must be cleared on entry. 1215 yet and must be cleared on entry. 1331 1216 1332 1217 1333 4.35 KVM_SET_USER_MEMORY_REGION 1218 4.35 KVM_SET_USER_MEMORY_REGION 1334 ------------------------------- 1219 ------------------------------- 1335 1220 1336 :Capability: KVM_CAP_USER_MEMORY 1221 :Capability: KVM_CAP_USER_MEMORY 1337 :Architectures: all 1222 :Architectures: all 1338 :Type: vm ioctl 1223 :Type: vm ioctl 1339 :Parameters: struct kvm_userspace_memory_regi 1224 :Parameters: struct kvm_userspace_memory_region (in) 1340 :Returns: 0 on success, -1 on error 1225 :Returns: 0 on success, -1 on error 1341 1226 1342 :: 1227 :: 1343 1228 1344 struct kvm_userspace_memory_region { 1229 struct kvm_userspace_memory_region { 1345 __u32 slot; 1230 __u32 slot; 1346 __u32 flags; 1231 __u32 flags; 1347 __u64 guest_phys_addr; 1232 __u64 guest_phys_addr; 1348 __u64 memory_size; /* bytes */ 1233 __u64 memory_size; /* bytes */ 1349 __u64 userspace_addr; /* start of the 1234 __u64 userspace_addr; /* start of the userspace allocated memory */ 1350 }; 1235 }; 1351 1236 1352 /* for kvm_userspace_memory_region::flags * !! 1237 /* for kvm_memory_region::flags */ 1353 #define KVM_MEM_LOG_DIRTY_PAGES (1UL 1238 #define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0) 1354 #define KVM_MEM_READONLY (1UL << 1) 1239 #define KVM_MEM_READONLY (1UL << 1) 1355 1240 1356 This ioctl allows the user to create, modify 1241 This ioctl allows the user to create, modify or delete a guest physical 1357 memory slot. Bits 0-15 of "slot" specify the 1242 memory slot. Bits 0-15 of "slot" specify the slot id and this value 1358 should be less than the maximum number of use 1243 should be less than the maximum number of user memory slots supported per 1359 VM. The maximum allowed slots can be queried 1244 VM. The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS. 1360 Slots may not overlap in guest physical addre 1245 Slots may not overlap in guest physical address space. 1361 1246 1362 If KVM_CAP_MULTI_ADDRESS_SPACE is available, 1247 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot" 1363 specifies the address space which is being mo 1248 specifies the address space which is being modified. They must be 1364 less than the value that KVM_CHECK_EXTENSION 1249 less than the value that KVM_CHECK_EXTENSION returns for the 1365 KVM_CAP_MULTI_ADDRESS_SPACE capability. Slot 1250 KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces 1366 are unrelated; the restriction on overlapping 1251 are unrelated; the restriction on overlapping slots only applies within 1367 each address space. 1252 each address space. 1368 1253 1369 Deleting a slot is done by passing zero for m 1254 Deleting a slot is done by passing zero for memory_size. When changing 1370 an existing slot, it may be moved in the gues 1255 an existing slot, it may be moved in the guest physical memory space, 1371 or its flags may be modified, but it may not 1256 or its flags may be modified, but it may not be resized. 1372 1257 1373 Memory for the region is taken starting at th 1258 Memory for the region is taken starting at the address denoted by the 1374 field userspace_addr, which must point at use 1259 field userspace_addr, which must point at user addressable memory for 1375 the entire memory slot size. Any object may 1260 the entire memory slot size. Any object may back this memory, including 1376 anonymous memory, ordinary files, and hugetlb 1261 anonymous memory, ordinary files, and hugetlbfs. 1377 1262 1378 On architectures that support a form of addre << 1379 be an untagged address. << 1380 << 1381 It is recommended that the lower 21 bits of g 1263 It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr 1382 be identical. This allows large pages in the 1264 be identical. This allows large pages in the guest to be backed by large 1383 pages in the host. 1265 pages in the host. 1384 1266 1385 The flags field supports two flags: KVM_MEM_L 1267 The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and 1386 KVM_MEM_READONLY. The former can be set to i 1268 KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of 1387 writes to memory within the slot. See KVM_GE 1269 writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to 1388 use it. The latter can be set, if KVM_CAP_RE 1270 use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it, 1389 to make a new slot read-only. In this case, 1271 to make a new slot read-only. In this case, writes to this memory will be 1390 posted to userspace as KVM_EXIT_MMIO exits. 1272 posted to userspace as KVM_EXIT_MMIO exits. 1391 1273 1392 When the KVM_CAP_SYNC_MMU capability is avail 1274 When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of 1393 the memory region are automatically reflected 1275 the memory region are automatically reflected into the guest. For example, an 1394 mmap() that affects the region will be made v 1276 mmap() that affects the region will be made visible immediately. Another 1395 example is madvise(MADV_DROP). 1277 example is madvise(MADV_DROP). 1396 1278 1397 Note: On arm64, a write generated by the page !! 1279 It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl. 1398 the Access and Dirty flags, for example) neve !! 1280 The KVM_SET_MEMORY_REGION does not allow fine grained control over memory 1399 KVM_EXIT_MMIO exit when the slot has the KVM_ !! 1281 allocation and is deprecated. 1400 is because KVM cannot provide the data that w << 1401 page-table walker, making it impossible to em << 1402 Instead, an abort (data abort if the cause of << 1403 was a load or a store, instruction abort if i << 1404 fetch) is injected in the guest. << 1405 1282 1406 S390: << 1407 ^^^^^ << 1408 << 1409 Returns -EINVAL if the VM has the KVM_VM_S390 << 1410 Returns -EINVAL if called on a protected VM. << 1411 1283 1412 4.36 KVM_SET_TSS_ADDR 1284 4.36 KVM_SET_TSS_ADDR 1413 --------------------- 1285 --------------------- 1414 1286 1415 :Capability: KVM_CAP_SET_TSS_ADDR 1287 :Capability: KVM_CAP_SET_TSS_ADDR 1416 :Architectures: x86 1288 :Architectures: x86 1417 :Type: vm ioctl 1289 :Type: vm ioctl 1418 :Parameters: unsigned long tss_address (in) 1290 :Parameters: unsigned long tss_address (in) 1419 :Returns: 0 on success, -1 on error 1291 :Returns: 0 on success, -1 on error 1420 1292 1421 This ioctl defines the physical address of a 1293 This ioctl defines the physical address of a three-page region in the guest 1422 physical address space. The region must be w 1294 physical address space. The region must be within the first 4GB of the 1423 guest physical address space and must not con 1295 guest physical address space and must not conflict with any memory slot 1424 or any mmio address. The guest may malfuncti 1296 or any mmio address. The guest may malfunction if it accesses this memory 1425 region. 1297 region. 1426 1298 1427 This ioctl is required on Intel-based hosts. 1299 This ioctl is required on Intel-based hosts. This is needed on Intel hardware 1428 because of a quirk in the virtualization impl 1300 because of a quirk in the virtualization implementation (see the internals 1429 documentation when it pops into existence). 1301 documentation when it pops into existence). 1430 1302 1431 1303 1432 4.37 KVM_ENABLE_CAP 1304 4.37 KVM_ENABLE_CAP 1433 ------------------- 1305 ------------------- 1434 1306 1435 :Capability: KVM_CAP_ENABLE_CAP 1307 :Capability: KVM_CAP_ENABLE_CAP 1436 :Architectures: mips, ppc, s390, x86, loongar !! 1308 :Architectures: mips, ppc, s390 1437 :Type: vcpu ioctl 1309 :Type: vcpu ioctl 1438 :Parameters: struct kvm_enable_cap (in) 1310 :Parameters: struct kvm_enable_cap (in) 1439 :Returns: 0 on success; -1 on error 1311 :Returns: 0 on success; -1 on error 1440 1312 1441 :Capability: KVM_CAP_ENABLE_CAP_VM 1313 :Capability: KVM_CAP_ENABLE_CAP_VM 1442 :Architectures: all 1314 :Architectures: all 1443 :Type: vm ioctl !! 1315 :Type: vcpu ioctl 1444 :Parameters: struct kvm_enable_cap (in) 1316 :Parameters: struct kvm_enable_cap (in) 1445 :Returns: 0 on success; -1 on error 1317 :Returns: 0 on success; -1 on error 1446 1318 1447 .. note:: 1319 .. note:: 1448 1320 1449 Not all extensions are enabled by default. 1321 Not all extensions are enabled by default. Using this ioctl the application 1450 can enable an extension, making it availab 1322 can enable an extension, making it available to the guest. 1451 1323 1452 On systems that do not support this ioctl, it 1324 On systems that do not support this ioctl, it always fails. On systems that 1453 do support it, it only works for extensions t 1325 do support it, it only works for extensions that are supported for enablement. 1454 1326 1455 To check if a capability can be enabled, the 1327 To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should 1456 be used. 1328 be used. 1457 1329 1458 :: 1330 :: 1459 1331 1460 struct kvm_enable_cap { 1332 struct kvm_enable_cap { 1461 /* in */ 1333 /* in */ 1462 __u32 cap; 1334 __u32 cap; 1463 1335 1464 The capability that is supposed to get enable 1336 The capability that is supposed to get enabled. 1465 1337 1466 :: 1338 :: 1467 1339 1468 __u32 flags; 1340 __u32 flags; 1469 1341 1470 A bitfield indicating future enhancements. Ha 1342 A bitfield indicating future enhancements. Has to be 0 for now. 1471 1343 1472 :: 1344 :: 1473 1345 1474 __u64 args[4]; 1346 __u64 args[4]; 1475 1347 1476 Arguments for enabling a feature. If a featur 1348 Arguments for enabling a feature. If a feature needs initial values to 1477 function properly, this is the place to put t 1349 function properly, this is the place to put them. 1478 1350 1479 :: 1351 :: 1480 1352 1481 __u8 pad[64]; 1353 __u8 pad[64]; 1482 }; 1354 }; 1483 1355 1484 The vcpu ioctl should be used for vcpu-specif 1356 The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl 1485 for vm-wide capabilities. 1357 for vm-wide capabilities. 1486 1358 1487 4.38 KVM_GET_MP_STATE 1359 4.38 KVM_GET_MP_STATE 1488 --------------------- 1360 --------------------- 1489 1361 1490 :Capability: KVM_CAP_MP_STATE 1362 :Capability: KVM_CAP_MP_STATE 1491 :Architectures: x86, s390, arm64, riscv, loon !! 1363 :Architectures: x86, s390, arm, arm64 1492 :Type: vcpu ioctl 1364 :Type: vcpu ioctl 1493 :Parameters: struct kvm_mp_state (out) 1365 :Parameters: struct kvm_mp_state (out) 1494 :Returns: 0 on success; -1 on error 1366 :Returns: 0 on success; -1 on error 1495 1367 1496 :: 1368 :: 1497 1369 1498 struct kvm_mp_state { 1370 struct kvm_mp_state { 1499 __u32 mp_state; 1371 __u32 mp_state; 1500 }; 1372 }; 1501 1373 1502 Returns the vcpu's current "multiprocessing s 1374 Returns the vcpu's current "multiprocessing state" (though also valid on 1503 uniprocessor guests). 1375 uniprocessor guests). 1504 1376 1505 Possible values are: 1377 Possible values are: 1506 1378 1507 ========================== ============ 1379 ========================== =============================================== 1508 KVM_MP_STATE_RUNNABLE the vcpu is !! 1380 KVM_MP_STATE_RUNNABLE the vcpu is currently running [x86,arm/arm64] 1509 [x86,arm64,r << 1510 KVM_MP_STATE_UNINITIALIZED the vcpu is 1381 KVM_MP_STATE_UNINITIALIZED the vcpu is an application processor (AP) 1511 which has no 1382 which has not yet received an INIT signal [x86] 1512 KVM_MP_STATE_INIT_RECEIVED the vcpu has 1383 KVM_MP_STATE_INIT_RECEIVED the vcpu has received an INIT signal, and is 1513 now ready fo 1384 now ready for a SIPI [x86] 1514 KVM_MP_STATE_HALTED the vcpu has 1385 KVM_MP_STATE_HALTED the vcpu has executed a HLT instruction and 1515 is waiting f 1386 is waiting for an interrupt [x86] 1516 KVM_MP_STATE_SIPI_RECEIVED the vcpu has 1387 KVM_MP_STATE_SIPI_RECEIVED the vcpu has just received a SIPI (vector 1517 accessible v 1388 accessible via KVM_GET_VCPU_EVENTS) [x86] 1518 KVM_MP_STATE_STOPPED the vcpu is !! 1389 KVM_MP_STATE_STOPPED the vcpu is stopped [s390,arm/arm64] 1519 KVM_MP_STATE_CHECK_STOP the vcpu is 1390 KVM_MP_STATE_CHECK_STOP the vcpu is in a special error state [s390] 1520 KVM_MP_STATE_OPERATING the vcpu is 1391 KVM_MP_STATE_OPERATING the vcpu is operating (running or halted) 1521 [s390] 1392 [s390] 1522 KVM_MP_STATE_LOAD the vcpu is 1393 KVM_MP_STATE_LOAD the vcpu is in a special load/startup state 1523 [s390] 1394 [s390] 1524 KVM_MP_STATE_SUSPENDED the vcpu is << 1525 for a wakeup << 1526 ========================== ============ 1395 ========================== =============================================== 1527 1396 1528 On x86, this ioctl is only useful after KVM_C 1397 On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an 1529 in-kernel irqchip, the multiprocessing state 1398 in-kernel irqchip, the multiprocessing state must be maintained by userspace on 1530 these architectures. 1399 these architectures. 1531 1400 1532 For arm64: !! 1401 For arm/arm64: 1533 ^^^^^^^^^^ !! 1402 ^^^^^^^^^^^^^^ 1534 << 1535 If a vCPU is in the KVM_MP_STATE_SUSPENDED st << 1536 architectural execution of a WFI instruction. << 1537 << 1538 If a wakeup event is recognized, KVM will exi << 1539 KVM_SYSTEM_EVENT exit, where the event type i << 1540 userspace wants to honor the wakeup, it must << 1541 KVM_MP_STATE_RUNNABLE. If it does not, KVM wi << 1542 event in subsequent calls to KVM_RUN. << 1543 << 1544 .. warning:: << 1545 << 1546 If userspace intends to keep the vCPU in << 1547 strongly recommended that userspace take << 1548 wakeup event (such as masking an interru << 1549 calls to KVM_RUN will immediately exit w << 1550 event and inadvertently waste CPU cycles << 1551 << 1552 Additionally, if userspace takes action << 1553 it is strongly recommended that it also << 1554 original state when the vCPU is made RUN << 1555 if userspace masked a pending interrupt << 1556 the interrupt should be unmasked before << 1557 guest. << 1558 << 1559 For riscv: << 1560 ^^^^^^^^^^ << 1561 1403 1562 The only states that are valid are KVM_MP_STA 1404 The only states that are valid are KVM_MP_STATE_STOPPED and 1563 KVM_MP_STATE_RUNNABLE which reflect if the vc 1405 KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not. 1564 1406 1565 On LoongArch, only the KVM_MP_STATE_RUNNABLE << 1566 whether the vcpu is runnable. << 1567 << 1568 4.39 KVM_SET_MP_STATE 1407 4.39 KVM_SET_MP_STATE 1569 --------------------- 1408 --------------------- 1570 1409 1571 :Capability: KVM_CAP_MP_STATE 1410 :Capability: KVM_CAP_MP_STATE 1572 :Architectures: x86, s390, arm64, riscv, loon !! 1411 :Architectures: x86, s390, arm, arm64 1573 :Type: vcpu ioctl 1412 :Type: vcpu ioctl 1574 :Parameters: struct kvm_mp_state (in) 1413 :Parameters: struct kvm_mp_state (in) 1575 :Returns: 0 on success; -1 on error 1414 :Returns: 0 on success; -1 on error 1576 1415 1577 Sets the vcpu's current "multiprocessing stat 1416 Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for 1578 arguments. 1417 arguments. 1579 1418 1580 On x86, this ioctl is only useful after KVM_C 1419 On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an 1581 in-kernel irqchip, the multiprocessing state 1420 in-kernel irqchip, the multiprocessing state must be maintained by userspace on 1582 these architectures. 1421 these architectures. 1583 1422 1584 For arm64/riscv: !! 1423 For arm/arm64: 1585 ^^^^^^^^^^^^^^^^ !! 1424 ^^^^^^^^^^^^^^ 1586 1425 1587 The only states that are valid are KVM_MP_STA 1426 The only states that are valid are KVM_MP_STATE_STOPPED and 1588 KVM_MP_STATE_RUNNABLE which reflect if the vc 1427 KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not. 1589 1428 1590 On LoongArch, only the KVM_MP_STATE_RUNNABLE << 1591 whether the vcpu is runnable. << 1592 << 1593 4.40 KVM_SET_IDENTITY_MAP_ADDR 1429 4.40 KVM_SET_IDENTITY_MAP_ADDR 1594 ------------------------------ 1430 ------------------------------ 1595 1431 1596 :Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR 1432 :Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR 1597 :Architectures: x86 1433 :Architectures: x86 1598 :Type: vm ioctl 1434 :Type: vm ioctl 1599 :Parameters: unsigned long identity (in) 1435 :Parameters: unsigned long identity (in) 1600 :Returns: 0 on success, -1 on error 1436 :Returns: 0 on success, -1 on error 1601 1437 1602 This ioctl defines the physical address of a 1438 This ioctl defines the physical address of a one-page region in the guest 1603 physical address space. The region must be w 1439 physical address space. The region must be within the first 4GB of the 1604 guest physical address space and must not con 1440 guest physical address space and must not conflict with any memory slot 1605 or any mmio address. The guest may malfuncti 1441 or any mmio address. The guest may malfunction if it accesses this memory 1606 region. 1442 region. 1607 1443 1608 Setting the address to 0 will result in reset 1444 Setting the address to 0 will result in resetting the address to its default 1609 (0xfffbc000). 1445 (0xfffbc000). 1610 1446 1611 This ioctl is required on Intel-based hosts. 1447 This ioctl is required on Intel-based hosts. This is needed on Intel hardware 1612 because of a quirk in the virtualization impl 1448 because of a quirk in the virtualization implementation (see the internals 1613 documentation when it pops into existence). 1449 documentation when it pops into existence). 1614 1450 1615 Fails if any VCPU has already been created. 1451 Fails if any VCPU has already been created. 1616 1452 1617 4.41 KVM_SET_BOOT_CPU_ID 1453 4.41 KVM_SET_BOOT_CPU_ID 1618 ------------------------ 1454 ------------------------ 1619 1455 1620 :Capability: KVM_CAP_SET_BOOT_CPU_ID 1456 :Capability: KVM_CAP_SET_BOOT_CPU_ID 1621 :Architectures: x86 1457 :Architectures: x86 1622 :Type: vm ioctl 1458 :Type: vm ioctl 1623 :Parameters: unsigned long vcpu_id 1459 :Parameters: unsigned long vcpu_id 1624 :Returns: 0 on success, -1 on error 1460 :Returns: 0 on success, -1 on error 1625 1461 1626 Define which vcpu is the Bootstrap Processor 1462 Define which vcpu is the Bootstrap Processor (BSP). Values are the same 1627 as the vcpu id in KVM_CREATE_VCPU. If this i 1463 as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default 1628 is vcpu 0. This ioctl has to be called before !! 1464 is vcpu 0. 1629 otherwise it will return EBUSY error. << 1630 1465 1631 1466 1632 4.42 KVM_GET_XSAVE 1467 4.42 KVM_GET_XSAVE 1633 ------------------ 1468 ------------------ 1634 1469 1635 :Capability: KVM_CAP_XSAVE 1470 :Capability: KVM_CAP_XSAVE 1636 :Architectures: x86 1471 :Architectures: x86 1637 :Type: vcpu ioctl 1472 :Type: vcpu ioctl 1638 :Parameters: struct kvm_xsave (out) 1473 :Parameters: struct kvm_xsave (out) 1639 :Returns: 0 on success, -1 on error 1474 :Returns: 0 on success, -1 on error 1640 1475 1641 1476 1642 :: 1477 :: 1643 1478 1644 struct kvm_xsave { 1479 struct kvm_xsave { 1645 __u32 region[1024]; 1480 __u32 region[1024]; 1646 __u32 extra[0]; << 1647 }; 1481 }; 1648 1482 1649 This ioctl would copy current vcpu's xsave st 1483 This ioctl would copy current vcpu's xsave struct to the userspace. 1650 1484 1651 1485 1652 4.43 KVM_SET_XSAVE 1486 4.43 KVM_SET_XSAVE 1653 ------------------ 1487 ------------------ 1654 1488 1655 :Capability: KVM_CAP_XSAVE and KVM_CAP_XSAVE2 !! 1489 :Capability: KVM_CAP_XSAVE 1656 :Architectures: x86 1490 :Architectures: x86 1657 :Type: vcpu ioctl 1491 :Type: vcpu ioctl 1658 :Parameters: struct kvm_xsave (in) 1492 :Parameters: struct kvm_xsave (in) 1659 :Returns: 0 on success, -1 on error 1493 :Returns: 0 on success, -1 on error 1660 1494 1661 :: 1495 :: 1662 1496 1663 1497 1664 struct kvm_xsave { 1498 struct kvm_xsave { 1665 __u32 region[1024]; 1499 __u32 region[1024]; 1666 __u32 extra[0]; << 1667 }; 1500 }; 1668 1501 1669 This ioctl would copy userspace's xsave struc !! 1502 This ioctl would copy userspace's xsave struct to the kernel. 1670 as many bytes as are returned by KVM_CHECK_EX << 1671 when invoked on the vm file descriptor. The s << 1672 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will alwa << 1673 Currently, it is only greater than 4096 if a << 1674 enabled with ``arch_prctl()``, but this may c << 1675 << 1676 The offsets of the state save areas in struct << 1677 contents of CPUID leaf 0xD on the host. << 1678 1503 1679 1504 1680 4.44 KVM_GET_XCRS 1505 4.44 KVM_GET_XCRS 1681 ----------------- 1506 ----------------- 1682 1507 1683 :Capability: KVM_CAP_XCRS 1508 :Capability: KVM_CAP_XCRS 1684 :Architectures: x86 1509 :Architectures: x86 1685 :Type: vcpu ioctl 1510 :Type: vcpu ioctl 1686 :Parameters: struct kvm_xcrs (out) 1511 :Parameters: struct kvm_xcrs (out) 1687 :Returns: 0 on success, -1 on error 1512 :Returns: 0 on success, -1 on error 1688 1513 1689 :: 1514 :: 1690 1515 1691 struct kvm_xcr { 1516 struct kvm_xcr { 1692 __u32 xcr; 1517 __u32 xcr; 1693 __u32 reserved; 1518 __u32 reserved; 1694 __u64 value; 1519 __u64 value; 1695 }; 1520 }; 1696 1521 1697 struct kvm_xcrs { 1522 struct kvm_xcrs { 1698 __u32 nr_xcrs; 1523 __u32 nr_xcrs; 1699 __u32 flags; 1524 __u32 flags; 1700 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1525 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1701 __u64 padding[16]; 1526 __u64 padding[16]; 1702 }; 1527 }; 1703 1528 1704 This ioctl would copy current vcpu's xcrs to 1529 This ioctl would copy current vcpu's xcrs to the userspace. 1705 1530 1706 1531 1707 4.45 KVM_SET_XCRS 1532 4.45 KVM_SET_XCRS 1708 ----------------- 1533 ----------------- 1709 1534 1710 :Capability: KVM_CAP_XCRS 1535 :Capability: KVM_CAP_XCRS 1711 :Architectures: x86 1536 :Architectures: x86 1712 :Type: vcpu ioctl 1537 :Type: vcpu ioctl 1713 :Parameters: struct kvm_xcrs (in) 1538 :Parameters: struct kvm_xcrs (in) 1714 :Returns: 0 on success, -1 on error 1539 :Returns: 0 on success, -1 on error 1715 1540 1716 :: 1541 :: 1717 1542 1718 struct kvm_xcr { 1543 struct kvm_xcr { 1719 __u32 xcr; 1544 __u32 xcr; 1720 __u32 reserved; 1545 __u32 reserved; 1721 __u64 value; 1546 __u64 value; 1722 }; 1547 }; 1723 1548 1724 struct kvm_xcrs { 1549 struct kvm_xcrs { 1725 __u32 nr_xcrs; 1550 __u32 nr_xcrs; 1726 __u32 flags; 1551 __u32 flags; 1727 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1552 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1728 __u64 padding[16]; 1553 __u64 padding[16]; 1729 }; 1554 }; 1730 1555 1731 This ioctl would set vcpu's xcr to the value 1556 This ioctl would set vcpu's xcr to the value userspace specified. 1732 1557 1733 1558 1734 4.46 KVM_GET_SUPPORTED_CPUID 1559 4.46 KVM_GET_SUPPORTED_CPUID 1735 ---------------------------- 1560 ---------------------------- 1736 1561 1737 :Capability: KVM_CAP_EXT_CPUID 1562 :Capability: KVM_CAP_EXT_CPUID 1738 :Architectures: x86 1563 :Architectures: x86 1739 :Type: system ioctl 1564 :Type: system ioctl 1740 :Parameters: struct kvm_cpuid2 (in/out) 1565 :Parameters: struct kvm_cpuid2 (in/out) 1741 :Returns: 0 on success, -1 on error 1566 :Returns: 0 on success, -1 on error 1742 1567 1743 :: 1568 :: 1744 1569 1745 struct kvm_cpuid2 { 1570 struct kvm_cpuid2 { 1746 __u32 nent; 1571 __u32 nent; 1747 __u32 padding; 1572 __u32 padding; 1748 struct kvm_cpuid_entry2 entries[0]; 1573 struct kvm_cpuid_entry2 entries[0]; 1749 }; 1574 }; 1750 1575 1751 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1576 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) 1752 #define KVM_CPUID_FLAG_STATEFUL_FUNC !! 1577 #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) 1753 #define KVM_CPUID_FLAG_STATE_READ_NEXT !! 1578 #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) 1754 1579 1755 struct kvm_cpuid_entry2 { 1580 struct kvm_cpuid_entry2 { 1756 __u32 function; 1581 __u32 function; 1757 __u32 index; 1582 __u32 index; 1758 __u32 flags; 1583 __u32 flags; 1759 __u32 eax; 1584 __u32 eax; 1760 __u32 ebx; 1585 __u32 ebx; 1761 __u32 ecx; 1586 __u32 ecx; 1762 __u32 edx; 1587 __u32 edx; 1763 __u32 padding[3]; 1588 __u32 padding[3]; 1764 }; 1589 }; 1765 1590 1766 This ioctl returns x86 cpuid features which a 1591 This ioctl returns x86 cpuid features which are supported by both the 1767 hardware and kvm in its default configuration 1592 hardware and kvm in its default configuration. Userspace can use the 1768 information returned by this ioctl to constru 1593 information returned by this ioctl to construct cpuid information (for 1769 KVM_SET_CPUID2) that is consistent with hardw 1594 KVM_SET_CPUID2) that is consistent with hardware, kernel, and 1770 userspace capabilities, and with user require 1595 userspace capabilities, and with user requirements (for example, the 1771 user may wish to constrain cpuid to emulate o 1596 user may wish to constrain cpuid to emulate older hardware, or for 1772 feature consistency across a cluster). 1597 feature consistency across a cluster). 1773 1598 1774 Dynamically-enabled feature bits need to be r << 1775 ``arch_prctl()`` before calling this ioctl. F << 1776 been requested are excluded from the result. << 1777 << 1778 Note that certain capabilities, such as KVM_C 1599 Note that certain capabilities, such as KVM_CAP_X86_DISABLE_EXITS, may 1779 expose cpuid features (e.g. MONITOR) which ar 1600 expose cpuid features (e.g. MONITOR) which are not supported by kvm in 1780 its default configuration. If userspace enabl 1601 its default configuration. If userspace enables such capabilities, it 1781 is responsible for modifying the results of t 1602 is responsible for modifying the results of this ioctl appropriately. 1782 1603 1783 Userspace invokes KVM_GET_SUPPORTED_CPUID by 1604 Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure 1784 with the 'nent' field indicating the number o 1605 with the 'nent' field indicating the number of entries in the variable-size 1785 array 'entries'. If the number of entries is 1606 array 'entries'. If the number of entries is too low to describe the cpu 1786 capabilities, an error (E2BIG) is returned. 1607 capabilities, an error (E2BIG) is returned. If the number is too high, 1787 the 'nent' field is adjusted and an error (EN 1608 the 'nent' field is adjusted and an error (ENOMEM) is returned. If the 1788 number is just right, the 'nent' field is adj 1609 number is just right, the 'nent' field is adjusted to the number of valid 1789 entries in the 'entries' array, which is then 1610 entries in the 'entries' array, which is then filled. 1790 1611 1791 The entries returned are the host cpuid as re 1612 The entries returned are the host cpuid as returned by the cpuid instruction, 1792 with unknown or unsupported features masked o 1613 with unknown or unsupported features masked out. Some features (for example, 1793 x2apic), may not be present in the host cpu, 1614 x2apic), may not be present in the host cpu, but are exposed by kvm if it can 1794 emulate them efficiently. The fields in each 1615 emulate them efficiently. The fields in each entry are defined as follows: 1795 1616 1796 function: 1617 function: 1797 the eax value used to obtain the ent 1618 the eax value used to obtain the entry 1798 1619 1799 index: 1620 index: 1800 the ecx value used to obtain the ent 1621 the ecx value used to obtain the entry (for entries that are 1801 affected by ecx) 1622 affected by ecx) 1802 1623 1803 flags: 1624 flags: 1804 an OR of zero or more of the following: 1625 an OR of zero or more of the following: 1805 1626 1806 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 1627 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 1807 if the index field is valid 1628 if the index field is valid >> 1629 KVM_CPUID_FLAG_STATEFUL_FUNC: >> 1630 if cpuid for this function returns different values for successive >> 1631 invocations; there will be several entries with the same function, >> 1632 all with this flag set >> 1633 KVM_CPUID_FLAG_STATE_READ_NEXT: >> 1634 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is >> 1635 the first entry to be read by a cpu 1808 1636 1809 eax, ebx, ecx, edx: 1637 eax, ebx, ecx, edx: 1810 the values returned by the cpuid ins 1638 the values returned by the cpuid instruction for 1811 this function/index combination 1639 this function/index combination 1812 1640 1813 The TSC deadline timer feature (CPUID leaf 1, 1641 The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned 1814 as false, since the feature depends on KVM_CR 1642 as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC 1815 support. Instead it is reported via:: 1643 support. Instead it is reported via:: 1816 1644 1817 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEAD 1645 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER) 1818 1646 1819 if that returns true and you use KVM_CREATE_I 1647 if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the 1820 feature in userspace, then you can enable the 1648 feature in userspace, then you can enable the feature for KVM_SET_CPUID2. 1821 1649 1822 1650 1823 4.47 KVM_PPC_GET_PVINFO 1651 4.47 KVM_PPC_GET_PVINFO 1824 ----------------------- 1652 ----------------------- 1825 1653 1826 :Capability: KVM_CAP_PPC_GET_PVINFO 1654 :Capability: KVM_CAP_PPC_GET_PVINFO 1827 :Architectures: ppc 1655 :Architectures: ppc 1828 :Type: vm ioctl 1656 :Type: vm ioctl 1829 :Parameters: struct kvm_ppc_pvinfo (out) 1657 :Parameters: struct kvm_ppc_pvinfo (out) 1830 :Returns: 0 on success, !0 on error 1658 :Returns: 0 on success, !0 on error 1831 1659 1832 :: 1660 :: 1833 1661 1834 struct kvm_ppc_pvinfo { 1662 struct kvm_ppc_pvinfo { 1835 __u32 flags; 1663 __u32 flags; 1836 __u32 hcall[4]; 1664 __u32 hcall[4]; 1837 __u8 pad[108]; 1665 __u8 pad[108]; 1838 }; 1666 }; 1839 1667 1840 This ioctl fetches PV specific information th 1668 This ioctl fetches PV specific information that need to be passed to the guest 1841 using the device tree or other means from vm 1669 using the device tree or other means from vm context. 1842 1670 1843 The hcall array defines 4 instructions that m 1671 The hcall array defines 4 instructions that make up a hypercall. 1844 1672 1845 If any additional field gets added to this st 1673 If any additional field gets added to this structure later on, a bit for that 1846 additional piece of information will be set i 1674 additional piece of information will be set in the flags bitmap. 1847 1675 1848 The flags bitmap is defined as:: 1676 The flags bitmap is defined as:: 1849 1677 1850 /* the host supports the ePAPR idle hcall 1678 /* the host supports the ePAPR idle hcall 1851 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1< 1679 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0) 1852 1680 1853 4.52 KVM_SET_GSI_ROUTING 1681 4.52 KVM_SET_GSI_ROUTING 1854 ------------------------ 1682 ------------------------ 1855 1683 1856 :Capability: KVM_CAP_IRQ_ROUTING 1684 :Capability: KVM_CAP_IRQ_ROUTING 1857 :Architectures: x86 s390 arm64 !! 1685 :Architectures: x86 s390 arm arm64 1858 :Type: vm ioctl 1686 :Type: vm ioctl 1859 :Parameters: struct kvm_irq_routing (in) 1687 :Parameters: struct kvm_irq_routing (in) 1860 :Returns: 0 on success, -1 on error 1688 :Returns: 0 on success, -1 on error 1861 1689 1862 Sets the GSI routing table entries, overwriti 1690 Sets the GSI routing table entries, overwriting any previously set entries. 1863 1691 1864 On arm64, GSI routing has the following limit !! 1692 On arm/arm64, GSI routing has the following limitation: 1865 1693 1866 - GSI routing does not apply to KVM_IRQ_LINE 1694 - GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD. 1867 1695 1868 :: 1696 :: 1869 1697 1870 struct kvm_irq_routing { 1698 struct kvm_irq_routing { 1871 __u32 nr; 1699 __u32 nr; 1872 __u32 flags; 1700 __u32 flags; 1873 struct kvm_irq_routing_entry entries[ 1701 struct kvm_irq_routing_entry entries[0]; 1874 }; 1702 }; 1875 1703 1876 No flags are specified so far, the correspond 1704 No flags are specified so far, the corresponding field must be set to zero. 1877 1705 1878 :: 1706 :: 1879 1707 1880 struct kvm_irq_routing_entry { 1708 struct kvm_irq_routing_entry { 1881 __u32 gsi; 1709 __u32 gsi; 1882 __u32 type; 1710 __u32 type; 1883 __u32 flags; 1711 __u32 flags; 1884 __u32 pad; 1712 __u32 pad; 1885 union { 1713 union { 1886 struct kvm_irq_routing_irqchi 1714 struct kvm_irq_routing_irqchip irqchip; 1887 struct kvm_irq_routing_msi ms 1715 struct kvm_irq_routing_msi msi; 1888 struct kvm_irq_routing_s390_a 1716 struct kvm_irq_routing_s390_adapter adapter; 1889 struct kvm_irq_routing_hv_sin 1717 struct kvm_irq_routing_hv_sint hv_sint; 1890 struct kvm_irq_routing_xen_ev << 1891 __u32 pad[8]; 1718 __u32 pad[8]; 1892 } u; 1719 } u; 1893 }; 1720 }; 1894 1721 1895 /* gsi routing entry types */ 1722 /* gsi routing entry types */ 1896 #define KVM_IRQ_ROUTING_IRQCHIP 1 1723 #define KVM_IRQ_ROUTING_IRQCHIP 1 1897 #define KVM_IRQ_ROUTING_MSI 2 1724 #define KVM_IRQ_ROUTING_MSI 2 1898 #define KVM_IRQ_ROUTING_S390_ADAPTER 3 1725 #define KVM_IRQ_ROUTING_S390_ADAPTER 3 1899 #define KVM_IRQ_ROUTING_HV_SINT 4 1726 #define KVM_IRQ_ROUTING_HV_SINT 4 1900 #define KVM_IRQ_ROUTING_XEN_EVTCHN 5 << 1901 1727 1902 flags: 1728 flags: 1903 1729 1904 - KVM_MSI_VALID_DEVID: used along with KVM_IR 1730 - KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry 1905 type, specifies that the devid field contai 1731 type, specifies that the devid field contains a valid value. The per-VM 1906 KVM_CAP_MSI_DEVID capability advertises the 1732 KVM_CAP_MSI_DEVID capability advertises the requirement to provide 1907 the device ID. If this capability is not a 1733 the device ID. If this capability is not available, userspace should 1908 never set the KVM_MSI_VALID_DEVID flag as t 1734 never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. 1909 - zero otherwise 1735 - zero otherwise 1910 1736 1911 :: 1737 :: 1912 1738 1913 struct kvm_irq_routing_irqchip { 1739 struct kvm_irq_routing_irqchip { 1914 __u32 irqchip; 1740 __u32 irqchip; 1915 __u32 pin; 1741 __u32 pin; 1916 }; 1742 }; 1917 1743 1918 struct kvm_irq_routing_msi { 1744 struct kvm_irq_routing_msi { 1919 __u32 address_lo; 1745 __u32 address_lo; 1920 __u32 address_hi; 1746 __u32 address_hi; 1921 __u32 data; 1747 __u32 data; 1922 union { 1748 union { 1923 __u32 pad; 1749 __u32 pad; 1924 __u32 devid; 1750 __u32 devid; 1925 }; 1751 }; 1926 }; 1752 }; 1927 1753 1928 If KVM_MSI_VALID_DEVID is set, devid contains 1754 If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier 1929 for the device that wrote the MSI message. F 1755 for the device that wrote the MSI message. For PCI, this is usually a 1930 BDF identifier in the lower 16 bits. !! 1756 BFD identifier in the lower 16 bits. 1931 1757 1932 On x86, address_hi is ignored unless the KVM_ 1758 On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS 1933 feature of KVM_CAP_X2APIC_API capability is e 1759 feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, 1934 address_hi bits 31-8 provide bits 31-8 of the 1760 address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of 1935 address_hi must be zero. 1761 address_hi must be zero. 1936 1762 1937 :: 1763 :: 1938 1764 1939 struct kvm_irq_routing_s390_adapter { 1765 struct kvm_irq_routing_s390_adapter { 1940 __u64 ind_addr; 1766 __u64 ind_addr; 1941 __u64 summary_addr; 1767 __u64 summary_addr; 1942 __u64 ind_offset; 1768 __u64 ind_offset; 1943 __u32 summary_offset; 1769 __u32 summary_offset; 1944 __u32 adapter_id; 1770 __u32 adapter_id; 1945 }; 1771 }; 1946 1772 1947 struct kvm_irq_routing_hv_sint { 1773 struct kvm_irq_routing_hv_sint { 1948 __u32 vcpu; 1774 __u32 vcpu; 1949 __u32 sint; 1775 __u32 sint; 1950 }; 1776 }; 1951 1777 1952 struct kvm_irq_routing_xen_evtchn { << 1953 __u32 port; << 1954 __u32 vcpu; << 1955 __u32 priority; << 1956 }; << 1957 << 1958 << 1959 When KVM_CAP_XEN_HVM includes the KVM_XEN_HVM << 1960 in its indication of supported features, rout << 1961 is supported. Although the priority field is << 1962 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL is supported << 1963 2 level event channels. FIFO event channel su << 1964 the future. << 1965 << 1966 1778 1967 4.55 KVM_SET_TSC_KHZ 1779 4.55 KVM_SET_TSC_KHZ 1968 -------------------- 1780 -------------------- 1969 1781 1970 :Capability: KVM_CAP_TSC_CONTROL / KVM_CAP_VM !! 1782 :Capability: KVM_CAP_TSC_CONTROL 1971 :Architectures: x86 1783 :Architectures: x86 1972 :Type: vcpu ioctl / vm ioctl !! 1784 :Type: vcpu ioctl 1973 :Parameters: virtual tsc_khz 1785 :Parameters: virtual tsc_khz 1974 :Returns: 0 on success, -1 on error 1786 :Returns: 0 on success, -1 on error 1975 1787 1976 Specifies the tsc frequency for the virtual m 1788 Specifies the tsc frequency for the virtual machine. The unit of the 1977 frequency is KHz. 1789 frequency is KHz. 1978 1790 1979 If the KVM_CAP_VM_TSC_CONTROL capability is a << 1980 be used as a vm ioctl to set the initial tsc << 1981 created vCPUs. << 1982 1791 1983 4.56 KVM_GET_TSC_KHZ 1792 4.56 KVM_GET_TSC_KHZ 1984 -------------------- 1793 -------------------- 1985 1794 1986 :Capability: KVM_CAP_GET_TSC_KHZ / KVM_CAP_VM !! 1795 :Capability: KVM_CAP_GET_TSC_KHZ 1987 :Architectures: x86 1796 :Architectures: x86 1988 :Type: vcpu ioctl / vm ioctl !! 1797 :Type: vcpu ioctl 1989 :Parameters: none 1798 :Parameters: none 1990 :Returns: virtual tsc-khz on success, negativ 1799 :Returns: virtual tsc-khz on success, negative value on error 1991 1800 1992 Returns the tsc frequency of the guest. The u 1801 Returns the tsc frequency of the guest. The unit of the return value is 1993 KHz. If the host has unstable tsc this ioctl 1802 KHz. If the host has unstable tsc this ioctl returns -EIO instead as an 1994 error. 1803 error. 1995 1804 1996 1805 1997 4.57 KVM_GET_LAPIC 1806 4.57 KVM_GET_LAPIC 1998 ------------------ 1807 ------------------ 1999 1808 2000 :Capability: KVM_CAP_IRQCHIP 1809 :Capability: KVM_CAP_IRQCHIP 2001 :Architectures: x86 1810 :Architectures: x86 2002 :Type: vcpu ioctl 1811 :Type: vcpu ioctl 2003 :Parameters: struct kvm_lapic_state (out) 1812 :Parameters: struct kvm_lapic_state (out) 2004 :Returns: 0 on success, -1 on error 1813 :Returns: 0 on success, -1 on error 2005 1814 2006 :: 1815 :: 2007 1816 2008 #define KVM_APIC_REG_SIZE 0x400 1817 #define KVM_APIC_REG_SIZE 0x400 2009 struct kvm_lapic_state { 1818 struct kvm_lapic_state { 2010 char regs[KVM_APIC_REG_SIZE]; 1819 char regs[KVM_APIC_REG_SIZE]; 2011 }; 1820 }; 2012 1821 2013 Reads the Local APIC registers and copies the 1822 Reads the Local APIC registers and copies them into the input argument. The 2014 data format and layout are the same as docume 1823 data format and layout are the same as documented in the architecture manual. 2015 1824 2016 If KVM_X2APIC_API_USE_32BIT_IDS feature of KV 1825 If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is 2017 enabled, then the format of APIC_ID register 1826 enabled, then the format of APIC_ID register depends on the APIC mode 2018 (reported by MSR_IA32_APICBASE) of its VCPU. 1827 (reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in 2019 the APIC_ID register (bytes 32-35). xAPIC on 1828 the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID 2020 which is stored in bits 31-24 of the APIC reg 1829 which is stored in bits 31-24 of the APIC register, or equivalently in 2021 byte 35 of struct kvm_lapic_state's regs fiel 1830 byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then 2022 be called after MSR_IA32_APICBASE has been se 1831 be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR. 2023 1832 2024 If KVM_X2APIC_API_USE_32BIT_IDS feature is di 1833 If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state 2025 always uses xAPIC format. 1834 always uses xAPIC format. 2026 1835 2027 1836 2028 4.58 KVM_SET_LAPIC 1837 4.58 KVM_SET_LAPIC 2029 ------------------ 1838 ------------------ 2030 1839 2031 :Capability: KVM_CAP_IRQCHIP 1840 :Capability: KVM_CAP_IRQCHIP 2032 :Architectures: x86 1841 :Architectures: x86 2033 :Type: vcpu ioctl 1842 :Type: vcpu ioctl 2034 :Parameters: struct kvm_lapic_state (in) 1843 :Parameters: struct kvm_lapic_state (in) 2035 :Returns: 0 on success, -1 on error 1844 :Returns: 0 on success, -1 on error 2036 1845 2037 :: 1846 :: 2038 1847 2039 #define KVM_APIC_REG_SIZE 0x400 1848 #define KVM_APIC_REG_SIZE 0x400 2040 struct kvm_lapic_state { 1849 struct kvm_lapic_state { 2041 char regs[KVM_APIC_REG_SIZE]; 1850 char regs[KVM_APIC_REG_SIZE]; 2042 }; 1851 }; 2043 1852 2044 Copies the input argument into the Local APIC 1853 Copies the input argument into the Local APIC registers. The data format 2045 and layout are the same as documented in the 1854 and layout are the same as documented in the architecture manual. 2046 1855 2047 The format of the APIC ID register (bytes 32- 1856 The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's 2048 regs field) depends on the state of the KVM_C 1857 regs field) depends on the state of the KVM_CAP_X2APIC_API capability. 2049 See the note in KVM_GET_LAPIC. 1858 See the note in KVM_GET_LAPIC. 2050 1859 2051 1860 2052 4.59 KVM_IOEVENTFD 1861 4.59 KVM_IOEVENTFD 2053 ------------------ 1862 ------------------ 2054 1863 2055 :Capability: KVM_CAP_IOEVENTFD 1864 :Capability: KVM_CAP_IOEVENTFD 2056 :Architectures: all 1865 :Architectures: all 2057 :Type: vm ioctl 1866 :Type: vm ioctl 2058 :Parameters: struct kvm_ioeventfd (in) 1867 :Parameters: struct kvm_ioeventfd (in) 2059 :Returns: 0 on success, !0 on error 1868 :Returns: 0 on success, !0 on error 2060 1869 2061 This ioctl attaches or detaches an ioeventfd 1870 This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address 2062 within the guest. A guest write in the regis 1871 within the guest. A guest write in the registered address will signal the 2063 provided event instead of triggering an exit. 1872 provided event instead of triggering an exit. 2064 1873 2065 :: 1874 :: 2066 1875 2067 struct kvm_ioeventfd { 1876 struct kvm_ioeventfd { 2068 __u64 datamatch; 1877 __u64 datamatch; 2069 __u64 addr; /* legal pio/mmio 1878 __u64 addr; /* legal pio/mmio address */ 2070 __u32 len; /* 0, 1, 2, 4, or 1879 __u32 len; /* 0, 1, 2, 4, or 8 bytes */ 2071 __s32 fd; 1880 __s32 fd; 2072 __u32 flags; 1881 __u32 flags; 2073 __u8 pad[36]; 1882 __u8 pad[36]; 2074 }; 1883 }; 2075 1884 2076 For the special case of virtio-ccw devices on 1885 For the special case of virtio-ccw devices on s390, the ioevent is matched 2077 to a subchannel/virtqueue tuple instead. 1886 to a subchannel/virtqueue tuple instead. 2078 1887 2079 The following flags are defined:: 1888 The following flags are defined:: 2080 1889 2081 #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << 1890 #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch) 2082 #define KVM_IOEVENTFD_FLAG_PIO (1 << 1891 #define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio) 2083 #define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << 1892 #define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign) 2084 #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIF 1893 #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \ 2085 (1 << kvm_ioeventfd_flag_nr_virtio_cc 1894 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify) 2086 1895 2087 If datamatch flag is set, the event will be s 1896 If datamatch flag is set, the event will be signaled only if the written value 2088 to the registered address is equal to datamat 1897 to the registered address is equal to datamatch in struct kvm_ioeventfd. 2089 1898 2090 For virtio-ccw devices, addr contains the sub 1899 For virtio-ccw devices, addr contains the subchannel id and datamatch the 2091 virtqueue index. 1900 virtqueue index. 2092 1901 2093 With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero len 1902 With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and 2094 the kernel will ignore the length of guest wr 1903 the kernel will ignore the length of guest write and may get a faster vmexit. 2095 The speedup may only apply to specific archit 1904 The speedup may only apply to specific architectures, but the ioeventfd will 2096 work anyway. 1905 work anyway. 2097 1906 2098 4.60 KVM_DIRTY_TLB 1907 4.60 KVM_DIRTY_TLB 2099 ------------------ 1908 ------------------ 2100 1909 2101 :Capability: KVM_CAP_SW_TLB 1910 :Capability: KVM_CAP_SW_TLB 2102 :Architectures: ppc 1911 :Architectures: ppc 2103 :Type: vcpu ioctl 1912 :Type: vcpu ioctl 2104 :Parameters: struct kvm_dirty_tlb (in) 1913 :Parameters: struct kvm_dirty_tlb (in) 2105 :Returns: 0 on success, -1 on error 1914 :Returns: 0 on success, -1 on error 2106 1915 2107 :: 1916 :: 2108 1917 2109 struct kvm_dirty_tlb { 1918 struct kvm_dirty_tlb { 2110 __u64 bitmap; 1919 __u64 bitmap; 2111 __u32 num_dirty; 1920 __u32 num_dirty; 2112 }; 1921 }; 2113 1922 2114 This must be called whenever userspace has ch 1923 This must be called whenever userspace has changed an entry in the shared 2115 TLB, prior to calling KVM_RUN on the associat 1924 TLB, prior to calling KVM_RUN on the associated vcpu. 2116 1925 2117 The "bitmap" field is the userspace address o 1926 The "bitmap" field is the userspace address of an array. This array 2118 consists of a number of bits, equal to the to 1927 consists of a number of bits, equal to the total number of TLB entries as 2119 determined by the last successful call to KVM 1928 determined by the last successful call to KVM_CONFIG_TLB, rounded up to the 2120 nearest multiple of 64. 1929 nearest multiple of 64. 2121 1930 2122 Each bit corresponds to one TLB entry, ordere 1931 Each bit corresponds to one TLB entry, ordered the same as in the shared TLB 2123 array. 1932 array. 2124 1933 2125 The array is little-endian: the bit 0 is the 1934 The array is little-endian: the bit 0 is the least significant bit of the 2126 first byte, bit 8 is the least significant bi 1935 first byte, bit 8 is the least significant bit of the second byte, etc. 2127 This avoids any complications with differing 1936 This avoids any complications with differing word sizes. 2128 1937 2129 The "num_dirty" field is a performance hint f 1938 The "num_dirty" field is a performance hint for KVM to determine whether it 2130 should skip processing the bitmap and just in 1939 should skip processing the bitmap and just invalidate everything. It must 2131 be set to the number of set bits in the bitma 1940 be set to the number of set bits in the bitmap. 2132 1941 2133 1942 2134 4.62 KVM_CREATE_SPAPR_TCE 1943 4.62 KVM_CREATE_SPAPR_TCE 2135 ------------------------- 1944 ------------------------- 2136 1945 2137 :Capability: KVM_CAP_SPAPR_TCE 1946 :Capability: KVM_CAP_SPAPR_TCE 2138 :Architectures: powerpc 1947 :Architectures: powerpc 2139 :Type: vm ioctl 1948 :Type: vm ioctl 2140 :Parameters: struct kvm_create_spapr_tce (in) 1949 :Parameters: struct kvm_create_spapr_tce (in) 2141 :Returns: file descriptor for manipulating th 1950 :Returns: file descriptor for manipulating the created TCE table 2142 1951 2143 This creates a virtual TCE (translation contr 1952 This creates a virtual TCE (translation control entry) table, which 2144 is an IOMMU for PAPR-style virtual I/O. It i 1953 is an IOMMU for PAPR-style virtual I/O. It is used to translate 2145 logical addresses used in virtual I/O into gu 1954 logical addresses used in virtual I/O into guest physical addresses, 2146 and provides a scatter/gather capability for 1955 and provides a scatter/gather capability for PAPR virtual I/O. 2147 1956 2148 :: 1957 :: 2149 1958 2150 /* for KVM_CAP_SPAPR_TCE */ 1959 /* for KVM_CAP_SPAPR_TCE */ 2151 struct kvm_create_spapr_tce { 1960 struct kvm_create_spapr_tce { 2152 __u64 liobn; 1961 __u64 liobn; 2153 __u32 window_size; 1962 __u32 window_size; 2154 }; 1963 }; 2155 1964 2156 The liobn field gives the logical IO bus numb 1965 The liobn field gives the logical IO bus number for which to create a 2157 TCE table. The window_size field specifies t 1966 TCE table. The window_size field specifies the size of the DMA window 2158 which this TCE table will translate - the tab 1967 which this TCE table will translate - the table will contain one 64 2159 bit TCE entry for every 4kiB of the DMA windo 1968 bit TCE entry for every 4kiB of the DMA window. 2160 1969 2161 When the guest issues an H_PUT_TCE hcall on a 1970 When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE 2162 table has been created using this ioctl(), th 1971 table has been created using this ioctl(), the kernel will handle it 2163 in real mode, updating the TCE table. H_PUT_ 1972 in real mode, updating the TCE table. H_PUT_TCE calls for other 2164 liobns will cause a vm exit and must be handl 1973 liobns will cause a vm exit and must be handled by userspace. 2165 1974 2166 The return value is a file descriptor which c 1975 The return value is a file descriptor which can be passed to mmap(2) 2167 to map the created TCE table into userspace. 1976 to map the created TCE table into userspace. This lets userspace read 2168 the entries written by kernel-handled H_PUT_T 1977 the entries written by kernel-handled H_PUT_TCE calls, and also lets 2169 userspace update the TCE table directly which 1978 userspace update the TCE table directly which is useful in some 2170 circumstances. 1979 circumstances. 2171 1980 2172 1981 2173 4.63 KVM_ALLOCATE_RMA 1982 4.63 KVM_ALLOCATE_RMA 2174 --------------------- 1983 --------------------- 2175 1984 2176 :Capability: KVM_CAP_PPC_RMA 1985 :Capability: KVM_CAP_PPC_RMA 2177 :Architectures: powerpc 1986 :Architectures: powerpc 2178 :Type: vm ioctl 1987 :Type: vm ioctl 2179 :Parameters: struct kvm_allocate_rma (out) 1988 :Parameters: struct kvm_allocate_rma (out) 2180 :Returns: file descriptor for mapping the all 1989 :Returns: file descriptor for mapping the allocated RMA 2181 1990 2182 This allocates a Real Mode Area (RMA) from th 1991 This allocates a Real Mode Area (RMA) from the pool allocated at boot 2183 time by the kernel. An RMA is a physically-c 1992 time by the kernel. An RMA is a physically-contiguous, aligned region 2184 of memory used on older POWER processors to p 1993 of memory used on older POWER processors to provide the memory which 2185 will be accessed by real-mode (MMU off) acces 1994 will be accessed by real-mode (MMU off) accesses in a KVM guest. 2186 POWER processors support a set of sizes for t 1995 POWER processors support a set of sizes for the RMA that usually 2187 includes 64MB, 128MB, 256MB and some larger p 1996 includes 64MB, 128MB, 256MB and some larger powers of two. 2188 1997 2189 :: 1998 :: 2190 1999 2191 /* for KVM_ALLOCATE_RMA */ 2000 /* for KVM_ALLOCATE_RMA */ 2192 struct kvm_allocate_rma { 2001 struct kvm_allocate_rma { 2193 __u64 rma_size; 2002 __u64 rma_size; 2194 }; 2003 }; 2195 2004 2196 The return value is a file descriptor which c 2005 The return value is a file descriptor which can be passed to mmap(2) 2197 to map the allocated RMA into userspace. The 2006 to map the allocated RMA into userspace. The mapped area can then be 2198 passed to the KVM_SET_USER_MEMORY_REGION ioct 2007 passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the 2199 RMA for a virtual machine. The size of the R 2008 RMA for a virtual machine. The size of the RMA in bytes (which is 2200 fixed at host kernel boot time) is returned i 2009 fixed at host kernel boot time) is returned in the rma_size field of 2201 the argument structure. 2010 the argument structure. 2202 2011 2203 The KVM_CAP_PPC_RMA capability is 1 or 2 if t 2012 The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl 2204 is supported; 2 if the processor requires all 2013 is supported; 2 if the processor requires all virtual machines to have 2205 an RMA, or 1 if the processor can use an RMA 2014 an RMA, or 1 if the processor can use an RMA but doesn't require it, 2206 because it supports the Virtual RMA (VRMA) fa 2015 because it supports the Virtual RMA (VRMA) facility. 2207 2016 2208 2017 2209 4.64 KVM_NMI 2018 4.64 KVM_NMI 2210 ------------ 2019 ------------ 2211 2020 2212 :Capability: KVM_CAP_USER_NMI 2021 :Capability: KVM_CAP_USER_NMI 2213 :Architectures: x86 2022 :Architectures: x86 2214 :Type: vcpu ioctl 2023 :Type: vcpu ioctl 2215 :Parameters: none 2024 :Parameters: none 2216 :Returns: 0 on success, -1 on error 2025 :Returns: 0 on success, -1 on error 2217 2026 2218 Queues an NMI on the thread's vcpu. Note thi 2027 Queues an NMI on the thread's vcpu. Note this is well defined only 2219 when KVM_CREATE_IRQCHIP has not been called, 2028 when KVM_CREATE_IRQCHIP has not been called, since this is an interface 2220 between the virtual cpu core and virtual loca 2029 between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP 2221 has been called, this interface is completely 2030 has been called, this interface is completely emulated within the kernel. 2222 2031 2223 To use this to emulate the LINT1 input with K 2032 To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the 2224 following algorithm: 2033 following algorithm: 2225 2034 2226 - pause the vcpu 2035 - pause the vcpu 2227 - read the local APIC's state (KVM_GET_LAPI 2036 - read the local APIC's state (KVM_GET_LAPIC) 2228 - check whether changing LINT1 will queue a 2037 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1) 2229 - if so, issue KVM_NMI 2038 - if so, issue KVM_NMI 2230 - resume the vcpu 2039 - resume the vcpu 2231 2040 2232 Some guests configure the LINT1 NMI input to 2041 Some guests configure the LINT1 NMI input to cause a panic, aiding in 2233 debugging. 2042 debugging. 2234 2043 2235 2044 2236 4.65 KVM_S390_UCAS_MAP 2045 4.65 KVM_S390_UCAS_MAP 2237 ---------------------- 2046 ---------------------- 2238 2047 2239 :Capability: KVM_CAP_S390_UCONTROL 2048 :Capability: KVM_CAP_S390_UCONTROL 2240 :Architectures: s390 2049 :Architectures: s390 2241 :Type: vcpu ioctl 2050 :Type: vcpu ioctl 2242 :Parameters: struct kvm_s390_ucas_mapping (in 2051 :Parameters: struct kvm_s390_ucas_mapping (in) 2243 :Returns: 0 in case of success 2052 :Returns: 0 in case of success 2244 2053 2245 The parameter is defined like this:: 2054 The parameter is defined like this:: 2246 2055 2247 struct kvm_s390_ucas_mapping { 2056 struct kvm_s390_ucas_mapping { 2248 __u64 user_addr; 2057 __u64 user_addr; 2249 __u64 vcpu_addr; 2058 __u64 vcpu_addr; 2250 __u64 length; 2059 __u64 length; 2251 }; 2060 }; 2252 2061 2253 This ioctl maps the memory at "user_addr" wit 2062 This ioctl maps the memory at "user_addr" with the length "length" to 2254 the vcpu's address space starting at "vcpu_ad 2063 the vcpu's address space starting at "vcpu_addr". All parameters need to 2255 be aligned by 1 megabyte. 2064 be aligned by 1 megabyte. 2256 2065 2257 2066 2258 4.66 KVM_S390_UCAS_UNMAP 2067 4.66 KVM_S390_UCAS_UNMAP 2259 ------------------------ 2068 ------------------------ 2260 2069 2261 :Capability: KVM_CAP_S390_UCONTROL 2070 :Capability: KVM_CAP_S390_UCONTROL 2262 :Architectures: s390 2071 :Architectures: s390 2263 :Type: vcpu ioctl 2072 :Type: vcpu ioctl 2264 :Parameters: struct kvm_s390_ucas_mapping (in 2073 :Parameters: struct kvm_s390_ucas_mapping (in) 2265 :Returns: 0 in case of success 2074 :Returns: 0 in case of success 2266 2075 2267 The parameter is defined like this:: 2076 The parameter is defined like this:: 2268 2077 2269 struct kvm_s390_ucas_mapping { 2078 struct kvm_s390_ucas_mapping { 2270 __u64 user_addr; 2079 __u64 user_addr; 2271 __u64 vcpu_addr; 2080 __u64 vcpu_addr; 2272 __u64 length; 2081 __u64 length; 2273 }; 2082 }; 2274 2083 2275 This ioctl unmaps the memory in the vcpu's ad 2084 This ioctl unmaps the memory in the vcpu's address space starting at 2276 "vcpu_addr" with the length "length". The fie 2085 "vcpu_addr" with the length "length". The field "user_addr" is ignored. 2277 All parameters need to be aligned by 1 megaby 2086 All parameters need to be aligned by 1 megabyte. 2278 2087 2279 2088 2280 4.67 KVM_S390_VCPU_FAULT 2089 4.67 KVM_S390_VCPU_FAULT 2281 ------------------------ 2090 ------------------------ 2282 2091 2283 :Capability: KVM_CAP_S390_UCONTROL 2092 :Capability: KVM_CAP_S390_UCONTROL 2284 :Architectures: s390 2093 :Architectures: s390 2285 :Type: vcpu ioctl 2094 :Type: vcpu ioctl 2286 :Parameters: vcpu absolute address (in) 2095 :Parameters: vcpu absolute address (in) 2287 :Returns: 0 in case of success 2096 :Returns: 0 in case of success 2288 2097 2289 This call creates a page table entry on the v 2098 This call creates a page table entry on the virtual cpu's address space 2290 (for user controlled virtual machines) or the 2099 (for user controlled virtual machines) or the virtual machine's address 2291 space (for regular virtual machines). This on 2100 space (for regular virtual machines). This only works for minor faults, 2292 thus it's recommended to access subject memor 2101 thus it's recommended to access subject memory page via the user page 2293 table upfront. This is useful to handle valid 2102 table upfront. This is useful to handle validity intercepts for user 2294 controlled virtual machines to fault in the v 2103 controlled virtual machines to fault in the virtual cpu's lowcore pages 2295 prior to calling the KVM_RUN ioctl. 2104 prior to calling the KVM_RUN ioctl. 2296 2105 2297 2106 2298 4.68 KVM_SET_ONE_REG 2107 4.68 KVM_SET_ONE_REG 2299 -------------------- 2108 -------------------- 2300 2109 2301 :Capability: KVM_CAP_ONE_REG 2110 :Capability: KVM_CAP_ONE_REG 2302 :Architectures: all 2111 :Architectures: all 2303 :Type: vcpu ioctl 2112 :Type: vcpu ioctl 2304 :Parameters: struct kvm_one_reg (in) 2113 :Parameters: struct kvm_one_reg (in) 2305 :Returns: 0 on success, negative value on fai 2114 :Returns: 0 on success, negative value on failure 2306 2115 2307 Errors: 2116 Errors: 2308 2117 2309 ====== ================================== 2118 ====== ============================================================ 2310 ENOENT no such register !! 2119  ENOENT   no such register 2311 EINVAL invalid register ID, or no such re !! 2120  EINVAL   invalid register ID, or no such register 2312 protected virtualization mode on s !! 2121  EPERM    (arm64) register access not allowed before vcpu finalization 2313 EPERM (arm64) register access not allowe << 2314 EBUSY (riscv) changing register value no << 2315 has run at least once << 2316 ====== ================================== 2122 ====== ============================================================ 2317 2123 2318 (These error codes are indicative only: do no 2124 (These error codes are indicative only: do not rely on a specific error 2319 code being returned in a specific situation.) 2125 code being returned in a specific situation.) 2320 2126 2321 :: 2127 :: 2322 2128 2323 struct kvm_one_reg { 2129 struct kvm_one_reg { 2324 __u64 id; 2130 __u64 id; 2325 __u64 addr; 2131 __u64 addr; 2326 }; 2132 }; 2327 2133 2328 Using this ioctl, a single vcpu register can 2134 Using this ioctl, a single vcpu register can be set to a specific value 2329 defined by user space with the passed in stru 2135 defined by user space with the passed in struct kvm_one_reg, where id 2330 refers to the register identifier as describe 2136 refers to the register identifier as described below and addr is a pointer 2331 to a variable with the respective size. There 2137 to a variable with the respective size. There can be architecture agnostic 2332 and architecture specific registers. Each hav 2138 and architecture specific registers. Each have their own range of operation 2333 and their own constants and width. To keep tr 2139 and their own constants and width. To keep track of the implemented 2334 registers, find a list below: 2140 registers, find a list below: 2335 2141 2336 ======= =============================== === 2142 ======= =============================== ============ 2337 Arch Register Wid 2143 Arch Register Width (bits) 2338 ======= =============================== === 2144 ======= =============================== ============ 2339 PPC KVM_REG_PPC_HIOR 64 2145 PPC KVM_REG_PPC_HIOR 64 2340 PPC KVM_REG_PPC_IAC1 64 2146 PPC KVM_REG_PPC_IAC1 64 2341 PPC KVM_REG_PPC_IAC2 64 2147 PPC KVM_REG_PPC_IAC2 64 2342 PPC KVM_REG_PPC_IAC3 64 2148 PPC KVM_REG_PPC_IAC3 64 2343 PPC KVM_REG_PPC_IAC4 64 2149 PPC KVM_REG_PPC_IAC4 64 2344 PPC KVM_REG_PPC_DAC1 64 2150 PPC KVM_REG_PPC_DAC1 64 2345 PPC KVM_REG_PPC_DAC2 64 2151 PPC KVM_REG_PPC_DAC2 64 2346 PPC KVM_REG_PPC_DABR 64 2152 PPC KVM_REG_PPC_DABR 64 2347 PPC KVM_REG_PPC_DSCR 64 2153 PPC KVM_REG_PPC_DSCR 64 2348 PPC KVM_REG_PPC_PURR 64 2154 PPC KVM_REG_PPC_PURR 64 2349 PPC KVM_REG_PPC_SPURR 64 2155 PPC KVM_REG_PPC_SPURR 64 2350 PPC KVM_REG_PPC_DAR 64 2156 PPC KVM_REG_PPC_DAR 64 2351 PPC KVM_REG_PPC_DSISR 32 2157 PPC KVM_REG_PPC_DSISR 32 2352 PPC KVM_REG_PPC_AMR 64 2158 PPC KVM_REG_PPC_AMR 64 2353 PPC KVM_REG_PPC_UAMOR 64 2159 PPC KVM_REG_PPC_UAMOR 64 2354 PPC KVM_REG_PPC_MMCR0 64 2160 PPC KVM_REG_PPC_MMCR0 64 2355 PPC KVM_REG_PPC_MMCR1 64 2161 PPC KVM_REG_PPC_MMCR1 64 2356 PPC KVM_REG_PPC_MMCRA 64 2162 PPC KVM_REG_PPC_MMCRA 64 2357 PPC KVM_REG_PPC_MMCR2 64 2163 PPC KVM_REG_PPC_MMCR2 64 2358 PPC KVM_REG_PPC_MMCRS 64 2164 PPC KVM_REG_PPC_MMCRS 64 2359 PPC KVM_REG_PPC_MMCR3 64 << 2360 PPC KVM_REG_PPC_SIAR 64 2165 PPC KVM_REG_PPC_SIAR 64 2361 PPC KVM_REG_PPC_SDAR 64 2166 PPC KVM_REG_PPC_SDAR 64 2362 PPC KVM_REG_PPC_SIER 64 2167 PPC KVM_REG_PPC_SIER 64 2363 PPC KVM_REG_PPC_SIER2 64 << 2364 PPC KVM_REG_PPC_SIER3 64 << 2365 PPC KVM_REG_PPC_PMC1 32 2168 PPC KVM_REG_PPC_PMC1 32 2366 PPC KVM_REG_PPC_PMC2 32 2169 PPC KVM_REG_PPC_PMC2 32 2367 PPC KVM_REG_PPC_PMC3 32 2170 PPC KVM_REG_PPC_PMC3 32 2368 PPC KVM_REG_PPC_PMC4 32 2171 PPC KVM_REG_PPC_PMC4 32 2369 PPC KVM_REG_PPC_PMC5 32 2172 PPC KVM_REG_PPC_PMC5 32 2370 PPC KVM_REG_PPC_PMC6 32 2173 PPC KVM_REG_PPC_PMC6 32 2371 PPC KVM_REG_PPC_PMC7 32 2174 PPC KVM_REG_PPC_PMC7 32 2372 PPC KVM_REG_PPC_PMC8 32 2175 PPC KVM_REG_PPC_PMC8 32 2373 PPC KVM_REG_PPC_FPR0 64 2176 PPC KVM_REG_PPC_FPR0 64 2374 ... 2177 ... 2375 PPC KVM_REG_PPC_FPR31 64 2178 PPC KVM_REG_PPC_FPR31 64 2376 PPC KVM_REG_PPC_VR0 128 2179 PPC KVM_REG_PPC_VR0 128 2377 ... 2180 ... 2378 PPC KVM_REG_PPC_VR31 128 2181 PPC KVM_REG_PPC_VR31 128 2379 PPC KVM_REG_PPC_VSR0 128 2182 PPC KVM_REG_PPC_VSR0 128 2380 ... 2183 ... 2381 PPC KVM_REG_PPC_VSR31 128 2184 PPC KVM_REG_PPC_VSR31 128 2382 PPC KVM_REG_PPC_FPSCR 64 2185 PPC KVM_REG_PPC_FPSCR 64 2383 PPC KVM_REG_PPC_VSCR 32 2186 PPC KVM_REG_PPC_VSCR 32 2384 PPC KVM_REG_PPC_VPA_ADDR 64 2187 PPC KVM_REG_PPC_VPA_ADDR 64 2385 PPC KVM_REG_PPC_VPA_SLB 128 2188 PPC KVM_REG_PPC_VPA_SLB 128 2386 PPC KVM_REG_PPC_VPA_DTL 128 2189 PPC KVM_REG_PPC_VPA_DTL 128 2387 PPC KVM_REG_PPC_EPCR 32 2190 PPC KVM_REG_PPC_EPCR 32 2388 PPC KVM_REG_PPC_EPR 32 2191 PPC KVM_REG_PPC_EPR 32 2389 PPC KVM_REG_PPC_TCR 32 2192 PPC KVM_REG_PPC_TCR 32 2390 PPC KVM_REG_PPC_TSR 32 2193 PPC KVM_REG_PPC_TSR 32 2391 PPC KVM_REG_PPC_OR_TSR 32 2194 PPC KVM_REG_PPC_OR_TSR 32 2392 PPC KVM_REG_PPC_CLEAR_TSR 32 2195 PPC KVM_REG_PPC_CLEAR_TSR 32 2393 PPC KVM_REG_PPC_MAS0 32 2196 PPC KVM_REG_PPC_MAS0 32 2394 PPC KVM_REG_PPC_MAS1 32 2197 PPC KVM_REG_PPC_MAS1 32 2395 PPC KVM_REG_PPC_MAS2 64 2198 PPC KVM_REG_PPC_MAS2 64 2396 PPC KVM_REG_PPC_MAS7_3 64 2199 PPC KVM_REG_PPC_MAS7_3 64 2397 PPC KVM_REG_PPC_MAS4 32 2200 PPC KVM_REG_PPC_MAS4 32 2398 PPC KVM_REG_PPC_MAS6 32 2201 PPC KVM_REG_PPC_MAS6 32 2399 PPC KVM_REG_PPC_MMUCFG 32 2202 PPC KVM_REG_PPC_MMUCFG 32 2400 PPC KVM_REG_PPC_TLB0CFG 32 2203 PPC KVM_REG_PPC_TLB0CFG 32 2401 PPC KVM_REG_PPC_TLB1CFG 32 2204 PPC KVM_REG_PPC_TLB1CFG 32 2402 PPC KVM_REG_PPC_TLB2CFG 32 2205 PPC KVM_REG_PPC_TLB2CFG 32 2403 PPC KVM_REG_PPC_TLB3CFG 32 2206 PPC KVM_REG_PPC_TLB3CFG 32 2404 PPC KVM_REG_PPC_TLB0PS 32 2207 PPC KVM_REG_PPC_TLB0PS 32 2405 PPC KVM_REG_PPC_TLB1PS 32 2208 PPC KVM_REG_PPC_TLB1PS 32 2406 PPC KVM_REG_PPC_TLB2PS 32 2209 PPC KVM_REG_PPC_TLB2PS 32 2407 PPC KVM_REG_PPC_TLB3PS 32 2210 PPC KVM_REG_PPC_TLB3PS 32 2408 PPC KVM_REG_PPC_EPTCFG 32 2211 PPC KVM_REG_PPC_EPTCFG 32 2409 PPC KVM_REG_PPC_ICP_STATE 64 2212 PPC KVM_REG_PPC_ICP_STATE 64 2410 PPC KVM_REG_PPC_VP_STATE 128 2213 PPC KVM_REG_PPC_VP_STATE 128 2411 PPC KVM_REG_PPC_TB_OFFSET 64 2214 PPC KVM_REG_PPC_TB_OFFSET 64 2412 PPC KVM_REG_PPC_SPMC1 32 2215 PPC KVM_REG_PPC_SPMC1 32 2413 PPC KVM_REG_PPC_SPMC2 32 2216 PPC KVM_REG_PPC_SPMC2 32 2414 PPC KVM_REG_PPC_IAMR 64 2217 PPC KVM_REG_PPC_IAMR 64 2415 PPC KVM_REG_PPC_TFHAR 64 2218 PPC KVM_REG_PPC_TFHAR 64 2416 PPC KVM_REG_PPC_TFIAR 64 2219 PPC KVM_REG_PPC_TFIAR 64 2417 PPC KVM_REG_PPC_TEXASR 64 2220 PPC KVM_REG_PPC_TEXASR 64 2418 PPC KVM_REG_PPC_FSCR 64 2221 PPC KVM_REG_PPC_FSCR 64 2419 PPC KVM_REG_PPC_PSPB 32 2222 PPC KVM_REG_PPC_PSPB 32 2420 PPC KVM_REG_PPC_EBBHR 64 2223 PPC KVM_REG_PPC_EBBHR 64 2421 PPC KVM_REG_PPC_EBBRR 64 2224 PPC KVM_REG_PPC_EBBRR 64 2422 PPC KVM_REG_PPC_BESCR 64 2225 PPC KVM_REG_PPC_BESCR 64 2423 PPC KVM_REG_PPC_TAR 64 2226 PPC KVM_REG_PPC_TAR 64 2424 PPC KVM_REG_PPC_DPDES 64 2227 PPC KVM_REG_PPC_DPDES 64 2425 PPC KVM_REG_PPC_DAWR 64 2228 PPC KVM_REG_PPC_DAWR 64 2426 PPC KVM_REG_PPC_DAWRX 64 2229 PPC KVM_REG_PPC_DAWRX 64 2427 PPC KVM_REG_PPC_CIABR 64 2230 PPC KVM_REG_PPC_CIABR 64 2428 PPC KVM_REG_PPC_IC 64 2231 PPC KVM_REG_PPC_IC 64 2429 PPC KVM_REG_PPC_VTB 64 2232 PPC KVM_REG_PPC_VTB 64 2430 PPC KVM_REG_PPC_CSIGR 64 2233 PPC KVM_REG_PPC_CSIGR 64 2431 PPC KVM_REG_PPC_TACR 64 2234 PPC KVM_REG_PPC_TACR 64 2432 PPC KVM_REG_PPC_TCSCR 64 2235 PPC KVM_REG_PPC_TCSCR 64 2433 PPC KVM_REG_PPC_PID 64 2236 PPC KVM_REG_PPC_PID 64 2434 PPC KVM_REG_PPC_ACOP 64 2237 PPC KVM_REG_PPC_ACOP 64 2435 PPC KVM_REG_PPC_VRSAVE 32 2238 PPC KVM_REG_PPC_VRSAVE 32 2436 PPC KVM_REG_PPC_LPCR 32 2239 PPC KVM_REG_PPC_LPCR 32 2437 PPC KVM_REG_PPC_LPCR_64 64 2240 PPC KVM_REG_PPC_LPCR_64 64 2438 PPC KVM_REG_PPC_PPR 64 2241 PPC KVM_REG_PPC_PPR 64 2439 PPC KVM_REG_PPC_ARCH_COMPAT 32 2242 PPC KVM_REG_PPC_ARCH_COMPAT 32 2440 PPC KVM_REG_PPC_DABRX 32 2243 PPC KVM_REG_PPC_DABRX 32 2441 PPC KVM_REG_PPC_WORT 64 2244 PPC KVM_REG_PPC_WORT 64 2442 PPC KVM_REG_PPC_SPRG9 64 2245 PPC KVM_REG_PPC_SPRG9 64 2443 PPC KVM_REG_PPC_DBSR 32 2246 PPC KVM_REG_PPC_DBSR 32 2444 PPC KVM_REG_PPC_TIDR 64 2247 PPC KVM_REG_PPC_TIDR 64 2445 PPC KVM_REG_PPC_PSSCR 64 2248 PPC KVM_REG_PPC_PSSCR 64 2446 PPC KVM_REG_PPC_DEC_EXPIRY 64 2249 PPC KVM_REG_PPC_DEC_EXPIRY 64 2447 PPC KVM_REG_PPC_PTCR 64 2250 PPC KVM_REG_PPC_PTCR 64 2448 PPC KVM_REG_PPC_HASHKEYR 64 << 2449 PPC KVM_REG_PPC_HASHPKEYR 64 << 2450 PPC KVM_REG_PPC_DAWR1 64 << 2451 PPC KVM_REG_PPC_DAWRX1 64 << 2452 PPC KVM_REG_PPC_DEXCR 64 << 2453 PPC KVM_REG_PPC_TM_GPR0 64 2251 PPC KVM_REG_PPC_TM_GPR0 64 2454 ... 2252 ... 2455 PPC KVM_REG_PPC_TM_GPR31 64 2253 PPC KVM_REG_PPC_TM_GPR31 64 2456 PPC KVM_REG_PPC_TM_VSR0 128 2254 PPC KVM_REG_PPC_TM_VSR0 128 2457 ... 2255 ... 2458 PPC KVM_REG_PPC_TM_VSR63 128 2256 PPC KVM_REG_PPC_TM_VSR63 128 2459 PPC KVM_REG_PPC_TM_CR 64 2257 PPC KVM_REG_PPC_TM_CR 64 2460 PPC KVM_REG_PPC_TM_LR 64 2258 PPC KVM_REG_PPC_TM_LR 64 2461 PPC KVM_REG_PPC_TM_CTR 64 2259 PPC KVM_REG_PPC_TM_CTR 64 2462 PPC KVM_REG_PPC_TM_FPSCR 64 2260 PPC KVM_REG_PPC_TM_FPSCR 64 2463 PPC KVM_REG_PPC_TM_AMR 64 2261 PPC KVM_REG_PPC_TM_AMR 64 2464 PPC KVM_REG_PPC_TM_PPR 64 2262 PPC KVM_REG_PPC_TM_PPR 64 2465 PPC KVM_REG_PPC_TM_VRSAVE 64 2263 PPC KVM_REG_PPC_TM_VRSAVE 64 2466 PPC KVM_REG_PPC_TM_VSCR 32 2264 PPC KVM_REG_PPC_TM_VSCR 32 2467 PPC KVM_REG_PPC_TM_DSCR 64 2265 PPC KVM_REG_PPC_TM_DSCR 64 2468 PPC KVM_REG_PPC_TM_TAR 64 2266 PPC KVM_REG_PPC_TM_TAR 64 2469 PPC KVM_REG_PPC_TM_XER 64 2267 PPC KVM_REG_PPC_TM_XER 64 2470 2268 2471 MIPS KVM_REG_MIPS_R0 64 2269 MIPS KVM_REG_MIPS_R0 64 2472 ... 2270 ... 2473 MIPS KVM_REG_MIPS_R31 64 2271 MIPS KVM_REG_MIPS_R31 64 2474 MIPS KVM_REG_MIPS_HI 64 2272 MIPS KVM_REG_MIPS_HI 64 2475 MIPS KVM_REG_MIPS_LO 64 2273 MIPS KVM_REG_MIPS_LO 64 2476 MIPS KVM_REG_MIPS_PC 64 2274 MIPS KVM_REG_MIPS_PC 64 2477 MIPS KVM_REG_MIPS_CP0_INDEX 32 2275 MIPS KVM_REG_MIPS_CP0_INDEX 32 2478 MIPS KVM_REG_MIPS_CP0_ENTRYLO0 64 2276 MIPS KVM_REG_MIPS_CP0_ENTRYLO0 64 2479 MIPS KVM_REG_MIPS_CP0_ENTRYLO1 64 2277 MIPS KVM_REG_MIPS_CP0_ENTRYLO1 64 2480 MIPS KVM_REG_MIPS_CP0_CONTEXT 64 2278 MIPS KVM_REG_MIPS_CP0_CONTEXT 64 2481 MIPS KVM_REG_MIPS_CP0_CONTEXTCONFIG 32 2279 MIPS KVM_REG_MIPS_CP0_CONTEXTCONFIG 32 2482 MIPS KVM_REG_MIPS_CP0_USERLOCAL 64 2280 MIPS KVM_REG_MIPS_CP0_USERLOCAL 64 2483 MIPS KVM_REG_MIPS_CP0_XCONTEXTCONFIG 64 2281 MIPS KVM_REG_MIPS_CP0_XCONTEXTCONFIG 64 2484 MIPS KVM_REG_MIPS_CP0_PAGEMASK 32 2282 MIPS KVM_REG_MIPS_CP0_PAGEMASK 32 2485 MIPS KVM_REG_MIPS_CP0_PAGEGRAIN 32 2283 MIPS KVM_REG_MIPS_CP0_PAGEGRAIN 32 2486 MIPS KVM_REG_MIPS_CP0_SEGCTL0 64 2284 MIPS KVM_REG_MIPS_CP0_SEGCTL0 64 2487 MIPS KVM_REG_MIPS_CP0_SEGCTL1 64 2285 MIPS KVM_REG_MIPS_CP0_SEGCTL1 64 2488 MIPS KVM_REG_MIPS_CP0_SEGCTL2 64 2286 MIPS KVM_REG_MIPS_CP0_SEGCTL2 64 2489 MIPS KVM_REG_MIPS_CP0_PWBASE 64 2287 MIPS KVM_REG_MIPS_CP0_PWBASE 64 2490 MIPS KVM_REG_MIPS_CP0_PWFIELD 64 2288 MIPS KVM_REG_MIPS_CP0_PWFIELD 64 2491 MIPS KVM_REG_MIPS_CP0_PWSIZE 64 2289 MIPS KVM_REG_MIPS_CP0_PWSIZE 64 2492 MIPS KVM_REG_MIPS_CP0_WIRED 32 2290 MIPS KVM_REG_MIPS_CP0_WIRED 32 2493 MIPS KVM_REG_MIPS_CP0_PWCTL 32 2291 MIPS KVM_REG_MIPS_CP0_PWCTL 32 2494 MIPS KVM_REG_MIPS_CP0_HWRENA 32 2292 MIPS KVM_REG_MIPS_CP0_HWRENA 32 2495 MIPS KVM_REG_MIPS_CP0_BADVADDR 64 2293 MIPS KVM_REG_MIPS_CP0_BADVADDR 64 2496 MIPS KVM_REG_MIPS_CP0_BADINSTR 32 2294 MIPS KVM_REG_MIPS_CP0_BADINSTR 32 2497 MIPS KVM_REG_MIPS_CP0_BADINSTRP 32 2295 MIPS KVM_REG_MIPS_CP0_BADINSTRP 32 2498 MIPS KVM_REG_MIPS_CP0_COUNT 32 2296 MIPS KVM_REG_MIPS_CP0_COUNT 32 2499 MIPS KVM_REG_MIPS_CP0_ENTRYHI 64 2297 MIPS KVM_REG_MIPS_CP0_ENTRYHI 64 2500 MIPS KVM_REG_MIPS_CP0_COMPARE 32 2298 MIPS KVM_REG_MIPS_CP0_COMPARE 32 2501 MIPS KVM_REG_MIPS_CP0_STATUS 32 2299 MIPS KVM_REG_MIPS_CP0_STATUS 32 2502 MIPS KVM_REG_MIPS_CP0_INTCTL 32 2300 MIPS KVM_REG_MIPS_CP0_INTCTL 32 2503 MIPS KVM_REG_MIPS_CP0_CAUSE 32 2301 MIPS KVM_REG_MIPS_CP0_CAUSE 32 2504 MIPS KVM_REG_MIPS_CP0_EPC 64 2302 MIPS KVM_REG_MIPS_CP0_EPC 64 2505 MIPS KVM_REG_MIPS_CP0_PRID 32 2303 MIPS KVM_REG_MIPS_CP0_PRID 32 2506 MIPS KVM_REG_MIPS_CP0_EBASE 64 2304 MIPS KVM_REG_MIPS_CP0_EBASE 64 2507 MIPS KVM_REG_MIPS_CP0_CONFIG 32 2305 MIPS KVM_REG_MIPS_CP0_CONFIG 32 2508 MIPS KVM_REG_MIPS_CP0_CONFIG1 32 2306 MIPS KVM_REG_MIPS_CP0_CONFIG1 32 2509 MIPS KVM_REG_MIPS_CP0_CONFIG2 32 2307 MIPS KVM_REG_MIPS_CP0_CONFIG2 32 2510 MIPS KVM_REG_MIPS_CP0_CONFIG3 32 2308 MIPS KVM_REG_MIPS_CP0_CONFIG3 32 2511 MIPS KVM_REG_MIPS_CP0_CONFIG4 32 2309 MIPS KVM_REG_MIPS_CP0_CONFIG4 32 2512 MIPS KVM_REG_MIPS_CP0_CONFIG5 32 2310 MIPS KVM_REG_MIPS_CP0_CONFIG5 32 2513 MIPS KVM_REG_MIPS_CP0_CONFIG7 32 2311 MIPS KVM_REG_MIPS_CP0_CONFIG7 32 2514 MIPS KVM_REG_MIPS_CP0_XCONTEXT 64 2312 MIPS KVM_REG_MIPS_CP0_XCONTEXT 64 2515 MIPS KVM_REG_MIPS_CP0_ERROREPC 64 2313 MIPS KVM_REG_MIPS_CP0_ERROREPC 64 2516 MIPS KVM_REG_MIPS_CP0_KSCRATCH1 64 2314 MIPS KVM_REG_MIPS_CP0_KSCRATCH1 64 2517 MIPS KVM_REG_MIPS_CP0_KSCRATCH2 64 2315 MIPS KVM_REG_MIPS_CP0_KSCRATCH2 64 2518 MIPS KVM_REG_MIPS_CP0_KSCRATCH3 64 2316 MIPS KVM_REG_MIPS_CP0_KSCRATCH3 64 2519 MIPS KVM_REG_MIPS_CP0_KSCRATCH4 64 2317 MIPS KVM_REG_MIPS_CP0_KSCRATCH4 64 2520 MIPS KVM_REG_MIPS_CP0_KSCRATCH5 64 2318 MIPS KVM_REG_MIPS_CP0_KSCRATCH5 64 2521 MIPS KVM_REG_MIPS_CP0_KSCRATCH6 64 2319 MIPS KVM_REG_MIPS_CP0_KSCRATCH6 64 2522 MIPS KVM_REG_MIPS_CP0_MAAR(0..63) 64 2320 MIPS KVM_REG_MIPS_CP0_MAAR(0..63) 64 2523 MIPS KVM_REG_MIPS_COUNT_CTL 64 2321 MIPS KVM_REG_MIPS_COUNT_CTL 64 2524 MIPS KVM_REG_MIPS_COUNT_RESUME 64 2322 MIPS KVM_REG_MIPS_COUNT_RESUME 64 2525 MIPS KVM_REG_MIPS_COUNT_HZ 64 2323 MIPS KVM_REG_MIPS_COUNT_HZ 64 2526 MIPS KVM_REG_MIPS_FPR_32(0..31) 32 2324 MIPS KVM_REG_MIPS_FPR_32(0..31) 32 2527 MIPS KVM_REG_MIPS_FPR_64(0..31) 64 2325 MIPS KVM_REG_MIPS_FPR_64(0..31) 64 2528 MIPS KVM_REG_MIPS_VEC_128(0..31) 128 2326 MIPS KVM_REG_MIPS_VEC_128(0..31) 128 2529 MIPS KVM_REG_MIPS_FCR_IR 32 2327 MIPS KVM_REG_MIPS_FCR_IR 32 2530 MIPS KVM_REG_MIPS_FCR_CSR 32 2328 MIPS KVM_REG_MIPS_FCR_CSR 32 2531 MIPS KVM_REG_MIPS_MSA_IR 32 2329 MIPS KVM_REG_MIPS_MSA_IR 32 2532 MIPS KVM_REG_MIPS_MSA_CSR 32 2330 MIPS KVM_REG_MIPS_MSA_CSR 32 2533 ======= =============================== === 2331 ======= =============================== ============ 2534 2332 2535 ARM registers are mapped using the lower 32 b 2333 ARM registers are mapped using the lower 32 bits. The upper 16 of that 2536 is the register group type, or coprocessor nu 2334 is the register group type, or coprocessor number: 2537 2335 2538 ARM core registers have the following id bit 2336 ARM core registers have the following id bit patterns:: 2539 2337 2540 0x4020 0000 0010 <index into the kvm_regs s 2338 0x4020 0000 0010 <index into the kvm_regs struct:16> 2541 2339 2542 ARM 32-bit CP15 registers have the following 2340 ARM 32-bit CP15 registers have the following id bit patterns:: 2543 2341 2544 0x4020 0000 000F <zero:1> <crn:4> <crm:4> < 2342 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3> 2545 2343 2546 ARM 64-bit CP15 registers have the following 2344 ARM 64-bit CP15 registers have the following id bit patterns:: 2547 2345 2548 0x4030 0000 000F <zero:1> <zero:4> <crm:4> 2346 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3> 2549 2347 2550 ARM CCSIDR registers are demultiplexed by CSS 2348 ARM CCSIDR registers are demultiplexed by CSSELR value:: 2551 2349 2552 0x4020 0000 0011 00 <csselr:8> 2350 0x4020 0000 0011 00 <csselr:8> 2553 2351 2554 ARM 32-bit VFP control registers have the fol 2352 ARM 32-bit VFP control registers have the following id bit patterns:: 2555 2353 2556 0x4020 0000 0012 1 <regno:12> 2354 0x4020 0000 0012 1 <regno:12> 2557 2355 2558 ARM 64-bit FP registers have the following id 2356 ARM 64-bit FP registers have the following id bit patterns:: 2559 2357 2560 0x4030 0000 0012 0 <regno:12> 2358 0x4030 0000 0012 0 <regno:12> 2561 2359 2562 ARM firmware pseudo-registers have the follow 2360 ARM firmware pseudo-registers have the following bit pattern:: 2563 2361 2564 0x4030 0000 0014 <regno:16> 2362 0x4030 0000 0014 <regno:16> 2565 2363 2566 2364 2567 arm64 registers are mapped using the lower 32 2365 arm64 registers are mapped using the lower 32 bits. The upper 16 of 2568 that is the register group type, or coprocess 2366 that is the register group type, or coprocessor number: 2569 2367 2570 arm64 core/FP-SIMD registers have the followi 2368 arm64 core/FP-SIMD registers have the following id bit patterns. Note 2571 that the size of the access is variable, as t 2369 that the size of the access is variable, as the kvm_regs structure 2572 contains elements ranging from 32 to 128 bits 2370 contains elements ranging from 32 to 128 bits. The index is a 32bit 2573 value in the kvm_regs structure seen as a 32b 2371 value in the kvm_regs structure seen as a 32bit array:: 2574 2372 2575 0x60x0 0000 0010 <index into the kvm_regs s 2373 0x60x0 0000 0010 <index into the kvm_regs struct:16> 2576 2374 2577 Specifically: 2375 Specifically: 2578 2376 2579 ======================= ========= ===== ===== 2377 ======================= ========= ===== ======================================= 2580 Encoding Register Bits kvm_r 2378 Encoding Register Bits kvm_regs member 2581 ======================= ========= ===== ===== 2379 ======================= ========= ===== ======================================= 2582 0x6030 0000 0010 0000 X0 64 regs. 2380 0x6030 0000 0010 0000 X0 64 regs.regs[0] 2583 0x6030 0000 0010 0002 X1 64 regs. 2381 0x6030 0000 0010 0002 X1 64 regs.regs[1] 2584 ... 2382 ... 2585 0x6030 0000 0010 003c X30 64 regs. 2383 0x6030 0000 0010 003c X30 64 regs.regs[30] 2586 0x6030 0000 0010 003e SP 64 regs. 2384 0x6030 0000 0010 003e SP 64 regs.sp 2587 0x6030 0000 0010 0040 PC 64 regs. 2385 0x6030 0000 0010 0040 PC 64 regs.pc 2588 0x6030 0000 0010 0042 PSTATE 64 regs. 2386 0x6030 0000 0010 0042 PSTATE 64 regs.pstate 2589 0x6030 0000 0010 0044 SP_EL1 64 sp_el 2387 0x6030 0000 0010 0044 SP_EL1 64 sp_el1 2590 0x6030 0000 0010 0046 ELR_EL1 64 elr_e 2388 0x6030 0000 0010 0046 ELR_EL1 64 elr_el1 2591 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[ 2389 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[KVM_SPSR_EL1] (alias SPSR_SVC) 2592 0x6030 0000 0010 004a SPSR_ABT 64 spsr[ 2390 0x6030 0000 0010 004a SPSR_ABT 64 spsr[KVM_SPSR_ABT] 2593 0x6030 0000 0010 004c SPSR_UND 64 spsr[ 2391 0x6030 0000 0010 004c SPSR_UND 64 spsr[KVM_SPSR_UND] 2594 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[ 2392 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[KVM_SPSR_IRQ] 2595 0x6030 0000 0010 0050 SPSR_FIQ 64 spsr[ !! 2393 0x6060 0000 0010 0050 SPSR_FIQ 64 spsr[KVM_SPSR_FIQ] 2596 0x6040 0000 0010 0054 V0 128 fp_re 2394 0x6040 0000 0010 0054 V0 128 fp_regs.vregs[0] [1]_ 2597 0x6040 0000 0010 0058 V1 128 fp_re 2395 0x6040 0000 0010 0058 V1 128 fp_regs.vregs[1] [1]_ 2598 ... 2396 ... 2599 0x6040 0000 0010 00d0 V31 128 fp_re 2397 0x6040 0000 0010 00d0 V31 128 fp_regs.vregs[31] [1]_ 2600 0x6020 0000 0010 00d4 FPSR 32 fp_re 2398 0x6020 0000 0010 00d4 FPSR 32 fp_regs.fpsr 2601 0x6020 0000 0010 00d5 FPCR 32 fp_re 2399 0x6020 0000 0010 00d5 FPCR 32 fp_regs.fpcr 2602 ======================= ========= ===== ===== 2400 ======================= ========= ===== ======================================= 2603 2401 2604 .. [1] These encodings are not accepted for S 2402 .. [1] These encodings are not accepted for SVE-enabled vcpus. See 2605 KVM_ARM_VCPU_INIT. 2403 KVM_ARM_VCPU_INIT. 2606 2404 2607 The equivalent register content can be 2405 The equivalent register content can be accessed via bits [127:0] of 2608 the corresponding SVE Zn registers ins 2406 the corresponding SVE Zn registers instead for vcpus that have SVE 2609 enabled (see below). 2407 enabled (see below). 2610 2408 2611 arm64 CCSIDR registers are demultiplexed by C 2409 arm64 CCSIDR registers are demultiplexed by CSSELR value:: 2612 2410 2613 0x6020 0000 0011 00 <csselr:8> 2411 0x6020 0000 0011 00 <csselr:8> 2614 2412 2615 arm64 system registers have the following id 2413 arm64 system registers have the following id bit patterns:: 2616 2414 2617 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <c 2415 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3> 2618 2416 2619 .. warning:: 2417 .. warning:: 2620 2418 2621 Two system register IDs do not follow th 2419 Two system register IDs do not follow the specified pattern. These 2622 are KVM_REG_ARM_TIMER_CVAL and KVM_REG_A 2420 are KVM_REG_ARM_TIMER_CVAL and KVM_REG_ARM_TIMER_CNT, which map to 2623 system registers CNTV_CVAL_EL0 and CNTVC 2421 system registers CNTV_CVAL_EL0 and CNTVCT_EL0 respectively. These 2624 two had their values accidentally swappe 2422 two had their values accidentally swapped, which means TIMER_CVAL is 2625 derived from the register encoding for C 2423 derived from the register encoding for CNTVCT_EL0 and TIMER_CNT is 2626 derived from the register encoding for C 2424 derived from the register encoding for CNTV_CVAL_EL0. As this is 2627 API, it must remain this way. 2425 API, it must remain this way. 2628 2426 2629 arm64 firmware pseudo-registers have the foll 2427 arm64 firmware pseudo-registers have the following bit pattern:: 2630 2428 2631 0x6030 0000 0014 <regno:16> 2429 0x6030 0000 0014 <regno:16> 2632 2430 2633 arm64 SVE registers have the following bit pa 2431 arm64 SVE registers have the following bit patterns:: 2634 2432 2635 0x6080 0000 0015 00 <n:5> <slice:5> Zn bi 2433 0x6080 0000 0015 00 <n:5> <slice:5> Zn bits[2048*slice + 2047 : 2048*slice] 2636 0x6050 0000 0015 04 <n:4> <slice:5> Pn bi 2434 0x6050 0000 0015 04 <n:4> <slice:5> Pn bits[256*slice + 255 : 256*slice] 2637 0x6050 0000 0015 060 <slice:5> FFR b 2435 0x6050 0000 0015 060 <slice:5> FFR bits[256*slice + 255 : 256*slice] 2638 0x6060 0000 0015 ffff KVM_R 2436 0x6060 0000 0015 ffff KVM_REG_ARM64_SVE_VLS pseudo-register 2639 2437 2640 Access to register IDs where 2048 * slice >= 2438 Access to register IDs where 2048 * slice >= 128 * max_vq will fail with 2641 ENOENT. max_vq is the vcpu's maximum support 2439 ENOENT. max_vq is the vcpu's maximum supported vector length in 128-bit 2642 quadwords: see [2]_ below. 2440 quadwords: see [2]_ below. 2643 2441 2644 These registers are only accessible on vcpus 2442 These registers are only accessible on vcpus for which SVE is enabled. 2645 See KVM_ARM_VCPU_INIT for details. 2443 See KVM_ARM_VCPU_INIT for details. 2646 2444 2647 In addition, except for KVM_REG_ARM64_SVE_VLS 2445 In addition, except for KVM_REG_ARM64_SVE_VLS, these registers are not 2648 accessible until the vcpu's SVE configuration 2446 accessible until the vcpu's SVE configuration has been finalized 2649 using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE) 2447 using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). See KVM_ARM_VCPU_INIT 2650 and KVM_ARM_VCPU_FINALIZE for more informatio 2448 and KVM_ARM_VCPU_FINALIZE for more information about this procedure. 2651 2449 2652 KVM_REG_ARM64_SVE_VLS is a pseudo-register th 2450 KVM_REG_ARM64_SVE_VLS is a pseudo-register that allows the set of vector 2653 lengths supported by the vcpu to be discovere 2451 lengths supported by the vcpu to be discovered and configured by 2654 userspace. When transferred to or from user 2452 userspace. When transferred to or from user memory via KVM_GET_ONE_REG 2655 or KVM_SET_ONE_REG, the value of this registe 2453 or KVM_SET_ONE_REG, the value of this register is of type 2656 __u64[KVM_ARM64_SVE_VLS_WORDS], and encodes t 2454 __u64[KVM_ARM64_SVE_VLS_WORDS], and encodes the set of vector lengths as 2657 follows:: 2455 follows:: 2658 2456 2659 __u64 vector_lengths[KVM_ARM64_SVE_VLS_WORD 2457 __u64 vector_lengths[KVM_ARM64_SVE_VLS_WORDS]; 2660 2458 2661 if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX && 2459 if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX && 2662 ((vector_lengths[(vq - KVM_ARM64_SVE_VQ 2460 ((vector_lengths[(vq - KVM_ARM64_SVE_VQ_MIN) / 64] >> 2663 ((vq - KVM_ARM64_SVE_VQ_MIN) 2461 ((vq - KVM_ARM64_SVE_VQ_MIN) % 64)) & 1)) 2664 /* Vector length vq * 16 bytes suppor 2462 /* Vector length vq * 16 bytes supported */ 2665 else 2463 else 2666 /* Vector length vq * 16 bytes not su 2464 /* Vector length vq * 16 bytes not supported */ 2667 2465 2668 .. [2] The maximum value vq for which the abo 2466 .. [2] The maximum value vq for which the above condition is true is 2669 max_vq. This is the maximum vector le 2467 max_vq. This is the maximum vector length available to the guest on 2670 this vcpu, and determines which regist 2468 this vcpu, and determines which register slices are visible through 2671 this ioctl interface. 2469 this ioctl interface. 2672 2470 2673 (See Documentation/arch/arm64/sve.rst for an !! 2471 (See Documentation/arm64/sve.rst for an explanation of the "vq" 2674 nomenclature.) 2472 nomenclature.) 2675 2473 2676 KVM_REG_ARM64_SVE_VLS is only accessible afte 2474 KVM_REG_ARM64_SVE_VLS is only accessible after KVM_ARM_VCPU_INIT. 2677 KVM_ARM_VCPU_INIT initialises it to the best 2475 KVM_ARM_VCPU_INIT initialises it to the best set of vector lengths that 2678 the host supports. 2476 the host supports. 2679 2477 2680 Userspace may subsequently modify it if desir 2478 Userspace may subsequently modify it if desired until the vcpu's SVE 2681 configuration is finalized using KVM_ARM_VCPU 2479 configuration is finalized using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). 2682 2480 2683 Apart from simply removing all vector lengths 2481 Apart from simply removing all vector lengths from the host set that 2684 exceed some value, support for arbitrarily ch 2482 exceed some value, support for arbitrarily chosen sets of vector lengths 2685 is hardware-dependent and may not be availabl 2483 is hardware-dependent and may not be available. Attempting to configure 2686 an invalid set of vector lengths via KVM_SET_ 2484 an invalid set of vector lengths via KVM_SET_ONE_REG will fail with 2687 EINVAL. 2485 EINVAL. 2688 2486 2689 After the vcpu's SVE configuration is finaliz 2487 After the vcpu's SVE configuration is finalized, further attempts to 2690 write this register will fail with EPERM. 2488 write this register will fail with EPERM. 2691 2489 2692 arm64 bitmap feature firmware pseudo-register << 2693 << 2694 0x6030 0000 0016 <regno:16> << 2695 << 2696 The bitmap feature firmware registers exposes << 2697 are available for userspace to configure. The << 2698 services that are available for the guests to << 2699 sets all the supported bits during VM initial << 2700 discover the available services via KVM_GET_O << 2701 bitmap corresponding to the features that it << 2702 KVM_SET_ONE_REG. << 2703 << 2704 Note: These registers are immutable once any << 2705 run at least once. A KVM_SET_ONE_REG in such << 2706 a -EBUSY to userspace. << 2707 << 2708 (See Documentation/virt/kvm/arm/hypercalls.rs << 2709 << 2710 2490 2711 MIPS registers are mapped using the lower 32 2491 MIPS registers are mapped using the lower 32 bits. The upper 16 of that is 2712 the register group type: 2492 the register group type: 2713 2493 2714 MIPS core registers (see above) have the foll 2494 MIPS core registers (see above) have the following id bit patterns:: 2715 2495 2716 0x7030 0000 0000 <reg:16> 2496 0x7030 0000 0000 <reg:16> 2717 2497 2718 MIPS CP0 registers (see KVM_REG_MIPS_CP0_* ab 2498 MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit 2719 patterns depending on whether they're 32-bit 2499 patterns depending on whether they're 32-bit or 64-bit registers:: 2720 2500 2721 0x7020 0000 0001 00 <reg:5> <sel:3> (32-b 2501 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit) 2722 0x7030 0000 0001 00 <reg:5> <sel:3> (64-b 2502 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit) 2723 2503 2724 Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_M 2504 Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64 2725 versions of the EntryLo registers regardless 2505 versions of the EntryLo registers regardless of the word size of the host 2726 hardware, host kernel, guest, and whether XPA 2506 hardware, host kernel, guest, and whether XPA is present in the guest, i.e. 2727 with the RI and XI bits (if they exist) in bi 2507 with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and 2728 the PFNX field starting at bit 30. 2508 the PFNX field starting at bit 30. 2729 2509 2730 MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) abov 2510 MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit 2731 patterns:: 2511 patterns:: 2732 2512 2733 0x7030 0000 0001 01 <reg:8> 2513 0x7030 0000 0001 01 <reg:8> 2734 2514 2735 MIPS KVM control registers (see above) have t 2515 MIPS KVM control registers (see above) have the following id bit patterns:: 2736 2516 2737 0x7030 0000 0002 <reg:16> 2517 0x7030 0000 0002 <reg:16> 2738 2518 2739 MIPS FPU registers (see KVM_REG_MIPS_FPR_{32, 2519 MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following 2740 id bit patterns depending on the size of the 2520 id bit patterns depending on the size of the register being accessed. They are 2741 always accessed according to the current gues 2521 always accessed according to the current guest FPU mode (Status.FR and 2742 Config5.FRE), i.e. as the guest would see the 2522 Config5.FRE), i.e. as the guest would see them, and they become unpredictable 2743 if the guest FPU mode is changed. MIPS SIMD A 2523 if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector 2744 registers (see KVM_REG_MIPS_VEC_128() above) 2524 registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they 2745 overlap the FPU registers:: 2525 overlap the FPU registers:: 2746 2526 2747 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit F 2527 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers) 2748 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit F 2528 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers) 2749 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit 2529 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers) 2750 2530 2751 MIPS FPU control registers (see KVM_REG_MIPS_ 2531 MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the 2752 following id bit patterns:: 2532 following id bit patterns:: 2753 2533 2754 0x7020 0000 0003 01 <0:3> <reg:5> 2534 0x7020 0000 0003 01 <0:3> <reg:5> 2755 2535 2756 MIPS MSA control registers (see KVM_REG_MIPS_ 2536 MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the 2757 following id bit patterns:: 2537 following id bit patterns:: 2758 2538 2759 0x7020 0000 0003 02 <0:3> <reg:5> 2539 0x7020 0000 0003 02 <0:3> <reg:5> 2760 2540 2761 RISC-V registers are mapped using the lower 3 << 2762 that is the register group type. << 2763 << 2764 RISC-V config registers are meant for configu << 2765 the following id bit patterns:: << 2766 << 2767 0x8020 0000 01 <index into the kvm_riscv_co << 2768 0x8030 0000 01 <index into the kvm_riscv_co << 2769 << 2770 Following are the RISC-V config registers: << 2771 << 2772 ======================= ========= =========== << 2773 Encoding Register Description << 2774 ======================= ========= =========== << 2775 0x80x0 0000 0100 0000 isa ISA feature << 2776 ======================= ========= =========== << 2777 << 2778 The isa config register can be read anytime b << 2779 a Guest VCPU runs. It will have ISA feature b << 2780 set by default. << 2781 << 2782 RISC-V core registers represent the general e << 2783 and it has the following id bit patterns:: << 2784 << 2785 0x8020 0000 02 <index into the kvm_riscv_co << 2786 0x8030 0000 02 <index into the kvm_riscv_co << 2787 << 2788 Following are the RISC-V core registers: << 2789 << 2790 ======================= ========= =========== << 2791 Encoding Register Description << 2792 ======================= ========= =========== << 2793 0x80x0 0000 0200 0000 regs.pc Program cou << 2794 0x80x0 0000 0200 0001 regs.ra Return addr << 2795 0x80x0 0000 0200 0002 regs.sp Stack point << 2796 0x80x0 0000 0200 0003 regs.gp Global poin << 2797 0x80x0 0000 0200 0004 regs.tp Task pointe << 2798 0x80x0 0000 0200 0005 regs.t0 Caller save << 2799 0x80x0 0000 0200 0006 regs.t1 Caller save << 2800 0x80x0 0000 0200 0007 regs.t2 Caller save << 2801 0x80x0 0000 0200 0008 regs.s0 Callee save << 2802 0x80x0 0000 0200 0009 regs.s1 Callee save << 2803 0x80x0 0000 0200 000a regs.a0 Function ar << 2804 0x80x0 0000 0200 000b regs.a1 Function ar << 2805 0x80x0 0000 0200 000c regs.a2 Function ar << 2806 0x80x0 0000 0200 000d regs.a3 Function ar << 2807 0x80x0 0000 0200 000e regs.a4 Function ar << 2808 0x80x0 0000 0200 000f regs.a5 Function ar << 2809 0x80x0 0000 0200 0010 regs.a6 Function ar << 2810 0x80x0 0000 0200 0011 regs.a7 Function ar << 2811 0x80x0 0000 0200 0012 regs.s2 Callee save << 2812 0x80x0 0000 0200 0013 regs.s3 Callee save << 2813 0x80x0 0000 0200 0014 regs.s4 Callee save << 2814 0x80x0 0000 0200 0015 regs.s5 Callee save << 2815 0x80x0 0000 0200 0016 regs.s6 Callee save << 2816 0x80x0 0000 0200 0017 regs.s7 Callee save << 2817 0x80x0 0000 0200 0018 regs.s8 Callee save << 2818 0x80x0 0000 0200 0019 regs.s9 Callee save << 2819 0x80x0 0000 0200 001a regs.s10 Callee save << 2820 0x80x0 0000 0200 001b regs.s11 Callee save << 2821 0x80x0 0000 0200 001c regs.t3 Caller save << 2822 0x80x0 0000 0200 001d regs.t4 Caller save << 2823 0x80x0 0000 0200 001e regs.t5 Caller save << 2824 0x80x0 0000 0200 001f regs.t6 Caller save << 2825 0x80x0 0000 0200 0020 mode Privilege m << 2826 ======================= ========= =========== << 2827 << 2828 RISC-V csr registers represent the supervisor << 2829 of a Guest VCPU and it has the following id b << 2830 << 2831 0x8020 0000 03 <index into the kvm_riscv_cs << 2832 0x8030 0000 03 <index into the kvm_riscv_cs << 2833 << 2834 Following are the RISC-V csr registers: << 2835 << 2836 ======================= ========= =========== << 2837 Encoding Register Description << 2838 ======================= ========= =========== << 2839 0x80x0 0000 0300 0000 sstatus Supervisor << 2840 0x80x0 0000 0300 0001 sie Supervisor << 2841 0x80x0 0000 0300 0002 stvec Supervisor << 2842 0x80x0 0000 0300 0003 sscratch Supervisor << 2843 0x80x0 0000 0300 0004 sepc Supervisor << 2844 0x80x0 0000 0300 0005 scause Supervisor << 2845 0x80x0 0000 0300 0006 stval Supervisor << 2846 0x80x0 0000 0300 0007 sip Supervisor << 2847 0x80x0 0000 0300 0008 satp Supervisor << 2848 ======================= ========= =========== << 2849 << 2850 RISC-V timer registers represent the timer st << 2851 the following id bit patterns:: << 2852 << 2853 0x8030 0000 04 <index into the kvm_riscv_ti << 2854 << 2855 Following are the RISC-V timer registers: << 2856 << 2857 ======================= ========= =========== << 2858 Encoding Register Description << 2859 ======================= ========= =========== << 2860 0x8030 0000 0400 0000 frequency Time base f << 2861 0x8030 0000 0400 0001 time Time value << 2862 0x8030 0000 0400 0002 compare Time compar << 2863 0x8030 0000 0400 0003 state Time compar << 2864 ======================= ========= =========== << 2865 << 2866 RISC-V F-extension registers represent the si << 2867 state of a Guest VCPU and it has the followin << 2868 << 2869 0x8020 0000 05 <index into the __riscv_f_ex << 2870 << 2871 Following are the RISC-V F-extension register << 2872 << 2873 ======================= ========= =========== << 2874 Encoding Register Description << 2875 ======================= ========= =========== << 2876 0x8020 0000 0500 0000 f[0] Floating po << 2877 ... << 2878 0x8020 0000 0500 001f f[31] Floating po << 2879 0x8020 0000 0500 0020 fcsr Floating po << 2880 ======================= ========= =========== << 2881 << 2882 RISC-V D-extension registers represent the do << 2883 state of a Guest VCPU and it has the followin << 2884 << 2885 0x8020 0000 06 <index into the __riscv_d_ex << 2886 0x8030 0000 06 <index into the __riscv_d_ex << 2887 << 2888 Following are the RISC-V D-extension register << 2889 << 2890 ======================= ========= =========== << 2891 Encoding Register Description << 2892 ======================= ========= =========== << 2893 0x8030 0000 0600 0000 f[0] Floating po << 2894 ... << 2895 0x8030 0000 0600 001f f[31] Floating po << 2896 0x8020 0000 0600 0020 fcsr Floating po << 2897 ======================= ========= =========== << 2898 << 2899 LoongArch registers are mapped using the lowe << 2900 that is the register group type. << 2901 << 2902 LoongArch csr registers are used to control g << 2903 cpu, and they have the following id bit patte << 2904 << 2905 0x9030 0000 0001 00 <reg:5> <sel:3> (64-b << 2906 << 2907 LoongArch KVM control registers are used to i << 2908 such as set vcpu counter or reset vcpu, and t << 2909 << 2910 0x9030 0000 0002 <reg:16> << 2911 << 2912 2541 2913 4.69 KVM_GET_ONE_REG 2542 4.69 KVM_GET_ONE_REG 2914 -------------------- 2543 -------------------- 2915 2544 2916 :Capability: KVM_CAP_ONE_REG 2545 :Capability: KVM_CAP_ONE_REG 2917 :Architectures: all 2546 :Architectures: all 2918 :Type: vcpu ioctl 2547 :Type: vcpu ioctl 2919 :Parameters: struct kvm_one_reg (in and out) 2548 :Parameters: struct kvm_one_reg (in and out) 2920 :Returns: 0 on success, negative value on fai 2549 :Returns: 0 on success, negative value on failure 2921 2550 2922 Errors include: 2551 Errors include: 2923 2552 2924 ======== ================================== 2553 ======== ============================================================ 2925 ENOENT no such register !! 2554  ENOENT   no such register 2926 EINVAL invalid register ID, or no such re !! 2555  EINVAL   invalid register ID, or no such register 2927 protected virtualization mode on s !! 2556  EPERM    (arm64) register access not allowed before vcpu finalization 2928 EPERM (arm64) register access not allowe << 2929 ======== ================================== 2557 ======== ============================================================ 2930 2558 2931 (These error codes are indicative only: do no 2559 (These error codes are indicative only: do not rely on a specific error 2932 code being returned in a specific situation.) 2560 code being returned in a specific situation.) 2933 2561 2934 This ioctl allows to receive the value of a s 2562 This ioctl allows to receive the value of a single register implemented 2935 in a vcpu. The register to read is indicated 2563 in a vcpu. The register to read is indicated by the "id" field of the 2936 kvm_one_reg struct passed in. On success, the 2564 kvm_one_reg struct passed in. On success, the register value can be found 2937 at the memory location pointed to by "addr". 2565 at the memory location pointed to by "addr". 2938 2566 2939 The list of registers accessible using this i 2567 The list of registers accessible using this interface is identical to the 2940 list in 4.68. 2568 list in 4.68. 2941 2569 2942 2570 2943 4.70 KVM_KVMCLOCK_CTRL 2571 4.70 KVM_KVMCLOCK_CTRL 2944 ---------------------- 2572 ---------------------- 2945 2573 2946 :Capability: KVM_CAP_KVMCLOCK_CTRL 2574 :Capability: KVM_CAP_KVMCLOCK_CTRL 2947 :Architectures: Any that implement pvclocks ( 2575 :Architectures: Any that implement pvclocks (currently x86 only) 2948 :Type: vcpu ioctl 2576 :Type: vcpu ioctl 2949 :Parameters: None 2577 :Parameters: None 2950 :Returns: 0 on success, -1 on error 2578 :Returns: 0 on success, -1 on error 2951 2579 2952 This ioctl sets a flag accessible to the gues !! 2580 This signals to the host kernel that the specified guest is being paused by 2953 vCPU has been paused by the host userspace. !! 2581 userspace. The host will set a flag in the pvclock structure that is checked 2954 !! 2582 from the soft lockup watchdog. The flag is part of the pvclock structure that 2955 The host will set a flag in the pvclock struc !! 2583 is shared between guest and host, specifically the second bit of the flags 2956 soft lockup watchdog. The flag is part of th << 2957 shared between guest and host, specifically t << 2958 field of the pvclock_vcpu_time_info structure 2584 field of the pvclock_vcpu_time_info structure. It will be set exclusively by 2959 the host and read/cleared exclusively by the 2585 the host and read/cleared exclusively by the guest. The guest operation of 2960 checking and clearing the flag must be an ato !! 2586 checking and clearing the flag must an atomic operation so 2961 load-link/store-conditional, or equivalent mu 2587 load-link/store-conditional, or equivalent must be used. There are two cases 2962 where the guest will clear the flag: when the 2588 where the guest will clear the flag: when the soft lockup watchdog timer resets 2963 itself or when a soft lockup is detected. Th 2589 itself or when a soft lockup is detected. This ioctl can be called any time 2964 after pausing the vcpu, but before it is resu 2590 after pausing the vcpu, but before it is resumed. 2965 2591 2966 2592 2967 4.71 KVM_SIGNAL_MSI 2593 4.71 KVM_SIGNAL_MSI 2968 ------------------- 2594 ------------------- 2969 2595 2970 :Capability: KVM_CAP_SIGNAL_MSI 2596 :Capability: KVM_CAP_SIGNAL_MSI 2971 :Architectures: x86 arm64 !! 2597 :Architectures: x86 arm arm64 2972 :Type: vm ioctl 2598 :Type: vm ioctl 2973 :Parameters: struct kvm_msi (in) 2599 :Parameters: struct kvm_msi (in) 2974 :Returns: >0 on delivery, 0 if guest blocked 2600 :Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error 2975 2601 2976 Directly inject a MSI message. Only valid wit 2602 Directly inject a MSI message. Only valid with in-kernel irqchip that handles 2977 MSI messages. 2603 MSI messages. 2978 2604 2979 :: 2605 :: 2980 2606 2981 struct kvm_msi { 2607 struct kvm_msi { 2982 __u32 address_lo; 2608 __u32 address_lo; 2983 __u32 address_hi; 2609 __u32 address_hi; 2984 __u32 data; 2610 __u32 data; 2985 __u32 flags; 2611 __u32 flags; 2986 __u32 devid; 2612 __u32 devid; 2987 __u8 pad[12]; 2613 __u8 pad[12]; 2988 }; 2614 }; 2989 2615 2990 flags: 2616 flags: 2991 KVM_MSI_VALID_DEVID: devid contains a valid 2617 KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM 2992 KVM_CAP_MSI_DEVID capability advertises the 2618 KVM_CAP_MSI_DEVID capability advertises the requirement to provide 2993 the device ID. If this capability is not a 2619 the device ID. If this capability is not available, userspace 2994 should never set the KVM_MSI_VALID_DEVID fl 2620 should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. 2995 2621 2996 If KVM_MSI_VALID_DEVID is set, devid contains 2622 If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier 2997 for the device that wrote the MSI message. F 2623 for the device that wrote the MSI message. For PCI, this is usually a 2998 BDF identifier in the lower 16 bits. !! 2624 BFD identifier in the lower 16 bits. 2999 2625 3000 On x86, address_hi is ignored unless the KVM_ 2626 On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS 3001 feature of KVM_CAP_X2APIC_API capability is e 2627 feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, 3002 address_hi bits 31-8 provide bits 31-8 of the 2628 address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of 3003 address_hi must be zero. 2629 address_hi must be zero. 3004 2630 3005 2631 3006 4.71 KVM_CREATE_PIT2 2632 4.71 KVM_CREATE_PIT2 3007 -------------------- 2633 -------------------- 3008 2634 3009 :Capability: KVM_CAP_PIT2 2635 :Capability: KVM_CAP_PIT2 3010 :Architectures: x86 2636 :Architectures: x86 3011 :Type: vm ioctl 2637 :Type: vm ioctl 3012 :Parameters: struct kvm_pit_config (in) 2638 :Parameters: struct kvm_pit_config (in) 3013 :Returns: 0 on success, -1 on error 2639 :Returns: 0 on success, -1 on error 3014 2640 3015 Creates an in-kernel device model for the i82 2641 Creates an in-kernel device model for the i8254 PIT. This call is only valid 3016 after enabling in-kernel irqchip support via 2642 after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following 3017 parameters have to be passed:: 2643 parameters have to be passed:: 3018 2644 3019 struct kvm_pit_config { 2645 struct kvm_pit_config { 3020 __u32 flags; 2646 __u32 flags; 3021 __u32 pad[15]; 2647 __u32 pad[15]; 3022 }; 2648 }; 3023 2649 3024 Valid flags are:: 2650 Valid flags are:: 3025 2651 3026 #define KVM_PIT_SPEAKER_DUMMY 1 /* emul 2652 #define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */ 3027 2653 3028 PIT timer interrupts may use a per-VM kernel 2654 PIT timer interrupts may use a per-VM kernel thread for injection. If it 3029 exists, this thread will have a name of the f 2655 exists, this thread will have a name of the following pattern:: 3030 2656 3031 kvm-pit/<owner-process-pid> 2657 kvm-pit/<owner-process-pid> 3032 2658 3033 When running a guest with elevated priorities 2659 When running a guest with elevated priorities, the scheduling parameters of 3034 this thread may have to be adjusted according 2660 this thread may have to be adjusted accordingly. 3035 2661 3036 This IOCTL replaces the obsolete KVM_CREATE_P 2662 This IOCTL replaces the obsolete KVM_CREATE_PIT. 3037 2663 3038 2664 3039 4.72 KVM_GET_PIT2 2665 4.72 KVM_GET_PIT2 3040 ----------------- 2666 ----------------- 3041 2667 3042 :Capability: KVM_CAP_PIT_STATE2 2668 :Capability: KVM_CAP_PIT_STATE2 3043 :Architectures: x86 2669 :Architectures: x86 3044 :Type: vm ioctl 2670 :Type: vm ioctl 3045 :Parameters: struct kvm_pit_state2 (out) 2671 :Parameters: struct kvm_pit_state2 (out) 3046 :Returns: 0 on success, -1 on error 2672 :Returns: 0 on success, -1 on error 3047 2673 3048 Retrieves the state of the in-kernel PIT mode 2674 Retrieves the state of the in-kernel PIT model. Only valid after 3049 KVM_CREATE_PIT2. The state is returned in the 2675 KVM_CREATE_PIT2. The state is returned in the following structure:: 3050 2676 3051 struct kvm_pit_state2 { 2677 struct kvm_pit_state2 { 3052 struct kvm_pit_channel_state channels 2678 struct kvm_pit_channel_state channels[3]; 3053 __u32 flags; 2679 __u32 flags; 3054 __u32 reserved[9]; 2680 __u32 reserved[9]; 3055 }; 2681 }; 3056 2682 3057 Valid flags are:: 2683 Valid flags are:: 3058 2684 3059 /* disable PIT in HPET legacy mode */ 2685 /* disable PIT in HPET legacy mode */ 3060 #define KVM_PIT_FLAGS_HPET_LEGACY 0x000 !! 2686 #define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001 3061 /* speaker port data bit enabled */ << 3062 #define KVM_PIT_FLAGS_SPEAKER_DATA_ON 0x000 << 3063 2687 3064 This IOCTL replaces the obsolete KVM_GET_PIT. 2688 This IOCTL replaces the obsolete KVM_GET_PIT. 3065 2689 3066 2690 3067 4.73 KVM_SET_PIT2 2691 4.73 KVM_SET_PIT2 3068 ----------------- 2692 ----------------- 3069 2693 3070 :Capability: KVM_CAP_PIT_STATE2 2694 :Capability: KVM_CAP_PIT_STATE2 3071 :Architectures: x86 2695 :Architectures: x86 3072 :Type: vm ioctl 2696 :Type: vm ioctl 3073 :Parameters: struct kvm_pit_state2 (in) 2697 :Parameters: struct kvm_pit_state2 (in) 3074 :Returns: 0 on success, -1 on error 2698 :Returns: 0 on success, -1 on error 3075 2699 3076 Sets the state of the in-kernel PIT model. On 2700 Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2. 3077 See KVM_GET_PIT2 for details on struct kvm_pi 2701 See KVM_GET_PIT2 for details on struct kvm_pit_state2. 3078 2702 3079 This IOCTL replaces the obsolete KVM_SET_PIT. 2703 This IOCTL replaces the obsolete KVM_SET_PIT. 3080 2704 3081 2705 3082 4.74 KVM_PPC_GET_SMMU_INFO 2706 4.74 KVM_PPC_GET_SMMU_INFO 3083 -------------------------- 2707 -------------------------- 3084 2708 3085 :Capability: KVM_CAP_PPC_GET_SMMU_INFO 2709 :Capability: KVM_CAP_PPC_GET_SMMU_INFO 3086 :Architectures: powerpc 2710 :Architectures: powerpc 3087 :Type: vm ioctl 2711 :Type: vm ioctl 3088 :Parameters: None 2712 :Parameters: None 3089 :Returns: 0 on success, -1 on error 2713 :Returns: 0 on success, -1 on error 3090 2714 3091 This populates and returns a structure descri 2715 This populates and returns a structure describing the features of 3092 the "Server" class MMU emulation supported by 2716 the "Server" class MMU emulation supported by KVM. 3093 This can in turn be used by userspace to gene 2717 This can in turn be used by userspace to generate the appropriate 3094 device-tree properties for the guest operatin 2718 device-tree properties for the guest operating system. 3095 2719 3096 The structure contains some global informatio 2720 The structure contains some global information, followed by an 3097 array of supported segment page sizes:: 2721 array of supported segment page sizes:: 3098 2722 3099 struct kvm_ppc_smmu_info { 2723 struct kvm_ppc_smmu_info { 3100 __u64 flags; 2724 __u64 flags; 3101 __u32 slb_size; 2725 __u32 slb_size; 3102 __u32 pad; 2726 __u32 pad; 3103 struct kvm_ppc_one_seg_page_size 2727 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ]; 3104 }; 2728 }; 3105 2729 3106 The supported flags are: 2730 The supported flags are: 3107 2731 3108 - KVM_PPC_PAGE_SIZES_REAL: 2732 - KVM_PPC_PAGE_SIZES_REAL: 3109 When that flag is set, guest page siz 2733 When that flag is set, guest page sizes must "fit" the backing 3110 store page sizes. When not set, any p 2734 store page sizes. When not set, any page size in the list can 3111 be used regardless of how they are ba 2735 be used regardless of how they are backed by userspace. 3112 2736 3113 - KVM_PPC_1T_SEGMENTS 2737 - KVM_PPC_1T_SEGMENTS 3114 The emulated MMU supports 1T segments 2738 The emulated MMU supports 1T segments in addition to the 3115 standard 256M ones. 2739 standard 256M ones. 3116 2740 3117 - KVM_PPC_NO_HASH 2741 - KVM_PPC_NO_HASH 3118 This flag indicates that HPT guests a 2742 This flag indicates that HPT guests are not supported by KVM, 3119 thus all guests must use radix MMU mo 2743 thus all guests must use radix MMU mode. 3120 2744 3121 The "slb_size" field indicates how many SLB e 2745 The "slb_size" field indicates how many SLB entries are supported 3122 2746 3123 The "sps" array contains 8 entries indicating 2747 The "sps" array contains 8 entries indicating the supported base 3124 page sizes for a segment in increasing order. 2748 page sizes for a segment in increasing order. Each entry is defined 3125 as follow:: 2749 as follow:: 3126 2750 3127 struct kvm_ppc_one_seg_page_size { 2751 struct kvm_ppc_one_seg_page_size { 3128 __u32 page_shift; /* Base page 2752 __u32 page_shift; /* Base page shift of segment (or 0) */ 3129 __u32 slb_enc; /* SLB encodi 2753 __u32 slb_enc; /* SLB encoding for BookS */ 3130 struct kvm_ppc_one_page_size enc[KVM_ 2754 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ]; 3131 }; 2755 }; 3132 2756 3133 An entry with a "page_shift" of 0 is unused. 2757 An entry with a "page_shift" of 0 is unused. Because the array is 3134 organized in increasing order, a lookup can s !! 2758 organized in increasing order, a lookup can stop when encoutering 3135 such an entry. 2759 such an entry. 3136 2760 3137 The "slb_enc" field provides the encoding to 2761 The "slb_enc" field provides the encoding to use in the SLB for the 3138 page size. The bits are in positions such as 2762 page size. The bits are in positions such as the value can directly 3139 be OR'ed into the "vsid" argument of the slbm 2763 be OR'ed into the "vsid" argument of the slbmte instruction. 3140 2764 3141 The "enc" array is a list which for each of t 2765 The "enc" array is a list which for each of those segment base page 3142 size provides the list of supported actual pa 2766 size provides the list of supported actual page sizes (which can be 3143 only larger or equal to the base page size), 2767 only larger or equal to the base page size), along with the 3144 corresponding encoding in the hash PTE. Simil 2768 corresponding encoding in the hash PTE. Similarly, the array is 3145 8 entries sorted by increasing sizes and an e 2769 8 entries sorted by increasing sizes and an entry with a "0" shift 3146 is an empty entry and a terminator:: 2770 is an empty entry and a terminator:: 3147 2771 3148 struct kvm_ppc_one_page_size { 2772 struct kvm_ppc_one_page_size { 3149 __u32 page_shift; /* Page shift 2773 __u32 page_shift; /* Page shift (or 0) */ 3150 __u32 pte_enc; /* Encoding i 2774 __u32 pte_enc; /* Encoding in the HPTE (>>12) */ 3151 }; 2775 }; 3152 2776 3153 The "pte_enc" field provides a value that can 2777 The "pte_enc" field provides a value that can OR'ed into the hash 3154 PTE's RPN field (ie, it needs to be shifted l 2778 PTE's RPN field (ie, it needs to be shifted left by 12 to OR it 3155 into the hash PTE second double word). 2779 into the hash PTE second double word). 3156 2780 3157 4.75 KVM_IRQFD 2781 4.75 KVM_IRQFD 3158 -------------- 2782 -------------- 3159 2783 3160 :Capability: KVM_CAP_IRQFD 2784 :Capability: KVM_CAP_IRQFD 3161 :Architectures: x86 s390 arm64 !! 2785 :Architectures: x86 s390 arm arm64 3162 :Type: vm ioctl 2786 :Type: vm ioctl 3163 :Parameters: struct kvm_irqfd (in) 2787 :Parameters: struct kvm_irqfd (in) 3164 :Returns: 0 on success, -1 on error 2788 :Returns: 0 on success, -1 on error 3165 2789 3166 Allows setting an eventfd to directly trigger 2790 Allows setting an eventfd to directly trigger a guest interrupt. 3167 kvm_irqfd.fd specifies the file descriptor to 2791 kvm_irqfd.fd specifies the file descriptor to use as the eventfd and 3168 kvm_irqfd.gsi specifies the irqchip pin toggl 2792 kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When 3169 an event is triggered on the eventfd, an inte 2793 an event is triggered on the eventfd, an interrupt is injected into 3170 the guest using the specified gsi pin. The i 2794 the guest using the specified gsi pin. The irqfd is removed using 3171 the KVM_IRQFD_FLAG_DEASSIGN flag, specifying 2795 the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd 3172 and kvm_irqfd.gsi. 2796 and kvm_irqfd.gsi. 3173 2797 3174 With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD suppor 2798 With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify 3175 mechanism allowing emulation of level-trigger 2799 mechanism allowing emulation of level-triggered, irqfd-based 3176 interrupts. When KVM_IRQFD_FLAG_RESAMPLE is 2800 interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an 3177 additional eventfd in the kvm_irqfd.resamplef 2801 additional eventfd in the kvm_irqfd.resamplefd field. When operating 3178 in resample mode, posting of an interrupt thr 2802 in resample mode, posting of an interrupt through kvm_irq.fd asserts 3179 the specified gsi in the irqchip. When the i 2803 the specified gsi in the irqchip. When the irqchip is resampled, such 3180 as from an EOI, the gsi is de-asserted and th 2804 as from an EOI, the gsi is de-asserted and the user is notified via 3181 kvm_irqfd.resamplefd. It is the user's respo 2805 kvm_irqfd.resamplefd. It is the user's responsibility to re-queue 3182 the interrupt if the device making use of it 2806 the interrupt if the device making use of it still requires service. 3183 Note that closing the resamplefd is not suffi 2807 Note that closing the resamplefd is not sufficient to disable the 3184 irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only n 2808 irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment 3185 and need not be specified with KVM_IRQFD_FLAG 2809 and need not be specified with KVM_IRQFD_FLAG_DEASSIGN. 3186 2810 3187 On arm64, gsi routing being supported, the fo !! 2811 On arm/arm64, gsi routing being supported, the following can happen: 3188 2812 3189 - in case no routing entry is associated to t 2813 - in case no routing entry is associated to this gsi, injection fails 3190 - in case the gsi is associated to an irqchip 2814 - in case the gsi is associated to an irqchip routing entry, 3191 irqchip.pin + 32 corresponds to the injecte 2815 irqchip.pin + 32 corresponds to the injected SPI ID. 3192 - in case the gsi is associated to an MSI rou 2816 - in case the gsi is associated to an MSI routing entry, the MSI 3193 message and device ID are translated into a 2817 message and device ID are translated into an LPI (support restricted 3194 to GICv3 ITS in-kernel emulation). 2818 to GICv3 ITS in-kernel emulation). 3195 2819 3196 4.76 KVM_PPC_ALLOCATE_HTAB 2820 4.76 KVM_PPC_ALLOCATE_HTAB 3197 -------------------------- 2821 -------------------------- 3198 2822 3199 :Capability: KVM_CAP_PPC_ALLOC_HTAB 2823 :Capability: KVM_CAP_PPC_ALLOC_HTAB 3200 :Architectures: powerpc 2824 :Architectures: powerpc 3201 :Type: vm ioctl 2825 :Type: vm ioctl 3202 :Parameters: Pointer to u32 containing hash t 2826 :Parameters: Pointer to u32 containing hash table order (in/out) 3203 :Returns: 0 on success, -1 on error 2827 :Returns: 0 on success, -1 on error 3204 2828 3205 This requests the host kernel to allocate an 2829 This requests the host kernel to allocate an MMU hash table for a 3206 guest using the PAPR paravirtualization inter 2830 guest using the PAPR paravirtualization interface. This only does 3207 anything if the kernel is configured to use t 2831 anything if the kernel is configured to use the Book 3S HV style of 3208 virtualization. Otherwise the capability doe 2832 virtualization. Otherwise the capability doesn't exist and the ioctl 3209 returns an ENOTTY error. The rest of this de 2833 returns an ENOTTY error. The rest of this description assumes Book 3S 3210 HV. 2834 HV. 3211 2835 3212 There must be no vcpus running when this ioct 2836 There must be no vcpus running when this ioctl is called; if there 3213 are, it will do nothing and return an EBUSY e 2837 are, it will do nothing and return an EBUSY error. 3214 2838 3215 The parameter is a pointer to a 32-bit unsign 2839 The parameter is a pointer to a 32-bit unsigned integer variable 3216 containing the order (log base 2) of the desi 2840 containing the order (log base 2) of the desired size of the hash 3217 table, which must be between 18 and 46. On s 2841 table, which must be between 18 and 46. On successful return from the 3218 ioctl, the value will not be changed by the k 2842 ioctl, the value will not be changed by the kernel. 3219 2843 3220 If no hash table has been allocated when any 2844 If no hash table has been allocated when any vcpu is asked to run 3221 (with the KVM_RUN ioctl), the host kernel wil 2845 (with the KVM_RUN ioctl), the host kernel will allocate a 3222 default-sized hash table (16 MB). 2846 default-sized hash table (16 MB). 3223 2847 3224 If this ioctl is called when a hash table has 2848 If this ioctl is called when a hash table has already been allocated, 3225 with a different order from the existing hash 2849 with a different order from the existing hash table, the existing hash 3226 table will be freed and a new one allocated. 2850 table will be freed and a new one allocated. If this is ioctl is 3227 called when a hash table has already been all 2851 called when a hash table has already been allocated of the same order 3228 as specified, the kernel will clear out the e 2852 as specified, the kernel will clear out the existing hash table (zero 3229 all HPTEs). In either case, if the guest is 2853 all HPTEs). In either case, if the guest is using the virtualized 3230 real-mode area (VRMA) facility, the kernel wi 2854 real-mode area (VRMA) facility, the kernel will re-create the VMRA 3231 HPTEs on the next KVM_RUN of any vcpu. 2855 HPTEs on the next KVM_RUN of any vcpu. 3232 2856 3233 4.77 KVM_S390_INTERRUPT 2857 4.77 KVM_S390_INTERRUPT 3234 ----------------------- 2858 ----------------------- 3235 2859 3236 :Capability: basic 2860 :Capability: basic 3237 :Architectures: s390 2861 :Architectures: s390 3238 :Type: vm ioctl, vcpu ioctl 2862 :Type: vm ioctl, vcpu ioctl 3239 :Parameters: struct kvm_s390_interrupt (in) 2863 :Parameters: struct kvm_s390_interrupt (in) 3240 :Returns: 0 on success, -1 on error 2864 :Returns: 0 on success, -1 on error 3241 2865 3242 Allows to inject an interrupt to the guest. I 2866 Allows to inject an interrupt to the guest. Interrupts can be floating 3243 (vm ioctl) or per cpu (vcpu ioctl), depending 2867 (vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type. 3244 2868 3245 Interrupt parameters are passed via kvm_s390_ 2869 Interrupt parameters are passed via kvm_s390_interrupt:: 3246 2870 3247 struct kvm_s390_interrupt { 2871 struct kvm_s390_interrupt { 3248 __u32 type; 2872 __u32 type; 3249 __u32 parm; 2873 __u32 parm; 3250 __u64 parm64; 2874 __u64 parm64; 3251 }; 2875 }; 3252 2876 3253 type can be one of the following: 2877 type can be one of the following: 3254 2878 3255 KVM_S390_SIGP_STOP (vcpu) 2879 KVM_S390_SIGP_STOP (vcpu) 3256 - sigp stop; optional flags in parm 2880 - sigp stop; optional flags in parm 3257 KVM_S390_PROGRAM_INT (vcpu) 2881 KVM_S390_PROGRAM_INT (vcpu) 3258 - program check; code in parm 2882 - program check; code in parm 3259 KVM_S390_SIGP_SET_PREFIX (vcpu) 2883 KVM_S390_SIGP_SET_PREFIX (vcpu) 3260 - sigp set prefix; prefix address in parm 2884 - sigp set prefix; prefix address in parm 3261 KVM_S390_RESTART (vcpu) 2885 KVM_S390_RESTART (vcpu) 3262 - restart 2886 - restart 3263 KVM_S390_INT_CLOCK_COMP (vcpu) 2887 KVM_S390_INT_CLOCK_COMP (vcpu) 3264 - clock comparator interrupt 2888 - clock comparator interrupt 3265 KVM_S390_INT_CPU_TIMER (vcpu) 2889 KVM_S390_INT_CPU_TIMER (vcpu) 3266 - CPU timer interrupt 2890 - CPU timer interrupt 3267 KVM_S390_INT_VIRTIO (vm) 2891 KVM_S390_INT_VIRTIO (vm) 3268 - virtio external interrupt; external int 2892 - virtio external interrupt; external interrupt 3269 parameters in parm and parm64 2893 parameters in parm and parm64 3270 KVM_S390_INT_SERVICE (vm) 2894 KVM_S390_INT_SERVICE (vm) 3271 - sclp external interrupt; sclp parameter 2895 - sclp external interrupt; sclp parameter in parm 3272 KVM_S390_INT_EMERGENCY (vcpu) 2896 KVM_S390_INT_EMERGENCY (vcpu) 3273 - sigp emergency; source cpu in parm 2897 - sigp emergency; source cpu in parm 3274 KVM_S390_INT_EXTERNAL_CALL (vcpu) 2898 KVM_S390_INT_EXTERNAL_CALL (vcpu) 3275 - sigp external call; source cpu in parm 2899 - sigp external call; source cpu in parm 3276 KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) 2900 KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) 3277 - compound value to indicate an 2901 - compound value to indicate an 3278 I/O interrupt (ai - adapter interrupt; 2902 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel); 3279 I/O interruption parameters in parm (su 2903 I/O interruption parameters in parm (subchannel) and parm64 (intparm, 3280 interruption subclass) 2904 interruption subclass) 3281 KVM_S390_MCHK (vm, vcpu) 2905 KVM_S390_MCHK (vm, vcpu) 3282 - machine check interrupt; cr 14 bits in 2906 - machine check interrupt; cr 14 bits in parm, machine check interrupt 3283 code in parm64 (note that machine check 2907 code in parm64 (note that machine checks needing further payload are not 3284 supported by this ioctl) 2908 supported by this ioctl) 3285 2909 3286 This is an asynchronous vcpu ioctl and can be 2910 This is an asynchronous vcpu ioctl and can be invoked from any thread. 3287 2911 3288 4.78 KVM_PPC_GET_HTAB_FD 2912 4.78 KVM_PPC_GET_HTAB_FD 3289 ------------------------ 2913 ------------------------ 3290 2914 3291 :Capability: KVM_CAP_PPC_HTAB_FD 2915 :Capability: KVM_CAP_PPC_HTAB_FD 3292 :Architectures: powerpc 2916 :Architectures: powerpc 3293 :Type: vm ioctl 2917 :Type: vm ioctl 3294 :Parameters: Pointer to struct kvm_get_htab_f 2918 :Parameters: Pointer to struct kvm_get_htab_fd (in) 3295 :Returns: file descriptor number (>= 0) on su 2919 :Returns: file descriptor number (>= 0) on success, -1 on error 3296 2920 3297 This returns a file descriptor that can be us 2921 This returns a file descriptor that can be used either to read out the 3298 entries in the guest's hashed page table (HPT 2922 entries in the guest's hashed page table (HPT), or to write entries to 3299 initialize the HPT. The returned fd can only 2923 initialize the HPT. The returned fd can only be written to if the 3300 KVM_GET_HTAB_WRITE bit is set in the flags fi 2924 KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and 3301 can only be read if that bit is clear. The a 2925 can only be read if that bit is clear. The argument struct looks like 3302 this:: 2926 this:: 3303 2927 3304 /* For KVM_PPC_GET_HTAB_FD */ 2928 /* For KVM_PPC_GET_HTAB_FD */ 3305 struct kvm_get_htab_fd { 2929 struct kvm_get_htab_fd { 3306 __u64 flags; 2930 __u64 flags; 3307 __u64 start_index; 2931 __u64 start_index; 3308 __u64 reserved[2]; 2932 __u64 reserved[2]; 3309 }; 2933 }; 3310 2934 3311 /* Values for kvm_get_htab_fd.flags */ 2935 /* Values for kvm_get_htab_fd.flags */ 3312 #define KVM_GET_HTAB_BOLTED_ONLY ((__u 2936 #define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1) 3313 #define KVM_GET_HTAB_WRITE ((__u 2937 #define KVM_GET_HTAB_WRITE ((__u64)0x2) 3314 2938 3315 The 'start_index' field gives the index in th 2939 The 'start_index' field gives the index in the HPT of the entry at 3316 which to start reading. It is ignored when w 2940 which to start reading. It is ignored when writing. 3317 2941 3318 Reads on the fd will initially supply informa 2942 Reads on the fd will initially supply information about all 3319 "interesting" HPT entries. Interesting entri 2943 "interesting" HPT entries. Interesting entries are those with the 3320 bolted bit set, if the KVM_GET_HTAB_BOLTED_ON 2944 bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise 3321 all entries. When the end of the HPT is reac 2945 all entries. When the end of the HPT is reached, the read() will 3322 return. If read() is called again on the fd, 2946 return. If read() is called again on the fd, it will start again from 3323 the beginning of the HPT, but will only retur 2947 the beginning of the HPT, but will only return HPT entries that have 3324 changed since they were last read. 2948 changed since they were last read. 3325 2949 3326 Data read or written is structured as a heade 2950 Data read or written is structured as a header (8 bytes) followed by a 3327 series of valid HPT entries (16 bytes) each. 2951 series of valid HPT entries (16 bytes) each. The header indicates how 3328 many valid HPT entries there are and how many 2952 many valid HPT entries there are and how many invalid entries follow 3329 the valid entries. The invalid entries are n 2953 the valid entries. The invalid entries are not represented explicitly 3330 in the stream. The header format is:: 2954 in the stream. The header format is:: 3331 2955 3332 struct kvm_get_htab_header { 2956 struct kvm_get_htab_header { 3333 __u32 index; 2957 __u32 index; 3334 __u16 n_valid; 2958 __u16 n_valid; 3335 __u16 n_invalid; 2959 __u16 n_invalid; 3336 }; 2960 }; 3337 2961 3338 Writes to the fd create HPT entries starting 2962 Writes to the fd create HPT entries starting at the index given in the 3339 header; first 'n_valid' valid entries with co 2963 header; first 'n_valid' valid entries with contents from the data 3340 written, then 'n_invalid' invalid entries, in 2964 written, then 'n_invalid' invalid entries, invalidating any previously 3341 valid entries found. 2965 valid entries found. 3342 2966 3343 4.79 KVM_CREATE_DEVICE 2967 4.79 KVM_CREATE_DEVICE 3344 ---------------------- 2968 ---------------------- 3345 2969 3346 :Capability: KVM_CAP_DEVICE_CTRL 2970 :Capability: KVM_CAP_DEVICE_CTRL 3347 :Architectures: all << 3348 :Type: vm ioctl 2971 :Type: vm ioctl 3349 :Parameters: struct kvm_create_device (in/out 2972 :Parameters: struct kvm_create_device (in/out) 3350 :Returns: 0 on success, -1 on error 2973 :Returns: 0 on success, -1 on error 3351 2974 3352 Errors: 2975 Errors: 3353 2976 3354 ====== =================================== 2977 ====== ======================================================= 3355 ENODEV The device type is unknown or unsup 2978 ENODEV The device type is unknown or unsupported 3356 EEXIST Device already created, and this ty 2979 EEXIST Device already created, and this type of device may not 3357 be instantiated multiple times 2980 be instantiated multiple times 3358 ====== =================================== 2981 ====== ======================================================= 3359 2982 3360 Other error conditions may be defined by in 2983 Other error conditions may be defined by individual device types or 3361 have their standard meanings. 2984 have their standard meanings. 3362 2985 3363 Creates an emulated device in the kernel. Th 2986 Creates an emulated device in the kernel. The file descriptor returned 3364 in fd can be used with KVM_SET/GET/HAS_DEVICE 2987 in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR. 3365 2988 3366 If the KVM_CREATE_DEVICE_TEST flag is set, on 2989 If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the 3367 device type is supported (not necessarily whe 2990 device type is supported (not necessarily whether it can be created 3368 in the current vm). 2991 in the current vm). 3369 2992 3370 Individual devices should not define flags. 2993 Individual devices should not define flags. Attributes should be used 3371 for specifying any behavior that is not impli 2994 for specifying any behavior that is not implied by the device type 3372 number. 2995 number. 3373 2996 3374 :: 2997 :: 3375 2998 3376 struct kvm_create_device { 2999 struct kvm_create_device { 3377 __u32 type; /* in: KVM_DEV_TYPE_x 3000 __u32 type; /* in: KVM_DEV_TYPE_xxx */ 3378 __u32 fd; /* out: device handle 3001 __u32 fd; /* out: device handle */ 3379 __u32 flags; /* in: KVM_CREATE_DEV 3002 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */ 3380 }; 3003 }; 3381 3004 3382 4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR 3005 4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR 3383 -------------------------------------------- 3006 -------------------------------------------- 3384 3007 3385 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ 3008 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, 3386 KVM_CAP_VCPU_ATTRIBUTES for vcpu 3009 KVM_CAP_VCPU_ATTRIBUTES for vcpu device 3387 KVM_CAP_SYS_ATTRIBUTES for syste << 3388 :Architectures: x86, arm64, s390 << 3389 :Type: device ioctl, vm ioctl, vcpu ioctl 3010 :Type: device ioctl, vm ioctl, vcpu ioctl 3390 :Parameters: struct kvm_device_attr 3011 :Parameters: struct kvm_device_attr 3391 :Returns: 0 on success, -1 on error 3012 :Returns: 0 on success, -1 on error 3392 3013 3393 Errors: 3014 Errors: 3394 3015 3395 ===== =================================== 3016 ===== ============================================================= 3396 ENXIO The group or attribute is unknown/u 3017 ENXIO The group or attribute is unknown/unsupported for this device 3397 or hardware support is missing. 3018 or hardware support is missing. 3398 EPERM The attribute cannot (currently) be 3019 EPERM The attribute cannot (currently) be accessed this way 3399 (e.g. read-only attribute, or attri 3020 (e.g. read-only attribute, or attribute that only makes 3400 sense when the device is in a diffe 3021 sense when the device is in a different state) 3401 ===== =================================== 3022 ===== ============================================================= 3402 3023 3403 Other error conditions may be defined by in 3024 Other error conditions may be defined by individual device types. 3404 3025 3405 Gets/sets a specified piece of device configu 3026 Gets/sets a specified piece of device configuration and/or state. The 3406 semantics are device-specific. See individua 3027 semantics are device-specific. See individual device documentation in 3407 the "devices" directory. As with ONE_REG, th 3028 the "devices" directory. As with ONE_REG, the size of the data 3408 transferred is defined by the particular attr 3029 transferred is defined by the particular attribute. 3409 3030 3410 :: 3031 :: 3411 3032 3412 struct kvm_device_attr { 3033 struct kvm_device_attr { 3413 __u32 flags; /* no flags c 3034 __u32 flags; /* no flags currently defined */ 3414 __u32 group; /* device-def 3035 __u32 group; /* device-defined */ 3415 __u64 attr; /* group-defi 3036 __u64 attr; /* group-defined */ 3416 __u64 addr; /* userspace 3037 __u64 addr; /* userspace address of attr data */ 3417 }; 3038 }; 3418 3039 3419 4.81 KVM_HAS_DEVICE_ATTR 3040 4.81 KVM_HAS_DEVICE_ATTR 3420 ------------------------ 3041 ------------------------ 3421 3042 3422 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ 3043 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, 3423 KVM_CAP_VCPU_ATTRIBUTES for vcpu !! 3044 KVM_CAP_VCPU_ATTRIBUTES for vcpu device 3424 KVM_CAP_SYS_ATTRIBUTES for syste << 3425 :Type: device ioctl, vm ioctl, vcpu ioctl 3045 :Type: device ioctl, vm ioctl, vcpu ioctl 3426 :Parameters: struct kvm_device_attr 3046 :Parameters: struct kvm_device_attr 3427 :Returns: 0 on success, -1 on error 3047 :Returns: 0 on success, -1 on error 3428 3048 3429 Errors: 3049 Errors: 3430 3050 3431 ===== =================================== 3051 ===== ============================================================= 3432 ENXIO The group or attribute is unknown/u 3052 ENXIO The group or attribute is unknown/unsupported for this device 3433 or hardware support is missing. 3053 or hardware support is missing. 3434 ===== =================================== 3054 ===== ============================================================= 3435 3055 3436 Tests whether a device supports a particular 3056 Tests whether a device supports a particular attribute. A successful 3437 return indicates the attribute is implemented 3057 return indicates the attribute is implemented. It does not necessarily 3438 indicate that the attribute can be read or wr 3058 indicate that the attribute can be read or written in the device's 3439 current state. "addr" is ignored. 3059 current state. "addr" is ignored. 3440 3060 3441 .. _KVM_ARM_VCPU_INIT: << 3442 << 3443 4.82 KVM_ARM_VCPU_INIT 3061 4.82 KVM_ARM_VCPU_INIT 3444 ---------------------- 3062 ---------------------- 3445 3063 3446 :Capability: basic 3064 :Capability: basic 3447 :Architectures: arm64 !! 3065 :Architectures: arm, arm64 3448 :Type: vcpu ioctl 3066 :Type: vcpu ioctl 3449 :Parameters: struct kvm_vcpu_init (in) 3067 :Parameters: struct kvm_vcpu_init (in) 3450 :Returns: 0 on success; -1 on error 3068 :Returns: 0 on success; -1 on error 3451 3069 3452 Errors: 3070 Errors: 3453 3071 3454 ====== ================================ 3072 ====== ================================================================= 3455 EINVAL the target is unknown, or the co !! 3073  EINVAL    the target is unknown, or the combination of features is invalid. 3456 ENOENT a features bit specified is unkn !! 3074  ENOENT    a features bit specified is unknown. 3457 ====== ================================ 3075 ====== ================================================================= 3458 3076 3459 This tells KVM what type of CPU to present to 3077 This tells KVM what type of CPU to present to the guest, and what 3460 optional features it should have. This will !! 3078 optional features it should have.  This will cause a reset of the cpu 3461 registers to their initial values. If this i !! 3079 registers to their initial values.  If this is not called, KVM_RUN will 3462 return ENOEXEC for that vcpu. 3080 return ENOEXEC for that vcpu. 3463 3081 3464 The initial values are defined as: << 3465 - Processor state: << 3466 * AArch64: EL1h, D, A, I and << 3467 are cleared. << 3468 * AArch32: SVC, A, I and F bi << 3469 cleared. << 3470 - General Purpose registers, includin << 3471 - FPSIMD/NEON registers: set to 0 << 3472 - SVE registers: set to 0 << 3473 - System registers: Reset to their ar << 3474 values as for a warm reset to EL1 ( << 3475 << 3476 Note that because some registers reflect mach 3082 Note that because some registers reflect machine topology, all vcpus 3477 should be created before this ioctl is invoke 3083 should be created before this ioctl is invoked. 3478 3084 3479 Userspace can call this function multiple tim 3085 Userspace can call this function multiple times for a given vcpu, including 3480 after the vcpu has been run. This will reset 3086 after the vcpu has been run. This will reset the vcpu to its initial 3481 state. All calls to this function after the i 3087 state. All calls to this function after the initial call must use the same 3482 target and same set of feature flags, otherwi 3088 target and same set of feature flags, otherwise EINVAL will be returned. 3483 3089 3484 Possible features: 3090 Possible features: 3485 3091 3486 - KVM_ARM_VCPU_POWER_OFF: Starts the 3092 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state. 3487 Depends on KVM_CAP_ARM_PSCI. If no 3093 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on 3488 and execute guest code when KVM_RUN 3094 and execute guest code when KVM_RUN is called. 3489 - KVM_ARM_VCPU_EL1_32BIT: Starts the 3095 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode. 3490 Depends on KVM_CAP_ARM_EL1_32BIT (a 3096 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only). 3491 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI 3097 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 (or a future revision 3492 backward compatible with v0.2) for 3098 backward compatible with v0.2) for the CPU. 3493 Depends on KVM_CAP_ARM_PSCI_0_2. 3099 Depends on KVM_CAP_ARM_PSCI_0_2. 3494 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 3100 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU. 3495 Depends on KVM_CAP_ARM_PMU_V3. 3101 Depends on KVM_CAP_ARM_PMU_V3. 3496 3102 3497 - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enabl 3103 - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enables Address Pointer authentication 3498 for arm64 only. 3104 for arm64 only. 3499 Depends on KVM_CAP_ARM_PTRAUTH_ADDR 3105 Depends on KVM_CAP_ARM_PTRAUTH_ADDRESS. 3500 If KVM_CAP_ARM_PTRAUTH_ADDRESS and 3106 If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are 3501 both present, then both KVM_ARM_VCP 3107 both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and 3502 KVM_ARM_VCPU_PTRAUTH_GENERIC must b 3108 KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be 3503 requested. 3109 requested. 3504 3110 3505 - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enabl 3111 - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enables Generic Pointer authentication 3506 for arm64 only. 3112 for arm64 only. 3507 Depends on KVM_CAP_ARM_PTRAUTH_GENE 3113 Depends on KVM_CAP_ARM_PTRAUTH_GENERIC. 3508 If KVM_CAP_ARM_PTRAUTH_ADDRESS and 3114 If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are 3509 both present, then both KVM_ARM_VCP 3115 both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and 3510 KVM_ARM_VCPU_PTRAUTH_GENERIC must b 3116 KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be 3511 requested. 3117 requested. 3512 3118 3513 - KVM_ARM_VCPU_SVE: Enables SVE for t 3119 - KVM_ARM_VCPU_SVE: Enables SVE for the CPU (arm64 only). 3514 Depends on KVM_CAP_ARM_SVE. 3120 Depends on KVM_CAP_ARM_SVE. 3515 Requires KVM_ARM_VCPU_FINALIZE(KVM_ 3121 Requires KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3516 3122 3517 * After KVM_ARM_VCPU_INIT: 3123 * After KVM_ARM_VCPU_INIT: 3518 3124 3519 - KVM_REG_ARM64_SVE_VLS may be 3125 - KVM_REG_ARM64_SVE_VLS may be read using KVM_GET_ONE_REG: the 3520 initial value of this pseudo- 3126 initial value of this pseudo-register indicates the best set of 3521 vector lengths possible for a 3127 vector lengths possible for a vcpu on this host. 3522 3128 3523 * Before KVM_ARM_VCPU_FINALIZE(KVM 3129 * Before KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3524 3130 3525 - KVM_RUN and KVM_GET_REG_LIST 3131 - KVM_RUN and KVM_GET_REG_LIST are not available; 3526 3132 3527 - KVM_GET_ONE_REG and KVM_SET_O 3133 - KVM_GET_ONE_REG and KVM_SET_ONE_REG cannot be used to access 3528 the scalable architectural SV !! 3134 the scalable archietctural SVE registers 3529 KVM_REG_ARM64_SVE_ZREG(), KVM 3135 KVM_REG_ARM64_SVE_ZREG(), KVM_REG_ARM64_SVE_PREG() or 3530 KVM_REG_ARM64_SVE_FFR; 3136 KVM_REG_ARM64_SVE_FFR; 3531 3137 3532 - KVM_REG_ARM64_SVE_VLS may opt 3138 - KVM_REG_ARM64_SVE_VLS may optionally be written using 3533 KVM_SET_ONE_REG, to modify th 3139 KVM_SET_ONE_REG, to modify the set of vector lengths available 3534 for the vcpu. 3140 for the vcpu. 3535 3141 3536 * After KVM_ARM_VCPU_FINALIZE(KVM_ 3142 * After KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3537 3143 3538 - the KVM_REG_ARM64_SVE_VLS pse 3144 - the KVM_REG_ARM64_SVE_VLS pseudo-register is immutable, and can 3539 no longer be written using KV 3145 no longer be written using KVM_SET_ONE_REG. 3540 3146 3541 4.83 KVM_ARM_PREFERRED_TARGET 3147 4.83 KVM_ARM_PREFERRED_TARGET 3542 ----------------------------- 3148 ----------------------------- 3543 3149 3544 :Capability: basic 3150 :Capability: basic 3545 :Architectures: arm64 !! 3151 :Architectures: arm, arm64 3546 :Type: vm ioctl 3152 :Type: vm ioctl 3547 :Parameters: struct kvm_vcpu_init (out) !! 3153 :Parameters: struct struct kvm_vcpu_init (out) 3548 :Returns: 0 on success; -1 on error 3154 :Returns: 0 on success; -1 on error 3549 3155 3550 Errors: 3156 Errors: 3551 3157 3552 ====== ================================ 3158 ====== ========================================== 3553 ENODEV no preferred target available fo 3159 ENODEV no preferred target available for the host 3554 ====== ================================ 3160 ====== ========================================== 3555 3161 3556 This queries KVM for preferred CPU target typ 3162 This queries KVM for preferred CPU target type which can be emulated 3557 by KVM on underlying host. 3163 by KVM on underlying host. 3558 3164 3559 The ioctl returns struct kvm_vcpu_init instan 3165 The ioctl returns struct kvm_vcpu_init instance containing information 3560 about preferred CPU target type and recommend 3166 about preferred CPU target type and recommended features for it. The 3561 kvm_vcpu_init->features bitmap returned will 3167 kvm_vcpu_init->features bitmap returned will have feature bits set if 3562 the preferred target recommends setting these 3168 the preferred target recommends setting these features, but this is 3563 not mandatory. 3169 not mandatory. 3564 3170 3565 The information returned by this ioctl can be 3171 The information returned by this ioctl can be used to prepare an instance 3566 of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT 3172 of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in 3567 VCPU matching underlying host. !! 3173 in VCPU matching underlying host. 3568 3174 3569 3175 3570 4.84 KVM_GET_REG_LIST 3176 4.84 KVM_GET_REG_LIST 3571 --------------------- 3177 --------------------- 3572 3178 3573 :Capability: basic 3179 :Capability: basic 3574 :Architectures: arm64, mips, riscv !! 3180 :Architectures: arm, arm64, mips 3575 :Type: vcpu ioctl 3181 :Type: vcpu ioctl 3576 :Parameters: struct kvm_reg_list (in/out) 3182 :Parameters: struct kvm_reg_list (in/out) 3577 :Returns: 0 on success; -1 on error 3183 :Returns: 0 on success; -1 on error 3578 3184 3579 Errors: 3185 Errors: 3580 3186 3581 ===== ================================ 3187 ===== ============================================================== 3582 E2BIG the reg index list is too big to !! 3188  E2BIG     the reg index list is too big to fit in the array specified by 3583 the user (the number required wi !! 3189             the user (the number required will be written into n). 3584 ===== ================================ 3190 ===== ============================================================== 3585 3191 3586 :: 3192 :: 3587 3193 3588 struct kvm_reg_list { 3194 struct kvm_reg_list { 3589 __u64 n; /* number of registers in re 3195 __u64 n; /* number of registers in reg[] */ 3590 __u64 reg[0]; 3196 __u64 reg[0]; 3591 }; 3197 }; 3592 3198 3593 This ioctl returns the guest registers that a 3199 This ioctl returns the guest registers that are supported for the 3594 KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. 3200 KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. 3595 3201 3596 3202 3597 4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated) 3203 4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated) 3598 ----------------------------------------- 3204 ----------------------------------------- 3599 3205 3600 :Capability: KVM_CAP_ARM_SET_DEVICE_ADDR 3206 :Capability: KVM_CAP_ARM_SET_DEVICE_ADDR 3601 :Architectures: arm64 !! 3207 :Architectures: arm, arm64 3602 :Type: vm ioctl 3208 :Type: vm ioctl 3603 :Parameters: struct kvm_arm_device_address (i 3209 :Parameters: struct kvm_arm_device_address (in) 3604 :Returns: 0 on success, -1 on error 3210 :Returns: 0 on success, -1 on error 3605 3211 3606 Errors: 3212 Errors: 3607 3213 3608 ====== =================================== 3214 ====== ============================================ 3609 ENODEV The device id is unknown 3215 ENODEV The device id is unknown 3610 ENXIO Device not supported on current sys 3216 ENXIO Device not supported on current system 3611 EEXIST Address already set 3217 EEXIST Address already set 3612 E2BIG Address outside guest physical addr 3218 E2BIG Address outside guest physical address space 3613 EBUSY Address overlaps with other device 3219 EBUSY Address overlaps with other device range 3614 ====== =================================== 3220 ====== ============================================ 3615 3221 3616 :: 3222 :: 3617 3223 3618 struct kvm_arm_device_addr { 3224 struct kvm_arm_device_addr { 3619 __u64 id; 3225 __u64 id; 3620 __u64 addr; 3226 __u64 addr; 3621 }; 3227 }; 3622 3228 3623 Specify a device address in the guest's physi 3229 Specify a device address in the guest's physical address space where guests 3624 can access emulated or directly exposed devic 3230 can access emulated or directly exposed devices, which the host kernel needs 3625 to know about. The id field is an architectur 3231 to know about. The id field is an architecture specific identifier for a 3626 specific device. 3232 specific device. 3627 3233 3628 arm64 divides the id field into two parts, a !! 3234 ARM/arm64 divides the id field into two parts, a device id and an 3629 address type id specific to the individual de 3235 address type id specific to the individual device:: 3630 3236 3631 bits: | 63 ... 32 | 31 ... !! 3237  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 | 3632 field: | 0x00000000 | devic 3238 field: | 0x00000000 | device id | addr type id | 3633 3239 3634 arm64 currently only require this when using !! 3240 ARM/arm64 currently only require this when using the in-kernel GIC 3635 support for the hardware VGIC features, using 3241 support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2 3636 as the device id. When setting the base addr 3242 as the device id. When setting the base address for the guest's 3637 mapping of the VGIC virtual CPU and distribut 3243 mapping of the VGIC virtual CPU and distributor interface, the ioctl 3638 must be called after calling KVM_CREATE_IRQCH 3244 must be called after calling KVM_CREATE_IRQCHIP, but before calling 3639 KVM_RUN on any of the VCPUs. Calling this io 3245 KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the 3640 base addresses will return -EEXIST. 3246 base addresses will return -EEXIST. 3641 3247 3642 Note, this IOCTL is deprecated and the more f 3248 Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API 3643 should be used instead. 3249 should be used instead. 3644 3250 3645 3251 3646 4.86 KVM_PPC_RTAS_DEFINE_TOKEN 3252 4.86 KVM_PPC_RTAS_DEFINE_TOKEN 3647 ------------------------------ 3253 ------------------------------ 3648 3254 3649 :Capability: KVM_CAP_PPC_RTAS 3255 :Capability: KVM_CAP_PPC_RTAS 3650 :Architectures: ppc 3256 :Architectures: ppc 3651 :Type: vm ioctl 3257 :Type: vm ioctl 3652 :Parameters: struct kvm_rtas_token_args 3258 :Parameters: struct kvm_rtas_token_args 3653 :Returns: 0 on success, -1 on error 3259 :Returns: 0 on success, -1 on error 3654 3260 3655 Defines a token value for a RTAS (Run Time Ab 3261 Defines a token value for a RTAS (Run Time Abstraction Services) 3656 service in order to allow it to be handled in 3262 service in order to allow it to be handled in the kernel. The 3657 argument struct gives the name of the service 3263 argument struct gives the name of the service, which must be the name 3658 of a service that has a kernel-side implement 3264 of a service that has a kernel-side implementation. If the token 3659 value is non-zero, it will be associated with 3265 value is non-zero, it will be associated with that service, and 3660 subsequent RTAS calls by the guest specifying 3266 subsequent RTAS calls by the guest specifying that token will be 3661 handled by the kernel. If the token value is 3267 handled by the kernel. If the token value is 0, then any token 3662 associated with the service will be forgotten 3268 associated with the service will be forgotten, and subsequent RTAS 3663 calls by the guest for that service will be p 3269 calls by the guest for that service will be passed to userspace to be 3664 handled. 3270 handled. 3665 3271 3666 4.87 KVM_SET_GUEST_DEBUG 3272 4.87 KVM_SET_GUEST_DEBUG 3667 ------------------------ 3273 ------------------------ 3668 3274 3669 :Capability: KVM_CAP_SET_GUEST_DEBUG 3275 :Capability: KVM_CAP_SET_GUEST_DEBUG 3670 :Architectures: x86, s390, ppc, arm64 3276 :Architectures: x86, s390, ppc, arm64 3671 :Type: vcpu ioctl 3277 :Type: vcpu ioctl 3672 :Parameters: struct kvm_guest_debug (in) 3278 :Parameters: struct kvm_guest_debug (in) 3673 :Returns: 0 on success; -1 on error 3279 :Returns: 0 on success; -1 on error 3674 3280 3675 :: 3281 :: 3676 3282 3677 struct kvm_guest_debug { 3283 struct kvm_guest_debug { 3678 __u32 control; 3284 __u32 control; 3679 __u32 pad; 3285 __u32 pad; 3680 struct kvm_guest_debug_arch arch; 3286 struct kvm_guest_debug_arch arch; 3681 }; 3287 }; 3682 3288 3683 Set up the processor specific debug registers 3289 Set up the processor specific debug registers and configure vcpu for 3684 handling guest debug events. There are two pa 3290 handling guest debug events. There are two parts to the structure, the 3685 first a control bitfield indicates the type o 3291 first a control bitfield indicates the type of debug events to handle 3686 when running. Common control bits are: 3292 when running. Common control bits are: 3687 3293 3688 - KVM_GUESTDBG_ENABLE: guest debuggi 3294 - KVM_GUESTDBG_ENABLE: guest debugging is enabled 3689 - KVM_GUESTDBG_SINGLESTEP: the next run 3295 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step 3690 3296 3691 The top 16 bits of the control field are arch 3297 The top 16 bits of the control field are architecture specific control 3692 flags which can include the following: 3298 flags which can include the following: 3693 3299 3694 - KVM_GUESTDBG_USE_SW_BP: using softwar 3300 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64] 3695 - KVM_GUESTDBG_USE_HW_BP: using hardwar !! 3301 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64] 3696 - KVM_GUESTDBG_USE_HW: using hardwar << 3697 - KVM_GUESTDBG_INJECT_DB: inject DB typ 3302 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86] 3698 - KVM_GUESTDBG_INJECT_BP: inject BP typ 3303 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86] 3699 - KVM_GUESTDBG_EXIT_PENDING: trigger an im 3304 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390] 3700 - KVM_GUESTDBG_BLOCKIRQ: avoid injecti << 3701 3305 3702 For example KVM_GUESTDBG_USE_SW_BP indicates 3306 For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints 3703 are enabled in memory so we need to ensure br 3307 are enabled in memory so we need to ensure breakpoint exceptions are 3704 correctly trapped and the KVM run loop exits 3308 correctly trapped and the KVM run loop exits at the breakpoint and not 3705 running off into the normal guest vector. For 3309 running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP 3706 we need to ensure the guest vCPUs architectur 3310 we need to ensure the guest vCPUs architecture specific registers are 3707 updated to the correct (supplied) values. 3311 updated to the correct (supplied) values. 3708 3312 3709 The second part of the structure is architect 3313 The second part of the structure is architecture specific and 3710 typically contains a set of debug registers. 3314 typically contains a set of debug registers. 3711 3315 3712 For arm64 the number of debug registers is im 3316 For arm64 the number of debug registers is implementation defined and 3713 can be determined by querying the KVM_CAP_GUE 3317 can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and 3714 KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which 3318 KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number 3715 indicating the number of supported registers. 3319 indicating the number of supported registers. 3716 3320 3717 For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP ca 3321 For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP capability indicates whether 3718 the single-step debug event (KVM_GUESTDBG_SIN 3322 the single-step debug event (KVM_GUESTDBG_SINGLESTEP) is supported. 3719 3323 3720 Also when supported, KVM_CAP_SET_GUEST_DEBUG2 << 3721 supported KVM_GUESTDBG_* bits in the control << 3722 << 3723 When debug events exit the main run loop with 3324 When debug events exit the main run loop with the reason 3724 KVM_EXIT_DEBUG with the kvm_debug_exit_arch p 3325 KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run 3725 structure containing architecture specific de 3326 structure containing architecture specific debug information. 3726 3327 3727 4.88 KVM_GET_EMULATED_CPUID 3328 4.88 KVM_GET_EMULATED_CPUID 3728 --------------------------- 3329 --------------------------- 3729 3330 3730 :Capability: KVM_CAP_EXT_EMUL_CPUID 3331 :Capability: KVM_CAP_EXT_EMUL_CPUID 3731 :Architectures: x86 3332 :Architectures: x86 3732 :Type: system ioctl 3333 :Type: system ioctl 3733 :Parameters: struct kvm_cpuid2 (in/out) 3334 :Parameters: struct kvm_cpuid2 (in/out) 3734 :Returns: 0 on success, -1 on error 3335 :Returns: 0 on success, -1 on error 3735 3336 3736 :: 3337 :: 3737 3338 3738 struct kvm_cpuid2 { 3339 struct kvm_cpuid2 { 3739 __u32 nent; 3340 __u32 nent; 3740 __u32 flags; 3341 __u32 flags; 3741 struct kvm_cpuid_entry2 entries[0]; 3342 struct kvm_cpuid_entry2 entries[0]; 3742 }; 3343 }; 3743 3344 3744 The member 'flags' is used for passing flags 3345 The member 'flags' is used for passing flags from userspace. 3745 3346 3746 :: 3347 :: 3747 3348 3748 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 3349 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) 3749 #define KVM_CPUID_FLAG_STATEFUL_FUNC !! 3350 #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) 3750 #define KVM_CPUID_FLAG_STATE_READ_NEXT !! 3351 #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) 3751 3352 3752 struct kvm_cpuid_entry2 { 3353 struct kvm_cpuid_entry2 { 3753 __u32 function; 3354 __u32 function; 3754 __u32 index; 3355 __u32 index; 3755 __u32 flags; 3356 __u32 flags; 3756 __u32 eax; 3357 __u32 eax; 3757 __u32 ebx; 3358 __u32 ebx; 3758 __u32 ecx; 3359 __u32 ecx; 3759 __u32 edx; 3360 __u32 edx; 3760 __u32 padding[3]; 3361 __u32 padding[3]; 3761 }; 3362 }; 3762 3363 3763 This ioctl returns x86 cpuid features which a 3364 This ioctl returns x86 cpuid features which are emulated by 3764 kvm.Userspace can use the information returne 3365 kvm.Userspace can use the information returned by this ioctl to query 3765 which features are emulated by kvm instead of 3366 which features are emulated by kvm instead of being present natively. 3766 3367 3767 Userspace invokes KVM_GET_EMULATED_CPUID by p 3368 Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2 3768 structure with the 'nent' field indicating th 3369 structure with the 'nent' field indicating the number of entries in 3769 the variable-size array 'entries'. If the num 3370 the variable-size array 'entries'. If the number of entries is too low 3770 to describe the cpu capabilities, an error (E 3371 to describe the cpu capabilities, an error (E2BIG) is returned. If the 3771 number is too high, the 'nent' field is adjus 3372 number is too high, the 'nent' field is adjusted and an error (ENOMEM) 3772 is returned. If the number is just right, the 3373 is returned. If the number is just right, the 'nent' field is adjusted 3773 to the number of valid entries in the 'entrie 3374 to the number of valid entries in the 'entries' array, which is then 3774 filled. 3375 filled. 3775 3376 3776 The entries returned are the set CPUID bits o 3377 The entries returned are the set CPUID bits of the respective features 3777 which kvm emulates, as returned by the CPUID 3378 which kvm emulates, as returned by the CPUID instruction, with unknown 3778 or unsupported feature bits cleared. 3379 or unsupported feature bits cleared. 3779 3380 3780 Features like x2apic, for example, may not be 3381 Features like x2apic, for example, may not be present in the host cpu 3781 but are exposed by kvm in KVM_GET_SUPPORTED_C 3382 but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be 3782 emulated efficiently and thus not included he 3383 emulated efficiently and thus not included here. 3783 3384 3784 The fields in each entry are defined as follo 3385 The fields in each entry are defined as follows: 3785 3386 3786 function: 3387 function: 3787 the eax value used to obtain the ent 3388 the eax value used to obtain the entry 3788 index: 3389 index: 3789 the ecx value used to obtain the ent 3390 the ecx value used to obtain the entry (for entries that are 3790 affected by ecx) 3391 affected by ecx) 3791 flags: 3392 flags: 3792 an OR of zero or more of the following: 3393 an OR of zero or more of the following: 3793 3394 3794 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 3395 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 3795 if the index field is valid 3396 if the index field is valid >> 3397 KVM_CPUID_FLAG_STATEFUL_FUNC: >> 3398 if cpuid for this function returns different values for successive >> 3399 invocations; there will be several entries with the same function, >> 3400 all with this flag set >> 3401 KVM_CPUID_FLAG_STATE_READ_NEXT: >> 3402 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is >> 3403 the first entry to be read by a cpu 3796 3404 3797 eax, ebx, ecx, edx: 3405 eax, ebx, ecx, edx: 3798 3406 3799 the values returned by the cpuid ins 3407 the values returned by the cpuid instruction for 3800 this function/index combination 3408 this function/index combination 3801 3409 3802 4.89 KVM_S390_MEM_OP 3410 4.89 KVM_S390_MEM_OP 3803 -------------------- 3411 -------------------- 3804 3412 3805 :Capability: KVM_CAP_S390_MEM_OP, KVM_CAP_S39 !! 3413 :Capability: KVM_CAP_S390_MEM_OP 3806 :Architectures: s390 3414 :Architectures: s390 3807 :Type: vm ioctl, vcpu ioctl !! 3415 :Type: vcpu ioctl 3808 :Parameters: struct kvm_s390_mem_op (in) 3416 :Parameters: struct kvm_s390_mem_op (in) 3809 :Returns: = 0 on success, 3417 :Returns: = 0 on success, 3810 < 0 on generic error (e.g. -EFAULT 3418 < 0 on generic error (e.g. -EFAULT or -ENOMEM), 3811 16 bit program exception code if th !! 3419 > 0 if an exception occurred while walking the page tables 3812 3420 3813 Read or write data from/to the VM's memory. !! 3421 Read or write data from/to the logical (virtual) memory of a VCPU. 3814 The KVM_CAP_S390_MEM_OP_EXTENSION capability << 3815 supported. << 3816 3422 3817 Parameters are specified via the following st 3423 Parameters are specified via the following structure:: 3818 3424 3819 struct kvm_s390_mem_op { 3425 struct kvm_s390_mem_op { 3820 __u64 gaddr; /* the guest 3426 __u64 gaddr; /* the guest address */ 3821 __u64 flags; /* flags */ 3427 __u64 flags; /* flags */ 3822 __u32 size; /* amount of 3428 __u32 size; /* amount of bytes */ 3823 __u32 op; /* type of op 3429 __u32 op; /* type of operation */ 3824 __u64 buf; /* buffer in 3430 __u64 buf; /* buffer in userspace */ 3825 union { !! 3431 __u8 ar; /* the access register number */ 3826 struct { !! 3432 __u8 reserved[31]; /* should be set to 0 */ 3827 __u8 ar; /* th << 3828 __u8 key; /* ac << 3829 __u8 pad1[6]; /* ig << 3830 __u64 old_addr; /* ig << 3831 }; << 3832 __u32 sida_offset; /* offset << 3833 __u8 reserved[32]; /* ignored << 3834 }; << 3835 }; 3433 }; 3836 3434 >> 3435 The type of operation is specified in the "op" field. It is either >> 3436 KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or >> 3437 KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The >> 3438 KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check >> 3439 whether the corresponding memory access would create an access exception >> 3440 (without touching the data in the memory at the destination). In case an >> 3441 access exception occurred while walking the MMU tables of the guest, the >> 3442 ioctl returns a positive error number to indicate the type of exception. >> 3443 This exception is also raised directly at the corresponding VCPU if the >> 3444 flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field. >> 3445 3837 The start address of the memory region has to 3446 The start address of the memory region has to be specified in the "gaddr" 3838 field, and the length of the region in the "s 3447 field, and the length of the region in the "size" field (which must not 3839 be 0). The maximum value for "size" can be ob 3448 be 0). The maximum value for "size" can be obtained by checking the 3840 KVM_CAP_S390_MEM_OP capability. "buf" is the 3449 KVM_CAP_S390_MEM_OP capability. "buf" is the buffer supplied by the 3841 userspace application where the read data sho 3450 userspace application where the read data should be written to for 3842 a read access, or where the data that should !! 3451 KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written is 3843 a write access. The "reserved" field is mean !! 3452 stored for a KVM_S390_MEMOP_LOGICAL_WRITE. When KVM_S390_MEMOP_F_CHECK_ONLY 3844 Reserved and unused values are ignored. Futur !! 3453 is specified, "buf" is unused and can be NULL. "ar" designates the access 3845 introduce new flags. !! 3454 register number to be used; the valid range is 0..15. 3846 << 3847 The type of operation is specified in the "op << 3848 their behavior can be set in the "flags" fiel << 3849 be set to 0. << 3850 << 3851 Possible operations are: << 3852 * ``KVM_S390_MEMOP_LOGICAL_READ`` << 3853 * ``KVM_S390_MEMOP_LOGICAL_WRITE`` << 3854 * ``KVM_S390_MEMOP_ABSOLUTE_READ`` << 3855 * ``KVM_S390_MEMOP_ABSOLUTE_WRITE`` << 3856 * ``KVM_S390_MEMOP_SIDA_READ`` << 3857 * ``KVM_S390_MEMOP_SIDA_WRITE`` << 3858 * ``KVM_S390_MEMOP_ABSOLUTE_CMPXCHG`` << 3859 << 3860 Logical read/write: << 3861 ^^^^^^^^^^^^^^^^^^^ << 3862 << 3863 Access logical memory, i.e. translate the giv << 3864 address given the state of the VCPU and use t << 3865 the access. "ar" designates the access regist << 3866 range is 0..15. << 3867 Logical accesses are permitted for the VCPU i << 3868 Logical accesses are permitted for non-protec << 3869 << 3870 Supported flags: << 3871 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` << 3872 * ``KVM_S390_MEMOP_F_INJECT_EXCEPTION`` << 3873 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` << 3874 << 3875 The KVM_S390_MEMOP_F_CHECK_ONLY flag can be s << 3876 corresponding memory access would cause an ac << 3877 no actual access to the data in memory at the << 3878 In this case, "buf" is unused and can be NULL << 3879 << 3880 In case an access exception occurred during t << 3881 in case of KVM_S390_MEMOP_F_CHECK_ONLY), the << 3882 error number indicating the type of exception << 3883 raised directly at the corresponding VCPU if << 3884 KVM_S390_MEMOP_F_INJECT_EXCEPTION is set. << 3885 On protection exceptions, unless specified ot << 3886 translation-exception identifier (TEID) indic << 3887 << 3888 If the KVM_S390_MEMOP_F_SKEY_PROTECTION flag << 3889 protection is also in effect and may cause ex << 3890 prohibited given the access key designated by << 3891 KVM_S390_MEMOP_F_SKEY_PROTECTION is available << 3892 is > 0. << 3893 Since the accessed memory may span multiple p << 3894 different storage keys, it is possible that a << 3895 after memory has been modified. In this case, << 3896 the TEID does not indicate suppression. << 3897 << 3898 Absolute read/write: << 3899 ^^^^^^^^^^^^^^^^^^^^ << 3900 << 3901 Access absolute memory. This operation is int << 3902 KVM_S390_MEMOP_F_SKEY_PROTECTION flag, to all << 3903 the checks required for storage key protectio << 3904 user space getting the storage keys, performi << 3905 memory thereafter, which could lead to a dela << 3906 Absolute accesses are permitted for the VM io << 3907 has the KVM_S390_MEMOP_EXTENSION_CAP_BASE bit << 3908 Currently absolute accesses are not permitted << 3909 Absolute accesses are permitted for non-prote << 3910 << 3911 Supported flags: << 3912 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` << 3913 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` << 3914 << 3915 The semantics of the flags common with logica << 3916 accesses. << 3917 << 3918 Absolute cmpxchg: << 3919 ^^^^^^^^^^^^^^^^^ << 3920 << 3921 Perform cmpxchg on absolute guest memory. Int << 3922 KVM_S390_MEMOP_F_SKEY_PROTECTION flag. << 3923 Instead of doing an unconditional write, the << 3924 location contains the value pointed to by "ol << 3925 This is performed as an atomic cmpxchg with t << 3926 parameter. "size" must be a power of two up t << 3927 If the exchange did not take place because th << 3928 old value, the value "old_addr" points to is << 3929 User space can tell if an exchange took place << 3930 occurred. The cmpxchg op is permitted for the << 3931 KVM_CAP_S390_MEM_OP_EXTENSION has flag KVM_S3 << 3932 << 3933 Supported flags: << 3934 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` << 3935 << 3936 SIDA read/write: << 3937 ^^^^^^^^^^^^^^^^ << 3938 << 3939 Access the secure instruction data area which << 3940 for instruction emulation for protected guest << 3941 SIDA accesses are available if the KVM_CAP_S3 << 3942 SIDA accesses are permitted for the VCPU ioct << 3943 SIDA accesses are permitted for protected gue << 3944 3455 3945 No flags are supported. !! 3456 The "reserved" field is meant for future extensions. It is not used by >> 3457 KVM with the currently defined set of flags. 3946 3458 3947 4.90 KVM_S390_GET_SKEYS 3459 4.90 KVM_S390_GET_SKEYS 3948 ----------------------- 3460 ----------------------- 3949 3461 3950 :Capability: KVM_CAP_S390_SKEYS 3462 :Capability: KVM_CAP_S390_SKEYS 3951 :Architectures: s390 3463 :Architectures: s390 3952 :Type: vm ioctl 3464 :Type: vm ioctl 3953 :Parameters: struct kvm_s390_skeys 3465 :Parameters: struct kvm_s390_skeys 3954 :Returns: 0 on success, KVM_S390_GET_SKEYS_NO !! 3466 :Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage 3955 keys, negative value on error 3467 keys, negative value on error 3956 3468 3957 This ioctl is used to get guest storage key v 3469 This ioctl is used to get guest storage key values on the s390 3958 architecture. The ioctl takes parameters via 3470 architecture. The ioctl takes parameters via the kvm_s390_skeys struct:: 3959 3471 3960 struct kvm_s390_skeys { 3472 struct kvm_s390_skeys { 3961 __u64 start_gfn; 3473 __u64 start_gfn; 3962 __u64 count; 3474 __u64 count; 3963 __u64 skeydata_addr; 3475 __u64 skeydata_addr; 3964 __u32 flags; 3476 __u32 flags; 3965 __u32 reserved[9]; 3477 __u32 reserved[9]; 3966 }; 3478 }; 3967 3479 3968 The start_gfn field is the number of the firs 3480 The start_gfn field is the number of the first guest frame whose storage keys 3969 you want to get. 3481 you want to get. 3970 3482 3971 The count field is the number of consecutive 3483 The count field is the number of consecutive frames (starting from start_gfn) 3972 whose storage keys to get. The count field mu 3484 whose storage keys to get. The count field must be at least 1 and the maximum 3973 allowed value is defined as KVM_S390_SKEYS_MA !! 3485 allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range 3974 will cause the ioctl to return -EINVAL. 3486 will cause the ioctl to return -EINVAL. 3975 3487 3976 The skeydata_addr field is the address to a b 3488 The skeydata_addr field is the address to a buffer large enough to hold count 3977 bytes. This buffer will be filled with storag 3489 bytes. This buffer will be filled with storage key data by the ioctl. 3978 3490 3979 4.91 KVM_S390_SET_SKEYS 3491 4.91 KVM_S390_SET_SKEYS 3980 ----------------------- 3492 ----------------------- 3981 3493 3982 :Capability: KVM_CAP_S390_SKEYS 3494 :Capability: KVM_CAP_S390_SKEYS 3983 :Architectures: s390 3495 :Architectures: s390 3984 :Type: vm ioctl 3496 :Type: vm ioctl 3985 :Parameters: struct kvm_s390_skeys 3497 :Parameters: struct kvm_s390_skeys 3986 :Returns: 0 on success, negative value on err 3498 :Returns: 0 on success, negative value on error 3987 3499 3988 This ioctl is used to set guest storage key v 3500 This ioctl is used to set guest storage key values on the s390 3989 architecture. The ioctl takes parameters via 3501 architecture. The ioctl takes parameters via the kvm_s390_skeys struct. 3990 See section on KVM_S390_GET_SKEYS for struct 3502 See section on KVM_S390_GET_SKEYS for struct definition. 3991 3503 3992 The start_gfn field is the number of the firs 3504 The start_gfn field is the number of the first guest frame whose storage keys 3993 you want to set. 3505 you want to set. 3994 3506 3995 The count field is the number of consecutive 3507 The count field is the number of consecutive frames (starting from start_gfn) 3996 whose storage keys to get. The count field mu 3508 whose storage keys to get. The count field must be at least 1 and the maximum 3997 allowed value is defined as KVM_S390_SKEYS_MA !! 3509 allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range 3998 will cause the ioctl to return -EINVAL. 3510 will cause the ioctl to return -EINVAL. 3999 3511 4000 The skeydata_addr field is the address to a b 3512 The skeydata_addr field is the address to a buffer containing count bytes of 4001 storage keys. Each byte in the buffer will be 3513 storage keys. Each byte in the buffer will be set as the storage key for a 4002 single frame starting at start_gfn for count 3514 single frame starting at start_gfn for count frames. 4003 3515 4004 Note: If any architecturally invalid key valu 3516 Note: If any architecturally invalid key value is found in the given data then 4005 the ioctl will return -EINVAL. 3517 the ioctl will return -EINVAL. 4006 3518 4007 4.92 KVM_S390_IRQ 3519 4.92 KVM_S390_IRQ 4008 ----------------- 3520 ----------------- 4009 3521 4010 :Capability: KVM_CAP_S390_INJECT_IRQ 3522 :Capability: KVM_CAP_S390_INJECT_IRQ 4011 :Architectures: s390 3523 :Architectures: s390 4012 :Type: vcpu ioctl 3524 :Type: vcpu ioctl 4013 :Parameters: struct kvm_s390_irq (in) 3525 :Parameters: struct kvm_s390_irq (in) 4014 :Returns: 0 on success, -1 on error 3526 :Returns: 0 on success, -1 on error 4015 3527 4016 Errors: 3528 Errors: 4017 3529 4018 3530 4019 ====== =================================== 3531 ====== ================================================================= 4020 EINVAL interrupt type is invalid 3532 EINVAL interrupt type is invalid 4021 type is KVM_S390_SIGP_STOP and flag 3533 type is KVM_S390_SIGP_STOP and flag parameter is invalid value, 4022 type is KVM_S390_INT_EXTERNAL_CALL 3534 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger 4023 than the maximum of VCPUs 3535 than the maximum of VCPUs 4024 EBUSY type is KVM_S390_SIGP_SET_PREFIX an 3536 EBUSY type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped, 4025 type is KVM_S390_SIGP_STOP and a st 3537 type is KVM_S390_SIGP_STOP and a stop irq is already pending, 4026 type is KVM_S390_INT_EXTERNAL_CALL 3538 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt 4027 is already pending 3539 is already pending 4028 ====== =================================== 3540 ====== ================================================================= 4029 3541 4030 Allows to inject an interrupt to the guest. 3542 Allows to inject an interrupt to the guest. 4031 3543 4032 Using struct kvm_s390_irq as a parameter allo 3544 Using struct kvm_s390_irq as a parameter allows 4033 to inject additional payload which is not 3545 to inject additional payload which is not 4034 possible via KVM_S390_INTERRUPT. 3546 possible via KVM_S390_INTERRUPT. 4035 3547 4036 Interrupt parameters are passed via kvm_s390_ 3548 Interrupt parameters are passed via kvm_s390_irq:: 4037 3549 4038 struct kvm_s390_irq { 3550 struct kvm_s390_irq { 4039 __u64 type; 3551 __u64 type; 4040 union { 3552 union { 4041 struct kvm_s390_io_info io; 3553 struct kvm_s390_io_info io; 4042 struct kvm_s390_ext_info ext; 3554 struct kvm_s390_ext_info ext; 4043 struct kvm_s390_pgm_info pgm; 3555 struct kvm_s390_pgm_info pgm; 4044 struct kvm_s390_emerg_info em 3556 struct kvm_s390_emerg_info emerg; 4045 struct kvm_s390_extcall_info 3557 struct kvm_s390_extcall_info extcall; 4046 struct kvm_s390_prefix_info p 3558 struct kvm_s390_prefix_info prefix; 4047 struct kvm_s390_stop_info sto 3559 struct kvm_s390_stop_info stop; 4048 struct kvm_s390_mchk_info mch 3560 struct kvm_s390_mchk_info mchk; 4049 char reserved[64]; 3561 char reserved[64]; 4050 } u; 3562 } u; 4051 }; 3563 }; 4052 3564 4053 type can be one of the following: 3565 type can be one of the following: 4054 3566 4055 - KVM_S390_SIGP_STOP - sigp stop; parameter i 3567 - KVM_S390_SIGP_STOP - sigp stop; parameter in .stop 4056 - KVM_S390_PROGRAM_INT - program check; param 3568 - KVM_S390_PROGRAM_INT - program check; parameters in .pgm 4057 - KVM_S390_SIGP_SET_PREFIX - sigp set prefix; 3569 - KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix 4058 - KVM_S390_RESTART - restart; no parameters 3570 - KVM_S390_RESTART - restart; no parameters 4059 - KVM_S390_INT_CLOCK_COMP - clock comparator 3571 - KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters 4060 - KVM_S390_INT_CPU_TIMER - CPU timer interrup 3572 - KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters 4061 - KVM_S390_INT_EMERGENCY - sigp emergency; pa 3573 - KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg 4062 - KVM_S390_INT_EXTERNAL_CALL - sigp external 3574 - KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall 4063 - KVM_S390_MCHK - machine check interrupt; pa 3575 - KVM_S390_MCHK - machine check interrupt; parameters in .mchk 4064 3576 4065 This is an asynchronous vcpu ioctl and can be 3577 This is an asynchronous vcpu ioctl and can be invoked from any thread. 4066 3578 4067 4.94 KVM_S390_GET_IRQ_STATE 3579 4.94 KVM_S390_GET_IRQ_STATE 4068 --------------------------- 3580 --------------------------- 4069 3581 4070 :Capability: KVM_CAP_S390_IRQ_STATE 3582 :Capability: KVM_CAP_S390_IRQ_STATE 4071 :Architectures: s390 3583 :Architectures: s390 4072 :Type: vcpu ioctl 3584 :Type: vcpu ioctl 4073 :Parameters: struct kvm_s390_irq_state (out) 3585 :Parameters: struct kvm_s390_irq_state (out) 4074 :Returns: >= number of bytes copied into buff 3586 :Returns: >= number of bytes copied into buffer, 4075 -EINVAL if buffer size is 0, 3587 -EINVAL if buffer size is 0, 4076 -ENOBUFS if buffer size is too smal 3588 -ENOBUFS if buffer size is too small to fit all pending interrupts, 4077 -EFAULT if the buffer address was i 3589 -EFAULT if the buffer address was invalid 4078 3590 4079 This ioctl allows userspace to retrieve the c 3591 This ioctl allows userspace to retrieve the complete state of all currently 4080 pending interrupts in a single buffer. Use ca 3592 pending interrupts in a single buffer. Use cases include migration 4081 and introspection. The parameter structure co 3593 and introspection. The parameter structure contains the address of a 4082 userspace buffer and its length:: 3594 userspace buffer and its length:: 4083 3595 4084 struct kvm_s390_irq_state { 3596 struct kvm_s390_irq_state { 4085 __u64 buf; 3597 __u64 buf; 4086 __u32 flags; /* will stay unus 3598 __u32 flags; /* will stay unused for compatibility reasons */ 4087 __u32 len; 3599 __u32 len; 4088 __u32 reserved[4]; /* will stay unus 3600 __u32 reserved[4]; /* will stay unused for compatibility reasons */ 4089 }; 3601 }; 4090 3602 4091 Userspace passes in the above struct and for 3603 Userspace passes in the above struct and for each pending interrupt a 4092 struct kvm_s390_irq is copied to the provided 3604 struct kvm_s390_irq is copied to the provided buffer. 4093 3605 4094 The structure contains a flags and a reserved 3606 The structure contains a flags and a reserved field for future extensions. As 4095 the kernel never checked for flags == 0 and Q 3607 the kernel never checked for flags == 0 and QEMU never pre-zeroed flags and 4096 reserved, these fields can not be used in the 3608 reserved, these fields can not be used in the future without breaking 4097 compatibility. 3609 compatibility. 4098 3610 4099 If -ENOBUFS is returned the buffer provided w 3611 If -ENOBUFS is returned the buffer provided was too small and userspace 4100 may retry with a bigger buffer. 3612 may retry with a bigger buffer. 4101 3613 4102 4.95 KVM_S390_SET_IRQ_STATE 3614 4.95 KVM_S390_SET_IRQ_STATE 4103 --------------------------- 3615 --------------------------- 4104 3616 4105 :Capability: KVM_CAP_S390_IRQ_STATE 3617 :Capability: KVM_CAP_S390_IRQ_STATE 4106 :Architectures: s390 3618 :Architectures: s390 4107 :Type: vcpu ioctl 3619 :Type: vcpu ioctl 4108 :Parameters: struct kvm_s390_irq_state (in) 3620 :Parameters: struct kvm_s390_irq_state (in) 4109 :Returns: 0 on success, 3621 :Returns: 0 on success, 4110 -EFAULT if the buffer address was i 3622 -EFAULT if the buffer address was invalid, 4111 -EINVAL for an invalid buffer lengt 3623 -EINVAL for an invalid buffer length (see below), 4112 -EBUSY if there were already interr 3624 -EBUSY if there were already interrupts pending, 4113 errors occurring when actually inje 3625 errors occurring when actually injecting the 4114 interrupt. See KVM_S390_IRQ. 3626 interrupt. See KVM_S390_IRQ. 4115 3627 4116 This ioctl allows userspace to set the comple 3628 This ioctl allows userspace to set the complete state of all cpu-local 4117 interrupts currently pending for the vcpu. It 3629 interrupts currently pending for the vcpu. It is intended for restoring 4118 interrupt state after a migration. The input 3630 interrupt state after a migration. The input parameter is a userspace buffer 4119 containing a struct kvm_s390_irq_state:: 3631 containing a struct kvm_s390_irq_state:: 4120 3632 4121 struct kvm_s390_irq_state { 3633 struct kvm_s390_irq_state { 4122 __u64 buf; 3634 __u64 buf; 4123 __u32 flags; /* will stay unus 3635 __u32 flags; /* will stay unused for compatibility reasons */ 4124 __u32 len; 3636 __u32 len; 4125 __u32 reserved[4]; /* will stay unus 3637 __u32 reserved[4]; /* will stay unused for compatibility reasons */ 4126 }; 3638 }; 4127 3639 4128 The restrictions for flags and reserved apply 3640 The restrictions for flags and reserved apply as well. 4129 (see KVM_S390_GET_IRQ_STATE) 3641 (see KVM_S390_GET_IRQ_STATE) 4130 3642 4131 The userspace memory referenced by buf contai 3643 The userspace memory referenced by buf contains a struct kvm_s390_irq 4132 for each interrupt to be injected into the gu 3644 for each interrupt to be injected into the guest. 4133 If one of the interrupts could not be injecte 3645 If one of the interrupts could not be injected for some reason the 4134 ioctl aborts. 3646 ioctl aborts. 4135 3647 4136 len must be a multiple of sizeof(struct kvm_s 3648 len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0 4137 and it must not exceed (max_vcpus + 32) * siz 3649 and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq), 4138 which is the maximum number of possibly pendi 3650 which is the maximum number of possibly pending cpu-local interrupts. 4139 3651 4140 4.96 KVM_SMI 3652 4.96 KVM_SMI 4141 ------------ 3653 ------------ 4142 3654 4143 :Capability: KVM_CAP_X86_SMM 3655 :Capability: KVM_CAP_X86_SMM 4144 :Architectures: x86 3656 :Architectures: x86 4145 :Type: vcpu ioctl 3657 :Type: vcpu ioctl 4146 :Parameters: none 3658 :Parameters: none 4147 :Returns: 0 on success, -1 on error 3659 :Returns: 0 on success, -1 on error 4148 3660 4149 Queues an SMI on the thread's vcpu. 3661 Queues an SMI on the thread's vcpu. 4150 3662 4151 4.97 KVM_X86_SET_MSR_FILTER !! 3663 4.97 KVM_CAP_PPC_MULTITCE 4152 ---------------------------- !! 3664 ------------------------- 4153 << 4154 :Capability: KVM_CAP_X86_MSR_FILTER << 4155 :Architectures: x86 << 4156 :Type: vm ioctl << 4157 :Parameters: struct kvm_msr_filter << 4158 :Returns: 0 on success, < 0 on error << 4159 << 4160 :: << 4161 << 4162 struct kvm_msr_filter_range { << 4163 #define KVM_MSR_FILTER_READ (1 << 0) << 4164 #define KVM_MSR_FILTER_WRITE (1 << 1) << 4165 __u32 flags; << 4166 __u32 nmsrs; /* number of msrs in bit << 4167 __u32 base; /* MSR index the bitmap << 4168 __u8 *bitmap; /* a 1 bit allows the o << 4169 }; << 4170 << 4171 #define KVM_MSR_FILTER_MAX_RANGES 16 << 4172 struct kvm_msr_filter { << 4173 #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << << 4174 #define KVM_MSR_FILTER_DEFAULT_DENY (1 << << 4175 __u32 flags; << 4176 struct kvm_msr_filter_range ranges[KV << 4177 }; << 4178 << 4179 flags values for ``struct kvm_msr_filter_rang << 4180 << 4181 ``KVM_MSR_FILTER_READ`` << 4182 << 4183 Filter read accesses to MSRs using the give << 4184 indicates that read accesses should be deni << 4185 a read for a particular MSR should be allow << 4186 filter action. << 4187 << 4188 ``KVM_MSR_FILTER_WRITE`` << 4189 << 4190 Filter write accesses to MSRs using the giv << 4191 indicates that write accesses should be den << 4192 a write for a particular MSR should be allo << 4193 filter action. << 4194 << 4195 flags values for ``struct kvm_msr_filter``: << 4196 << 4197 ``KVM_MSR_FILTER_DEFAULT_ALLOW`` << 4198 << 4199 If no filter range matches an MSR index tha << 4200 allow accesses to all MSRs by default. << 4201 << 4202 ``KVM_MSR_FILTER_DEFAULT_DENY`` << 4203 << 4204 If no filter range matches an MSR index tha << 4205 deny accesses to all MSRs by default. << 4206 << 4207 This ioctl allows userspace to define up to 1 << 4208 guest MSR accesses that would normally be all << 4209 covered by a specific range, the "default" fi << 4210 bitmap range covers MSRs from [base .. base+n << 4211 3665 4212 If an MSR access is denied by userspace, the !! 3666 :Capability: KVM_CAP_PPC_MULTITCE 4213 whether or not KVM_CAP_X86_USER_SPACE_MSR's K !! 3667 :Architectures: ppc 4214 enabled. If KVM_MSR_EXIT_REASON_FILTER is en !! 3668 :Type: vm 4215 on denied accesses, i.e. userspace effectivel << 4216 KVM_MSR_EXIT_REASON_FILTER is not enabled, KV << 4217 on denied accesses. Note, if an MSR access i << 4218 load/stores during VMX transitions, KVM ignor << 4219 See the below warning for full details. << 4220 3669 4221 If an MSR access is allowed by userspace, KVM !! 3670 This capability means the kernel is capable of handling hypercalls 4222 the access in accordance with the vCPU model. !! 3671 H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user 4223 inject a #GP if an access is allowed by users !! 3672 space. This significantly accelerates DMA operations for PPC KVM guests. 4224 the MSR, or to follow architectural behavior !! 3673 User space should expect that its handlers for these hypercalls >> 3674 are not going to be called if user space previously registered LIOBN >> 3675 in KVM (via KVM_CREATE_SPAPR_TCE or similar calls). 4225 3676 4226 By default, KVM operates in KVM_MSR_FILTER_DE !! 3677 In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest, 4227 filters. !! 3678 user space might have to advertise it for the guest. For example, >> 3679 IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is >> 3680 present in the "ibm,hypertas-functions" device-tree property. 4228 3681 4229 Calling this ioctl with an empty set of range !! 3682 The hypercalls mentioned above may or may not be processed successfully 4230 filtering. In that mode, ``KVM_MSR_FILTER_DEF !! 3683 in the kernel based fast path. If they can not be handled by the kernel, 4231 an error. !! 3684 they will get passed on to user space. So user space still has to have >> 3685 an implementation for these despite the in kernel acceleration. 4232 3686 4233 .. warning:: !! 3687 This capability is always enabled. 4234 MSR accesses that are side effects of inst << 4235 native) are not filtered as hardware does << 4236 RDMSR and WRMSR, and KVM mimics that behav << 4237 to avoid pointless divergence from hardwar << 4238 SYSENTER reads the SYSENTER MSRs, etc. << 4239 << 4240 MSRs that are loaded/stored via dedicated << 4241 part of VM-Enter/VM-Exit emulation. << 4242 << 4243 MSRs that are loaded/store via VMX's load/ << 4244 of VM-Enter/VM-Exit emulation. If an MSR << 4245 synthesizes a consistency check VM-Exit(EX << 4246 MSR access is denied on VM-Exit, KVM synth << 4247 extends Intel's architectural list of MSRs << 4248 the VM-Enter/VM-Exit MSR list. It is plat << 4249 to communicate any such restrictions to th << 4250 << 4251 x2APIC MSR accesses cannot be filtered (KV << 4252 cover any x2APIC MSRs). << 4253 << 4254 Note, invoking this ioctl while a vCPU is run << 4255 KVM does guarantee that vCPUs will see either << 4256 filter, e.g. MSRs with identical settings in << 4257 have deterministic behavior. << 4258 << 4259 Similarly, if userspace wishes to intercept o << 4260 KVM_MSR_EXIT_REASON_FILTER must be enabled be << 4261 left enabled until after all filters are deac << 4262 result in KVM injecting a #GP instead of exit << 4263 3688 4264 4.98 KVM_CREATE_SPAPR_TCE_64 3689 4.98 KVM_CREATE_SPAPR_TCE_64 4265 ---------------------------- 3690 ---------------------------- 4266 3691 4267 :Capability: KVM_CAP_SPAPR_TCE_64 3692 :Capability: KVM_CAP_SPAPR_TCE_64 4268 :Architectures: powerpc 3693 :Architectures: powerpc 4269 :Type: vm ioctl 3694 :Type: vm ioctl 4270 :Parameters: struct kvm_create_spapr_tce_64 ( 3695 :Parameters: struct kvm_create_spapr_tce_64 (in) 4271 :Returns: file descriptor for manipulating th 3696 :Returns: file descriptor for manipulating the created TCE table 4272 3697 4273 This is an extension for KVM_CAP_SPAPR_TCE wh 3698 This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit 4274 windows, described in 4.62 KVM_CREATE_SPAPR_T 3699 windows, described in 4.62 KVM_CREATE_SPAPR_TCE 4275 3700 4276 This capability uses extended struct in ioctl 3701 This capability uses extended struct in ioctl interface:: 4277 3702 4278 /* for KVM_CAP_SPAPR_TCE_64 */ 3703 /* for KVM_CAP_SPAPR_TCE_64 */ 4279 struct kvm_create_spapr_tce_64 { 3704 struct kvm_create_spapr_tce_64 { 4280 __u64 liobn; 3705 __u64 liobn; 4281 __u32 page_shift; 3706 __u32 page_shift; 4282 __u32 flags; 3707 __u32 flags; 4283 __u64 offset; /* in pages */ 3708 __u64 offset; /* in pages */ 4284 __u64 size; /* in pages */ 3709 __u64 size; /* in pages */ 4285 }; 3710 }; 4286 3711 4287 The aim of extension is to support an additio 3712 The aim of extension is to support an additional bigger DMA window with 4288 a variable page size. 3713 a variable page size. 4289 KVM_CREATE_SPAPR_TCE_64 receives a 64bit wind 3714 KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and 4290 a bus offset of the corresponding DMA window, 3715 a bus offset of the corresponding DMA window, @size and @offset are numbers 4291 of IOMMU pages. 3716 of IOMMU pages. 4292 3717 4293 @flags are not used at the moment. 3718 @flags are not used at the moment. 4294 3719 4295 The rest of functionality is identical to KVM 3720 The rest of functionality is identical to KVM_CREATE_SPAPR_TCE. 4296 3721 4297 4.99 KVM_REINJECT_CONTROL 3722 4.99 KVM_REINJECT_CONTROL 4298 ------------------------- 3723 ------------------------- 4299 3724 4300 :Capability: KVM_CAP_REINJECT_CONTROL 3725 :Capability: KVM_CAP_REINJECT_CONTROL 4301 :Architectures: x86 3726 :Architectures: x86 4302 :Type: vm ioctl 3727 :Type: vm ioctl 4303 :Parameters: struct kvm_reinject_control (in) 3728 :Parameters: struct kvm_reinject_control (in) 4304 :Returns: 0 on success, 3729 :Returns: 0 on success, 4305 -EFAULT if struct kvm_reinject_contr 3730 -EFAULT if struct kvm_reinject_control cannot be read, 4306 -ENXIO if KVM_CREATE_PIT or KVM_CREA 3731 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier. 4307 3732 4308 i8254 (PIT) has two modes, reinject and !rein 3733 i8254 (PIT) has two modes, reinject and !reinject. The default is reinject, 4309 where KVM queues elapsed i8254 ticks and moni 3734 where KVM queues elapsed i8254 ticks and monitors completion of interrupt from 4310 vector(s) that i8254 injects. Reinject mode 3735 vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its 4311 interrupt whenever there isn't a pending inte 3736 interrupt whenever there isn't a pending interrupt from i8254. 4312 !reinject mode injects an interrupt as soon a 3737 !reinject mode injects an interrupt as soon as a tick arrives. 4313 3738 4314 :: 3739 :: 4315 3740 4316 struct kvm_reinject_control { 3741 struct kvm_reinject_control { 4317 __u8 pit_reinject; 3742 __u8 pit_reinject; 4318 __u8 reserved[31]; 3743 __u8 reserved[31]; 4319 }; 3744 }; 4320 3745 4321 pit_reinject = 0 (!reinject mode) is recommen 3746 pit_reinject = 0 (!reinject mode) is recommended, unless running an old 4322 operating system that uses the PIT for timing 3747 operating system that uses the PIT for timing (e.g. Linux 2.4.x). 4323 3748 4324 4.100 KVM_PPC_CONFIGURE_V3_MMU 3749 4.100 KVM_PPC_CONFIGURE_V3_MMU 4325 ------------------------------ 3750 ------------------------------ 4326 3751 4327 :Capability: KVM_CAP_PPC_MMU_RADIX or KVM_CAP !! 3752 :Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3 4328 :Architectures: ppc 3753 :Architectures: ppc 4329 :Type: vm ioctl 3754 :Type: vm ioctl 4330 :Parameters: struct kvm_ppc_mmuv3_cfg (in) 3755 :Parameters: struct kvm_ppc_mmuv3_cfg (in) 4331 :Returns: 0 on success, 3756 :Returns: 0 on success, 4332 -EFAULT if struct kvm_ppc_mmuv3_cfg 3757 -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read, 4333 -EINVAL if the configuration is inva 3758 -EINVAL if the configuration is invalid 4334 3759 4335 This ioctl controls whether the guest will us 3760 This ioctl controls whether the guest will use radix or HPT (hashed 4336 page table) translation, and sets the pointer 3761 page table) translation, and sets the pointer to the process table for 4337 the guest. 3762 the guest. 4338 3763 4339 :: 3764 :: 4340 3765 4341 struct kvm_ppc_mmuv3_cfg { 3766 struct kvm_ppc_mmuv3_cfg { 4342 __u64 flags; 3767 __u64 flags; 4343 __u64 process_table; 3768 __u64 process_table; 4344 }; 3769 }; 4345 3770 4346 There are two bits that can be set in flags; 3771 There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and 4347 KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if 3772 KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest 4348 to use radix tree translation, and if clear, 3773 to use radix tree translation, and if clear, to use HPT translation. 4349 KVM_PPC_MMUV3_GTSE, if set and if KVM permits 3774 KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest 4350 to be able to use the global TLB and SLB inva 3775 to be able to use the global TLB and SLB invalidation instructions; 4351 if clear, the guest may not use these instruc 3776 if clear, the guest may not use these instructions. 4352 3777 4353 The process_table field specifies the address 3778 The process_table field specifies the address and size of the guest 4354 process table, which is in the guest's space. 3779 process table, which is in the guest's space. This field is formatted 4355 as the second doubleword of the partition tab 3780 as the second doubleword of the partition table entry, as defined in 4356 the Power ISA V3.00, Book III section 5.7.6.1 3781 the Power ISA V3.00, Book III section 5.7.6.1. 4357 3782 4358 4.101 KVM_PPC_GET_RMMU_INFO 3783 4.101 KVM_PPC_GET_RMMU_INFO 4359 --------------------------- 3784 --------------------------- 4360 3785 4361 :Capability: KVM_CAP_PPC_MMU_RADIX !! 3786 :Capability: KVM_CAP_PPC_RADIX_MMU 4362 :Architectures: ppc 3787 :Architectures: ppc 4363 :Type: vm ioctl 3788 :Type: vm ioctl 4364 :Parameters: struct kvm_ppc_rmmu_info (out) 3789 :Parameters: struct kvm_ppc_rmmu_info (out) 4365 :Returns: 0 on success, 3790 :Returns: 0 on success, 4366 -EFAULT if struct kvm_ppc_rmmu_info 3791 -EFAULT if struct kvm_ppc_rmmu_info cannot be written, 4367 -EINVAL if no useful information can 3792 -EINVAL if no useful information can be returned 4368 3793 4369 This ioctl returns a structure containing two 3794 This ioctl returns a structure containing two things: (a) a list 4370 containing supported radix tree geometries, a 3795 containing supported radix tree geometries, and (b) a list that maps 4371 page sizes to put in the "AP" (actual page si 3796 page sizes to put in the "AP" (actual page size) field for the tlbie 4372 (TLB invalidate entry) instruction. 3797 (TLB invalidate entry) instruction. 4373 3798 4374 :: 3799 :: 4375 3800 4376 struct kvm_ppc_rmmu_info { 3801 struct kvm_ppc_rmmu_info { 4377 struct kvm_ppc_radix_geom { 3802 struct kvm_ppc_radix_geom { 4378 __u8 page_shift; 3803 __u8 page_shift; 4379 __u8 level_bits[4]; 3804 __u8 level_bits[4]; 4380 __u8 pad[3]; 3805 __u8 pad[3]; 4381 } geometries[8]; 3806 } geometries[8]; 4382 __u32 ap_encodings[8]; 3807 __u32 ap_encodings[8]; 4383 }; 3808 }; 4384 3809 4385 The geometries[] field gives up to 8 supporte 3810 The geometries[] field gives up to 8 supported geometries for the 4386 radix page table, in terms of the log base 2 3811 radix page table, in terms of the log base 2 of the smallest page 4387 size, and the number of bits indexed at each 3812 size, and the number of bits indexed at each level of the tree, from 4388 the PTE level up to the PGD level in that ord 3813 the PTE level up to the PGD level in that order. Any unused entries 4389 will have 0 in the page_shift field. 3814 will have 0 in the page_shift field. 4390 3815 4391 The ap_encodings gives the supported page siz 3816 The ap_encodings gives the supported page sizes and their AP field 4392 encodings, encoded with the AP value in the t 3817 encodings, encoded with the AP value in the top 3 bits and the log 4393 base 2 of the page size in the bottom 6 bits. 3818 base 2 of the page size in the bottom 6 bits. 4394 3819 4395 4.102 KVM_PPC_RESIZE_HPT_PREPARE 3820 4.102 KVM_PPC_RESIZE_HPT_PREPARE 4396 -------------------------------- 3821 -------------------------------- 4397 3822 4398 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 3823 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4399 :Architectures: powerpc 3824 :Architectures: powerpc 4400 :Type: vm ioctl 3825 :Type: vm ioctl 4401 :Parameters: struct kvm_ppc_resize_hpt (in) 3826 :Parameters: struct kvm_ppc_resize_hpt (in) 4402 :Returns: 0 on successful completion, 3827 :Returns: 0 on successful completion, 4403 >0 if a new HPT is being prepared, t 3828 >0 if a new HPT is being prepared, the value is an estimated 4404 number of milliseconds until prepara 3829 number of milliseconds until preparation is complete, 4405 -EFAULT if struct kvm_reinject_contr 3830 -EFAULT if struct kvm_reinject_control cannot be read, 4406 -EINVAL if the supplied shift or fla 3831 -EINVAL if the supplied shift or flags are invalid, 4407 -ENOMEM if unable to allocate the ne 3832 -ENOMEM if unable to allocate the new HPT, >> 3833 -ENOSPC if there was a hash collision >> 3834 >> 3835 :: >> 3836 >> 3837 struct kvm_ppc_rmmu_info { >> 3838 struct kvm_ppc_radix_geom { >> 3839 __u8 page_shift; >> 3840 __u8 level_bits[4]; >> 3841 __u8 pad[3]; >> 3842 } geometries[8]; >> 3843 __u32 ap_encodings[8]; >> 3844 }; >> 3845 >> 3846 The geometries[] field gives up to 8 supported geometries for the >> 3847 radix page table, in terms of the log base 2 of the smallest page >> 3848 size, and the number of bits indexed at each level of the tree, from >> 3849 the PTE level up to the PGD level in that order. Any unused entries >> 3850 will have 0 in the page_shift field. >> 3851 >> 3852 The ap_encodings gives the supported page sizes and their AP field >> 3853 encodings, encoded with the AP value in the top 3 bits and the log >> 3854 base 2 of the page size in the bottom 6 bits. >> 3855 >> 3856 4.102 KVM_PPC_RESIZE_HPT_PREPARE >> 3857 -------------------------------- >> 3858 >> 3859 :Capability: KVM_CAP_SPAPR_RESIZE_HPT >> 3860 :Architectures: powerpc >> 3861 :Type: vm ioctl >> 3862 :Parameters: struct kvm_ppc_resize_hpt (in) >> 3863 :Returns: 0 on successful completion, >> 3864 >0 if a new HPT is being prepared, the value is an estimated >> 3865 number of milliseconds until preparation is complete, >> 3866 -EFAULT if struct kvm_reinject_control cannot be read, >> 3867 -EINVAL if the supplied shift or flags are invalid,when moving existing >> 3868 HPT entries to the new HPT, >> 3869 -EIO on other error conditions 4408 3870 4409 Used to implement the PAPR extension for runt 3871 Used to implement the PAPR extension for runtime resizing of a guest's 4410 Hashed Page Table (HPT). Specifically this s 3872 Hashed Page Table (HPT). Specifically this starts, stops or monitors 4411 the preparation of a new potential HPT for th 3873 the preparation of a new potential HPT for the guest, essentially 4412 implementing the H_RESIZE_HPT_PREPARE hyperca 3874 implementing the H_RESIZE_HPT_PREPARE hypercall. 4413 3875 4414 :: << 4415 << 4416 struct kvm_ppc_resize_hpt { << 4417 __u64 flags; << 4418 __u32 shift; << 4419 __u32 pad; << 4420 }; << 4421 << 4422 If called with shift > 0 when there is no pen 3876 If called with shift > 0 when there is no pending HPT for the guest, 4423 this begins preparation of a new pending HPT 3877 this begins preparation of a new pending HPT of size 2^(shift) bytes. 4424 It then returns a positive integer with the e 3878 It then returns a positive integer with the estimated number of 4425 milliseconds until preparation is complete. 3879 milliseconds until preparation is complete. 4426 3880 4427 If called when there is a pending HPT whose s 3881 If called when there is a pending HPT whose size does not match that 4428 requested in the parameters, discards the exi 3882 requested in the parameters, discards the existing pending HPT and 4429 creates a new one as above. 3883 creates a new one as above. 4430 3884 4431 If called when there is a pending HPT of the 3885 If called when there is a pending HPT of the size requested, will: 4432 3886 4433 * If preparation of the pending HPT is alre 3887 * If preparation of the pending HPT is already complete, return 0 4434 * If preparation of the pending HPT has fai 3888 * If preparation of the pending HPT has failed, return an error 4435 code, then discard the pending HPT. 3889 code, then discard the pending HPT. 4436 * If preparation of the pending HPT is stil 3890 * If preparation of the pending HPT is still in progress, return an 4437 estimated number of milliseconds until pr 3891 estimated number of milliseconds until preparation is complete. 4438 3892 4439 If called with shift == 0, discards any curre 3893 If called with shift == 0, discards any currently pending HPT and 4440 returns 0 (i.e. cancels any in-progress prepa 3894 returns 0 (i.e. cancels any in-progress preparation). 4441 3895 4442 flags is reserved for future expansion, curre 3896 flags is reserved for future expansion, currently setting any bits in 4443 flags will result in an -EINVAL. 3897 flags will result in an -EINVAL. 4444 3898 4445 Normally this will be called repeatedly with 3899 Normally this will be called repeatedly with the same parameters until 4446 it returns <= 0. The first call will initiat 3900 it returns <= 0. The first call will initiate preparation, subsequent 4447 ones will monitor preparation until it comple 3901 ones will monitor preparation until it completes or fails. 4448 3902 >> 3903 :: >> 3904 >> 3905 struct kvm_ppc_resize_hpt { >> 3906 __u64 flags; >> 3907 __u32 shift; >> 3908 __u32 pad; >> 3909 }; >> 3910 4449 4.103 KVM_PPC_RESIZE_HPT_COMMIT 3911 4.103 KVM_PPC_RESIZE_HPT_COMMIT 4450 ------------------------------- 3912 ------------------------------- 4451 3913 4452 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 3914 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4453 :Architectures: powerpc 3915 :Architectures: powerpc 4454 :Type: vm ioctl 3916 :Type: vm ioctl 4455 :Parameters: struct kvm_ppc_resize_hpt (in) 3917 :Parameters: struct kvm_ppc_resize_hpt (in) 4456 :Returns: 0 on successful completion, 3918 :Returns: 0 on successful completion, 4457 -EFAULT if struct kvm_reinject_contr 3919 -EFAULT if struct kvm_reinject_control cannot be read, 4458 -EINVAL if the supplied shift or fla 3920 -EINVAL if the supplied shift or flags are invalid, 4459 -ENXIO is there is no pending HPT, o 3921 -ENXIO is there is no pending HPT, or the pending HPT doesn't 4460 have the requested size, 3922 have the requested size, 4461 -EBUSY if the pending HPT is not ful 3923 -EBUSY if the pending HPT is not fully prepared, 4462 -ENOSPC if there was a hash collisio 3924 -ENOSPC if there was a hash collision when moving existing 4463 HPT entries to the new HPT, 3925 HPT entries to the new HPT, 4464 -EIO on other error conditions 3926 -EIO on other error conditions 4465 3927 4466 Used to implement the PAPR extension for runt 3928 Used to implement the PAPR extension for runtime resizing of a guest's 4467 Hashed Page Table (HPT). Specifically this r 3929 Hashed Page Table (HPT). Specifically this requests that the guest be 4468 transferred to working with the new HPT, esse 3930 transferred to working with the new HPT, essentially implementing the 4469 H_RESIZE_HPT_COMMIT hypercall. 3931 H_RESIZE_HPT_COMMIT hypercall. 4470 3932 4471 :: << 4472 << 4473 struct kvm_ppc_resize_hpt { << 4474 __u64 flags; << 4475 __u32 shift; << 4476 __u32 pad; << 4477 }; << 4478 << 4479 This should only be called after KVM_PPC_RESI 3933 This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has 4480 returned 0 with the same parameters. In othe 3934 returned 0 with the same parameters. In other cases 4481 KVM_PPC_RESIZE_HPT_COMMIT will return an erro 3935 KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or 4482 -EBUSY, though others may be possible if the 3936 -EBUSY, though others may be possible if the preparation was started, 4483 but failed). 3937 but failed). 4484 3938 4485 This will have undefined effects on the guest 3939 This will have undefined effects on the guest if it has not already 4486 placed itself in a quiescent state where no v 3940 placed itself in a quiescent state where no vcpu will make MMU enabled 4487 memory accesses. 3941 memory accesses. 4488 3942 4489 On successful completion, the pending HPT wil !! 3943 On succsful completion, the pending HPT will become the guest's active 4490 HPT and the previous HPT will be discarded. 3944 HPT and the previous HPT will be discarded. 4491 3945 4492 On failure, the guest will still be operating 3946 On failure, the guest will still be operating on its previous HPT. 4493 3947 >> 3948 :: >> 3949 >> 3950 struct kvm_ppc_resize_hpt { >> 3951 __u64 flags; >> 3952 __u32 shift; >> 3953 __u32 pad; >> 3954 }; >> 3955 4494 4.104 KVM_X86_GET_MCE_CAP_SUPPORTED 3956 4.104 KVM_X86_GET_MCE_CAP_SUPPORTED 4495 ----------------------------------- 3957 ----------------------------------- 4496 3958 4497 :Capability: KVM_CAP_MCE 3959 :Capability: KVM_CAP_MCE 4498 :Architectures: x86 3960 :Architectures: x86 4499 :Type: system ioctl 3961 :Type: system ioctl 4500 :Parameters: u64 mce_cap (out) 3962 :Parameters: u64 mce_cap (out) 4501 :Returns: 0 on success, -1 on error 3963 :Returns: 0 on success, -1 on error 4502 3964 4503 Returns supported MCE capabilities. The u64 m 3965 Returns supported MCE capabilities. The u64 mce_cap parameter 4504 has the same format as the MSR_IA32_MCG_CAP r 3966 has the same format as the MSR_IA32_MCG_CAP register. Supported 4505 capabilities will have the corresponding bits 3967 capabilities will have the corresponding bits set. 4506 3968 4507 4.105 KVM_X86_SETUP_MCE 3969 4.105 KVM_X86_SETUP_MCE 4508 ----------------------- 3970 ----------------------- 4509 3971 4510 :Capability: KVM_CAP_MCE 3972 :Capability: KVM_CAP_MCE 4511 :Architectures: x86 3973 :Architectures: x86 4512 :Type: vcpu ioctl 3974 :Type: vcpu ioctl 4513 :Parameters: u64 mcg_cap (in) 3975 :Parameters: u64 mcg_cap (in) 4514 :Returns: 0 on success, 3976 :Returns: 0 on success, 4515 -EFAULT if u64 mcg_cap cannot be rea 3977 -EFAULT if u64 mcg_cap cannot be read, 4516 -EINVAL if the requested number of b 3978 -EINVAL if the requested number of banks is invalid, 4517 -EINVAL if requested MCE capability 3979 -EINVAL if requested MCE capability is not supported. 4518 3980 4519 Initializes MCE support for use. The u64 mcg_ 3981 Initializes MCE support for use. The u64 mcg_cap parameter 4520 has the same format as the MSR_IA32_MCG_CAP r 3982 has the same format as the MSR_IA32_MCG_CAP register and 4521 specifies which capabilities should be enable 3983 specifies which capabilities should be enabled. The maximum 4522 supported number of error-reporting banks can 3984 supported number of error-reporting banks can be retrieved when 4523 checking for KVM_CAP_MCE. The supported capab 3985 checking for KVM_CAP_MCE. The supported capabilities can be 4524 retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. 3986 retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. 4525 3987 4526 4.106 KVM_X86_SET_MCE 3988 4.106 KVM_X86_SET_MCE 4527 --------------------- 3989 --------------------- 4528 3990 4529 :Capability: KVM_CAP_MCE 3991 :Capability: KVM_CAP_MCE 4530 :Architectures: x86 3992 :Architectures: x86 4531 :Type: vcpu ioctl 3993 :Type: vcpu ioctl 4532 :Parameters: struct kvm_x86_mce (in) 3994 :Parameters: struct kvm_x86_mce (in) 4533 :Returns: 0 on success, 3995 :Returns: 0 on success, 4534 -EFAULT if struct kvm_x86_mce cannot 3996 -EFAULT if struct kvm_x86_mce cannot be read, 4535 -EINVAL if the bank number is invali 3997 -EINVAL if the bank number is invalid, 4536 -EINVAL if VAL bit is not set in sta 3998 -EINVAL if VAL bit is not set in status field. 4537 3999 4538 Inject a machine check error (MCE) into the g 4000 Inject a machine check error (MCE) into the guest. The input 4539 parameter is:: 4001 parameter is:: 4540 4002 4541 struct kvm_x86_mce { 4003 struct kvm_x86_mce { 4542 __u64 status; 4004 __u64 status; 4543 __u64 addr; 4005 __u64 addr; 4544 __u64 misc; 4006 __u64 misc; 4545 __u64 mcg_status; 4007 __u64 mcg_status; 4546 __u8 bank; 4008 __u8 bank; 4547 __u8 pad1[7]; 4009 __u8 pad1[7]; 4548 __u64 pad2[3]; 4010 __u64 pad2[3]; 4549 }; 4011 }; 4550 4012 4551 If the MCE being reported is an uncorrected e 4013 If the MCE being reported is an uncorrected error, KVM will 4552 inject it as an MCE exception into the guest. 4014 inject it as an MCE exception into the guest. If the guest 4553 MCG_STATUS register reports that an MCE is in 4015 MCG_STATUS register reports that an MCE is in progress, KVM 4554 causes an KVM_EXIT_SHUTDOWN vmexit. 4016 causes an KVM_EXIT_SHUTDOWN vmexit. 4555 4017 4556 Otherwise, if the MCE is a corrected error, K 4018 Otherwise, if the MCE is a corrected error, KVM will just 4557 store it in the corresponding bank (provided 4019 store it in the corresponding bank (provided this bank is 4558 not holding a previously reported uncorrected 4020 not holding a previously reported uncorrected error). 4559 4021 4560 4.107 KVM_S390_GET_CMMA_BITS 4022 4.107 KVM_S390_GET_CMMA_BITS 4561 ---------------------------- 4023 ---------------------------- 4562 4024 4563 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4025 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4564 :Architectures: s390 4026 :Architectures: s390 4565 :Type: vm ioctl 4027 :Type: vm ioctl 4566 :Parameters: struct kvm_s390_cmma_log (in, ou 4028 :Parameters: struct kvm_s390_cmma_log (in, out) 4567 :Returns: 0 on success, a negative value on e 4029 :Returns: 0 on success, a negative value on error 4568 4030 4569 Errors: << 4570 << 4571 ====== ================================ << 4572 ENOMEM not enough memory can be allocat << 4573 ENXIO if CMMA is not enabled << 4574 EINVAL if KVM_S390_CMMA_PEEK is not set << 4575 EINVAL if KVM_S390_CMMA_PEEK is not set << 4576 disabled (and thus migration mod << 4577 EFAULT if the userspace address is inva << 4578 present for the addresses (e.g. << 4579 ====== ================================ << 4580 << 4581 This ioctl is used to get the values of the C 4031 This ioctl is used to get the values of the CMMA bits on the s390 4582 architecture. It is meant to be used in two s 4032 architecture. It is meant to be used in two scenarios: 4583 4033 4584 - During live migration to save the CMMA valu 4034 - During live migration to save the CMMA values. Live migration needs 4585 to be enabled via the KVM_REQ_START_MIGRATI 4035 to be enabled via the KVM_REQ_START_MIGRATION VM property. 4586 - To non-destructively peek at the CMMA value 4036 - To non-destructively peek at the CMMA values, with the flag 4587 KVM_S390_CMMA_PEEK set. 4037 KVM_S390_CMMA_PEEK set. 4588 4038 4589 The ioctl takes parameters via the kvm_s390_c 4039 The ioctl takes parameters via the kvm_s390_cmma_log struct. The desired 4590 values are written to a buffer whose location 4040 values are written to a buffer whose location is indicated via the "values" 4591 member in the kvm_s390_cmma_log struct. The 4041 member in the kvm_s390_cmma_log struct. The values in the input struct are 4592 also updated as needed. 4042 also updated as needed. 4593 4043 4594 Each CMMA value takes up one byte. 4044 Each CMMA value takes up one byte. 4595 4045 4596 :: 4046 :: 4597 4047 4598 struct kvm_s390_cmma_log { 4048 struct kvm_s390_cmma_log { 4599 __u64 start_gfn; 4049 __u64 start_gfn; 4600 __u32 count; 4050 __u32 count; 4601 __u32 flags; 4051 __u32 flags; 4602 union { 4052 union { 4603 __u64 remaining; 4053 __u64 remaining; 4604 __u64 mask; 4054 __u64 mask; 4605 }; 4055 }; 4606 __u64 values; 4056 __u64 values; 4607 }; 4057 }; 4608 4058 4609 start_gfn is the number of the first guest fr 4059 start_gfn is the number of the first guest frame whose CMMA values are 4610 to be retrieved, 4060 to be retrieved, 4611 4061 4612 count is the length of the buffer in bytes, 4062 count is the length of the buffer in bytes, 4613 4063 4614 values points to the buffer where the result 4064 values points to the buffer where the result will be written to. 4615 4065 4616 If count is greater than KVM_S390_SKEYS_MAX, 4066 If count is greater than KVM_S390_SKEYS_MAX, then it is considered to be 4617 KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re- 4067 KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re-used for consistency with 4618 other ioctls. 4068 other ioctls. 4619 4069 4620 The result is written in the buffer pointed t 4070 The result is written in the buffer pointed to by the field values, and 4621 the values of the input parameter are updated 4071 the values of the input parameter are updated as follows. 4622 4072 4623 Depending on the flags, different actions are 4073 Depending on the flags, different actions are performed. The only 4624 supported flag so far is KVM_S390_CMMA_PEEK. 4074 supported flag so far is KVM_S390_CMMA_PEEK. 4625 4075 4626 The default behaviour if KVM_S390_CMMA_PEEK i 4076 The default behaviour if KVM_S390_CMMA_PEEK is not set is: 4627 start_gfn will indicate the first page frame 4077 start_gfn will indicate the first page frame whose CMMA bits were dirty. 4628 It is not necessarily the same as the one pas 4078 It is not necessarily the same as the one passed as input, as clean pages 4629 are skipped. 4079 are skipped. 4630 4080 4631 count will indicate the number of bytes actua 4081 count will indicate the number of bytes actually written in the buffer. 4632 It can (and very often will) be smaller than 4082 It can (and very often will) be smaller than the input value, since the 4633 buffer is only filled until 16 bytes of clean 4083 buffer is only filled until 16 bytes of clean values are found (which 4634 are then not copied in the buffer). Since a C 4084 are then not copied in the buffer). Since a CMMA migration block needs 4635 the base address and the length, for a total 4085 the base address and the length, for a total of 16 bytes, we will send 4636 back some clean data if there is some dirty d 4086 back some clean data if there is some dirty data afterwards, as long as 4637 the size of the clean data does not exceed th 4087 the size of the clean data does not exceed the size of the header. This 4638 allows to minimize the amount of data to be s 4088 allows to minimize the amount of data to be saved or transferred over 4639 the network at the expense of more roundtrips 4089 the network at the expense of more roundtrips to userspace. The next 4640 invocation of the ioctl will skip over all th 4090 invocation of the ioctl will skip over all the clean values, saving 4641 potentially more than just the 16 bytes we fo 4091 potentially more than just the 16 bytes we found. 4642 4092 4643 If KVM_S390_CMMA_PEEK is set: 4093 If KVM_S390_CMMA_PEEK is set: 4644 the existing storage attributes are read even 4094 the existing storage attributes are read even when not in migration 4645 mode, and no other action is performed; 4095 mode, and no other action is performed; 4646 4096 4647 the output start_gfn will be equal to the inp 4097 the output start_gfn will be equal to the input start_gfn, 4648 4098 4649 the output count will be equal to the input c 4099 the output count will be equal to the input count, except if the end of 4650 memory has been reached. 4100 memory has been reached. 4651 4101 4652 In both cases: 4102 In both cases: 4653 the field "remaining" will indicate the total 4103 the field "remaining" will indicate the total number of dirty CMMA values 4654 still remaining, or 0 if KVM_S390_CMMA_PEEK i 4104 still remaining, or 0 if KVM_S390_CMMA_PEEK is set and migration mode is 4655 not enabled. 4105 not enabled. 4656 4106 4657 mask is unused. 4107 mask is unused. 4658 4108 4659 values points to the userspace buffer where t 4109 values points to the userspace buffer where the result will be stored. 4660 4110 >> 4111 This ioctl can fail with -ENOMEM if not enough memory can be allocated to >> 4112 complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if >> 4113 KVM_S390_CMMA_PEEK is not set but migration mode was not enabled, with >> 4114 -EFAULT if the userspace address is invalid or if no page table is >> 4115 present for the addresses (e.g. when using hugepages). >> 4116 4661 4.108 KVM_S390_SET_CMMA_BITS 4117 4.108 KVM_S390_SET_CMMA_BITS 4662 ---------------------------- 4118 ---------------------------- 4663 4119 4664 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4120 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4665 :Architectures: s390 4121 :Architectures: s390 4666 :Type: vm ioctl 4122 :Type: vm ioctl 4667 :Parameters: struct kvm_s390_cmma_log (in) 4123 :Parameters: struct kvm_s390_cmma_log (in) 4668 :Returns: 0 on success, a negative value on e 4124 :Returns: 0 on success, a negative value on error 4669 4125 4670 This ioctl is used to set the values of the C 4126 This ioctl is used to set the values of the CMMA bits on the s390 4671 architecture. It is meant to be used during l 4127 architecture. It is meant to be used during live migration to restore 4672 the CMMA values, but there are no restriction 4128 the CMMA values, but there are no restrictions on its use. 4673 The ioctl takes parameters via the kvm_s390_c 4129 The ioctl takes parameters via the kvm_s390_cmma_values struct. 4674 Each CMMA value takes up one byte. 4130 Each CMMA value takes up one byte. 4675 4131 4676 :: 4132 :: 4677 4133 4678 struct kvm_s390_cmma_log { 4134 struct kvm_s390_cmma_log { 4679 __u64 start_gfn; 4135 __u64 start_gfn; 4680 __u32 count; 4136 __u32 count; 4681 __u32 flags; 4137 __u32 flags; 4682 union { 4138 union { 4683 __u64 remaining; 4139 __u64 remaining; 4684 __u64 mask; 4140 __u64 mask; 4685 }; 4141 }; 4686 __u64 values; 4142 __u64 values; 4687 }; 4143 }; 4688 4144 4689 start_gfn indicates the starting guest frame 4145 start_gfn indicates the starting guest frame number, 4690 4146 4691 count indicates how many values are to be con 4147 count indicates how many values are to be considered in the buffer, 4692 4148 4693 flags is not used and must be 0. 4149 flags is not used and must be 0. 4694 4150 4695 mask indicates which PGSTE bits are to be con 4151 mask indicates which PGSTE bits are to be considered. 4696 4152 4697 remaining is not used. 4153 remaining is not used. 4698 4154 4699 values points to the buffer in userspace wher 4155 values points to the buffer in userspace where to store the values. 4700 4156 4701 This ioctl can fail with -ENOMEM if not enoug 4157 This ioctl can fail with -ENOMEM if not enough memory can be allocated to 4702 complete the task, with -ENXIO if CMMA is not 4158 complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if 4703 the count field is too large (e.g. more than 4159 the count field is too large (e.g. more than KVM_S390_CMMA_SIZE_MAX) or 4704 if the flags field was not 0, with -EFAULT if 4160 if the flags field was not 0, with -EFAULT if the userspace address is 4705 invalid, if invalid pages are written to (e.g 4161 invalid, if invalid pages are written to (e.g. after the end of memory) 4706 or if no page table is present for the addres 4162 or if no page table is present for the addresses (e.g. when using 4707 hugepages). 4163 hugepages). 4708 4164 4709 4.109 KVM_PPC_GET_CPU_CHAR 4165 4.109 KVM_PPC_GET_CPU_CHAR 4710 -------------------------- 4166 -------------------------- 4711 4167 4712 :Capability: KVM_CAP_PPC_GET_CPU_CHAR 4168 :Capability: KVM_CAP_PPC_GET_CPU_CHAR 4713 :Architectures: powerpc 4169 :Architectures: powerpc 4714 :Type: vm ioctl 4170 :Type: vm ioctl 4715 :Parameters: struct kvm_ppc_cpu_char (out) 4171 :Parameters: struct kvm_ppc_cpu_char (out) 4716 :Returns: 0 on successful completion, 4172 :Returns: 0 on successful completion, 4717 -EFAULT if struct kvm_ppc_cpu_char c 4173 -EFAULT if struct kvm_ppc_cpu_char cannot be written 4718 4174 4719 This ioctl gives userspace information about 4175 This ioctl gives userspace information about certain characteristics 4720 of the CPU relating to speculative execution 4176 of the CPU relating to speculative execution of instructions and 4721 possible information leakage resulting from s 4177 possible information leakage resulting from speculative execution (see 4722 CVE-2017-5715, CVE-2017-5753 and CVE-2017-575 4178 CVE-2017-5715, CVE-2017-5753 and CVE-2017-5754). The information is 4723 returned in struct kvm_ppc_cpu_char, which lo 4179 returned in struct kvm_ppc_cpu_char, which looks like this:: 4724 4180 4725 struct kvm_ppc_cpu_char { 4181 struct kvm_ppc_cpu_char { 4726 __u64 character; /* ch 4182 __u64 character; /* characteristics of the CPU */ 4727 __u64 behaviour; /* re 4183 __u64 behaviour; /* recommended software behaviour */ 4728 __u64 character_mask; /* va 4184 __u64 character_mask; /* valid bits in character */ 4729 __u64 behaviour_mask; /* va 4185 __u64 behaviour_mask; /* valid bits in behaviour */ 4730 }; 4186 }; 4731 4187 4732 For extensibility, the character_mask and beh 4188 For extensibility, the character_mask and behaviour_mask fields 4733 indicate which bits of character and behaviou 4189 indicate which bits of character and behaviour have been filled in by 4734 the kernel. If the set of defined bits is ex 4190 the kernel. If the set of defined bits is extended in future then 4735 userspace will be able to tell whether it is 4191 userspace will be able to tell whether it is running on a kernel that 4736 knows about the new bits. 4192 knows about the new bits. 4737 4193 4738 The character field describes attributes of t 4194 The character field describes attributes of the CPU which can help 4739 with preventing inadvertent information discl 4195 with preventing inadvertent information disclosure - specifically, 4740 whether there is an instruction to flash-inva 4196 whether there is an instruction to flash-invalidate the L1 data cache 4741 (ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether 4197 (ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether the L1 data cache is set 4742 to a mode where entries can only be used by t 4198 to a mode where entries can only be used by the thread that created 4743 them, whether the bcctr[l] instruction preven 4199 them, whether the bcctr[l] instruction prevents speculation, and 4744 whether a speculation barrier instruction (or 4200 whether a speculation barrier instruction (ori 31,31,0) is provided. 4745 4201 4746 The behaviour field describes actions that so 4202 The behaviour field describes actions that software should take to 4747 prevent inadvertent information disclosure, a 4203 prevent inadvertent information disclosure, and thus describes which 4748 vulnerabilities the hardware is subject to; s 4204 vulnerabilities the hardware is subject to; specifically whether the 4749 L1 data cache should be flushed when returnin 4205 L1 data cache should be flushed when returning to user mode from the 4750 kernel, and whether a speculation barrier sho 4206 kernel, and whether a speculation barrier should be placed between an 4751 array bounds check and the array access. 4207 array bounds check and the array access. 4752 4208 4753 These fields use the same bit definitions as 4209 These fields use the same bit definitions as the new 4754 H_GET_CPU_CHARACTERISTICS hypercall. 4210 H_GET_CPU_CHARACTERISTICS hypercall. 4755 4211 4756 4.110 KVM_MEMORY_ENCRYPT_OP 4212 4.110 KVM_MEMORY_ENCRYPT_OP 4757 --------------------------- 4213 --------------------------- 4758 4214 4759 :Capability: basic 4215 :Capability: basic 4760 :Architectures: x86 4216 :Architectures: x86 4761 :Type: vm !! 4217 :Type: system 4762 :Parameters: an opaque platform specific stru 4218 :Parameters: an opaque platform specific structure (in/out) 4763 :Returns: 0 on success; -1 on error 4219 :Returns: 0 on success; -1 on error 4764 4220 4765 If the platform supports creating encrypted V 4221 If the platform supports creating encrypted VMs then this ioctl can be used 4766 for issuing platform-specific memory encrypti 4222 for issuing platform-specific memory encryption commands to manage those 4767 encrypted VMs. 4223 encrypted VMs. 4768 4224 4769 Currently, this ioctl is used for issuing Sec 4225 Currently, this ioctl is used for issuing Secure Encrypted Virtualization 4770 (SEV) commands on AMD Processors. The SEV com 4226 (SEV) commands on AMD Processors. The SEV commands are defined in 4771 Documentation/virt/kvm/x86/amd-memory-encrypt !! 4227 Documentation/virt/kvm/amd-memory-encryption.rst. 4772 4228 4773 4.111 KVM_MEMORY_ENCRYPT_REG_REGION 4229 4.111 KVM_MEMORY_ENCRYPT_REG_REGION 4774 ----------------------------------- 4230 ----------------------------------- 4775 4231 4776 :Capability: basic 4232 :Capability: basic 4777 :Architectures: x86 4233 :Architectures: x86 4778 :Type: system 4234 :Type: system 4779 :Parameters: struct kvm_enc_region (in) 4235 :Parameters: struct kvm_enc_region (in) 4780 :Returns: 0 on success; -1 on error 4236 :Returns: 0 on success; -1 on error 4781 4237 4782 This ioctl can be used to register a guest me 4238 This ioctl can be used to register a guest memory region which may 4783 contain encrypted data (e.g. guest RAM, SMRAM 4239 contain encrypted data (e.g. guest RAM, SMRAM etc). 4784 4240 4785 It is used in the SEV-enabled guest. When enc 4241 It is used in the SEV-enabled guest. When encryption is enabled, a guest 4786 memory region may contain encrypted data. The 4242 memory region may contain encrypted data. The SEV memory encryption 4787 engine uses a tweak such that two identical p 4243 engine uses a tweak such that two identical plaintext pages, each at 4788 different locations will have differing ciphe 4244 different locations will have differing ciphertexts. So swapping or 4789 moving ciphertext of those pages will not res 4245 moving ciphertext of those pages will not result in plaintext being 4790 swapped. So relocating (or migrating) physica 4246 swapped. So relocating (or migrating) physical backing pages for the SEV 4791 guest will require some additional steps. 4247 guest will require some additional steps. 4792 4248 4793 Note: The current SEV key management spec doe 4249 Note: The current SEV key management spec does not provide commands to 4794 swap or migrate (move) ciphertext pages. Henc 4250 swap or migrate (move) ciphertext pages. Hence, for now we pin the guest 4795 memory region registered with the ioctl. 4251 memory region registered with the ioctl. 4796 4252 4797 4.112 KVM_MEMORY_ENCRYPT_UNREG_REGION 4253 4.112 KVM_MEMORY_ENCRYPT_UNREG_REGION 4798 ------------------------------------- 4254 ------------------------------------- 4799 4255 4800 :Capability: basic 4256 :Capability: basic 4801 :Architectures: x86 4257 :Architectures: x86 4802 :Type: system 4258 :Type: system 4803 :Parameters: struct kvm_enc_region (in) 4259 :Parameters: struct kvm_enc_region (in) 4804 :Returns: 0 on success; -1 on error 4260 :Returns: 0 on success; -1 on error 4805 4261 4806 This ioctl can be used to unregister the gues 4262 This ioctl can be used to unregister the guest memory region registered 4807 with KVM_MEMORY_ENCRYPT_REG_REGION ioctl abov 4263 with KVM_MEMORY_ENCRYPT_REG_REGION ioctl above. 4808 4264 4809 4.113 KVM_HYPERV_EVENTFD 4265 4.113 KVM_HYPERV_EVENTFD 4810 ------------------------ 4266 ------------------------ 4811 4267 4812 :Capability: KVM_CAP_HYPERV_EVENTFD 4268 :Capability: KVM_CAP_HYPERV_EVENTFD 4813 :Architectures: x86 4269 :Architectures: x86 4814 :Type: vm ioctl 4270 :Type: vm ioctl 4815 :Parameters: struct kvm_hyperv_eventfd (in) 4271 :Parameters: struct kvm_hyperv_eventfd (in) 4816 4272 4817 This ioctl (un)registers an eventfd to receiv 4273 This ioctl (un)registers an eventfd to receive notifications from the guest on 4818 the specified Hyper-V connection id through t 4274 the specified Hyper-V connection id through the SIGNAL_EVENT hypercall, without 4819 causing a user exit. SIGNAL_EVENT hypercall 4275 causing a user exit. SIGNAL_EVENT hypercall with non-zero event flag number 4820 (bits 24-31) still triggers a KVM_EXIT_HYPERV 4276 (bits 24-31) still triggers a KVM_EXIT_HYPERV_HCALL user exit. 4821 4277 4822 :: 4278 :: 4823 4279 4824 struct kvm_hyperv_eventfd { 4280 struct kvm_hyperv_eventfd { 4825 __u32 conn_id; 4281 __u32 conn_id; 4826 __s32 fd; 4282 __s32 fd; 4827 __u32 flags; 4283 __u32 flags; 4828 __u32 padding[3]; 4284 __u32 padding[3]; 4829 }; 4285 }; 4830 4286 4831 The conn_id field should fit within 24 bits:: 4287 The conn_id field should fit within 24 bits:: 4832 4288 4833 #define KVM_HYPERV_CONN_ID_MASK 4289 #define KVM_HYPERV_CONN_ID_MASK 0x00ffffff 4834 4290 4835 The acceptable values for the flags field are 4291 The acceptable values for the flags field are:: 4836 4292 4837 #define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 4293 #define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 0) 4838 4294 4839 :Returns: 0 on success, 4295 :Returns: 0 on success, 4840 -EINVAL if conn_id or flags is outs 4296 -EINVAL if conn_id or flags is outside the allowed range, 4841 -ENOENT on deassign if the conn_id 4297 -ENOENT on deassign if the conn_id isn't registered, 4842 -EEXIST on assign if the conn_id is 4298 -EEXIST on assign if the conn_id is already registered 4843 4299 4844 4.114 KVM_GET_NESTED_STATE 4300 4.114 KVM_GET_NESTED_STATE 4845 -------------------------- 4301 -------------------------- 4846 4302 4847 :Capability: KVM_CAP_NESTED_STATE 4303 :Capability: KVM_CAP_NESTED_STATE 4848 :Architectures: x86 4304 :Architectures: x86 4849 :Type: vcpu ioctl 4305 :Type: vcpu ioctl 4850 :Parameters: struct kvm_nested_state (in/out) 4306 :Parameters: struct kvm_nested_state (in/out) 4851 :Returns: 0 on success, -1 on error 4307 :Returns: 0 on success, -1 on error 4852 4308 4853 Errors: 4309 Errors: 4854 4310 4855 ===== ================================ 4311 ===== ============================================================= 4856 E2BIG the total state size exceeds the 4312 E2BIG the total state size exceeds the value of 'size' specified by 4857 the user; the size required will 4313 the user; the size required will be written into size. 4858 ===== ================================ 4314 ===== ============================================================= 4859 4315 4860 :: 4316 :: 4861 4317 4862 struct kvm_nested_state { 4318 struct kvm_nested_state { 4863 __u16 flags; 4319 __u16 flags; 4864 __u16 format; 4320 __u16 format; 4865 __u32 size; 4321 __u32 size; 4866 4322 4867 union { 4323 union { 4868 struct kvm_vmx_nested_state_h 4324 struct kvm_vmx_nested_state_hdr vmx; 4869 struct kvm_svm_nested_state_h 4325 struct kvm_svm_nested_state_hdr svm; 4870 4326 4871 /* Pad the header to 128 byte 4327 /* Pad the header to 128 bytes. */ 4872 __u8 pad[120]; 4328 __u8 pad[120]; 4873 } hdr; 4329 } hdr; 4874 4330 4875 union { 4331 union { 4876 struct kvm_vmx_nested_state_d 4332 struct kvm_vmx_nested_state_data vmx[0]; 4877 struct kvm_svm_nested_state_d 4333 struct kvm_svm_nested_state_data svm[0]; 4878 } data; 4334 } data; 4879 }; 4335 }; 4880 4336 4881 #define KVM_STATE_NESTED_GUEST_MODE 4337 #define KVM_STATE_NESTED_GUEST_MODE 0x00000001 4882 #define KVM_STATE_NESTED_RUN_PENDING 4338 #define KVM_STATE_NESTED_RUN_PENDING 0x00000002 4883 #define KVM_STATE_NESTED_EVMCS 4339 #define KVM_STATE_NESTED_EVMCS 0x00000004 4884 4340 4885 #define KVM_STATE_NESTED_FORMAT_VMX 4341 #define KVM_STATE_NESTED_FORMAT_VMX 0 4886 #define KVM_STATE_NESTED_FORMAT_SVM 4342 #define KVM_STATE_NESTED_FORMAT_SVM 1 4887 4343 4888 #define KVM_STATE_NESTED_VMX_VMCS_SIZE 4344 #define KVM_STATE_NESTED_VMX_VMCS_SIZE 0x1000 4889 4345 4890 #define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 4346 #define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 0x00000001 4891 #define KVM_STATE_NESTED_VMX_SMM_VMXON 4347 #define KVM_STATE_NESTED_VMX_SMM_VMXON 0x00000002 4892 4348 4893 #define KVM_STATE_VMX_PREEMPTION_TIMER_DEAD << 4894 << 4895 struct kvm_vmx_nested_state_hdr { 4349 struct kvm_vmx_nested_state_hdr { 4896 __u64 vmxon_pa; 4350 __u64 vmxon_pa; 4897 __u64 vmcs12_pa; 4351 __u64 vmcs12_pa; 4898 4352 4899 struct { 4353 struct { 4900 __u16 flags; 4354 __u16 flags; 4901 } smm; 4355 } smm; 4902 << 4903 __u32 flags; << 4904 __u64 preemption_timer_deadline; << 4905 }; 4356 }; 4906 4357 4907 struct kvm_vmx_nested_state_data { 4358 struct kvm_vmx_nested_state_data { 4908 __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS 4359 __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE]; 4909 __u8 shadow_vmcs12[KVM_STATE_NESTED_V 4360 __u8 shadow_vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE]; 4910 }; 4361 }; 4911 4362 4912 This ioctl copies the vcpu's nested virtualiz 4363 This ioctl copies the vcpu's nested virtualization state from the kernel to 4913 userspace. 4364 userspace. 4914 4365 4915 The maximum size of the state can be retrieve 4366 The maximum size of the state can be retrieved by passing KVM_CAP_NESTED_STATE 4916 to the KVM_CHECK_EXTENSION ioctl(). 4367 to the KVM_CHECK_EXTENSION ioctl(). 4917 4368 4918 4.115 KVM_SET_NESTED_STATE 4369 4.115 KVM_SET_NESTED_STATE 4919 -------------------------- 4370 -------------------------- 4920 4371 4921 :Capability: KVM_CAP_NESTED_STATE 4372 :Capability: KVM_CAP_NESTED_STATE 4922 :Architectures: x86 4373 :Architectures: x86 4923 :Type: vcpu ioctl 4374 :Type: vcpu ioctl 4924 :Parameters: struct kvm_nested_state (in) 4375 :Parameters: struct kvm_nested_state (in) 4925 :Returns: 0 on success, -1 on error 4376 :Returns: 0 on success, -1 on error 4926 4377 4927 This copies the vcpu's kvm_nested_state struc 4378 This copies the vcpu's kvm_nested_state struct from userspace to the kernel. 4928 For the definition of struct kvm_nested_state 4379 For the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE. 4929 4380 4930 4.116 KVM_(UN)REGISTER_COALESCED_MMIO 4381 4.116 KVM_(UN)REGISTER_COALESCED_MMIO 4931 ------------------------------------- 4382 ------------------------------------- 4932 4383 4933 :Capability: KVM_CAP_COALESCED_MMIO (for coal 4384 :Capability: KVM_CAP_COALESCED_MMIO (for coalesced mmio) 4934 KVM_CAP_COALESCED_PIO (for coale 4385 KVM_CAP_COALESCED_PIO (for coalesced pio) 4935 :Architectures: all 4386 :Architectures: all 4936 :Type: vm ioctl 4387 :Type: vm ioctl 4937 :Parameters: struct kvm_coalesced_mmio_zone 4388 :Parameters: struct kvm_coalesced_mmio_zone 4938 :Returns: 0 on success, < 0 on error 4389 :Returns: 0 on success, < 0 on error 4939 4390 4940 Coalesced I/O is a performance optimization t 4391 Coalesced I/O is a performance optimization that defers hardware 4941 register write emulation so that userspace ex 4392 register write emulation so that userspace exits are avoided. It is 4942 typically used to reduce the overhead of emul 4393 typically used to reduce the overhead of emulating frequently accessed 4943 hardware registers. 4394 hardware registers. 4944 4395 4945 When a hardware register is configured for co 4396 When a hardware register is configured for coalesced I/O, write accesses 4946 do not exit to userspace and their value is r 4397 do not exit to userspace and their value is recorded in a ring buffer 4947 that is shared between kernel and userspace. 4398 that is shared between kernel and userspace. 4948 4399 4949 Coalesced I/O is used if one or more write ac 4400 Coalesced I/O is used if one or more write accesses to a hardware 4950 register can be deferred until a read or a wr 4401 register can be deferred until a read or a write to another hardware 4951 register on the same device. This last acces 4402 register on the same device. This last access will cause a vmexit and 4952 userspace will process accesses from the ring 4403 userspace will process accesses from the ring buffer before emulating 4953 it. That will avoid exiting to userspace on r 4404 it. That will avoid exiting to userspace on repeated writes. 4954 4405 4955 Coalesced pio is based on coalesced mmio. The 4406 Coalesced pio is based on coalesced mmio. There is little difference 4956 between coalesced mmio and pio except that co 4407 between coalesced mmio and pio except that coalesced pio records accesses 4957 to I/O ports. 4408 to I/O ports. 4958 4409 4959 4.117 KVM_CLEAR_DIRTY_LOG (vm ioctl) 4410 4.117 KVM_CLEAR_DIRTY_LOG (vm ioctl) 4960 ------------------------------------ 4411 ------------------------------------ 4961 4412 4962 :Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT 4413 :Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 4963 :Architectures: x86, arm64, mips !! 4414 :Architectures: x86, arm, arm64, mips 4964 :Type: vm ioctl 4415 :Type: vm ioctl 4965 :Parameters: struct kvm_clear_dirty_log (in) !! 4416 :Parameters: struct kvm_dirty_log (in) 4966 :Returns: 0 on success, -1 on error 4417 :Returns: 0 on success, -1 on error 4967 4418 4968 :: 4419 :: 4969 4420 4970 /* for KVM_CLEAR_DIRTY_LOG */ 4421 /* for KVM_CLEAR_DIRTY_LOG */ 4971 struct kvm_clear_dirty_log { 4422 struct kvm_clear_dirty_log { 4972 __u32 slot; 4423 __u32 slot; 4973 __u32 num_pages; 4424 __u32 num_pages; 4974 __u64 first_page; 4425 __u64 first_page; 4975 union { 4426 union { 4976 void __user *dirty_bitmap; /* 4427 void __user *dirty_bitmap; /* one bit per page */ 4977 __u64 padding; 4428 __u64 padding; 4978 }; 4429 }; 4979 }; 4430 }; 4980 4431 4981 The ioctl clears the dirty status of pages in 4432 The ioctl clears the dirty status of pages in a memory slot, according to 4982 the bitmap that is passed in struct kvm_clear 4433 the bitmap that is passed in struct kvm_clear_dirty_log's dirty_bitmap 4983 field. Bit 0 of the bitmap corresponds to pa 4434 field. Bit 0 of the bitmap corresponds to page "first_page" in the 4984 memory slot, and num_pages is the size in bit 4435 memory slot, and num_pages is the size in bits of the input bitmap. 4985 first_page must be a multiple of 64; num_page 4436 first_page must be a multiple of 64; num_pages must also be a multiple of 4986 64 unless first_page + num_pages is the size 4437 64 unless first_page + num_pages is the size of the memory slot. For each 4987 bit that is set in the input bitmap, the corr 4438 bit that is set in the input bitmap, the corresponding page is marked "clean" 4988 in KVM's dirty bitmap, and dirty tracking is 4439 in KVM's dirty bitmap, and dirty tracking is re-enabled for that page 4989 (for example via write-protection, or by clea 4440 (for example via write-protection, or by clearing the dirty bit in 4990 a page table entry). 4441 a page table entry). 4991 4442 4992 If KVM_CAP_MULTI_ADDRESS_SPACE is available, !! 4443 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies 4993 the address space for which you want to clear !! 4444 the address space for which you want to return the dirty bitmap. 4994 KVM_SET_USER_MEMORY_REGION for details on the !! 4445 They must be less than the value that KVM_CHECK_EXTENSION returns for >> 4446 the KVM_CAP_MULTI_ADDRESS_SPACE capability. 4995 4447 4996 This ioctl is mostly useful when KVM_CAP_MANU 4448 This ioctl is mostly useful when KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 4997 is enabled; for more information, see the des 4449 is enabled; for more information, see the description of the capability. 4998 However, it can always be used as long as KVM 4450 However, it can always be used as long as KVM_CHECK_EXTENSION confirms 4999 that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is pre 4451 that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is present. 5000 4452 5001 4.118 KVM_GET_SUPPORTED_HV_CPUID 4453 4.118 KVM_GET_SUPPORTED_HV_CPUID 5002 -------------------------------- 4454 -------------------------------- 5003 4455 5004 :Capability: KVM_CAP_HYPERV_CPUID (vcpu), KVM !! 4456 :Capability: KVM_CAP_HYPERV_CPUID 5005 :Architectures: x86 4457 :Architectures: x86 5006 :Type: system ioctl, vcpu ioctl !! 4458 :Type: vcpu ioctl 5007 :Parameters: struct kvm_cpuid2 (in/out) 4459 :Parameters: struct kvm_cpuid2 (in/out) 5008 :Returns: 0 on success, -1 on error 4460 :Returns: 0 on success, -1 on error 5009 4461 5010 :: 4462 :: 5011 4463 5012 struct kvm_cpuid2 { 4464 struct kvm_cpuid2 { 5013 __u32 nent; 4465 __u32 nent; 5014 __u32 padding; 4466 __u32 padding; 5015 struct kvm_cpuid_entry2 entries[0]; 4467 struct kvm_cpuid_entry2 entries[0]; 5016 }; 4468 }; 5017 4469 5018 struct kvm_cpuid_entry2 { 4470 struct kvm_cpuid_entry2 { 5019 __u32 function; 4471 __u32 function; 5020 __u32 index; 4472 __u32 index; 5021 __u32 flags; 4473 __u32 flags; 5022 __u32 eax; 4474 __u32 eax; 5023 __u32 ebx; 4475 __u32 ebx; 5024 __u32 ecx; 4476 __u32 ecx; 5025 __u32 edx; 4477 __u32 edx; 5026 __u32 padding[3]; 4478 __u32 padding[3]; 5027 }; 4479 }; 5028 4480 5029 This ioctl returns x86 cpuid features leaves 4481 This ioctl returns x86 cpuid features leaves related to Hyper-V emulation in 5030 KVM. Userspace can use the information retur 4482 KVM. Userspace can use the information returned by this ioctl to construct 5031 cpuid information presented to guests consumi 4483 cpuid information presented to guests consuming Hyper-V enlightenments (e.g. 5032 Windows or Hyper-V guests). 4484 Windows or Hyper-V guests). 5033 4485 5034 CPUID feature leaves returned by this ioctl a 4486 CPUID feature leaves returned by this ioctl are defined by Hyper-V Top Level 5035 Functional Specification (TLFS). These leaves 4487 Functional Specification (TLFS). These leaves can't be obtained with 5036 KVM_GET_SUPPORTED_CPUID ioctl because some of 4488 KVM_GET_SUPPORTED_CPUID ioctl because some of them intersect with KVM feature 5037 leaves (0x40000000, 0x40000001). 4489 leaves (0x40000000, 0x40000001). 5038 4490 5039 Currently, the following list of CPUID leaves 4491 Currently, the following list of CPUID leaves are returned: 5040 << 5041 - HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS 4492 - HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS 5042 - HYPERV_CPUID_INTERFACE 4493 - HYPERV_CPUID_INTERFACE 5043 - HYPERV_CPUID_VERSION 4494 - HYPERV_CPUID_VERSION 5044 - HYPERV_CPUID_FEATURES 4495 - HYPERV_CPUID_FEATURES 5045 - HYPERV_CPUID_ENLIGHTMENT_INFO 4496 - HYPERV_CPUID_ENLIGHTMENT_INFO 5046 - HYPERV_CPUID_IMPLEMENT_LIMITS 4497 - HYPERV_CPUID_IMPLEMENT_LIMITS 5047 - HYPERV_CPUID_NESTED_FEATURES 4498 - HYPERV_CPUID_NESTED_FEATURES 5048 - HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIO << 5049 - HYPERV_CPUID_SYNDBG_INTERFACE << 5050 - HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES << 5051 4499 5052 Userspace invokes KVM_GET_SUPPORTED_HV_CPUID !! 4500 HYPERV_CPUID_NESTED_FEATURES leaf is only exposed when Enlightened VMCS was >> 4501 enabled on the corresponding vCPU (KVM_CAP_HYPERV_ENLIGHTENED_VMCS). >> 4502 >> 4503 Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure 5053 with the 'nent' field indicating the number o 4504 with the 'nent' field indicating the number of entries in the variable-size 5054 array 'entries'. If the number of entries is 4505 array 'entries'. If the number of entries is too low to describe all Hyper-V 5055 feature leaves, an error (E2BIG) is returned. 4506 feature leaves, an error (E2BIG) is returned. If the number is more or equal 5056 to the number of Hyper-V feature leaves, the 4507 to the number of Hyper-V feature leaves, the 'nent' field is adjusted to the 5057 number of valid entries in the 'entries' arra 4508 number of valid entries in the 'entries' array, which is then filled. 5058 4509 5059 'index' and 'flags' fields in 'struct kvm_cpu 4510 'index' and 'flags' fields in 'struct kvm_cpuid_entry2' are currently reserved, 5060 userspace should not expect to get any partic 4511 userspace should not expect to get any particular value there. 5061 4512 5062 Note, vcpu version of KVM_GET_SUPPORTED_HV_CP << 5063 system ioctl which exposes all supported feat << 5064 version has the following quirks: << 5065 << 5066 - HYPERV_CPUID_NESTED_FEATURES leaf and HV_X6 << 5067 feature bit are only exposed when Enlighten << 5068 on the corresponding vCPU (KVM_CAP_HYPERV_E << 5069 - HV_STIMER_DIRECT_MODE_AVAILABLE bit is only << 5070 (presumes KVM_CREATE_IRQCHIP has already be << 5071 << 5072 4.119 KVM_ARM_VCPU_FINALIZE 4513 4.119 KVM_ARM_VCPU_FINALIZE 5073 --------------------------- 4514 --------------------------- 5074 4515 5075 :Architectures: arm64 !! 4516 :Architectures: arm, arm64 5076 :Type: vcpu ioctl 4517 :Type: vcpu ioctl 5077 :Parameters: int feature (in) 4518 :Parameters: int feature (in) 5078 :Returns: 0 on success, -1 on error 4519 :Returns: 0 on success, -1 on error 5079 4520 5080 Errors: 4521 Errors: 5081 4522 5082 ====== ================================ 4523 ====== ============================================================== 5083 EPERM feature not enabled, needs confi 4524 EPERM feature not enabled, needs configuration, or already finalized 5084 EINVAL feature unknown or not present 4525 EINVAL feature unknown or not present 5085 ====== ================================ 4526 ====== ============================================================== 5086 4527 5087 Recognised values for feature: 4528 Recognised values for feature: 5088 4529 5089 ===== ================================ 4530 ===== =========================================== 5090 arm64 KVM_ARM_VCPU_SVE (requires KVM_C 4531 arm64 KVM_ARM_VCPU_SVE (requires KVM_CAP_ARM_SVE) 5091 ===== ================================ 4532 ===== =========================================== 5092 4533 5093 Finalizes the configuration of the specified 4534 Finalizes the configuration of the specified vcpu feature. 5094 4535 5095 The vcpu must already have been initialised, 4536 The vcpu must already have been initialised, enabling the affected feature, by 5096 means of a successful KVM_ARM_VCPU_INIT call 4537 means of a successful KVM_ARM_VCPU_INIT call with the appropriate flag set in 5097 features[]. 4538 features[]. 5098 4539 5099 For affected vcpu features, this is a mandato 4540 For affected vcpu features, this is a mandatory step that must be performed 5100 before the vcpu is fully usable. 4541 before the vcpu is fully usable. 5101 4542 5102 Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FI 4543 Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FINALIZE, the feature may be 5103 configured by use of ioctls such as KVM_SET_O 4544 configured by use of ioctls such as KVM_SET_ONE_REG. The exact configuration 5104 that should be performed and how to do it are !! 4545 that should be performaned and how to do it are feature-dependent. 5105 4546 5106 Other calls that depend on a particular featu 4547 Other calls that depend on a particular feature being finalized, such as 5107 KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG an 4548 KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG and KVM_SET_ONE_REG, will fail with 5108 -EPERM unless the feature has already been fi 4549 -EPERM unless the feature has already been finalized by means of a 5109 KVM_ARM_VCPU_FINALIZE call. 4550 KVM_ARM_VCPU_FINALIZE call. 5110 4551 5111 See KVM_ARM_VCPU_INIT for details of vcpu fea 4552 See KVM_ARM_VCPU_INIT for details of vcpu features that require finalization 5112 using this ioctl. 4553 using this ioctl. 5113 4554 5114 4.120 KVM_SET_PMU_EVENT_FILTER 4555 4.120 KVM_SET_PMU_EVENT_FILTER 5115 ------------------------------ 4556 ------------------------------ 5116 4557 5117 :Capability: KVM_CAP_PMU_EVENT_FILTER 4558 :Capability: KVM_CAP_PMU_EVENT_FILTER 5118 :Architectures: x86 4559 :Architectures: x86 5119 :Type: vm ioctl 4560 :Type: vm ioctl 5120 :Parameters: struct kvm_pmu_event_filter (in) 4561 :Parameters: struct kvm_pmu_event_filter (in) 5121 :Returns: 0 on success, -1 on error 4562 :Returns: 0 on success, -1 on error 5122 4563 5123 Errors: << 5124 << 5125 ====== ================================ << 5126 EFAULT args[0] cannot be accessed << 5127 EINVAL args[0] contains invalid data in << 5128 E2BIG nevents is too large << 5129 EBUSY not enough memory to allocate th << 5130 ====== ================================ << 5131 << 5132 :: 4564 :: 5133 4565 5134 struct kvm_pmu_event_filter { 4566 struct kvm_pmu_event_filter { 5135 __u32 action; 4567 __u32 action; 5136 __u32 nevents; 4568 __u32 nevents; 5137 __u32 fixed_counter_bitmap; 4569 __u32 fixed_counter_bitmap; 5138 __u32 flags; 4570 __u32 flags; 5139 __u32 pad[4]; 4571 __u32 pad[4]; 5140 __u64 events[0]; 4572 __u64 events[0]; 5141 }; 4573 }; 5142 4574 5143 This ioctl restricts the set of PMU events th !! 4575 This ioctl restricts the set of PMU events that the guest can program. 5144 which event select and unit mask combinations !! 4576 The argument holds a list of events which will be allowed or denied. 5145 !! 4577 The eventsel+umask of each event the guest attempts to program is compared 5146 The argument holds a list of filter events wh !! 4578 against the events field to determine whether the guest should have access. >> 4579 The events field only controls general purpose counters; fixed purpose >> 4580 counters are controlled by the fixed_counter_bitmap. 5147 4581 5148 Filter events only control general purpose co !! 4582 No flags are defined yet, the field must be zero. 5149 are controlled by the fixed_counter_bitmap. << 5150 << 5151 Valid values for 'flags':: << 5152 << 5153 ``0`` << 5154 << 5155 To use this mode, clear the 'flags' field. << 5156 << 5157 In this mode each event will contain an event << 5158 << 5159 When the guest attempts to program the PMU th << 5160 unit mask is compared against the filter even << 5161 guest should have access. << 5162 << 5163 ``KVM_PMU_EVENT_FLAG_MASKED_EVENTS`` << 5164 :Capability: KVM_CAP_PMU_EVENT_MASKED_EVENTS << 5165 << 5166 In this mode each filter event will contain a << 5167 exclude value. To encode a masked event use: << 5168 << 5169 KVM_PMU_ENCODE_MASKED_ENTRY() << 5170 << 5171 An encoded event will follow this layout:: << 5172 << 5173 Bits Description << 5174 ---- ----------- << 5175 7:0 event select (low bits) << 5176 15:8 umask match << 5177 31:16 unused << 5178 35:32 event select (high bits) << 5179 36:54 unused << 5180 55 exclude bit << 5181 63:56 umask mask << 5182 << 5183 When the guest attempts to program the PMU, t << 5184 determining if the guest should have access: << 5185 << 5186 1. Match the event select from the guest aga << 5187 2. If a match is found, match the guest's un << 5188 values of the included filter events. << 5189 I.e. (unit mask & mask) == match && !excl << 5190 3. If a match is found, match the guest's un << 5191 values of the excluded filter events. << 5192 I.e. (unit mask & mask) == match && exclu << 5193 4. << 5194 a. If an included match is found and an ex << 5195 the event. << 5196 b. For everything else, do not filter the << 5197 5. << 5198 a. If the event is filtered and it's an al << 5199 program the event. << 5200 b. If the event is filtered and it's a den << 5201 program the event. << 5202 << 5203 When setting a new pmu event filter, -EINVAL << 5204 unused fields are set or if any of the high b << 5205 select are set when called on Intel. << 5206 4583 5207 Valid values for 'action':: 4584 Valid values for 'action':: 5208 4585 5209 #define KVM_PMU_EVENT_ALLOW 0 4586 #define KVM_PMU_EVENT_ALLOW 0 5210 #define KVM_PMU_EVENT_DENY 1 4587 #define KVM_PMU_EVENT_DENY 1 5211 4588 5212 Via this API, KVM userspace can also control << 5213 counters (if any) by configuring the "action" << 5214 << 5215 Specifically, KVM follows the following pseud << 5216 allow the guest FixCtr[i] to count its pre-de << 5217 << 5218 FixCtr[i]_is_allowed = (action == ALLOW) && << 5219 (action == DENY) && !(bitmap & BIT(i)); << 5220 FixCtr[i]_is_denied = !FixCtr[i]_is_allowed << 5221 << 5222 KVM always consumes fixed_counter_bitmap, it' << 5223 ensure fixed_counter_bitmap is set correctly, << 5224 a filter that only affects general purpose co << 5225 << 5226 Note, the "events" field also applies to fixe << 5227 and unit_mask values. "fixed_counter_bitmap" << 5228 if there is a contradiction between the two. << 5229 << 5230 4.121 KVM_PPC_SVM_OFF 4589 4.121 KVM_PPC_SVM_OFF 5231 --------------------- 4590 --------------------- 5232 4591 5233 :Capability: basic 4592 :Capability: basic 5234 :Architectures: powerpc 4593 :Architectures: powerpc 5235 :Type: vm ioctl 4594 :Type: vm ioctl 5236 :Parameters: none 4595 :Parameters: none 5237 :Returns: 0 on successful completion, 4596 :Returns: 0 on successful completion, 5238 4597 5239 Errors: 4598 Errors: 5240 4599 5241 ====== ================================ 4600 ====== ================================================================ 5242 EINVAL if ultravisor failed to terminat 4601 EINVAL if ultravisor failed to terminate the secure guest 5243 ENOMEM if hypervisor failed to allocate 4602 ENOMEM if hypervisor failed to allocate new radix page tables for guest 5244 ====== ================================ 4603 ====== ================================================================ 5245 4604 5246 This ioctl is used to turn off the secure mod 4605 This ioctl is used to turn off the secure mode of the guest or transition 5247 the guest from secure mode to normal mode. Th 4606 the guest from secure mode to normal mode. This is invoked when the guest 5248 is reset. This has no effect if called for a 4607 is reset. This has no effect if called for a normal guest. 5249 4608 5250 This ioctl issues an ultravisor call to termi 4609 This ioctl issues an ultravisor call to terminate the secure guest, 5251 unpins the VPA pages and releases all the dev 4610 unpins the VPA pages and releases all the device pages that are used to 5252 track the secure pages by hypervisor. 4611 track the secure pages by hypervisor. 5253 4612 5254 4.122 KVM_S390_NORMAL_RESET 4613 4.122 KVM_S390_NORMAL_RESET 5255 --------------------------- 4614 --------------------------- 5256 4615 5257 :Capability: KVM_CAP_S390_VCPU_RESETS 4616 :Capability: KVM_CAP_S390_VCPU_RESETS 5258 :Architectures: s390 4617 :Architectures: s390 5259 :Type: vcpu ioctl 4618 :Type: vcpu ioctl 5260 :Parameters: none 4619 :Parameters: none 5261 :Returns: 0 4620 :Returns: 0 5262 4621 5263 This ioctl resets VCPU registers and control 4622 This ioctl resets VCPU registers and control structures according to 5264 the cpu reset definition in the POP (Principl 4623 the cpu reset definition in the POP (Principles Of Operation). 5265 4624 5266 4.123 KVM_S390_INITIAL_RESET 4625 4.123 KVM_S390_INITIAL_RESET 5267 ---------------------------- 4626 ---------------------------- 5268 4627 5269 :Capability: none 4628 :Capability: none 5270 :Architectures: s390 4629 :Architectures: s390 5271 :Type: vcpu ioctl 4630 :Type: vcpu ioctl 5272 :Parameters: none 4631 :Parameters: none 5273 :Returns: 0 4632 :Returns: 0 5274 4633 5275 This ioctl resets VCPU registers and control 4634 This ioctl resets VCPU registers and control structures according to 5276 the initial cpu reset definition in the POP. 4635 the initial cpu reset definition in the POP. However, the cpu is not 5277 put into ESA mode. This reset is a superset o 4636 put into ESA mode. This reset is a superset of the normal reset. 5278 4637 5279 4.124 KVM_S390_CLEAR_RESET 4638 4.124 KVM_S390_CLEAR_RESET 5280 -------------------------- 4639 -------------------------- 5281 4640 5282 :Capability: KVM_CAP_S390_VCPU_RESETS 4641 :Capability: KVM_CAP_S390_VCPU_RESETS 5283 :Architectures: s390 4642 :Architectures: s390 5284 :Type: vcpu ioctl 4643 :Type: vcpu ioctl 5285 :Parameters: none 4644 :Parameters: none 5286 :Returns: 0 4645 :Returns: 0 5287 4646 5288 This ioctl resets VCPU registers and control 4647 This ioctl resets VCPU registers and control structures according to 5289 the clear cpu reset definition in the POP. Ho 4648 the clear cpu reset definition in the POP. However, the cpu is not put 5290 into ESA mode. This reset is a superset of th 4649 into ESA mode. This reset is a superset of the initial reset. 5291 4650 5292 4651 5293 4.125 KVM_S390_PV_COMMAND << 5294 ------------------------- << 5295 << 5296 :Capability: KVM_CAP_S390_PROTECTED << 5297 :Architectures: s390 << 5298 :Type: vm ioctl << 5299 :Parameters: struct kvm_pv_cmd << 5300 :Returns: 0 on success, < 0 on error << 5301 << 5302 :: << 5303 << 5304 struct kvm_pv_cmd { << 5305 __u32 cmd; /* Command to be exec << 5306 __u16 rc; /* Ultravisor return << 5307 __u16 rrc; /* Ultravisor return << 5308 __u64 data; /* Data or address */ << 5309 __u32 flags; /* flags for future e << 5310 __u32 reserved[3]; << 5311 }; << 5312 << 5313 **Ultravisor return codes** << 5314 The Ultravisor return (reason) codes are prov << 5315 Ultravisor call has been executed to achieve << 5316 the command. Therefore they are independent o << 5317 code. If KVM changes `rc`, its value will alw << 5318 hence setting it to 0 before issuing a PV com << 5319 able to detect a change of `rc`. << 5320 << 5321 **cmd values:** << 5322 << 5323 KVM_PV_ENABLE << 5324 Allocate memory and register the VM with th << 5325 donating memory to the Ultravisor that will << 5326 KVM. All existing CPUs are converted to pro << 5327 command has succeeded, any CPU added via ho << 5328 protected during its creation as well. << 5329 << 5330 Errors: << 5331 << 5332 ===== ============================= << 5333 EINTR an unmasked signal is pending << 5334 ===== ============================= << 5335 << 5336 KVM_PV_DISABLE << 5337 Deregister the VM from the Ultravisor and r << 5338 been donated to the Ultravisor, making it u << 5339 All registered VCPUs are converted back to << 5340 previous protected VM had been prepared for << 5341 KVM_PV_ASYNC_CLEANUP_PREPARE and not subseq << 5342 KVM_PV_ASYNC_CLEANUP_PERFORM, it will be to << 5343 together with the current protected VM. << 5344 << 5345 KVM_PV_VM_SET_SEC_PARMS << 5346 Pass the image header from VM memory to the << 5347 preparation of image unpacking and verifica << 5348 << 5349 KVM_PV_VM_UNPACK << 5350 Unpack (protect and decrypt) a page of the << 5351 << 5352 KVM_PV_VM_VERIFY << 5353 Verify the integrity of the unpacked image. << 5354 KVM is allowed to start protected VCPUs. << 5355 << 5356 KVM_PV_INFO << 5357 :Capability: KVM_CAP_S390_PROTECTED_DUMP << 5358 << 5359 Presents an API that provides Ultravisor re << 5360 via subcommands. len_max is the size of the << 5361 len_written is KVM's indication of how much << 5362 were actually written to. len_written can b << 5363 valid fields if more response fields are ad << 5364 << 5365 :: << 5366 << 5367 enum pv_cmd_info_id { << 5368 KVM_PV_INFO_VM, << 5369 KVM_PV_INFO_DUMP, << 5370 }; << 5371 << 5372 struct kvm_s390_pv_info_header { << 5373 __u32 id; << 5374 __u32 len_max; << 5375 __u32 len_written; << 5376 __u32 reserved; << 5377 }; << 5378 << 5379 struct kvm_s390_pv_info { << 5380 struct kvm_s390_pv_info_header header << 5381 struct kvm_s390_pv_info_dump dump; << 5382 struct kvm_s390_pv_info_vm vm; << 5383 }; << 5384 << 5385 **subcommands:** << 5386 << 5387 KVM_PV_INFO_VM << 5388 This subcommand provides basic Ultravisor << 5389 hosts. These values are likely also expor << 5390 firmware UV query interface but they are << 5391 programs in this API. << 5392 << 5393 The installed calls and feature_indicatio << 5394 installed UV calls and the UV's other fea << 5395 << 5396 The max_* members provide information abo << 5397 vcpus, PV guests and PV guest memory size << 5398 << 5399 :: << 5400 << 5401 struct kvm_s390_pv_info_vm { << 5402 __u64 inst_calls_list[4]; << 5403 __u64 max_cpus; << 5404 __u64 max_guests; << 5405 __u64 max_guest_addr; << 5406 __u64 feature_indication; << 5407 }; << 5408 << 5409 << 5410 KVM_PV_INFO_DUMP << 5411 This subcommand provides information rela << 5412 << 5413 :: << 5414 << 5415 struct kvm_s390_pv_info_dump { << 5416 __u64 dump_cpu_buffer_len; << 5417 __u64 dump_config_mem_buffer_per_1m; << 5418 __u64 dump_config_finalize_len; << 5419 }; << 5420 << 5421 KVM_PV_DUMP << 5422 :Capability: KVM_CAP_S390_PROTECTED_DUMP << 5423 << 5424 Presents an API that provides calls which f << 5425 protected VM. << 5426 << 5427 :: << 5428 << 5429 struct kvm_s390_pv_dmp { << 5430 __u64 subcmd; << 5431 __u64 buff_addr; << 5432 __u64 buff_len; << 5433 __u64 gaddr; /* For dump s << 5434 }; << 5435 << 5436 **subcommands:** << 5437 << 5438 KVM_PV_DUMP_INIT << 5439 Initializes the dump process of a protect << 5440 not succeed all other subcommands will fa << 5441 subcommand will return -EINVAL if a dump << 5442 completed. << 5443 << 5444 Not all PV vms can be dumped, the owner n << 5445 allowed` PCF bit 34 in the SE header to a << 5446 << 5447 KVM_PV_DUMP_CONFIG_STOR_STATE << 5448 Stores `buff_len` bytes of tweak compone << 5449 the 1MB block specified by the absolute << 5450 (`gaddr`). `buff_len` needs to be `conf_ << 5451 aligned and at least >= the `conf_dump_s << 5452 provided by the dump uv_info data. buff_ << 5453 even if an error rc is returned. For ins << 5454 fault after writing the first page of da << 5455 << 5456 KVM_PV_DUMP_COMPLETE << 5457 If the subcommand succeeds it completes t << 5458 KVM_PV_DUMP_INIT be called again. << 5459 << 5460 On success `conf_dump_finalize_len` bytes << 5461 stored to the `buff_addr`. The completion << 5462 derivation seed, IV, tweak nonce and encr << 5463 authentication tag all of which are neede << 5464 later time. << 5465 << 5466 KVM_PV_ASYNC_CLEANUP_PREPARE << 5467 :Capability: KVM_CAP_S390_PROTECTED_ASYNC_D << 5468 << 5469 Prepare the current protected VM for asynch << 5470 resources used by the current protected VM << 5471 subsequent asynchronous teardown. The curre << 5472 resume execution immediately as non-protect << 5473 one protected VM prepared for asynchronous << 5474 a protected VM had already been prepared fo << 5475 subsequently calling KVM_PV_ASYNC_CLEANUP_P << 5476 fail. In that case, the userspace process s << 5477 KVM_PV_DISABLE. The resources set aside wit << 5478 be cleaned up with a subsequent call to KVM << 5479 or KVM_PV_DISABLE, otherwise they will be c << 5480 terminates. KVM_PV_ASYNC_CLEANUP_PREPARE ca << 5481 as cleanup starts, i.e. before KVM_PV_ASYNC << 5482 << 5483 KVM_PV_ASYNC_CLEANUP_PERFORM << 5484 :Capability: KVM_CAP_S390_PROTECTED_ASYNC_D << 5485 << 5486 Tear down the protected VM previously prepa << 5487 KVM_PV_ASYNC_CLEANUP_PREPARE. The resources << 5488 will be freed during the execution of this << 5489 should ideally be issued by userspace from << 5490 fatal signal is received (or the process te << 5491 command will terminate immediately without << 5492 KVM shutdown procedure will take care of cl << 5493 protected VMs, including the ones whose tea << 5494 process termination. << 5495 << 5496 4.126 KVM_XEN_HVM_SET_ATTR << 5497 -------------------------- << 5498 << 5499 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO << 5500 :Architectures: x86 << 5501 :Type: vm ioctl << 5502 :Parameters: struct kvm_xen_hvm_attr << 5503 :Returns: 0 on success, < 0 on error << 5504 << 5505 :: << 5506 << 5507 struct kvm_xen_hvm_attr { << 5508 __u16 type; << 5509 __u16 pad[3]; << 5510 union { << 5511 __u8 long_mode; << 5512 __u8 vector; << 5513 __u8 runstate_update_flag; << 5514 union { << 5515 __u64 gfn; << 5516 __u64 hva; << 5517 } shared_info; << 5518 struct { << 5519 __u32 send_port; << 5520 __u32 type; /* EVTCHN << 5521 __u32 flags; << 5522 union { << 5523 struct { << 5524 __u32 << 5525 __u32 << 5526 __u32 << 5527 } port; << 5528 struct { << 5529 __u32 << 5530 __s32 << 5531 } eventfd; << 5532 __u32 padding << 5533 } deliver; << 5534 } evtchn; << 5535 __u32 xen_version; << 5536 __u64 pad[8]; << 5537 } u; << 5538 }; << 5539 << 5540 type values: << 5541 << 5542 KVM_XEN_ATTR_TYPE_LONG_MODE << 5543 Sets the ABI mode of the VM to 32-bit or 64 << 5544 determines the layout of the shared_info pa << 5545 << 5546 KVM_XEN_ATTR_TYPE_SHARED_INFO << 5547 Sets the guest physical frame number at whi << 5548 page resides. Note that although Xen places << 5549 32 vCPUs in the shared_info page, KVM does << 5550 and instead requires that KVM_XEN_VCPU_ATTR << 5551 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA be use << 5552 the vcpu_info for a given vCPU resides at t << 5553 in the shared_info page. This is because KV << 5554 the Xen CPU id which is used as the index i << 5555 array, so may know the correct default loca << 5556 << 5557 Note that the shared_info page may be const << 5558 it contains the event channel bitmap used t << 5559 a Xen guest, amongst other things. It is ex << 5560 mechanisms — KVM will not explicitly mark << 5561 time an event channel interrupt is delivere << 5562 userspace should always assume that the des << 5563 any vCPU has been running or any event chan << 5564 routed to the guest. << 5565 << 5566 Setting the gfn to KVM_XEN_INVALID_GFN will << 5567 page. << 5568 << 5569 KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA << 5570 If the KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA f << 5571 Xen capabilities, then this attribute may b << 5572 userspace address at which the shared_info << 5573 will always be fixed in the VMM regardless << 5574 in guest physical address space. This attri << 5575 preference to KVM_XEN_ATTR_TYPE_SHARED_INFO << 5576 unnecessary invalidation of an internal cac << 5577 re-mapped in guest physcial address space. << 5578 << 5579 Setting the hva to zero will disable the sh << 5580 << 5581 KVM_XEN_ATTR_TYPE_UPCALL_VECTOR << 5582 Sets the exception vector used to deliver X << 5583 This is the HVM-wide vector injected direct << 5584 (not through the local APIC), typically con << 5585 HVM_PARAM_CALLBACK_IRQ. This can be disable << 5586 SHUTDOWN_soft_reset) by setting it to zero. << 5587 << 5588 KVM_XEN_ATTR_TYPE_EVTCHN << 5589 This attribute is available when the KVM_CA << 5590 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5591 an outbound port number for interception of << 5592 from the guest. A given sending port number << 5593 a specified vCPU (by APIC ID) / port / prio << 5594 trigger events on an eventfd. The vCPU and << 5595 by setting KVM_XEN_EVTCHN_UPDATE in a subse << 5596 fields cannot change for a given sending po << 5597 removed by using KVM_XEN_EVTCHN_DEASSIGN in << 5598 KVM_XEN_EVTCHN_RESET in the flags field rem << 5599 outbound event channels. The values of the << 5600 exclusive and cannot be combined as a bitma << 5601 << 5602 KVM_XEN_ATTR_TYPE_XEN_VERSION << 5603 This attribute is available when the KVM_CA << 5604 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5605 the 32-bit version code returned to the gue << 5606 XENVER_version call; typically (XEN_MAJOR < << 5607 Xen guests will often use this to as a dumm << 5608 event channel delivery, so responding withi << 5609 exiting to userspace is beneficial. << 5610 << 5611 KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG << 5612 This attribute is available when the KVM_CA << 5613 support for KVM_XEN_HVM_CONFIG_RUNSTATE_UPD << 5614 XEN_RUNSTATE_UPDATE flag which allows guest << 5615 other vCPUs' vcpu_runstate_info. Xen guests << 5616 the VMASST_TYPE_runstate_update_flag of the << 5617 hypercall. << 5618 << 5619 4.127 KVM_XEN_HVM_GET_ATTR << 5620 -------------------------- << 5621 << 5622 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO << 5623 :Architectures: x86 << 5624 :Type: vm ioctl << 5625 :Parameters: struct kvm_xen_hvm_attr << 5626 :Returns: 0 on success, < 0 on error << 5627 << 5628 Allows Xen VM attributes to be read. For the << 5629 see KVM_XEN_HVM_SET_ATTR above. The KVM_XEN_A << 5630 attribute cannot be read. << 5631 << 5632 4.128 KVM_XEN_VCPU_SET_ATTR << 5633 --------------------------- << 5634 << 5635 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO << 5636 :Architectures: x86 << 5637 :Type: vcpu ioctl << 5638 :Parameters: struct kvm_xen_vcpu_attr << 5639 :Returns: 0 on success, < 0 on error << 5640 << 5641 :: << 5642 << 5643 struct kvm_xen_vcpu_attr { << 5644 __u16 type; << 5645 __u16 pad[3]; << 5646 union { << 5647 __u64 gpa; << 5648 __u64 pad[4]; << 5649 struct { << 5650 __u64 state; << 5651 __u64 state_entry_tim << 5652 __u64 time_running; << 5653 __u64 time_runnable; << 5654 __u64 time_blocked; << 5655 __u64 time_offline; << 5656 } runstate; << 5657 __u32 vcpu_id; << 5658 struct { << 5659 __u32 port; << 5660 __u32 priority; << 5661 __u64 expires_ns; << 5662 } timer; << 5663 __u8 vector; << 5664 } u; << 5665 }; << 5666 << 5667 type values: << 5668 << 5669 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO << 5670 Sets the guest physical address of the vcpu << 5671 As with the shared_info page for the VM, th << 5672 dirtied at any time if event channel interr << 5673 userspace should always assume that the pag << 5674 on dirty logging. Setting the gpa to KVM_XE << 5675 the vcpu_info. << 5676 << 5677 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA << 5678 If the KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA f << 5679 Xen capabilities, then this attribute may b << 5680 userspace address of the vcpu_info for a gi << 5681 only be used when the vcpu_info resides at << 5682 in the shared_info page. In this case it is << 5683 userspace address will not change, because << 5684 an overlay on guest memory and remains at a << 5685 regardless of where it is mapped in guest p << 5686 and hence unnecessary invalidation of an in << 5687 avoided if the guest memory layout is modif << 5688 If the vcpu_info does not reside at the "de << 5689 it is not guaranteed to remain at the same << 5690 hence the aforementioned cache invalidation << 5691 << 5692 KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO << 5693 Sets the guest physical address of an addit << 5694 for a given vCPU. This is typically used fo << 5695 Setting the gpa to KVM_XEN_INVALID_GPA will << 5696 << 5697 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR << 5698 Sets the guest physical address of the vcpu << 5699 vCPU. This is how a Xen guest tracks CPU st << 5700 Setting the gpa to KVM_XEN_INVALID_GPA will << 5701 << 5702 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT << 5703 Sets the runstate (RUNSTATE_running/_runnab << 5704 the given vCPU from the .u.runstate.state m << 5705 KVM automatically accounts running and runn << 5706 and offline states are only entered explici << 5707 << 5708 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA << 5709 Sets all fields of the vCPU runstate data f << 5710 of the structure, including the current run << 5711 must equal the sum of the other four times. << 5712 << 5713 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST << 5714 This *adds* the contents of the .u.runstate << 5715 to the corresponding members of the given v << 5716 permitting atomic adjustments to the runsta << 5717 to the state_entry_time must equal the sum << 5718 other four times. The state field must be s << 5719 runstate value (RUNSTATE_running, RUNSTATE_ << 5720 or RUNSTATE_offline) to set the current acc << 5721 adjusted state_entry_time. << 5722 << 5723 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID << 5724 This attribute is available when the KVM_CA << 5725 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5726 vCPU ID of the given vCPU, to allow timer-r << 5727 be intercepted by KVM. << 5728 << 5729 KVM_XEN_VCPU_ATTR_TYPE_TIMER << 5730 This attribute is available when the KVM_CA << 5731 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5732 event channel port/priority for the VIRQ_TI << 5733 as allowing a pending timer to be saved/res << 5734 port to zero disables kernel handling of th << 5735 << 5736 KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR << 5737 This attribute is available when the KVM_CA << 5738 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5739 per-vCPU local APIC upcall vector, configur << 5740 the HVMOP_set_evtchn_upcall_vector hypercal << 5741 used by Windows guests, and is distinct fro << 5742 vector configured with HVM_PARAM_CALLBACK_I << 5743 setting the vector to zero. << 5744 << 5745 << 5746 4.129 KVM_XEN_VCPU_GET_ATTR << 5747 --------------------------- << 5748 << 5749 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO << 5750 :Architectures: x86 << 5751 :Type: vcpu ioctl << 5752 :Parameters: struct kvm_xen_vcpu_attr << 5753 :Returns: 0 on success, < 0 on error << 5754 << 5755 Allows Xen vCPU attributes to be read. For th << 5756 see KVM_XEN_VCPU_SET_ATTR above. << 5757 << 5758 The KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST ty << 5759 with the KVM_XEN_VCPU_GET_ATTR ioctl. << 5760 << 5761 4.130 KVM_ARM_MTE_COPY_TAGS << 5762 --------------------------- << 5763 << 5764 :Capability: KVM_CAP_ARM_MTE << 5765 :Architectures: arm64 << 5766 :Type: vm ioctl << 5767 :Parameters: struct kvm_arm_copy_mte_tags << 5768 :Returns: number of bytes copied, < 0 on erro << 5769 arguments, -EFAULT if memory cannot << 5770 << 5771 :: << 5772 << 5773 struct kvm_arm_copy_mte_tags { << 5774 __u64 guest_ipa; << 5775 __u64 length; << 5776 void __user *addr; << 5777 __u64 flags; << 5778 __u64 reserved[2]; << 5779 }; << 5780 << 5781 Copies Memory Tagging Extension (MTE) tags to << 5782 ``guest_ipa`` and ``length`` fields must be ` << 5783 ``length`` must not be bigger than 2^31 - PAG << 5784 field must point to a buffer which the tags w << 5785 << 5786 ``flags`` specifies the direction of copy, ei << 5787 ``KVM_ARM_TAGS_FROM_GUEST``. << 5788 << 5789 The size of the buffer to store the tags is ` << 5790 (granules in MTE are 16 bytes long). Each byt << 5791 value. This matches the format of ``PTRACE_PE << 5792 ``PTRACE_POKEMTETAGS``. << 5793 << 5794 If an error occurs before any data is copied << 5795 returned. If some tags have been copied befor << 5796 of bytes successfully copied is returned. If << 5797 then ``length`` is returned. << 5798 << 5799 4.131 KVM_GET_SREGS2 << 5800 -------------------- << 5801 << 5802 :Capability: KVM_CAP_SREGS2 << 5803 :Architectures: x86 << 5804 :Type: vcpu ioctl << 5805 :Parameters: struct kvm_sregs2 (out) << 5806 :Returns: 0 on success, -1 on error << 5807 << 5808 Reads special registers from the vcpu. << 5809 This ioctl (when supported) replaces the KVM_ << 5810 << 5811 :: << 5812 << 5813 struct kvm_sregs2 { << 5814 /* out (KVM_GET_SREGS2) / in << 5815 struct kvm_segment cs, ds, es << 5816 struct kvm_segment tr, ldt; << 5817 struct kvm_dtable gdt, idt; << 5818 __u64 cr0, cr2, cr3, cr4, cr8 << 5819 __u64 efer; << 5820 __u64 apic_base; << 5821 __u64 flags; << 5822 __u64 pdptrs[4]; << 5823 }; << 5824 << 5825 flags values for ``kvm_sregs2``: << 5826 << 5827 ``KVM_SREGS2_FLAGS_PDPTRS_VALID`` << 5828 << 5829 Indicates that the struct contains valid PD << 5830 << 5831 << 5832 4.132 KVM_SET_SREGS2 << 5833 -------------------- << 5834 << 5835 :Capability: KVM_CAP_SREGS2 << 5836 :Architectures: x86 << 5837 :Type: vcpu ioctl << 5838 :Parameters: struct kvm_sregs2 (in) << 5839 :Returns: 0 on success, -1 on error << 5840 << 5841 Writes special registers into the vcpu. << 5842 See KVM_GET_SREGS2 for the data structures. << 5843 This ioctl (when supported) replaces the KVM_ << 5844 << 5845 4.133 KVM_GET_STATS_FD << 5846 ---------------------- << 5847 << 5848 :Capability: KVM_CAP_STATS_BINARY_FD << 5849 :Architectures: all << 5850 :Type: vm ioctl, vcpu ioctl << 5851 :Parameters: none << 5852 :Returns: statistics file descriptor on succe << 5853 << 5854 Errors: << 5855 << 5856 ====== ================================ << 5857 ENOMEM if the fd could not be created d << 5858 EMFILE if the number of opened files ex << 5859 ====== ================================ << 5860 << 5861 The returned file descriptor can be used to r << 5862 binary format. The data in the file descripto << 5863 organized as follows: << 5864 << 5865 +-------------+ << 5866 | Header | << 5867 +-------------+ << 5868 | id string | << 5869 +-------------+ << 5870 | Descriptors | << 5871 +-------------+ << 5872 | Stats Data | << 5873 +-------------+ << 5874 << 5875 Apart from the header starting at offset 0, p << 5876 not guaranteed that the four blocks are adjac << 5877 the offsets of the id, descriptors and data b << 5878 header. However, all four blocks are aligned << 5879 file and they do not overlap. << 5880 << 5881 All blocks except the data block are immutabl << 5882 only one time after retrieving the file descr << 5883 ``lseek`` to read the statistics repeatedly. << 5884 << 5885 All data is in system endianness. << 5886 << 5887 The format of the header is as follows:: << 5888 << 5889 struct kvm_stats_header { << 5890 __u32 flags; << 5891 __u32 name_size; << 5892 __u32 num_desc; << 5893 __u32 id_offset; << 5894 __u32 desc_offset; << 5895 __u32 data_offset; << 5896 }; << 5897 << 5898 The ``flags`` field is not used at the moment << 5899 << 5900 The ``name_size`` field is the size (in byte) << 5901 (including trailing '\0') which is contained << 5902 appended at the end of every descriptor. << 5903 << 5904 The ``num_desc`` field is the number of descr << 5905 descriptor block. (The actual number of valu << 5906 larger, since each descriptor may comprise mo << 5907 << 5908 The ``id_offset`` field is the offset of the << 5909 file indicated by the file descriptor. It is << 5910 << 5911 The ``desc_offset`` field is the offset of th << 5912 of the file indicated by the file descriptor. << 5913 << 5914 The ``data_offset`` field is the offset of th << 5915 of the file indicated by the file descriptor. << 5916 << 5917 The id string block contains a string which i << 5918 which KVM_GET_STATS_FD was invoked. The size << 5919 trailing ``'\0'``, is indicated by the ``name << 5920 << 5921 The descriptors block is only needed to be re << 5922 file descriptor contains a sequence of ``stru << 5923 by a string of size ``name_size``. << 5924 :: << 5925 << 5926 #define KVM_STATS_TYPE_SHIFT << 5927 #define KVM_STATS_TYPE_MASK << 5928 #define KVM_STATS_TYPE_CUMULATIVE << 5929 #define KVM_STATS_TYPE_INSTANT << 5930 #define KVM_STATS_TYPE_PEAK << 5931 #define KVM_STATS_TYPE_LINEAR_HIST << 5932 #define KVM_STATS_TYPE_LOG_HIST << 5933 #define KVM_STATS_TYPE_MAX << 5934 << 5935 #define KVM_STATS_UNIT_SHIFT << 5936 #define KVM_STATS_UNIT_MASK << 5937 #define KVM_STATS_UNIT_NONE << 5938 #define KVM_STATS_UNIT_BYTES << 5939 #define KVM_STATS_UNIT_SECONDS << 5940 #define KVM_STATS_UNIT_CYCLES << 5941 #define KVM_STATS_UNIT_BOOLEAN << 5942 #define KVM_STATS_UNIT_MAX << 5943 << 5944 #define KVM_STATS_BASE_SHIFT << 5945 #define KVM_STATS_BASE_MASK << 5946 #define KVM_STATS_BASE_POW10 << 5947 #define KVM_STATS_BASE_POW2 << 5948 #define KVM_STATS_BASE_MAX << 5949 << 5950 struct kvm_stats_desc { << 5951 __u32 flags; << 5952 __s16 exponent; << 5953 __u16 size; << 5954 __u32 offset; << 5955 __u32 bucket_size; << 5956 char name[]; << 5957 }; << 5958 << 5959 The ``flags`` field contains the type and uni << 5960 by this descriptor. Its endianness is CPU nat << 5961 The following flags are supported: << 5962 << 5963 Bits 0-3 of ``flags`` encode the type: << 5964 << 5965 * ``KVM_STATS_TYPE_CUMULATIVE`` << 5966 The statistics reports a cumulative count << 5967 Most of the counters used in KVM are of t << 5968 The corresponding ``size`` field for this << 5969 All cumulative statistics data are read/w << 5970 * ``KVM_STATS_TYPE_INSTANT`` << 5971 The statistics reports an instantaneous v << 5972 decreased. This type is usually used as a << 5973 like the number of dirty pages, the numbe << 5974 All instant statistics are read only. << 5975 The corresponding ``size`` field for this << 5976 * ``KVM_STATS_TYPE_PEAK`` << 5977 The statistics data reports a peak value, << 5978 of items in a hash table bucket, the long << 5979 The value of data can only be increased. << 5980 The corresponding ``size`` field for this << 5981 * ``KVM_STATS_TYPE_LINEAR_HIST`` << 5982 The statistic is reported as a linear his << 5983 buckets is specified by the ``size`` fiel << 5984 by the ``hist_param`` field. The range of << 5985 is [``hist_param``*(N-1), ``hist_param``* << 5986 bucket is [``hist_param``*(``size``-1), + << 5987 value.) << 5988 * ``KVM_STATS_TYPE_LOG_HIST`` << 5989 The statistic is reported as a logarithmi << 5990 buckets is specified by the ``size`` fiel << 5991 [0, 1), while the range of the last bucke << 5992 Otherwise, The Nth bucket (1 < N < ``size << 5993 [pow(2, N-2), pow(2, N-1)). << 5994 << 5995 Bits 4-7 of ``flags`` encode the unit: << 5996 << 5997 * ``KVM_STATS_UNIT_NONE`` << 5998 There is no unit for the value of statist << 5999 the value is a simple counter of an event << 6000 * ``KVM_STATS_UNIT_BYTES`` << 6001 It indicates that the statistics data is << 6002 unit of Byte, KiByte, MiByte, GiByte, etc << 6003 determined by the ``exponent`` field in t << 6004 * ``KVM_STATS_UNIT_SECONDS`` << 6005 It indicates that the statistics data is << 6006 * ``KVM_STATS_UNIT_CYCLES`` << 6007 It indicates that the statistics data is << 6008 * ``KVM_STATS_UNIT_BOOLEAN`` << 6009 It indicates that the statistic will alwa << 6010 statistics of "peak" type will never go b << 6011 statistics can be linear histograms (with << 6012 histograms. << 6013 << 6014 Note that, in the case of histograms, the uni << 6015 ranges, while the bucket value indicates how << 6016 bucket's range. << 6017 << 6018 Bits 8-11 of ``flags``, together with ``expon << 6019 unit: << 6020 << 6021 * ``KVM_STATS_BASE_POW10`` << 6022 The scale is based on power of 10. It is << 6023 CPU clock cycles. For example, an expone << 6024 ``KVM_STATS_UNIT_SECONDS`` to express tha << 6025 * ``KVM_STATS_BASE_POW2`` << 6026 The scale is based on power of 2. It is u << 6027 For example, an exponent of 20 can be use << 6028 express that the unit is MiB. << 6029 << 6030 The ``size`` field is the number of values of << 6031 value is usually 1 for most of simple statist << 6032 unsigned 64bit data. << 6033 << 6034 The ``offset`` field is the offset from the s << 6035 the corresponding statistics data. << 6036 << 6037 The ``bucket_size`` field is used as a parame << 6038 It is only used by linear histogram statistic << 6039 bucket in the unit expressed by bits 4-11 of << 6040 << 6041 The ``name`` field is the name string of the << 6042 starts at the end of ``struct kvm_stats_desc` << 6043 the trailing ``'\0'``, is indicated by ``name << 6044 << 6045 The Stats Data block contains an array of 64- << 6046 as the descriptors in Descriptors block. << 6047 << 6048 4.134 KVM_GET_XSAVE2 << 6049 -------------------- << 6050 << 6051 :Capability: KVM_CAP_XSAVE2 << 6052 :Architectures: x86 << 6053 :Type: vcpu ioctl << 6054 :Parameters: struct kvm_xsave (out) << 6055 :Returns: 0 on success, -1 on error << 6056 << 6057 << 6058 :: << 6059 << 6060 struct kvm_xsave { << 6061 __u32 region[1024]; << 6062 __u32 extra[0]; << 6063 }; << 6064 << 6065 This ioctl would copy current vcpu's xsave st << 6066 copies as many bytes as are returned by KVM_C << 6067 when invoked on the vm file descriptor. The s << 6068 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will alwa << 6069 Currently, it is only greater than 4096 if a << 6070 enabled with ``arch_prctl()``, but this may c << 6071 << 6072 The offsets of the state save areas in struct << 6073 of CPUID leaf 0xD on the host. << 6074 << 6075 4.135 KVM_XEN_HVM_EVTCHN_SEND << 6076 ----------------------------- << 6077 << 6078 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO << 6079 :Architectures: x86 << 6080 :Type: vm ioctl << 6081 :Parameters: struct kvm_irq_routing_xen_evtch << 6082 :Returns: 0 on success, < 0 on error << 6083 << 6084 << 6085 :: << 6086 << 6087 struct kvm_irq_routing_xen_evtchn { << 6088 __u32 port; << 6089 __u32 vcpu; << 6090 __u32 priority; << 6091 }; << 6092 << 6093 This ioctl injects an event channel interrupt << 6094 << 6095 4.136 KVM_S390_PV_CPU_COMMAND << 6096 ----------------------------- << 6097 << 6098 :Capability: KVM_CAP_S390_PROTECTED_DUMP << 6099 :Architectures: s390 << 6100 :Type: vcpu ioctl << 6101 :Parameters: none << 6102 :Returns: 0 on success, < 0 on error << 6103 << 6104 This ioctl closely mirrors `KVM_S390_PV_COMMA << 6105 for vcpus. It re-uses the kvm_s390_pv_dmp str << 6106 the command ids. << 6107 << 6108 **command:** << 6109 << 6110 KVM_PV_DUMP << 6111 Presents an API that provides calls which f << 6112 of a protected VM. << 6113 << 6114 **subcommand:** << 6115 << 6116 KVM_PV_DUMP_CPU << 6117 Provides encrypted dump data like register << 6118 The length of the returned data is provided << 6119 << 6120 4.137 KVM_S390_ZPCI_OP << 6121 ---------------------- << 6122 << 6123 :Capability: KVM_CAP_S390_ZPCI_OP << 6124 :Architectures: s390 << 6125 :Type: vm ioctl << 6126 :Parameters: struct kvm_s390_zpci_op (in) << 6127 :Returns: 0 on success, <0 on error << 6128 << 6129 Used to manage hardware-assisted virtualizati << 6130 << 6131 Parameters are specified via the following st << 6132 << 6133 struct kvm_s390_zpci_op { << 6134 /* in */ << 6135 __u32 fh; /* target dev << 6136 __u8 op; /* operation << 6137 __u8 pad[3]; << 6138 union { << 6139 /* for KVM_S390_ZPCIOP_REG_AE << 6140 struct { << 6141 __u64 ibv; /* Gu << 6142 __u64 sb; /* Gu << 6143 __u32 flags; << 6144 __u32 noi; /* Nu << 6145 __u8 isc; /* Gu << 6146 __u8 sbo; /* Of << 6147 __u16 pad; << 6148 } reg_aen; << 6149 __u64 reserved[8]; << 6150 } u; << 6151 }; << 6152 << 6153 The type of operation is specified in the "op << 6154 KVM_S390_ZPCIOP_REG_AEN is used to register t << 6155 notification interpretation, which will allow << 6156 events directly to the vm, with KVM providing << 6157 KVM_S390_ZPCIOP_DEREG_AEN is used to subseque << 6158 adapter event notifications. << 6159 << 6160 The target zPCI function must also be specifi << 6161 KVM_S390_ZPCIOP_REG_AEN operation, additional << 6162 delivery must be provided via the "reg_aen" s << 6163 << 6164 The "pad" and "reserved" fields may be used f << 6165 set to 0s by userspace. << 6166 << 6167 4.138 KVM_ARM_SET_COUNTER_OFFSET << 6168 -------------------------------- << 6169 << 6170 :Capability: KVM_CAP_COUNTER_OFFSET << 6171 :Architectures: arm64 << 6172 :Type: vm ioctl << 6173 :Parameters: struct kvm_arm_counter_offset (i << 6174 :Returns: 0 on success, < 0 on error << 6175 << 6176 This capability indicates that userspace is a << 6177 offset to both the virtual and physical count << 6178 using the KVM_ARM_SET_CNT_OFFSET ioctl and th << 6179 << 6180 :: << 6181 << 6182 struct kvm_arm_counter_offset { << 6183 __u64 counter_offset; << 6184 __u64 reserved; << 6185 }; << 6186 << 6187 The offset describes a number of counter cycl << 6188 both virtual and physical counter views (simi << 6189 CNTVOFF_EL2 and CNTPOFF_EL2 system registers, << 6190 always applies to all vcpus (already created << 6191 for this VM. << 6192 << 6193 It is userspace's responsibility to compute t << 6194 on previous values of the guest counters. << 6195 << 6196 Any value other than 0 for the "reserved" fie << 6197 (-EINVAL) being returned. This ioctl can also << 6198 ioctl is issued concurrently. << 6199 << 6200 Note that using this ioctl results in KVM ign << 6201 writes to the CNTVCT_EL0 and CNTPCT_EL0 regis << 6202 interface. No error will be returned, but the << 6203 applied. << 6204 << 6205 .. _KVM_ARM_GET_REG_WRITABLE_MASKS: << 6206 << 6207 4.139 KVM_ARM_GET_REG_WRITABLE_MASKS << 6208 ------------------------------------------- << 6209 << 6210 :Capability: KVM_CAP_ARM_SUPPORTED_REG_MASK_R << 6211 :Architectures: arm64 << 6212 :Type: vm ioctl << 6213 :Parameters: struct reg_mask_range (in/out) << 6214 :Returns: 0 on success, < 0 on error << 6215 << 6216 << 6217 :: << 6218 << 6219 #define KVM_ARM_FEATURE_ID_RANGE << 6220 #define KVM_ARM_FEATURE_ID_RANGE_SIZE << 6221 << 6222 struct reg_mask_range { << 6223 __u64 addr; /* Po << 6224 __u32 range; /* Re << 6225 __u32 reserved[13]; << 6226 }; << 6227 << 6228 This ioctl copies the writable masks for a se << 6229 userspace. << 6230 << 6231 The ``addr`` field is a pointer to the destin << 6232 the writable masks. << 6233 << 6234 The ``range`` field indicates the requested r << 6235 ``KVM_CHECK_EXTENSION`` for the ``KVM_CAP_ARM << 6236 capability returns the supported ranges, expr << 6237 flag's bit index represents a possible value << 6238 All other values are reserved for future use << 6239 << 6240 The ``reserved[13]`` array is reserved for fu << 6241 KVM may return an error. << 6242 << 6243 KVM_ARM_FEATURE_ID_RANGE (0) << 6244 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ << 6245 << 6246 The Feature ID range is defined as the AArch6 << 6247 op0==3, op1=={0, 1, 3}, CRn==0, CRm=={0-7}, o << 6248 << 6249 The mask returned array pointed to by ``addr` << 6250 ``ARM64_FEATURE_ID_RANGE_IDX(op0, op1, crn, c << 6251 to know what fields can be changed for the sy << 6252 ``op0, op1, crn, crm, op2``. KVM rejects ID r << 6253 superset of the features supported by the sys << 6254 << 6255 4.140 KVM_SET_USER_MEMORY_REGION2 << 6256 --------------------------------- << 6257 << 6258 :Capability: KVM_CAP_USER_MEMORY2 << 6259 :Architectures: all << 6260 :Type: vm ioctl << 6261 :Parameters: struct kvm_userspace_memory_regi << 6262 :Returns: 0 on success, -1 on error << 6263 << 6264 KVM_SET_USER_MEMORY_REGION2 is an extension t << 6265 allows mapping guest_memfd memory into a gues << 6266 KVM_SET_USER_MEMORY_REGION identically. User << 6267 in flags to have KVM bind the memory region t << 6268 [guest_memfd_offset, guest_memfd_offset + mem << 6269 must point at a file created via KVM_CREATE_G << 6270 the target range must not be bound to any oth << 6271 bounds checks apply (use common sense). << 6272 << 6273 :: << 6274 << 6275 struct kvm_userspace_memory_region2 { << 6276 __u32 slot; << 6277 __u32 flags; << 6278 __u64 guest_phys_addr; << 6279 __u64 memory_size; /* bytes */ << 6280 __u64 userspace_addr; /* start of the << 6281 __u64 guest_memfd_offset; << 6282 __u32 guest_memfd; << 6283 __u32 pad1; << 6284 __u64 pad2[14]; << 6285 }; << 6286 << 6287 A KVM_MEM_GUEST_MEMFD region _must_ have a va << 6288 userspace_addr (shared memory). However, "va << 6289 means that the address itself must be a legal << 6290 mapping for userspace_addr is not required to << 6291 KVM_SET_USER_MEMORY_REGION2, e.g. shared memo << 6292 on-demand. << 6293 << 6294 When mapping a gfn into the guest, KVM select << 6295 userspace_addr vs. guest_memfd, based on the << 6296 state. At VM creation time, all memory is sh << 6297 is '0' for all gfns. Userspace can control w << 6298 toggling KVM_MEMORY_ATTRIBUTE_PRIVATE via KVM << 6299 << 6300 S390: << 6301 ^^^^^ << 6302 << 6303 Returns -EINVAL if the VM has the KVM_VM_S390 << 6304 Returns -EINVAL if called on a protected VM. << 6305 << 6306 4.141 KVM_SET_MEMORY_ATTRIBUTES << 6307 ------------------------------- << 6308 << 6309 :Capability: KVM_CAP_MEMORY_ATTRIBUTES << 6310 :Architectures: x86 << 6311 :Type: vm ioctl << 6312 :Parameters: struct kvm_memory_attributes (in << 6313 :Returns: 0 on success, <0 on error << 6314 << 6315 KVM_SET_MEMORY_ATTRIBUTES allows userspace to << 6316 of guest physical memory. << 6317 << 6318 :: << 6319 << 6320 struct kvm_memory_attributes { << 6321 __u64 address; << 6322 __u64 size; << 6323 __u64 attributes; << 6324 __u64 flags; << 6325 }; << 6326 << 6327 #define KVM_MEMORY_ATTRIBUTE_PRIVATE << 6328 << 6329 The address and size must be page aligned. T << 6330 retrieved via ioctl(KVM_CHECK_EXTENSION) on K << 6331 executed on a VM, KVM_CAP_MEMORY_ATTRIBUTES p << 6332 supported by that VM. If executed at system << 6333 returns all attributes supported by KVM. The << 6334 time is KVM_MEMORY_ATTRIBUTE_PRIVATE, which m << 6335 guest private memory. << 6336 << 6337 Note, there is no "get" API. Userspace is re << 6338 the state of a gfn/page as needed. << 6339 << 6340 The "flags" field is reserved for future exte << 6341 << 6342 4.142 KVM_CREATE_GUEST_MEMFD << 6343 ---------------------------- << 6344 << 6345 :Capability: KVM_CAP_GUEST_MEMFD << 6346 :Architectures: none << 6347 :Type: vm ioctl << 6348 :Parameters: struct kvm_create_guest_memfd(in << 6349 :Returns: A file descriptor on success, <0 on << 6350 << 6351 KVM_CREATE_GUEST_MEMFD creates an anonymous f << 6352 that refers to it. guest_memfd files are rou << 6353 via memfd_create(), e.g. guest_memfd files li << 6354 and are automatically released when the last << 6355 "regular" memfd_create() files, guest_memfd f << 6356 virtual machine (see below), cannot be mapped << 6357 and cannot be resized (guest_memfd files do << 6358 << 6359 :: << 6360 << 6361 struct kvm_create_guest_memfd { << 6362 __u64 size; << 6363 __u64 flags; << 6364 __u64 reserved[6]; << 6365 }; << 6366 << 6367 Conceptually, the inode backing a guest_memfd << 6368 i.e. is coupled to the virtual machine as a t << 6369 file itself, which is bound to a "struct kvm" << 6370 underlying memory, e.g. effectively provides << 6371 to host memory. This allows for use cases wh << 6372 used to manage a single virtual machine, e.g. << 6373 migration of a virtual machine. << 6374 << 6375 KVM currently only supports mapping guest_mem << 6376 and more specifically via the guest_memfd and << 6377 "struct kvm_userspace_memory_region2", where << 6378 into the guest_memfd instance. For a given g << 6379 most one mapping per page, i.e. binding multi << 6380 guest_memfd range is not allowed (any number << 6381 a single guest_memfd file, but the bound rang << 6382 << 6383 See KVM_SET_USER_MEMORY_REGION2 for additiona << 6384 << 6385 4.143 KVM_PRE_FAULT_MEMORY << 6386 --------------------------- << 6387 << 6388 :Capability: KVM_CAP_PRE_FAULT_MEMORY << 6389 :Architectures: none << 6390 :Type: vcpu ioctl << 6391 :Parameters: struct kvm_pre_fault_memory (in/ << 6392 :Returns: 0 if at least one page is processed << 6393 << 6394 Errors: << 6395 << 6396 ========== ================================ << 6397 EINVAL The specified `gpa` and `size` w << 6398 page aligned, causes an overflow << 6399 ENOENT The specified `gpa` is outside d << 6400 EINTR An unmasked signal is pending an << 6401 EFAULT The parameter address was invali << 6402 EOPNOTSUPP Mapping memory for a GPA is unsu << 6403 hypervisor, and/or for the curre << 6404 EIO unexpected error conditions (als << 6405 ========== ================================ << 6406 << 6407 :: << 6408 << 6409 struct kvm_pre_fault_memory { << 6410 /* in/out */ << 6411 __u64 gpa; << 6412 __u64 size; << 6413 /* in */ << 6414 __u64 flags; << 6415 __u64 padding[5]; << 6416 }; << 6417 << 6418 KVM_PRE_FAULT_MEMORY populates KVM's stage-2 << 6419 for the current vCPU state. KVM maps memory << 6420 stage-2 read page fault, e.g. faults in memor << 6421 CoW. However, KVM does not mark any newly cr << 6422 << 6423 In the case of confidential VM types where th << 6424 private guest memory before the guest is 'fin << 6425 should only be issued after completing all th << 6426 guest into a 'finalized' state so that the ab << 6427 ensured. << 6428 << 6429 In some cases, multiple vCPUs might share the << 6430 case, the ioctl can be called in parallel. << 6431 << 6432 When the ioctl returns, the input values are << 6433 remaining range. If `size` > 0 on return, th << 6434 the ioctl again with the same `struct kvm_map << 6435 << 6436 Shadow page tables cannot support this ioctl << 6437 are indexed by virtual address or nested gues << 6438 Calling this ioctl when the guest is using sh << 6439 example because it is running a nested guest << 6440 will fail with `EOPNOTSUPP` even if `KVM_CHEC << 6441 the capability to be present. << 6442 << 6443 `flags` must currently be zero. << 6444 << 6445 << 6446 5. The kvm_run structure 4652 5. The kvm_run structure 6447 ======================== 4653 ======================== 6448 4654 6449 Application code obtains a pointer to the kvm 4655 Application code obtains a pointer to the kvm_run structure by 6450 mmap()ing a vcpu fd. From that point, applic 4656 mmap()ing a vcpu fd. From that point, application code can control 6451 execution by changing fields in kvm_run prior 4657 execution by changing fields in kvm_run prior to calling the KVM_RUN 6452 ioctl, and obtain information about the reaso 4658 ioctl, and obtain information about the reason KVM_RUN returned by 6453 looking up structure members. 4659 looking up structure members. 6454 4660 6455 :: 4661 :: 6456 4662 6457 struct kvm_run { 4663 struct kvm_run { 6458 /* in */ 4664 /* in */ 6459 __u8 request_interrupt_window; 4665 __u8 request_interrupt_window; 6460 4666 6461 Request that KVM_RUN return when it becomes p 4667 Request that KVM_RUN return when it becomes possible to inject external 6462 interrupts into the guest. Useful in conjunc 4668 interrupts into the guest. Useful in conjunction with KVM_INTERRUPT. 6463 4669 6464 :: 4670 :: 6465 4671 6466 __u8 immediate_exit; 4672 __u8 immediate_exit; 6467 4673 6468 This field is polled once when KVM_RUN starts 4674 This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN 6469 exits immediately, returning -EINTR. In the 4675 exits immediately, returning -EINTR. In the common scenario where a 6470 signal is used to "kick" a VCPU out of KVM_RU 4676 signal is used to "kick" a VCPU out of KVM_RUN, this field can be used 6471 to avoid usage of KVM_SET_SIGNAL_MASK, which 4677 to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability. 6472 Rather than blocking the signal outside KVM_R 4678 Rather than blocking the signal outside KVM_RUN, userspace can set up 6473 a signal handler that sets run->immediate_exi 4679 a signal handler that sets run->immediate_exit to a non-zero value. 6474 4680 6475 This field is ignored if KVM_CAP_IMMEDIATE_EX 4681 This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available. 6476 4682 6477 :: 4683 :: 6478 4684 6479 __u8 padding1[6]; 4685 __u8 padding1[6]; 6480 4686 6481 /* out */ 4687 /* out */ 6482 __u32 exit_reason; 4688 __u32 exit_reason; 6483 4689 6484 When KVM_RUN has returned successfully (retur 4690 When KVM_RUN has returned successfully (return value 0), this informs 6485 application code why KVM_RUN has returned. A 4691 application code why KVM_RUN has returned. Allowable values for this 6486 field are detailed below. 4692 field are detailed below. 6487 4693 6488 :: 4694 :: 6489 4695 6490 __u8 ready_for_interrupt_injection; 4696 __u8 ready_for_interrupt_injection; 6491 4697 6492 If request_interrupt_window has been specifie 4698 If request_interrupt_window has been specified, this field indicates 6493 an interrupt can be injected now with KVM_INT 4699 an interrupt can be injected now with KVM_INTERRUPT. 6494 4700 6495 :: 4701 :: 6496 4702 6497 __u8 if_flag; 4703 __u8 if_flag; 6498 4704 6499 The value of the current interrupt flag. Onl 4705 The value of the current interrupt flag. Only valid if in-kernel 6500 local APIC is not used. 4706 local APIC is not used. 6501 4707 6502 :: 4708 :: 6503 4709 6504 __u16 flags; 4710 __u16 flags; 6505 4711 6506 More architecture-specific flags detailing st 4712 More architecture-specific flags detailing state of the VCPU that may 6507 affect the device's behavior. Current defined !! 4713 affect the device's behavior. The only currently defined flag is 6508 !! 4714 KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the 6509 /* x86, set if the VCPU is in system manage !! 4715 VCPU is in system management mode. 6510 #define KVM_RUN_X86_SMM (1 << 0) << 6511 /* x86, set if bus lock detected in VM */ << 6512 #define KVM_RUN_X86_BUS_LOCK (1 << 1) << 6513 /* x86, set if the VCPU is executing a nest << 6514 #define KVM_RUN_X86_GUEST_MODE (1 << 2) << 6515 << 6516 /* arm64, set for KVM_EXIT_DEBUG */ << 6517 #define KVM_DEBUG_ARCH_HSR_HIGH_VALID (1 < << 6518 4716 6519 :: 4717 :: 6520 4718 6521 /* in (pre_kvm_run), out (post_kvm_ru 4719 /* in (pre_kvm_run), out (post_kvm_run) */ 6522 __u64 cr8; 4720 __u64 cr8; 6523 4721 6524 The value of the cr8 register. Only valid if 4722 The value of the cr8 register. Only valid if in-kernel local APIC is 6525 not used. Both input and output. 4723 not used. Both input and output. 6526 4724 6527 :: 4725 :: 6528 4726 6529 __u64 apic_base; 4727 __u64 apic_base; 6530 4728 6531 The value of the APIC BASE msr. Only valid i 4729 The value of the APIC BASE msr. Only valid if in-kernel local 6532 APIC is not used. Both input and output. 4730 APIC is not used. Both input and output. 6533 4731 6534 :: 4732 :: 6535 4733 6536 union { 4734 union { 6537 /* KVM_EXIT_UNKNOWN */ 4735 /* KVM_EXIT_UNKNOWN */ 6538 struct { 4736 struct { 6539 __u64 hardware_exit_r 4737 __u64 hardware_exit_reason; 6540 } hw; 4738 } hw; 6541 4739 6542 If exit_reason is KVM_EXIT_UNKNOWN, the vcpu 4740 If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown 6543 reasons. Further architecture-specific infor 4741 reasons. Further architecture-specific information is available in 6544 hardware_exit_reason. 4742 hardware_exit_reason. 6545 4743 6546 :: 4744 :: 6547 4745 6548 /* KVM_EXIT_FAIL_ENTRY */ 4746 /* KVM_EXIT_FAIL_ENTRY */ 6549 struct { 4747 struct { 6550 __u64 hardware_entry_ 4748 __u64 hardware_entry_failure_reason; 6551 __u32 cpu; /* if KVM_ << 6552 } fail_entry; 4749 } fail_entry; 6553 4750 6554 If exit_reason is KVM_EXIT_FAIL_ENTRY, the vc 4751 If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due 6555 to unknown reasons. Further architecture-spe 4752 to unknown reasons. Further architecture-specific information is 6556 available in hardware_entry_failure_reason. 4753 available in hardware_entry_failure_reason. 6557 4754 6558 :: 4755 :: 6559 4756 6560 /* KVM_EXIT_EXCEPTION */ 4757 /* KVM_EXIT_EXCEPTION */ 6561 struct { 4758 struct { 6562 __u32 exception; 4759 __u32 exception; 6563 __u32 error_code; 4760 __u32 error_code; 6564 } ex; 4761 } ex; 6565 4762 6566 Unused. 4763 Unused. 6567 4764 6568 :: 4765 :: 6569 4766 6570 /* KVM_EXIT_IO */ 4767 /* KVM_EXIT_IO */ 6571 struct { 4768 struct { 6572 #define KVM_EXIT_IO_IN 0 4769 #define KVM_EXIT_IO_IN 0 6573 #define KVM_EXIT_IO_OUT 1 4770 #define KVM_EXIT_IO_OUT 1 6574 __u8 direction; 4771 __u8 direction; 6575 __u8 size; /* bytes * 4772 __u8 size; /* bytes */ 6576 __u16 port; 4773 __u16 port; 6577 __u32 count; 4774 __u32 count; 6578 __u64 data_offset; /* 4775 __u64 data_offset; /* relative to kvm_run start */ 6579 } io; 4776 } io; 6580 4777 6581 If exit_reason is KVM_EXIT_IO, then the vcpu 4778 If exit_reason is KVM_EXIT_IO, then the vcpu has 6582 executed a port I/O instruction which could n 4779 executed a port I/O instruction which could not be satisfied by kvm. 6583 data_offset describes where the data is locat 4780 data_offset describes where the data is located (KVM_EXIT_IO_OUT) or 6584 where kvm expects application code to place t 4781 where kvm expects application code to place the data for the next 6585 KVM_RUN invocation (KVM_EXIT_IO_IN). Data fo 4782 KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array. 6586 4783 6587 :: 4784 :: 6588 4785 6589 /* KVM_EXIT_DEBUG */ 4786 /* KVM_EXIT_DEBUG */ 6590 struct { 4787 struct { 6591 struct kvm_debug_exit 4788 struct kvm_debug_exit_arch arch; 6592 } debug; 4789 } debug; 6593 4790 6594 If the exit_reason is KVM_EXIT_DEBUG, then a 4791 If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event 6595 for which architecture specific information i 4792 for which architecture specific information is returned. 6596 4793 6597 :: 4794 :: 6598 4795 6599 /* KVM_EXIT_MMIO */ 4796 /* KVM_EXIT_MMIO */ 6600 struct { 4797 struct { 6601 __u64 phys_addr; 4798 __u64 phys_addr; 6602 __u8 data[8]; 4799 __u8 data[8]; 6603 __u32 len; 4800 __u32 len; 6604 __u8 is_write; 4801 __u8 is_write; 6605 } mmio; 4802 } mmio; 6606 4803 6607 If exit_reason is KVM_EXIT_MMIO, then the vcp 4804 If exit_reason is KVM_EXIT_MMIO, then the vcpu has 6608 executed a memory-mapped I/O instruction whic 4805 executed a memory-mapped I/O instruction which could not be satisfied 6609 by kvm. The 'data' member contains the writt 4806 by kvm. The 'data' member contains the written data if 'is_write' is 6610 true, and should be filled by application cod 4807 true, and should be filled by application code otherwise. 6611 4808 6612 The 'data' member contains, in its first 'len 4809 The 'data' member contains, in its first 'len' bytes, the value as it would 6613 appear if the VCPU performed a load or store 4810 appear if the VCPU performed a load or store of the appropriate width directly 6614 to the byte array. 4811 to the byte array. 6615 4812 6616 .. note:: 4813 .. note:: 6617 4814 6618 For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXI !! 4815 For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and 6619 KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KV !! 4816 KVM_EXIT_EPR the corresponding 6620 operations are complete (and guest stat !! 4817 6621 has re-entered the kernel with KVM_RUN. !! 4818 operations are complete (and guest state is consistent) only after userspace 6622 incomplete operations and then check fo !! 4819 has re-entered the kernel with KVM_RUN. The kernel side will first finish 6623 !! 4820 incomplete operations and then check for pending signals. Userspace 6624 The pending state of the operation is n !! 4821 can re-enter the guest with an unmasked signal pending to complete 6625 visible to userspace, thus userspace sh !! 4822 pending operations. 6626 completed before performing a live migr << 6627 guest with an unmasked signal pending o << 6628 to complete pending operations without << 6629 to be executed. << 6630 4823 6631 :: 4824 :: 6632 4825 6633 /* KVM_EXIT_HYPERCALL */ 4826 /* KVM_EXIT_HYPERCALL */ 6634 struct { 4827 struct { 6635 __u64 nr; 4828 __u64 nr; 6636 __u64 args[6]; 4829 __u64 args[6]; 6637 __u64 ret; 4830 __u64 ret; 6638 __u64 flags; !! 4831 __u32 longmode; >> 4832 __u32 pad; 6639 } hypercall; 4833 } hypercall; 6640 4834 6641 !! 4835 Unused. This was once used for 'hypercall to userspace'. To implement 6642 It is strongly recommended that userspace use !! 4836 such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390). 6643 ``KVM_EXIT_MMIO`` (all except s390) to implem << 6644 requires a guest to interact with host usersp << 6645 4837 6646 .. note:: KVM_EXIT_IO is significantly faster 4838 .. note:: KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO. 6647 4839 6648 For arm64: << 6649 ---------- << 6650 << 6651 SMCCC exits can be enabled depending on the c << 6652 filter. See the Documentation/virt/kvm/device << 6653 ``KVM_ARM_SMCCC_FILTER`` for more details. << 6654 << 6655 ``nr`` contains the function ID of the guest' << 6656 expected to use the ``KVM_GET_ONE_REG`` ioctl << 6657 parameters from the vCPU's GPRs. << 6658 << 6659 Definition of ``flags``: << 6660 - ``KVM_HYPERCALL_EXIT_SMC``: Indicates that << 6661 conduit to initiate the SMCCC call. If thi << 6662 used the HVC conduit for the SMCCC call. << 6663 << 6664 - ``KVM_HYPERCALL_EXIT_16BIT``: Indicates th << 6665 instruction to initiate the SMCCC call. If << 6666 guest used a 32bit instruction. An AArch64 << 6667 bit set to 0. << 6668 << 6669 At the point of exit, PC points to the instru << 6670 the trapping instruction. << 6671 << 6672 :: 4840 :: 6673 4841 6674 /* KVM_EXIT_TPR_ACCESS */ 4842 /* KVM_EXIT_TPR_ACCESS */ 6675 struct { 4843 struct { 6676 __u64 rip; 4844 __u64 rip; 6677 __u32 is_write; 4845 __u32 is_write; 6678 __u32 pad; 4846 __u32 pad; 6679 } tpr_access; 4847 } tpr_access; 6680 4848 6681 To be documented (KVM_TPR_ACCESS_REPORTING). 4849 To be documented (KVM_TPR_ACCESS_REPORTING). 6682 4850 6683 :: 4851 :: 6684 4852 6685 /* KVM_EXIT_S390_SIEIC */ 4853 /* KVM_EXIT_S390_SIEIC */ 6686 struct { 4854 struct { 6687 __u8 icptcode; 4855 __u8 icptcode; 6688 __u64 mask; /* psw up 4856 __u64 mask; /* psw upper half */ 6689 __u64 addr; /* psw lo 4857 __u64 addr; /* psw lower half */ 6690 __u16 ipa; 4858 __u16 ipa; 6691 __u32 ipb; 4859 __u32 ipb; 6692 } s390_sieic; 4860 } s390_sieic; 6693 4861 6694 s390 specific. 4862 s390 specific. 6695 4863 6696 :: 4864 :: 6697 4865 6698 /* KVM_EXIT_S390_RESET */ 4866 /* KVM_EXIT_S390_RESET */ 6699 #define KVM_S390_RESET_POR 1 4867 #define KVM_S390_RESET_POR 1 6700 #define KVM_S390_RESET_CLEAR 2 4868 #define KVM_S390_RESET_CLEAR 2 6701 #define KVM_S390_RESET_SUBSYSTEM 4 4869 #define KVM_S390_RESET_SUBSYSTEM 4 6702 #define KVM_S390_RESET_CPU_INIT 8 4870 #define KVM_S390_RESET_CPU_INIT 8 6703 #define KVM_S390_RESET_IPL 16 4871 #define KVM_S390_RESET_IPL 16 6704 __u64 s390_reset_flags; 4872 __u64 s390_reset_flags; 6705 4873 6706 s390 specific. 4874 s390 specific. 6707 4875 6708 :: 4876 :: 6709 4877 6710 /* KVM_EXIT_S390_UCONTROL */ 4878 /* KVM_EXIT_S390_UCONTROL */ 6711 struct { 4879 struct { 6712 __u64 trans_exc_code; 4880 __u64 trans_exc_code; 6713 __u32 pgm_code; 4881 __u32 pgm_code; 6714 } s390_ucontrol; 4882 } s390_ucontrol; 6715 4883 6716 s390 specific. A page fault has occurred for 4884 s390 specific. A page fault has occurred for a user controlled virtual 6717 machine (KVM_VM_S390_UNCONTROL) on its host p !! 4885 machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be 6718 resolved by the kernel. 4886 resolved by the kernel. 6719 The program code and the translation exceptio 4887 The program code and the translation exception code that were placed 6720 in the cpu's lowcore are presented here as de 4888 in the cpu's lowcore are presented here as defined by the z Architecture 6721 Principles of Operation Book in the Chapter f 4889 Principles of Operation Book in the Chapter for Dynamic Address Translation 6722 (DAT) 4890 (DAT) 6723 4891 6724 :: 4892 :: 6725 4893 6726 /* KVM_EXIT_DCR */ 4894 /* KVM_EXIT_DCR */ 6727 struct { 4895 struct { 6728 __u32 dcrn; 4896 __u32 dcrn; 6729 __u32 data; 4897 __u32 data; 6730 __u8 is_write; 4898 __u8 is_write; 6731 } dcr; 4899 } dcr; 6732 4900 6733 Deprecated - was used for 440 KVM. 4901 Deprecated - was used for 440 KVM. 6734 4902 6735 :: 4903 :: 6736 4904 6737 /* KVM_EXIT_OSI */ 4905 /* KVM_EXIT_OSI */ 6738 struct { 4906 struct { 6739 __u64 gprs[32]; 4907 __u64 gprs[32]; 6740 } osi; 4908 } osi; 6741 4909 6742 MOL uses a special hypercall interface it cal 4910 MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch 6743 hypercalls and exit with this exit struct tha 4911 hypercalls and exit with this exit struct that contains all the guest gprs. 6744 4912 6745 If exit_reason is KVM_EXIT_OSI, then the vcpu 4913 If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall. 6746 Userspace can now handle the hypercall and wh 4914 Userspace can now handle the hypercall and when it's done modify the gprs as 6747 necessary. Upon guest entry all guest GPRs wi 4915 necessary. Upon guest entry all guest GPRs will then be replaced by the values 6748 in this struct. 4916 in this struct. 6749 4917 6750 :: 4918 :: 6751 4919 6752 /* KVM_EXIT_PAPR_HCALL */ 4920 /* KVM_EXIT_PAPR_HCALL */ 6753 struct { 4921 struct { 6754 __u64 nr; 4922 __u64 nr; 6755 __u64 ret; 4923 __u64 ret; 6756 __u64 args[9]; 4924 __u64 args[9]; 6757 } papr_hcall; 4925 } papr_hcall; 6758 4926 6759 This is used on 64-bit PowerPC when emulating 4927 This is used on 64-bit PowerPC when emulating a pSeries partition, 6760 e.g. with the 'pseries' machine type in qemu. 4928 e.g. with the 'pseries' machine type in qemu. It occurs when the 6761 guest does a hypercall using the 'sc 1' instr 4929 guest does a hypercall using the 'sc 1' instruction. The 'nr' field 6762 contains the hypercall number (from the guest 4930 contains the hypercall number (from the guest R3), and 'args' contains 6763 the arguments (from the guest R4 - R12). Use 4931 the arguments (from the guest R4 - R12). Userspace should put the 6764 return code in 'ret' and any extra returned v 4932 return code in 'ret' and any extra returned values in args[]. 6765 The possible hypercalls are defined in the Po 4933 The possible hypercalls are defined in the Power Architecture Platform 6766 Requirements (PAPR) document available from w 4934 Requirements (PAPR) document available from www.power.org (free 6767 developer registration required to access it) 4935 developer registration required to access it). 6768 4936 6769 :: 4937 :: 6770 4938 6771 /* KVM_EXIT_S390_TSCH */ 4939 /* KVM_EXIT_S390_TSCH */ 6772 struct { 4940 struct { 6773 __u16 subchannel_id; 4941 __u16 subchannel_id; 6774 __u16 subchannel_nr; 4942 __u16 subchannel_nr; 6775 __u32 io_int_parm; 4943 __u32 io_int_parm; 6776 __u32 io_int_word; 4944 __u32 io_int_word; 6777 __u32 ipb; 4945 __u32 ipb; 6778 __u8 dequeued; 4946 __u8 dequeued; 6779 } s390_tsch; 4947 } s390_tsch; 6780 4948 6781 s390 specific. This exit occurs when KVM_CAP_ 4949 s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled 6782 and TEST SUBCHANNEL was intercepted. If deque 4950 and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O 6783 interrupt for the target subchannel has been 4951 interrupt for the target subchannel has been dequeued and subchannel_id, 6784 subchannel_nr, io_int_parm and io_int_word co 4952 subchannel_nr, io_int_parm and io_int_word contain the parameters for that 6785 interrupt. ipb is needed for instruction para 4953 interrupt. ipb is needed for instruction parameter decoding. 6786 4954 6787 :: 4955 :: 6788 4956 6789 /* KVM_EXIT_EPR */ 4957 /* KVM_EXIT_EPR */ 6790 struct { 4958 struct { 6791 __u32 epr; 4959 __u32 epr; 6792 } epr; 4960 } epr; 6793 4961 6794 On FSL BookE PowerPC chips, the interrupt con 4962 On FSL BookE PowerPC chips, the interrupt controller has a fast patch 6795 interrupt acknowledge path to the core. When 4963 interrupt acknowledge path to the core. When the core successfully 6796 delivers an interrupt, it automatically popul 4964 delivers an interrupt, it automatically populates the EPR register with 6797 the interrupt vector number and acknowledges 4965 the interrupt vector number and acknowledges the interrupt inside 6798 the interrupt controller. 4966 the interrupt controller. 6799 4967 6800 In case the interrupt controller lives in use 4968 In case the interrupt controller lives in user space, we need to do 6801 the interrupt acknowledge cycle through it to 4969 the interrupt acknowledge cycle through it to fetch the next to be 6802 delivered interrupt vector using this exit. 4970 delivered interrupt vector using this exit. 6803 4971 6804 It gets triggered whenever both KVM_CAP_PPC_E 4972 It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an 6805 external interrupt has just been delivered in 4973 external interrupt has just been delivered into the guest. User space 6806 should put the acknowledged interrupt vector 4974 should put the acknowledged interrupt vector into the 'epr' field. 6807 4975 6808 :: 4976 :: 6809 4977 6810 /* KVM_EXIT_SYSTEM_EVENT */ 4978 /* KVM_EXIT_SYSTEM_EVENT */ 6811 struct { 4979 struct { 6812 #define KVM_SYSTEM_EVENT_SHUTDOWN 1 4980 #define KVM_SYSTEM_EVENT_SHUTDOWN 1 6813 #define KVM_SYSTEM_EVENT_RESET 2 4981 #define KVM_SYSTEM_EVENT_RESET 2 6814 #define KVM_SYSTEM_EVENT_CRASH 3 4982 #define KVM_SYSTEM_EVENT_CRASH 3 6815 #define KVM_SYSTEM_EVENT_WAKEUP 4 << 6816 #define KVM_SYSTEM_EVENT_SUSPEND 5 << 6817 #define KVM_SYSTEM_EVENT_SEV_TERM 6 << 6818 __u32 type; 4983 __u32 type; 6819 __u32 ndata; !! 4984 __u64 flags; 6820 __u64 data[16]; << 6821 } system_event; 4985 } system_event; 6822 4986 6823 If exit_reason is KVM_EXIT_SYSTEM_EVENT then 4987 If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered 6824 a system-level event using some architecture 4988 a system-level event using some architecture specific mechanism (hypercall 6825 or some special instruction). In case of ARM6 !! 4989 or some special instruction). In case of ARM/ARM64, this is triggered using 6826 HVC instruction based PSCI call from the vcpu !! 4990 HVC instruction based PSCI call from the vcpu. The 'type' field describes >> 4991 the system-level event type. The 'flags' field describes architecture >> 4992 specific flags for the system-level event. 6827 4993 6828 The 'type' field describes the system-level e << 6829 Valid values for 'type' are: 4994 Valid values for 'type' are: 6830 4995 6831 - KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has 4996 - KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the 6832 VM. Userspace is not obliged to honour thi 4997 VM. Userspace is not obliged to honour this, and if it does honour 6833 this does not need to destroy the VM synch 4998 this does not need to destroy the VM synchronously (ie it may call 6834 KVM_RUN again before shutdown finally occu 4999 KVM_RUN again before shutdown finally occurs). 6835 - KVM_SYSTEM_EVENT_RESET -- the guest has re 5000 - KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM. 6836 As with SHUTDOWN, userspace can choose to 5001 As with SHUTDOWN, userspace can choose to ignore the request, or 6837 to schedule the reset to occur in the futu 5002 to schedule the reset to occur in the future and may call KVM_RUN again. 6838 - KVM_SYSTEM_EVENT_CRASH -- the guest crash 5003 - KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest 6839 has requested a crash condition maintenanc 5004 has requested a crash condition maintenance. Userspace can choose 6840 to ignore the request, or to gather VM mem 5005 to ignore the request, or to gather VM memory core dump and/or 6841 reset/shutdown of the VM. 5006 reset/shutdown of the VM. 6842 - KVM_SYSTEM_EVENT_SEV_TERM -- an AMD SEV gu << 6843 The guest physical address of the guest's << 6844 - KVM_SYSTEM_EVENT_WAKEUP -- the exiting vCP << 6845 KVM has recognized a wakeup event. Userspa << 6846 marking the exiting vCPU as runnable, or d << 6847 - KVM_SYSTEM_EVENT_SUSPEND -- the guest has << 6848 the VM. << 6849 << 6850 If KVM_CAP_SYSTEM_EVENT_DATA is present, the << 6851 architecture specific information for the sys << 6852 the first `ndata` items (possibly zero) of th << 6853 << 6854 - for arm64, data[0] is set to KVM_SYSTEM_EV << 6855 the guest issued a SYSTEM_RESET2 call acco << 6856 specification. << 6857 << 6858 - for RISC-V, data[0] is set to the value of << 6859 ``sbi_system_reset`` call. << 6860 << 6861 Previous versions of Linux defined a `flags` << 6862 field is now aliased to `data[0]`. Userspace << 6863 written if ndata is greater than 0. << 6864 << 6865 For arm/arm64: << 6866 -------------- << 6867 << 6868 KVM_SYSTEM_EVENT_SUSPEND exits are enabled wi << 6869 KVM_CAP_ARM_SYSTEM_SUSPEND VM capability. If << 6870 SYSTEM_SUSPEND function, KVM will exit to use << 6871 type. << 6872 << 6873 It is the sole responsibility of userspace to << 6874 SYSTEM_SUSPEND call according to ARM DEN0022D << 6875 KVM does not change the vCPU's state before e << 6876 the call parameters are left in-place in the << 6877 << 6878 Userspace is _required_ to take action for su << 6879 either: << 6880 << 6881 - Honor the guest request to suspend the VM. << 6882 in-kernel emulation of suspension by setti << 6883 state to KVM_MP_STATE_SUSPENDED. Userspace << 6884 state according to the parameters passed t << 6885 the calling vCPU is resumed. See ARM DEN00 << 6886 for details on the function parameters. << 6887 << 6888 - Deny the guest request to suspend the VM. << 6889 "Caller responsibilities" for possible ret << 6890 5007 6891 :: 5008 :: 6892 5009 6893 /* KVM_EXIT_IOAPIC_EOI */ 5010 /* KVM_EXIT_IOAPIC_EOI */ 6894 struct { 5011 struct { 6895 __u8 vector; 5012 __u8 vector; 6896 } eoi; 5013 } eoi; 6897 5014 6898 Indicates that the VCPU's in-kernel local API 5015 Indicates that the VCPU's in-kernel local APIC received an EOI for a 6899 level-triggered IOAPIC interrupt. This exit 5016 level-triggered IOAPIC interrupt. This exit only triggers when the 6900 IOAPIC is implemented in userspace (i.e. KVM_ 5017 IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled); 6901 the userspace IOAPIC should process the EOI a 5018 the userspace IOAPIC should process the EOI and retrigger the interrupt if 6902 it is still asserted. Vector is the LAPIC in 5019 it is still asserted. Vector is the LAPIC interrupt vector for which the 6903 EOI was received. 5020 EOI was received. 6904 5021 6905 :: 5022 :: 6906 5023 6907 struct kvm_hyperv_exit { 5024 struct kvm_hyperv_exit { 6908 #define KVM_EXIT_HYPERV_SYNIC 1 5025 #define KVM_EXIT_HYPERV_SYNIC 1 6909 #define KVM_EXIT_HYPERV_HCALL 2 5026 #define KVM_EXIT_HYPERV_HCALL 2 6910 #define KVM_EXIT_HYPERV_SYNDBG 3 << 6911 __u32 type; 5027 __u32 type; 6912 __u32 pad1; << 6913 union { 5028 union { 6914 struct { 5029 struct { 6915 __u32 5030 __u32 msr; 6916 __u32 << 6917 __u64 5031 __u64 control; 6918 __u64 5032 __u64 evt_page; 6919 __u64 5033 __u64 msg_page; 6920 } synic; 5034 } synic; 6921 struct { 5035 struct { 6922 __u64 5036 __u64 input; 6923 __u64 5037 __u64 result; 6924 __u64 5038 __u64 params[2]; 6925 } hcall; 5039 } hcall; 6926 struct { << 6927 __u32 << 6928 __u32 << 6929 __u64 << 6930 __u64 << 6931 __u64 << 6932 __u64 << 6933 __u64 << 6934 } syndbg; << 6935 } u; 5040 } u; 6936 }; 5041 }; 6937 /* KVM_EXIT_HYPERV */ 5042 /* KVM_EXIT_HYPERV */ 6938 struct kvm_hyperv_exit hyperv 5043 struct kvm_hyperv_exit hyperv; 6939 5044 6940 Indicates that the VCPU exits into userspace 5045 Indicates that the VCPU exits into userspace to process some tasks 6941 related to Hyper-V emulation. 5046 related to Hyper-V emulation. 6942 5047 6943 Valid values for 'type' are: 5048 Valid values for 'type' are: 6944 5049 6945 - KVM_EXIT_HYPERV_SYNIC -- synchronou 5050 - KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about 6946 5051 6947 Hyper-V SynIC state change. Notification is u 5052 Hyper-V SynIC state change. Notification is used to remap SynIC 6948 event/message pages and to enable/disable Syn 5053 event/message pages and to enable/disable SynIC messages/events processing 6949 in userspace. 5054 in userspace. 6950 5055 6951 - KVM_EXIT_HYPERV_SYNDBG -- synchrono << 6952 << 6953 Hyper-V Synthetic debugger state change. Noti << 6954 the pending_page location or to send a contro << 6955 in send_page or recv a buffer to recv_page). << 6956 << 6957 :: 5056 :: 6958 5057 6959 /* KVM_EXIT_ARM_NISV */ 5058 /* KVM_EXIT_ARM_NISV */ 6960 struct { 5059 struct { 6961 __u64 esr_iss; 5060 __u64 esr_iss; 6962 __u64 fault_ipa; 5061 __u64 fault_ipa; 6963 } arm_nisv; 5062 } arm_nisv; 6964 5063 6965 Used on arm64 systems. If a guest accesses me !! 5064 Used on arm and arm64 systems. If a guest accesses memory not in a memslot, 6966 KVM will typically return to userspace and as 5065 KVM will typically return to userspace and ask it to do MMIO emulation on its 6967 behalf. However, for certain classes of instr 5066 behalf. However, for certain classes of instructions, no instruction decode 6968 (direction, length of memory access) is provi 5067 (direction, length of memory access) is provided, and fetching and decoding 6969 the instruction from the VM is overly complic 5068 the instruction from the VM is overly complicated to live in the kernel. 6970 5069 6971 Historically, when this situation occurred, K 5070 Historically, when this situation occurred, KVM would print a warning and kill 6972 the VM. KVM assumed that if the guest accesse 5071 the VM. KVM assumed that if the guest accessed non-memslot memory, it was 6973 trying to do I/O, which just couldn't be emul 5072 trying to do I/O, which just couldn't be emulated, and the warning message was 6974 phrased accordingly. However, what happened m 5073 phrased accordingly. However, what happened more often was that a guest bug 6975 caused access outside the guest memory areas 5074 caused access outside the guest memory areas which should lead to a more 6976 meaningful warning message and an external ab 5075 meaningful warning message and an external abort in the guest, if the access 6977 did not fall within an I/O window. 5076 did not fall within an I/O window. 6978 5077 6979 Userspace implementations can query for KVM_C 5078 Userspace implementations can query for KVM_CAP_ARM_NISV_TO_USER, and enable 6980 this capability at VM creation. Once this is 5079 this capability at VM creation. Once this is done, these types of errors will 6981 instead return to userspace with KVM_EXIT_ARM 5080 instead return to userspace with KVM_EXIT_ARM_NISV, with the valid bits from 6982 the ESR_EL2 in the esr_iss field, and the fau !! 5081 the HSR (arm) and ESR_EL2 (arm64) in the esr_iss field, and the faulting IPA 6983 Userspace can either fix up the access if it' !! 5082 in the fault_ipa field. Userspace can either fix up the access if it's 6984 decoding the instruction from guest memory (i !! 5083 actually an I/O access by decoding the instruction from guest memory (if it's 6985 executing the guest, or it can decide to susp !! 5084 very brave) and continue executing the guest, or it can decide to suspend, >> 5085 dump, or restart the guest. 6986 5086 6987 Note that KVM does not skip the faulting inst 5087 Note that KVM does not skip the faulting instruction as it does for 6988 KVM_EXIT_MMIO, but userspace has to emulate a 5088 KVM_EXIT_MMIO, but userspace has to emulate any change to the processing state 6989 if it decides to decode and emulate the instr 5089 if it decides to decode and emulate the instruction. 6990 5090 6991 This feature isn't available to protected VMs << 6992 have access to the state that is required to << 6993 Instead, a data abort exception is directly i << 6994 Note that although KVM_CAP_ARM_NISV_TO_USER w << 6995 queried outside of a protected VM context, th << 6996 exposed if queried on a protected VM file des << 6997 << 6998 :: << 6999 << 7000 /* KVM_EXIT_X86_RDMSR / KVM_E << 7001 struct { << 7002 __u8 error; /* user - << 7003 __u8 pad[7]; << 7004 __u32 reason; /* kern << 7005 __u32 index; /* kerne << 7006 __u64 data; /* kernel << 7007 } msr; << 7008 << 7009 Used on x86 systems. When the VM capability K << 7010 enabled, MSR accesses to registers that would << 7011 may instead trigger a KVM_EXIT_X86_RDMSR exit << 7012 exit for writes. << 7013 << 7014 The "reason" field specifies why the MSR inte << 7015 only receive MSR exits when a particular reas << 7016 ENABLE_CAP. Currently valid exit reasons are: << 7017 << 7018 ============================ ================ << 7019 KVM_MSR_EXIT_REASON_UNKNOWN access to MSR th << 7020 KVM_MSR_EXIT_REASON_INVAL access to invali << 7021 KVM_MSR_EXIT_REASON_FILTER access blocked b << 7022 ============================ ================ << 7023 << 7024 For KVM_EXIT_X86_RDMSR, the "index" field tel << 7025 wants to read. To respond to this request wit << 7026 writes the respective data into the "data" fi << 7027 execution to ensure the read data is transfer << 7028 << 7029 If the RDMSR request was unsuccessful, usersp << 7030 the "error" field. This will inject a #GP int << 7031 executed again. << 7032 << 7033 For KVM_EXIT_X86_WRMSR, the "index" field tel << 7034 wants to write. Once finished processing the << 7035 vCPU execution. If the MSR write was unsucces << 7036 "error" field to "1". << 7037 << 7038 See KVM_X86_SET_MSR_FILTER for details on the << 7039 << 7040 :: << 7041 << 7042 << 7043 struct kvm_xen_exit { << 7044 #define KVM_EXIT_XEN_HCALL 1 << 7045 __u32 type; << 7046 union { << 7047 struct { << 7048 __u32 << 7049 __u32 << 7050 __u64 << 7051 __u64 << 7052 __u64 << 7053 } hcall; << 7054 } u; << 7055 }; << 7056 /* KVM_EXIT_XEN */ << 7057 struct kvm_hyperv_exit xen; << 7058 << 7059 Indicates that the VCPU exits into userspace << 7060 related to Xen emulation. << 7061 << 7062 Valid values for 'type' are: << 7063 << 7064 - KVM_EXIT_XEN_HCALL -- synchronously notif << 7065 Userspace is expected to place the hyperc << 7066 field before invoking KVM_RUN again. << 7067 << 7068 :: << 7069 << 7070 /* KVM_EXIT_RISCV_SBI */ << 7071 struct { << 7072 unsigned long extensi << 7073 unsigned long functio << 7074 unsigned long args[6] << 7075 unsigned long ret[2]; << 7076 } riscv_sbi; << 7077 << 7078 If exit reason is KVM_EXIT_RISCV_SBI then it << 7079 done a SBI call which is not handled by KVM R << 7080 of the SBI call are available in 'riscv_sbi' << 7081 'extension_id' field of 'riscv_sbi' represent << 7082 'function_id' field represents function ID of << 7083 array field of 'riscv_sbi' represents paramet << 7084 array field represents return values. The use << 7085 values of SBI call before resuming the VCPU. << 7086 spec refer, https://github.com/riscv/riscv-sb << 7087 << 7088 :: << 7089 << 7090 /* KVM_EXIT_MEMORY_FAULT */ << 7091 struct { << 7092 #define KVM_MEMORY_EXIT_FLAG_PRIVATE (1ULL << 7093 __u64 flags; << 7094 __u64 gpa; << 7095 __u64 size; << 7096 } memory_fault; << 7097 << 7098 KVM_EXIT_MEMORY_FAULT indicates the vCPU has << 7099 could not be resolved by KVM. The 'gpa' and << 7100 guest physical address range [gpa, gpa + size << 7101 describes properties of the faulting access t << 7102 << 7103 - KVM_MEMORY_EXIT_FLAG_PRIVATE - When set, i << 7104 on a private memory access. When clear, i << 7105 shared access. << 7106 << 7107 Note! KVM_EXIT_MEMORY_FAULT is unique among << 7108 accompanies a return code of '-1', not '0'! << 7109 or EHWPOISON when KVM exits with KVM_EXIT_MEM << 7110 kvm_run.exit_reason is stale/undefined for al << 7111 << 7112 :: << 7113 << 7114 /* KVM_EXIT_NOTIFY */ << 7115 struct { << 7116 #define KVM_NOTIFY_CONTEXT_INVALID (1 << << 7117 __u32 flags; << 7118 } notify; << 7119 << 7120 Used on x86 systems. When the VM capability K << 7121 enabled, a VM exit generated if no event wind << 7122 for a specified amount of time. Once KVM_X86_ << 7123 enabling the cap, it would exit to userspace << 7124 KVM_EXIT_NOTIFY for further handling. The "fl << 7125 detailed info. << 7126 << 7127 The valid value for 'flags' is: << 7128 << 7129 - KVM_NOTIFY_CONTEXT_INVALID -- the VM cont << 7130 in VMCS. It would run into unknown result << 7131 << 7132 :: 5091 :: 7133 5092 7134 /* Fix the size of the union. 5093 /* Fix the size of the union. */ 7135 char padding[256]; 5094 char padding[256]; 7136 }; 5095 }; 7137 5096 7138 /* 5097 /* 7139 * shared registers between kvm and u 5098 * shared registers between kvm and userspace. 7140 * kvm_valid_regs specifies the regis 5099 * kvm_valid_regs specifies the register classes set by the host 7141 * kvm_dirty_regs specified the regis 5100 * kvm_dirty_regs specified the register classes dirtied by userspace 7142 * struct kvm_sync_regs is architectu 5101 * struct kvm_sync_regs is architecture specific, as well as the 7143 * bits for kvm_valid_regs and kvm_di 5102 * bits for kvm_valid_regs and kvm_dirty_regs 7144 */ 5103 */ 7145 __u64 kvm_valid_regs; 5104 __u64 kvm_valid_regs; 7146 __u64 kvm_dirty_regs; 5105 __u64 kvm_dirty_regs; 7147 union { 5106 union { 7148 struct kvm_sync_regs regs; 5107 struct kvm_sync_regs regs; 7149 char padding[SYNC_REGS_SIZE_B 5108 char padding[SYNC_REGS_SIZE_BYTES]; 7150 } s; 5109 } s; 7151 5110 7152 If KVM_CAP_SYNC_REGS is defined, these fields 5111 If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access 7153 certain guest registers without having to cal 5112 certain guest registers without having to call SET/GET_*REGS. Thus we can 7154 avoid some system call overhead if userspace 5113 avoid some system call overhead if userspace has to handle the exit. 7155 Userspace can query the validity of the struc 5114 Userspace can query the validity of the structure by checking 7156 kvm_valid_regs for specific bits. These bits 5115 kvm_valid_regs for specific bits. These bits are architecture specific 7157 and usually define the validity of a groups o 5116 and usually define the validity of a groups of registers. (e.g. one bit 7158 for general purpose registers) 5117 for general purpose registers) 7159 5118 7160 Please note that the kernel is allowed to use 5119 Please note that the kernel is allowed to use the kvm_run structure as the 7161 primary storage for certain register types. T 5120 primary storage for certain register types. Therefore, the kernel may use the 7162 values in kvm_run even if the corresponding b 5121 values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set. 7163 5122 >> 5123 :: >> 5124 >> 5125 }; >> 5126 >> 5127 7164 5128 7165 6. Capabilities that can be enabled on vCPUs 5129 6. Capabilities that can be enabled on vCPUs 7166 ============================================ 5130 ============================================ 7167 5131 7168 There are certain capabilities that change th 5132 There are certain capabilities that change the behavior of the virtual CPU or 7169 the virtual machine when enabled. To enable t 5133 the virtual machine when enabled. To enable them, please see section 4.37. 7170 Below you can find a list of capabilities and 5134 Below you can find a list of capabilities and what their effect on the vCPU or 7171 the virtual machine is when enabling them. 5135 the virtual machine is when enabling them. 7172 5136 7173 The following information is provided along w 5137 The following information is provided along with the description: 7174 5138 7175 Architectures: 5139 Architectures: 7176 which instruction set architectures pro 5140 which instruction set architectures provide this ioctl. 7177 x86 includes both i386 and x86_64. 5141 x86 includes both i386 and x86_64. 7178 5142 7179 Target: 5143 Target: 7180 whether this is a per-vcpu or per-vm ca 5144 whether this is a per-vcpu or per-vm capability. 7181 5145 7182 Parameters: 5146 Parameters: 7183 what parameters are accepted by the cap 5147 what parameters are accepted by the capability. 7184 5148 7185 Returns: 5149 Returns: 7186 the return value. General error number 5150 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 7187 are not detailed, but errors with speci 5151 are not detailed, but errors with specific meanings are. 7188 5152 7189 5153 7190 6.1 KVM_CAP_PPC_OSI 5154 6.1 KVM_CAP_PPC_OSI 7191 ------------------- 5155 ------------------- 7192 5156 7193 :Architectures: ppc 5157 :Architectures: ppc 7194 :Target: vcpu 5158 :Target: vcpu 7195 :Parameters: none 5159 :Parameters: none 7196 :Returns: 0 on success; -1 on error 5160 :Returns: 0 on success; -1 on error 7197 5161 7198 This capability enables interception of OSI h 5162 This capability enables interception of OSI hypercalls that otherwise would 7199 be treated as normal system calls to be injec 5163 be treated as normal system calls to be injected into the guest. OSI hypercalls 7200 were invented by Mac-on-Linux to have a stand 5164 were invented by Mac-on-Linux to have a standardized communication mechanism 7201 between the guest and the host. 5165 between the guest and the host. 7202 5166 7203 When this capability is enabled, KVM_EXIT_OSI 5167 When this capability is enabled, KVM_EXIT_OSI can occur. 7204 5168 7205 5169 7206 6.2 KVM_CAP_PPC_PAPR 5170 6.2 KVM_CAP_PPC_PAPR 7207 -------------------- 5171 -------------------- 7208 5172 7209 :Architectures: ppc 5173 :Architectures: ppc 7210 :Target: vcpu 5174 :Target: vcpu 7211 :Parameters: none 5175 :Parameters: none 7212 :Returns: 0 on success; -1 on error 5176 :Returns: 0 on success; -1 on error 7213 5177 7214 This capability enables interception of PAPR 5178 This capability enables interception of PAPR hypercalls. PAPR hypercalls are 7215 done using the hypercall instruction "sc 1". 5179 done using the hypercall instruction "sc 1". 7216 5180 7217 It also sets the guest privilege level to "su 5181 It also sets the guest privilege level to "supervisor" mode. Usually the guest 7218 runs in "hypervisor" privilege mode with a fe 5182 runs in "hypervisor" privilege mode with a few missing features. 7219 5183 7220 In addition to the above, it changes the sema 5184 In addition to the above, it changes the semantics of SDR1. In this mode, the 7221 HTAB address part of SDR1 contains an HVA ins 5185 HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the 7222 HTAB invisible to the guest. 5186 HTAB invisible to the guest. 7223 5187 7224 When this capability is enabled, KVM_EXIT_PAP 5188 When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur. 7225 5189 7226 5190 7227 6.3 KVM_CAP_SW_TLB 5191 6.3 KVM_CAP_SW_TLB 7228 ------------------ 5192 ------------------ 7229 5193 7230 :Architectures: ppc 5194 :Architectures: ppc 7231 :Target: vcpu 5195 :Target: vcpu 7232 :Parameters: args[0] is the address of a stru 5196 :Parameters: args[0] is the address of a struct kvm_config_tlb 7233 :Returns: 0 on success; -1 on error 5197 :Returns: 0 on success; -1 on error 7234 5198 7235 :: 5199 :: 7236 5200 7237 struct kvm_config_tlb { 5201 struct kvm_config_tlb { 7238 __u64 params; 5202 __u64 params; 7239 __u64 array; 5203 __u64 array; 7240 __u32 mmu_type; 5204 __u32 mmu_type; 7241 __u32 array_len; 5205 __u32 array_len; 7242 }; 5206 }; 7243 5207 7244 Configures the virtual CPU's TLB array, estab 5208 Configures the virtual CPU's TLB array, establishing a shared memory area 7245 between userspace and KVM. The "params" and 5209 between userspace and KVM. The "params" and "array" fields are userspace 7246 addresses of mmu-type-specific data structure 5210 addresses of mmu-type-specific data structures. The "array_len" field is an 7247 safety mechanism, and should be set to the si 5211 safety mechanism, and should be set to the size in bytes of the memory that 7248 userspace has reserved for the array. It mus 5212 userspace has reserved for the array. It must be at least the size dictated 7249 by "mmu_type" and "params". 5213 by "mmu_type" and "params". 7250 5214 7251 While KVM_RUN is active, the shared region is 5215 While KVM_RUN is active, the shared region is under control of KVM. Its 7252 contents are undefined, and any modification 5216 contents are undefined, and any modification by userspace results in 7253 boundedly undefined behavior. 5217 boundedly undefined behavior. 7254 5218 7255 On return from KVM_RUN, the shared region wil 5219 On return from KVM_RUN, the shared region will reflect the current state of 7256 the guest's TLB. If userspace makes any chan 5220 the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB 7257 to tell KVM which entries have been changed, 5221 to tell KVM which entries have been changed, prior to calling KVM_RUN again 7258 on this vcpu. 5222 on this vcpu. 7259 5223 7260 For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_ 5224 For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV: 7261 5225 7262 - The "params" field is of type "struct kvm_ 5226 - The "params" field is of type "struct kvm_book3e_206_tlb_params". 7263 - The "array" field points to an array of ty 5227 - The "array" field points to an array of type "struct 7264 kvm_book3e_206_tlb_entry". 5228 kvm_book3e_206_tlb_entry". 7265 - The array consists of all entries in the f 5229 - The array consists of all entries in the first TLB, followed by all 7266 entries in the second TLB. 5230 entries in the second TLB. 7267 - Within a TLB, entries are ordered first by 5231 - Within a TLB, entries are ordered first by increasing set number. Within a 7268 set, entries are ordered by way (increasin 5232 set, entries are ordered by way (increasing ESEL). 7269 - The hash for determining set number in TLB 5233 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1) 7270 where "num_sets" is the tlb_sizes[] value 5234 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value. 7271 - The tsize field of mas1 shall be set to 4K 5235 - The tsize field of mas1 shall be set to 4K on TLB0, even though the 7272 hardware ignores this value for TLB0. 5236 hardware ignores this value for TLB0. 7273 5237 7274 6.4 KVM_CAP_S390_CSS_SUPPORT 5238 6.4 KVM_CAP_S390_CSS_SUPPORT 7275 ---------------------------- 5239 ---------------------------- 7276 5240 7277 :Architectures: s390 5241 :Architectures: s390 7278 :Target: vcpu 5242 :Target: vcpu 7279 :Parameters: none 5243 :Parameters: none 7280 :Returns: 0 on success; -1 on error 5244 :Returns: 0 on success; -1 on error 7281 5245 7282 This capability enables support for handling 5246 This capability enables support for handling of channel I/O instructions. 7283 5247 7284 TEST PENDING INTERRUPTION and the interrupt p 5248 TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are 7285 handled in-kernel, while the other I/O instru 5249 handled in-kernel, while the other I/O instructions are passed to userspace. 7286 5250 7287 When this capability is enabled, KVM_EXIT_S39 5251 When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST 7288 SUBCHANNEL intercepts. 5252 SUBCHANNEL intercepts. 7289 5253 7290 Note that even though this capability is enab 5254 Note that even though this capability is enabled per-vcpu, the complete 7291 virtual machine is affected. 5255 virtual machine is affected. 7292 5256 7293 6.5 KVM_CAP_PPC_EPR 5257 6.5 KVM_CAP_PPC_EPR 7294 ------------------- 5258 ------------------- 7295 5259 7296 :Architectures: ppc 5260 :Architectures: ppc 7297 :Target: vcpu 5261 :Target: vcpu 7298 :Parameters: args[0] defines whether the prox 5262 :Parameters: args[0] defines whether the proxy facility is active 7299 :Returns: 0 on success; -1 on error 5263 :Returns: 0 on success; -1 on error 7300 5264 7301 This capability enables or disables the deliv 5265 This capability enables or disables the delivery of interrupts through the 7302 external proxy facility. 5266 external proxy facility. 7303 5267 7304 When enabled (args[0] != 0), every time the g 5268 When enabled (args[0] != 0), every time the guest gets an external interrupt 7305 delivered, it automatically exits into user s 5269 delivered, it automatically exits into user space with a KVM_EXIT_EPR exit 7306 to receive the topmost interrupt vector. 5270 to receive the topmost interrupt vector. 7307 5271 7308 When disabled (args[0] == 0), behavior is as 5272 When disabled (args[0] == 0), behavior is as if this facility is unsupported. 7309 5273 7310 When this capability is enabled, KVM_EXIT_EPR 5274 When this capability is enabled, KVM_EXIT_EPR can occur. 7311 5275 7312 6.6 KVM_CAP_IRQ_MPIC 5276 6.6 KVM_CAP_IRQ_MPIC 7313 -------------------- 5277 -------------------- 7314 5278 7315 :Architectures: ppc 5279 :Architectures: ppc 7316 :Parameters: args[0] is the MPIC device fd; 5280 :Parameters: args[0] is the MPIC device fd; 7317 args[1] is the MPIC CPU number f 5281 args[1] is the MPIC CPU number for this vcpu 7318 5282 7319 This capability connects the vcpu to an in-ke 5283 This capability connects the vcpu to an in-kernel MPIC device. 7320 5284 7321 6.7 KVM_CAP_IRQ_XICS 5285 6.7 KVM_CAP_IRQ_XICS 7322 -------------------- 5286 -------------------- 7323 5287 7324 :Architectures: ppc 5288 :Architectures: ppc 7325 :Target: vcpu 5289 :Target: vcpu 7326 :Parameters: args[0] is the XICS device fd; 5290 :Parameters: args[0] is the XICS device fd; 7327 args[1] is the XICS CPU number ( 5291 args[1] is the XICS CPU number (server ID) for this vcpu 7328 5292 7329 This capability connects the vcpu to an in-ke 5293 This capability connects the vcpu to an in-kernel XICS device. 7330 5294 7331 6.8 KVM_CAP_S390_IRQCHIP 5295 6.8 KVM_CAP_S390_IRQCHIP 7332 ------------------------ 5296 ------------------------ 7333 5297 7334 :Architectures: s390 5298 :Architectures: s390 7335 :Target: vm 5299 :Target: vm 7336 :Parameters: none 5300 :Parameters: none 7337 5301 7338 This capability enables the in-kernel irqchip 5302 This capability enables the in-kernel irqchip for s390. Please refer to 7339 "4.24 KVM_CREATE_IRQCHIP" for details. 5303 "4.24 KVM_CREATE_IRQCHIP" for details. 7340 5304 7341 6.9 KVM_CAP_MIPS_FPU 5305 6.9 KVM_CAP_MIPS_FPU 7342 -------------------- 5306 -------------------- 7343 5307 7344 :Architectures: mips 5308 :Architectures: mips 7345 :Target: vcpu 5309 :Target: vcpu 7346 :Parameters: args[0] is reserved for future u 5310 :Parameters: args[0] is reserved for future use (should be 0). 7347 5311 7348 This capability allows the use of the host Fl 5312 This capability allows the use of the host Floating Point Unit by the guest. It 7349 allows the Config1.FP bit to be set to enable 5313 allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is 7350 done the ``KVM_REG_MIPS_FPR_*`` and ``KVM_REG 5314 done the ``KVM_REG_MIPS_FPR_*`` and ``KVM_REG_MIPS_FCR_*`` registers can be 7351 accessed (depending on the current guest FPU 5315 accessed (depending on the current guest FPU register mode), and the Status.FR, 7352 Config5.FRE bits are accessible via the KVM A 5316 Config5.FRE bits are accessible via the KVM API and also from the guest, 7353 depending on them being supported by the FPU. 5317 depending on them being supported by the FPU. 7354 5318 7355 6.10 KVM_CAP_MIPS_MSA 5319 6.10 KVM_CAP_MIPS_MSA 7356 --------------------- 5320 --------------------- 7357 5321 7358 :Architectures: mips 5322 :Architectures: mips 7359 :Target: vcpu 5323 :Target: vcpu 7360 :Parameters: args[0] is reserved for future u 5324 :Parameters: args[0] is reserved for future use (should be 0). 7361 5325 7362 This capability allows the use of the MIPS SI 5326 This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest. 7363 It allows the Config3.MSAP bit to be set to e 5327 It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest. 7364 Once this is done the ``KVM_REG_MIPS_VEC_*`` 5328 Once this is done the ``KVM_REG_MIPS_VEC_*`` and ``KVM_REG_MIPS_MSA_*`` 7365 registers can be accessed, and the Config5.MS 5329 registers can be accessed, and the Config5.MSAEn bit is accessible via the 7366 KVM API and also from the guest. 5330 KVM API and also from the guest. 7367 5331 7368 6.74 KVM_CAP_SYNC_REGS 5332 6.74 KVM_CAP_SYNC_REGS 7369 ---------------------- 5333 ---------------------- 7370 5334 7371 :Architectures: s390, x86 5335 :Architectures: s390, x86 7372 :Target: s390: always enabled, x86: vcpu 5336 :Target: s390: always enabled, x86: vcpu 7373 :Parameters: none 5337 :Parameters: none 7374 :Returns: x86: KVM_CHECK_EXTENSION returns a 5338 :Returns: x86: KVM_CHECK_EXTENSION returns a bit-array indicating which register 7375 sets are supported 5339 sets are supported 7376 (bitfields defined in arch/x86/incl 5340 (bitfields defined in arch/x86/include/uapi/asm/kvm.h). 7377 5341 7378 As described above in the kvm_sync_regs struc 5342 As described above in the kvm_sync_regs struct info in section 5 (kvm_run): 7379 KVM_CAP_SYNC_REGS "allow[s] userspace to acce 5343 KVM_CAP_SYNC_REGS "allow[s] userspace to access certain guest registers 7380 without having to call SET/GET_*REGS". This r 5344 without having to call SET/GET_*REGS". This reduces overhead by eliminating 7381 repeated ioctl calls for setting and/or getti 5345 repeated ioctl calls for setting and/or getting register values. This is 7382 particularly important when userspace is maki 5346 particularly important when userspace is making synchronous guest state 7383 modifications, e.g. when emulating and/or int 5347 modifications, e.g. when emulating and/or intercepting instructions in 7384 userspace. 5348 userspace. 7385 5349 7386 For s390 specifics, please refer to the sourc 5350 For s390 specifics, please refer to the source code. 7387 5351 7388 For x86: 5352 For x86: 7389 5353 7390 - the register sets to be copied out to kvm_r 5354 - the register sets to be copied out to kvm_run are selectable 7391 by userspace (rather that all sets being co 5355 by userspace (rather that all sets being copied out for every exit). 7392 - vcpu_events are available in addition to re 5356 - vcpu_events are available in addition to regs and sregs. 7393 5357 7394 For x86, the 'kvm_valid_regs' field of struct 5358 For x86, the 'kvm_valid_regs' field of struct kvm_run is overloaded to 7395 function as an input bit-array field set by u 5359 function as an input bit-array field set by userspace to indicate the 7396 specific register sets to be copied out on th 5360 specific register sets to be copied out on the next exit. 7397 5361 7398 To indicate when userspace has modified value 5362 To indicate when userspace has modified values that should be copied into 7399 the vCPU, the all architecture bitarray field 5363 the vCPU, the all architecture bitarray field, 'kvm_dirty_regs' must be set. 7400 This is done using the same bitflags as for t 5364 This is done using the same bitflags as for the 'kvm_valid_regs' field. 7401 If the dirty bit is not set, then the registe 5365 If the dirty bit is not set, then the register set values will not be copied 7402 into the vCPU even if they've been modified. 5366 into the vCPU even if they've been modified. 7403 5367 7404 Unused bitfields in the bitarrays must be set 5368 Unused bitfields in the bitarrays must be set to zero. 7405 5369 7406 :: 5370 :: 7407 5371 7408 struct kvm_sync_regs { 5372 struct kvm_sync_regs { 7409 struct kvm_regs regs; 5373 struct kvm_regs regs; 7410 struct kvm_sregs sregs; 5374 struct kvm_sregs sregs; 7411 struct kvm_vcpu_events events; 5375 struct kvm_vcpu_events events; 7412 }; 5376 }; 7413 5377 7414 6.75 KVM_CAP_PPC_IRQ_XIVE 5378 6.75 KVM_CAP_PPC_IRQ_XIVE 7415 ------------------------- 5379 ------------------------- 7416 5380 7417 :Architectures: ppc 5381 :Architectures: ppc 7418 :Target: vcpu 5382 :Target: vcpu 7419 :Parameters: args[0] is the XIVE device fd; 5383 :Parameters: args[0] is the XIVE device fd; 7420 args[1] is the XIVE CPU number ( 5384 args[1] is the XIVE CPU number (server ID) for this vcpu 7421 5385 7422 This capability connects the vcpu to an in-ke 5386 This capability connects the vcpu to an in-kernel XIVE device. 7423 5387 7424 7. Capabilities that can be enabled on VMs 5388 7. Capabilities that can be enabled on VMs 7425 ========================================== 5389 ========================================== 7426 5390 7427 There are certain capabilities that change th 5391 There are certain capabilities that change the behavior of the virtual 7428 machine when enabled. To enable them, please 5392 machine when enabled. To enable them, please see section 4.37. Below 7429 you can find a list of capabilities and what 5393 you can find a list of capabilities and what their effect on the VM 7430 is when enabling them. 5394 is when enabling them. 7431 5395 7432 The following information is provided along w 5396 The following information is provided along with the description: 7433 5397 7434 Architectures: 5398 Architectures: 7435 which instruction set architectures pro 5399 which instruction set architectures provide this ioctl. 7436 x86 includes both i386 and x86_64. 5400 x86 includes both i386 and x86_64. 7437 5401 7438 Parameters: 5402 Parameters: 7439 what parameters are accepted by the cap 5403 what parameters are accepted by the capability. 7440 5404 7441 Returns: 5405 Returns: 7442 the return value. General error number 5406 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 7443 are not detailed, but errors with speci 5407 are not detailed, but errors with specific meanings are. 7444 5408 7445 5409 7446 7.1 KVM_CAP_PPC_ENABLE_HCALL 5410 7.1 KVM_CAP_PPC_ENABLE_HCALL 7447 ---------------------------- 5411 ---------------------------- 7448 5412 7449 :Architectures: ppc 5413 :Architectures: ppc 7450 :Parameters: args[0] is the sPAPR hcall numbe 5414 :Parameters: args[0] is the sPAPR hcall number; 7451 args[1] is 0 to disable, 1 to en 5415 args[1] is 0 to disable, 1 to enable in-kernel handling 7452 5416 7453 This capability controls whether individual s 5417 This capability controls whether individual sPAPR hypercalls (hcalls) 7454 get handled by the kernel or not. Enabling o 5418 get handled by the kernel or not. Enabling or disabling in-kernel 7455 handling of an hcall is effective across the 5419 handling of an hcall is effective across the VM. On creation, an 7456 initial set of hcalls are enabled for in-kern 5420 initial set of hcalls are enabled for in-kernel handling, which 7457 consists of those hcalls for which in-kernel 5421 consists of those hcalls for which in-kernel handlers were implemented 7458 before this capability was implemented. If d 5422 before this capability was implemented. If disabled, the kernel will 7459 not to attempt to handle the hcall, but will 5423 not to attempt to handle the hcall, but will always exit to userspace 7460 to handle it. Note that it may not make sens 5424 to handle it. Note that it may not make sense to enable some and 7461 disable others of a group of related hcalls, 5425 disable others of a group of related hcalls, but KVM does not prevent 7462 userspace from doing that. 5426 userspace from doing that. 7463 5427 7464 If the hcall number specified is not one that 5428 If the hcall number specified is not one that has an in-kernel 7465 implementation, the KVM_ENABLE_CAP ioctl will 5429 implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL 7466 error. 5430 error. 7467 5431 7468 7.2 KVM_CAP_S390_USER_SIGP 5432 7.2 KVM_CAP_S390_USER_SIGP 7469 -------------------------- 5433 -------------------------- 7470 5434 7471 :Architectures: s390 5435 :Architectures: s390 7472 :Parameters: none 5436 :Parameters: none 7473 5437 7474 This capability controls which SIGP orders wi 5438 This capability controls which SIGP orders will be handled completely in user 7475 space. With this capability enabled, all fast 5439 space. With this capability enabled, all fast orders will be handled completely 7476 in the kernel: 5440 in the kernel: 7477 5441 7478 - SENSE 5442 - SENSE 7479 - SENSE RUNNING 5443 - SENSE RUNNING 7480 - EXTERNAL CALL 5444 - EXTERNAL CALL 7481 - EMERGENCY SIGNAL 5445 - EMERGENCY SIGNAL 7482 - CONDITIONAL EMERGENCY SIGNAL 5446 - CONDITIONAL EMERGENCY SIGNAL 7483 5447 7484 All other orders will be handled completely i 5448 All other orders will be handled completely in user space. 7485 5449 7486 Only privileged operation exceptions will be 5450 Only privileged operation exceptions will be checked for in the kernel (or even 7487 in the hardware prior to interception). If th 5451 in the hardware prior to interception). If this capability is not enabled, the 7488 old way of handling SIGP orders is used (part 5452 old way of handling SIGP orders is used (partially in kernel and user space). 7489 5453 7490 7.3 KVM_CAP_S390_VECTOR_REGISTERS 5454 7.3 KVM_CAP_S390_VECTOR_REGISTERS 7491 --------------------------------- 5455 --------------------------------- 7492 5456 7493 :Architectures: s390 5457 :Architectures: s390 7494 :Parameters: none 5458 :Parameters: none 7495 :Returns: 0 on success, negative value on err 5459 :Returns: 0 on success, negative value on error 7496 5460 7497 Allows use of the vector registers introduced 5461 Allows use of the vector registers introduced with z13 processor, and 7498 provides for the synchronization between host 5462 provides for the synchronization between host and user space. Will 7499 return -EINVAL if the machine does not suppor 5463 return -EINVAL if the machine does not support vectors. 7500 5464 7501 7.4 KVM_CAP_S390_USER_STSI 5465 7.4 KVM_CAP_S390_USER_STSI 7502 -------------------------- 5466 -------------------------- 7503 5467 7504 :Architectures: s390 5468 :Architectures: s390 7505 :Parameters: none 5469 :Parameters: none 7506 5470 7507 This capability allows post-handlers for the 5471 This capability allows post-handlers for the STSI instruction. After 7508 initial handling in the kernel, KVM exits to 5472 initial handling in the kernel, KVM exits to user space with 7509 KVM_EXIT_S390_STSI to allow user space to ins 5473 KVM_EXIT_S390_STSI to allow user space to insert further data. 7510 5474 7511 Before exiting to userspace, kvm handlers sho 5475 Before exiting to userspace, kvm handlers should fill in s390_stsi field of 7512 vcpu->run:: 5476 vcpu->run:: 7513 5477 7514 struct { 5478 struct { 7515 __u64 addr; 5479 __u64 addr; 7516 __u8 ar; 5480 __u8 ar; 7517 __u8 reserved; 5481 __u8 reserved; 7518 __u8 fc; 5482 __u8 fc; 7519 __u8 sel1; 5483 __u8 sel1; 7520 __u16 sel2; 5484 __u16 sel2; 7521 } s390_stsi; 5485 } s390_stsi; 7522 5486 7523 @addr - guest address of STSI SYSIB 5487 @addr - guest address of STSI SYSIB 7524 @fc - function code 5488 @fc - function code 7525 @sel1 - selector 1 5489 @sel1 - selector 1 7526 @sel2 - selector 2 5490 @sel2 - selector 2 7527 @ar - access register number 5491 @ar - access register number 7528 5492 7529 KVM handlers should exit to userspace with rc 5493 KVM handlers should exit to userspace with rc = -EREMOTE. 7530 5494 7531 7.5 KVM_CAP_SPLIT_IRQCHIP 5495 7.5 KVM_CAP_SPLIT_IRQCHIP 7532 ------------------------- 5496 ------------------------- 7533 5497 7534 :Architectures: x86 5498 :Architectures: x86 7535 :Parameters: args[0] - number of routes reser 5499 :Parameters: args[0] - number of routes reserved for userspace IOAPICs 7536 :Returns: 0 on success, -1 on error 5500 :Returns: 0 on success, -1 on error 7537 5501 7538 Create a local apic for each processor in the 5502 Create a local apic for each processor in the kernel. This can be used 7539 instead of KVM_CREATE_IRQCHIP if the userspac 5503 instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the 7540 IOAPIC and PIC (and also the PIT, even though 5504 IOAPIC and PIC (and also the PIT, even though this has to be enabled 7541 separately). 5505 separately). 7542 5506 7543 This capability also enables in kernel routin 5507 This capability also enables in kernel routing of interrupt requests; 7544 when KVM_CAP_SPLIT_IRQCHIP only routes of KVM 5508 when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are 7545 used in the IRQ routing table. The first arg 5509 used in the IRQ routing table. The first args[0] MSI routes are reserved 7546 for the IOAPIC pins. Whenever the LAPIC rece 5510 for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes, 7547 a KVM_EXIT_IOAPIC_EOI vmexit will be reported 5511 a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace. 7548 5512 7549 Fails if VCPU has already been created, or if 5513 Fails if VCPU has already been created, or if the irqchip is already in the 7550 kernel (i.e. KVM_CREATE_IRQCHIP has already b 5514 kernel (i.e. KVM_CREATE_IRQCHIP has already been called). 7551 5515 7552 7.6 KVM_CAP_S390_RI 5516 7.6 KVM_CAP_S390_RI 7553 ------------------- 5517 ------------------- 7554 5518 7555 :Architectures: s390 5519 :Architectures: s390 7556 :Parameters: none 5520 :Parameters: none 7557 5521 7558 Allows use of runtime-instrumentation introdu 5522 Allows use of runtime-instrumentation introduced with zEC12 processor. 7559 Will return -EINVAL if the machine does not s 5523 Will return -EINVAL if the machine does not support runtime-instrumentation. 7560 Will return -EBUSY if a VCPU has already been 5524 Will return -EBUSY if a VCPU has already been created. 7561 5525 7562 7.7 KVM_CAP_X2APIC_API 5526 7.7 KVM_CAP_X2APIC_API 7563 ---------------------- 5527 ---------------------- 7564 5528 7565 :Architectures: x86 5529 :Architectures: x86 7566 :Parameters: args[0] - features that should b 5530 :Parameters: args[0] - features that should be enabled 7567 :Returns: 0 on success, -EINVAL when args[0] 5531 :Returns: 0 on success, -EINVAL when args[0] contains invalid features 7568 5532 7569 Valid feature flags in args[0] are:: 5533 Valid feature flags in args[0] are:: 7570 5534 7571 #define KVM_X2APIC_API_USE_32BIT_IDS 5535 #define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0) 7572 #define KVM_X2APIC_API_DISABLE_BROADCAST_QU 5536 #define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1) 7573 5537 7574 Enabling KVM_X2APIC_API_USE_32BIT_IDS changes 5538 Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of 7575 KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_ 5539 KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC, 7576 allowing the use of 32-bit APIC IDs. See KVM 5540 allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their 7577 respective sections. 5541 respective sections. 7578 5542 7579 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must b 5543 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work 7580 in logical mode or with more than 255 VCPUs. 5544 in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff 7581 as a broadcast even in x2APIC mode in order t 5545 as a broadcast even in x2APIC mode in order to support physical x2APIC 7582 without interrupt remapping. This is undesir 5546 without interrupt remapping. This is undesirable in logical mode, 7583 where 0xff represents CPUs 0-7 in cluster 0. 5547 where 0xff represents CPUs 0-7 in cluster 0. 7584 5548 7585 7.8 KVM_CAP_S390_USER_INSTR0 5549 7.8 KVM_CAP_S390_USER_INSTR0 7586 ---------------------------- 5550 ---------------------------- 7587 5551 7588 :Architectures: s390 5552 :Architectures: s390 7589 :Parameters: none 5553 :Parameters: none 7590 5554 7591 With this capability enabled, all illegal ins 5555 With this capability enabled, all illegal instructions 0x0000 (2 bytes) will 7592 be intercepted and forwarded to user space. U 5556 be intercepted and forwarded to user space. User space can use this 7593 mechanism e.g. to realize 2-byte software bre 5557 mechanism e.g. to realize 2-byte software breakpoints. The kernel will 7594 not inject an operating exception for these i 5558 not inject an operating exception for these instructions, user space has 7595 to take care of that. 5559 to take care of that. 7596 5560 7597 This capability can be enabled dynamically ev 5561 This capability can be enabled dynamically even if VCPUs were already 7598 created and are running. 5562 created and are running. 7599 5563 7600 7.9 KVM_CAP_S390_GS 5564 7.9 KVM_CAP_S390_GS 7601 ------------------- 5565 ------------------- 7602 5566 7603 :Architectures: s390 5567 :Architectures: s390 7604 :Parameters: none 5568 :Parameters: none 7605 :Returns: 0 on success; -EINVAL if the machin 5569 :Returns: 0 on success; -EINVAL if the machine does not support 7606 guarded storage; -EBUSY if a VCPU h 5570 guarded storage; -EBUSY if a VCPU has already been created. 7607 5571 7608 Allows use of guarded storage for the KVM gue 5572 Allows use of guarded storage for the KVM guest. 7609 5573 7610 7.10 KVM_CAP_S390_AIS 5574 7.10 KVM_CAP_S390_AIS 7611 --------------------- 5575 --------------------- 7612 5576 7613 :Architectures: s390 5577 :Architectures: s390 7614 :Parameters: none 5578 :Parameters: none 7615 5579 7616 Allow use of adapter-interruption suppression 5580 Allow use of adapter-interruption suppression. 7617 :Returns: 0 on success; -EBUSY if a VCPU has 5581 :Returns: 0 on success; -EBUSY if a VCPU has already been created. 7618 5582 7619 7.11 KVM_CAP_PPC_SMT 5583 7.11 KVM_CAP_PPC_SMT 7620 -------------------- 5584 -------------------- 7621 5585 7622 :Architectures: ppc 5586 :Architectures: ppc 7623 :Parameters: vsmt_mode, flags 5587 :Parameters: vsmt_mode, flags 7624 5588 7625 Enabling this capability on a VM provides use 5589 Enabling this capability on a VM provides userspace with a way to set 7626 the desired virtual SMT mode (i.e. the number 5590 the desired virtual SMT mode (i.e. the number of virtual CPUs per 7627 virtual core). The virtual SMT mode, vsmt_mo 5591 virtual core). The virtual SMT mode, vsmt_mode, must be a power of 2 7628 between 1 and 8. On POWER8, vsmt_mode must a 5592 between 1 and 8. On POWER8, vsmt_mode must also be no greater than 7629 the number of threads per subcore for the hos 5593 the number of threads per subcore for the host. Currently flags must 7630 be 0. A successful call to enable this capab 5594 be 0. A successful call to enable this capability will result in 7631 vsmt_mode being returned when the KVM_CAP_PPC 5595 vsmt_mode being returned when the KVM_CAP_PPC_SMT capability is 7632 subsequently queried for the VM. This capabi 5596 subsequently queried for the VM. This capability is only supported by 7633 HV KVM, and can only be set before any VCPUs 5597 HV KVM, and can only be set before any VCPUs have been created. 7634 The KVM_CAP_PPC_SMT_POSSIBLE capability indic 5598 The KVM_CAP_PPC_SMT_POSSIBLE capability indicates which virtual SMT 7635 modes are available. 5599 modes are available. 7636 5600 7637 7.12 KVM_CAP_PPC_FWNMI 5601 7.12 KVM_CAP_PPC_FWNMI 7638 ---------------------- 5602 ---------------------- 7639 5603 7640 :Architectures: ppc 5604 :Architectures: ppc 7641 :Parameters: none 5605 :Parameters: none 7642 5606 7643 With this capability a machine check exceptio 5607 With this capability a machine check exception in the guest address 7644 space will cause KVM to exit the guest with N 5608 space will cause KVM to exit the guest with NMI exit reason. This 7645 enables QEMU to build error log and branch to 5609 enables QEMU to build error log and branch to guest kernel registered 7646 machine check handling routine. Without this 5610 machine check handling routine. Without this capability KVM will 7647 branch to guests' 0x200 interrupt vector. 5611 branch to guests' 0x200 interrupt vector. 7648 5612 7649 7.13 KVM_CAP_X86_DISABLE_EXITS 5613 7.13 KVM_CAP_X86_DISABLE_EXITS 7650 ------------------------------ 5614 ------------------------------ 7651 5615 7652 :Architectures: x86 5616 :Architectures: x86 7653 :Parameters: args[0] defines which exits are 5617 :Parameters: args[0] defines which exits are disabled 7654 :Returns: 0 on success, -EINVAL when args[0] 5618 :Returns: 0 on success, -EINVAL when args[0] contains invalid exits 7655 5619 7656 Valid bits in args[0] are:: 5620 Valid bits in args[0] are:: 7657 5621 7658 #define KVM_X86_DISABLE_EXITS_MWAIT 5622 #define KVM_X86_DISABLE_EXITS_MWAIT (1 << 0) 7659 #define KVM_X86_DISABLE_EXITS_HLT 5623 #define KVM_X86_DISABLE_EXITS_HLT (1 << 1) 7660 #define KVM_X86_DISABLE_EXITS_PAUSE 5624 #define KVM_X86_DISABLE_EXITS_PAUSE (1 << 2) 7661 #define KVM_X86_DISABLE_EXITS_CSTATE 5625 #define KVM_X86_DISABLE_EXITS_CSTATE (1 << 3) 7662 5626 7663 Enabling this capability on a VM provides use 5627 Enabling this capability on a VM provides userspace with a way to no 7664 longer intercept some instructions for improv 5628 longer intercept some instructions for improved latency in some 7665 workloads, and is suggested when vCPUs are as 5629 workloads, and is suggested when vCPUs are associated to dedicated 7666 physical CPUs. More bits can be added in the 5630 physical CPUs. More bits can be added in the future; userspace can 7667 just pass the KVM_CHECK_EXTENSION result to K 5631 just pass the KVM_CHECK_EXTENSION result to KVM_ENABLE_CAP to disable 7668 all such vmexits. 5632 all such vmexits. 7669 5633 7670 Do not enable KVM_FEATURE_PV_UNHALT if you di 5634 Do not enable KVM_FEATURE_PV_UNHALT if you disable HLT exits. 7671 5635 7672 7.14 KVM_CAP_S390_HPAGE_1M 5636 7.14 KVM_CAP_S390_HPAGE_1M 7673 -------------------------- 5637 -------------------------- 7674 5638 7675 :Architectures: s390 5639 :Architectures: s390 7676 :Parameters: none 5640 :Parameters: none 7677 :Returns: 0 on success, -EINVAL if hpage modu 5641 :Returns: 0 on success, -EINVAL if hpage module parameter was not set 7678 or cmma is enabled, or the VM has t 5642 or cmma is enabled, or the VM has the KVM_VM_S390_UCONTROL 7679 flag set 5643 flag set 7680 5644 7681 With this capability the KVM support for memo 5645 With this capability the KVM support for memory backing with 1m pages 7682 through hugetlbfs can be enabled for a VM. Af 5646 through hugetlbfs can be enabled for a VM. After the capability is 7683 enabled, cmma can't be enabled anymore and pf 5647 enabled, cmma can't be enabled anymore and pfmfi and the storage key 7684 interpretation are disabled. If cmma has alre 5648 interpretation are disabled. If cmma has already been enabled or the 7685 hpage module parameter is not set to 1, -EINV 5649 hpage module parameter is not set to 1, -EINVAL is returned. 7686 5650 7687 While it is generally possible to create a hu 5651 While it is generally possible to create a huge page backed VM without 7688 this capability, the VM will not be able to r 5652 this capability, the VM will not be able to run. 7689 5653 7690 7.15 KVM_CAP_MSR_PLATFORM_INFO 5654 7.15 KVM_CAP_MSR_PLATFORM_INFO 7691 ------------------------------ 5655 ------------------------------ 7692 5656 7693 :Architectures: x86 5657 :Architectures: x86 7694 :Parameters: args[0] whether feature should b 5658 :Parameters: args[0] whether feature should be enabled or not 7695 5659 7696 With this capability, a guest may read the MS 5660 With this capability, a guest may read the MSR_PLATFORM_INFO MSR. Otherwise, 7697 a #GP would be raised when the guest tries to 5661 a #GP would be raised when the guest tries to access. Currently, this 7698 capability does not enable write permissions 5662 capability does not enable write permissions of this MSR for the guest. 7699 5663 7700 7.16 KVM_CAP_PPC_NESTED_HV 5664 7.16 KVM_CAP_PPC_NESTED_HV 7701 -------------------------- 5665 -------------------------- 7702 5666 7703 :Architectures: ppc 5667 :Architectures: ppc 7704 :Parameters: none 5668 :Parameters: none 7705 :Returns: 0 on success, -EINVAL when the impl 5669 :Returns: 0 on success, -EINVAL when the implementation doesn't support 7706 nested-HV virtualization. 5670 nested-HV virtualization. 7707 5671 7708 HV-KVM on POWER9 and later systems allows for 5672 HV-KVM on POWER9 and later systems allows for "nested-HV" 7709 virtualization, which provides a way for a gu 5673 virtualization, which provides a way for a guest VM to run guests that 7710 can run using the CPU's supervisor mode (priv 5674 can run using the CPU's supervisor mode (privileged non-hypervisor 7711 state). Enabling this capability on a VM dep 5675 state). Enabling this capability on a VM depends on the CPU having 7712 the necessary functionality and on the facili 5676 the necessary functionality and on the facility being enabled with a 7713 kvm-hv module parameter. 5677 kvm-hv module parameter. 7714 5678 7715 7.17 KVM_CAP_EXCEPTION_PAYLOAD 5679 7.17 KVM_CAP_EXCEPTION_PAYLOAD 7716 ------------------------------ 5680 ------------------------------ 7717 5681 7718 :Architectures: x86 5682 :Architectures: x86 7719 :Parameters: args[0] whether feature should b 5683 :Parameters: args[0] whether feature should be enabled or not 7720 5684 7721 With this capability enabled, CR2 will not be 5685 With this capability enabled, CR2 will not be modified prior to the 7722 emulated VM-exit when L1 intercepts a #PF exc 5686 emulated VM-exit when L1 intercepts a #PF exception that occurs in 7723 L2. Similarly, for kvm-intel only, DR6 will n 5687 L2. Similarly, for kvm-intel only, DR6 will not be modified prior to 7724 the emulated VM-exit when L1 intercepts a #DB 5688 the emulated VM-exit when L1 intercepts a #DB exception that occurs in 7725 L2. As a result, when KVM_GET_VCPU_EVENTS rep 5689 L2. As a result, when KVM_GET_VCPU_EVENTS reports a pending #PF (or 7726 #DB) exception for L2, exception.has_payload 5690 #DB) exception for L2, exception.has_payload will be set and the 7727 faulting address (or the new DR6 bits*) will 5691 faulting address (or the new DR6 bits*) will be reported in the 7728 exception_payload field. Similarly, when user 5692 exception_payload field. Similarly, when userspace injects a #PF (or 7729 #DB) into L2 using KVM_SET_VCPU_EVENTS, it is 5693 #DB) into L2 using KVM_SET_VCPU_EVENTS, it is expected to set 7730 exception.has_payload and to put the faulting 5694 exception.has_payload and to put the faulting address - or the new DR6 7731 bits\ [#]_ - in the exception_payload field. 5695 bits\ [#]_ - in the exception_payload field. 7732 5696 7733 This capability also enables exception.pendin 5697 This capability also enables exception.pending in struct 7734 kvm_vcpu_events, which allows userspace to di 5698 kvm_vcpu_events, which allows userspace to distinguish between pending 7735 and injected exceptions. 5699 and injected exceptions. 7736 5700 7737 5701 7738 .. [#] For the new DR6 bits, note that bit 16 5702 .. [#] For the new DR6 bits, note that bit 16 is set iff the #DB exception 7739 will clear DR6.RTM. 5703 will clear DR6.RTM. 7740 5704 7741 7.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 5705 7.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 7742 -------------------------------------- << 7743 5706 7744 :Architectures: x86, arm64, mips !! 5707 :Architectures: x86, arm, arm64, mips 7745 :Parameters: args[0] whether feature should b 5708 :Parameters: args[0] whether feature should be enabled or not 7746 5709 7747 Valid flags are:: !! 5710 With this capability enabled, KVM_GET_DIRTY_LOG will not automatically 7748 !! 5711 clear and write-protect all pages that are returned as dirty. 7749 #define KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE << 7750 #define KVM_DIRTY_LOG_INITIALLY_SET << 7751 << 7752 With KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE is s << 7753 automatically clear and write-protect all pag << 7754 Rather, userspace will have to do this operat 5712 Rather, userspace will have to do this operation separately using 7755 KVM_CLEAR_DIRTY_LOG. 5713 KVM_CLEAR_DIRTY_LOG. 7756 5714 7757 At the cost of a slightly more complicated op 5715 At the cost of a slightly more complicated operation, this provides better 7758 scalability and responsiveness for two reason 5716 scalability and responsiveness for two reasons. First, 7759 KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64 5717 KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64-page granularity rather 7760 than requiring to sync a full memslot; this e 5718 than requiring to sync a full memslot; this ensures that KVM does not 7761 take spinlocks for an extended period of time 5719 take spinlocks for an extended period of time. Second, in some cases a 7762 large amount of time can pass between a call 5720 large amount of time can pass between a call to KVM_GET_DIRTY_LOG and 7763 userspace actually using the data in the page 5721 userspace actually using the data in the page. Pages can be modified 7764 during this time, which is inefficient for bo !! 5722 during this time, which is inefficint for both the guest and userspace: 7765 the guest will incur a higher penalty due to 5723 the guest will incur a higher penalty due to write protection faults, 7766 while userspace can see false reports of dirt 5724 while userspace can see false reports of dirty pages. Manual reprotection 7767 helps reducing this time, improving guest per 5725 helps reducing this time, improving guest performance and reducing the 7768 number of dirty log false positives. 5726 number of dirty log false positives. 7769 5727 7770 With KVM_DIRTY_LOG_INITIALLY_SET set, all the << 7771 will be initialized to 1 when created. This << 7772 dirty logging can be enabled gradually in sma << 7773 to KVM_CLEAR_DIRTY_LOG. KVM_DIRTY_LOG_INITIA << 7774 KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (it is al << 7775 x86 and arm64 for now). << 7776 << 7777 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previou 5728 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previously available under the name 7778 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the imp 5729 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the implementation had bugs that make 7779 it hard or impossible to use it correctly. T 5730 it hard or impossible to use it correctly. The availability of 7780 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 signals tha 5731 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 signals that those bugs are fixed. 7781 Userspace should not try to use KVM_CAP_MANUA 5732 Userspace should not try to use KVM_CAP_MANUAL_DIRTY_LOG_PROTECT. 7782 5733 7783 7.19 KVM_CAP_PPC_SECURE_GUEST << 7784 ------------------------------ << 7785 << 7786 :Architectures: ppc << 7787 << 7788 This capability indicates that KVM is running << 7789 ultravisor firmware and thus can support a se << 7790 system, a guest can ask the ultravisor to mak << 7791 one whose memory is inaccessible to the host << 7792 are explicitly requested to be shared with th << 7793 notifies KVM when a guest requests to become << 7794 has the opportunity to veto the transition. << 7795 << 7796 If present, this capability can be enabled fo << 7797 will allow the transition to secure guest mod << 7798 veto the transition. << 7799 << 7800 7.20 KVM_CAP_HALT_POLL << 7801 ---------------------- << 7802 << 7803 :Architectures: all << 7804 :Target: VM << 7805 :Parameters: args[0] is the maximum poll time << 7806 :Returns: 0 on success; -1 on error << 7807 << 7808 KVM_CAP_HALT_POLL overrides the kvm.halt_poll << 7809 maximum halt-polling time for all vCPUs in th << 7810 be invoked at any time and any number of time << 7811 maximum halt-polling time. << 7812 << 7813 See Documentation/virt/kvm/halt-polling.rst f << 7814 polling. << 7815 << 7816 7.21 KVM_CAP_X86_USER_SPACE_MSR << 7817 ------------------------------- << 7818 << 7819 :Architectures: x86 << 7820 :Target: VM << 7821 :Parameters: args[0] contains the mask of KVM << 7822 :Returns: 0 on success; -1 on error << 7823 << 7824 This capability allows userspace to intercept << 7825 access to an MSR is denied. By default, KVM << 7826 << 7827 When a guest requests to read or write an MSR << 7828 that are relevant to a respective system. It << 7829 CPU type. << 7830 << 7831 To allow more fine grained control over MSR h << 7832 this capability. With it enabled, MSR accesse << 7833 args[0] and would trigger a #GP inside the gu << 7834 KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exi << 7835 can then implement model specific MSR handlin << 7836 to inform a user that an MSR was not emulated << 7837 << 7838 The valid mask flags are: << 7839 << 7840 ============================ ================ << 7841 KVM_MSR_EXIT_REASON_UNKNOWN intercept access << 7842 KVM_MSR_EXIT_REASON_INVAL intercept access << 7843 invalid accordin << 7844 KVM_MSR_EXIT_REASON_FILTER intercept access << 7845 via KVM_X86_SET_ << 7846 ============================ ================ << 7847 << 7848 7.22 KVM_CAP_X86_BUS_LOCK_EXIT << 7849 ------------------------------- << 7850 << 7851 :Architectures: x86 << 7852 :Target: VM << 7853 :Parameters: args[0] defines the policy used << 7854 :Returns: 0 on success, -EINVAL when args[0] << 7855 << 7856 Valid bits in args[0] are:: << 7857 << 7858 #define KVM_BUS_LOCK_DETECTION_OFF (1 << 7859 #define KVM_BUS_LOCK_DETECTION_EXIT (1 << 7860 << 7861 Enabling this capability on a VM provides use << 7862 policy to handle the bus locks detected in gu << 7863 supported modes from the result of KVM_CHECK_ << 7864 the KVM_ENABLE_CAP. The supported modes are m << 7865 << 7866 This capability allows userspace to force VM << 7867 guest, irrespective whether or not the host h << 7868 (which triggers an #AC exception that KVM int << 7869 intended to mitigate attacks where a maliciou << 7870 locks to degrade the performance of the whole << 7871 << 7872 If KVM_BUS_LOCK_DETECTION_OFF is set, KVM doe << 7873 exit, although the host kernel's split-lock # << 7874 enabled. << 7875 << 7876 If KVM_BUS_LOCK_DETECTION_EXIT is set, KVM en << 7877 bus locks in the guest trigger a VM exit, and << 7878 such VM exits, e.g. to allow userspace to thr << 7879 apply some other policy-based mitigation. Whe << 7880 KVM_RUN_X86_BUS_LOCK in vcpu-run->flags, and << 7881 to KVM_EXIT_X86_BUS_LOCK. << 7882 << 7883 Note! Detected bus locks may be coincident wi << 7884 KVM_RUN_X86_BUS_LOCK should be checked regard << 7885 userspace wants to take action on all detecte << 7886 << 7887 7.23 KVM_CAP_PPC_DAWR1 << 7888 ---------------------- << 7889 << 7890 :Architectures: ppc << 7891 :Parameters: none << 7892 :Returns: 0 on success, -EINVAL when CPU does << 7893 << 7894 This capability can be used to check / enable << 7895 by POWER10 processor. << 7896 << 7897 << 7898 7.24 KVM_CAP_VM_COPY_ENC_CONTEXT_FROM << 7899 ------------------------------------- << 7900 << 7901 Architectures: x86 SEV enabled << 7902 Type: vm << 7903 Parameters: args[0] is the fd of the source v << 7904 Returns: 0 on success; ENOTTY on error << 7905 << 7906 This capability enables userspace to copy enc << 7907 indicated by the fd to the vm this is called << 7908 << 7909 This is intended to support in-guest workload << 7910 allows the in-guest workload to maintain its << 7911 from accidentally clobbering each other with << 7912 APIC/MSRs/etc). << 7913 << 7914 7.25 KVM_CAP_SGX_ATTRIBUTE << 7915 -------------------------- << 7916 << 7917 :Architectures: x86 << 7918 :Target: VM << 7919 :Parameters: args[0] is a file handle of a SG << 7920 :Returns: 0 on success, -EINVAL if the file h << 7921 attribute is not supported by KVM. << 7922 << 7923 KVM_CAP_SGX_ATTRIBUTE enables a userspace VMM << 7924 more privileged enclave attributes. args[0] << 7925 SGX attribute file corresponding to an attrib << 7926 by KVM (currently only PROVISIONKEY). << 7927 << 7928 The SGX subsystem restricts access to a subse << 7929 additional security for an uncompromised kern << 7930 is restricted to deter malware from using the << 7931 system fingerprint. To prevent userspace fro << 7932 by running an enclave in a VM, KVM prevents a << 7933 default. << 7934 << 7935 See Documentation/arch/x86/sgx.rst for more d << 7936 << 7937 7.26 KVM_CAP_PPC_RPT_INVALIDATE << 7938 ------------------------------- << 7939 << 7940 :Capability: KVM_CAP_PPC_RPT_INVALIDATE << 7941 :Architectures: ppc << 7942 :Type: vm << 7943 << 7944 This capability indicates that the kernel is << 7945 H_RPT_INVALIDATE hcall. << 7946 << 7947 In order to enable the use of H_RPT_INVALIDAT << 7948 user space might have to advertise it for the << 7949 IBM pSeries (sPAPR) guest starts using it if << 7950 present in the "ibm,hypertas-functions" devic << 7951 << 7952 This capability is enabled for hypervisors on << 7953 that support radix MMU. << 7954 << 7955 7.27 KVM_CAP_EXIT_ON_EMULATION_FAILURE << 7956 -------------------------------------- << 7957 << 7958 :Architectures: x86 << 7959 :Parameters: args[0] whether the feature shou << 7960 << 7961 When this capability is enabled, an emulation << 7962 to userspace with KVM_INTERNAL_ERROR (except << 7963 to handle a VMware backdoor instruction). Fur << 7964 to 15 instruction bytes for any exit to users << 7965 failure. When these exits to userspace occur << 7966 instead of the internal struct. They both ha << 7967 emulation_failure struct matches the content << 7968 defines the 'flags' field which is used to de << 7969 that are valid (ie: if KVM_INTERNAL_ERROR_EMU << 7970 set in the 'flags' field then both 'insn_size << 7971 in them.) << 7972 << 7973 7.28 KVM_CAP_ARM_MTE << 7974 -------------------- << 7975 << 7976 :Architectures: arm64 << 7977 :Parameters: none << 7978 << 7979 This capability indicates that KVM (and the h << 7980 Memory Tagging Extensions (MTE) to the guest. << 7981 VMM before creating any VCPUs to allow the gu << 7982 available to a guest running in AArch64 mode << 7983 cause attempts to create AArch32 VCPUs to fai << 7984 << 7985 When enabled the guest is able to access tags << 7986 to the guest. KVM will ensure that the tags a << 7987 hibernation of the host; however the VMM need << 7988 tags as appropriate if the VM is migrated. << 7989 << 7990 When this capability is enabled all memory in << 7991 ``MAP_ANONYMOUS`` or with a RAM-based file ma << 7992 attempts to create a memslot with an invalid << 7993 -EINVAL return. << 7994 << 7995 When enabled the VMM may make use of the ``KV << 7996 perform a bulk copy of tags to/from the guest << 7997 << 7998 7.29 KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM << 7999 ------------------------------------- << 8000 << 8001 :Architectures: x86 SEV enabled << 8002 :Type: vm << 8003 :Parameters: args[0] is the fd of the source << 8004 :Returns: 0 on success << 8005 << 8006 This capability enables userspace to migrate << 8007 indicated by the fd to the VM this is called << 8008 << 8009 This is intended to support intra-host migrat << 8010 upgrading the VMM process without interruptin << 8011 << 8012 7.30 KVM_CAP_PPC_AIL_MODE_3 << 8013 ------------------------------- << 8014 << 8015 :Capability: KVM_CAP_PPC_AIL_MODE_3 << 8016 :Architectures: ppc << 8017 :Type: vm << 8018 << 8019 This capability indicates that the kernel sup << 8020 "Address Translation Mode on Interrupt" aka " << 8021 resource that is controlled with the H_SET_MO << 8022 << 8023 This capability allows a guest kernel to use << 8024 handling interrupts and system calls. << 8025 << 8026 7.31 KVM_CAP_DISABLE_QUIRKS2 << 8027 ---------------------------- << 8028 << 8029 :Capability: KVM_CAP_DISABLE_QUIRKS2 << 8030 :Parameters: args[0] - set of KVM quirks to d << 8031 :Architectures: x86 << 8032 :Type: vm << 8033 << 8034 This capability, if enabled, will cause KVM t << 8035 quirks. << 8036 << 8037 Calling KVM_CHECK_EXTENSION for this capabili << 8038 quirks that can be disabled in KVM. << 8039 << 8040 The argument to KVM_ENABLE_CAP for this capab << 8041 quirks to disable, and must be a subset of th << 8042 KVM_CHECK_EXTENSION. << 8043 << 8044 The valid bits in cap.args[0] are: << 8045 << 8046 =================================== ========= << 8047 KVM_X86_QUIRK_LINT0_REENABLED By defaul << 8048 LINT0 reg << 8049 When this << 8050 is 0x1000 << 8051 << 8052 KVM_X86_QUIRK_CD_NW_CLEARED By defaul << 8053 AMD CPUs << 8054 that runs << 8055 with cach << 8056 << 8057 When this << 8058 change th << 8059 << 8060 KVM_X86_QUIRK_LAPIC_MMIO_HOLE By defaul << 8061 available << 8062 mode. Whe << 8063 disables << 8064 LAPIC is << 8065 << 8066 KVM_X86_QUIRK_OUT_7E_INC_RIP By defaul << 8067 exiting t << 8068 to port 0 << 8069 KVM does << 8070 exiting t << 8071 << 8072 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT When this << 8073 CPUID.01H << 8074 IA32_MISC << 8075 Additiona << 8076 KVM clear << 8077 IA32_MISC << 8078 << 8079 KVM_X86_QUIRK_FIX_HYPERCALL_INSN By defaul << 8080 VMMCALL/V << 8081 vendor's << 8082 system. W << 8083 will no l << 8084 hypercall << 8085 incorrect << 8086 generate << 8087 << 8088 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS By defaul << 8089 they are << 8090 whether o << 8091 according << 8092 is disabl << 8093 is not se << 8094 KVM will << 8095 they're u << 8096 KVM will << 8097 guest CPU << 8098 KVM_X86_Q << 8099 disabled. << 8100 << 8101 KVM_X86_QUIRK_SLOT_ZAP_ALL By defaul << 8102 invalidat << 8103 address s << 8104 moved. W << 8105 VM type i << 8106 ensures t << 8107 or moved << 8108 _may_ inv << 8109 memslot. << 8110 =================================== ========= << 8111 << 8112 7.32 KVM_CAP_MAX_VCPU_ID << 8113 ------------------------ << 8114 << 8115 :Architectures: x86 << 8116 :Target: VM << 8117 :Parameters: args[0] - maximum APIC ID value << 8118 :Returns: 0 on success, -EINVAL if args[0] is << 8119 supported in KVM or if it has been << 8120 << 8121 This capability allows userspace to specify m << 8122 assigned for current VM session prior to the << 8123 memory for data structures indexed by the API << 8124 to calculate the limit to APIC ID values from << 8125 CPU topology. << 8126 << 8127 The value can be changed only until KVM_ENABL << 8128 value or until a vCPU is created. Upon creat << 8129 if the value was set to zero or KVM_ENABLE_CA << 8130 uses the return value of KVM_CHECK_EXTENSION( << 8131 the maximum APIC ID. << 8132 << 8133 7.33 KVM_CAP_X86_NOTIFY_VMEXIT << 8134 ------------------------------ << 8135 << 8136 :Architectures: x86 << 8137 :Target: VM << 8138 :Parameters: args[0] is the value of notify w << 8139 :Returns: 0 on success, -EINVAL if args[0] co << 8140 VM exit is unsupported. << 8141 << 8142 Bits 63:32 of args[0] are used for notify win << 8143 Bits 31:0 of args[0] are for some flags. Vali << 8144 << 8145 #define KVM_X86_NOTIFY_VMEXIT_ENABLED (1 << 8146 #define KVM_X86_NOTIFY_VMEXIT_USER (1 << 8147 << 8148 This capability allows userspace to configure << 8149 in per-VM scope during VM creation. Notify VM << 8150 When userspace sets KVM_X86_NOTIFY_VMEXIT_ENA << 8151 enable this feature with the notify window pr << 8152 a VM exit if no event window occurs in VM non << 8153 time (notify window). << 8154 << 8155 If KVM_X86_NOTIFY_VMEXIT_USER is set in args[ << 8156 KVM would exit to userspace for handling. << 8157 << 8158 This capability is aimed to mitigate the thre << 8159 cause CPU stuck (due to event windows don't o << 8160 unavailable to host or other VMs. << 8161 << 8162 7.34 KVM_CAP_MEMORY_FAULT_INFO << 8163 ------------------------------ << 8164 << 8165 :Architectures: x86 << 8166 :Returns: Informational only, -EINVAL on dire << 8167 << 8168 The presence of this capability indicates tha << 8169 kvm_run.memory_fault if KVM cannot resolve a << 8170 there is a valid memslot but no backing VMA f << 8171 address. << 8172 << 8173 The information in kvm_run.memory_fault is va << 8174 an error with errno=EFAULT or errno=EHWPOISON << 8175 to KVM_EXIT_MEMORY_FAULT. << 8176 << 8177 Note: Userspaces which attempt to resolve mem << 8178 KVM_RUN are encouraged to guard against repea << 8179 error/annotated fault. << 8180 << 8181 See KVM_EXIT_MEMORY_FAULT for more informatio << 8182 << 8183 7.35 KVM_CAP_X86_APIC_BUS_CYCLES_NS << 8184 ----------------------------------- << 8185 << 8186 :Architectures: x86 << 8187 :Target: VM << 8188 :Parameters: args[0] is the desired APIC bus << 8189 :Returns: 0 on success, -EINVAL if args[0] co << 8190 frequency or if any vCPUs have been << 8191 local APIC has not been created usi << 8192 << 8193 This capability sets the VM's APIC bus clock << 8194 virtual APIC when emulating APIC timers. KVM << 8195 by KVM_CHECK_EXTENSION. << 8196 << 8197 Note: Userspace is responsible for correctly << 8198 core crystal clock frequency, if a non-zero C << 8199 << 8200 7.36 KVM_CAP_X86_GUEST_MODE << 8201 ------------------------------ << 8202 << 8203 :Architectures: x86 << 8204 :Returns: Informational only, -EINVAL on dire << 8205 << 8206 The presence of this capability indicates tha << 8207 KVM_RUN_X86_GUEST_MODE bit in kvm_run.flags t << 8208 vCPU was executing nested guest code when it << 8209 << 8210 KVM exits with the register state of either t << 8211 depending on which executed at the time of an << 8212 take care to differentiate between these case << 8213 << 8214 8. Other capabilities. 5734 8. Other capabilities. 8215 ====================== 5735 ====================== 8216 5736 8217 This section lists capabilities that give inf 5737 This section lists capabilities that give information about other 8218 features of the KVM implementation. 5738 features of the KVM implementation. 8219 5739 8220 8.1 KVM_CAP_PPC_HWRNG 5740 8.1 KVM_CAP_PPC_HWRNG 8221 --------------------- 5741 --------------------- 8222 5742 8223 :Architectures: ppc 5743 :Architectures: ppc 8224 5744 8225 This capability, if KVM_CHECK_EXTENSION indic 5745 This capability, if KVM_CHECK_EXTENSION indicates that it is 8226 available, means that the kernel has an imple !! 5746 available, means that that the kernel has an implementation of the 8227 H_RANDOM hypercall backed by a hardware rando 5747 H_RANDOM hypercall backed by a hardware random-number generator. 8228 If present, the kernel H_RANDOM handler can b 5748 If present, the kernel H_RANDOM handler can be enabled for guest use 8229 with the KVM_CAP_PPC_ENABLE_HCALL capability. 5749 with the KVM_CAP_PPC_ENABLE_HCALL capability. 8230 5750 8231 8.2 KVM_CAP_HYPERV_SYNIC 5751 8.2 KVM_CAP_HYPERV_SYNIC 8232 ------------------------ 5752 ------------------------ 8233 5753 8234 :Architectures: x86 5754 :Architectures: x86 8235 5755 8236 This capability, if KVM_CHECK_EXTENSION indic 5756 This capability, if KVM_CHECK_EXTENSION indicates that it is 8237 available, means that the kernel has an imple !! 5757 available, means that that the kernel has an implementation of the 8238 Hyper-V Synthetic interrupt controller(SynIC) 5758 Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is 8239 used to support Windows Hyper-V based guest p 5759 used to support Windows Hyper-V based guest paravirt drivers(VMBus). 8240 5760 8241 In order to use SynIC, it has to be activated 5761 In order to use SynIC, it has to be activated by setting this 8242 capability via KVM_ENABLE_CAP ioctl on the vc 5762 capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this 8243 will disable the use of APIC hardware virtual 5763 will disable the use of APIC hardware virtualization even if supported 8244 by the CPU, as it's incompatible with SynIC a 5764 by the CPU, as it's incompatible with SynIC auto-EOI behavior. 8245 5765 8246 8.3 KVM_CAP_PPC_MMU_RADIX !! 5766 8.3 KVM_CAP_PPC_RADIX_MMU 8247 ------------------------- 5767 ------------------------- 8248 5768 8249 :Architectures: ppc 5769 :Architectures: ppc 8250 5770 8251 This capability, if KVM_CHECK_EXTENSION indic 5771 This capability, if KVM_CHECK_EXTENSION indicates that it is 8252 available, means that the kernel can support !! 5772 available, means that that the kernel can support guests using the 8253 radix MMU defined in Power ISA V3.00 (as impl 5773 radix MMU defined in Power ISA V3.00 (as implemented in the POWER9 8254 processor). 5774 processor). 8255 5775 8256 8.4 KVM_CAP_PPC_MMU_HASH_V3 !! 5776 8.4 KVM_CAP_PPC_HASH_MMU_V3 8257 --------------------------- 5777 --------------------------- 8258 5778 8259 :Architectures: ppc 5779 :Architectures: ppc 8260 5780 8261 This capability, if KVM_CHECK_EXTENSION indic 5781 This capability, if KVM_CHECK_EXTENSION indicates that it is 8262 available, means that the kernel can support !! 5782 available, means that that the kernel can support guests using the 8263 hashed page table MMU defined in Power ISA V3 5783 hashed page table MMU defined in Power ISA V3.00 (as implemented in 8264 the POWER9 processor), including in-memory se 5784 the POWER9 processor), including in-memory segment tables. 8265 5785 8266 8.5 KVM_CAP_MIPS_VZ 5786 8.5 KVM_CAP_MIPS_VZ 8267 ------------------- 5787 ------------------- 8268 5788 8269 :Architectures: mips 5789 :Architectures: mips 8270 5790 8271 This capability, if KVM_CHECK_EXTENSION on th 5791 This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that 8272 it is available, means that full hardware ass 5792 it is available, means that full hardware assisted virtualization capabilities 8273 of the hardware are available for use through 5793 of the hardware are available for use through KVM. An appropriate 8274 KVM_VM_MIPS_* type must be passed to KVM_CREA 5794 KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which 8275 utilises it. 5795 utilises it. 8276 5796 8277 If KVM_CHECK_EXTENSION on a kvm VM handle ind 5797 If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is 8278 available, it means that the VM is using full 5798 available, it means that the VM is using full hardware assisted virtualization 8279 capabilities of the hardware. This is useful 5799 capabilities of the hardware. This is useful to check after creating a VM with 8280 KVM_VM_MIPS_DEFAULT. 5800 KVM_VM_MIPS_DEFAULT. 8281 5801 8282 The value returned by KVM_CHECK_EXTENSION sho 5802 The value returned by KVM_CHECK_EXTENSION should be compared against known 8283 values (see below). All other values are rese 5803 values (see below). All other values are reserved. This is to allow for the 8284 possibility of other hardware assisted virtua 5804 possibility of other hardware assisted virtualization implementations which 8285 may be incompatible with the MIPS VZ ASE. 5805 may be incompatible with the MIPS VZ ASE. 8286 5806 8287 == ========================================= 5807 == ========================================================================== 8288 0 The trap & emulate implementation is in u 5808 0 The trap & emulate implementation is in use to run guest code in user 8289 mode. Guest virtual memory segments are r 5809 mode. Guest virtual memory segments are rearranged to fit the guest in the 8290 user mode address space. 5810 user mode address space. 8291 5811 8292 1 The MIPS VZ ASE is in use, providing full 5812 1 The MIPS VZ ASE is in use, providing full hardware assisted 8293 virtualization, including standard guest 5813 virtualization, including standard guest virtual memory segments. 8294 == ========================================= 5814 == ========================================================================== 8295 5815 8296 8.6 KVM_CAP_MIPS_TE 5816 8.6 KVM_CAP_MIPS_TE 8297 ------------------- 5817 ------------------- 8298 5818 8299 :Architectures: mips 5819 :Architectures: mips 8300 5820 8301 This capability, if KVM_CHECK_EXTENSION on th 5821 This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that 8302 it is available, means that the trap & emulat 5822 it is available, means that the trap & emulate implementation is available to 8303 run guest code in user mode, even if KVM_CAP_ 5823 run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware 8304 assisted virtualisation is also available. KV 5824 assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed 8305 to KVM_CREATE_VM to create a VM which utilise 5825 to KVM_CREATE_VM to create a VM which utilises it. 8306 5826 8307 If KVM_CHECK_EXTENSION on a kvm VM handle ind 5827 If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is 8308 available, it means that the VM is using trap 5828 available, it means that the VM is using trap & emulate. 8309 5829 8310 8.7 KVM_CAP_MIPS_64BIT 5830 8.7 KVM_CAP_MIPS_64BIT 8311 ---------------------- 5831 ---------------------- 8312 5832 8313 :Architectures: mips 5833 :Architectures: mips 8314 5834 8315 This capability indicates the supported archi 5835 This capability indicates the supported architecture type of the guest, i.e. the 8316 supported register and address width. 5836 supported register and address width. 8317 5837 8318 The values returned when this capability is c 5838 The values returned when this capability is checked by KVM_CHECK_EXTENSION on a 8319 kvm VM handle correspond roughly to the CP0_C 5839 kvm VM handle correspond roughly to the CP0_Config.AT register field, and should 8320 be checked specifically against known values 5840 be checked specifically against known values (see below). All other values are 8321 reserved. 5841 reserved. 8322 5842 8323 == ========================================= 5843 == ======================================================================== 8324 0 MIPS32 or microMIPS32. 5844 0 MIPS32 or microMIPS32. 8325 Both registers and addresses are 32-bits 5845 Both registers and addresses are 32-bits wide. 8326 It will only be possible to run 32-bit gu 5846 It will only be possible to run 32-bit guest code. 8327 5847 8328 1 MIPS64 or microMIPS64 with access only to 5848 1 MIPS64 or microMIPS64 with access only to 32-bit compatibility segments. 8329 Registers are 64-bits wide, but addresses 5849 Registers are 64-bits wide, but addresses are 32-bits wide. 8330 64-bit guest code may run but cannot acce 5850 64-bit guest code may run but cannot access MIPS64 memory segments. 8331 It will also be possible to run 32-bit gu 5851 It will also be possible to run 32-bit guest code. 8332 5852 8333 2 MIPS64 or microMIPS64 with access to all 5853 2 MIPS64 or microMIPS64 with access to all address segments. 8334 Both registers and addresses are 64-bits 5854 Both registers and addresses are 64-bits wide. 8335 It will be possible to run 64-bit or 32-b 5855 It will be possible to run 64-bit or 32-bit guest code. 8336 == ========================================= 5856 == ======================================================================== 8337 5857 8338 8.9 KVM_CAP_ARM_USER_IRQ 5858 8.9 KVM_CAP_ARM_USER_IRQ 8339 ------------------------ 5859 ------------------------ 8340 5860 8341 :Architectures: arm64 !! 5861 :Architectures: arm, arm64 8342 5862 8343 This capability, if KVM_CHECK_EXTENSION indic 5863 This capability, if KVM_CHECK_EXTENSION indicates that it is available, means 8344 that if userspace creates a VM without an in- 5864 that if userspace creates a VM without an in-kernel interrupt controller, it 8345 will be notified of changes to the output lev 5865 will be notified of changes to the output level of in-kernel emulated devices, 8346 which can generate virtual interrupts, presen 5866 which can generate virtual interrupts, presented to the VM. 8347 For such VMs, on every return to userspace, t 5867 For such VMs, on every return to userspace, the kernel 8348 updates the vcpu's run->s.regs.device_irq_lev 5868 updates the vcpu's run->s.regs.device_irq_level field to represent the actual 8349 output level of the device. 5869 output level of the device. 8350 5870 8351 Whenever kvm detects a change in the device o 5871 Whenever kvm detects a change in the device output level, kvm guarantees at 8352 least one return to userspace before running 5872 least one return to userspace before running the VM. This exit could either 8353 be a KVM_EXIT_INTR or any other exit event, l 5873 be a KVM_EXIT_INTR or any other exit event, like KVM_EXIT_MMIO. This way, 8354 userspace can always sample the device output 5874 userspace can always sample the device output level and re-compute the state of 8355 the userspace interrupt controller. Userspac 5875 the userspace interrupt controller. Userspace should always check the state 8356 of run->s.regs.device_irq_level on every kvm 5876 of run->s.regs.device_irq_level on every kvm exit. 8357 The value in run->s.regs.device_irq_level can 5877 The value in run->s.regs.device_irq_level can represent both level and edge 8358 triggered interrupt signals, depending on the 5878 triggered interrupt signals, depending on the device. Edge triggered interrupt 8359 signals will exit to userspace with the bit i 5879 signals will exit to userspace with the bit in run->s.regs.device_irq_level 8360 set exactly once per edge signal. 5880 set exactly once per edge signal. 8361 5881 8362 The field run->s.regs.device_irq_level is ava 5882 The field run->s.regs.device_irq_level is available independent of 8363 run->kvm_valid_regs or run->kvm_dirty_regs bi 5883 run->kvm_valid_regs or run->kvm_dirty_regs bits. 8364 5884 8365 If KVM_CAP_ARM_USER_IRQ is supported, the KVM 5885 If KVM_CAP_ARM_USER_IRQ is supported, the KVM_CHECK_EXTENSION ioctl returns a 8366 number larger than 0 indicating the version o 5886 number larger than 0 indicating the version of this capability is implemented 8367 and thereby which bits in run->s.regs.device_ !! 5887 and thereby which bits in in run->s.regs.device_irq_level can signal values. 8368 5888 8369 Currently the following bits are defined for 5889 Currently the following bits are defined for the device_irq_level bitmap:: 8370 5890 8371 KVM_CAP_ARM_USER_IRQ >= 1: 5891 KVM_CAP_ARM_USER_IRQ >= 1: 8372 5892 8373 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual tim 5893 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual timer 8374 KVM_ARM_DEV_EL1_PTIMER - EL1 physical ti 5894 KVM_ARM_DEV_EL1_PTIMER - EL1 physical timer 8375 KVM_ARM_DEV_PMU - ARM PMU overflo 5895 KVM_ARM_DEV_PMU - ARM PMU overflow interrupt signal 8376 5896 8377 Future versions of kvm may implement addition 5897 Future versions of kvm may implement additional events. These will get 8378 indicated by returning a higher number from K 5898 indicated by returning a higher number from KVM_CHECK_EXTENSION and will be 8379 listed above. 5899 listed above. 8380 5900 8381 8.10 KVM_CAP_PPC_SMT_POSSIBLE 5901 8.10 KVM_CAP_PPC_SMT_POSSIBLE 8382 ----------------------------- 5902 ----------------------------- 8383 5903 8384 :Architectures: ppc 5904 :Architectures: ppc 8385 5905 8386 Querying this capability returns a bitmap ind 5906 Querying this capability returns a bitmap indicating the possible 8387 virtual SMT modes that can be set using KVM_C 5907 virtual SMT modes that can be set using KVM_CAP_PPC_SMT. If bit N 8388 (counting from the right) is set, then a virt 5908 (counting from the right) is set, then a virtual SMT mode of 2^N is 8389 available. 5909 available. 8390 5910 8391 8.11 KVM_CAP_HYPERV_SYNIC2 5911 8.11 KVM_CAP_HYPERV_SYNIC2 8392 -------------------------- 5912 -------------------------- 8393 5913 8394 :Architectures: x86 5914 :Architectures: x86 8395 5915 8396 This capability enables a newer version of Hy 5916 This capability enables a newer version of Hyper-V Synthetic interrupt 8397 controller (SynIC). The only difference with 5917 controller (SynIC). The only difference with KVM_CAP_HYPERV_SYNIC is that KVM 8398 doesn't clear SynIC message and event flags p 5918 doesn't clear SynIC message and event flags pages when they are enabled by 8399 writing to the respective MSRs. 5919 writing to the respective MSRs. 8400 5920 8401 8.12 KVM_CAP_HYPERV_VP_INDEX 5921 8.12 KVM_CAP_HYPERV_VP_INDEX 8402 ---------------------------- 5922 ---------------------------- 8403 5923 8404 :Architectures: x86 5924 :Architectures: x86 8405 5925 8406 This capability indicates that userspace can 5926 This capability indicates that userspace can load HV_X64_MSR_VP_INDEX msr. Its 8407 value is used to denote the target vcpu for a 5927 value is used to denote the target vcpu for a SynIC interrupt. For 8408 compatibility, KVM initializes this msr to KV !! 5928 compatibilty, KVM initializes this msr to KVM's internal vcpu index. When this 8409 capability is absent, userspace can still que 5929 capability is absent, userspace can still query this msr's value. 8410 5930 8411 8.13 KVM_CAP_S390_AIS_MIGRATION 5931 8.13 KVM_CAP_S390_AIS_MIGRATION 8412 ------------------------------- 5932 ------------------------------- 8413 5933 8414 :Architectures: s390 5934 :Architectures: s390 8415 :Parameters: none 5935 :Parameters: none 8416 5936 8417 This capability indicates if the flic device 5937 This capability indicates if the flic device will be able to get/set the 8418 AIS states for migration via the KVM_DEV_FLIC 5938 AIS states for migration via the KVM_DEV_FLIC_AISM_ALL attribute and allows 8419 to discover this without having to create a f 5939 to discover this without having to create a flic device. 8420 5940 8421 8.14 KVM_CAP_S390_PSW 5941 8.14 KVM_CAP_S390_PSW 8422 --------------------- 5942 --------------------- 8423 5943 8424 :Architectures: s390 5944 :Architectures: s390 8425 5945 8426 This capability indicates that the PSW is exp 5946 This capability indicates that the PSW is exposed via the kvm_run structure. 8427 5947 8428 8.15 KVM_CAP_S390_GMAP 5948 8.15 KVM_CAP_S390_GMAP 8429 ---------------------- 5949 ---------------------- 8430 5950 8431 :Architectures: s390 5951 :Architectures: s390 8432 5952 8433 This capability indicates that the user space 5953 This capability indicates that the user space memory used as guest mapping can 8434 be anywhere in the user memory address space, 5954 be anywhere in the user memory address space, as long as the memory slots are 8435 aligned and sized to a segment (1MB) boundary 5955 aligned and sized to a segment (1MB) boundary. 8436 5956 8437 8.16 KVM_CAP_S390_COW 5957 8.16 KVM_CAP_S390_COW 8438 --------------------- 5958 --------------------- 8439 5959 8440 :Architectures: s390 5960 :Architectures: s390 8441 5961 8442 This capability indicates that the user space 5962 This capability indicates that the user space memory used as guest mapping can 8443 use copy-on-write semantics as well as dirty 5963 use copy-on-write semantics as well as dirty pages tracking via read-only page 8444 tables. 5964 tables. 8445 5965 8446 8.17 KVM_CAP_S390_BPB 5966 8.17 KVM_CAP_S390_BPB 8447 --------------------- 5967 --------------------- 8448 5968 8449 :Architectures: s390 5969 :Architectures: s390 8450 5970 8451 This capability indicates that kvm will imple 5971 This capability indicates that kvm will implement the interfaces to handle 8452 reset, migration and nested KVM for branch pr 5972 reset, migration and nested KVM for branch prediction blocking. The stfle 8453 facility 82 should not be provided to the gue 5973 facility 82 should not be provided to the guest without this capability. 8454 5974 8455 8.18 KVM_CAP_HYPERV_TLBFLUSH 5975 8.18 KVM_CAP_HYPERV_TLBFLUSH 8456 ---------------------------- 5976 ---------------------------- 8457 5977 8458 :Architectures: x86 5978 :Architectures: x86 8459 5979 8460 This capability indicates that KVM supports p 5980 This capability indicates that KVM supports paravirtualized Hyper-V TLB Flush 8461 hypercalls: 5981 hypercalls: 8462 HvFlushVirtualAddressSpace, HvFlushVirtualAdd 5982 HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx, 8463 HvFlushVirtualAddressList, HvFlushVirtualAddr 5983 HvFlushVirtualAddressList, HvFlushVirtualAddressListEx. 8464 5984 8465 8.19 KVM_CAP_ARM_INJECT_SERROR_ESR 5985 8.19 KVM_CAP_ARM_INJECT_SERROR_ESR 8466 ---------------------------------- 5986 ---------------------------------- 8467 5987 8468 :Architectures: arm64 !! 5988 :Architectures: arm, arm64 8469 5989 8470 This capability indicates that userspace can 5990 This capability indicates that userspace can specify (via the 8471 KVM_SET_VCPU_EVENTS ioctl) the syndrome value 5991 KVM_SET_VCPU_EVENTS ioctl) the syndrome value reported to the guest when it 8472 takes a virtual SError interrupt exception. 5992 takes a virtual SError interrupt exception. 8473 If KVM advertises this capability, userspace 5993 If KVM advertises this capability, userspace can only specify the ISS field for 8474 the ESR syndrome. Other parts of the ESR, suc 5994 the ESR syndrome. Other parts of the ESR, such as the EC are generated by the 8475 CPU when the exception is taken. If this virt 5995 CPU when the exception is taken. If this virtual SError is taken to EL1 using 8476 AArch64, this value will be reported in the I 5996 AArch64, this value will be reported in the ISS field of ESR_ELx. 8477 5997 8478 See KVM_CAP_VCPU_EVENTS for more details. 5998 See KVM_CAP_VCPU_EVENTS for more details. 8479 5999 8480 8.20 KVM_CAP_HYPERV_SEND_IPI 6000 8.20 KVM_CAP_HYPERV_SEND_IPI 8481 ---------------------------- 6001 ---------------------------- 8482 6002 8483 :Architectures: x86 6003 :Architectures: x86 8484 6004 8485 This capability indicates that KVM supports p 6005 This capability indicates that KVM supports paravirtualized Hyper-V IPI send 8486 hypercalls: 6006 hypercalls: 8487 HvCallSendSyntheticClusterIpi, HvCallSendSynt 6007 HvCallSendSyntheticClusterIpi, HvCallSendSyntheticClusterIpiEx. 8488 6008 8489 8.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH 6009 8.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH 8490 ----------------------------------- 6010 ----------------------------------- 8491 6011 8492 :Architectures: x86 !! 6012 :Architecture: x86 8493 6013 8494 This capability indicates that KVM running on 6014 This capability indicates that KVM running on top of Hyper-V hypervisor 8495 enables Direct TLB flush for its guests meani 6015 enables Direct TLB flush for its guests meaning that TLB flush 8496 hypercalls are handled by Level 0 hypervisor 6016 hypercalls are handled by Level 0 hypervisor (Hyper-V) bypassing KVM. 8497 Due to the different ABI for hypercall parame 6017 Due to the different ABI for hypercall parameters between Hyper-V and 8498 KVM, enabling this capability effectively dis 6018 KVM, enabling this capability effectively disables all hypercall 8499 handling by KVM (as some KVM hypercall may be 6019 handling by KVM (as some KVM hypercall may be mistakenly treated as TLB 8500 flush hypercalls by Hyper-V) so userspace sho 6020 flush hypercalls by Hyper-V) so userspace should disable KVM identification 8501 in CPUID and only exposes Hyper-V identificat 6021 in CPUID and only exposes Hyper-V identification. In this case, guest 8502 thinks it's running on Hyper-V and only use H 6022 thinks it's running on Hyper-V and only use Hyper-V hypercalls. 8503 6023 8504 8.22 KVM_CAP_S390_VCPU_RESETS 6024 8.22 KVM_CAP_S390_VCPU_RESETS 8505 ----------------------------- << 8506 6025 8507 :Architectures: s390 !! 6026 Architectures: s390 8508 6027 8509 This capability indicates that the KVM_S390_N 6028 This capability indicates that the KVM_S390_NORMAL_RESET and 8510 KVM_S390_CLEAR_RESET ioctls are available. 6029 KVM_S390_CLEAR_RESET ioctls are available. 8511 << 8512 8.23 KVM_CAP_S390_PROTECTED << 8513 --------------------------- << 8514 << 8515 :Architectures: s390 << 8516 << 8517 This capability indicates that the Ultravisor << 8518 KVM can therefore start protected VMs. << 8519 This capability governs the KVM_S390_PV_COMMA << 8520 KVM_MP_STATE_LOAD MP_STATE. KVM_SET_MP_STATE << 8521 guests when the state change is invalid. << 8522 << 8523 8.24 KVM_CAP_STEAL_TIME << 8524 ----------------------- << 8525 << 8526 :Architectures: arm64, x86 << 8527 << 8528 This capability indicates that KVM supports s << 8529 When steal time accounting is supported it ma << 8530 architecture-specific interfaces. This capab << 8531 specific interfaces must be consistent, i.e. << 8532 is supported, than the other should as well a << 8533 see Documentation/virt/kvm/devices/vcpu.rst " << 8534 For x86 see Documentation/virt/kvm/x86/msr.rs << 8535 << 8536 8.25 KVM_CAP_S390_DIAG318 << 8537 ------------------------- << 8538 << 8539 :Architectures: s390 << 8540 << 8541 This capability enables a guest to set inform << 8542 (i.e. guest kernel type and version). The inf << 8543 system/firmware service events, providing add << 8544 environments running on the machine. << 8545 << 8546 The information is associated with the DIAGNO << 8547 an 8-byte value consisting of a one-byte Cont << 8548 a 7-byte Control Program Version Code (CPVC). << 8549 environment the control program is running in << 8550 CPVC is used for information specific to OS ( << 8551 distribution...) << 8552 << 8553 If this capability is available, then the CPN << 8554 between KVM and userspace via the sync regs m << 8555 << 8556 8.26 KVM_CAP_X86_USER_SPACE_MSR << 8557 ------------------------------- << 8558 << 8559 :Architectures: x86 << 8560 << 8561 This capability indicates that KVM supports d << 8562 writes to user space. It can be enabled on a << 8563 accesses that would usually trigger a #GP by << 8564 instead get bounced to user space through the << 8565 KVM_EXIT_X86_WRMSR exit notifications. << 8566 << 8567 8.27 KVM_CAP_X86_MSR_FILTER << 8568 --------------------------- << 8569 << 8570 :Architectures: x86 << 8571 << 8572 This capability indicates that KVM supports t << 8573 may be rejected. With this capability exposed << 8574 KVM_X86_SET_MSR_FILTER which user space can c << 8575 ranges that KVM should deny access to. << 8576 << 8577 In combination with KVM_CAP_X86_USER_SPACE_MS << 8578 trap and emulate MSRs that are outside of the << 8579 limit the attack surface on KVM's MSR emulati << 8580 << 8581 8.28 KVM_CAP_ENFORCE_PV_FEATURE_CPUID << 8582 ------------------------------------- << 8583 << 8584 Architectures: x86 << 8585 << 8586 When enabled, KVM will disable paravirtual fe << 8587 guest according to the bits in the KVM_CPUID_ << 8588 (0x40000001). Otherwise, a guest may use the << 8589 regardless of what has actually been exposed << 8590 << 8591 8.29 KVM_CAP_DIRTY_LOG_RING/KVM_CAP_DIRTY_LOG << 8592 --------------------------------------------- << 8593 << 8594 :Architectures: x86, arm64 << 8595 :Parameters: args[0] - size of the dirty log << 8596 << 8597 KVM is capable of tracking dirty memory using << 8598 mmapped into userspace; there is one dirty ri << 8599 << 8600 The dirty ring is available to userspace as a << 8601 ``struct kvm_dirty_gfn``. Each dirty entry i << 8602 << 8603 struct kvm_dirty_gfn { << 8604 __u32 flags; << 8605 __u32 slot; /* as_id | slot_id */ << 8606 __u64 offset; << 8607 }; << 8608 << 8609 The following values are defined for the flag << 8610 current state of the entry:: << 8611 << 8612 #define KVM_DIRTY_GFN_F_DIRTY BIT << 8613 #define KVM_DIRTY_GFN_F_RESET BIT << 8614 #define KVM_DIRTY_GFN_F_MASK 0x3 << 8615 << 8616 Userspace should call KVM_ENABLE_CAP ioctl ri << 8617 ioctl to enable this capability for the new g << 8618 the rings. Enabling the capability is only a << 8619 vCPU, and the size of the ring must be a powe << 8620 ring buffer, the less likely the ring is full << 8621 exit to userspace. The optimal size depends o << 8622 recommended that it be at least 64 KiB (4096 << 8623 << 8624 Just like for dirty page bitmaps, the buffer << 8625 all user memory regions for which the KVM_MEM << 8626 set in KVM_SET_USER_MEMORY_REGION. Once a me << 8627 with the flag set, userspace can start harves << 8628 ring buffer. << 8629 << 8630 An entry in the ring buffer can be unused (fl << 8631 dirty (flag bits ``01``) or harvested (flag b << 8632 state machine for the entry is as follows:: << 8633 << 8634 dirtied harvested re << 8635 00 -----------> 01 -------------> 1X --- << 8636 ^ << 8637 | << 8638 +-------------------------------------- << 8639 << 8640 To harvest the dirty pages, userspace accesse << 8641 to read the dirty GFNs. If the flags has the << 8642 the RESET bit must be cleared), then it means << 8643 The userspace should harvest this GFN and mar << 8644 ``01b`` to ``1Xb`` (bit 0 will be ignored by << 8645 to show that this GFN is harvested and waitin << 8646 on to the next GFN. The userspace should con << 8647 flags of a GFN have the DIRTY bit cleared, me << 8648 all the dirty GFNs that were available. << 8649 << 8650 Note that on weakly ordered architectures, us << 8651 ring buffer (and more specifically the 'flags << 8652 using load-acquire/store-release accessors wh << 8653 other memory barrier that will ensure this or << 8654 << 8655 It's not necessary for userspace to harvest t << 8656 However it must collect the dirty GFNs in seq << 8657 program cannot skip one dirty GFN to collect << 8658 << 8659 After processing one or more entries in the r << 8660 calls the VM ioctl KVM_RESET_DIRTY_RINGS to n << 8661 it, so that the kernel will reprotect those c << 8662 Therefore, the ioctl must be called *before* << 8663 the dirty pages. << 8664 << 8665 The dirty ring can get full. When it happens << 8666 vcpu will return with exit reason KVM_EXIT_DI << 8667 << 8668 The dirty ring interface has a major differen << 8669 KVM_GET_DIRTY_LOG interface in that, when rea << 8670 userspace, it's still possible that the kerne << 8671 processor's dirty page buffers into the kerne << 8672 flushing is done by the KVM_GET_DIRTY_LOG ioc << 8673 needs to kick the vcpu out of KVM_RUN using a << 8674 vmexit ensures that all dirty GFNs are flushe << 8675 << 8676 NOTE: KVM_CAP_DIRTY_LOG_RING_ACQ_REL is the o << 8677 should be exposed by weakly ordered architect << 8678 the additional memory ordering requirements i << 8679 reading the state of an entry and mutating it << 8680 Architecture with TSO-like ordering (such as << 8681 expose both KVM_CAP_DIRTY_LOG_RING and KVM_CA << 8682 to userspace. << 8683 << 8684 After enabling the dirty rings, the userspace << 8685 capability of KVM_CAP_DIRTY_LOG_RING_WITH_BIT << 8686 ring structures can be backed by per-slot bit << 8687 advertised, it means the architecture can dir << 8688 vcpu/ring context, so that some of the dirty << 8689 maintained in the bitmap structure. KVM_CAP_D << 8690 can't be enabled if the capability of KVM_CAP << 8691 hasn't been enabled, or any memslot has been << 8692 << 8693 Note that the bitmap here is only a backup of << 8694 use of the ring and bitmap combination is onl << 8695 only a very small amount of memory that is di << 8696 context. Otherwise, the stand-alone per-slot << 8697 be considered. << 8698 << 8699 To collect dirty bits in the backup bitmap, u << 8700 KVM_GET_DIRTY_LOG ioctl. KVM_CLEAR_DIRTY_LOG << 8701 the generation of the dirty bits is done in a << 8702 the dirty bitmap should be the very last thin << 8703 considering the state as complete. VMM needs << 8704 state is final and avoid missing dirty pages << 8705 after the bitmap collection. << 8706 << 8707 NOTE: Multiple examples of using the backup b << 8708 tables through command KVM_DEV_ARM_{VGIC_GRP_ << 8709 KVM device "kvm-arm-vgic-its". (2) restore vg << 8710 command KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_RESTO << 8711 "kvm-arm-vgic-its". VGICv3 LPI pending status << 8712 vgic3 pending table through KVM_DEV_ARM_VGIC_ << 8713 command on KVM device "kvm-arm-vgic-v3". << 8714 << 8715 8.30 KVM_CAP_XEN_HVM << 8716 -------------------- << 8717 << 8718 :Architectures: x86 << 8719 << 8720 This capability indicates the features that X << 8721 PVHVM guests. Valid flags are:: << 8722 << 8723 #define KVM_XEN_HVM_CONFIG_HYPERCALL_MSR << 8724 #define KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL << 8725 #define KVM_XEN_HVM_CONFIG_SHARED_INFO << 8726 #define KVM_XEN_HVM_CONFIG_RUNSTATE << 8727 #define KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL << 8728 #define KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 8729 #define KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_ << 8730 #define KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNST << 8731 << 8732 The KVM_XEN_HVM_CONFIG_HYPERCALL_MSR flag ind << 8733 ioctl is available, for the guest to set its << 8734 << 8735 If KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL is also << 8736 provided in the flags to KVM_XEN_HVM_CONFIG, << 8737 contents, to request that KVM generate hyperc << 8738 and also enable interception of guest hyperca << 8739 << 8740 The KVM_XEN_HVM_CONFIG_SHARED_INFO flag indic << 8741 KVM_XEN_HVM_SET_ATTR, KVM_XEN_HVM_GET_ATTR, K << 8742 KVM_XEN_VCPU_GET_ATTR ioctls, as well as the << 8743 for event channel upcalls when the evtchn_upc << 8744 vcpu_info is set. << 8745 << 8746 The KVM_XEN_HVM_CONFIG_RUNSTATE flag indicate << 8747 features KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR << 8748 supported by the KVM_XEN_VCPU_SET_ATTR/KVM_XE << 8749 << 8750 The KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL flag ind << 8751 of the type KVM_IRQ_ROUTING_XEN_EVTCHN are su << 8752 field set to indicate 2 level event channel d << 8753 << 8754 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indic << 8755 injecting event channel events directly into << 8756 KVM_XEN_HVM_EVTCHN_SEND ioctl. It also indica << 8757 KVM_XEN_ATTR_TYPE_EVTCHN/XEN_VERSION HVM attr << 8758 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID/TIMER/UPCALL_V << 8759 related to event channel delivery, timers, an << 8760 interception. << 8761 << 8762 The KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG f << 8763 the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG at << 8764 and KVM_XEN_GET_ATTR ioctls. This controls wh << 8765 XEN_RUNSTATE_UPDATE flag in guest memory mapp << 8766 updates of the runstate information. Note tha << 8767 the RUNSTATE feature above, but not the RUNST << 8768 always set the XEN_RUNSTATE_UPDATE flag when << 8769 which is perhaps counterintuitive. When this << 8770 behave more correctly, not using the XEN_RUNS << 8771 specifically enabled (by the guest making the << 8772 to enable the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDA << 8773 << 8774 The KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE f << 8775 clearing the PVCLOCK_TSC_STABLE_BIT flag in X << 8776 done when the KVM_CAP_XEN_HVM ioctl sets the << 8777 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE flag. << 8778 << 8779 8.31 KVM_CAP_PPC_MULTITCE << 8780 ------------------------- << 8781 << 8782 :Capability: KVM_CAP_PPC_MULTITCE << 8783 :Architectures: ppc << 8784 :Type: vm << 8785 << 8786 This capability means the kernel is capable o << 8787 H_PUT_TCE_INDIRECT and H_STUFF_TCE without pa << 8788 space. This significantly accelerates DMA ope << 8789 User space should expect that its handlers fo << 8790 are not going to be called if user space prev << 8791 in KVM (via KVM_CREATE_SPAPR_TCE or similar c << 8792 << 8793 In order to enable H_PUT_TCE_INDIRECT and H_S << 8794 user space might have to advertise it for the << 8795 IBM pSeries (sPAPR) guest starts using them i << 8796 present in the "ibm,hypertas-functions" devic << 8797 << 8798 The hypercalls mentioned above may or may not << 8799 in the kernel based fast path. If they can no << 8800 they will get passed on to user space. So use << 8801 an implementation for these despite the in ke << 8802 << 8803 This capability is always enabled. << 8804 << 8805 8.32 KVM_CAP_PTP_KVM << 8806 -------------------- << 8807 << 8808 :Architectures: arm64 << 8809 << 8810 This capability indicates that the KVM virtua << 8811 supported in the host. A VMM can check whethe << 8812 available to the guest on migration. << 8813 << 8814 8.33 KVM_CAP_HYPERV_ENFORCE_CPUID << 8815 --------------------------------- << 8816 << 8817 Architectures: x86 << 8818 << 8819 When enabled, KVM will disable emulated Hyper << 8820 guest according to the bits Hyper-V CPUID fea << 8821 currently implemented Hyper-V features are pr << 8822 Hyper-V identification is set in the HYPERV_C << 8823 leaf. << 8824 << 8825 8.34 KVM_CAP_EXIT_HYPERCALL << 8826 --------------------------- << 8827 << 8828 :Capability: KVM_CAP_EXIT_HYPERCALL << 8829 :Architectures: x86 << 8830 :Type: vm << 8831 << 8832 This capability, if enabled, will cause KVM t << 8833 with KVM_EXIT_HYPERCALL exit reason to proces << 8834 << 8835 Calling KVM_CHECK_EXTENSION for this capabili << 8836 of hypercalls that can be configured to exit << 8837 Right now, the only such hypercall is KVM_HC_ << 8838 << 8839 The argument to KVM_ENABLE_CAP is also a bitm << 8840 of the result of KVM_CHECK_EXTENSION. KVM wi << 8841 the hypercalls whose corresponding bit is in << 8842 ENOSYS for the others. << 8843 << 8844 8.35 KVM_CAP_PMU_CAPABILITY << 8845 --------------------------- << 8846 << 8847 :Capability: KVM_CAP_PMU_CAPABILITY << 8848 :Architectures: x86 << 8849 :Type: vm << 8850 :Parameters: arg[0] is bitmask of PMU virtual << 8851 :Returns: 0 on success, -EINVAL when arg[0] c << 8852 << 8853 This capability alters PMU virtualization in << 8854 << 8855 Calling KVM_CHECK_EXTENSION for this capabili << 8856 PMU virtualization capabilities that can be a << 8857 << 8858 The argument to KVM_ENABLE_CAP is also a bitm << 8859 PMU virtualization capabilities to be applied << 8860 only be invoked on a VM prior to the creation << 8861 << 8862 At this time, KVM_PMU_CAP_DISABLE is the only << 8863 this capability will disable PMU virtualizati << 8864 should adjust CPUID leaf 0xA to reflect that << 8865 << 8866 8.36 KVM_CAP_ARM_SYSTEM_SUSPEND << 8867 ------------------------------- << 8868 << 8869 :Capability: KVM_CAP_ARM_SYSTEM_SUSPEND << 8870 :Architectures: arm64 << 8871 :Type: vm << 8872 << 8873 When enabled, KVM will exit to userspace with << 8874 type KVM_SYSTEM_EVENT_SUSPEND to process the << 8875 << 8876 8.37 KVM_CAP_S390_PROTECTED_DUMP << 8877 -------------------------------- << 8878 << 8879 :Capability: KVM_CAP_S390_PROTECTED_DUMP << 8880 :Architectures: s390 << 8881 :Type: vm << 8882 << 8883 This capability indicates that KVM and the Ul << 8884 PV guests. The `KVM_PV_DUMP` command is avail << 8885 `KVM_S390_PV_COMMAND` ioctl and the `KVM_PV_I << 8886 dump related UV data. Also the vcpu ioctl `KV << 8887 available and supports the `KVM_PV_DUMP_CPU` << 8888 << 8889 8.38 KVM_CAP_VM_DISABLE_NX_HUGE_PAGES << 8890 ------------------------------------- << 8891 << 8892 :Capability: KVM_CAP_VM_DISABLE_NX_HUGE_PAGES << 8893 :Architectures: x86 << 8894 :Type: vm << 8895 :Parameters: arg[0] must be 0. << 8896 :Returns: 0 on success, -EPERM if the userspa << 8897 have CAP_SYS_BOOT, -EINVAL if args[ << 8898 created. << 8899 << 8900 This capability disables the NX huge pages mi << 8901 << 8902 The capability has no effect if the nx_huge_p << 8903 << 8904 This capability may only be set before any vC << 8905 << 8906 8.39 KVM_CAP_S390_CPU_TOPOLOGY << 8907 ------------------------------ << 8908 << 8909 :Capability: KVM_CAP_S390_CPU_TOPOLOGY << 8910 :Architectures: s390 << 8911 :Type: vm << 8912 << 8913 This capability indicates that KVM will provi << 8914 facility which consist of the interpretation << 8915 the function code 2 along with interception a << 8916 PTF instruction with function codes 0 or 1 an << 8917 instruction to the userland hypervisor. << 8918 << 8919 The stfle facility 11, CPU Topology facility, << 8920 to the guest without this capability. << 8921 << 8922 When this capability is present, KVM provides << 8923 on vm fd, KVM_S390_VM_CPU_TOPOLOGY. << 8924 This new attribute allows to get, set or clea << 8925 Topology Report (MTCR) bit of the SCA through << 8926 structure. << 8927 << 8928 When getting the Modified Change Topology Rep << 8929 must point to a byte where the value will be << 8930 << 8931 8.40 KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE << 8932 --------------------------------------- << 8933 << 8934 :Capability: KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SI << 8935 :Architectures: arm64 << 8936 :Type: vm << 8937 :Parameters: arg[0] is the new split chunk si << 8938 :Returns: 0 on success, -EINVAL if any memslo << 8939 << 8940 This capability sets the chunk size used in E << 8941 << 8942 Eager Page Splitting improves the performance << 8943 in live migrations) when guest memory is back << 8944 avoids splitting huge-pages (into PAGE_SIZE p << 8945 it eagerly when enabling dirty logging (with << 8946 KVM_MEM_LOG_DIRTY_PAGES flag for a memory reg << 8947 KVM_CLEAR_DIRTY_LOG. << 8948 << 8949 The chunk size specifies how many pages to br << 8950 single allocation for each chunk. Bigger the << 8951 need to be allocated ahead of time. << 8952 << 8953 The chunk size needs to be a valid block size << 8954 block sizes is exposed in KVM_CAP_ARM_SUPPORT << 8955 64-bit bitmap (each bit describing a block si << 8956 0, to disable the eager page splitting. << 8957 << 8958 8.41 KVM_CAP_VM_TYPES << 8959 --------------------- << 8960 << 8961 :Capability: KVM_CAP_MEMORY_ATTRIBUTES << 8962 :Architectures: x86 << 8963 :Type: system ioctl << 8964 << 8965 This capability returns a bitmap of support V << 8966 means the VM type with value @n is supported. << 8967 << 8968 #define KVM_X86_DEFAULT_VM 0 << 8969 #define KVM_X86_SW_PROTECTED_VM 1 << 8970 #define KVM_X86_SEV_VM 2 << 8971 #define KVM_X86_SEV_ES_VM 3 << 8972 << 8973 Note, KVM_X86_SW_PROTECTED_VM is currently on << 8974 Do not use KVM_X86_SW_PROTECTED_VM for "real" << 8975 production. The behavior and effective ABI f << 8976 unstable. << 8977 << 8978 9. Known KVM API problems << 8979 ========================= << 8980 << 8981 In some cases, KVM's API has some inconsisten << 8982 that userspace need to be aware of. This sec << 8983 these issues. << 8984 << 8985 Most of them are architecture specific, so th << 8986 architecture. << 8987 << 8988 9.1. x86 << 8989 -------- << 8990 << 8991 ``KVM_GET_SUPPORTED_CPUID`` issues << 8992 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ << 8993 << 8994 In general, ``KVM_GET_SUPPORTED_CPUID`` is de << 8995 to take its result and pass it directly to `` << 8996 documents some cases in which that requires s << 8997 << 8998 Local APIC features << 8999 ~~~~~~~~~~~~~~~~~~~ << 9000 << 9001 CPU[EAX=1]:ECX[21] (X2APIC) is reported by `` << 9002 but it can only be enabled if ``KVM_CREATE_IR << 9003 ``KVM_ENABLE_CAP(KVM_CAP_IRQCHIP_SPLIT)`` are << 9004 the local APIC. << 9005 << 9006 The same is true for the ``KVM_FEATURE_PV_UNH << 9007 << 9008 CPU[EAX=1]:ECX[24] (TSC_DEADLINE) is not repo << 9009 It can be enabled if ``KVM_CAP_TSC_DEADLINE_T << 9010 has enabled in-kernel emulation of the local << 9011 << 9012 CPU topology << 9013 ~~~~~~~~~~~~ << 9014 << 9015 Several CPUID values include topology informa << 9016 0x0b and 0x1f for Intel systems, 0x8000001e f << 9017 versions of KVM return different values for t << 9018 should not rely on it. Currently they return << 9019 << 9020 If userspace wishes to set up a guest topolog << 9021 the values of these three leaves differ for e << 9022 the APIC ID is found in EDX for all subleaves << 9023 for 0x8000001e; the latter also encodes the c << 9024 7:0 of EBX and ECX respectively. << 9025 << 9026 Obsolete ioctls and capabilities << 9027 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ << 9028 << 9029 KVM_CAP_DISABLE_QUIRKS does not let userspace << 9030 available. Use ``KVM_CHECK_EXTENSION(KVM_CAP << 9031 available. << 9032 << 9033 Ordering of KVM_GET_*/KVM_SET_* ioctls << 9034 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ << 9035 << 9036 TBD <<
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.