1 .. SPDX-License-Identifier: GPL-2.0 1 .. SPDX-License-Identifier: GPL-2.0 2 2 3 ============================================== 3 =================================================================== 4 The Definitive KVM (Kernel-based Virtual Machi 4 The Definitive KVM (Kernel-based Virtual Machine) API Documentation 5 ============================================== 5 =================================================================== 6 6 7 1. General description 7 1. General description 8 ====================== 8 ====================== 9 9 10 The kvm API is a set of ioctls that are issued 10 The kvm API is a set of ioctls that are issued to control various aspects 11 of a virtual machine. The ioctls belong to th 11 of a virtual machine. The ioctls belong to the following classes: 12 12 13 - System ioctls: These query and set global a 13 - System ioctls: These query and set global attributes which affect the 14 whole kvm subsystem. In addition a system 14 whole kvm subsystem. In addition a system ioctl is used to create 15 virtual machines. 15 virtual machines. 16 16 17 - VM ioctls: These query and set attributes t 17 - VM ioctls: These query and set attributes that affect an entire virtual 18 machine, for example memory layout. In add 18 machine, for example memory layout. In addition a VM ioctl is used to 19 create virtual cpus (vcpus) and devices. 19 create virtual cpus (vcpus) and devices. 20 20 21 VM ioctls must be issued from the same proc 21 VM ioctls must be issued from the same process (address space) that was 22 used to create the VM. 22 used to create the VM. 23 23 24 - vcpu ioctls: These query and set attributes 24 - vcpu ioctls: These query and set attributes that control the operation 25 of a single virtual cpu. 25 of a single virtual cpu. 26 26 27 vcpu ioctls should be issued from the same 27 vcpu ioctls should be issued from the same thread that was used to create 28 the vcpu, except for asynchronous vcpu ioct 28 the vcpu, except for asynchronous vcpu ioctl that are marked as such in 29 the documentation. Otherwise, the first io 29 the documentation. Otherwise, the first ioctl after switching threads 30 could see a performance impact. 30 could see a performance impact. 31 31 32 - device ioctls: These query and set attribut 32 - device ioctls: These query and set attributes that control the operation 33 of a single device. 33 of a single device. 34 34 35 device ioctls must be issued from the same 35 device ioctls must be issued from the same process (address space) that 36 was used to create the VM. 36 was used to create the VM. 37 37 38 2. File descriptors 38 2. File descriptors 39 =================== 39 =================== 40 40 41 The kvm API is centered around file descriptor 41 The kvm API is centered around file descriptors. An initial 42 open("/dev/kvm") obtains a handle to the kvm s 42 open("/dev/kvm") obtains a handle to the kvm subsystem; this handle 43 can be used to issue system ioctls. A KVM_CRE 43 can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this 44 handle will create a VM file descriptor which 44 handle will create a VM file descriptor which can be used to issue VM 45 ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVIC 45 ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVICE ioctl on a VM fd will 46 create a virtual cpu or device and return a fi 46 create a virtual cpu or device and return a file descriptor pointing to 47 the new resource. Finally, ioctls on a vcpu o 47 the new resource. Finally, ioctls on a vcpu or device fd can be used 48 to control the vcpu or device. For vcpus, thi 48 to control the vcpu or device. For vcpus, this includes the important 49 task of actually running guest code. 49 task of actually running guest code. 50 50 51 In general file descriptors can be migrated am 51 In general file descriptors can be migrated among processes by means 52 of fork() and the SCM_RIGHTS facility of unix 52 of fork() and the SCM_RIGHTS facility of unix domain socket. These 53 kinds of tricks are explicitly not supported b 53 kinds of tricks are explicitly not supported by kvm. While they will 54 not cause harm to the host, their actual behav 54 not cause harm to the host, their actual behavior is not guaranteed by 55 the API. See "General description" for detail 55 the API. See "General description" for details on the ioctl usage 56 model that is supported by KVM. 56 model that is supported by KVM. 57 57 58 It is important to note that although VM ioctl 58 It is important to note that although VM ioctls may only be issued from 59 the process that created the VM, a VM's lifecy 59 the process that created the VM, a VM's lifecycle is associated with its 60 file descriptor, not its creator (process). I 60 file descriptor, not its creator (process). In other words, the VM and 61 its resources, *including the associated addre 61 its resources, *including the associated address space*, are not freed 62 until the last reference to the VM's file desc 62 until the last reference to the VM's file descriptor has been released. 63 For example, if fork() is issued after ioctl(K 63 For example, if fork() is issued after ioctl(KVM_CREATE_VM), the VM will 64 not be freed until both the parent (original) 64 not be freed until both the parent (original) process and its child have 65 put their references to the VM's file descript 65 put their references to the VM's file descriptor. 66 66 67 Because a VM's resources are not freed until t 67 Because a VM's resources are not freed until the last reference to its 68 file descriptor is released, creating addition 68 file descriptor is released, creating additional references to a VM 69 via fork(), dup(), etc... without careful cons 69 via fork(), dup(), etc... without careful consideration is strongly 70 discouraged and may have unwanted side effects 70 discouraged and may have unwanted side effects, e.g. memory allocated 71 by and on behalf of the VM's process may not b 71 by and on behalf of the VM's process may not be freed/unaccounted when 72 the VM is shut down. 72 the VM is shut down. 73 73 74 74 75 3. Extensions 75 3. Extensions 76 ============= 76 ============= 77 77 78 As of Linux 2.6.22, the KVM ABI has been stabi 78 As of Linux 2.6.22, the KVM ABI has been stabilized: no backward 79 incompatible change are allowed. However, the 79 incompatible change are allowed. However, there is an extension 80 facility that allows backward-compatible exten 80 facility that allows backward-compatible extensions to the API to be 81 queried and used. 81 queried and used. 82 82 83 The extension mechanism is not based on the Li 83 The extension mechanism is not based on the Linux version number. 84 Instead, kvm defines extension identifiers and 84 Instead, kvm defines extension identifiers and a facility to query 85 whether a particular extension identifier is a 85 whether a particular extension identifier is available. If it is, a 86 set of ioctls is available for application use 86 set of ioctls is available for application use. 87 87 88 88 89 4. API description 89 4. API description 90 ================== 90 ================== 91 91 92 This section describes ioctls that can be used 92 This section describes ioctls that can be used to control kvm guests. 93 For each ioctl, the following information is p 93 For each ioctl, the following information is provided along with a 94 description: 94 description: 95 95 96 Capability: 96 Capability: 97 which KVM extension provides this ioctl. 97 which KVM extension provides this ioctl. Can be 'basic', 98 which means that is will be provided by 98 which means that is will be provided by any kernel that supports 99 API version 12 (see section 4.1), a KVM_ 99 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which 100 means availability needs to be checked w 100 means availability needs to be checked with KVM_CHECK_EXTENSION 101 (see section 4.4), or 'none' which means 101 (see section 4.4), or 'none' which means that while not all kernels 102 support this ioctl, there's no capabilit 102 support this ioctl, there's no capability bit to check its 103 availability: for kernels that don't sup 103 availability: for kernels that don't support the ioctl, 104 the ioctl returns -ENOTTY. 104 the ioctl returns -ENOTTY. 105 105 106 Architectures: 106 Architectures: 107 which instruction set architectures prov 107 which instruction set architectures provide this ioctl. 108 x86 includes both i386 and x86_64. 108 x86 includes both i386 and x86_64. 109 109 110 Type: 110 Type: 111 system, vm, or vcpu. 111 system, vm, or vcpu. 112 112 113 Parameters: 113 Parameters: 114 what parameters are accepted by the ioct 114 what parameters are accepted by the ioctl. 115 115 116 Returns: 116 Returns: 117 the return value. General error numbers 117 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 118 are not detailed, but errors with specif 118 are not detailed, but errors with specific meanings are. 119 119 120 120 121 4.1 KVM_GET_API_VERSION 121 4.1 KVM_GET_API_VERSION 122 ----------------------- 122 ----------------------- 123 123 124 :Capability: basic 124 :Capability: basic 125 :Architectures: all 125 :Architectures: all 126 :Type: system ioctl 126 :Type: system ioctl 127 :Parameters: none 127 :Parameters: none 128 :Returns: the constant KVM_API_VERSION (=12) 128 :Returns: the constant KVM_API_VERSION (=12) 129 129 130 This identifies the API version as the stable 130 This identifies the API version as the stable kvm API. It is not 131 expected that this number will change. Howeve 131 expected that this number will change. However, Linux 2.6.20 and 132 2.6.21 report earlier versions; these are not 132 2.6.21 report earlier versions; these are not documented and not 133 supported. Applications should refuse to run 133 supported. Applications should refuse to run if KVM_GET_API_VERSION 134 returns a value other than 12. If this check 134 returns a value other than 12. If this check passes, all ioctls 135 described as 'basic' will be available. 135 described as 'basic' will be available. 136 136 137 137 138 4.2 KVM_CREATE_VM 138 4.2 KVM_CREATE_VM 139 ----------------- 139 ----------------- 140 140 141 :Capability: basic 141 :Capability: basic 142 :Architectures: all 142 :Architectures: all 143 :Type: system ioctl 143 :Type: system ioctl 144 :Parameters: machine type identifier (KVM_VM_* 144 :Parameters: machine type identifier (KVM_VM_*) 145 :Returns: a VM fd that can be used to control 145 :Returns: a VM fd that can be used to control the new virtual machine. 146 146 147 The new VM has no virtual cpus and no memory. 147 The new VM has no virtual cpus and no memory. 148 You probably want to use 0 as machine type. 148 You probably want to use 0 as machine type. 149 149 150 X86: << 151 ^^^^ << 152 << 153 Supported X86 VM types can be queried via KVM_ << 154 << 155 S390: << 156 ^^^^^ << 157 << 158 In order to create user controlled virtual mac 150 In order to create user controlled virtual machines on S390, check 159 KVM_CAP_S390_UCONTROL and use the flag KVM_VM_ 151 KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as 160 privileged user (CAP_SYS_ADMIN). 152 privileged user (CAP_SYS_ADMIN). 161 153 162 MIPS: << 163 ^^^^^ << 164 << 165 To use hardware assisted virtualization on MIP << 166 the default trap & emulate implementation (whi << 167 memory layout to fit in user mode), check KVM_ << 168 flag KVM_VM_MIPS_VZ. << 169 << 170 ARM64: << 171 ^^^^^^ << 172 << 173 On arm64, the physical address size for a VM ( 154 On arm64, the physical address size for a VM (IPA Size limit) is limited 174 to 40bits by default. The limit can be configu 155 to 40bits by default. The limit can be configured if the host supports the 175 extension KVM_CAP_ARM_VM_IPA_SIZE. When suppor 156 extension KVM_CAP_ARM_VM_IPA_SIZE. When supported, use 176 KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the 157 KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the size in the machine type 177 identifier, where IPA_Bits is the maximum widt 158 identifier, where IPA_Bits is the maximum width of any physical 178 address used by the VM. The IPA_Bits is encode 159 address used by the VM. The IPA_Bits is encoded in bits[7-0] of the 179 machine type identifier. 160 machine type identifier. 180 161 181 e.g, to configure a guest to use 48bit physica 162 e.g, to configure a guest to use 48bit physical address size:: 182 163 183 vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_V 164 vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_VM_TYPE_ARM_IPA_SIZE(48)); 184 165 185 The requested size (IPA_Bits) must be: 166 The requested size (IPA_Bits) must be: 186 167 187 == ======================================== 168 == ========================================================= 188 0 Implies default size, 40bits (for backwa 169 0 Implies default size, 40bits (for backward compatibility) 189 N Implies N bits, where N is a positive in 170 N Implies N bits, where N is a positive integer such that, 190 32 <= N <= Host_IPA_Limit 171 32 <= N <= Host_IPA_Limit 191 == ======================================== 172 == ========================================================= 192 173 193 Host_IPA_Limit is the maximum possible value f 174 Host_IPA_Limit is the maximum possible value for IPA_Bits on the host and 194 is dependent on the CPU capability and the ker 175 is dependent on the CPU capability and the kernel configuration. The limit can 195 be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of 176 be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of the KVM_CHECK_EXTENSION 196 ioctl() at run-time. 177 ioctl() at run-time. 197 178 198 Creation of the VM will fail if the requested 179 Creation of the VM will fail if the requested IPA size (whether it is 199 implicit or explicit) is unsupported on the ho 180 implicit or explicit) is unsupported on the host. 200 181 201 Please note that configuring the IPA size does 182 Please note that configuring the IPA size does not affect the capability 202 exposed by the guest CPUs in ID_AA64MMFR0_EL1[ 183 exposed by the guest CPUs in ID_AA64MMFR0_EL1[PARange]. It only affects 203 size of the address translated by the stage2 l 184 size of the address translated by the stage2 level (guest physical to 204 host physical address translations). 185 host physical address translations). 205 186 206 187 207 4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATUR 188 4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST 208 ---------------------------------------------- 189 ---------------------------------------------------------- 209 190 210 :Capability: basic, KVM_CAP_GET_MSR_FEATURES f 191 :Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST 211 :Architectures: x86 192 :Architectures: x86 212 :Type: system ioctl 193 :Type: system ioctl 213 :Parameters: struct kvm_msr_list (in/out) 194 :Parameters: struct kvm_msr_list (in/out) 214 :Returns: 0 on success; -1 on error 195 :Returns: 0 on success; -1 on error 215 196 216 Errors: 197 Errors: 217 198 218 ====== ================================= 199 ====== ============================================================ 219 EFAULT the msr index list cannot be read 200 EFAULT the msr index list cannot be read from or written to 220 E2BIG the msr index list is too big to 201 E2BIG the msr index list is too big to fit in the array specified by 221 the user. 202 the user. 222 ====== ================================= 203 ====== ============================================================ 223 204 224 :: 205 :: 225 206 226 struct kvm_msr_list { 207 struct kvm_msr_list { 227 __u32 nmsrs; /* number of msrs in entr 208 __u32 nmsrs; /* number of msrs in entries */ 228 __u32 indices[0]; 209 __u32 indices[0]; 229 }; 210 }; 230 211 231 The user fills in the size of the indices arra 212 The user fills in the size of the indices array in nmsrs, and in return 232 kvm adjusts nmsrs to reflect the actual number 213 kvm adjusts nmsrs to reflect the actual number of msrs and fills in the 233 indices array with their numbers. 214 indices array with their numbers. 234 215 235 KVM_GET_MSR_INDEX_LIST returns the guest msrs 216 KVM_GET_MSR_INDEX_LIST returns the guest msrs that are supported. The list 236 varies by kvm version and host processor, but 217 varies by kvm version and host processor, but does not change otherwise. 237 218 238 Note: if kvm indicates supports MCE (KVM_CAP_M 219 Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are 239 not returned in the MSR list, as different vcp 220 not returned in the MSR list, as different vcpus can have a different number 240 of banks, as set via the KVM_X86_SETUP_MCE ioc 221 of banks, as set via the KVM_X86_SETUP_MCE ioctl. 241 222 242 KVM_GET_MSR_FEATURE_INDEX_LIST returns the lis 223 KVM_GET_MSR_FEATURE_INDEX_LIST returns the list of MSRs that can be passed 243 to the KVM_GET_MSRS system ioctl. This lets u 224 to the KVM_GET_MSRS system ioctl. This lets userspace probe host capabilities 244 and processor features that are exposed via MS 225 and processor features that are exposed via MSRs (e.g., VMX capabilities). 245 This list also varies by kvm version and host 226 This list also varies by kvm version and host processor, but does not change 246 otherwise. 227 otherwise. 247 228 248 229 249 4.4 KVM_CHECK_EXTENSION 230 4.4 KVM_CHECK_EXTENSION 250 ----------------------- 231 ----------------------- 251 232 252 :Capability: basic, KVM_CAP_CHECK_EXTENSION_VM 233 :Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl 253 :Architectures: all 234 :Architectures: all 254 :Type: system ioctl, vm ioctl 235 :Type: system ioctl, vm ioctl 255 :Parameters: extension identifier (KVM_CAP_*) 236 :Parameters: extension identifier (KVM_CAP_*) 256 :Returns: 0 if unsupported; 1 (or some other p 237 :Returns: 0 if unsupported; 1 (or some other positive integer) if supported 257 238 258 The API allows the application to query about 239 The API allows the application to query about extensions to the core 259 kvm API. Userspace passes an extension identi 240 kvm API. Userspace passes an extension identifier (an integer) and 260 receives an integer that describes the extensi 241 receives an integer that describes the extension availability. 261 Generally 0 means no and 1 means yes, but some 242 Generally 0 means no and 1 means yes, but some extensions may report 262 additional information in the integer return v 243 additional information in the integer return value. 263 244 264 Based on their initialization different VMs ma 245 Based on their initialization different VMs may have different capabilities. 265 It is thus encouraged to use the vm ioctl to q 246 It is thus encouraged to use the vm ioctl to query for capabilities (available 266 with KVM_CAP_CHECK_EXTENSION_VM on the vm fd) 247 with KVM_CAP_CHECK_EXTENSION_VM on the vm fd) 267 248 268 4.5 KVM_GET_VCPU_MMAP_SIZE 249 4.5 KVM_GET_VCPU_MMAP_SIZE 269 -------------------------- 250 -------------------------- 270 251 271 :Capability: basic 252 :Capability: basic 272 :Architectures: all 253 :Architectures: all 273 :Type: system ioctl 254 :Type: system ioctl 274 :Parameters: none 255 :Parameters: none 275 :Returns: size of vcpu mmap area, in bytes 256 :Returns: size of vcpu mmap area, in bytes 276 257 277 The KVM_RUN ioctl (cf.) communicates with user 258 The KVM_RUN ioctl (cf.) communicates with userspace via a shared 278 memory region. This ioctl returns the size of 259 memory region. This ioctl returns the size of that region. See the 279 KVM_RUN documentation for details. 260 KVM_RUN documentation for details. 280 261 281 Besides the size of the KVM_RUN communication 262 Besides the size of the KVM_RUN communication region, other areas of 282 the VCPU file descriptor can be mmap-ed, inclu 263 the VCPU file descriptor can be mmap-ed, including: 283 264 284 - if KVM_CAP_COALESCED_MMIO is available, a pa 265 - if KVM_CAP_COALESCED_MMIO is available, a page at 285 KVM_COALESCED_MMIO_PAGE_OFFSET * PAGE_SIZE; 266 KVM_COALESCED_MMIO_PAGE_OFFSET * PAGE_SIZE; for historical reasons, 286 this page is included in the result of KVM_G 267 this page is included in the result of KVM_GET_VCPU_MMAP_SIZE. 287 KVM_CAP_COALESCED_MMIO is not documented yet 268 KVM_CAP_COALESCED_MMIO is not documented yet. 288 269 289 - if KVM_CAP_DIRTY_LOG_RING is available, a nu 270 - if KVM_CAP_DIRTY_LOG_RING is available, a number of pages at 290 KVM_DIRTY_LOG_PAGE_OFFSET * PAGE_SIZE. For 271 KVM_DIRTY_LOG_PAGE_OFFSET * PAGE_SIZE. For more information on 291 KVM_CAP_DIRTY_LOG_RING, see section 8.3. 272 KVM_CAP_DIRTY_LOG_RING, see section 8.3. 292 273 293 274 >> 275 4.6 KVM_SET_MEMORY_REGION >> 276 ------------------------- >> 277 >> 278 :Capability: basic >> 279 :Architectures: all >> 280 :Type: vm ioctl >> 281 :Parameters: struct kvm_memory_region (in) >> 282 :Returns: 0 on success, -1 on error >> 283 >> 284 This ioctl is obsolete and has been removed. >> 285 >> 286 294 4.7 KVM_CREATE_VCPU 287 4.7 KVM_CREATE_VCPU 295 ------------------- 288 ------------------- 296 289 297 :Capability: basic 290 :Capability: basic 298 :Architectures: all 291 :Architectures: all 299 :Type: vm ioctl 292 :Type: vm ioctl 300 :Parameters: vcpu id (apic id on x86) 293 :Parameters: vcpu id (apic id on x86) 301 :Returns: vcpu fd on success, -1 on error 294 :Returns: vcpu fd on success, -1 on error 302 295 303 This API adds a vcpu to a virtual machine. No 296 This API adds a vcpu to a virtual machine. No more than max_vcpus may be added. 304 The vcpu id is an integer in the range [0, max 297 The vcpu id is an integer in the range [0, max_vcpu_id). 305 298 306 The recommended max_vcpus value can be retriev 299 The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of 307 the KVM_CHECK_EXTENSION ioctl() at run-time. 300 the KVM_CHECK_EXTENSION ioctl() at run-time. 308 The maximum possible value for max_vcpus can b 301 The maximum possible value for max_vcpus can be retrieved using the 309 KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION i 302 KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time. 310 303 311 If the KVM_CAP_NR_VCPUS does not exist, you sh 304 If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4 312 cpus max. 305 cpus max. 313 If the KVM_CAP_MAX_VCPUS does not exist, you s 306 If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is 314 same as the value returned from KVM_CAP_NR_VCP 307 same as the value returned from KVM_CAP_NR_VCPUS. 315 308 316 The maximum possible value for max_vcpu_id can 309 The maximum possible value for max_vcpu_id can be retrieved using the 317 KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION 310 KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time. 318 311 319 If the KVM_CAP_MAX_VCPU_ID does not exist, you 312 If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id 320 is the same as the value returned from KVM_CAP 313 is the same as the value returned from KVM_CAP_MAX_VCPUS. 321 314 322 On powerpc using book3s_hv mode, the vcpus are 315 On powerpc using book3s_hv mode, the vcpus are mapped onto virtual 323 threads in one or more virtual CPU cores. (Th 316 threads in one or more virtual CPU cores. (This is because the 324 hardware requires all the hardware threads in 317 hardware requires all the hardware threads in a CPU core to be in the 325 same partition.) The KVM_CAP_PPC_SMT capabili 318 same partition.) The KVM_CAP_PPC_SMT capability indicates the number 326 of vcpus per virtual core (vcore). The vcore 319 of vcpus per virtual core (vcore). The vcore id is obtained by 327 dividing the vcpu id by the number of vcpus pe 320 dividing the vcpu id by the number of vcpus per vcore. The vcpus in a 328 given vcore will always be in the same physica 321 given vcore will always be in the same physical core as each other 329 (though that might be a different physical cor 322 (though that might be a different physical core from time to time). 330 Userspace can control the threading (SMT) mode 323 Userspace can control the threading (SMT) mode of the guest by its 331 allocation of vcpu ids. For example, if users 324 allocation of vcpu ids. For example, if userspace wants 332 single-threaded guest vcpus, it should make al 325 single-threaded guest vcpus, it should make all vcpu ids be a multiple 333 of the number of vcpus per vcore. 326 of the number of vcpus per vcore. 334 327 335 For virtual cpus that have been created with S 328 For virtual cpus that have been created with S390 user controlled virtual 336 machines, the resulting vcpu fd can be memory 329 machines, the resulting vcpu fd can be memory mapped at page offset 337 KVM_S390_SIE_PAGE_OFFSET in order to obtain a 330 KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual 338 cpu's hardware control block. 331 cpu's hardware control block. 339 332 340 333 341 4.8 KVM_GET_DIRTY_LOG (vm ioctl) 334 4.8 KVM_GET_DIRTY_LOG (vm ioctl) 342 -------------------------------- 335 -------------------------------- 343 336 344 :Capability: basic 337 :Capability: basic 345 :Architectures: all 338 :Architectures: all 346 :Type: vm ioctl 339 :Type: vm ioctl 347 :Parameters: struct kvm_dirty_log (in/out) 340 :Parameters: struct kvm_dirty_log (in/out) 348 :Returns: 0 on success, -1 on error 341 :Returns: 0 on success, -1 on error 349 342 350 :: 343 :: 351 344 352 /* for KVM_GET_DIRTY_LOG */ 345 /* for KVM_GET_DIRTY_LOG */ 353 struct kvm_dirty_log { 346 struct kvm_dirty_log { 354 __u32 slot; 347 __u32 slot; 355 __u32 padding; 348 __u32 padding; 356 union { 349 union { 357 void __user *dirty_bitmap; /* 350 void __user *dirty_bitmap; /* one bit per page */ 358 __u64 padding; 351 __u64 padding; 359 }; 352 }; 360 }; 353 }; 361 354 362 Given a memory slot, return a bitmap containin 355 Given a memory slot, return a bitmap containing any pages dirtied 363 since the last call to this ioctl. Bit 0 is t 356 since the last call to this ioctl. Bit 0 is the first page in the 364 memory slot. Ensure the entire structure is c 357 memory slot. Ensure the entire structure is cleared to avoid padding 365 issues. 358 issues. 366 359 367 If KVM_CAP_MULTI_ADDRESS_SPACE is available, b 360 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of slot field specifies 368 the address space for which you want to return 361 the address space for which you want to return the dirty bitmap. See 369 KVM_SET_USER_MEMORY_REGION for details on the 362 KVM_SET_USER_MEMORY_REGION for details on the usage of slot field. 370 363 371 The bits in the dirty bitmap are cleared befor 364 The bits in the dirty bitmap are cleared before the ioctl returns, unless 372 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. 365 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. For more information, 373 see the description of the capability. 366 see the description of the capability. 374 367 375 Note that the Xen shared_info page, if configu !! 368 Note that the Xen shared info page, if configured, shall always be assumed 376 to be dirty. KVM will not explicitly mark it s 369 to be dirty. KVM will not explicitly mark it such. 377 370 >> 371 4.9 KVM_SET_MEMORY_ALIAS >> 372 ------------------------ >> 373 >> 374 :Capability: basic >> 375 :Architectures: x86 >> 376 :Type: vm ioctl >> 377 :Parameters: struct kvm_memory_alias (in) >> 378 :Returns: 0 (success), -1 (error) >> 379 >> 380 This ioctl is obsolete and has been removed. >> 381 378 382 379 4.10 KVM_RUN 383 4.10 KVM_RUN 380 ------------ 384 ------------ 381 385 382 :Capability: basic 386 :Capability: basic 383 :Architectures: all 387 :Architectures: all 384 :Type: vcpu ioctl 388 :Type: vcpu ioctl 385 :Parameters: none 389 :Parameters: none 386 :Returns: 0 on success, -1 on error 390 :Returns: 0 on success, -1 on error 387 391 388 Errors: 392 Errors: 389 393 390 ======= ================================= 394 ======= ============================================================== 391 EINTR an unmasked signal is pending 395 EINTR an unmasked signal is pending 392 ENOEXEC the vcpu hasn't been initialized 396 ENOEXEC the vcpu hasn't been initialized or the guest tried to execute 393 instructions from device memory ( 397 instructions from device memory (arm64) 394 ENOSYS data abort outside memslots with 398 ENOSYS data abort outside memslots with no syndrome info and 395 KVM_CAP_ARM_NISV_TO_USER not enab 399 KVM_CAP_ARM_NISV_TO_USER not enabled (arm64) 396 EPERM SVE feature set but not finalized 400 EPERM SVE feature set but not finalized (arm64) 397 ======= ================================= 401 ======= ============================================================== 398 402 399 This ioctl is used to run a guest virtual cpu. 403 This ioctl is used to run a guest virtual cpu. While there are no 400 explicit parameters, there is an implicit para 404 explicit parameters, there is an implicit parameter block that can be 401 obtained by mmap()ing the vcpu fd at offset 0, 405 obtained by mmap()ing the vcpu fd at offset 0, with the size given by 402 KVM_GET_VCPU_MMAP_SIZE. The parameter block i 406 KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct 403 kvm_run' (see below). 407 kvm_run' (see below). 404 408 405 409 406 4.11 KVM_GET_REGS 410 4.11 KVM_GET_REGS 407 ----------------- 411 ----------------- 408 412 409 :Capability: basic 413 :Capability: basic 410 :Architectures: all except arm64 414 :Architectures: all except arm64 411 :Type: vcpu ioctl 415 :Type: vcpu ioctl 412 :Parameters: struct kvm_regs (out) 416 :Parameters: struct kvm_regs (out) 413 :Returns: 0 on success, -1 on error 417 :Returns: 0 on success, -1 on error 414 418 415 Reads the general purpose registers from the v 419 Reads the general purpose registers from the vcpu. 416 420 417 :: 421 :: 418 422 419 /* x86 */ 423 /* x86 */ 420 struct kvm_regs { 424 struct kvm_regs { 421 /* out (KVM_GET_REGS) / in (KVM_SET_RE 425 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ 422 __u64 rax, rbx, rcx, rdx; 426 __u64 rax, rbx, rcx, rdx; 423 __u64 rsi, rdi, rsp, rbp; 427 __u64 rsi, rdi, rsp, rbp; 424 __u64 r8, r9, r10, r11; 428 __u64 r8, r9, r10, r11; 425 __u64 r12, r13, r14, r15; 429 __u64 r12, r13, r14, r15; 426 __u64 rip, rflags; 430 __u64 rip, rflags; 427 }; 431 }; 428 432 429 /* mips */ 433 /* mips */ 430 struct kvm_regs { 434 struct kvm_regs { 431 /* out (KVM_GET_REGS) / in (KVM_SET_RE 435 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ 432 __u64 gpr[32]; 436 __u64 gpr[32]; 433 __u64 hi; 437 __u64 hi; 434 __u64 lo; 438 __u64 lo; 435 __u64 pc; 439 __u64 pc; 436 }; 440 }; 437 441 438 /* LoongArch */ << 439 struct kvm_regs { << 440 /* out (KVM_GET_REGS) / in (KVM_SET_RE << 441 unsigned long gpr[32]; << 442 unsigned long pc; << 443 }; << 444 << 445 442 446 4.12 KVM_SET_REGS 443 4.12 KVM_SET_REGS 447 ----------------- 444 ----------------- 448 445 449 :Capability: basic 446 :Capability: basic 450 :Architectures: all except arm64 447 :Architectures: all except arm64 451 :Type: vcpu ioctl 448 :Type: vcpu ioctl 452 :Parameters: struct kvm_regs (in) 449 :Parameters: struct kvm_regs (in) 453 :Returns: 0 on success, -1 on error 450 :Returns: 0 on success, -1 on error 454 451 455 Writes the general purpose registers into the 452 Writes the general purpose registers into the vcpu. 456 453 457 See KVM_GET_REGS for the data structure. 454 See KVM_GET_REGS for the data structure. 458 455 459 456 460 4.13 KVM_GET_SREGS 457 4.13 KVM_GET_SREGS 461 ------------------ 458 ------------------ 462 459 463 :Capability: basic 460 :Capability: basic 464 :Architectures: x86, ppc 461 :Architectures: x86, ppc 465 :Type: vcpu ioctl 462 :Type: vcpu ioctl 466 :Parameters: struct kvm_sregs (out) 463 :Parameters: struct kvm_sregs (out) 467 :Returns: 0 on success, -1 on error 464 :Returns: 0 on success, -1 on error 468 465 469 Reads special registers from the vcpu. 466 Reads special registers from the vcpu. 470 467 471 :: 468 :: 472 469 473 /* x86 */ 470 /* x86 */ 474 struct kvm_sregs { 471 struct kvm_sregs { 475 struct kvm_segment cs, ds, es, fs, gs, 472 struct kvm_segment cs, ds, es, fs, gs, ss; 476 struct kvm_segment tr, ldt; 473 struct kvm_segment tr, ldt; 477 struct kvm_dtable gdt, idt; 474 struct kvm_dtable gdt, idt; 478 __u64 cr0, cr2, cr3, cr4, cr8; 475 __u64 cr0, cr2, cr3, cr4, cr8; 479 __u64 efer; 476 __u64 efer; 480 __u64 apic_base; 477 __u64 apic_base; 481 __u64 interrupt_bitmap[(KVM_NR_INTERRU 478 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64]; 482 }; 479 }; 483 480 484 /* ppc -- see arch/powerpc/include/uapi/asm/ 481 /* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */ 485 482 486 interrupt_bitmap is a bitmap of pending extern 483 interrupt_bitmap is a bitmap of pending external interrupts. At most 487 one bit may be set. This interrupt has been a 484 one bit may be set. This interrupt has been acknowledged by the APIC 488 but not yet injected into the cpu core. 485 but not yet injected into the cpu core. 489 486 490 487 491 4.14 KVM_SET_SREGS 488 4.14 KVM_SET_SREGS 492 ------------------ 489 ------------------ 493 490 494 :Capability: basic 491 :Capability: basic 495 :Architectures: x86, ppc 492 :Architectures: x86, ppc 496 :Type: vcpu ioctl 493 :Type: vcpu ioctl 497 :Parameters: struct kvm_sregs (in) 494 :Parameters: struct kvm_sregs (in) 498 :Returns: 0 on success, -1 on error 495 :Returns: 0 on success, -1 on error 499 496 500 Writes special registers into the vcpu. See K 497 Writes special registers into the vcpu. See KVM_GET_SREGS for the 501 data structures. 498 data structures. 502 499 503 500 504 4.15 KVM_TRANSLATE 501 4.15 KVM_TRANSLATE 505 ------------------ 502 ------------------ 506 503 507 :Capability: basic 504 :Capability: basic 508 :Architectures: x86 505 :Architectures: x86 509 :Type: vcpu ioctl 506 :Type: vcpu ioctl 510 :Parameters: struct kvm_translation (in/out) 507 :Parameters: struct kvm_translation (in/out) 511 :Returns: 0 on success, -1 on error 508 :Returns: 0 on success, -1 on error 512 509 513 Translates a virtual address according to the 510 Translates a virtual address according to the vcpu's current address 514 translation mode. 511 translation mode. 515 512 516 :: 513 :: 517 514 518 struct kvm_translation { 515 struct kvm_translation { 519 /* in */ 516 /* in */ 520 __u64 linear_address; 517 __u64 linear_address; 521 518 522 /* out */ 519 /* out */ 523 __u64 physical_address; 520 __u64 physical_address; 524 __u8 valid; 521 __u8 valid; 525 __u8 writeable; 522 __u8 writeable; 526 __u8 usermode; 523 __u8 usermode; 527 __u8 pad[5]; 524 __u8 pad[5]; 528 }; 525 }; 529 526 530 527 531 4.16 KVM_INTERRUPT 528 4.16 KVM_INTERRUPT 532 ------------------ 529 ------------------ 533 530 534 :Capability: basic 531 :Capability: basic 535 :Architectures: x86, ppc, mips, riscv, loongar !! 532 :Architectures: x86, ppc, mips, riscv 536 :Type: vcpu ioctl 533 :Type: vcpu ioctl 537 :Parameters: struct kvm_interrupt (in) 534 :Parameters: struct kvm_interrupt (in) 538 :Returns: 0 on success, negative on failure. 535 :Returns: 0 on success, negative on failure. 539 536 540 Queues a hardware interrupt vector to be injec 537 Queues a hardware interrupt vector to be injected. 541 538 542 :: 539 :: 543 540 544 /* for KVM_INTERRUPT */ 541 /* for KVM_INTERRUPT */ 545 struct kvm_interrupt { 542 struct kvm_interrupt { 546 /* in */ 543 /* in */ 547 __u32 irq; 544 __u32 irq; 548 }; 545 }; 549 546 550 X86: 547 X86: 551 ^^^^ 548 ^^^^ 552 549 553 :Returns: 550 :Returns: 554 551 555 ========= ============================ 552 ========= =================================== 556 0 on success, 553 0 on success, 557 -EEXIST if an interrupt is already e 554 -EEXIST if an interrupt is already enqueued 558 -EINVAL the irq number is invalid 555 -EINVAL the irq number is invalid 559 -ENXIO if the PIC is in the kernel 556 -ENXIO if the PIC is in the kernel 560 -EFAULT if the pointer is invalid 557 -EFAULT if the pointer is invalid 561 ========= ============================ 558 ========= =================================== 562 559 563 Note 'irq' is an interrupt vector, not an inte 560 Note 'irq' is an interrupt vector, not an interrupt pin or line. This 564 ioctl is useful if the in-kernel PIC is not us 561 ioctl is useful if the in-kernel PIC is not used. 565 562 566 PPC: 563 PPC: 567 ^^^^ 564 ^^^^ 568 565 569 Queues an external interrupt to be injected. T !! 566 Queues an external interrupt to be injected. This ioctl is overleaded 570 with 3 different irq values: 567 with 3 different irq values: 571 568 572 a) KVM_INTERRUPT_SET 569 a) KVM_INTERRUPT_SET 573 570 574 This injects an edge type external interrup 571 This injects an edge type external interrupt into the guest once it's ready 575 to receive interrupts. When injected, the i 572 to receive interrupts. When injected, the interrupt is done. 576 573 577 b) KVM_INTERRUPT_UNSET 574 b) KVM_INTERRUPT_UNSET 578 575 579 This unsets any pending interrupt. 576 This unsets any pending interrupt. 580 577 581 Only available with KVM_CAP_PPC_UNSET_IRQ. 578 Only available with KVM_CAP_PPC_UNSET_IRQ. 582 579 583 c) KVM_INTERRUPT_SET_LEVEL 580 c) KVM_INTERRUPT_SET_LEVEL 584 581 585 This injects a level type external interrup 582 This injects a level type external interrupt into the guest context. The 586 interrupt stays pending until a specific io 583 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET 587 is triggered. 584 is triggered. 588 585 589 Only available with KVM_CAP_PPC_IRQ_LEVEL. 586 Only available with KVM_CAP_PPC_IRQ_LEVEL. 590 587 591 Note that any value for 'irq' other than the o 588 Note that any value for 'irq' other than the ones stated above is invalid 592 and incurs unexpected behavior. 589 and incurs unexpected behavior. 593 590 594 This is an asynchronous vcpu ioctl and can be 591 This is an asynchronous vcpu ioctl and can be invoked from any thread. 595 592 596 MIPS: 593 MIPS: 597 ^^^^^ 594 ^^^^^ 598 595 599 Queues an external interrupt to be injected in 596 Queues an external interrupt to be injected into the virtual CPU. A negative 600 interrupt number dequeues the interrupt. 597 interrupt number dequeues the interrupt. 601 598 602 This is an asynchronous vcpu ioctl and can be 599 This is an asynchronous vcpu ioctl and can be invoked from any thread. 603 600 604 RISC-V: 601 RISC-V: 605 ^^^^^^^ 602 ^^^^^^^ 606 603 607 Queues an external interrupt to be injected in !! 604 Queues an external interrupt to be injected into the virutal CPU. This ioctl 608 is overloaded with 2 different irq values: 605 is overloaded with 2 different irq values: 609 606 610 a) KVM_INTERRUPT_SET 607 a) KVM_INTERRUPT_SET 611 608 612 This sets external interrupt for a virtual 609 This sets external interrupt for a virtual CPU and it will receive 613 once it is ready. 610 once it is ready. 614 611 615 b) KVM_INTERRUPT_UNSET 612 b) KVM_INTERRUPT_UNSET 616 613 617 This clears pending external interrupt for 614 This clears pending external interrupt for a virtual CPU. 618 615 619 This is an asynchronous vcpu ioctl and can be 616 This is an asynchronous vcpu ioctl and can be invoked from any thread. 620 617 621 LOONGARCH: << 622 ^^^^^^^^^^ << 623 618 624 Queues an external interrupt to be injected in !! 619 4.17 KVM_DEBUG_GUEST 625 interrupt number dequeues the interrupt. !! 620 -------------------- 626 621 627 This is an asynchronous vcpu ioctl and can be !! 622 :Capability: basic >> 623 :Architectures: none >> 624 :Type: vcpu ioctl >> 625 :Parameters: none) >> 626 :Returns: -1 on error >> 627 >> 628 Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead. 628 629 629 630 630 4.18 KVM_GET_MSRS 631 4.18 KVM_GET_MSRS 631 ----------------- 632 ----------------- 632 633 633 :Capability: basic (vcpu), KVM_CAP_GET_MSR_FEA 634 :Capability: basic (vcpu), KVM_CAP_GET_MSR_FEATURES (system) 634 :Architectures: x86 635 :Architectures: x86 635 :Type: system ioctl, vcpu ioctl 636 :Type: system ioctl, vcpu ioctl 636 :Parameters: struct kvm_msrs (in/out) 637 :Parameters: struct kvm_msrs (in/out) 637 :Returns: number of msrs successfully returned 638 :Returns: number of msrs successfully returned; 638 -1 on error 639 -1 on error 639 640 640 When used as a system ioctl: 641 When used as a system ioctl: 641 Reads the values of MSR-based features that ar 642 Reads the values of MSR-based features that are available for the VM. This 642 is similar to KVM_GET_SUPPORTED_CPUID, but it 643 is similar to KVM_GET_SUPPORTED_CPUID, but it returns MSR indices and values. 643 The list of msr-based features can be obtained 644 The list of msr-based features can be obtained using KVM_GET_MSR_FEATURE_INDEX_LIST 644 in a system ioctl. 645 in a system ioctl. 645 646 646 When used as a vcpu ioctl: 647 When used as a vcpu ioctl: 647 Reads model-specific registers from the vcpu. 648 Reads model-specific registers from the vcpu. Supported msr indices can 648 be obtained using KVM_GET_MSR_INDEX_LIST in a 649 be obtained using KVM_GET_MSR_INDEX_LIST in a system ioctl. 649 650 650 :: 651 :: 651 652 652 struct kvm_msrs { 653 struct kvm_msrs { 653 __u32 nmsrs; /* number of msrs in entr 654 __u32 nmsrs; /* number of msrs in entries */ 654 __u32 pad; 655 __u32 pad; 655 656 656 struct kvm_msr_entry entries[0]; 657 struct kvm_msr_entry entries[0]; 657 }; 658 }; 658 659 659 struct kvm_msr_entry { 660 struct kvm_msr_entry { 660 __u32 index; 661 __u32 index; 661 __u32 reserved; 662 __u32 reserved; 662 __u64 data; 663 __u64 data; 663 }; 664 }; 664 665 665 Application code should set the 'nmsrs' member 666 Application code should set the 'nmsrs' member (which indicates the 666 size of the entries array) and the 'index' mem 667 size of the entries array) and the 'index' member of each array entry. 667 kvm will fill in the 'data' member. 668 kvm will fill in the 'data' member. 668 669 669 670 670 4.19 KVM_SET_MSRS 671 4.19 KVM_SET_MSRS 671 ----------------- 672 ----------------- 672 673 673 :Capability: basic 674 :Capability: basic 674 :Architectures: x86 675 :Architectures: x86 675 :Type: vcpu ioctl 676 :Type: vcpu ioctl 676 :Parameters: struct kvm_msrs (in) 677 :Parameters: struct kvm_msrs (in) 677 :Returns: number of msrs successfully set (see 678 :Returns: number of msrs successfully set (see below), -1 on error 678 679 679 Writes model-specific registers to the vcpu. 680 Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the 680 data structures. 681 data structures. 681 682 682 Application code should set the 'nmsrs' member 683 Application code should set the 'nmsrs' member (which indicates the 683 size of the entries array), and the 'index' an 684 size of the entries array), and the 'index' and 'data' members of each 684 array entry. 685 array entry. 685 686 686 It tries to set the MSRs in array entries[] on 687 It tries to set the MSRs in array entries[] one by one. If setting an MSR 687 fails, e.g., due to setting reserved bits, the 688 fails, e.g., due to setting reserved bits, the MSR isn't supported/emulated 688 by KVM, etc..., it stops processing the MSR li 689 by KVM, etc..., it stops processing the MSR list and returns the number of 689 MSRs that have been set successfully. 690 MSRs that have been set successfully. 690 691 691 692 692 4.20 KVM_SET_CPUID 693 4.20 KVM_SET_CPUID 693 ------------------ 694 ------------------ 694 695 695 :Capability: basic 696 :Capability: basic 696 :Architectures: x86 697 :Architectures: x86 697 :Type: vcpu ioctl 698 :Type: vcpu ioctl 698 :Parameters: struct kvm_cpuid (in) 699 :Parameters: struct kvm_cpuid (in) 699 :Returns: 0 on success, -1 on error 700 :Returns: 0 on success, -1 on error 700 701 701 Defines the vcpu responses to the cpuid instru 702 Defines the vcpu responses to the cpuid instruction. Applications 702 should use the KVM_SET_CPUID2 ioctl if availab 703 should use the KVM_SET_CPUID2 ioctl if available. 703 704 704 Caveat emptor: 705 Caveat emptor: 705 - If this IOCTL fails, KVM gives no guarante 706 - If this IOCTL fails, KVM gives no guarantees that previous valid CPUID 706 configuration (if there is) is not corrupt 707 configuration (if there is) is not corrupted. Userspace can get a copy 707 of the resulting CPUID configuration throu 708 of the resulting CPUID configuration through KVM_GET_CPUID2 in case. 708 - Using KVM_SET_CPUID{,2} after KVM_RUN, i.e 709 - Using KVM_SET_CPUID{,2} after KVM_RUN, i.e. changing the guest vCPU model 709 after running the guest, may cause guest i 710 after running the guest, may cause guest instability. 710 - Using heterogeneous CPUID configurations, 711 - Using heterogeneous CPUID configurations, modulo APIC IDs, topology, etc... 711 may cause guest instability. 712 may cause guest instability. 712 713 713 :: 714 :: 714 715 715 struct kvm_cpuid_entry { 716 struct kvm_cpuid_entry { 716 __u32 function; 717 __u32 function; 717 __u32 eax; 718 __u32 eax; 718 __u32 ebx; 719 __u32 ebx; 719 __u32 ecx; 720 __u32 ecx; 720 __u32 edx; 721 __u32 edx; 721 __u32 padding; 722 __u32 padding; 722 }; 723 }; 723 724 724 /* for KVM_SET_CPUID */ 725 /* for KVM_SET_CPUID */ 725 struct kvm_cpuid { 726 struct kvm_cpuid { 726 __u32 nent; 727 __u32 nent; 727 __u32 padding; 728 __u32 padding; 728 struct kvm_cpuid_entry entries[0]; 729 struct kvm_cpuid_entry entries[0]; 729 }; 730 }; 730 731 731 732 732 4.21 KVM_SET_SIGNAL_MASK 733 4.21 KVM_SET_SIGNAL_MASK 733 ------------------------ 734 ------------------------ 734 735 735 :Capability: basic 736 :Capability: basic 736 :Architectures: all 737 :Architectures: all 737 :Type: vcpu ioctl 738 :Type: vcpu ioctl 738 :Parameters: struct kvm_signal_mask (in) 739 :Parameters: struct kvm_signal_mask (in) 739 :Returns: 0 on success, -1 on error 740 :Returns: 0 on success, -1 on error 740 741 741 Defines which signals are blocked during execu 742 Defines which signals are blocked during execution of KVM_RUN. This 742 signal mask temporarily overrides the threads 743 signal mask temporarily overrides the threads signal mask. Any 743 unblocked signal received (except SIGKILL and 744 unblocked signal received (except SIGKILL and SIGSTOP, which retain 744 their traditional behaviour) will cause KVM_RU 745 their traditional behaviour) will cause KVM_RUN to return with -EINTR. 745 746 746 Note the signal will only be delivered if not 747 Note the signal will only be delivered if not blocked by the original 747 signal mask. 748 signal mask. 748 749 749 :: 750 :: 750 751 751 /* for KVM_SET_SIGNAL_MASK */ 752 /* for KVM_SET_SIGNAL_MASK */ 752 struct kvm_signal_mask { 753 struct kvm_signal_mask { 753 __u32 len; 754 __u32 len; 754 __u8 sigset[0]; 755 __u8 sigset[0]; 755 }; 756 }; 756 757 757 758 758 4.22 KVM_GET_FPU 759 4.22 KVM_GET_FPU 759 ---------------- 760 ---------------- 760 761 761 :Capability: basic 762 :Capability: basic 762 :Architectures: x86, loongarch !! 763 :Architectures: x86 763 :Type: vcpu ioctl 764 :Type: vcpu ioctl 764 :Parameters: struct kvm_fpu (out) 765 :Parameters: struct kvm_fpu (out) 765 :Returns: 0 on success, -1 on error 766 :Returns: 0 on success, -1 on error 766 767 767 Reads the floating point state from the vcpu. 768 Reads the floating point state from the vcpu. 768 769 769 :: 770 :: 770 771 771 /* x86: for KVM_GET_FPU and KVM_SET_FPU */ !! 772 /* for KVM_GET_FPU and KVM_SET_FPU */ 772 struct kvm_fpu { 773 struct kvm_fpu { 773 __u8 fpr[8][16]; 774 __u8 fpr[8][16]; 774 __u16 fcw; 775 __u16 fcw; 775 __u16 fsw; 776 __u16 fsw; 776 __u8 ftwx; /* in fxsave format */ 777 __u8 ftwx; /* in fxsave format */ 777 __u8 pad1; 778 __u8 pad1; 778 __u16 last_opcode; 779 __u16 last_opcode; 779 __u64 last_ip; 780 __u64 last_ip; 780 __u64 last_dp; 781 __u64 last_dp; 781 __u8 xmm[16][16]; 782 __u8 xmm[16][16]; 782 __u32 mxcsr; 783 __u32 mxcsr; 783 __u32 pad2; 784 __u32 pad2; 784 }; 785 }; 785 786 786 /* LoongArch: for KVM_GET_FPU and KVM_SET_FP << 787 struct kvm_fpu { << 788 __u32 fcsr; << 789 __u64 fcc; << 790 struct kvm_fpureg { << 791 __u64 val64[4]; << 792 }fpr[32]; << 793 }; << 794 << 795 787 796 4.23 KVM_SET_FPU 788 4.23 KVM_SET_FPU 797 ---------------- 789 ---------------- 798 790 799 :Capability: basic 791 :Capability: basic 800 :Architectures: x86, loongarch !! 792 :Architectures: x86 801 :Type: vcpu ioctl 793 :Type: vcpu ioctl 802 :Parameters: struct kvm_fpu (in) 794 :Parameters: struct kvm_fpu (in) 803 :Returns: 0 on success, -1 on error 795 :Returns: 0 on success, -1 on error 804 796 805 Writes the floating point state to the vcpu. 797 Writes the floating point state to the vcpu. 806 798 807 :: 799 :: 808 800 809 /* x86: for KVM_GET_FPU and KVM_SET_FPU */ !! 801 /* for KVM_GET_FPU and KVM_SET_FPU */ 810 struct kvm_fpu { 802 struct kvm_fpu { 811 __u8 fpr[8][16]; 803 __u8 fpr[8][16]; 812 __u16 fcw; 804 __u16 fcw; 813 __u16 fsw; 805 __u16 fsw; 814 __u8 ftwx; /* in fxsave format */ 806 __u8 ftwx; /* in fxsave format */ 815 __u8 pad1; 807 __u8 pad1; 816 __u16 last_opcode; 808 __u16 last_opcode; 817 __u64 last_ip; 809 __u64 last_ip; 818 __u64 last_dp; 810 __u64 last_dp; 819 __u8 xmm[16][16]; 811 __u8 xmm[16][16]; 820 __u32 mxcsr; 812 __u32 mxcsr; 821 __u32 pad2; 813 __u32 pad2; 822 }; 814 }; 823 815 824 /* LoongArch: for KVM_GET_FPU and KVM_SET_FP << 825 struct kvm_fpu { << 826 __u32 fcsr; << 827 __u64 fcc; << 828 struct kvm_fpureg { << 829 __u64 val64[4]; << 830 }fpr[32]; << 831 }; << 832 << 833 816 834 4.24 KVM_CREATE_IRQCHIP 817 4.24 KVM_CREATE_IRQCHIP 835 ----------------------- 818 ----------------------- 836 819 837 :Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQ 820 :Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390) 838 :Architectures: x86, arm64, s390 821 :Architectures: x86, arm64, s390 839 :Type: vm ioctl 822 :Type: vm ioctl 840 :Parameters: none 823 :Parameters: none 841 :Returns: 0 on success, -1 on error 824 :Returns: 0 on success, -1 on error 842 825 843 Creates an interrupt controller model in the k 826 Creates an interrupt controller model in the kernel. 844 On x86, creates a virtual ioapic, a virtual PI 827 On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up 845 future vcpus to have a local APIC. IRQ routin 828 future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both 846 PIC and IOAPIC; GSI 16-23 only go to the IOAPI 829 PIC and IOAPIC; GSI 16-23 only go to the IOAPIC. 847 On arm64, a GICv2 is created. Any other GIC ve 830 On arm64, a GICv2 is created. Any other GIC versions require the usage of 848 KVM_CREATE_DEVICE, which also supports creatin 831 KVM_CREATE_DEVICE, which also supports creating a GICv2. Using 849 KVM_CREATE_DEVICE is preferred over KVM_CREATE 832 KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2. 850 On s390, a dummy irq routing table is created. 833 On s390, a dummy irq routing table is created. 851 834 852 Note that on s390 the KVM_CAP_S390_IRQCHIP vm 835 Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled 853 before KVM_CREATE_IRQCHIP can be used. 836 before KVM_CREATE_IRQCHIP can be used. 854 837 855 838 856 4.25 KVM_IRQ_LINE 839 4.25 KVM_IRQ_LINE 857 ----------------- 840 ----------------- 858 841 859 :Capability: KVM_CAP_IRQCHIP 842 :Capability: KVM_CAP_IRQCHIP 860 :Architectures: x86, arm64 843 :Architectures: x86, arm64 861 :Type: vm ioctl 844 :Type: vm ioctl 862 :Parameters: struct kvm_irq_level 845 :Parameters: struct kvm_irq_level 863 :Returns: 0 on success, -1 on error 846 :Returns: 0 on success, -1 on error 864 847 865 Sets the level of a GSI input to the interrupt 848 Sets the level of a GSI input to the interrupt controller model in the kernel. 866 On some architectures it is required that an i 849 On some architectures it is required that an interrupt controller model has 867 been previously created with KVM_CREATE_IRQCHI 850 been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered 868 interrupts require the level to be set to 1 an 851 interrupts require the level to be set to 1 and then back to 0. 869 852 870 On real hardware, interrupt pins can be active 853 On real hardware, interrupt pins can be active-low or active-high. This 871 does not matter for the level field of struct 854 does not matter for the level field of struct kvm_irq_level: 1 always 872 means active (asserted), 0 means inactive (dea 855 means active (asserted), 0 means inactive (deasserted). 873 856 874 x86 allows the operating system to program the 857 x86 allows the operating system to program the interrupt polarity 875 (active-low/active-high) for level-triggered i 858 (active-low/active-high) for level-triggered interrupts, and KVM used 876 to consider the polarity. However, due to bit 859 to consider the polarity. However, due to bitrot in the handling of 877 active-low interrupts, the above convention is 860 active-low interrupts, the above convention is now valid on x86 too. 878 This is signaled by KVM_CAP_X86_IOAPIC_POLARIT 861 This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace 879 should not present interrupts to the guest as 862 should not present interrupts to the guest as active-low unless this 880 capability is present (or unless it is not usi 863 capability is present (or unless it is not using the in-kernel irqchip, 881 of course). 864 of course). 882 865 883 866 884 arm64 can signal an interrupt either at the CP 867 arm64 can signal an interrupt either at the CPU level, or at the 885 in-kernel irqchip (GIC), and for in-kernel irq 868 in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to 886 use PPIs designated for specific cpus. The ir 869 use PPIs designated for specific cpus. The irq field is interpreted 887 like this:: 870 like this:: 888 871 889 bits: | 31 ... 28 | 27 ... 24 | 23 ... 1 872 bits: | 31 ... 28 | 27 ... 24 | 23 ... 16 | 15 ... 0 | 890 field: | vcpu2_index | irq_type | vcpu_inde 873 field: | vcpu2_index | irq_type | vcpu_index | irq_id | 891 874 892 The irq_type field has the following values: 875 The irq_type field has the following values: 893 876 894 - KVM_ARM_IRQ_TYPE_CPU: !! 877 - irq_type[0]: 895 out-of-kernel GIC: irq_id 0 is 878 out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ 896 - KVM_ARM_IRQ_TYPE_SPI: !! 879 - irq_type[1]: 897 in-kernel GIC: SPI, irq_id betw 880 in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.) 898 (the vcpu_index field is ignore 881 (the vcpu_index field is ignored) 899 - KVM_ARM_IRQ_TYPE_PPI: !! 882 - irq_type[2]: 900 in-kernel GIC: PPI, irq_id betw 883 in-kernel GIC: PPI, irq_id between 16 and 31 (incl.) 901 884 902 (The irq_id field thus corresponds nicely to t 885 (The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs) 903 886 904 In both cases, level is used to assert/deasser 887 In both cases, level is used to assert/deassert the line. 905 888 906 When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supporte 889 When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supported, the target vcpu is 907 identified as (256 * vcpu2_index + vcpu_index) 890 identified as (256 * vcpu2_index + vcpu_index). Otherwise, vcpu2_index 908 must be zero. 891 must be zero. 909 892 910 Note that on arm64, the KVM_CAP_IRQCHIP capabi 893 Note that on arm64, the KVM_CAP_IRQCHIP capability only conditions 911 injection of interrupts for the in-kernel irqc 894 injection of interrupts for the in-kernel irqchip. KVM_IRQ_LINE can always 912 be used for a userspace interrupt controller. 895 be used for a userspace interrupt controller. 913 896 914 :: 897 :: 915 898 916 struct kvm_irq_level { 899 struct kvm_irq_level { 917 union { 900 union { 918 __u32 irq; /* GSI */ 901 __u32 irq; /* GSI */ 919 __s32 status; /* not used for 902 __s32 status; /* not used for KVM_IRQ_LEVEL */ 920 }; 903 }; 921 __u32 level; /* 0 or 1 */ 904 __u32 level; /* 0 or 1 */ 922 }; 905 }; 923 906 924 907 925 4.26 KVM_GET_IRQCHIP 908 4.26 KVM_GET_IRQCHIP 926 -------------------- 909 -------------------- 927 910 928 :Capability: KVM_CAP_IRQCHIP 911 :Capability: KVM_CAP_IRQCHIP 929 :Architectures: x86 912 :Architectures: x86 930 :Type: vm ioctl 913 :Type: vm ioctl 931 :Parameters: struct kvm_irqchip (in/out) 914 :Parameters: struct kvm_irqchip (in/out) 932 :Returns: 0 on success, -1 on error 915 :Returns: 0 on success, -1 on error 933 916 934 Reads the state of a kernel interrupt controll 917 Reads the state of a kernel interrupt controller created with 935 KVM_CREATE_IRQCHIP into a buffer provided by t 918 KVM_CREATE_IRQCHIP into a buffer provided by the caller. 936 919 937 :: 920 :: 938 921 939 struct kvm_irqchip { 922 struct kvm_irqchip { 940 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 923 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ 941 __u32 pad; 924 __u32 pad; 942 union { 925 union { 943 char dummy[512]; /* reserving 926 char dummy[512]; /* reserving space */ 944 struct kvm_pic_state pic; 927 struct kvm_pic_state pic; 945 struct kvm_ioapic_state ioapic 928 struct kvm_ioapic_state ioapic; 946 } chip; 929 } chip; 947 }; 930 }; 948 931 949 932 950 4.27 KVM_SET_IRQCHIP 933 4.27 KVM_SET_IRQCHIP 951 -------------------- 934 -------------------- 952 935 953 :Capability: KVM_CAP_IRQCHIP 936 :Capability: KVM_CAP_IRQCHIP 954 :Architectures: x86 937 :Architectures: x86 955 :Type: vm ioctl 938 :Type: vm ioctl 956 :Parameters: struct kvm_irqchip (in) 939 :Parameters: struct kvm_irqchip (in) 957 :Returns: 0 on success, -1 on error 940 :Returns: 0 on success, -1 on error 958 941 959 Sets the state of a kernel interrupt controlle 942 Sets the state of a kernel interrupt controller created with 960 KVM_CREATE_IRQCHIP from a buffer provided by t 943 KVM_CREATE_IRQCHIP from a buffer provided by the caller. 961 944 962 :: 945 :: 963 946 964 struct kvm_irqchip { 947 struct kvm_irqchip { 965 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 948 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ 966 __u32 pad; 949 __u32 pad; 967 union { 950 union { 968 char dummy[512]; /* reserving 951 char dummy[512]; /* reserving space */ 969 struct kvm_pic_state pic; 952 struct kvm_pic_state pic; 970 struct kvm_ioapic_state ioapic 953 struct kvm_ioapic_state ioapic; 971 } chip; 954 } chip; 972 }; 955 }; 973 956 974 957 975 4.28 KVM_XEN_HVM_CONFIG 958 4.28 KVM_XEN_HVM_CONFIG 976 ----------------------- 959 ----------------------- 977 960 978 :Capability: KVM_CAP_XEN_HVM 961 :Capability: KVM_CAP_XEN_HVM 979 :Architectures: x86 962 :Architectures: x86 980 :Type: vm ioctl 963 :Type: vm ioctl 981 :Parameters: struct kvm_xen_hvm_config (in) 964 :Parameters: struct kvm_xen_hvm_config (in) 982 :Returns: 0 on success, -1 on error 965 :Returns: 0 on success, -1 on error 983 966 984 Sets the MSR that the Xen HVM guest uses to in 967 Sets the MSR that the Xen HVM guest uses to initialize its hypercall 985 page, and provides the starting address and si 968 page, and provides the starting address and size of the hypercall 986 blobs in userspace. When the guest writes the 969 blobs in userspace. When the guest writes the MSR, kvm copies one 987 page of a blob (32- or 64-bit, depending on th 970 page of a blob (32- or 64-bit, depending on the vcpu mode) to guest 988 memory. 971 memory. 989 972 990 :: 973 :: 991 974 992 struct kvm_xen_hvm_config { 975 struct kvm_xen_hvm_config { 993 __u32 flags; 976 __u32 flags; 994 __u32 msr; 977 __u32 msr; 995 __u64 blob_addr_32; 978 __u64 blob_addr_32; 996 __u64 blob_addr_64; 979 __u64 blob_addr_64; 997 __u8 blob_size_32; 980 __u8 blob_size_32; 998 __u8 blob_size_64; 981 __u8 blob_size_64; 999 __u8 pad2[30]; 982 __u8 pad2[30]; 1000 }; 983 }; 1001 984 1002 If certain flags are returned from the KVM_CA !! 985 If the KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL flag is returned from the 1003 be set in the flags field of this ioctl: !! 986 KVM_CAP_XEN_HVM check, it may be set in the flags field of this ioctl. 1004 !! 987 This requests KVM to generate the contents of the hypercall page 1005 The KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL flag r !! 988 automatically; hypercalls will be intercepted and passed to userspace 1006 the contents of the hypercall page automatica !! 989 through KVM_EXIT_XEN. In this case, all of the blob size and address 1007 intercepted and passed to userspace through K !! 990 fields must be zero. 1008 case, all of the blob size and address fields << 1009 << 1010 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indic << 1011 will always use the KVM_XEN_HVM_EVTCHN_SEND i << 1012 channel interrupts rather than manipulating t << 1013 structures directly. This, in turn, may allow << 1014 such as intercepting the SCHEDOP_poll hyperca << 1015 spinlock operation for the guest. Userspace m << 1016 to deliver events if it was advertised, even << 1017 send this indication that it will always do s << 1018 991 1019 No other flags are currently valid in the str 992 No other flags are currently valid in the struct kvm_xen_hvm_config. 1020 993 1021 4.29 KVM_GET_CLOCK 994 4.29 KVM_GET_CLOCK 1022 ------------------ 995 ------------------ 1023 996 1024 :Capability: KVM_CAP_ADJUST_CLOCK 997 :Capability: KVM_CAP_ADJUST_CLOCK 1025 :Architectures: x86 998 :Architectures: x86 1026 :Type: vm ioctl 999 :Type: vm ioctl 1027 :Parameters: struct kvm_clock_data (out) 1000 :Parameters: struct kvm_clock_data (out) 1028 :Returns: 0 on success, -1 on error 1001 :Returns: 0 on success, -1 on error 1029 1002 1030 Gets the current timestamp of kvmclock as see 1003 Gets the current timestamp of kvmclock as seen by the current guest. In 1031 conjunction with KVM_SET_CLOCK, it is used to 1004 conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios 1032 such as migration. 1005 such as migration. 1033 1006 1034 When KVM_CAP_ADJUST_CLOCK is passed to KVM_CH 1007 When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the 1035 set of bits that KVM can return in struct kvm 1008 set of bits that KVM can return in struct kvm_clock_data's flag member. 1036 1009 1037 The following flags are defined: 1010 The following flags are defined: 1038 1011 1039 KVM_CLOCK_TSC_STABLE 1012 KVM_CLOCK_TSC_STABLE 1040 If set, the returned value is the exact kvm 1013 If set, the returned value is the exact kvmclock 1041 value seen by all VCPUs at the instant when 1014 value seen by all VCPUs at the instant when KVM_GET_CLOCK was called. 1042 If clear, the returned value is simply CLOC 1015 If clear, the returned value is simply CLOCK_MONOTONIC plus a constant 1043 offset; the offset can be modified with KVM 1016 offset; the offset can be modified with KVM_SET_CLOCK. KVM will try 1044 to make all VCPUs follow this clock, but th 1017 to make all VCPUs follow this clock, but the exact value read by each 1045 VCPU could differ, because the host TSC is 1018 VCPU could differ, because the host TSC is not stable. 1046 1019 1047 KVM_CLOCK_REALTIME 1020 KVM_CLOCK_REALTIME 1048 If set, the `realtime` field in the kvm_clo 1021 If set, the `realtime` field in the kvm_clock_data 1049 structure is populated with the value of th 1022 structure is populated with the value of the host's real time 1050 clocksource at the instant when KVM_GET_CLO 1023 clocksource at the instant when KVM_GET_CLOCK was called. If clear, 1051 the `realtime` field does not contain a val 1024 the `realtime` field does not contain a value. 1052 1025 1053 KVM_CLOCK_HOST_TSC 1026 KVM_CLOCK_HOST_TSC 1054 If set, the `host_tsc` field in the kvm_clo 1027 If set, the `host_tsc` field in the kvm_clock_data 1055 structure is populated with the value of th 1028 structure is populated with the value of the host's timestamp counter (TSC) 1056 at the instant when KVM_GET_CLOCK was calle 1029 at the instant when KVM_GET_CLOCK was called. If clear, the `host_tsc` field 1057 does not contain a value. 1030 does not contain a value. 1058 1031 1059 :: 1032 :: 1060 1033 1061 struct kvm_clock_data { 1034 struct kvm_clock_data { 1062 __u64 clock; /* kvmclock current val 1035 __u64 clock; /* kvmclock current value */ 1063 __u32 flags; 1036 __u32 flags; 1064 __u32 pad0; 1037 __u32 pad0; 1065 __u64 realtime; 1038 __u64 realtime; 1066 __u64 host_tsc; 1039 __u64 host_tsc; 1067 __u32 pad[4]; 1040 __u32 pad[4]; 1068 }; 1041 }; 1069 1042 1070 1043 1071 4.30 KVM_SET_CLOCK 1044 4.30 KVM_SET_CLOCK 1072 ------------------ 1045 ------------------ 1073 1046 1074 :Capability: KVM_CAP_ADJUST_CLOCK 1047 :Capability: KVM_CAP_ADJUST_CLOCK 1075 :Architectures: x86 1048 :Architectures: x86 1076 :Type: vm ioctl 1049 :Type: vm ioctl 1077 :Parameters: struct kvm_clock_data (in) 1050 :Parameters: struct kvm_clock_data (in) 1078 :Returns: 0 on success, -1 on error 1051 :Returns: 0 on success, -1 on error 1079 1052 1080 Sets the current timestamp of kvmclock to the 1053 Sets the current timestamp of kvmclock to the value specified in its parameter. 1081 In conjunction with KVM_GET_CLOCK, it is used 1054 In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios 1082 such as migration. 1055 such as migration. 1083 1056 1084 The following flags can be passed: 1057 The following flags can be passed: 1085 1058 1086 KVM_CLOCK_REALTIME 1059 KVM_CLOCK_REALTIME 1087 If set, KVM will compare the value of the ` 1060 If set, KVM will compare the value of the `realtime` field 1088 with the value of the host's real time cloc 1061 with the value of the host's real time clocksource at the instant when 1089 KVM_SET_CLOCK was called. The difference in 1062 KVM_SET_CLOCK was called. The difference in elapsed time is added to the final 1090 kvmclock value that will be provided to gue 1063 kvmclock value that will be provided to guests. 1091 1064 1092 Other flags returned by ``KVM_GET_CLOCK`` are 1065 Other flags returned by ``KVM_GET_CLOCK`` are accepted but ignored. 1093 1066 1094 :: 1067 :: 1095 1068 1096 struct kvm_clock_data { 1069 struct kvm_clock_data { 1097 __u64 clock; /* kvmclock current val 1070 __u64 clock; /* kvmclock current value */ 1098 __u32 flags; 1071 __u32 flags; 1099 __u32 pad0; 1072 __u32 pad0; 1100 __u64 realtime; 1073 __u64 realtime; 1101 __u64 host_tsc; 1074 __u64 host_tsc; 1102 __u32 pad[4]; 1075 __u32 pad[4]; 1103 }; 1076 }; 1104 1077 1105 1078 1106 4.31 KVM_GET_VCPU_EVENTS 1079 4.31 KVM_GET_VCPU_EVENTS 1107 ------------------------ 1080 ------------------------ 1108 1081 1109 :Capability: KVM_CAP_VCPU_EVENTS 1082 :Capability: KVM_CAP_VCPU_EVENTS 1110 :Extended by: KVM_CAP_INTR_SHADOW 1083 :Extended by: KVM_CAP_INTR_SHADOW 1111 :Architectures: x86, arm64 1084 :Architectures: x86, arm64 1112 :Type: vcpu ioctl 1085 :Type: vcpu ioctl 1113 :Parameters: struct kvm_vcpu_events (out) !! 1086 :Parameters: struct kvm_vcpu_event (out) 1114 :Returns: 0 on success, -1 on error 1087 :Returns: 0 on success, -1 on error 1115 1088 1116 X86: 1089 X86: 1117 ^^^^ 1090 ^^^^ 1118 1091 1119 Gets currently pending exceptions, interrupts 1092 Gets currently pending exceptions, interrupts, and NMIs as well as related 1120 states of the vcpu. 1093 states of the vcpu. 1121 1094 1122 :: 1095 :: 1123 1096 1124 struct kvm_vcpu_events { 1097 struct kvm_vcpu_events { 1125 struct { 1098 struct { 1126 __u8 injected; 1099 __u8 injected; 1127 __u8 nr; 1100 __u8 nr; 1128 __u8 has_error_code; 1101 __u8 has_error_code; 1129 __u8 pending; 1102 __u8 pending; 1130 __u32 error_code; 1103 __u32 error_code; 1131 } exception; 1104 } exception; 1132 struct { 1105 struct { 1133 __u8 injected; 1106 __u8 injected; 1134 __u8 nr; 1107 __u8 nr; 1135 __u8 soft; 1108 __u8 soft; 1136 __u8 shadow; 1109 __u8 shadow; 1137 } interrupt; 1110 } interrupt; 1138 struct { 1111 struct { 1139 __u8 injected; 1112 __u8 injected; 1140 __u8 pending; 1113 __u8 pending; 1141 __u8 masked; 1114 __u8 masked; 1142 __u8 pad; 1115 __u8 pad; 1143 } nmi; 1116 } nmi; 1144 __u32 sipi_vector; 1117 __u32 sipi_vector; 1145 __u32 flags; 1118 __u32 flags; 1146 struct { 1119 struct { 1147 __u8 smm; 1120 __u8 smm; 1148 __u8 pending; 1121 __u8 pending; 1149 __u8 smm_inside_nmi; 1122 __u8 smm_inside_nmi; 1150 __u8 latched_init; 1123 __u8 latched_init; 1151 } smi; 1124 } smi; 1152 __u8 reserved[27]; 1125 __u8 reserved[27]; 1153 __u8 exception_has_payload; 1126 __u8 exception_has_payload; 1154 __u64 exception_payload; 1127 __u64 exception_payload; 1155 }; 1128 }; 1156 1129 1157 The following bits are defined in the flags f 1130 The following bits are defined in the flags field: 1158 1131 1159 - KVM_VCPUEVENT_VALID_SHADOW may be set to si 1132 - KVM_VCPUEVENT_VALID_SHADOW may be set to signal that 1160 interrupt.shadow contains a valid state. 1133 interrupt.shadow contains a valid state. 1161 1134 1162 - KVM_VCPUEVENT_VALID_SMM may be set to signa 1135 - KVM_VCPUEVENT_VALID_SMM may be set to signal that smi contains a 1163 valid state. 1136 valid state. 1164 1137 1165 - KVM_VCPUEVENT_VALID_PAYLOAD may be set to s 1138 - KVM_VCPUEVENT_VALID_PAYLOAD may be set to signal that the 1166 exception_has_payload, exception_payload, a 1139 exception_has_payload, exception_payload, and exception.pending 1167 fields contain a valid state. This bit will 1140 fields contain a valid state. This bit will be set whenever 1168 KVM_CAP_EXCEPTION_PAYLOAD is enabled. 1141 KVM_CAP_EXCEPTION_PAYLOAD is enabled. 1169 1142 1170 - KVM_VCPUEVENT_VALID_TRIPLE_FAULT may be set << 1171 triple_fault_pending field contains a valid << 1172 be set whenever KVM_CAP_X86_TRIPLE_FAULT_EV << 1173 << 1174 ARM64: 1143 ARM64: 1175 ^^^^^^ 1144 ^^^^^^ 1176 1145 1177 If the guest accesses a device that is being 1146 If the guest accesses a device that is being emulated by the host kernel in 1178 such a way that a real device would generate 1147 such a way that a real device would generate a physical SError, KVM may make 1179 a virtual SError pending for that VCPU. This 1148 a virtual SError pending for that VCPU. This system error interrupt remains 1180 pending until the guest takes the exception b 1149 pending until the guest takes the exception by unmasking PSTATE.A. 1181 1150 1182 Running the VCPU may cause it to take a pendi 1151 Running the VCPU may cause it to take a pending SError, or make an access that 1183 causes an SError to become pending. The event 1152 causes an SError to become pending. The event's description is only valid while 1184 the VPCU is not running. 1153 the VPCU is not running. 1185 1154 1186 This API provides a way to read and write the 1155 This API provides a way to read and write the pending 'event' state that is not 1187 visible to the guest. To save, restore or mig 1156 visible to the guest. To save, restore or migrate a VCPU the struct representing 1188 the state can be read then written using this 1157 the state can be read then written using this GET/SET API, along with the other 1189 guest-visible registers. It is not possible t 1158 guest-visible registers. It is not possible to 'cancel' an SError that has been 1190 made pending. 1159 made pending. 1191 1160 1192 A device being emulated in user-space may als 1161 A device being emulated in user-space may also wish to generate an SError. To do 1193 this the events structure can be populated by 1162 this the events structure can be populated by user-space. The current state 1194 should be read first, to ensure no existing S 1163 should be read first, to ensure no existing SError is pending. If an existing 1195 SError is pending, the architecture's 'Multip 1164 SError is pending, the architecture's 'Multiple SError interrupts' rules should 1196 be followed. (2.5.3 of DDI0587.a "ARM Reliabi 1165 be followed. (2.5.3 of DDI0587.a "ARM Reliability, Availability, and 1197 Serviceability (RAS) Specification"). 1166 Serviceability (RAS) Specification"). 1198 1167 1199 SError exceptions always have an ESR value. S 1168 SError exceptions always have an ESR value. Some CPUs have the ability to 1200 specify what the virtual SError's ESR value s 1169 specify what the virtual SError's ESR value should be. These systems will 1201 advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In t 1170 advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In this case exception.has_esr will 1202 always have a non-zero value when read, and t 1171 always have a non-zero value when read, and the agent making an SError pending 1203 should specify the ISS field in the lower 24 1172 should specify the ISS field in the lower 24 bits of exception.serror_esr. If 1204 the system supports KVM_CAP_ARM_INJECT_SERROR 1173 the system supports KVM_CAP_ARM_INJECT_SERROR_ESR, but user-space sets the events 1205 with exception.has_esr as zero, KVM will choo 1174 with exception.has_esr as zero, KVM will choose an ESR. 1206 1175 1207 Specifying exception.has_esr on a system that 1176 Specifying exception.has_esr on a system that does not support it will return 1208 -EINVAL. Setting anything other than the lowe 1177 -EINVAL. Setting anything other than the lower 24bits of exception.serror_esr 1209 will return -EINVAL. 1178 will return -EINVAL. 1210 1179 1211 It is not possible to read back a pending ext 1180 It is not possible to read back a pending external abort (injected via 1212 KVM_SET_VCPU_EVENTS or otherwise) because suc 1181 KVM_SET_VCPU_EVENTS or otherwise) because such an exception is always delivered 1213 directly to the virtual CPU). 1182 directly to the virtual CPU). 1214 1183 1215 :: 1184 :: 1216 1185 1217 struct kvm_vcpu_events { 1186 struct kvm_vcpu_events { 1218 struct { 1187 struct { 1219 __u8 serror_pending; 1188 __u8 serror_pending; 1220 __u8 serror_has_esr; 1189 __u8 serror_has_esr; 1221 __u8 ext_dabt_pending; 1190 __u8 ext_dabt_pending; 1222 /* Align it to 8 bytes */ 1191 /* Align it to 8 bytes */ 1223 __u8 pad[5]; 1192 __u8 pad[5]; 1224 __u64 serror_esr; 1193 __u64 serror_esr; 1225 } exception; 1194 } exception; 1226 __u32 reserved[12]; 1195 __u32 reserved[12]; 1227 }; 1196 }; 1228 1197 1229 4.32 KVM_SET_VCPU_EVENTS 1198 4.32 KVM_SET_VCPU_EVENTS 1230 ------------------------ 1199 ------------------------ 1231 1200 1232 :Capability: KVM_CAP_VCPU_EVENTS 1201 :Capability: KVM_CAP_VCPU_EVENTS 1233 :Extended by: KVM_CAP_INTR_SHADOW 1202 :Extended by: KVM_CAP_INTR_SHADOW 1234 :Architectures: x86, arm64 1203 :Architectures: x86, arm64 1235 :Type: vcpu ioctl 1204 :Type: vcpu ioctl 1236 :Parameters: struct kvm_vcpu_events (in) !! 1205 :Parameters: struct kvm_vcpu_event (in) 1237 :Returns: 0 on success, -1 on error 1206 :Returns: 0 on success, -1 on error 1238 1207 1239 X86: 1208 X86: 1240 ^^^^ 1209 ^^^^ 1241 1210 1242 Set pending exceptions, interrupts, and NMIs 1211 Set pending exceptions, interrupts, and NMIs as well as related states of the 1243 vcpu. 1212 vcpu. 1244 1213 1245 See KVM_GET_VCPU_EVENTS for the data structur 1214 See KVM_GET_VCPU_EVENTS for the data structure. 1246 1215 1247 Fields that may be modified asynchronously by 1216 Fields that may be modified asynchronously by running VCPUs can be excluded 1248 from the update. These fields are nmi.pending 1217 from the update. These fields are nmi.pending, sipi_vector, smi.smm, 1249 smi.pending. Keep the corresponding bits in t 1218 smi.pending. Keep the corresponding bits in the flags field cleared to 1250 suppress overwriting the current in-kernel st 1219 suppress overwriting the current in-kernel state. The bits are: 1251 1220 1252 =============================== ============ 1221 =============================== ================================== 1253 KVM_VCPUEVENT_VALID_NMI_PENDING transfer nmi 1222 KVM_VCPUEVENT_VALID_NMI_PENDING transfer nmi.pending to the kernel 1254 KVM_VCPUEVENT_VALID_SIPI_VECTOR transfer sip 1223 KVM_VCPUEVENT_VALID_SIPI_VECTOR transfer sipi_vector 1255 KVM_VCPUEVENT_VALID_SMM transfer the 1224 KVM_VCPUEVENT_VALID_SMM transfer the smi sub-struct. 1256 =============================== ============ 1225 =============================== ================================== 1257 1226 1258 If KVM_CAP_INTR_SHADOW is available, KVM_VCPU 1227 If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in 1259 the flags field to signal that interrupt.shad 1228 the flags field to signal that interrupt.shadow contains a valid state and 1260 shall be written into the VCPU. 1229 shall be written into the VCPU. 1261 1230 1262 KVM_VCPUEVENT_VALID_SMM can only be set if KV 1231 KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available. 1263 1232 1264 If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_ 1233 If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_VCPUEVENT_VALID_PAYLOAD 1265 can be set in the flags field to signal that 1234 can be set in the flags field to signal that the 1266 exception_has_payload, exception_payload, and 1235 exception_has_payload, exception_payload, and exception.pending fields 1267 contain a valid state and shall be written in 1236 contain a valid state and shall be written into the VCPU. 1268 1237 1269 If KVM_CAP_X86_TRIPLE_FAULT_EVENT is enabled, << 1270 can be set in flags field to signal that the << 1271 a valid state and shall be written into the V << 1272 << 1273 ARM64: 1238 ARM64: 1274 ^^^^^^ 1239 ^^^^^^ 1275 1240 1276 User space may need to inject several types o 1241 User space may need to inject several types of events to the guest. 1277 1242 1278 Set the pending SError exception state for th 1243 Set the pending SError exception state for this VCPU. It is not possible to 1279 'cancel' an Serror that has been made pending 1244 'cancel' an Serror that has been made pending. 1280 1245 1281 If the guest performed an access to I/O memor 1246 If the guest performed an access to I/O memory which could not be handled by 1282 userspace, for example because of missing ins 1247 userspace, for example because of missing instruction syndrome decode 1283 information or because there is no device map 1248 information or because there is no device mapped at the accessed IPA, then 1284 userspace can ask the kernel to inject an ext 1249 userspace can ask the kernel to inject an external abort using the address 1285 from the exiting fault on the VCPU. It is a p 1250 from the exiting fault on the VCPU. It is a programming error to set 1286 ext_dabt_pending after an exit which was not 1251 ext_dabt_pending after an exit which was not either KVM_EXIT_MMIO or 1287 KVM_EXIT_ARM_NISV. This feature is only avail 1252 KVM_EXIT_ARM_NISV. This feature is only available if the system supports 1288 KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper 1253 KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper which provides commonality in 1289 how userspace reports accesses for the above 1254 how userspace reports accesses for the above cases to guests, across different 1290 userspace implementations. Nevertheless, user 1255 userspace implementations. Nevertheless, userspace can still emulate all Arm 1291 exceptions by manipulating individual registe 1256 exceptions by manipulating individual registers using the KVM_SET_ONE_REG API. 1292 1257 1293 See KVM_GET_VCPU_EVENTS for the data structur 1258 See KVM_GET_VCPU_EVENTS for the data structure. 1294 1259 1295 1260 1296 4.33 KVM_GET_DEBUGREGS 1261 4.33 KVM_GET_DEBUGREGS 1297 ---------------------- 1262 ---------------------- 1298 1263 1299 :Capability: KVM_CAP_DEBUGREGS 1264 :Capability: KVM_CAP_DEBUGREGS 1300 :Architectures: x86 1265 :Architectures: x86 1301 :Type: vm ioctl 1266 :Type: vm ioctl 1302 :Parameters: struct kvm_debugregs (out) 1267 :Parameters: struct kvm_debugregs (out) 1303 :Returns: 0 on success, -1 on error 1268 :Returns: 0 on success, -1 on error 1304 1269 1305 Reads debug registers from the vcpu. 1270 Reads debug registers from the vcpu. 1306 1271 1307 :: 1272 :: 1308 1273 1309 struct kvm_debugregs { 1274 struct kvm_debugregs { 1310 __u64 db[4]; 1275 __u64 db[4]; 1311 __u64 dr6; 1276 __u64 dr6; 1312 __u64 dr7; 1277 __u64 dr7; 1313 __u64 flags; 1278 __u64 flags; 1314 __u64 reserved[9]; 1279 __u64 reserved[9]; 1315 }; 1280 }; 1316 1281 1317 1282 1318 4.34 KVM_SET_DEBUGREGS 1283 4.34 KVM_SET_DEBUGREGS 1319 ---------------------- 1284 ---------------------- 1320 1285 1321 :Capability: KVM_CAP_DEBUGREGS 1286 :Capability: KVM_CAP_DEBUGREGS 1322 :Architectures: x86 1287 :Architectures: x86 1323 :Type: vm ioctl 1288 :Type: vm ioctl 1324 :Parameters: struct kvm_debugregs (in) 1289 :Parameters: struct kvm_debugregs (in) 1325 :Returns: 0 on success, -1 on error 1290 :Returns: 0 on success, -1 on error 1326 1291 1327 Writes debug registers into the vcpu. 1292 Writes debug registers into the vcpu. 1328 1293 1329 See KVM_GET_DEBUGREGS for the data structure. 1294 See KVM_GET_DEBUGREGS for the data structure. The flags field is unused 1330 yet and must be cleared on entry. 1295 yet and must be cleared on entry. 1331 1296 1332 1297 1333 4.35 KVM_SET_USER_MEMORY_REGION 1298 4.35 KVM_SET_USER_MEMORY_REGION 1334 ------------------------------- 1299 ------------------------------- 1335 1300 1336 :Capability: KVM_CAP_USER_MEMORY 1301 :Capability: KVM_CAP_USER_MEMORY 1337 :Architectures: all 1302 :Architectures: all 1338 :Type: vm ioctl 1303 :Type: vm ioctl 1339 :Parameters: struct kvm_userspace_memory_regi 1304 :Parameters: struct kvm_userspace_memory_region (in) 1340 :Returns: 0 on success, -1 on error 1305 :Returns: 0 on success, -1 on error 1341 1306 1342 :: 1307 :: 1343 1308 1344 struct kvm_userspace_memory_region { 1309 struct kvm_userspace_memory_region { 1345 __u32 slot; 1310 __u32 slot; 1346 __u32 flags; 1311 __u32 flags; 1347 __u64 guest_phys_addr; 1312 __u64 guest_phys_addr; 1348 __u64 memory_size; /* bytes */ 1313 __u64 memory_size; /* bytes */ 1349 __u64 userspace_addr; /* start of the 1314 __u64 userspace_addr; /* start of the userspace allocated memory */ 1350 }; 1315 }; 1351 1316 1352 /* for kvm_userspace_memory_region::flags * !! 1317 /* for kvm_memory_region::flags */ 1353 #define KVM_MEM_LOG_DIRTY_PAGES (1UL 1318 #define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0) 1354 #define KVM_MEM_READONLY (1UL << 1) 1319 #define KVM_MEM_READONLY (1UL << 1) 1355 1320 1356 This ioctl allows the user to create, modify 1321 This ioctl allows the user to create, modify or delete a guest physical 1357 memory slot. Bits 0-15 of "slot" specify the 1322 memory slot. Bits 0-15 of "slot" specify the slot id and this value 1358 should be less than the maximum number of use 1323 should be less than the maximum number of user memory slots supported per 1359 VM. The maximum allowed slots can be queried 1324 VM. The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS. 1360 Slots may not overlap in guest physical addre 1325 Slots may not overlap in guest physical address space. 1361 1326 1362 If KVM_CAP_MULTI_ADDRESS_SPACE is available, 1327 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot" 1363 specifies the address space which is being mo 1328 specifies the address space which is being modified. They must be 1364 less than the value that KVM_CHECK_EXTENSION 1329 less than the value that KVM_CHECK_EXTENSION returns for the 1365 KVM_CAP_MULTI_ADDRESS_SPACE capability. Slot 1330 KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces 1366 are unrelated; the restriction on overlapping 1331 are unrelated; the restriction on overlapping slots only applies within 1367 each address space. 1332 each address space. 1368 1333 1369 Deleting a slot is done by passing zero for m 1334 Deleting a slot is done by passing zero for memory_size. When changing 1370 an existing slot, it may be moved in the gues 1335 an existing slot, it may be moved in the guest physical memory space, 1371 or its flags may be modified, but it may not 1336 or its flags may be modified, but it may not be resized. 1372 1337 1373 Memory for the region is taken starting at th 1338 Memory for the region is taken starting at the address denoted by the 1374 field userspace_addr, which must point at use 1339 field userspace_addr, which must point at user addressable memory for 1375 the entire memory slot size. Any object may 1340 the entire memory slot size. Any object may back this memory, including 1376 anonymous memory, ordinary files, and hugetlb 1341 anonymous memory, ordinary files, and hugetlbfs. 1377 1342 1378 On architectures that support a form of addre 1343 On architectures that support a form of address tagging, userspace_addr must 1379 be an untagged address. 1344 be an untagged address. 1380 1345 1381 It is recommended that the lower 21 bits of g 1346 It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr 1382 be identical. This allows large pages in the 1347 be identical. This allows large pages in the guest to be backed by large 1383 pages in the host. 1348 pages in the host. 1384 1349 1385 The flags field supports two flags: KVM_MEM_L 1350 The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and 1386 KVM_MEM_READONLY. The former can be set to i 1351 KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of 1387 writes to memory within the slot. See KVM_GE 1352 writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to 1388 use it. The latter can be set, if KVM_CAP_RE 1353 use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it, 1389 to make a new slot read-only. In this case, 1354 to make a new slot read-only. In this case, writes to this memory will be 1390 posted to userspace as KVM_EXIT_MMIO exits. 1355 posted to userspace as KVM_EXIT_MMIO exits. 1391 1356 1392 When the KVM_CAP_SYNC_MMU capability is avail 1357 When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of 1393 the memory region are automatically reflected 1358 the memory region are automatically reflected into the guest. For example, an 1394 mmap() that affects the region will be made v 1359 mmap() that affects the region will be made visible immediately. Another 1395 example is madvise(MADV_DROP). 1360 example is madvise(MADV_DROP). 1396 1361 1397 Note: On arm64, a write generated by the page !! 1362 It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl. 1398 the Access and Dirty flags, for example) neve !! 1363 The KVM_SET_MEMORY_REGION does not allow fine grained control over memory 1399 KVM_EXIT_MMIO exit when the slot has the KVM_ !! 1364 allocation and is deprecated. 1400 is because KVM cannot provide the data that w << 1401 page-table walker, making it impossible to em << 1402 Instead, an abort (data abort if the cause of << 1403 was a load or a store, instruction abort if i << 1404 fetch) is injected in the guest. << 1405 << 1406 S390: << 1407 ^^^^^ << 1408 1365 1409 Returns -EINVAL if the VM has the KVM_VM_S390 << 1410 Returns -EINVAL if called on a protected VM. << 1411 1366 1412 4.36 KVM_SET_TSS_ADDR 1367 4.36 KVM_SET_TSS_ADDR 1413 --------------------- 1368 --------------------- 1414 1369 1415 :Capability: KVM_CAP_SET_TSS_ADDR 1370 :Capability: KVM_CAP_SET_TSS_ADDR 1416 :Architectures: x86 1371 :Architectures: x86 1417 :Type: vm ioctl 1372 :Type: vm ioctl 1418 :Parameters: unsigned long tss_address (in) 1373 :Parameters: unsigned long tss_address (in) 1419 :Returns: 0 on success, -1 on error 1374 :Returns: 0 on success, -1 on error 1420 1375 1421 This ioctl defines the physical address of a 1376 This ioctl defines the physical address of a three-page region in the guest 1422 physical address space. The region must be w 1377 physical address space. The region must be within the first 4GB of the 1423 guest physical address space and must not con 1378 guest physical address space and must not conflict with any memory slot 1424 or any mmio address. The guest may malfuncti 1379 or any mmio address. The guest may malfunction if it accesses this memory 1425 region. 1380 region. 1426 1381 1427 This ioctl is required on Intel-based hosts. 1382 This ioctl is required on Intel-based hosts. This is needed on Intel hardware 1428 because of a quirk in the virtualization impl 1383 because of a quirk in the virtualization implementation (see the internals 1429 documentation when it pops into existence). 1384 documentation when it pops into existence). 1430 1385 1431 1386 1432 4.37 KVM_ENABLE_CAP 1387 4.37 KVM_ENABLE_CAP 1433 ------------------- 1388 ------------------- 1434 1389 1435 :Capability: KVM_CAP_ENABLE_CAP 1390 :Capability: KVM_CAP_ENABLE_CAP 1436 :Architectures: mips, ppc, s390, x86, loongar !! 1391 :Architectures: mips, ppc, s390, x86 1437 :Type: vcpu ioctl 1392 :Type: vcpu ioctl 1438 :Parameters: struct kvm_enable_cap (in) 1393 :Parameters: struct kvm_enable_cap (in) 1439 :Returns: 0 on success; -1 on error 1394 :Returns: 0 on success; -1 on error 1440 1395 1441 :Capability: KVM_CAP_ENABLE_CAP_VM 1396 :Capability: KVM_CAP_ENABLE_CAP_VM 1442 :Architectures: all 1397 :Architectures: all 1443 :Type: vm ioctl 1398 :Type: vm ioctl 1444 :Parameters: struct kvm_enable_cap (in) 1399 :Parameters: struct kvm_enable_cap (in) 1445 :Returns: 0 on success; -1 on error 1400 :Returns: 0 on success; -1 on error 1446 1401 1447 .. note:: 1402 .. note:: 1448 1403 1449 Not all extensions are enabled by default. 1404 Not all extensions are enabled by default. Using this ioctl the application 1450 can enable an extension, making it availab 1405 can enable an extension, making it available to the guest. 1451 1406 1452 On systems that do not support this ioctl, it 1407 On systems that do not support this ioctl, it always fails. On systems that 1453 do support it, it only works for extensions t 1408 do support it, it only works for extensions that are supported for enablement. 1454 1409 1455 To check if a capability can be enabled, the 1410 To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should 1456 be used. 1411 be used. 1457 1412 1458 :: 1413 :: 1459 1414 1460 struct kvm_enable_cap { 1415 struct kvm_enable_cap { 1461 /* in */ 1416 /* in */ 1462 __u32 cap; 1417 __u32 cap; 1463 1418 1464 The capability that is supposed to get enable 1419 The capability that is supposed to get enabled. 1465 1420 1466 :: 1421 :: 1467 1422 1468 __u32 flags; 1423 __u32 flags; 1469 1424 1470 A bitfield indicating future enhancements. Ha 1425 A bitfield indicating future enhancements. Has to be 0 for now. 1471 1426 1472 :: 1427 :: 1473 1428 1474 __u64 args[4]; 1429 __u64 args[4]; 1475 1430 1476 Arguments for enabling a feature. If a featur 1431 Arguments for enabling a feature. If a feature needs initial values to 1477 function properly, this is the place to put t 1432 function properly, this is the place to put them. 1478 1433 1479 :: 1434 :: 1480 1435 1481 __u8 pad[64]; 1436 __u8 pad[64]; 1482 }; 1437 }; 1483 1438 1484 The vcpu ioctl should be used for vcpu-specif 1439 The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl 1485 for vm-wide capabilities. 1440 for vm-wide capabilities. 1486 1441 1487 4.38 KVM_GET_MP_STATE 1442 4.38 KVM_GET_MP_STATE 1488 --------------------- 1443 --------------------- 1489 1444 1490 :Capability: KVM_CAP_MP_STATE 1445 :Capability: KVM_CAP_MP_STATE 1491 :Architectures: x86, s390, arm64, riscv, loon !! 1446 :Architectures: x86, s390, arm64, riscv 1492 :Type: vcpu ioctl 1447 :Type: vcpu ioctl 1493 :Parameters: struct kvm_mp_state (out) 1448 :Parameters: struct kvm_mp_state (out) 1494 :Returns: 0 on success; -1 on error 1449 :Returns: 0 on success; -1 on error 1495 1450 1496 :: 1451 :: 1497 1452 1498 struct kvm_mp_state { 1453 struct kvm_mp_state { 1499 __u32 mp_state; 1454 __u32 mp_state; 1500 }; 1455 }; 1501 1456 1502 Returns the vcpu's current "multiprocessing s 1457 Returns the vcpu's current "multiprocessing state" (though also valid on 1503 uniprocessor guests). 1458 uniprocessor guests). 1504 1459 1505 Possible values are: 1460 Possible values are: 1506 1461 1507 ========================== ============ 1462 ========================== =============================================== 1508 KVM_MP_STATE_RUNNABLE the vcpu is 1463 KVM_MP_STATE_RUNNABLE the vcpu is currently running 1509 [x86,arm64,r !! 1464 [x86,arm64,riscv] 1510 KVM_MP_STATE_UNINITIALIZED the vcpu is 1465 KVM_MP_STATE_UNINITIALIZED the vcpu is an application processor (AP) 1511 which has no 1466 which has not yet received an INIT signal [x86] 1512 KVM_MP_STATE_INIT_RECEIVED the vcpu has 1467 KVM_MP_STATE_INIT_RECEIVED the vcpu has received an INIT signal, and is 1513 now ready fo 1468 now ready for a SIPI [x86] 1514 KVM_MP_STATE_HALTED the vcpu has 1469 KVM_MP_STATE_HALTED the vcpu has executed a HLT instruction and 1515 is waiting f 1470 is waiting for an interrupt [x86] 1516 KVM_MP_STATE_SIPI_RECEIVED the vcpu has 1471 KVM_MP_STATE_SIPI_RECEIVED the vcpu has just received a SIPI (vector 1517 accessible v 1472 accessible via KVM_GET_VCPU_EVENTS) [x86] 1518 KVM_MP_STATE_STOPPED the vcpu is 1473 KVM_MP_STATE_STOPPED the vcpu is stopped [s390,arm64,riscv] 1519 KVM_MP_STATE_CHECK_STOP the vcpu is 1474 KVM_MP_STATE_CHECK_STOP the vcpu is in a special error state [s390] 1520 KVM_MP_STATE_OPERATING the vcpu is 1475 KVM_MP_STATE_OPERATING the vcpu is operating (running or halted) 1521 [s390] 1476 [s390] 1522 KVM_MP_STATE_LOAD the vcpu is 1477 KVM_MP_STATE_LOAD the vcpu is in a special load/startup state 1523 [s390] 1478 [s390] 1524 KVM_MP_STATE_SUSPENDED the vcpu is << 1525 for a wakeup << 1526 ========================== ============ 1479 ========================== =============================================== 1527 1480 1528 On x86, this ioctl is only useful after KVM_C 1481 On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an 1529 in-kernel irqchip, the multiprocessing state 1482 in-kernel irqchip, the multiprocessing state must be maintained by userspace on 1530 these architectures. 1483 these architectures. 1531 1484 1532 For arm64: !! 1485 For arm64/riscv: 1533 ^^^^^^^^^^ !! 1486 ^^^^^^^^^^^^^^^^ 1534 << 1535 If a vCPU is in the KVM_MP_STATE_SUSPENDED st << 1536 architectural execution of a WFI instruction. << 1537 << 1538 If a wakeup event is recognized, KVM will exi << 1539 KVM_SYSTEM_EVENT exit, where the event type i << 1540 userspace wants to honor the wakeup, it must << 1541 KVM_MP_STATE_RUNNABLE. If it does not, KVM wi << 1542 event in subsequent calls to KVM_RUN. << 1543 << 1544 .. warning:: << 1545 << 1546 If userspace intends to keep the vCPU in << 1547 strongly recommended that userspace take << 1548 wakeup event (such as masking an interru << 1549 calls to KVM_RUN will immediately exit w << 1550 event and inadvertently waste CPU cycles << 1551 << 1552 Additionally, if userspace takes action << 1553 it is strongly recommended that it also << 1554 original state when the vCPU is made RUN << 1555 if userspace masked a pending interrupt << 1556 the interrupt should be unmasked before << 1557 guest. << 1558 << 1559 For riscv: << 1560 ^^^^^^^^^^ << 1561 1487 1562 The only states that are valid are KVM_MP_STA 1488 The only states that are valid are KVM_MP_STATE_STOPPED and 1563 KVM_MP_STATE_RUNNABLE which reflect if the vc 1489 KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not. 1564 1490 1565 On LoongArch, only the KVM_MP_STATE_RUNNABLE << 1566 whether the vcpu is runnable. << 1567 << 1568 4.39 KVM_SET_MP_STATE 1491 4.39 KVM_SET_MP_STATE 1569 --------------------- 1492 --------------------- 1570 1493 1571 :Capability: KVM_CAP_MP_STATE 1494 :Capability: KVM_CAP_MP_STATE 1572 :Architectures: x86, s390, arm64, riscv, loon !! 1495 :Architectures: x86, s390, arm64, riscv 1573 :Type: vcpu ioctl 1496 :Type: vcpu ioctl 1574 :Parameters: struct kvm_mp_state (in) 1497 :Parameters: struct kvm_mp_state (in) 1575 :Returns: 0 on success; -1 on error 1498 :Returns: 0 on success; -1 on error 1576 1499 1577 Sets the vcpu's current "multiprocessing stat 1500 Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for 1578 arguments. 1501 arguments. 1579 1502 1580 On x86, this ioctl is only useful after KVM_C 1503 On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an 1581 in-kernel irqchip, the multiprocessing state 1504 in-kernel irqchip, the multiprocessing state must be maintained by userspace on 1582 these architectures. 1505 these architectures. 1583 1506 1584 For arm64/riscv: 1507 For arm64/riscv: 1585 ^^^^^^^^^^^^^^^^ 1508 ^^^^^^^^^^^^^^^^ 1586 1509 1587 The only states that are valid are KVM_MP_STA 1510 The only states that are valid are KVM_MP_STATE_STOPPED and 1588 KVM_MP_STATE_RUNNABLE which reflect if the vc 1511 KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not. 1589 1512 1590 On LoongArch, only the KVM_MP_STATE_RUNNABLE << 1591 whether the vcpu is runnable. << 1592 << 1593 4.40 KVM_SET_IDENTITY_MAP_ADDR 1513 4.40 KVM_SET_IDENTITY_MAP_ADDR 1594 ------------------------------ 1514 ------------------------------ 1595 1515 1596 :Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR 1516 :Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR 1597 :Architectures: x86 1517 :Architectures: x86 1598 :Type: vm ioctl 1518 :Type: vm ioctl 1599 :Parameters: unsigned long identity (in) 1519 :Parameters: unsigned long identity (in) 1600 :Returns: 0 on success, -1 on error 1520 :Returns: 0 on success, -1 on error 1601 1521 1602 This ioctl defines the physical address of a 1522 This ioctl defines the physical address of a one-page region in the guest 1603 physical address space. The region must be w 1523 physical address space. The region must be within the first 4GB of the 1604 guest physical address space and must not con 1524 guest physical address space and must not conflict with any memory slot 1605 or any mmio address. The guest may malfuncti 1525 or any mmio address. The guest may malfunction if it accesses this memory 1606 region. 1526 region. 1607 1527 1608 Setting the address to 0 will result in reset 1528 Setting the address to 0 will result in resetting the address to its default 1609 (0xfffbc000). 1529 (0xfffbc000). 1610 1530 1611 This ioctl is required on Intel-based hosts. 1531 This ioctl is required on Intel-based hosts. This is needed on Intel hardware 1612 because of a quirk in the virtualization impl 1532 because of a quirk in the virtualization implementation (see the internals 1613 documentation when it pops into existence). 1533 documentation when it pops into existence). 1614 1534 1615 Fails if any VCPU has already been created. 1535 Fails if any VCPU has already been created. 1616 1536 1617 4.41 KVM_SET_BOOT_CPU_ID 1537 4.41 KVM_SET_BOOT_CPU_ID 1618 ------------------------ 1538 ------------------------ 1619 1539 1620 :Capability: KVM_CAP_SET_BOOT_CPU_ID 1540 :Capability: KVM_CAP_SET_BOOT_CPU_ID 1621 :Architectures: x86 1541 :Architectures: x86 1622 :Type: vm ioctl 1542 :Type: vm ioctl 1623 :Parameters: unsigned long vcpu_id 1543 :Parameters: unsigned long vcpu_id 1624 :Returns: 0 on success, -1 on error 1544 :Returns: 0 on success, -1 on error 1625 1545 1626 Define which vcpu is the Bootstrap Processor 1546 Define which vcpu is the Bootstrap Processor (BSP). Values are the same 1627 as the vcpu id in KVM_CREATE_VCPU. If this i 1547 as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default 1628 is vcpu 0. This ioctl has to be called before 1548 is vcpu 0. This ioctl has to be called before vcpu creation, 1629 otherwise it will return EBUSY error. 1549 otherwise it will return EBUSY error. 1630 1550 1631 1551 1632 4.42 KVM_GET_XSAVE 1552 4.42 KVM_GET_XSAVE 1633 ------------------ 1553 ------------------ 1634 1554 1635 :Capability: KVM_CAP_XSAVE 1555 :Capability: KVM_CAP_XSAVE 1636 :Architectures: x86 1556 :Architectures: x86 1637 :Type: vcpu ioctl 1557 :Type: vcpu ioctl 1638 :Parameters: struct kvm_xsave (out) 1558 :Parameters: struct kvm_xsave (out) 1639 :Returns: 0 on success, -1 on error 1559 :Returns: 0 on success, -1 on error 1640 1560 1641 1561 1642 :: 1562 :: 1643 1563 1644 struct kvm_xsave { 1564 struct kvm_xsave { 1645 __u32 region[1024]; 1565 __u32 region[1024]; 1646 __u32 extra[0]; 1566 __u32 extra[0]; 1647 }; 1567 }; 1648 1568 1649 This ioctl would copy current vcpu's xsave st 1569 This ioctl would copy current vcpu's xsave struct to the userspace. 1650 1570 1651 1571 1652 4.43 KVM_SET_XSAVE 1572 4.43 KVM_SET_XSAVE 1653 ------------------ 1573 ------------------ 1654 1574 1655 :Capability: KVM_CAP_XSAVE and KVM_CAP_XSAVE2 1575 :Capability: KVM_CAP_XSAVE and KVM_CAP_XSAVE2 1656 :Architectures: x86 1576 :Architectures: x86 1657 :Type: vcpu ioctl 1577 :Type: vcpu ioctl 1658 :Parameters: struct kvm_xsave (in) 1578 :Parameters: struct kvm_xsave (in) 1659 :Returns: 0 on success, -1 on error 1579 :Returns: 0 on success, -1 on error 1660 1580 1661 :: 1581 :: 1662 1582 1663 1583 1664 struct kvm_xsave { 1584 struct kvm_xsave { 1665 __u32 region[1024]; 1585 __u32 region[1024]; 1666 __u32 extra[0]; 1586 __u32 extra[0]; 1667 }; 1587 }; 1668 1588 1669 This ioctl would copy userspace's xsave struc 1589 This ioctl would copy userspace's xsave struct to the kernel. It copies 1670 as many bytes as are returned by KVM_CHECK_EX 1590 as many bytes as are returned by KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2), 1671 when invoked on the vm file descriptor. The s 1591 when invoked on the vm file descriptor. The size value returned by 1672 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will alwa 1592 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will always be at least 4096. 1673 Currently, it is only greater than 4096 if a 1593 Currently, it is only greater than 4096 if a dynamic feature has been 1674 enabled with ``arch_prctl()``, but this may c 1594 enabled with ``arch_prctl()``, but this may change in the future. 1675 1595 1676 The offsets of the state save areas in struct 1596 The offsets of the state save areas in struct kvm_xsave follow the 1677 contents of CPUID leaf 0xD on the host. 1597 contents of CPUID leaf 0xD on the host. 1678 1598 1679 1599 1680 4.44 KVM_GET_XCRS 1600 4.44 KVM_GET_XCRS 1681 ----------------- 1601 ----------------- 1682 1602 1683 :Capability: KVM_CAP_XCRS 1603 :Capability: KVM_CAP_XCRS 1684 :Architectures: x86 1604 :Architectures: x86 1685 :Type: vcpu ioctl 1605 :Type: vcpu ioctl 1686 :Parameters: struct kvm_xcrs (out) 1606 :Parameters: struct kvm_xcrs (out) 1687 :Returns: 0 on success, -1 on error 1607 :Returns: 0 on success, -1 on error 1688 1608 1689 :: 1609 :: 1690 1610 1691 struct kvm_xcr { 1611 struct kvm_xcr { 1692 __u32 xcr; 1612 __u32 xcr; 1693 __u32 reserved; 1613 __u32 reserved; 1694 __u64 value; 1614 __u64 value; 1695 }; 1615 }; 1696 1616 1697 struct kvm_xcrs { 1617 struct kvm_xcrs { 1698 __u32 nr_xcrs; 1618 __u32 nr_xcrs; 1699 __u32 flags; 1619 __u32 flags; 1700 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1620 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1701 __u64 padding[16]; 1621 __u64 padding[16]; 1702 }; 1622 }; 1703 1623 1704 This ioctl would copy current vcpu's xcrs to 1624 This ioctl would copy current vcpu's xcrs to the userspace. 1705 1625 1706 1626 1707 4.45 KVM_SET_XCRS 1627 4.45 KVM_SET_XCRS 1708 ----------------- 1628 ----------------- 1709 1629 1710 :Capability: KVM_CAP_XCRS 1630 :Capability: KVM_CAP_XCRS 1711 :Architectures: x86 1631 :Architectures: x86 1712 :Type: vcpu ioctl 1632 :Type: vcpu ioctl 1713 :Parameters: struct kvm_xcrs (in) 1633 :Parameters: struct kvm_xcrs (in) 1714 :Returns: 0 on success, -1 on error 1634 :Returns: 0 on success, -1 on error 1715 1635 1716 :: 1636 :: 1717 1637 1718 struct kvm_xcr { 1638 struct kvm_xcr { 1719 __u32 xcr; 1639 __u32 xcr; 1720 __u32 reserved; 1640 __u32 reserved; 1721 __u64 value; 1641 __u64 value; 1722 }; 1642 }; 1723 1643 1724 struct kvm_xcrs { 1644 struct kvm_xcrs { 1725 __u32 nr_xcrs; 1645 __u32 nr_xcrs; 1726 __u32 flags; 1646 __u32 flags; 1727 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1647 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1728 __u64 padding[16]; 1648 __u64 padding[16]; 1729 }; 1649 }; 1730 1650 1731 This ioctl would set vcpu's xcr to the value 1651 This ioctl would set vcpu's xcr to the value userspace specified. 1732 1652 1733 1653 1734 4.46 KVM_GET_SUPPORTED_CPUID 1654 4.46 KVM_GET_SUPPORTED_CPUID 1735 ---------------------------- 1655 ---------------------------- 1736 1656 1737 :Capability: KVM_CAP_EXT_CPUID 1657 :Capability: KVM_CAP_EXT_CPUID 1738 :Architectures: x86 1658 :Architectures: x86 1739 :Type: system ioctl 1659 :Type: system ioctl 1740 :Parameters: struct kvm_cpuid2 (in/out) 1660 :Parameters: struct kvm_cpuid2 (in/out) 1741 :Returns: 0 on success, -1 on error 1661 :Returns: 0 on success, -1 on error 1742 1662 1743 :: 1663 :: 1744 1664 1745 struct kvm_cpuid2 { 1665 struct kvm_cpuid2 { 1746 __u32 nent; 1666 __u32 nent; 1747 __u32 padding; 1667 __u32 padding; 1748 struct kvm_cpuid_entry2 entries[0]; 1668 struct kvm_cpuid_entry2 entries[0]; 1749 }; 1669 }; 1750 1670 1751 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1671 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) 1752 #define KVM_CPUID_FLAG_STATEFUL_FUNC 1672 #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) /* deprecated */ 1753 #define KVM_CPUID_FLAG_STATE_READ_NEXT 1673 #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) /* deprecated */ 1754 1674 1755 struct kvm_cpuid_entry2 { 1675 struct kvm_cpuid_entry2 { 1756 __u32 function; 1676 __u32 function; 1757 __u32 index; 1677 __u32 index; 1758 __u32 flags; 1678 __u32 flags; 1759 __u32 eax; 1679 __u32 eax; 1760 __u32 ebx; 1680 __u32 ebx; 1761 __u32 ecx; 1681 __u32 ecx; 1762 __u32 edx; 1682 __u32 edx; 1763 __u32 padding[3]; 1683 __u32 padding[3]; 1764 }; 1684 }; 1765 1685 1766 This ioctl returns x86 cpuid features which a 1686 This ioctl returns x86 cpuid features which are supported by both the 1767 hardware and kvm in its default configuration 1687 hardware and kvm in its default configuration. Userspace can use the 1768 information returned by this ioctl to constru 1688 information returned by this ioctl to construct cpuid information (for 1769 KVM_SET_CPUID2) that is consistent with hardw 1689 KVM_SET_CPUID2) that is consistent with hardware, kernel, and 1770 userspace capabilities, and with user require 1690 userspace capabilities, and with user requirements (for example, the 1771 user may wish to constrain cpuid to emulate o 1691 user may wish to constrain cpuid to emulate older hardware, or for 1772 feature consistency across a cluster). 1692 feature consistency across a cluster). 1773 1693 1774 Dynamically-enabled feature bits need to be r 1694 Dynamically-enabled feature bits need to be requested with 1775 ``arch_prctl()`` before calling this ioctl. F 1695 ``arch_prctl()`` before calling this ioctl. Feature bits that have not 1776 been requested are excluded from the result. 1696 been requested are excluded from the result. 1777 1697 1778 Note that certain capabilities, such as KVM_C 1698 Note that certain capabilities, such as KVM_CAP_X86_DISABLE_EXITS, may 1779 expose cpuid features (e.g. MONITOR) which ar 1699 expose cpuid features (e.g. MONITOR) which are not supported by kvm in 1780 its default configuration. If userspace enabl 1700 its default configuration. If userspace enables such capabilities, it 1781 is responsible for modifying the results of t 1701 is responsible for modifying the results of this ioctl appropriately. 1782 1702 1783 Userspace invokes KVM_GET_SUPPORTED_CPUID by 1703 Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure 1784 with the 'nent' field indicating the number o 1704 with the 'nent' field indicating the number of entries in the variable-size 1785 array 'entries'. If the number of entries is 1705 array 'entries'. If the number of entries is too low to describe the cpu 1786 capabilities, an error (E2BIG) is returned. 1706 capabilities, an error (E2BIG) is returned. If the number is too high, 1787 the 'nent' field is adjusted and an error (EN 1707 the 'nent' field is adjusted and an error (ENOMEM) is returned. If the 1788 number is just right, the 'nent' field is adj 1708 number is just right, the 'nent' field is adjusted to the number of valid 1789 entries in the 'entries' array, which is then 1709 entries in the 'entries' array, which is then filled. 1790 1710 1791 The entries returned are the host cpuid as re 1711 The entries returned are the host cpuid as returned by the cpuid instruction, 1792 with unknown or unsupported features masked o 1712 with unknown or unsupported features masked out. Some features (for example, 1793 x2apic), may not be present in the host cpu, 1713 x2apic), may not be present in the host cpu, but are exposed by kvm if it can 1794 emulate them efficiently. The fields in each 1714 emulate them efficiently. The fields in each entry are defined as follows: 1795 1715 1796 function: 1716 function: 1797 the eax value used to obtain the ent 1717 the eax value used to obtain the entry 1798 1718 1799 index: 1719 index: 1800 the ecx value used to obtain the ent 1720 the ecx value used to obtain the entry (for entries that are 1801 affected by ecx) 1721 affected by ecx) 1802 1722 1803 flags: 1723 flags: 1804 an OR of zero or more of the following: 1724 an OR of zero or more of the following: 1805 1725 1806 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 1726 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 1807 if the index field is valid 1727 if the index field is valid 1808 1728 1809 eax, ebx, ecx, edx: 1729 eax, ebx, ecx, edx: 1810 the values returned by the cpuid ins 1730 the values returned by the cpuid instruction for 1811 this function/index combination 1731 this function/index combination 1812 1732 1813 The TSC deadline timer feature (CPUID leaf 1, 1733 The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned 1814 as false, since the feature depends on KVM_CR 1734 as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC 1815 support. Instead it is reported via:: 1735 support. Instead it is reported via:: 1816 1736 1817 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEAD 1737 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER) 1818 1738 1819 if that returns true and you use KVM_CREATE_I 1739 if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the 1820 feature in userspace, then you can enable the 1740 feature in userspace, then you can enable the feature for KVM_SET_CPUID2. 1821 1741 1822 1742 1823 4.47 KVM_PPC_GET_PVINFO 1743 4.47 KVM_PPC_GET_PVINFO 1824 ----------------------- 1744 ----------------------- 1825 1745 1826 :Capability: KVM_CAP_PPC_GET_PVINFO 1746 :Capability: KVM_CAP_PPC_GET_PVINFO 1827 :Architectures: ppc 1747 :Architectures: ppc 1828 :Type: vm ioctl 1748 :Type: vm ioctl 1829 :Parameters: struct kvm_ppc_pvinfo (out) 1749 :Parameters: struct kvm_ppc_pvinfo (out) 1830 :Returns: 0 on success, !0 on error 1750 :Returns: 0 on success, !0 on error 1831 1751 1832 :: 1752 :: 1833 1753 1834 struct kvm_ppc_pvinfo { 1754 struct kvm_ppc_pvinfo { 1835 __u32 flags; 1755 __u32 flags; 1836 __u32 hcall[4]; 1756 __u32 hcall[4]; 1837 __u8 pad[108]; 1757 __u8 pad[108]; 1838 }; 1758 }; 1839 1759 1840 This ioctl fetches PV specific information th 1760 This ioctl fetches PV specific information that need to be passed to the guest 1841 using the device tree or other means from vm 1761 using the device tree or other means from vm context. 1842 1762 1843 The hcall array defines 4 instructions that m 1763 The hcall array defines 4 instructions that make up a hypercall. 1844 1764 1845 If any additional field gets added to this st 1765 If any additional field gets added to this structure later on, a bit for that 1846 additional piece of information will be set i 1766 additional piece of information will be set in the flags bitmap. 1847 1767 1848 The flags bitmap is defined as:: 1768 The flags bitmap is defined as:: 1849 1769 1850 /* the host supports the ePAPR idle hcall 1770 /* the host supports the ePAPR idle hcall 1851 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1< 1771 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0) 1852 1772 1853 4.52 KVM_SET_GSI_ROUTING 1773 4.52 KVM_SET_GSI_ROUTING 1854 ------------------------ 1774 ------------------------ 1855 1775 1856 :Capability: KVM_CAP_IRQ_ROUTING 1776 :Capability: KVM_CAP_IRQ_ROUTING 1857 :Architectures: x86 s390 arm64 1777 :Architectures: x86 s390 arm64 1858 :Type: vm ioctl 1778 :Type: vm ioctl 1859 :Parameters: struct kvm_irq_routing (in) 1779 :Parameters: struct kvm_irq_routing (in) 1860 :Returns: 0 on success, -1 on error 1780 :Returns: 0 on success, -1 on error 1861 1781 1862 Sets the GSI routing table entries, overwriti 1782 Sets the GSI routing table entries, overwriting any previously set entries. 1863 1783 1864 On arm64, GSI routing has the following limit 1784 On arm64, GSI routing has the following limitation: 1865 1785 1866 - GSI routing does not apply to KVM_IRQ_LINE 1786 - GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD. 1867 1787 1868 :: 1788 :: 1869 1789 1870 struct kvm_irq_routing { 1790 struct kvm_irq_routing { 1871 __u32 nr; 1791 __u32 nr; 1872 __u32 flags; 1792 __u32 flags; 1873 struct kvm_irq_routing_entry entries[ 1793 struct kvm_irq_routing_entry entries[0]; 1874 }; 1794 }; 1875 1795 1876 No flags are specified so far, the correspond 1796 No flags are specified so far, the corresponding field must be set to zero. 1877 1797 1878 :: 1798 :: 1879 1799 1880 struct kvm_irq_routing_entry { 1800 struct kvm_irq_routing_entry { 1881 __u32 gsi; 1801 __u32 gsi; 1882 __u32 type; 1802 __u32 type; 1883 __u32 flags; 1803 __u32 flags; 1884 __u32 pad; 1804 __u32 pad; 1885 union { 1805 union { 1886 struct kvm_irq_routing_irqchi 1806 struct kvm_irq_routing_irqchip irqchip; 1887 struct kvm_irq_routing_msi ms 1807 struct kvm_irq_routing_msi msi; 1888 struct kvm_irq_routing_s390_a 1808 struct kvm_irq_routing_s390_adapter adapter; 1889 struct kvm_irq_routing_hv_sin 1809 struct kvm_irq_routing_hv_sint hv_sint; 1890 struct kvm_irq_routing_xen_ev 1810 struct kvm_irq_routing_xen_evtchn xen_evtchn; 1891 __u32 pad[8]; 1811 __u32 pad[8]; 1892 } u; 1812 } u; 1893 }; 1813 }; 1894 1814 1895 /* gsi routing entry types */ 1815 /* gsi routing entry types */ 1896 #define KVM_IRQ_ROUTING_IRQCHIP 1 1816 #define KVM_IRQ_ROUTING_IRQCHIP 1 1897 #define KVM_IRQ_ROUTING_MSI 2 1817 #define KVM_IRQ_ROUTING_MSI 2 1898 #define KVM_IRQ_ROUTING_S390_ADAPTER 3 1818 #define KVM_IRQ_ROUTING_S390_ADAPTER 3 1899 #define KVM_IRQ_ROUTING_HV_SINT 4 1819 #define KVM_IRQ_ROUTING_HV_SINT 4 1900 #define KVM_IRQ_ROUTING_XEN_EVTCHN 5 1820 #define KVM_IRQ_ROUTING_XEN_EVTCHN 5 1901 1821 1902 flags: 1822 flags: 1903 1823 1904 - KVM_MSI_VALID_DEVID: used along with KVM_IR 1824 - KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry 1905 type, specifies that the devid field contai 1825 type, specifies that the devid field contains a valid value. The per-VM 1906 KVM_CAP_MSI_DEVID capability advertises the 1826 KVM_CAP_MSI_DEVID capability advertises the requirement to provide 1907 the device ID. If this capability is not a 1827 the device ID. If this capability is not available, userspace should 1908 never set the KVM_MSI_VALID_DEVID flag as t 1828 never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. 1909 - zero otherwise 1829 - zero otherwise 1910 1830 1911 :: 1831 :: 1912 1832 1913 struct kvm_irq_routing_irqchip { 1833 struct kvm_irq_routing_irqchip { 1914 __u32 irqchip; 1834 __u32 irqchip; 1915 __u32 pin; 1835 __u32 pin; 1916 }; 1836 }; 1917 1837 1918 struct kvm_irq_routing_msi { 1838 struct kvm_irq_routing_msi { 1919 __u32 address_lo; 1839 __u32 address_lo; 1920 __u32 address_hi; 1840 __u32 address_hi; 1921 __u32 data; 1841 __u32 data; 1922 union { 1842 union { 1923 __u32 pad; 1843 __u32 pad; 1924 __u32 devid; 1844 __u32 devid; 1925 }; 1845 }; 1926 }; 1846 }; 1927 1847 1928 If KVM_MSI_VALID_DEVID is set, devid contains 1848 If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier 1929 for the device that wrote the MSI message. F 1849 for the device that wrote the MSI message. For PCI, this is usually a 1930 BDF identifier in the lower 16 bits. !! 1850 BFD identifier in the lower 16 bits. 1931 1851 1932 On x86, address_hi is ignored unless the KVM_ 1852 On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS 1933 feature of KVM_CAP_X2APIC_API capability is e 1853 feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, 1934 address_hi bits 31-8 provide bits 31-8 of the 1854 address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of 1935 address_hi must be zero. 1855 address_hi must be zero. 1936 1856 1937 :: 1857 :: 1938 1858 1939 struct kvm_irq_routing_s390_adapter { 1859 struct kvm_irq_routing_s390_adapter { 1940 __u64 ind_addr; 1860 __u64 ind_addr; 1941 __u64 summary_addr; 1861 __u64 summary_addr; 1942 __u64 ind_offset; 1862 __u64 ind_offset; 1943 __u32 summary_offset; 1863 __u32 summary_offset; 1944 __u32 adapter_id; 1864 __u32 adapter_id; 1945 }; 1865 }; 1946 1866 1947 struct kvm_irq_routing_hv_sint { 1867 struct kvm_irq_routing_hv_sint { 1948 __u32 vcpu; 1868 __u32 vcpu; 1949 __u32 sint; 1869 __u32 sint; 1950 }; 1870 }; 1951 1871 1952 struct kvm_irq_routing_xen_evtchn { 1872 struct kvm_irq_routing_xen_evtchn { 1953 __u32 port; 1873 __u32 port; 1954 __u32 vcpu; 1874 __u32 vcpu; 1955 __u32 priority; 1875 __u32 priority; 1956 }; 1876 }; 1957 1877 1958 1878 1959 When KVM_CAP_XEN_HVM includes the KVM_XEN_HVM 1879 When KVM_CAP_XEN_HVM includes the KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL bit 1960 in its indication of supported features, rout 1880 in its indication of supported features, routing to Xen event channels 1961 is supported. Although the priority field is 1881 is supported. Although the priority field is present, only the value 1962 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL is supported 1882 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL is supported, which means delivery by 1963 2 level event channels. FIFO event channel su 1883 2 level event channels. FIFO event channel support may be added in 1964 the future. 1884 the future. 1965 1885 1966 1886 1967 4.55 KVM_SET_TSC_KHZ 1887 4.55 KVM_SET_TSC_KHZ 1968 -------------------- 1888 -------------------- 1969 1889 1970 :Capability: KVM_CAP_TSC_CONTROL / KVM_CAP_VM !! 1890 :Capability: KVM_CAP_TSC_CONTROL 1971 :Architectures: x86 1891 :Architectures: x86 1972 :Type: vcpu ioctl / vm ioctl !! 1892 :Type: vcpu ioctl 1973 :Parameters: virtual tsc_khz 1893 :Parameters: virtual tsc_khz 1974 :Returns: 0 on success, -1 on error 1894 :Returns: 0 on success, -1 on error 1975 1895 1976 Specifies the tsc frequency for the virtual m 1896 Specifies the tsc frequency for the virtual machine. The unit of the 1977 frequency is KHz. 1897 frequency is KHz. 1978 1898 1979 If the KVM_CAP_VM_TSC_CONTROL capability is a << 1980 be used as a vm ioctl to set the initial tsc << 1981 created vCPUs. << 1982 1899 1983 4.56 KVM_GET_TSC_KHZ 1900 4.56 KVM_GET_TSC_KHZ 1984 -------------------- 1901 -------------------- 1985 1902 1986 :Capability: KVM_CAP_GET_TSC_KHZ / KVM_CAP_VM !! 1903 :Capability: KVM_CAP_GET_TSC_KHZ 1987 :Architectures: x86 1904 :Architectures: x86 1988 :Type: vcpu ioctl / vm ioctl !! 1905 :Type: vcpu ioctl 1989 :Parameters: none 1906 :Parameters: none 1990 :Returns: virtual tsc-khz on success, negativ 1907 :Returns: virtual tsc-khz on success, negative value on error 1991 1908 1992 Returns the tsc frequency of the guest. The u 1909 Returns the tsc frequency of the guest. The unit of the return value is 1993 KHz. If the host has unstable tsc this ioctl 1910 KHz. If the host has unstable tsc this ioctl returns -EIO instead as an 1994 error. 1911 error. 1995 1912 1996 1913 1997 4.57 KVM_GET_LAPIC 1914 4.57 KVM_GET_LAPIC 1998 ------------------ 1915 ------------------ 1999 1916 2000 :Capability: KVM_CAP_IRQCHIP 1917 :Capability: KVM_CAP_IRQCHIP 2001 :Architectures: x86 1918 :Architectures: x86 2002 :Type: vcpu ioctl 1919 :Type: vcpu ioctl 2003 :Parameters: struct kvm_lapic_state (out) 1920 :Parameters: struct kvm_lapic_state (out) 2004 :Returns: 0 on success, -1 on error 1921 :Returns: 0 on success, -1 on error 2005 1922 2006 :: 1923 :: 2007 1924 2008 #define KVM_APIC_REG_SIZE 0x400 1925 #define KVM_APIC_REG_SIZE 0x400 2009 struct kvm_lapic_state { 1926 struct kvm_lapic_state { 2010 char regs[KVM_APIC_REG_SIZE]; 1927 char regs[KVM_APIC_REG_SIZE]; 2011 }; 1928 }; 2012 1929 2013 Reads the Local APIC registers and copies the 1930 Reads the Local APIC registers and copies them into the input argument. The 2014 data format and layout are the same as docume 1931 data format and layout are the same as documented in the architecture manual. 2015 1932 2016 If KVM_X2APIC_API_USE_32BIT_IDS feature of KV 1933 If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is 2017 enabled, then the format of APIC_ID register 1934 enabled, then the format of APIC_ID register depends on the APIC mode 2018 (reported by MSR_IA32_APICBASE) of its VCPU. 1935 (reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in 2019 the APIC_ID register (bytes 32-35). xAPIC on 1936 the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID 2020 which is stored in bits 31-24 of the APIC reg 1937 which is stored in bits 31-24 of the APIC register, or equivalently in 2021 byte 35 of struct kvm_lapic_state's regs fiel 1938 byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then 2022 be called after MSR_IA32_APICBASE has been se 1939 be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR. 2023 1940 2024 If KVM_X2APIC_API_USE_32BIT_IDS feature is di 1941 If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state 2025 always uses xAPIC format. 1942 always uses xAPIC format. 2026 1943 2027 1944 2028 4.58 KVM_SET_LAPIC 1945 4.58 KVM_SET_LAPIC 2029 ------------------ 1946 ------------------ 2030 1947 2031 :Capability: KVM_CAP_IRQCHIP 1948 :Capability: KVM_CAP_IRQCHIP 2032 :Architectures: x86 1949 :Architectures: x86 2033 :Type: vcpu ioctl 1950 :Type: vcpu ioctl 2034 :Parameters: struct kvm_lapic_state (in) 1951 :Parameters: struct kvm_lapic_state (in) 2035 :Returns: 0 on success, -1 on error 1952 :Returns: 0 on success, -1 on error 2036 1953 2037 :: 1954 :: 2038 1955 2039 #define KVM_APIC_REG_SIZE 0x400 1956 #define KVM_APIC_REG_SIZE 0x400 2040 struct kvm_lapic_state { 1957 struct kvm_lapic_state { 2041 char regs[KVM_APIC_REG_SIZE]; 1958 char regs[KVM_APIC_REG_SIZE]; 2042 }; 1959 }; 2043 1960 2044 Copies the input argument into the Local APIC 1961 Copies the input argument into the Local APIC registers. The data format 2045 and layout are the same as documented in the 1962 and layout are the same as documented in the architecture manual. 2046 1963 2047 The format of the APIC ID register (bytes 32- 1964 The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's 2048 regs field) depends on the state of the KVM_C 1965 regs field) depends on the state of the KVM_CAP_X2APIC_API capability. 2049 See the note in KVM_GET_LAPIC. 1966 See the note in KVM_GET_LAPIC. 2050 1967 2051 1968 2052 4.59 KVM_IOEVENTFD 1969 4.59 KVM_IOEVENTFD 2053 ------------------ 1970 ------------------ 2054 1971 2055 :Capability: KVM_CAP_IOEVENTFD 1972 :Capability: KVM_CAP_IOEVENTFD 2056 :Architectures: all 1973 :Architectures: all 2057 :Type: vm ioctl 1974 :Type: vm ioctl 2058 :Parameters: struct kvm_ioeventfd (in) 1975 :Parameters: struct kvm_ioeventfd (in) 2059 :Returns: 0 on success, !0 on error 1976 :Returns: 0 on success, !0 on error 2060 1977 2061 This ioctl attaches or detaches an ioeventfd 1978 This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address 2062 within the guest. A guest write in the regis 1979 within the guest. A guest write in the registered address will signal the 2063 provided event instead of triggering an exit. 1980 provided event instead of triggering an exit. 2064 1981 2065 :: 1982 :: 2066 1983 2067 struct kvm_ioeventfd { 1984 struct kvm_ioeventfd { 2068 __u64 datamatch; 1985 __u64 datamatch; 2069 __u64 addr; /* legal pio/mmio 1986 __u64 addr; /* legal pio/mmio address */ 2070 __u32 len; /* 0, 1, 2, 4, or 1987 __u32 len; /* 0, 1, 2, 4, or 8 bytes */ 2071 __s32 fd; 1988 __s32 fd; 2072 __u32 flags; 1989 __u32 flags; 2073 __u8 pad[36]; 1990 __u8 pad[36]; 2074 }; 1991 }; 2075 1992 2076 For the special case of virtio-ccw devices on 1993 For the special case of virtio-ccw devices on s390, the ioevent is matched 2077 to a subchannel/virtqueue tuple instead. 1994 to a subchannel/virtqueue tuple instead. 2078 1995 2079 The following flags are defined:: 1996 The following flags are defined:: 2080 1997 2081 #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << 1998 #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch) 2082 #define KVM_IOEVENTFD_FLAG_PIO (1 << 1999 #define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio) 2083 #define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << 2000 #define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign) 2084 #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIF 2001 #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \ 2085 (1 << kvm_ioeventfd_flag_nr_virtio_cc 2002 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify) 2086 2003 2087 If datamatch flag is set, the event will be s 2004 If datamatch flag is set, the event will be signaled only if the written value 2088 to the registered address is equal to datamat 2005 to the registered address is equal to datamatch in struct kvm_ioeventfd. 2089 2006 2090 For virtio-ccw devices, addr contains the sub 2007 For virtio-ccw devices, addr contains the subchannel id and datamatch the 2091 virtqueue index. 2008 virtqueue index. 2092 2009 2093 With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero len 2010 With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and 2094 the kernel will ignore the length of guest wr 2011 the kernel will ignore the length of guest write and may get a faster vmexit. 2095 The speedup may only apply to specific archit 2012 The speedup may only apply to specific architectures, but the ioeventfd will 2096 work anyway. 2013 work anyway. 2097 2014 2098 4.60 KVM_DIRTY_TLB 2015 4.60 KVM_DIRTY_TLB 2099 ------------------ 2016 ------------------ 2100 2017 2101 :Capability: KVM_CAP_SW_TLB 2018 :Capability: KVM_CAP_SW_TLB 2102 :Architectures: ppc 2019 :Architectures: ppc 2103 :Type: vcpu ioctl 2020 :Type: vcpu ioctl 2104 :Parameters: struct kvm_dirty_tlb (in) 2021 :Parameters: struct kvm_dirty_tlb (in) 2105 :Returns: 0 on success, -1 on error 2022 :Returns: 0 on success, -1 on error 2106 2023 2107 :: 2024 :: 2108 2025 2109 struct kvm_dirty_tlb { 2026 struct kvm_dirty_tlb { 2110 __u64 bitmap; 2027 __u64 bitmap; 2111 __u32 num_dirty; 2028 __u32 num_dirty; 2112 }; 2029 }; 2113 2030 2114 This must be called whenever userspace has ch 2031 This must be called whenever userspace has changed an entry in the shared 2115 TLB, prior to calling KVM_RUN on the associat 2032 TLB, prior to calling KVM_RUN on the associated vcpu. 2116 2033 2117 The "bitmap" field is the userspace address o 2034 The "bitmap" field is the userspace address of an array. This array 2118 consists of a number of bits, equal to the to 2035 consists of a number of bits, equal to the total number of TLB entries as 2119 determined by the last successful call to KVM 2036 determined by the last successful call to KVM_CONFIG_TLB, rounded up to the 2120 nearest multiple of 64. 2037 nearest multiple of 64. 2121 2038 2122 Each bit corresponds to one TLB entry, ordere 2039 Each bit corresponds to one TLB entry, ordered the same as in the shared TLB 2123 array. 2040 array. 2124 2041 2125 The array is little-endian: the bit 0 is the 2042 The array is little-endian: the bit 0 is the least significant bit of the 2126 first byte, bit 8 is the least significant bi 2043 first byte, bit 8 is the least significant bit of the second byte, etc. 2127 This avoids any complications with differing 2044 This avoids any complications with differing word sizes. 2128 2045 2129 The "num_dirty" field is a performance hint f 2046 The "num_dirty" field is a performance hint for KVM to determine whether it 2130 should skip processing the bitmap and just in 2047 should skip processing the bitmap and just invalidate everything. It must 2131 be set to the number of set bits in the bitma 2048 be set to the number of set bits in the bitmap. 2132 2049 2133 2050 2134 4.62 KVM_CREATE_SPAPR_TCE 2051 4.62 KVM_CREATE_SPAPR_TCE 2135 ------------------------- 2052 ------------------------- 2136 2053 2137 :Capability: KVM_CAP_SPAPR_TCE 2054 :Capability: KVM_CAP_SPAPR_TCE 2138 :Architectures: powerpc 2055 :Architectures: powerpc 2139 :Type: vm ioctl 2056 :Type: vm ioctl 2140 :Parameters: struct kvm_create_spapr_tce (in) 2057 :Parameters: struct kvm_create_spapr_tce (in) 2141 :Returns: file descriptor for manipulating th 2058 :Returns: file descriptor for manipulating the created TCE table 2142 2059 2143 This creates a virtual TCE (translation contr 2060 This creates a virtual TCE (translation control entry) table, which 2144 is an IOMMU for PAPR-style virtual I/O. It i 2061 is an IOMMU for PAPR-style virtual I/O. It is used to translate 2145 logical addresses used in virtual I/O into gu 2062 logical addresses used in virtual I/O into guest physical addresses, 2146 and provides a scatter/gather capability for 2063 and provides a scatter/gather capability for PAPR virtual I/O. 2147 2064 2148 :: 2065 :: 2149 2066 2150 /* for KVM_CAP_SPAPR_TCE */ 2067 /* for KVM_CAP_SPAPR_TCE */ 2151 struct kvm_create_spapr_tce { 2068 struct kvm_create_spapr_tce { 2152 __u64 liobn; 2069 __u64 liobn; 2153 __u32 window_size; 2070 __u32 window_size; 2154 }; 2071 }; 2155 2072 2156 The liobn field gives the logical IO bus numb 2073 The liobn field gives the logical IO bus number for which to create a 2157 TCE table. The window_size field specifies t 2074 TCE table. The window_size field specifies the size of the DMA window 2158 which this TCE table will translate - the tab 2075 which this TCE table will translate - the table will contain one 64 2159 bit TCE entry for every 4kiB of the DMA windo 2076 bit TCE entry for every 4kiB of the DMA window. 2160 2077 2161 When the guest issues an H_PUT_TCE hcall on a 2078 When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE 2162 table has been created using this ioctl(), th 2079 table has been created using this ioctl(), the kernel will handle it 2163 in real mode, updating the TCE table. H_PUT_ 2080 in real mode, updating the TCE table. H_PUT_TCE calls for other 2164 liobns will cause a vm exit and must be handl 2081 liobns will cause a vm exit and must be handled by userspace. 2165 2082 2166 The return value is a file descriptor which c 2083 The return value is a file descriptor which can be passed to mmap(2) 2167 to map the created TCE table into userspace. 2084 to map the created TCE table into userspace. This lets userspace read 2168 the entries written by kernel-handled H_PUT_T 2085 the entries written by kernel-handled H_PUT_TCE calls, and also lets 2169 userspace update the TCE table directly which 2086 userspace update the TCE table directly which is useful in some 2170 circumstances. 2087 circumstances. 2171 2088 2172 2089 2173 4.63 KVM_ALLOCATE_RMA 2090 4.63 KVM_ALLOCATE_RMA 2174 --------------------- 2091 --------------------- 2175 2092 2176 :Capability: KVM_CAP_PPC_RMA 2093 :Capability: KVM_CAP_PPC_RMA 2177 :Architectures: powerpc 2094 :Architectures: powerpc 2178 :Type: vm ioctl 2095 :Type: vm ioctl 2179 :Parameters: struct kvm_allocate_rma (out) 2096 :Parameters: struct kvm_allocate_rma (out) 2180 :Returns: file descriptor for mapping the all 2097 :Returns: file descriptor for mapping the allocated RMA 2181 2098 2182 This allocates a Real Mode Area (RMA) from th 2099 This allocates a Real Mode Area (RMA) from the pool allocated at boot 2183 time by the kernel. An RMA is a physically-c 2100 time by the kernel. An RMA is a physically-contiguous, aligned region 2184 of memory used on older POWER processors to p 2101 of memory used on older POWER processors to provide the memory which 2185 will be accessed by real-mode (MMU off) acces 2102 will be accessed by real-mode (MMU off) accesses in a KVM guest. 2186 POWER processors support a set of sizes for t 2103 POWER processors support a set of sizes for the RMA that usually 2187 includes 64MB, 128MB, 256MB and some larger p 2104 includes 64MB, 128MB, 256MB and some larger powers of two. 2188 2105 2189 :: 2106 :: 2190 2107 2191 /* for KVM_ALLOCATE_RMA */ 2108 /* for KVM_ALLOCATE_RMA */ 2192 struct kvm_allocate_rma { 2109 struct kvm_allocate_rma { 2193 __u64 rma_size; 2110 __u64 rma_size; 2194 }; 2111 }; 2195 2112 2196 The return value is a file descriptor which c 2113 The return value is a file descriptor which can be passed to mmap(2) 2197 to map the allocated RMA into userspace. The 2114 to map the allocated RMA into userspace. The mapped area can then be 2198 passed to the KVM_SET_USER_MEMORY_REGION ioct 2115 passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the 2199 RMA for a virtual machine. The size of the R 2116 RMA for a virtual machine. The size of the RMA in bytes (which is 2200 fixed at host kernel boot time) is returned i 2117 fixed at host kernel boot time) is returned in the rma_size field of 2201 the argument structure. 2118 the argument structure. 2202 2119 2203 The KVM_CAP_PPC_RMA capability is 1 or 2 if t 2120 The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl 2204 is supported; 2 if the processor requires all 2121 is supported; 2 if the processor requires all virtual machines to have 2205 an RMA, or 1 if the processor can use an RMA 2122 an RMA, or 1 if the processor can use an RMA but doesn't require it, 2206 because it supports the Virtual RMA (VRMA) fa 2123 because it supports the Virtual RMA (VRMA) facility. 2207 2124 2208 2125 2209 4.64 KVM_NMI 2126 4.64 KVM_NMI 2210 ------------ 2127 ------------ 2211 2128 2212 :Capability: KVM_CAP_USER_NMI 2129 :Capability: KVM_CAP_USER_NMI 2213 :Architectures: x86 2130 :Architectures: x86 2214 :Type: vcpu ioctl 2131 :Type: vcpu ioctl 2215 :Parameters: none 2132 :Parameters: none 2216 :Returns: 0 on success, -1 on error 2133 :Returns: 0 on success, -1 on error 2217 2134 2218 Queues an NMI on the thread's vcpu. Note thi 2135 Queues an NMI on the thread's vcpu. Note this is well defined only 2219 when KVM_CREATE_IRQCHIP has not been called, 2136 when KVM_CREATE_IRQCHIP has not been called, since this is an interface 2220 between the virtual cpu core and virtual loca 2137 between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP 2221 has been called, this interface is completely 2138 has been called, this interface is completely emulated within the kernel. 2222 2139 2223 To use this to emulate the LINT1 input with K 2140 To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the 2224 following algorithm: 2141 following algorithm: 2225 2142 2226 - pause the vcpu 2143 - pause the vcpu 2227 - read the local APIC's state (KVM_GET_LAPI 2144 - read the local APIC's state (KVM_GET_LAPIC) 2228 - check whether changing LINT1 will queue a 2145 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1) 2229 - if so, issue KVM_NMI 2146 - if so, issue KVM_NMI 2230 - resume the vcpu 2147 - resume the vcpu 2231 2148 2232 Some guests configure the LINT1 NMI input to 2149 Some guests configure the LINT1 NMI input to cause a panic, aiding in 2233 debugging. 2150 debugging. 2234 2151 2235 2152 2236 4.65 KVM_S390_UCAS_MAP 2153 4.65 KVM_S390_UCAS_MAP 2237 ---------------------- 2154 ---------------------- 2238 2155 2239 :Capability: KVM_CAP_S390_UCONTROL 2156 :Capability: KVM_CAP_S390_UCONTROL 2240 :Architectures: s390 2157 :Architectures: s390 2241 :Type: vcpu ioctl 2158 :Type: vcpu ioctl 2242 :Parameters: struct kvm_s390_ucas_mapping (in 2159 :Parameters: struct kvm_s390_ucas_mapping (in) 2243 :Returns: 0 in case of success 2160 :Returns: 0 in case of success 2244 2161 2245 The parameter is defined like this:: 2162 The parameter is defined like this:: 2246 2163 2247 struct kvm_s390_ucas_mapping { 2164 struct kvm_s390_ucas_mapping { 2248 __u64 user_addr; 2165 __u64 user_addr; 2249 __u64 vcpu_addr; 2166 __u64 vcpu_addr; 2250 __u64 length; 2167 __u64 length; 2251 }; 2168 }; 2252 2169 2253 This ioctl maps the memory at "user_addr" wit 2170 This ioctl maps the memory at "user_addr" with the length "length" to 2254 the vcpu's address space starting at "vcpu_ad 2171 the vcpu's address space starting at "vcpu_addr". All parameters need to 2255 be aligned by 1 megabyte. 2172 be aligned by 1 megabyte. 2256 2173 2257 2174 2258 4.66 KVM_S390_UCAS_UNMAP 2175 4.66 KVM_S390_UCAS_UNMAP 2259 ------------------------ 2176 ------------------------ 2260 2177 2261 :Capability: KVM_CAP_S390_UCONTROL 2178 :Capability: KVM_CAP_S390_UCONTROL 2262 :Architectures: s390 2179 :Architectures: s390 2263 :Type: vcpu ioctl 2180 :Type: vcpu ioctl 2264 :Parameters: struct kvm_s390_ucas_mapping (in 2181 :Parameters: struct kvm_s390_ucas_mapping (in) 2265 :Returns: 0 in case of success 2182 :Returns: 0 in case of success 2266 2183 2267 The parameter is defined like this:: 2184 The parameter is defined like this:: 2268 2185 2269 struct kvm_s390_ucas_mapping { 2186 struct kvm_s390_ucas_mapping { 2270 __u64 user_addr; 2187 __u64 user_addr; 2271 __u64 vcpu_addr; 2188 __u64 vcpu_addr; 2272 __u64 length; 2189 __u64 length; 2273 }; 2190 }; 2274 2191 2275 This ioctl unmaps the memory in the vcpu's ad 2192 This ioctl unmaps the memory in the vcpu's address space starting at 2276 "vcpu_addr" with the length "length". The fie 2193 "vcpu_addr" with the length "length". The field "user_addr" is ignored. 2277 All parameters need to be aligned by 1 megaby 2194 All parameters need to be aligned by 1 megabyte. 2278 2195 2279 2196 2280 4.67 KVM_S390_VCPU_FAULT 2197 4.67 KVM_S390_VCPU_FAULT 2281 ------------------------ 2198 ------------------------ 2282 2199 2283 :Capability: KVM_CAP_S390_UCONTROL 2200 :Capability: KVM_CAP_S390_UCONTROL 2284 :Architectures: s390 2201 :Architectures: s390 2285 :Type: vcpu ioctl 2202 :Type: vcpu ioctl 2286 :Parameters: vcpu absolute address (in) 2203 :Parameters: vcpu absolute address (in) 2287 :Returns: 0 in case of success 2204 :Returns: 0 in case of success 2288 2205 2289 This call creates a page table entry on the v 2206 This call creates a page table entry on the virtual cpu's address space 2290 (for user controlled virtual machines) or the 2207 (for user controlled virtual machines) or the virtual machine's address 2291 space (for regular virtual machines). This on 2208 space (for regular virtual machines). This only works for minor faults, 2292 thus it's recommended to access subject memor 2209 thus it's recommended to access subject memory page via the user page 2293 table upfront. This is useful to handle valid 2210 table upfront. This is useful to handle validity intercepts for user 2294 controlled virtual machines to fault in the v 2211 controlled virtual machines to fault in the virtual cpu's lowcore pages 2295 prior to calling the KVM_RUN ioctl. 2212 prior to calling the KVM_RUN ioctl. 2296 2213 2297 2214 2298 4.68 KVM_SET_ONE_REG 2215 4.68 KVM_SET_ONE_REG 2299 -------------------- 2216 -------------------- 2300 2217 2301 :Capability: KVM_CAP_ONE_REG 2218 :Capability: KVM_CAP_ONE_REG 2302 :Architectures: all 2219 :Architectures: all 2303 :Type: vcpu ioctl 2220 :Type: vcpu ioctl 2304 :Parameters: struct kvm_one_reg (in) 2221 :Parameters: struct kvm_one_reg (in) 2305 :Returns: 0 on success, negative value on fai 2222 :Returns: 0 on success, negative value on failure 2306 2223 2307 Errors: 2224 Errors: 2308 2225 2309 ====== ================================== 2226 ====== ============================================================ 2310 ENOENT no such register 2227 ENOENT no such register 2311 EINVAL invalid register ID, or no such re 2228 EINVAL invalid register ID, or no such register or used with VMs in 2312 protected virtualization mode on s 2229 protected virtualization mode on s390 2313 EPERM (arm64) register access not allowe 2230 EPERM (arm64) register access not allowed before vcpu finalization 2314 EBUSY (riscv) changing register value no << 2315 has run at least once << 2316 ====== ================================== 2231 ====== ============================================================ 2317 2232 2318 (These error codes are indicative only: do no 2233 (These error codes are indicative only: do not rely on a specific error 2319 code being returned in a specific situation.) 2234 code being returned in a specific situation.) 2320 2235 2321 :: 2236 :: 2322 2237 2323 struct kvm_one_reg { 2238 struct kvm_one_reg { 2324 __u64 id; 2239 __u64 id; 2325 __u64 addr; 2240 __u64 addr; 2326 }; 2241 }; 2327 2242 2328 Using this ioctl, a single vcpu register can 2243 Using this ioctl, a single vcpu register can be set to a specific value 2329 defined by user space with the passed in stru 2244 defined by user space with the passed in struct kvm_one_reg, where id 2330 refers to the register identifier as describe 2245 refers to the register identifier as described below and addr is a pointer 2331 to a variable with the respective size. There 2246 to a variable with the respective size. There can be architecture agnostic 2332 and architecture specific registers. Each hav 2247 and architecture specific registers. Each have their own range of operation 2333 and their own constants and width. To keep tr 2248 and their own constants and width. To keep track of the implemented 2334 registers, find a list below: 2249 registers, find a list below: 2335 2250 2336 ======= =============================== === 2251 ======= =============================== ============ 2337 Arch Register Wid 2252 Arch Register Width (bits) 2338 ======= =============================== === 2253 ======= =============================== ============ 2339 PPC KVM_REG_PPC_HIOR 64 2254 PPC KVM_REG_PPC_HIOR 64 2340 PPC KVM_REG_PPC_IAC1 64 2255 PPC KVM_REG_PPC_IAC1 64 2341 PPC KVM_REG_PPC_IAC2 64 2256 PPC KVM_REG_PPC_IAC2 64 2342 PPC KVM_REG_PPC_IAC3 64 2257 PPC KVM_REG_PPC_IAC3 64 2343 PPC KVM_REG_PPC_IAC4 64 2258 PPC KVM_REG_PPC_IAC4 64 2344 PPC KVM_REG_PPC_DAC1 64 2259 PPC KVM_REG_PPC_DAC1 64 2345 PPC KVM_REG_PPC_DAC2 64 2260 PPC KVM_REG_PPC_DAC2 64 2346 PPC KVM_REG_PPC_DABR 64 2261 PPC KVM_REG_PPC_DABR 64 2347 PPC KVM_REG_PPC_DSCR 64 2262 PPC KVM_REG_PPC_DSCR 64 2348 PPC KVM_REG_PPC_PURR 64 2263 PPC KVM_REG_PPC_PURR 64 2349 PPC KVM_REG_PPC_SPURR 64 2264 PPC KVM_REG_PPC_SPURR 64 2350 PPC KVM_REG_PPC_DAR 64 2265 PPC KVM_REG_PPC_DAR 64 2351 PPC KVM_REG_PPC_DSISR 32 2266 PPC KVM_REG_PPC_DSISR 32 2352 PPC KVM_REG_PPC_AMR 64 2267 PPC KVM_REG_PPC_AMR 64 2353 PPC KVM_REG_PPC_UAMOR 64 2268 PPC KVM_REG_PPC_UAMOR 64 2354 PPC KVM_REG_PPC_MMCR0 64 2269 PPC KVM_REG_PPC_MMCR0 64 2355 PPC KVM_REG_PPC_MMCR1 64 2270 PPC KVM_REG_PPC_MMCR1 64 2356 PPC KVM_REG_PPC_MMCRA 64 2271 PPC KVM_REG_PPC_MMCRA 64 2357 PPC KVM_REG_PPC_MMCR2 64 2272 PPC KVM_REG_PPC_MMCR2 64 2358 PPC KVM_REG_PPC_MMCRS 64 2273 PPC KVM_REG_PPC_MMCRS 64 2359 PPC KVM_REG_PPC_MMCR3 64 2274 PPC KVM_REG_PPC_MMCR3 64 2360 PPC KVM_REG_PPC_SIAR 64 2275 PPC KVM_REG_PPC_SIAR 64 2361 PPC KVM_REG_PPC_SDAR 64 2276 PPC KVM_REG_PPC_SDAR 64 2362 PPC KVM_REG_PPC_SIER 64 2277 PPC KVM_REG_PPC_SIER 64 2363 PPC KVM_REG_PPC_SIER2 64 2278 PPC KVM_REG_PPC_SIER2 64 2364 PPC KVM_REG_PPC_SIER3 64 2279 PPC KVM_REG_PPC_SIER3 64 2365 PPC KVM_REG_PPC_PMC1 32 2280 PPC KVM_REG_PPC_PMC1 32 2366 PPC KVM_REG_PPC_PMC2 32 2281 PPC KVM_REG_PPC_PMC2 32 2367 PPC KVM_REG_PPC_PMC3 32 2282 PPC KVM_REG_PPC_PMC3 32 2368 PPC KVM_REG_PPC_PMC4 32 2283 PPC KVM_REG_PPC_PMC4 32 2369 PPC KVM_REG_PPC_PMC5 32 2284 PPC KVM_REG_PPC_PMC5 32 2370 PPC KVM_REG_PPC_PMC6 32 2285 PPC KVM_REG_PPC_PMC6 32 2371 PPC KVM_REG_PPC_PMC7 32 2286 PPC KVM_REG_PPC_PMC7 32 2372 PPC KVM_REG_PPC_PMC8 32 2287 PPC KVM_REG_PPC_PMC8 32 2373 PPC KVM_REG_PPC_FPR0 64 2288 PPC KVM_REG_PPC_FPR0 64 2374 ... 2289 ... 2375 PPC KVM_REG_PPC_FPR31 64 2290 PPC KVM_REG_PPC_FPR31 64 2376 PPC KVM_REG_PPC_VR0 128 2291 PPC KVM_REG_PPC_VR0 128 2377 ... 2292 ... 2378 PPC KVM_REG_PPC_VR31 128 2293 PPC KVM_REG_PPC_VR31 128 2379 PPC KVM_REG_PPC_VSR0 128 2294 PPC KVM_REG_PPC_VSR0 128 2380 ... 2295 ... 2381 PPC KVM_REG_PPC_VSR31 128 2296 PPC KVM_REG_PPC_VSR31 128 2382 PPC KVM_REG_PPC_FPSCR 64 2297 PPC KVM_REG_PPC_FPSCR 64 2383 PPC KVM_REG_PPC_VSCR 32 2298 PPC KVM_REG_PPC_VSCR 32 2384 PPC KVM_REG_PPC_VPA_ADDR 64 2299 PPC KVM_REG_PPC_VPA_ADDR 64 2385 PPC KVM_REG_PPC_VPA_SLB 128 2300 PPC KVM_REG_PPC_VPA_SLB 128 2386 PPC KVM_REG_PPC_VPA_DTL 128 2301 PPC KVM_REG_PPC_VPA_DTL 128 2387 PPC KVM_REG_PPC_EPCR 32 2302 PPC KVM_REG_PPC_EPCR 32 2388 PPC KVM_REG_PPC_EPR 32 2303 PPC KVM_REG_PPC_EPR 32 2389 PPC KVM_REG_PPC_TCR 32 2304 PPC KVM_REG_PPC_TCR 32 2390 PPC KVM_REG_PPC_TSR 32 2305 PPC KVM_REG_PPC_TSR 32 2391 PPC KVM_REG_PPC_OR_TSR 32 2306 PPC KVM_REG_PPC_OR_TSR 32 2392 PPC KVM_REG_PPC_CLEAR_TSR 32 2307 PPC KVM_REG_PPC_CLEAR_TSR 32 2393 PPC KVM_REG_PPC_MAS0 32 2308 PPC KVM_REG_PPC_MAS0 32 2394 PPC KVM_REG_PPC_MAS1 32 2309 PPC KVM_REG_PPC_MAS1 32 2395 PPC KVM_REG_PPC_MAS2 64 2310 PPC KVM_REG_PPC_MAS2 64 2396 PPC KVM_REG_PPC_MAS7_3 64 2311 PPC KVM_REG_PPC_MAS7_3 64 2397 PPC KVM_REG_PPC_MAS4 32 2312 PPC KVM_REG_PPC_MAS4 32 2398 PPC KVM_REG_PPC_MAS6 32 2313 PPC KVM_REG_PPC_MAS6 32 2399 PPC KVM_REG_PPC_MMUCFG 32 2314 PPC KVM_REG_PPC_MMUCFG 32 2400 PPC KVM_REG_PPC_TLB0CFG 32 2315 PPC KVM_REG_PPC_TLB0CFG 32 2401 PPC KVM_REG_PPC_TLB1CFG 32 2316 PPC KVM_REG_PPC_TLB1CFG 32 2402 PPC KVM_REG_PPC_TLB2CFG 32 2317 PPC KVM_REG_PPC_TLB2CFG 32 2403 PPC KVM_REG_PPC_TLB3CFG 32 2318 PPC KVM_REG_PPC_TLB3CFG 32 2404 PPC KVM_REG_PPC_TLB0PS 32 2319 PPC KVM_REG_PPC_TLB0PS 32 2405 PPC KVM_REG_PPC_TLB1PS 32 2320 PPC KVM_REG_PPC_TLB1PS 32 2406 PPC KVM_REG_PPC_TLB2PS 32 2321 PPC KVM_REG_PPC_TLB2PS 32 2407 PPC KVM_REG_PPC_TLB3PS 32 2322 PPC KVM_REG_PPC_TLB3PS 32 2408 PPC KVM_REG_PPC_EPTCFG 32 2323 PPC KVM_REG_PPC_EPTCFG 32 2409 PPC KVM_REG_PPC_ICP_STATE 64 2324 PPC KVM_REG_PPC_ICP_STATE 64 2410 PPC KVM_REG_PPC_VP_STATE 128 2325 PPC KVM_REG_PPC_VP_STATE 128 2411 PPC KVM_REG_PPC_TB_OFFSET 64 2326 PPC KVM_REG_PPC_TB_OFFSET 64 2412 PPC KVM_REG_PPC_SPMC1 32 2327 PPC KVM_REG_PPC_SPMC1 32 2413 PPC KVM_REG_PPC_SPMC2 32 2328 PPC KVM_REG_PPC_SPMC2 32 2414 PPC KVM_REG_PPC_IAMR 64 2329 PPC KVM_REG_PPC_IAMR 64 2415 PPC KVM_REG_PPC_TFHAR 64 2330 PPC KVM_REG_PPC_TFHAR 64 2416 PPC KVM_REG_PPC_TFIAR 64 2331 PPC KVM_REG_PPC_TFIAR 64 2417 PPC KVM_REG_PPC_TEXASR 64 2332 PPC KVM_REG_PPC_TEXASR 64 2418 PPC KVM_REG_PPC_FSCR 64 2333 PPC KVM_REG_PPC_FSCR 64 2419 PPC KVM_REG_PPC_PSPB 32 2334 PPC KVM_REG_PPC_PSPB 32 2420 PPC KVM_REG_PPC_EBBHR 64 2335 PPC KVM_REG_PPC_EBBHR 64 2421 PPC KVM_REG_PPC_EBBRR 64 2336 PPC KVM_REG_PPC_EBBRR 64 2422 PPC KVM_REG_PPC_BESCR 64 2337 PPC KVM_REG_PPC_BESCR 64 2423 PPC KVM_REG_PPC_TAR 64 2338 PPC KVM_REG_PPC_TAR 64 2424 PPC KVM_REG_PPC_DPDES 64 2339 PPC KVM_REG_PPC_DPDES 64 2425 PPC KVM_REG_PPC_DAWR 64 2340 PPC KVM_REG_PPC_DAWR 64 2426 PPC KVM_REG_PPC_DAWRX 64 2341 PPC KVM_REG_PPC_DAWRX 64 2427 PPC KVM_REG_PPC_CIABR 64 2342 PPC KVM_REG_PPC_CIABR 64 2428 PPC KVM_REG_PPC_IC 64 2343 PPC KVM_REG_PPC_IC 64 2429 PPC KVM_REG_PPC_VTB 64 2344 PPC KVM_REG_PPC_VTB 64 2430 PPC KVM_REG_PPC_CSIGR 64 2345 PPC KVM_REG_PPC_CSIGR 64 2431 PPC KVM_REG_PPC_TACR 64 2346 PPC KVM_REG_PPC_TACR 64 2432 PPC KVM_REG_PPC_TCSCR 64 2347 PPC KVM_REG_PPC_TCSCR 64 2433 PPC KVM_REG_PPC_PID 64 2348 PPC KVM_REG_PPC_PID 64 2434 PPC KVM_REG_PPC_ACOP 64 2349 PPC KVM_REG_PPC_ACOP 64 2435 PPC KVM_REG_PPC_VRSAVE 32 2350 PPC KVM_REG_PPC_VRSAVE 32 2436 PPC KVM_REG_PPC_LPCR 32 2351 PPC KVM_REG_PPC_LPCR 32 2437 PPC KVM_REG_PPC_LPCR_64 64 2352 PPC KVM_REG_PPC_LPCR_64 64 2438 PPC KVM_REG_PPC_PPR 64 2353 PPC KVM_REG_PPC_PPR 64 2439 PPC KVM_REG_PPC_ARCH_COMPAT 32 2354 PPC KVM_REG_PPC_ARCH_COMPAT 32 2440 PPC KVM_REG_PPC_DABRX 32 2355 PPC KVM_REG_PPC_DABRX 32 2441 PPC KVM_REG_PPC_WORT 64 2356 PPC KVM_REG_PPC_WORT 64 2442 PPC KVM_REG_PPC_SPRG9 64 2357 PPC KVM_REG_PPC_SPRG9 64 2443 PPC KVM_REG_PPC_DBSR 32 2358 PPC KVM_REG_PPC_DBSR 32 2444 PPC KVM_REG_PPC_TIDR 64 2359 PPC KVM_REG_PPC_TIDR 64 2445 PPC KVM_REG_PPC_PSSCR 64 2360 PPC KVM_REG_PPC_PSSCR 64 2446 PPC KVM_REG_PPC_DEC_EXPIRY 64 2361 PPC KVM_REG_PPC_DEC_EXPIRY 64 2447 PPC KVM_REG_PPC_PTCR 64 2362 PPC KVM_REG_PPC_PTCR 64 2448 PPC KVM_REG_PPC_HASHKEYR 64 << 2449 PPC KVM_REG_PPC_HASHPKEYR 64 << 2450 PPC KVM_REG_PPC_DAWR1 64 2363 PPC KVM_REG_PPC_DAWR1 64 2451 PPC KVM_REG_PPC_DAWRX1 64 2364 PPC KVM_REG_PPC_DAWRX1 64 2452 PPC KVM_REG_PPC_DEXCR 64 << 2453 PPC KVM_REG_PPC_TM_GPR0 64 2365 PPC KVM_REG_PPC_TM_GPR0 64 2454 ... 2366 ... 2455 PPC KVM_REG_PPC_TM_GPR31 64 2367 PPC KVM_REG_PPC_TM_GPR31 64 2456 PPC KVM_REG_PPC_TM_VSR0 128 2368 PPC KVM_REG_PPC_TM_VSR0 128 2457 ... 2369 ... 2458 PPC KVM_REG_PPC_TM_VSR63 128 2370 PPC KVM_REG_PPC_TM_VSR63 128 2459 PPC KVM_REG_PPC_TM_CR 64 2371 PPC KVM_REG_PPC_TM_CR 64 2460 PPC KVM_REG_PPC_TM_LR 64 2372 PPC KVM_REG_PPC_TM_LR 64 2461 PPC KVM_REG_PPC_TM_CTR 64 2373 PPC KVM_REG_PPC_TM_CTR 64 2462 PPC KVM_REG_PPC_TM_FPSCR 64 2374 PPC KVM_REG_PPC_TM_FPSCR 64 2463 PPC KVM_REG_PPC_TM_AMR 64 2375 PPC KVM_REG_PPC_TM_AMR 64 2464 PPC KVM_REG_PPC_TM_PPR 64 2376 PPC KVM_REG_PPC_TM_PPR 64 2465 PPC KVM_REG_PPC_TM_VRSAVE 64 2377 PPC KVM_REG_PPC_TM_VRSAVE 64 2466 PPC KVM_REG_PPC_TM_VSCR 32 2378 PPC KVM_REG_PPC_TM_VSCR 32 2467 PPC KVM_REG_PPC_TM_DSCR 64 2379 PPC KVM_REG_PPC_TM_DSCR 64 2468 PPC KVM_REG_PPC_TM_TAR 64 2380 PPC KVM_REG_PPC_TM_TAR 64 2469 PPC KVM_REG_PPC_TM_XER 64 2381 PPC KVM_REG_PPC_TM_XER 64 2470 2382 2471 MIPS KVM_REG_MIPS_R0 64 2383 MIPS KVM_REG_MIPS_R0 64 2472 ... 2384 ... 2473 MIPS KVM_REG_MIPS_R31 64 2385 MIPS KVM_REG_MIPS_R31 64 2474 MIPS KVM_REG_MIPS_HI 64 2386 MIPS KVM_REG_MIPS_HI 64 2475 MIPS KVM_REG_MIPS_LO 64 2387 MIPS KVM_REG_MIPS_LO 64 2476 MIPS KVM_REG_MIPS_PC 64 2388 MIPS KVM_REG_MIPS_PC 64 2477 MIPS KVM_REG_MIPS_CP0_INDEX 32 2389 MIPS KVM_REG_MIPS_CP0_INDEX 32 2478 MIPS KVM_REG_MIPS_CP0_ENTRYLO0 64 2390 MIPS KVM_REG_MIPS_CP0_ENTRYLO0 64 2479 MIPS KVM_REG_MIPS_CP0_ENTRYLO1 64 2391 MIPS KVM_REG_MIPS_CP0_ENTRYLO1 64 2480 MIPS KVM_REG_MIPS_CP0_CONTEXT 64 2392 MIPS KVM_REG_MIPS_CP0_CONTEXT 64 2481 MIPS KVM_REG_MIPS_CP0_CONTEXTCONFIG 32 2393 MIPS KVM_REG_MIPS_CP0_CONTEXTCONFIG 32 2482 MIPS KVM_REG_MIPS_CP0_USERLOCAL 64 2394 MIPS KVM_REG_MIPS_CP0_USERLOCAL 64 2483 MIPS KVM_REG_MIPS_CP0_XCONTEXTCONFIG 64 2395 MIPS KVM_REG_MIPS_CP0_XCONTEXTCONFIG 64 2484 MIPS KVM_REG_MIPS_CP0_PAGEMASK 32 2396 MIPS KVM_REG_MIPS_CP0_PAGEMASK 32 2485 MIPS KVM_REG_MIPS_CP0_PAGEGRAIN 32 2397 MIPS KVM_REG_MIPS_CP0_PAGEGRAIN 32 2486 MIPS KVM_REG_MIPS_CP0_SEGCTL0 64 2398 MIPS KVM_REG_MIPS_CP0_SEGCTL0 64 2487 MIPS KVM_REG_MIPS_CP0_SEGCTL1 64 2399 MIPS KVM_REG_MIPS_CP0_SEGCTL1 64 2488 MIPS KVM_REG_MIPS_CP0_SEGCTL2 64 2400 MIPS KVM_REG_MIPS_CP0_SEGCTL2 64 2489 MIPS KVM_REG_MIPS_CP0_PWBASE 64 2401 MIPS KVM_REG_MIPS_CP0_PWBASE 64 2490 MIPS KVM_REG_MIPS_CP0_PWFIELD 64 2402 MIPS KVM_REG_MIPS_CP0_PWFIELD 64 2491 MIPS KVM_REG_MIPS_CP0_PWSIZE 64 2403 MIPS KVM_REG_MIPS_CP0_PWSIZE 64 2492 MIPS KVM_REG_MIPS_CP0_WIRED 32 2404 MIPS KVM_REG_MIPS_CP0_WIRED 32 2493 MIPS KVM_REG_MIPS_CP0_PWCTL 32 2405 MIPS KVM_REG_MIPS_CP0_PWCTL 32 2494 MIPS KVM_REG_MIPS_CP0_HWRENA 32 2406 MIPS KVM_REG_MIPS_CP0_HWRENA 32 2495 MIPS KVM_REG_MIPS_CP0_BADVADDR 64 2407 MIPS KVM_REG_MIPS_CP0_BADVADDR 64 2496 MIPS KVM_REG_MIPS_CP0_BADINSTR 32 2408 MIPS KVM_REG_MIPS_CP0_BADINSTR 32 2497 MIPS KVM_REG_MIPS_CP0_BADINSTRP 32 2409 MIPS KVM_REG_MIPS_CP0_BADINSTRP 32 2498 MIPS KVM_REG_MIPS_CP0_COUNT 32 2410 MIPS KVM_REG_MIPS_CP0_COUNT 32 2499 MIPS KVM_REG_MIPS_CP0_ENTRYHI 64 2411 MIPS KVM_REG_MIPS_CP0_ENTRYHI 64 2500 MIPS KVM_REG_MIPS_CP0_COMPARE 32 2412 MIPS KVM_REG_MIPS_CP0_COMPARE 32 2501 MIPS KVM_REG_MIPS_CP0_STATUS 32 2413 MIPS KVM_REG_MIPS_CP0_STATUS 32 2502 MIPS KVM_REG_MIPS_CP0_INTCTL 32 2414 MIPS KVM_REG_MIPS_CP0_INTCTL 32 2503 MIPS KVM_REG_MIPS_CP0_CAUSE 32 2415 MIPS KVM_REG_MIPS_CP0_CAUSE 32 2504 MIPS KVM_REG_MIPS_CP0_EPC 64 2416 MIPS KVM_REG_MIPS_CP0_EPC 64 2505 MIPS KVM_REG_MIPS_CP0_PRID 32 2417 MIPS KVM_REG_MIPS_CP0_PRID 32 2506 MIPS KVM_REG_MIPS_CP0_EBASE 64 2418 MIPS KVM_REG_MIPS_CP0_EBASE 64 2507 MIPS KVM_REG_MIPS_CP0_CONFIG 32 2419 MIPS KVM_REG_MIPS_CP0_CONFIG 32 2508 MIPS KVM_REG_MIPS_CP0_CONFIG1 32 2420 MIPS KVM_REG_MIPS_CP0_CONFIG1 32 2509 MIPS KVM_REG_MIPS_CP0_CONFIG2 32 2421 MIPS KVM_REG_MIPS_CP0_CONFIG2 32 2510 MIPS KVM_REG_MIPS_CP0_CONFIG3 32 2422 MIPS KVM_REG_MIPS_CP0_CONFIG3 32 2511 MIPS KVM_REG_MIPS_CP0_CONFIG4 32 2423 MIPS KVM_REG_MIPS_CP0_CONFIG4 32 2512 MIPS KVM_REG_MIPS_CP0_CONFIG5 32 2424 MIPS KVM_REG_MIPS_CP0_CONFIG5 32 2513 MIPS KVM_REG_MIPS_CP0_CONFIG7 32 2425 MIPS KVM_REG_MIPS_CP0_CONFIG7 32 2514 MIPS KVM_REG_MIPS_CP0_XCONTEXT 64 2426 MIPS KVM_REG_MIPS_CP0_XCONTEXT 64 2515 MIPS KVM_REG_MIPS_CP0_ERROREPC 64 2427 MIPS KVM_REG_MIPS_CP0_ERROREPC 64 2516 MIPS KVM_REG_MIPS_CP0_KSCRATCH1 64 2428 MIPS KVM_REG_MIPS_CP0_KSCRATCH1 64 2517 MIPS KVM_REG_MIPS_CP0_KSCRATCH2 64 2429 MIPS KVM_REG_MIPS_CP0_KSCRATCH2 64 2518 MIPS KVM_REG_MIPS_CP0_KSCRATCH3 64 2430 MIPS KVM_REG_MIPS_CP0_KSCRATCH3 64 2519 MIPS KVM_REG_MIPS_CP0_KSCRATCH4 64 2431 MIPS KVM_REG_MIPS_CP0_KSCRATCH4 64 2520 MIPS KVM_REG_MIPS_CP0_KSCRATCH5 64 2432 MIPS KVM_REG_MIPS_CP0_KSCRATCH5 64 2521 MIPS KVM_REG_MIPS_CP0_KSCRATCH6 64 2433 MIPS KVM_REG_MIPS_CP0_KSCRATCH6 64 2522 MIPS KVM_REG_MIPS_CP0_MAAR(0..63) 64 2434 MIPS KVM_REG_MIPS_CP0_MAAR(0..63) 64 2523 MIPS KVM_REG_MIPS_COUNT_CTL 64 2435 MIPS KVM_REG_MIPS_COUNT_CTL 64 2524 MIPS KVM_REG_MIPS_COUNT_RESUME 64 2436 MIPS KVM_REG_MIPS_COUNT_RESUME 64 2525 MIPS KVM_REG_MIPS_COUNT_HZ 64 2437 MIPS KVM_REG_MIPS_COUNT_HZ 64 2526 MIPS KVM_REG_MIPS_FPR_32(0..31) 32 2438 MIPS KVM_REG_MIPS_FPR_32(0..31) 32 2527 MIPS KVM_REG_MIPS_FPR_64(0..31) 64 2439 MIPS KVM_REG_MIPS_FPR_64(0..31) 64 2528 MIPS KVM_REG_MIPS_VEC_128(0..31) 128 2440 MIPS KVM_REG_MIPS_VEC_128(0..31) 128 2529 MIPS KVM_REG_MIPS_FCR_IR 32 2441 MIPS KVM_REG_MIPS_FCR_IR 32 2530 MIPS KVM_REG_MIPS_FCR_CSR 32 2442 MIPS KVM_REG_MIPS_FCR_CSR 32 2531 MIPS KVM_REG_MIPS_MSA_IR 32 2443 MIPS KVM_REG_MIPS_MSA_IR 32 2532 MIPS KVM_REG_MIPS_MSA_CSR 32 2444 MIPS KVM_REG_MIPS_MSA_CSR 32 2533 ======= =============================== === 2445 ======= =============================== ============ 2534 2446 2535 ARM registers are mapped using the lower 32 b 2447 ARM registers are mapped using the lower 32 bits. The upper 16 of that 2536 is the register group type, or coprocessor nu 2448 is the register group type, or coprocessor number: 2537 2449 2538 ARM core registers have the following id bit 2450 ARM core registers have the following id bit patterns:: 2539 2451 2540 0x4020 0000 0010 <index into the kvm_regs s 2452 0x4020 0000 0010 <index into the kvm_regs struct:16> 2541 2453 2542 ARM 32-bit CP15 registers have the following 2454 ARM 32-bit CP15 registers have the following id bit patterns:: 2543 2455 2544 0x4020 0000 000F <zero:1> <crn:4> <crm:4> < 2456 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3> 2545 2457 2546 ARM 64-bit CP15 registers have the following 2458 ARM 64-bit CP15 registers have the following id bit patterns:: 2547 2459 2548 0x4030 0000 000F <zero:1> <zero:4> <crm:4> 2460 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3> 2549 2461 2550 ARM CCSIDR registers are demultiplexed by CSS 2462 ARM CCSIDR registers are demultiplexed by CSSELR value:: 2551 2463 2552 0x4020 0000 0011 00 <csselr:8> 2464 0x4020 0000 0011 00 <csselr:8> 2553 2465 2554 ARM 32-bit VFP control registers have the fol 2466 ARM 32-bit VFP control registers have the following id bit patterns:: 2555 2467 2556 0x4020 0000 0012 1 <regno:12> 2468 0x4020 0000 0012 1 <regno:12> 2557 2469 2558 ARM 64-bit FP registers have the following id 2470 ARM 64-bit FP registers have the following id bit patterns:: 2559 2471 2560 0x4030 0000 0012 0 <regno:12> 2472 0x4030 0000 0012 0 <regno:12> 2561 2473 2562 ARM firmware pseudo-registers have the follow 2474 ARM firmware pseudo-registers have the following bit pattern:: 2563 2475 2564 0x4030 0000 0014 <regno:16> 2476 0x4030 0000 0014 <regno:16> 2565 2477 2566 2478 2567 arm64 registers are mapped using the lower 32 2479 arm64 registers are mapped using the lower 32 bits. The upper 16 of 2568 that is the register group type, or coprocess 2480 that is the register group type, or coprocessor number: 2569 2481 2570 arm64 core/FP-SIMD registers have the followi 2482 arm64 core/FP-SIMD registers have the following id bit patterns. Note 2571 that the size of the access is variable, as t 2483 that the size of the access is variable, as the kvm_regs structure 2572 contains elements ranging from 32 to 128 bits 2484 contains elements ranging from 32 to 128 bits. The index is a 32bit 2573 value in the kvm_regs structure seen as a 32b 2485 value in the kvm_regs structure seen as a 32bit array:: 2574 2486 2575 0x60x0 0000 0010 <index into the kvm_regs s 2487 0x60x0 0000 0010 <index into the kvm_regs struct:16> 2576 2488 2577 Specifically: 2489 Specifically: 2578 2490 2579 ======================= ========= ===== ===== 2491 ======================= ========= ===== ======================================= 2580 Encoding Register Bits kvm_r 2492 Encoding Register Bits kvm_regs member 2581 ======================= ========= ===== ===== 2493 ======================= ========= ===== ======================================= 2582 0x6030 0000 0010 0000 X0 64 regs. 2494 0x6030 0000 0010 0000 X0 64 regs.regs[0] 2583 0x6030 0000 0010 0002 X1 64 regs. 2495 0x6030 0000 0010 0002 X1 64 regs.regs[1] 2584 ... 2496 ... 2585 0x6030 0000 0010 003c X30 64 regs. 2497 0x6030 0000 0010 003c X30 64 regs.regs[30] 2586 0x6030 0000 0010 003e SP 64 regs. 2498 0x6030 0000 0010 003e SP 64 regs.sp 2587 0x6030 0000 0010 0040 PC 64 regs. 2499 0x6030 0000 0010 0040 PC 64 regs.pc 2588 0x6030 0000 0010 0042 PSTATE 64 regs. 2500 0x6030 0000 0010 0042 PSTATE 64 regs.pstate 2589 0x6030 0000 0010 0044 SP_EL1 64 sp_el 2501 0x6030 0000 0010 0044 SP_EL1 64 sp_el1 2590 0x6030 0000 0010 0046 ELR_EL1 64 elr_e 2502 0x6030 0000 0010 0046 ELR_EL1 64 elr_el1 2591 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[ 2503 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[KVM_SPSR_EL1] (alias SPSR_SVC) 2592 0x6030 0000 0010 004a SPSR_ABT 64 spsr[ 2504 0x6030 0000 0010 004a SPSR_ABT 64 spsr[KVM_SPSR_ABT] 2593 0x6030 0000 0010 004c SPSR_UND 64 spsr[ 2505 0x6030 0000 0010 004c SPSR_UND 64 spsr[KVM_SPSR_UND] 2594 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[ 2506 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[KVM_SPSR_IRQ] 2595 0x6030 0000 0010 0050 SPSR_FIQ 64 spsr[ !! 2507 0x6060 0000 0010 0050 SPSR_FIQ 64 spsr[KVM_SPSR_FIQ] 2596 0x6040 0000 0010 0054 V0 128 fp_re 2508 0x6040 0000 0010 0054 V0 128 fp_regs.vregs[0] [1]_ 2597 0x6040 0000 0010 0058 V1 128 fp_re 2509 0x6040 0000 0010 0058 V1 128 fp_regs.vregs[1] [1]_ 2598 ... 2510 ... 2599 0x6040 0000 0010 00d0 V31 128 fp_re 2511 0x6040 0000 0010 00d0 V31 128 fp_regs.vregs[31] [1]_ 2600 0x6020 0000 0010 00d4 FPSR 32 fp_re 2512 0x6020 0000 0010 00d4 FPSR 32 fp_regs.fpsr 2601 0x6020 0000 0010 00d5 FPCR 32 fp_re 2513 0x6020 0000 0010 00d5 FPCR 32 fp_regs.fpcr 2602 ======================= ========= ===== ===== 2514 ======================= ========= ===== ======================================= 2603 2515 2604 .. [1] These encodings are not accepted for S 2516 .. [1] These encodings are not accepted for SVE-enabled vcpus. See 2605 KVM_ARM_VCPU_INIT. 2517 KVM_ARM_VCPU_INIT. 2606 2518 2607 The equivalent register content can be 2519 The equivalent register content can be accessed via bits [127:0] of 2608 the corresponding SVE Zn registers ins 2520 the corresponding SVE Zn registers instead for vcpus that have SVE 2609 enabled (see below). 2521 enabled (see below). 2610 2522 2611 arm64 CCSIDR registers are demultiplexed by C 2523 arm64 CCSIDR registers are demultiplexed by CSSELR value:: 2612 2524 2613 0x6020 0000 0011 00 <csselr:8> 2525 0x6020 0000 0011 00 <csselr:8> 2614 2526 2615 arm64 system registers have the following id 2527 arm64 system registers have the following id bit patterns:: 2616 2528 2617 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <c 2529 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3> 2618 2530 2619 .. warning:: 2531 .. warning:: 2620 2532 2621 Two system register IDs do not follow th 2533 Two system register IDs do not follow the specified pattern. These 2622 are KVM_REG_ARM_TIMER_CVAL and KVM_REG_A 2534 are KVM_REG_ARM_TIMER_CVAL and KVM_REG_ARM_TIMER_CNT, which map to 2623 system registers CNTV_CVAL_EL0 and CNTVC 2535 system registers CNTV_CVAL_EL0 and CNTVCT_EL0 respectively. These 2624 two had their values accidentally swappe 2536 two had their values accidentally swapped, which means TIMER_CVAL is 2625 derived from the register encoding for C 2537 derived from the register encoding for CNTVCT_EL0 and TIMER_CNT is 2626 derived from the register encoding for C 2538 derived from the register encoding for CNTV_CVAL_EL0. As this is 2627 API, it must remain this way. 2539 API, it must remain this way. 2628 2540 2629 arm64 firmware pseudo-registers have the foll 2541 arm64 firmware pseudo-registers have the following bit pattern:: 2630 2542 2631 0x6030 0000 0014 <regno:16> 2543 0x6030 0000 0014 <regno:16> 2632 2544 2633 arm64 SVE registers have the following bit pa 2545 arm64 SVE registers have the following bit patterns:: 2634 2546 2635 0x6080 0000 0015 00 <n:5> <slice:5> Zn bi 2547 0x6080 0000 0015 00 <n:5> <slice:5> Zn bits[2048*slice + 2047 : 2048*slice] 2636 0x6050 0000 0015 04 <n:4> <slice:5> Pn bi 2548 0x6050 0000 0015 04 <n:4> <slice:5> Pn bits[256*slice + 255 : 256*slice] 2637 0x6050 0000 0015 060 <slice:5> FFR b 2549 0x6050 0000 0015 060 <slice:5> FFR bits[256*slice + 255 : 256*slice] 2638 0x6060 0000 0015 ffff KVM_R 2550 0x6060 0000 0015 ffff KVM_REG_ARM64_SVE_VLS pseudo-register 2639 2551 2640 Access to register IDs where 2048 * slice >= 2552 Access to register IDs where 2048 * slice >= 128 * max_vq will fail with 2641 ENOENT. max_vq is the vcpu's maximum support 2553 ENOENT. max_vq is the vcpu's maximum supported vector length in 128-bit 2642 quadwords: see [2]_ below. 2554 quadwords: see [2]_ below. 2643 2555 2644 These registers are only accessible on vcpus 2556 These registers are only accessible on vcpus for which SVE is enabled. 2645 See KVM_ARM_VCPU_INIT for details. 2557 See KVM_ARM_VCPU_INIT for details. 2646 2558 2647 In addition, except for KVM_REG_ARM64_SVE_VLS 2559 In addition, except for KVM_REG_ARM64_SVE_VLS, these registers are not 2648 accessible until the vcpu's SVE configuration 2560 accessible until the vcpu's SVE configuration has been finalized 2649 using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE) 2561 using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). See KVM_ARM_VCPU_INIT 2650 and KVM_ARM_VCPU_FINALIZE for more informatio 2562 and KVM_ARM_VCPU_FINALIZE for more information about this procedure. 2651 2563 2652 KVM_REG_ARM64_SVE_VLS is a pseudo-register th 2564 KVM_REG_ARM64_SVE_VLS is a pseudo-register that allows the set of vector 2653 lengths supported by the vcpu to be discovere 2565 lengths supported by the vcpu to be discovered and configured by 2654 userspace. When transferred to or from user 2566 userspace. When transferred to or from user memory via KVM_GET_ONE_REG 2655 or KVM_SET_ONE_REG, the value of this registe 2567 or KVM_SET_ONE_REG, the value of this register is of type 2656 __u64[KVM_ARM64_SVE_VLS_WORDS], and encodes t 2568 __u64[KVM_ARM64_SVE_VLS_WORDS], and encodes the set of vector lengths as 2657 follows:: 2569 follows:: 2658 2570 2659 __u64 vector_lengths[KVM_ARM64_SVE_VLS_WORD 2571 __u64 vector_lengths[KVM_ARM64_SVE_VLS_WORDS]; 2660 2572 2661 if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX && 2573 if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX && 2662 ((vector_lengths[(vq - KVM_ARM64_SVE_VQ 2574 ((vector_lengths[(vq - KVM_ARM64_SVE_VQ_MIN) / 64] >> 2663 ((vq - KVM_ARM64_SVE_VQ_MIN) 2575 ((vq - KVM_ARM64_SVE_VQ_MIN) % 64)) & 1)) 2664 /* Vector length vq * 16 bytes suppor 2576 /* Vector length vq * 16 bytes supported */ 2665 else 2577 else 2666 /* Vector length vq * 16 bytes not su 2578 /* Vector length vq * 16 bytes not supported */ 2667 2579 2668 .. [2] The maximum value vq for which the abo 2580 .. [2] The maximum value vq for which the above condition is true is 2669 max_vq. This is the maximum vector le 2581 max_vq. This is the maximum vector length available to the guest on 2670 this vcpu, and determines which regist 2582 this vcpu, and determines which register slices are visible through 2671 this ioctl interface. 2583 this ioctl interface. 2672 2584 2673 (See Documentation/arch/arm64/sve.rst for an !! 2585 (See Documentation/arm64/sve.rst for an explanation of the "vq" 2674 nomenclature.) 2586 nomenclature.) 2675 2587 2676 KVM_REG_ARM64_SVE_VLS is only accessible afte 2588 KVM_REG_ARM64_SVE_VLS is only accessible after KVM_ARM_VCPU_INIT. 2677 KVM_ARM_VCPU_INIT initialises it to the best 2589 KVM_ARM_VCPU_INIT initialises it to the best set of vector lengths that 2678 the host supports. 2590 the host supports. 2679 2591 2680 Userspace may subsequently modify it if desir 2592 Userspace may subsequently modify it if desired until the vcpu's SVE 2681 configuration is finalized using KVM_ARM_VCPU 2593 configuration is finalized using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). 2682 2594 2683 Apart from simply removing all vector lengths 2595 Apart from simply removing all vector lengths from the host set that 2684 exceed some value, support for arbitrarily ch 2596 exceed some value, support for arbitrarily chosen sets of vector lengths 2685 is hardware-dependent and may not be availabl 2597 is hardware-dependent and may not be available. Attempting to configure 2686 an invalid set of vector lengths via KVM_SET_ 2598 an invalid set of vector lengths via KVM_SET_ONE_REG will fail with 2687 EINVAL. 2599 EINVAL. 2688 2600 2689 After the vcpu's SVE configuration is finaliz 2601 After the vcpu's SVE configuration is finalized, further attempts to 2690 write this register will fail with EPERM. 2602 write this register will fail with EPERM. 2691 2603 2692 arm64 bitmap feature firmware pseudo-register << 2693 << 2694 0x6030 0000 0016 <regno:16> << 2695 << 2696 The bitmap feature firmware registers exposes << 2697 are available for userspace to configure. The << 2698 services that are available for the guests to << 2699 sets all the supported bits during VM initial << 2700 discover the available services via KVM_GET_O << 2701 bitmap corresponding to the features that it << 2702 KVM_SET_ONE_REG. << 2703 << 2704 Note: These registers are immutable once any << 2705 run at least once. A KVM_SET_ONE_REG in such << 2706 a -EBUSY to userspace. << 2707 << 2708 (See Documentation/virt/kvm/arm/hypercalls.rs << 2709 << 2710 2604 2711 MIPS registers are mapped using the lower 32 2605 MIPS registers are mapped using the lower 32 bits. The upper 16 of that is 2712 the register group type: 2606 the register group type: 2713 2607 2714 MIPS core registers (see above) have the foll 2608 MIPS core registers (see above) have the following id bit patterns:: 2715 2609 2716 0x7030 0000 0000 <reg:16> 2610 0x7030 0000 0000 <reg:16> 2717 2611 2718 MIPS CP0 registers (see KVM_REG_MIPS_CP0_* ab 2612 MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit 2719 patterns depending on whether they're 32-bit 2613 patterns depending on whether they're 32-bit or 64-bit registers:: 2720 2614 2721 0x7020 0000 0001 00 <reg:5> <sel:3> (32-b 2615 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit) 2722 0x7030 0000 0001 00 <reg:5> <sel:3> (64-b 2616 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit) 2723 2617 2724 Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_M 2618 Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64 2725 versions of the EntryLo registers regardless 2619 versions of the EntryLo registers regardless of the word size of the host 2726 hardware, host kernel, guest, and whether XPA 2620 hardware, host kernel, guest, and whether XPA is present in the guest, i.e. 2727 with the RI and XI bits (if they exist) in bi 2621 with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and 2728 the PFNX field starting at bit 30. 2622 the PFNX field starting at bit 30. 2729 2623 2730 MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) abov 2624 MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit 2731 patterns:: 2625 patterns:: 2732 2626 2733 0x7030 0000 0001 01 <reg:8> 2627 0x7030 0000 0001 01 <reg:8> 2734 2628 2735 MIPS KVM control registers (see above) have t 2629 MIPS KVM control registers (see above) have the following id bit patterns:: 2736 2630 2737 0x7030 0000 0002 <reg:16> 2631 0x7030 0000 0002 <reg:16> 2738 2632 2739 MIPS FPU registers (see KVM_REG_MIPS_FPR_{32, 2633 MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following 2740 id bit patterns depending on the size of the 2634 id bit patterns depending on the size of the register being accessed. They are 2741 always accessed according to the current gues 2635 always accessed according to the current guest FPU mode (Status.FR and 2742 Config5.FRE), i.e. as the guest would see the 2636 Config5.FRE), i.e. as the guest would see them, and they become unpredictable 2743 if the guest FPU mode is changed. MIPS SIMD A 2637 if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector 2744 registers (see KVM_REG_MIPS_VEC_128() above) 2638 registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they 2745 overlap the FPU registers:: 2639 overlap the FPU registers:: 2746 2640 2747 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit F 2641 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers) 2748 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit F 2642 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers) 2749 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit 2643 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers) 2750 2644 2751 MIPS FPU control registers (see KVM_REG_MIPS_ 2645 MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the 2752 following id bit patterns:: 2646 following id bit patterns:: 2753 2647 2754 0x7020 0000 0003 01 <0:3> <reg:5> 2648 0x7020 0000 0003 01 <0:3> <reg:5> 2755 2649 2756 MIPS MSA control registers (see KVM_REG_MIPS_ 2650 MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the 2757 following id bit patterns:: 2651 following id bit patterns:: 2758 2652 2759 0x7020 0000 0003 02 <0:3> <reg:5> 2653 0x7020 0000 0003 02 <0:3> <reg:5> 2760 2654 2761 RISC-V registers are mapped using the lower 3 2655 RISC-V registers are mapped using the lower 32 bits. The upper 8 bits of 2762 that is the register group type. 2656 that is the register group type. 2763 2657 2764 RISC-V config registers are meant for configu 2658 RISC-V config registers are meant for configuring a Guest VCPU and it has 2765 the following id bit patterns:: 2659 the following id bit patterns:: 2766 2660 2767 0x8020 0000 01 <index into the kvm_riscv_co 2661 0x8020 0000 01 <index into the kvm_riscv_config struct:24> (32bit Host) 2768 0x8030 0000 01 <index into the kvm_riscv_co 2662 0x8030 0000 01 <index into the kvm_riscv_config struct:24> (64bit Host) 2769 2663 2770 Following are the RISC-V config registers: 2664 Following are the RISC-V config registers: 2771 2665 2772 ======================= ========= =========== 2666 ======================= ========= ============================================= 2773 Encoding Register Description 2667 Encoding Register Description 2774 ======================= ========= =========== 2668 ======================= ========= ============================================= 2775 0x80x0 0000 0100 0000 isa ISA feature 2669 0x80x0 0000 0100 0000 isa ISA feature bitmap of Guest VCPU 2776 ======================= ========= =========== 2670 ======================= ========= ============================================= 2777 2671 2778 The isa config register can be read anytime b 2672 The isa config register can be read anytime but can only be written before 2779 a Guest VCPU runs. It will have ISA feature b 2673 a Guest VCPU runs. It will have ISA feature bits matching underlying host 2780 set by default. 2674 set by default. 2781 2675 2782 RISC-V core registers represent the general e !! 2676 RISC-V core registers represent the general excution state of a Guest VCPU 2783 and it has the following id bit patterns:: 2677 and it has the following id bit patterns:: 2784 2678 2785 0x8020 0000 02 <index into the kvm_riscv_co 2679 0x8020 0000 02 <index into the kvm_riscv_core struct:24> (32bit Host) 2786 0x8030 0000 02 <index into the kvm_riscv_co 2680 0x8030 0000 02 <index into the kvm_riscv_core struct:24> (64bit Host) 2787 2681 2788 Following are the RISC-V core registers: 2682 Following are the RISC-V core registers: 2789 2683 2790 ======================= ========= =========== 2684 ======================= ========= ============================================= 2791 Encoding Register Description 2685 Encoding Register Description 2792 ======================= ========= =========== 2686 ======================= ========= ============================================= 2793 0x80x0 0000 0200 0000 regs.pc Program cou 2687 0x80x0 0000 0200 0000 regs.pc Program counter 2794 0x80x0 0000 0200 0001 regs.ra Return addr 2688 0x80x0 0000 0200 0001 regs.ra Return address 2795 0x80x0 0000 0200 0002 regs.sp Stack point 2689 0x80x0 0000 0200 0002 regs.sp Stack pointer 2796 0x80x0 0000 0200 0003 regs.gp Global poin 2690 0x80x0 0000 0200 0003 regs.gp Global pointer 2797 0x80x0 0000 0200 0004 regs.tp Task pointe 2691 0x80x0 0000 0200 0004 regs.tp Task pointer 2798 0x80x0 0000 0200 0005 regs.t0 Caller save 2692 0x80x0 0000 0200 0005 regs.t0 Caller saved register 0 2799 0x80x0 0000 0200 0006 regs.t1 Caller save 2693 0x80x0 0000 0200 0006 regs.t1 Caller saved register 1 2800 0x80x0 0000 0200 0007 regs.t2 Caller save 2694 0x80x0 0000 0200 0007 regs.t2 Caller saved register 2 2801 0x80x0 0000 0200 0008 regs.s0 Callee save 2695 0x80x0 0000 0200 0008 regs.s0 Callee saved register 0 2802 0x80x0 0000 0200 0009 regs.s1 Callee save 2696 0x80x0 0000 0200 0009 regs.s1 Callee saved register 1 2803 0x80x0 0000 0200 000a regs.a0 Function ar 2697 0x80x0 0000 0200 000a regs.a0 Function argument (or return value) 0 2804 0x80x0 0000 0200 000b regs.a1 Function ar 2698 0x80x0 0000 0200 000b regs.a1 Function argument (or return value) 1 2805 0x80x0 0000 0200 000c regs.a2 Function ar 2699 0x80x0 0000 0200 000c regs.a2 Function argument 2 2806 0x80x0 0000 0200 000d regs.a3 Function ar 2700 0x80x0 0000 0200 000d regs.a3 Function argument 3 2807 0x80x0 0000 0200 000e regs.a4 Function ar 2701 0x80x0 0000 0200 000e regs.a4 Function argument 4 2808 0x80x0 0000 0200 000f regs.a5 Function ar 2702 0x80x0 0000 0200 000f regs.a5 Function argument 5 2809 0x80x0 0000 0200 0010 regs.a6 Function ar 2703 0x80x0 0000 0200 0010 regs.a6 Function argument 6 2810 0x80x0 0000 0200 0011 regs.a7 Function ar 2704 0x80x0 0000 0200 0011 regs.a7 Function argument 7 2811 0x80x0 0000 0200 0012 regs.s2 Callee save 2705 0x80x0 0000 0200 0012 regs.s2 Callee saved register 2 2812 0x80x0 0000 0200 0013 regs.s3 Callee save 2706 0x80x0 0000 0200 0013 regs.s3 Callee saved register 3 2813 0x80x0 0000 0200 0014 regs.s4 Callee save 2707 0x80x0 0000 0200 0014 regs.s4 Callee saved register 4 2814 0x80x0 0000 0200 0015 regs.s5 Callee save 2708 0x80x0 0000 0200 0015 regs.s5 Callee saved register 5 2815 0x80x0 0000 0200 0016 regs.s6 Callee save 2709 0x80x0 0000 0200 0016 regs.s6 Callee saved register 6 2816 0x80x0 0000 0200 0017 regs.s7 Callee save 2710 0x80x0 0000 0200 0017 regs.s7 Callee saved register 7 2817 0x80x0 0000 0200 0018 regs.s8 Callee save 2711 0x80x0 0000 0200 0018 regs.s8 Callee saved register 8 2818 0x80x0 0000 0200 0019 regs.s9 Callee save 2712 0x80x0 0000 0200 0019 regs.s9 Callee saved register 9 2819 0x80x0 0000 0200 001a regs.s10 Callee save 2713 0x80x0 0000 0200 001a regs.s10 Callee saved register 10 2820 0x80x0 0000 0200 001b regs.s11 Callee save 2714 0x80x0 0000 0200 001b regs.s11 Callee saved register 11 2821 0x80x0 0000 0200 001c regs.t3 Caller save 2715 0x80x0 0000 0200 001c regs.t3 Caller saved register 3 2822 0x80x0 0000 0200 001d regs.t4 Caller save 2716 0x80x0 0000 0200 001d regs.t4 Caller saved register 4 2823 0x80x0 0000 0200 001e regs.t5 Caller save 2717 0x80x0 0000 0200 001e regs.t5 Caller saved register 5 2824 0x80x0 0000 0200 001f regs.t6 Caller save 2718 0x80x0 0000 0200 001f regs.t6 Caller saved register 6 2825 0x80x0 0000 0200 0020 mode Privilege m 2719 0x80x0 0000 0200 0020 mode Privilege mode (1 = S-mode or 0 = U-mode) 2826 ======================= ========= =========== 2720 ======================= ========= ============================================= 2827 2721 2828 RISC-V csr registers represent the supervisor 2722 RISC-V csr registers represent the supervisor mode control/status registers 2829 of a Guest VCPU and it has the following id b 2723 of a Guest VCPU and it has the following id bit patterns:: 2830 2724 2831 0x8020 0000 03 <index into the kvm_riscv_cs 2725 0x8020 0000 03 <index into the kvm_riscv_csr struct:24> (32bit Host) 2832 0x8030 0000 03 <index into the kvm_riscv_cs 2726 0x8030 0000 03 <index into the kvm_riscv_csr struct:24> (64bit Host) 2833 2727 2834 Following are the RISC-V csr registers: 2728 Following are the RISC-V csr registers: 2835 2729 2836 ======================= ========= =========== 2730 ======================= ========= ============================================= 2837 Encoding Register Description 2731 Encoding Register Description 2838 ======================= ========= =========== 2732 ======================= ========= ============================================= 2839 0x80x0 0000 0300 0000 sstatus Supervisor 2733 0x80x0 0000 0300 0000 sstatus Supervisor status 2840 0x80x0 0000 0300 0001 sie Supervisor 2734 0x80x0 0000 0300 0001 sie Supervisor interrupt enable 2841 0x80x0 0000 0300 0002 stvec Supervisor 2735 0x80x0 0000 0300 0002 stvec Supervisor trap vector base 2842 0x80x0 0000 0300 0003 sscratch Supervisor 2736 0x80x0 0000 0300 0003 sscratch Supervisor scratch register 2843 0x80x0 0000 0300 0004 sepc Supervisor 2737 0x80x0 0000 0300 0004 sepc Supervisor exception program counter 2844 0x80x0 0000 0300 0005 scause Supervisor 2738 0x80x0 0000 0300 0005 scause Supervisor trap cause 2845 0x80x0 0000 0300 0006 stval Supervisor 2739 0x80x0 0000 0300 0006 stval Supervisor bad address or instruction 2846 0x80x0 0000 0300 0007 sip Supervisor 2740 0x80x0 0000 0300 0007 sip Supervisor interrupt pending 2847 0x80x0 0000 0300 0008 satp Supervisor 2741 0x80x0 0000 0300 0008 satp Supervisor address translation and protection 2848 ======================= ========= =========== 2742 ======================= ========= ============================================= 2849 2743 2850 RISC-V timer registers represent the timer st 2744 RISC-V timer registers represent the timer state of a Guest VCPU and it has 2851 the following id bit patterns:: 2745 the following id bit patterns:: 2852 2746 2853 0x8030 0000 04 <index into the kvm_riscv_ti 2747 0x8030 0000 04 <index into the kvm_riscv_timer struct:24> 2854 2748 2855 Following are the RISC-V timer registers: 2749 Following are the RISC-V timer registers: 2856 2750 2857 ======================= ========= =========== 2751 ======================= ========= ============================================= 2858 Encoding Register Description 2752 Encoding Register Description 2859 ======================= ========= =========== 2753 ======================= ========= ============================================= 2860 0x8030 0000 0400 0000 frequency Time base f 2754 0x8030 0000 0400 0000 frequency Time base frequency (read-only) 2861 0x8030 0000 0400 0001 time Time value 2755 0x8030 0000 0400 0001 time Time value visible to Guest 2862 0x8030 0000 0400 0002 compare Time compar 2756 0x8030 0000 0400 0002 compare Time compare programmed by Guest 2863 0x8030 0000 0400 0003 state Time compar 2757 0x8030 0000 0400 0003 state Time compare state (1 = ON or 0 = OFF) 2864 ======================= ========= =========== 2758 ======================= ========= ============================================= 2865 2759 2866 RISC-V F-extension registers represent the si 2760 RISC-V F-extension registers represent the single precision floating point 2867 state of a Guest VCPU and it has the followin 2761 state of a Guest VCPU and it has the following id bit patterns:: 2868 2762 2869 0x8020 0000 05 <index into the __riscv_f_ex 2763 0x8020 0000 05 <index into the __riscv_f_ext_state struct:24> 2870 2764 2871 Following are the RISC-V F-extension register 2765 Following are the RISC-V F-extension registers: 2872 2766 2873 ======================= ========= =========== 2767 ======================= ========= ============================================= 2874 Encoding Register Description 2768 Encoding Register Description 2875 ======================= ========= =========== 2769 ======================= ========= ============================================= 2876 0x8020 0000 0500 0000 f[0] Floating po 2770 0x8020 0000 0500 0000 f[0] Floating point register 0 2877 ... 2771 ... 2878 0x8020 0000 0500 001f f[31] Floating po 2772 0x8020 0000 0500 001f f[31] Floating point register 31 2879 0x8020 0000 0500 0020 fcsr Floating po 2773 0x8020 0000 0500 0020 fcsr Floating point control and status register 2880 ======================= ========= =========== 2774 ======================= ========= ============================================= 2881 2775 2882 RISC-V D-extension registers represent the do 2776 RISC-V D-extension registers represent the double precision floating point 2883 state of a Guest VCPU and it has the followin 2777 state of a Guest VCPU and it has the following id bit patterns:: 2884 2778 2885 0x8020 0000 06 <index into the __riscv_d_ex 2779 0x8020 0000 06 <index into the __riscv_d_ext_state struct:24> (fcsr) 2886 0x8030 0000 06 <index into the __riscv_d_ex 2780 0x8030 0000 06 <index into the __riscv_d_ext_state struct:24> (non-fcsr) 2887 2781 2888 Following are the RISC-V D-extension register 2782 Following are the RISC-V D-extension registers: 2889 2783 2890 ======================= ========= =========== 2784 ======================= ========= ============================================= 2891 Encoding Register Description 2785 Encoding Register Description 2892 ======================= ========= =========== 2786 ======================= ========= ============================================= 2893 0x8030 0000 0600 0000 f[0] Floating po 2787 0x8030 0000 0600 0000 f[0] Floating point register 0 2894 ... 2788 ... 2895 0x8030 0000 0600 001f f[31] Floating po 2789 0x8030 0000 0600 001f f[31] Floating point register 31 2896 0x8020 0000 0600 0020 fcsr Floating po 2790 0x8020 0000 0600 0020 fcsr Floating point control and status register 2897 ======================= ========= =========== 2791 ======================= ========= ============================================= 2898 2792 2899 LoongArch registers are mapped using the lowe << 2900 that is the register group type. << 2901 << 2902 LoongArch csr registers are used to control g << 2903 cpu, and they have the following id bit patte << 2904 << 2905 0x9030 0000 0001 00 <reg:5> <sel:3> (64-b << 2906 << 2907 LoongArch KVM control registers are used to i << 2908 such as set vcpu counter or reset vcpu, and t << 2909 << 2910 0x9030 0000 0002 <reg:16> << 2911 << 2912 2793 2913 4.69 KVM_GET_ONE_REG 2794 4.69 KVM_GET_ONE_REG 2914 -------------------- 2795 -------------------- 2915 2796 2916 :Capability: KVM_CAP_ONE_REG 2797 :Capability: KVM_CAP_ONE_REG 2917 :Architectures: all 2798 :Architectures: all 2918 :Type: vcpu ioctl 2799 :Type: vcpu ioctl 2919 :Parameters: struct kvm_one_reg (in and out) 2800 :Parameters: struct kvm_one_reg (in and out) 2920 :Returns: 0 on success, negative value on fai 2801 :Returns: 0 on success, negative value on failure 2921 2802 2922 Errors include: 2803 Errors include: 2923 2804 2924 ======== ================================== 2805 ======== ============================================================ 2925 ENOENT no such register 2806 ENOENT no such register 2926 EINVAL invalid register ID, or no such re 2807 EINVAL invalid register ID, or no such register or used with VMs in 2927 protected virtualization mode on s 2808 protected virtualization mode on s390 2928 EPERM (arm64) register access not allowe 2809 EPERM (arm64) register access not allowed before vcpu finalization 2929 ======== ================================== 2810 ======== ============================================================ 2930 2811 2931 (These error codes are indicative only: do no 2812 (These error codes are indicative only: do not rely on a specific error 2932 code being returned in a specific situation.) 2813 code being returned in a specific situation.) 2933 2814 2934 This ioctl allows to receive the value of a s 2815 This ioctl allows to receive the value of a single register implemented 2935 in a vcpu. The register to read is indicated 2816 in a vcpu. The register to read is indicated by the "id" field of the 2936 kvm_one_reg struct passed in. On success, the 2817 kvm_one_reg struct passed in. On success, the register value can be found 2937 at the memory location pointed to by "addr". 2818 at the memory location pointed to by "addr". 2938 2819 2939 The list of registers accessible using this i 2820 The list of registers accessible using this interface is identical to the 2940 list in 4.68. 2821 list in 4.68. 2941 2822 2942 2823 2943 4.70 KVM_KVMCLOCK_CTRL 2824 4.70 KVM_KVMCLOCK_CTRL 2944 ---------------------- 2825 ---------------------- 2945 2826 2946 :Capability: KVM_CAP_KVMCLOCK_CTRL 2827 :Capability: KVM_CAP_KVMCLOCK_CTRL 2947 :Architectures: Any that implement pvclocks ( 2828 :Architectures: Any that implement pvclocks (currently x86 only) 2948 :Type: vcpu ioctl 2829 :Type: vcpu ioctl 2949 :Parameters: None 2830 :Parameters: None 2950 :Returns: 0 on success, -1 on error 2831 :Returns: 0 on success, -1 on error 2951 2832 2952 This ioctl sets a flag accessible to the gues 2833 This ioctl sets a flag accessible to the guest indicating that the specified 2953 vCPU has been paused by the host userspace. 2834 vCPU has been paused by the host userspace. 2954 2835 2955 The host will set a flag in the pvclock struc 2836 The host will set a flag in the pvclock structure that is checked from the 2956 soft lockup watchdog. The flag is part of th 2837 soft lockup watchdog. The flag is part of the pvclock structure that is 2957 shared between guest and host, specifically t 2838 shared between guest and host, specifically the second bit of the flags 2958 field of the pvclock_vcpu_time_info structure 2839 field of the pvclock_vcpu_time_info structure. It will be set exclusively by 2959 the host and read/cleared exclusively by the 2840 the host and read/cleared exclusively by the guest. The guest operation of 2960 checking and clearing the flag must be an ato 2841 checking and clearing the flag must be an atomic operation so 2961 load-link/store-conditional, or equivalent mu 2842 load-link/store-conditional, or equivalent must be used. There are two cases 2962 where the guest will clear the flag: when the 2843 where the guest will clear the flag: when the soft lockup watchdog timer resets 2963 itself or when a soft lockup is detected. Th 2844 itself or when a soft lockup is detected. This ioctl can be called any time 2964 after pausing the vcpu, but before it is resu 2845 after pausing the vcpu, but before it is resumed. 2965 2846 2966 2847 2967 4.71 KVM_SIGNAL_MSI 2848 4.71 KVM_SIGNAL_MSI 2968 ------------------- 2849 ------------------- 2969 2850 2970 :Capability: KVM_CAP_SIGNAL_MSI 2851 :Capability: KVM_CAP_SIGNAL_MSI 2971 :Architectures: x86 arm64 2852 :Architectures: x86 arm64 2972 :Type: vm ioctl 2853 :Type: vm ioctl 2973 :Parameters: struct kvm_msi (in) 2854 :Parameters: struct kvm_msi (in) 2974 :Returns: >0 on delivery, 0 if guest blocked 2855 :Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error 2975 2856 2976 Directly inject a MSI message. Only valid wit 2857 Directly inject a MSI message. Only valid with in-kernel irqchip that handles 2977 MSI messages. 2858 MSI messages. 2978 2859 2979 :: 2860 :: 2980 2861 2981 struct kvm_msi { 2862 struct kvm_msi { 2982 __u32 address_lo; 2863 __u32 address_lo; 2983 __u32 address_hi; 2864 __u32 address_hi; 2984 __u32 data; 2865 __u32 data; 2985 __u32 flags; 2866 __u32 flags; 2986 __u32 devid; 2867 __u32 devid; 2987 __u8 pad[12]; 2868 __u8 pad[12]; 2988 }; 2869 }; 2989 2870 2990 flags: 2871 flags: 2991 KVM_MSI_VALID_DEVID: devid contains a valid 2872 KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM 2992 KVM_CAP_MSI_DEVID capability advertises the 2873 KVM_CAP_MSI_DEVID capability advertises the requirement to provide 2993 the device ID. If this capability is not a 2874 the device ID. If this capability is not available, userspace 2994 should never set the KVM_MSI_VALID_DEVID fl 2875 should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. 2995 2876 2996 If KVM_MSI_VALID_DEVID is set, devid contains 2877 If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier 2997 for the device that wrote the MSI message. F 2878 for the device that wrote the MSI message. For PCI, this is usually a 2998 BDF identifier in the lower 16 bits. !! 2879 BFD identifier in the lower 16 bits. 2999 2880 3000 On x86, address_hi is ignored unless the KVM_ 2881 On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS 3001 feature of KVM_CAP_X2APIC_API capability is e 2882 feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, 3002 address_hi bits 31-8 provide bits 31-8 of the 2883 address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of 3003 address_hi must be zero. 2884 address_hi must be zero. 3004 2885 3005 2886 3006 4.71 KVM_CREATE_PIT2 2887 4.71 KVM_CREATE_PIT2 3007 -------------------- 2888 -------------------- 3008 2889 3009 :Capability: KVM_CAP_PIT2 2890 :Capability: KVM_CAP_PIT2 3010 :Architectures: x86 2891 :Architectures: x86 3011 :Type: vm ioctl 2892 :Type: vm ioctl 3012 :Parameters: struct kvm_pit_config (in) 2893 :Parameters: struct kvm_pit_config (in) 3013 :Returns: 0 on success, -1 on error 2894 :Returns: 0 on success, -1 on error 3014 2895 3015 Creates an in-kernel device model for the i82 2896 Creates an in-kernel device model for the i8254 PIT. This call is only valid 3016 after enabling in-kernel irqchip support via 2897 after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following 3017 parameters have to be passed:: 2898 parameters have to be passed:: 3018 2899 3019 struct kvm_pit_config { 2900 struct kvm_pit_config { 3020 __u32 flags; 2901 __u32 flags; 3021 __u32 pad[15]; 2902 __u32 pad[15]; 3022 }; 2903 }; 3023 2904 3024 Valid flags are:: 2905 Valid flags are:: 3025 2906 3026 #define KVM_PIT_SPEAKER_DUMMY 1 /* emul 2907 #define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */ 3027 2908 3028 PIT timer interrupts may use a per-VM kernel 2909 PIT timer interrupts may use a per-VM kernel thread for injection. If it 3029 exists, this thread will have a name of the f 2910 exists, this thread will have a name of the following pattern:: 3030 2911 3031 kvm-pit/<owner-process-pid> 2912 kvm-pit/<owner-process-pid> 3032 2913 3033 When running a guest with elevated priorities 2914 When running a guest with elevated priorities, the scheduling parameters of 3034 this thread may have to be adjusted according 2915 this thread may have to be adjusted accordingly. 3035 2916 3036 This IOCTL replaces the obsolete KVM_CREATE_P 2917 This IOCTL replaces the obsolete KVM_CREATE_PIT. 3037 2918 3038 2919 3039 4.72 KVM_GET_PIT2 2920 4.72 KVM_GET_PIT2 3040 ----------------- 2921 ----------------- 3041 2922 3042 :Capability: KVM_CAP_PIT_STATE2 2923 :Capability: KVM_CAP_PIT_STATE2 3043 :Architectures: x86 2924 :Architectures: x86 3044 :Type: vm ioctl 2925 :Type: vm ioctl 3045 :Parameters: struct kvm_pit_state2 (out) 2926 :Parameters: struct kvm_pit_state2 (out) 3046 :Returns: 0 on success, -1 on error 2927 :Returns: 0 on success, -1 on error 3047 2928 3048 Retrieves the state of the in-kernel PIT mode 2929 Retrieves the state of the in-kernel PIT model. Only valid after 3049 KVM_CREATE_PIT2. The state is returned in the 2930 KVM_CREATE_PIT2. The state is returned in the following structure:: 3050 2931 3051 struct kvm_pit_state2 { 2932 struct kvm_pit_state2 { 3052 struct kvm_pit_channel_state channels 2933 struct kvm_pit_channel_state channels[3]; 3053 __u32 flags; 2934 __u32 flags; 3054 __u32 reserved[9]; 2935 __u32 reserved[9]; 3055 }; 2936 }; 3056 2937 3057 Valid flags are:: 2938 Valid flags are:: 3058 2939 3059 /* disable PIT in HPET legacy mode */ 2940 /* disable PIT in HPET legacy mode */ 3060 #define KVM_PIT_FLAGS_HPET_LEGACY 0x000 !! 2941 #define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001 3061 /* speaker port data bit enabled */ << 3062 #define KVM_PIT_FLAGS_SPEAKER_DATA_ON 0x000 << 3063 2942 3064 This IOCTL replaces the obsolete KVM_GET_PIT. 2943 This IOCTL replaces the obsolete KVM_GET_PIT. 3065 2944 3066 2945 3067 4.73 KVM_SET_PIT2 2946 4.73 KVM_SET_PIT2 3068 ----------------- 2947 ----------------- 3069 2948 3070 :Capability: KVM_CAP_PIT_STATE2 2949 :Capability: KVM_CAP_PIT_STATE2 3071 :Architectures: x86 2950 :Architectures: x86 3072 :Type: vm ioctl 2951 :Type: vm ioctl 3073 :Parameters: struct kvm_pit_state2 (in) 2952 :Parameters: struct kvm_pit_state2 (in) 3074 :Returns: 0 on success, -1 on error 2953 :Returns: 0 on success, -1 on error 3075 2954 3076 Sets the state of the in-kernel PIT model. On 2955 Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2. 3077 See KVM_GET_PIT2 for details on struct kvm_pi 2956 See KVM_GET_PIT2 for details on struct kvm_pit_state2. 3078 2957 3079 This IOCTL replaces the obsolete KVM_SET_PIT. 2958 This IOCTL replaces the obsolete KVM_SET_PIT. 3080 2959 3081 2960 3082 4.74 KVM_PPC_GET_SMMU_INFO 2961 4.74 KVM_PPC_GET_SMMU_INFO 3083 -------------------------- 2962 -------------------------- 3084 2963 3085 :Capability: KVM_CAP_PPC_GET_SMMU_INFO 2964 :Capability: KVM_CAP_PPC_GET_SMMU_INFO 3086 :Architectures: powerpc 2965 :Architectures: powerpc 3087 :Type: vm ioctl 2966 :Type: vm ioctl 3088 :Parameters: None 2967 :Parameters: None 3089 :Returns: 0 on success, -1 on error 2968 :Returns: 0 on success, -1 on error 3090 2969 3091 This populates and returns a structure descri 2970 This populates and returns a structure describing the features of 3092 the "Server" class MMU emulation supported by 2971 the "Server" class MMU emulation supported by KVM. 3093 This can in turn be used by userspace to gene 2972 This can in turn be used by userspace to generate the appropriate 3094 device-tree properties for the guest operatin 2973 device-tree properties for the guest operating system. 3095 2974 3096 The structure contains some global informatio 2975 The structure contains some global information, followed by an 3097 array of supported segment page sizes:: 2976 array of supported segment page sizes:: 3098 2977 3099 struct kvm_ppc_smmu_info { 2978 struct kvm_ppc_smmu_info { 3100 __u64 flags; 2979 __u64 flags; 3101 __u32 slb_size; 2980 __u32 slb_size; 3102 __u32 pad; 2981 __u32 pad; 3103 struct kvm_ppc_one_seg_page_size 2982 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ]; 3104 }; 2983 }; 3105 2984 3106 The supported flags are: 2985 The supported flags are: 3107 2986 3108 - KVM_PPC_PAGE_SIZES_REAL: 2987 - KVM_PPC_PAGE_SIZES_REAL: 3109 When that flag is set, guest page siz 2988 When that flag is set, guest page sizes must "fit" the backing 3110 store page sizes. When not set, any p 2989 store page sizes. When not set, any page size in the list can 3111 be used regardless of how they are ba 2990 be used regardless of how they are backed by userspace. 3112 2991 3113 - KVM_PPC_1T_SEGMENTS 2992 - KVM_PPC_1T_SEGMENTS 3114 The emulated MMU supports 1T segments 2993 The emulated MMU supports 1T segments in addition to the 3115 standard 256M ones. 2994 standard 256M ones. 3116 2995 3117 - KVM_PPC_NO_HASH 2996 - KVM_PPC_NO_HASH 3118 This flag indicates that HPT guests a 2997 This flag indicates that HPT guests are not supported by KVM, 3119 thus all guests must use radix MMU mo 2998 thus all guests must use radix MMU mode. 3120 2999 3121 The "slb_size" field indicates how many SLB e 3000 The "slb_size" field indicates how many SLB entries are supported 3122 3001 3123 The "sps" array contains 8 entries indicating 3002 The "sps" array contains 8 entries indicating the supported base 3124 page sizes for a segment in increasing order. 3003 page sizes for a segment in increasing order. Each entry is defined 3125 as follow:: 3004 as follow:: 3126 3005 3127 struct kvm_ppc_one_seg_page_size { 3006 struct kvm_ppc_one_seg_page_size { 3128 __u32 page_shift; /* Base page 3007 __u32 page_shift; /* Base page shift of segment (or 0) */ 3129 __u32 slb_enc; /* SLB encodi 3008 __u32 slb_enc; /* SLB encoding for BookS */ 3130 struct kvm_ppc_one_page_size enc[KVM_ 3009 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ]; 3131 }; 3010 }; 3132 3011 3133 An entry with a "page_shift" of 0 is unused. 3012 An entry with a "page_shift" of 0 is unused. Because the array is 3134 organized in increasing order, a lookup can s !! 3013 organized in increasing order, a lookup can stop when encoutering 3135 such an entry. 3014 such an entry. 3136 3015 3137 The "slb_enc" field provides the encoding to 3016 The "slb_enc" field provides the encoding to use in the SLB for the 3138 page size. The bits are in positions such as 3017 page size. The bits are in positions such as the value can directly 3139 be OR'ed into the "vsid" argument of the slbm 3018 be OR'ed into the "vsid" argument of the slbmte instruction. 3140 3019 3141 The "enc" array is a list which for each of t 3020 The "enc" array is a list which for each of those segment base page 3142 size provides the list of supported actual pa 3021 size provides the list of supported actual page sizes (which can be 3143 only larger or equal to the base page size), 3022 only larger or equal to the base page size), along with the 3144 corresponding encoding in the hash PTE. Simil 3023 corresponding encoding in the hash PTE. Similarly, the array is 3145 8 entries sorted by increasing sizes and an e 3024 8 entries sorted by increasing sizes and an entry with a "0" shift 3146 is an empty entry and a terminator:: 3025 is an empty entry and a terminator:: 3147 3026 3148 struct kvm_ppc_one_page_size { 3027 struct kvm_ppc_one_page_size { 3149 __u32 page_shift; /* Page shift 3028 __u32 page_shift; /* Page shift (or 0) */ 3150 __u32 pte_enc; /* Encoding i 3029 __u32 pte_enc; /* Encoding in the HPTE (>>12) */ 3151 }; 3030 }; 3152 3031 3153 The "pte_enc" field provides a value that can 3032 The "pte_enc" field provides a value that can OR'ed into the hash 3154 PTE's RPN field (ie, it needs to be shifted l 3033 PTE's RPN field (ie, it needs to be shifted left by 12 to OR it 3155 into the hash PTE second double word). 3034 into the hash PTE second double word). 3156 3035 3157 4.75 KVM_IRQFD 3036 4.75 KVM_IRQFD 3158 -------------- 3037 -------------- 3159 3038 3160 :Capability: KVM_CAP_IRQFD 3039 :Capability: KVM_CAP_IRQFD 3161 :Architectures: x86 s390 arm64 3040 :Architectures: x86 s390 arm64 3162 :Type: vm ioctl 3041 :Type: vm ioctl 3163 :Parameters: struct kvm_irqfd (in) 3042 :Parameters: struct kvm_irqfd (in) 3164 :Returns: 0 on success, -1 on error 3043 :Returns: 0 on success, -1 on error 3165 3044 3166 Allows setting an eventfd to directly trigger 3045 Allows setting an eventfd to directly trigger a guest interrupt. 3167 kvm_irqfd.fd specifies the file descriptor to 3046 kvm_irqfd.fd specifies the file descriptor to use as the eventfd and 3168 kvm_irqfd.gsi specifies the irqchip pin toggl 3047 kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When 3169 an event is triggered on the eventfd, an inte 3048 an event is triggered on the eventfd, an interrupt is injected into 3170 the guest using the specified gsi pin. The i 3049 the guest using the specified gsi pin. The irqfd is removed using 3171 the KVM_IRQFD_FLAG_DEASSIGN flag, specifying 3050 the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd 3172 and kvm_irqfd.gsi. 3051 and kvm_irqfd.gsi. 3173 3052 3174 With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD suppor 3053 With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify 3175 mechanism allowing emulation of level-trigger 3054 mechanism allowing emulation of level-triggered, irqfd-based 3176 interrupts. When KVM_IRQFD_FLAG_RESAMPLE is 3055 interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an 3177 additional eventfd in the kvm_irqfd.resamplef 3056 additional eventfd in the kvm_irqfd.resamplefd field. When operating 3178 in resample mode, posting of an interrupt thr 3057 in resample mode, posting of an interrupt through kvm_irq.fd asserts 3179 the specified gsi in the irqchip. When the i 3058 the specified gsi in the irqchip. When the irqchip is resampled, such 3180 as from an EOI, the gsi is de-asserted and th 3059 as from an EOI, the gsi is de-asserted and the user is notified via 3181 kvm_irqfd.resamplefd. It is the user's respo 3060 kvm_irqfd.resamplefd. It is the user's responsibility to re-queue 3182 the interrupt if the device making use of it 3061 the interrupt if the device making use of it still requires service. 3183 Note that closing the resamplefd is not suffi 3062 Note that closing the resamplefd is not sufficient to disable the 3184 irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only n 3063 irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment 3185 and need not be specified with KVM_IRQFD_FLAG 3064 and need not be specified with KVM_IRQFD_FLAG_DEASSIGN. 3186 3065 3187 On arm64, gsi routing being supported, the fo 3066 On arm64, gsi routing being supported, the following can happen: 3188 3067 3189 - in case no routing entry is associated to t 3068 - in case no routing entry is associated to this gsi, injection fails 3190 - in case the gsi is associated to an irqchip 3069 - in case the gsi is associated to an irqchip routing entry, 3191 irqchip.pin + 32 corresponds to the injecte 3070 irqchip.pin + 32 corresponds to the injected SPI ID. 3192 - in case the gsi is associated to an MSI rou 3071 - in case the gsi is associated to an MSI routing entry, the MSI 3193 message and device ID are translated into a 3072 message and device ID are translated into an LPI (support restricted 3194 to GICv3 ITS in-kernel emulation). 3073 to GICv3 ITS in-kernel emulation). 3195 3074 3196 4.76 KVM_PPC_ALLOCATE_HTAB 3075 4.76 KVM_PPC_ALLOCATE_HTAB 3197 -------------------------- 3076 -------------------------- 3198 3077 3199 :Capability: KVM_CAP_PPC_ALLOC_HTAB 3078 :Capability: KVM_CAP_PPC_ALLOC_HTAB 3200 :Architectures: powerpc 3079 :Architectures: powerpc 3201 :Type: vm ioctl 3080 :Type: vm ioctl 3202 :Parameters: Pointer to u32 containing hash t 3081 :Parameters: Pointer to u32 containing hash table order (in/out) 3203 :Returns: 0 on success, -1 on error 3082 :Returns: 0 on success, -1 on error 3204 3083 3205 This requests the host kernel to allocate an 3084 This requests the host kernel to allocate an MMU hash table for a 3206 guest using the PAPR paravirtualization inter 3085 guest using the PAPR paravirtualization interface. This only does 3207 anything if the kernel is configured to use t 3086 anything if the kernel is configured to use the Book 3S HV style of 3208 virtualization. Otherwise the capability doe 3087 virtualization. Otherwise the capability doesn't exist and the ioctl 3209 returns an ENOTTY error. The rest of this de 3088 returns an ENOTTY error. The rest of this description assumes Book 3S 3210 HV. 3089 HV. 3211 3090 3212 There must be no vcpus running when this ioct 3091 There must be no vcpus running when this ioctl is called; if there 3213 are, it will do nothing and return an EBUSY e 3092 are, it will do nothing and return an EBUSY error. 3214 3093 3215 The parameter is a pointer to a 32-bit unsign 3094 The parameter is a pointer to a 32-bit unsigned integer variable 3216 containing the order (log base 2) of the desi 3095 containing the order (log base 2) of the desired size of the hash 3217 table, which must be between 18 and 46. On s 3096 table, which must be between 18 and 46. On successful return from the 3218 ioctl, the value will not be changed by the k 3097 ioctl, the value will not be changed by the kernel. 3219 3098 3220 If no hash table has been allocated when any 3099 If no hash table has been allocated when any vcpu is asked to run 3221 (with the KVM_RUN ioctl), the host kernel wil 3100 (with the KVM_RUN ioctl), the host kernel will allocate a 3222 default-sized hash table (16 MB). 3101 default-sized hash table (16 MB). 3223 3102 3224 If this ioctl is called when a hash table has 3103 If this ioctl is called when a hash table has already been allocated, 3225 with a different order from the existing hash 3104 with a different order from the existing hash table, the existing hash 3226 table will be freed and a new one allocated. 3105 table will be freed and a new one allocated. If this is ioctl is 3227 called when a hash table has already been all 3106 called when a hash table has already been allocated of the same order 3228 as specified, the kernel will clear out the e 3107 as specified, the kernel will clear out the existing hash table (zero 3229 all HPTEs). In either case, if the guest is 3108 all HPTEs). In either case, if the guest is using the virtualized 3230 real-mode area (VRMA) facility, the kernel wi 3109 real-mode area (VRMA) facility, the kernel will re-create the VMRA 3231 HPTEs on the next KVM_RUN of any vcpu. 3110 HPTEs on the next KVM_RUN of any vcpu. 3232 3111 3233 4.77 KVM_S390_INTERRUPT 3112 4.77 KVM_S390_INTERRUPT 3234 ----------------------- 3113 ----------------------- 3235 3114 3236 :Capability: basic 3115 :Capability: basic 3237 :Architectures: s390 3116 :Architectures: s390 3238 :Type: vm ioctl, vcpu ioctl 3117 :Type: vm ioctl, vcpu ioctl 3239 :Parameters: struct kvm_s390_interrupt (in) 3118 :Parameters: struct kvm_s390_interrupt (in) 3240 :Returns: 0 on success, -1 on error 3119 :Returns: 0 on success, -1 on error 3241 3120 3242 Allows to inject an interrupt to the guest. I 3121 Allows to inject an interrupt to the guest. Interrupts can be floating 3243 (vm ioctl) or per cpu (vcpu ioctl), depending 3122 (vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type. 3244 3123 3245 Interrupt parameters are passed via kvm_s390_ 3124 Interrupt parameters are passed via kvm_s390_interrupt:: 3246 3125 3247 struct kvm_s390_interrupt { 3126 struct kvm_s390_interrupt { 3248 __u32 type; 3127 __u32 type; 3249 __u32 parm; 3128 __u32 parm; 3250 __u64 parm64; 3129 __u64 parm64; 3251 }; 3130 }; 3252 3131 3253 type can be one of the following: 3132 type can be one of the following: 3254 3133 3255 KVM_S390_SIGP_STOP (vcpu) 3134 KVM_S390_SIGP_STOP (vcpu) 3256 - sigp stop; optional flags in parm 3135 - sigp stop; optional flags in parm 3257 KVM_S390_PROGRAM_INT (vcpu) 3136 KVM_S390_PROGRAM_INT (vcpu) 3258 - program check; code in parm 3137 - program check; code in parm 3259 KVM_S390_SIGP_SET_PREFIX (vcpu) 3138 KVM_S390_SIGP_SET_PREFIX (vcpu) 3260 - sigp set prefix; prefix address in parm 3139 - sigp set prefix; prefix address in parm 3261 KVM_S390_RESTART (vcpu) 3140 KVM_S390_RESTART (vcpu) 3262 - restart 3141 - restart 3263 KVM_S390_INT_CLOCK_COMP (vcpu) 3142 KVM_S390_INT_CLOCK_COMP (vcpu) 3264 - clock comparator interrupt 3143 - clock comparator interrupt 3265 KVM_S390_INT_CPU_TIMER (vcpu) 3144 KVM_S390_INT_CPU_TIMER (vcpu) 3266 - CPU timer interrupt 3145 - CPU timer interrupt 3267 KVM_S390_INT_VIRTIO (vm) 3146 KVM_S390_INT_VIRTIO (vm) 3268 - virtio external interrupt; external int 3147 - virtio external interrupt; external interrupt 3269 parameters in parm and parm64 3148 parameters in parm and parm64 3270 KVM_S390_INT_SERVICE (vm) 3149 KVM_S390_INT_SERVICE (vm) 3271 - sclp external interrupt; sclp parameter 3150 - sclp external interrupt; sclp parameter in parm 3272 KVM_S390_INT_EMERGENCY (vcpu) 3151 KVM_S390_INT_EMERGENCY (vcpu) 3273 - sigp emergency; source cpu in parm 3152 - sigp emergency; source cpu in parm 3274 KVM_S390_INT_EXTERNAL_CALL (vcpu) 3153 KVM_S390_INT_EXTERNAL_CALL (vcpu) 3275 - sigp external call; source cpu in parm 3154 - sigp external call; source cpu in parm 3276 KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) 3155 KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) 3277 - compound value to indicate an 3156 - compound value to indicate an 3278 I/O interrupt (ai - adapter interrupt; 3157 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel); 3279 I/O interruption parameters in parm (su 3158 I/O interruption parameters in parm (subchannel) and parm64 (intparm, 3280 interruption subclass) 3159 interruption subclass) 3281 KVM_S390_MCHK (vm, vcpu) 3160 KVM_S390_MCHK (vm, vcpu) 3282 - machine check interrupt; cr 14 bits in 3161 - machine check interrupt; cr 14 bits in parm, machine check interrupt 3283 code in parm64 (note that machine check 3162 code in parm64 (note that machine checks needing further payload are not 3284 supported by this ioctl) 3163 supported by this ioctl) 3285 3164 3286 This is an asynchronous vcpu ioctl and can be 3165 This is an asynchronous vcpu ioctl and can be invoked from any thread. 3287 3166 3288 4.78 KVM_PPC_GET_HTAB_FD 3167 4.78 KVM_PPC_GET_HTAB_FD 3289 ------------------------ 3168 ------------------------ 3290 3169 3291 :Capability: KVM_CAP_PPC_HTAB_FD 3170 :Capability: KVM_CAP_PPC_HTAB_FD 3292 :Architectures: powerpc 3171 :Architectures: powerpc 3293 :Type: vm ioctl 3172 :Type: vm ioctl 3294 :Parameters: Pointer to struct kvm_get_htab_f 3173 :Parameters: Pointer to struct kvm_get_htab_fd (in) 3295 :Returns: file descriptor number (>= 0) on su 3174 :Returns: file descriptor number (>= 0) on success, -1 on error 3296 3175 3297 This returns a file descriptor that can be us 3176 This returns a file descriptor that can be used either to read out the 3298 entries in the guest's hashed page table (HPT 3177 entries in the guest's hashed page table (HPT), or to write entries to 3299 initialize the HPT. The returned fd can only 3178 initialize the HPT. The returned fd can only be written to if the 3300 KVM_GET_HTAB_WRITE bit is set in the flags fi 3179 KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and 3301 can only be read if that bit is clear. The a 3180 can only be read if that bit is clear. The argument struct looks like 3302 this:: 3181 this:: 3303 3182 3304 /* For KVM_PPC_GET_HTAB_FD */ 3183 /* For KVM_PPC_GET_HTAB_FD */ 3305 struct kvm_get_htab_fd { 3184 struct kvm_get_htab_fd { 3306 __u64 flags; 3185 __u64 flags; 3307 __u64 start_index; 3186 __u64 start_index; 3308 __u64 reserved[2]; 3187 __u64 reserved[2]; 3309 }; 3188 }; 3310 3189 3311 /* Values for kvm_get_htab_fd.flags */ 3190 /* Values for kvm_get_htab_fd.flags */ 3312 #define KVM_GET_HTAB_BOLTED_ONLY ((__u 3191 #define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1) 3313 #define KVM_GET_HTAB_WRITE ((__u 3192 #define KVM_GET_HTAB_WRITE ((__u64)0x2) 3314 3193 3315 The 'start_index' field gives the index in th 3194 The 'start_index' field gives the index in the HPT of the entry at 3316 which to start reading. It is ignored when w 3195 which to start reading. It is ignored when writing. 3317 3196 3318 Reads on the fd will initially supply informa 3197 Reads on the fd will initially supply information about all 3319 "interesting" HPT entries. Interesting entri 3198 "interesting" HPT entries. Interesting entries are those with the 3320 bolted bit set, if the KVM_GET_HTAB_BOLTED_ON 3199 bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise 3321 all entries. When the end of the HPT is reac 3200 all entries. When the end of the HPT is reached, the read() will 3322 return. If read() is called again on the fd, 3201 return. If read() is called again on the fd, it will start again from 3323 the beginning of the HPT, but will only retur 3202 the beginning of the HPT, but will only return HPT entries that have 3324 changed since they were last read. 3203 changed since they were last read. 3325 3204 3326 Data read or written is structured as a heade 3205 Data read or written is structured as a header (8 bytes) followed by a 3327 series of valid HPT entries (16 bytes) each. 3206 series of valid HPT entries (16 bytes) each. The header indicates how 3328 many valid HPT entries there are and how many 3207 many valid HPT entries there are and how many invalid entries follow 3329 the valid entries. The invalid entries are n 3208 the valid entries. The invalid entries are not represented explicitly 3330 in the stream. The header format is:: 3209 in the stream. The header format is:: 3331 3210 3332 struct kvm_get_htab_header { 3211 struct kvm_get_htab_header { 3333 __u32 index; 3212 __u32 index; 3334 __u16 n_valid; 3213 __u16 n_valid; 3335 __u16 n_invalid; 3214 __u16 n_invalid; 3336 }; 3215 }; 3337 3216 3338 Writes to the fd create HPT entries starting 3217 Writes to the fd create HPT entries starting at the index given in the 3339 header; first 'n_valid' valid entries with co 3218 header; first 'n_valid' valid entries with contents from the data 3340 written, then 'n_invalid' invalid entries, in 3219 written, then 'n_invalid' invalid entries, invalidating any previously 3341 valid entries found. 3220 valid entries found. 3342 3221 3343 4.79 KVM_CREATE_DEVICE 3222 4.79 KVM_CREATE_DEVICE 3344 ---------------------- 3223 ---------------------- 3345 3224 3346 :Capability: KVM_CAP_DEVICE_CTRL 3225 :Capability: KVM_CAP_DEVICE_CTRL 3347 :Architectures: all << 3348 :Type: vm ioctl 3226 :Type: vm ioctl 3349 :Parameters: struct kvm_create_device (in/out 3227 :Parameters: struct kvm_create_device (in/out) 3350 :Returns: 0 on success, -1 on error 3228 :Returns: 0 on success, -1 on error 3351 3229 3352 Errors: 3230 Errors: 3353 3231 3354 ====== =================================== 3232 ====== ======================================================= 3355 ENODEV The device type is unknown or unsup 3233 ENODEV The device type is unknown or unsupported 3356 EEXIST Device already created, and this ty 3234 EEXIST Device already created, and this type of device may not 3357 be instantiated multiple times 3235 be instantiated multiple times 3358 ====== =================================== 3236 ====== ======================================================= 3359 3237 3360 Other error conditions may be defined by in 3238 Other error conditions may be defined by individual device types or 3361 have their standard meanings. 3239 have their standard meanings. 3362 3240 3363 Creates an emulated device in the kernel. Th 3241 Creates an emulated device in the kernel. The file descriptor returned 3364 in fd can be used with KVM_SET/GET/HAS_DEVICE 3242 in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR. 3365 3243 3366 If the KVM_CREATE_DEVICE_TEST flag is set, on 3244 If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the 3367 device type is supported (not necessarily whe 3245 device type is supported (not necessarily whether it can be created 3368 in the current vm). 3246 in the current vm). 3369 3247 3370 Individual devices should not define flags. 3248 Individual devices should not define flags. Attributes should be used 3371 for specifying any behavior that is not impli 3249 for specifying any behavior that is not implied by the device type 3372 number. 3250 number. 3373 3251 3374 :: 3252 :: 3375 3253 3376 struct kvm_create_device { 3254 struct kvm_create_device { 3377 __u32 type; /* in: KVM_DEV_TYPE_x 3255 __u32 type; /* in: KVM_DEV_TYPE_xxx */ 3378 __u32 fd; /* out: device handle 3256 __u32 fd; /* out: device handle */ 3379 __u32 flags; /* in: KVM_CREATE_DEV 3257 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */ 3380 }; 3258 }; 3381 3259 3382 4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR 3260 4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR 3383 -------------------------------------------- 3261 -------------------------------------------- 3384 3262 3385 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ 3263 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, 3386 KVM_CAP_VCPU_ATTRIBUTES for vcpu 3264 KVM_CAP_VCPU_ATTRIBUTES for vcpu device 3387 KVM_CAP_SYS_ATTRIBUTES for syste 3265 KVM_CAP_SYS_ATTRIBUTES for system (/dev/kvm) device (no set) 3388 :Architectures: x86, arm64, s390 << 3389 :Type: device ioctl, vm ioctl, vcpu ioctl 3266 :Type: device ioctl, vm ioctl, vcpu ioctl 3390 :Parameters: struct kvm_device_attr 3267 :Parameters: struct kvm_device_attr 3391 :Returns: 0 on success, -1 on error 3268 :Returns: 0 on success, -1 on error 3392 3269 3393 Errors: 3270 Errors: 3394 3271 3395 ===== =================================== 3272 ===== ============================================================= 3396 ENXIO The group or attribute is unknown/u 3273 ENXIO The group or attribute is unknown/unsupported for this device 3397 or hardware support is missing. 3274 or hardware support is missing. 3398 EPERM The attribute cannot (currently) be 3275 EPERM The attribute cannot (currently) be accessed this way 3399 (e.g. read-only attribute, or attri 3276 (e.g. read-only attribute, or attribute that only makes 3400 sense when the device is in a diffe 3277 sense when the device is in a different state) 3401 ===== =================================== 3278 ===== ============================================================= 3402 3279 3403 Other error conditions may be defined by in 3280 Other error conditions may be defined by individual device types. 3404 3281 3405 Gets/sets a specified piece of device configu 3282 Gets/sets a specified piece of device configuration and/or state. The 3406 semantics are device-specific. See individua 3283 semantics are device-specific. See individual device documentation in 3407 the "devices" directory. As with ONE_REG, th 3284 the "devices" directory. As with ONE_REG, the size of the data 3408 transferred is defined by the particular attr 3285 transferred is defined by the particular attribute. 3409 3286 3410 :: 3287 :: 3411 3288 3412 struct kvm_device_attr { 3289 struct kvm_device_attr { 3413 __u32 flags; /* no flags c 3290 __u32 flags; /* no flags currently defined */ 3414 __u32 group; /* device-def 3291 __u32 group; /* device-defined */ 3415 __u64 attr; /* group-defi 3292 __u64 attr; /* group-defined */ 3416 __u64 addr; /* userspace 3293 __u64 addr; /* userspace address of attr data */ 3417 }; 3294 }; 3418 3295 3419 4.81 KVM_HAS_DEVICE_ATTR 3296 4.81 KVM_HAS_DEVICE_ATTR 3420 ------------------------ 3297 ------------------------ 3421 3298 3422 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ 3299 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, 3423 KVM_CAP_VCPU_ATTRIBUTES for vcpu 3300 KVM_CAP_VCPU_ATTRIBUTES for vcpu device 3424 KVM_CAP_SYS_ATTRIBUTES for syste 3301 KVM_CAP_SYS_ATTRIBUTES for system (/dev/kvm) device 3425 :Type: device ioctl, vm ioctl, vcpu ioctl 3302 :Type: device ioctl, vm ioctl, vcpu ioctl 3426 :Parameters: struct kvm_device_attr 3303 :Parameters: struct kvm_device_attr 3427 :Returns: 0 on success, -1 on error 3304 :Returns: 0 on success, -1 on error 3428 3305 3429 Errors: 3306 Errors: 3430 3307 3431 ===== =================================== 3308 ===== ============================================================= 3432 ENXIO The group or attribute is unknown/u 3309 ENXIO The group or attribute is unknown/unsupported for this device 3433 or hardware support is missing. 3310 or hardware support is missing. 3434 ===== =================================== 3311 ===== ============================================================= 3435 3312 3436 Tests whether a device supports a particular 3313 Tests whether a device supports a particular attribute. A successful 3437 return indicates the attribute is implemented 3314 return indicates the attribute is implemented. It does not necessarily 3438 indicate that the attribute can be read or wr 3315 indicate that the attribute can be read or written in the device's 3439 current state. "addr" is ignored. 3316 current state. "addr" is ignored. 3440 3317 3441 .. _KVM_ARM_VCPU_INIT: << 3442 << 3443 4.82 KVM_ARM_VCPU_INIT 3318 4.82 KVM_ARM_VCPU_INIT 3444 ---------------------- 3319 ---------------------- 3445 3320 3446 :Capability: basic 3321 :Capability: basic 3447 :Architectures: arm64 3322 :Architectures: arm64 3448 :Type: vcpu ioctl 3323 :Type: vcpu ioctl 3449 :Parameters: struct kvm_vcpu_init (in) 3324 :Parameters: struct kvm_vcpu_init (in) 3450 :Returns: 0 on success; -1 on error 3325 :Returns: 0 on success; -1 on error 3451 3326 3452 Errors: 3327 Errors: 3453 3328 3454 ====== ================================ 3329 ====== ================================================================= 3455 EINVAL the target is unknown, or the co 3330 EINVAL the target is unknown, or the combination of features is invalid. 3456 ENOENT a features bit specified is unkn 3331 ENOENT a features bit specified is unknown. 3457 ====== ================================ 3332 ====== ================================================================= 3458 3333 3459 This tells KVM what type of CPU to present to 3334 This tells KVM what type of CPU to present to the guest, and what 3460 optional features it should have. This will 3335 optional features it should have. This will cause a reset of the cpu 3461 registers to their initial values. If this i 3336 registers to their initial values. If this is not called, KVM_RUN will 3462 return ENOEXEC for that vcpu. 3337 return ENOEXEC for that vcpu. 3463 3338 3464 The initial values are defined as: 3339 The initial values are defined as: 3465 - Processor state: 3340 - Processor state: 3466 * AArch64: EL1h, D, A, I and 3341 * AArch64: EL1h, D, A, I and F bits set. All other bits 3467 are cleared. 3342 are cleared. 3468 * AArch32: SVC, A, I and F bi 3343 * AArch32: SVC, A, I and F bits set. All other bits are 3469 cleared. 3344 cleared. 3470 - General Purpose registers, includin 3345 - General Purpose registers, including PC and SP: set to 0 3471 - FPSIMD/NEON registers: set to 0 3346 - FPSIMD/NEON registers: set to 0 3472 - SVE registers: set to 0 3347 - SVE registers: set to 0 3473 - System registers: Reset to their ar 3348 - System registers: Reset to their architecturally defined 3474 values as for a warm reset to EL1 ( 3349 values as for a warm reset to EL1 (resp. SVC) 3475 3350 3476 Note that because some registers reflect mach 3351 Note that because some registers reflect machine topology, all vcpus 3477 should be created before this ioctl is invoke 3352 should be created before this ioctl is invoked. 3478 3353 3479 Userspace can call this function multiple tim 3354 Userspace can call this function multiple times for a given vcpu, including 3480 after the vcpu has been run. This will reset 3355 after the vcpu has been run. This will reset the vcpu to its initial 3481 state. All calls to this function after the i 3356 state. All calls to this function after the initial call must use the same 3482 target and same set of feature flags, otherwi 3357 target and same set of feature flags, otherwise EINVAL will be returned. 3483 3358 3484 Possible features: 3359 Possible features: 3485 3360 3486 - KVM_ARM_VCPU_POWER_OFF: Starts the 3361 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state. 3487 Depends on KVM_CAP_ARM_PSCI. If no 3362 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on 3488 and execute guest code when KVM_RUN 3363 and execute guest code when KVM_RUN is called. 3489 - KVM_ARM_VCPU_EL1_32BIT: Starts the 3364 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode. 3490 Depends on KVM_CAP_ARM_EL1_32BIT (a 3365 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only). 3491 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI 3366 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 (or a future revision 3492 backward compatible with v0.2) for 3367 backward compatible with v0.2) for the CPU. 3493 Depends on KVM_CAP_ARM_PSCI_0_2. 3368 Depends on KVM_CAP_ARM_PSCI_0_2. 3494 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 3369 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU. 3495 Depends on KVM_CAP_ARM_PMU_V3. 3370 Depends on KVM_CAP_ARM_PMU_V3. 3496 3371 3497 - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enabl 3372 - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enables Address Pointer authentication 3498 for arm64 only. 3373 for arm64 only. 3499 Depends on KVM_CAP_ARM_PTRAUTH_ADDR 3374 Depends on KVM_CAP_ARM_PTRAUTH_ADDRESS. 3500 If KVM_CAP_ARM_PTRAUTH_ADDRESS and 3375 If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are 3501 both present, then both KVM_ARM_VCP 3376 both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and 3502 KVM_ARM_VCPU_PTRAUTH_GENERIC must b 3377 KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be 3503 requested. 3378 requested. 3504 3379 3505 - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enabl 3380 - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enables Generic Pointer authentication 3506 for arm64 only. 3381 for arm64 only. 3507 Depends on KVM_CAP_ARM_PTRAUTH_GENE 3382 Depends on KVM_CAP_ARM_PTRAUTH_GENERIC. 3508 If KVM_CAP_ARM_PTRAUTH_ADDRESS and 3383 If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are 3509 both present, then both KVM_ARM_VCP 3384 both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and 3510 KVM_ARM_VCPU_PTRAUTH_GENERIC must b 3385 KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be 3511 requested. 3386 requested. 3512 3387 3513 - KVM_ARM_VCPU_SVE: Enables SVE for t 3388 - KVM_ARM_VCPU_SVE: Enables SVE for the CPU (arm64 only). 3514 Depends on KVM_CAP_ARM_SVE. 3389 Depends on KVM_CAP_ARM_SVE. 3515 Requires KVM_ARM_VCPU_FINALIZE(KVM_ 3390 Requires KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3516 3391 3517 * After KVM_ARM_VCPU_INIT: 3392 * After KVM_ARM_VCPU_INIT: 3518 3393 3519 - KVM_REG_ARM64_SVE_VLS may be 3394 - KVM_REG_ARM64_SVE_VLS may be read using KVM_GET_ONE_REG: the 3520 initial value of this pseudo- 3395 initial value of this pseudo-register indicates the best set of 3521 vector lengths possible for a 3396 vector lengths possible for a vcpu on this host. 3522 3397 3523 * Before KVM_ARM_VCPU_FINALIZE(KVM 3398 * Before KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3524 3399 3525 - KVM_RUN and KVM_GET_REG_LIST 3400 - KVM_RUN and KVM_GET_REG_LIST are not available; 3526 3401 3527 - KVM_GET_ONE_REG and KVM_SET_O 3402 - KVM_GET_ONE_REG and KVM_SET_ONE_REG cannot be used to access 3528 the scalable architectural SV !! 3403 the scalable archietctural SVE registers 3529 KVM_REG_ARM64_SVE_ZREG(), KVM 3404 KVM_REG_ARM64_SVE_ZREG(), KVM_REG_ARM64_SVE_PREG() or 3530 KVM_REG_ARM64_SVE_FFR; 3405 KVM_REG_ARM64_SVE_FFR; 3531 3406 3532 - KVM_REG_ARM64_SVE_VLS may opt 3407 - KVM_REG_ARM64_SVE_VLS may optionally be written using 3533 KVM_SET_ONE_REG, to modify th 3408 KVM_SET_ONE_REG, to modify the set of vector lengths available 3534 for the vcpu. 3409 for the vcpu. 3535 3410 3536 * After KVM_ARM_VCPU_FINALIZE(KVM_ 3411 * After KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3537 3412 3538 - the KVM_REG_ARM64_SVE_VLS pse 3413 - the KVM_REG_ARM64_SVE_VLS pseudo-register is immutable, and can 3539 no longer be written using KV 3414 no longer be written using KVM_SET_ONE_REG. 3540 3415 3541 4.83 KVM_ARM_PREFERRED_TARGET 3416 4.83 KVM_ARM_PREFERRED_TARGET 3542 ----------------------------- 3417 ----------------------------- 3543 3418 3544 :Capability: basic 3419 :Capability: basic 3545 :Architectures: arm64 3420 :Architectures: arm64 3546 :Type: vm ioctl 3421 :Type: vm ioctl 3547 :Parameters: struct kvm_vcpu_init (out) 3422 :Parameters: struct kvm_vcpu_init (out) 3548 :Returns: 0 on success; -1 on error 3423 :Returns: 0 on success; -1 on error 3549 3424 3550 Errors: 3425 Errors: 3551 3426 3552 ====== ================================ 3427 ====== ========================================== 3553 ENODEV no preferred target available fo 3428 ENODEV no preferred target available for the host 3554 ====== ================================ 3429 ====== ========================================== 3555 3430 3556 This queries KVM for preferred CPU target typ 3431 This queries KVM for preferred CPU target type which can be emulated 3557 by KVM on underlying host. 3432 by KVM on underlying host. 3558 3433 3559 The ioctl returns struct kvm_vcpu_init instan 3434 The ioctl returns struct kvm_vcpu_init instance containing information 3560 about preferred CPU target type and recommend 3435 about preferred CPU target type and recommended features for it. The 3561 kvm_vcpu_init->features bitmap returned will 3436 kvm_vcpu_init->features bitmap returned will have feature bits set if 3562 the preferred target recommends setting these 3437 the preferred target recommends setting these features, but this is 3563 not mandatory. 3438 not mandatory. 3564 3439 3565 The information returned by this ioctl can be 3440 The information returned by this ioctl can be used to prepare an instance 3566 of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT 3441 of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in 3567 VCPU matching underlying host. 3442 VCPU matching underlying host. 3568 3443 3569 3444 3570 4.84 KVM_GET_REG_LIST 3445 4.84 KVM_GET_REG_LIST 3571 --------------------- 3446 --------------------- 3572 3447 3573 :Capability: basic 3448 :Capability: basic 3574 :Architectures: arm64, mips, riscv !! 3449 :Architectures: arm64, mips 3575 :Type: vcpu ioctl 3450 :Type: vcpu ioctl 3576 :Parameters: struct kvm_reg_list (in/out) 3451 :Parameters: struct kvm_reg_list (in/out) 3577 :Returns: 0 on success; -1 on error 3452 :Returns: 0 on success; -1 on error 3578 3453 3579 Errors: 3454 Errors: 3580 3455 3581 ===== ================================ 3456 ===== ============================================================== 3582 E2BIG the reg index list is too big to 3457 E2BIG the reg index list is too big to fit in the array specified by 3583 the user (the number required wi 3458 the user (the number required will be written into n). 3584 ===== ================================ 3459 ===== ============================================================== 3585 3460 3586 :: 3461 :: 3587 3462 3588 struct kvm_reg_list { 3463 struct kvm_reg_list { 3589 __u64 n; /* number of registers in re 3464 __u64 n; /* number of registers in reg[] */ 3590 __u64 reg[0]; 3465 __u64 reg[0]; 3591 }; 3466 }; 3592 3467 3593 This ioctl returns the guest registers that a 3468 This ioctl returns the guest registers that are supported for the 3594 KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. 3469 KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. 3595 3470 3596 3471 3597 4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated) 3472 4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated) 3598 ----------------------------------------- 3473 ----------------------------------------- 3599 3474 3600 :Capability: KVM_CAP_ARM_SET_DEVICE_ADDR 3475 :Capability: KVM_CAP_ARM_SET_DEVICE_ADDR 3601 :Architectures: arm64 3476 :Architectures: arm64 3602 :Type: vm ioctl 3477 :Type: vm ioctl 3603 :Parameters: struct kvm_arm_device_address (i 3478 :Parameters: struct kvm_arm_device_address (in) 3604 :Returns: 0 on success, -1 on error 3479 :Returns: 0 on success, -1 on error 3605 3480 3606 Errors: 3481 Errors: 3607 3482 3608 ====== =================================== 3483 ====== ============================================ 3609 ENODEV The device id is unknown 3484 ENODEV The device id is unknown 3610 ENXIO Device not supported on current sys 3485 ENXIO Device not supported on current system 3611 EEXIST Address already set 3486 EEXIST Address already set 3612 E2BIG Address outside guest physical addr 3487 E2BIG Address outside guest physical address space 3613 EBUSY Address overlaps with other device 3488 EBUSY Address overlaps with other device range 3614 ====== =================================== 3489 ====== ============================================ 3615 3490 3616 :: 3491 :: 3617 3492 3618 struct kvm_arm_device_addr { 3493 struct kvm_arm_device_addr { 3619 __u64 id; 3494 __u64 id; 3620 __u64 addr; 3495 __u64 addr; 3621 }; 3496 }; 3622 3497 3623 Specify a device address in the guest's physi 3498 Specify a device address in the guest's physical address space where guests 3624 can access emulated or directly exposed devic 3499 can access emulated or directly exposed devices, which the host kernel needs 3625 to know about. The id field is an architectur 3500 to know about. The id field is an architecture specific identifier for a 3626 specific device. 3501 specific device. 3627 3502 3628 arm64 divides the id field into two parts, a 3503 arm64 divides the id field into two parts, a device id and an 3629 address type id specific to the individual de 3504 address type id specific to the individual device:: 3630 3505 3631 bits: | 63 ... 32 | 31 ... 3506 bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 | 3632 field: | 0x00000000 | devic 3507 field: | 0x00000000 | device id | addr type id | 3633 3508 3634 arm64 currently only require this when using 3509 arm64 currently only require this when using the in-kernel GIC 3635 support for the hardware VGIC features, using 3510 support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2 3636 as the device id. When setting the base addr 3511 as the device id. When setting the base address for the guest's 3637 mapping of the VGIC virtual CPU and distribut 3512 mapping of the VGIC virtual CPU and distributor interface, the ioctl 3638 must be called after calling KVM_CREATE_IRQCH 3513 must be called after calling KVM_CREATE_IRQCHIP, but before calling 3639 KVM_RUN on any of the VCPUs. Calling this io 3514 KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the 3640 base addresses will return -EEXIST. 3515 base addresses will return -EEXIST. 3641 3516 3642 Note, this IOCTL is deprecated and the more f 3517 Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API 3643 should be used instead. 3518 should be used instead. 3644 3519 3645 3520 3646 4.86 KVM_PPC_RTAS_DEFINE_TOKEN 3521 4.86 KVM_PPC_RTAS_DEFINE_TOKEN 3647 ------------------------------ 3522 ------------------------------ 3648 3523 3649 :Capability: KVM_CAP_PPC_RTAS 3524 :Capability: KVM_CAP_PPC_RTAS 3650 :Architectures: ppc 3525 :Architectures: ppc 3651 :Type: vm ioctl 3526 :Type: vm ioctl 3652 :Parameters: struct kvm_rtas_token_args 3527 :Parameters: struct kvm_rtas_token_args 3653 :Returns: 0 on success, -1 on error 3528 :Returns: 0 on success, -1 on error 3654 3529 3655 Defines a token value for a RTAS (Run Time Ab 3530 Defines a token value for a RTAS (Run Time Abstraction Services) 3656 service in order to allow it to be handled in 3531 service in order to allow it to be handled in the kernel. The 3657 argument struct gives the name of the service 3532 argument struct gives the name of the service, which must be the name 3658 of a service that has a kernel-side implement 3533 of a service that has a kernel-side implementation. If the token 3659 value is non-zero, it will be associated with 3534 value is non-zero, it will be associated with that service, and 3660 subsequent RTAS calls by the guest specifying 3535 subsequent RTAS calls by the guest specifying that token will be 3661 handled by the kernel. If the token value is 3536 handled by the kernel. If the token value is 0, then any token 3662 associated with the service will be forgotten 3537 associated with the service will be forgotten, and subsequent RTAS 3663 calls by the guest for that service will be p 3538 calls by the guest for that service will be passed to userspace to be 3664 handled. 3539 handled. 3665 3540 3666 4.87 KVM_SET_GUEST_DEBUG 3541 4.87 KVM_SET_GUEST_DEBUG 3667 ------------------------ 3542 ------------------------ 3668 3543 3669 :Capability: KVM_CAP_SET_GUEST_DEBUG 3544 :Capability: KVM_CAP_SET_GUEST_DEBUG 3670 :Architectures: x86, s390, ppc, arm64 3545 :Architectures: x86, s390, ppc, arm64 3671 :Type: vcpu ioctl 3546 :Type: vcpu ioctl 3672 :Parameters: struct kvm_guest_debug (in) 3547 :Parameters: struct kvm_guest_debug (in) 3673 :Returns: 0 on success; -1 on error 3548 :Returns: 0 on success; -1 on error 3674 3549 3675 :: 3550 :: 3676 3551 3677 struct kvm_guest_debug { 3552 struct kvm_guest_debug { 3678 __u32 control; 3553 __u32 control; 3679 __u32 pad; 3554 __u32 pad; 3680 struct kvm_guest_debug_arch arch; 3555 struct kvm_guest_debug_arch arch; 3681 }; 3556 }; 3682 3557 3683 Set up the processor specific debug registers 3558 Set up the processor specific debug registers and configure vcpu for 3684 handling guest debug events. There are two pa 3559 handling guest debug events. There are two parts to the structure, the 3685 first a control bitfield indicates the type o 3560 first a control bitfield indicates the type of debug events to handle 3686 when running. Common control bits are: 3561 when running. Common control bits are: 3687 3562 3688 - KVM_GUESTDBG_ENABLE: guest debuggi 3563 - KVM_GUESTDBG_ENABLE: guest debugging is enabled 3689 - KVM_GUESTDBG_SINGLESTEP: the next run 3564 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step 3690 3565 3691 The top 16 bits of the control field are arch 3566 The top 16 bits of the control field are architecture specific control 3692 flags which can include the following: 3567 flags which can include the following: 3693 3568 3694 - KVM_GUESTDBG_USE_SW_BP: using softwar 3569 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64] 3695 - KVM_GUESTDBG_USE_HW_BP: using hardwar 3570 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390] 3696 - KVM_GUESTDBG_USE_HW: using hardwar 3571 - KVM_GUESTDBG_USE_HW: using hardware debug events [arm64] 3697 - KVM_GUESTDBG_INJECT_DB: inject DB typ 3572 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86] 3698 - KVM_GUESTDBG_INJECT_BP: inject BP typ 3573 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86] 3699 - KVM_GUESTDBG_EXIT_PENDING: trigger an im 3574 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390] 3700 - KVM_GUESTDBG_BLOCKIRQ: avoid injecti 3575 - KVM_GUESTDBG_BLOCKIRQ: avoid injecting interrupts/NMI/SMI [x86] 3701 3576 3702 For example KVM_GUESTDBG_USE_SW_BP indicates 3577 For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints 3703 are enabled in memory so we need to ensure br 3578 are enabled in memory so we need to ensure breakpoint exceptions are 3704 correctly trapped and the KVM run loop exits 3579 correctly trapped and the KVM run loop exits at the breakpoint and not 3705 running off into the normal guest vector. For 3580 running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP 3706 we need to ensure the guest vCPUs architectur 3581 we need to ensure the guest vCPUs architecture specific registers are 3707 updated to the correct (supplied) values. 3582 updated to the correct (supplied) values. 3708 3583 3709 The second part of the structure is architect 3584 The second part of the structure is architecture specific and 3710 typically contains a set of debug registers. 3585 typically contains a set of debug registers. 3711 3586 3712 For arm64 the number of debug registers is im 3587 For arm64 the number of debug registers is implementation defined and 3713 can be determined by querying the KVM_CAP_GUE 3588 can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and 3714 KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which 3589 KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number 3715 indicating the number of supported registers. 3590 indicating the number of supported registers. 3716 3591 3717 For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP ca 3592 For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP capability indicates whether 3718 the single-step debug event (KVM_GUESTDBG_SIN 3593 the single-step debug event (KVM_GUESTDBG_SINGLESTEP) is supported. 3719 3594 3720 Also when supported, KVM_CAP_SET_GUEST_DEBUG2 3595 Also when supported, KVM_CAP_SET_GUEST_DEBUG2 capability indicates the 3721 supported KVM_GUESTDBG_* bits in the control 3596 supported KVM_GUESTDBG_* bits in the control field. 3722 3597 3723 When debug events exit the main run loop with 3598 When debug events exit the main run loop with the reason 3724 KVM_EXIT_DEBUG with the kvm_debug_exit_arch p 3599 KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run 3725 structure containing architecture specific de 3600 structure containing architecture specific debug information. 3726 3601 3727 4.88 KVM_GET_EMULATED_CPUID 3602 4.88 KVM_GET_EMULATED_CPUID 3728 --------------------------- 3603 --------------------------- 3729 3604 3730 :Capability: KVM_CAP_EXT_EMUL_CPUID 3605 :Capability: KVM_CAP_EXT_EMUL_CPUID 3731 :Architectures: x86 3606 :Architectures: x86 3732 :Type: system ioctl 3607 :Type: system ioctl 3733 :Parameters: struct kvm_cpuid2 (in/out) 3608 :Parameters: struct kvm_cpuid2 (in/out) 3734 :Returns: 0 on success, -1 on error 3609 :Returns: 0 on success, -1 on error 3735 3610 3736 :: 3611 :: 3737 3612 3738 struct kvm_cpuid2 { 3613 struct kvm_cpuid2 { 3739 __u32 nent; 3614 __u32 nent; 3740 __u32 flags; 3615 __u32 flags; 3741 struct kvm_cpuid_entry2 entries[0]; 3616 struct kvm_cpuid_entry2 entries[0]; 3742 }; 3617 }; 3743 3618 3744 The member 'flags' is used for passing flags 3619 The member 'flags' is used for passing flags from userspace. 3745 3620 3746 :: 3621 :: 3747 3622 3748 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 3623 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) 3749 #define KVM_CPUID_FLAG_STATEFUL_FUNC 3624 #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) /* deprecated */ 3750 #define KVM_CPUID_FLAG_STATE_READ_NEXT 3625 #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) /* deprecated */ 3751 3626 3752 struct kvm_cpuid_entry2 { 3627 struct kvm_cpuid_entry2 { 3753 __u32 function; 3628 __u32 function; 3754 __u32 index; 3629 __u32 index; 3755 __u32 flags; 3630 __u32 flags; 3756 __u32 eax; 3631 __u32 eax; 3757 __u32 ebx; 3632 __u32 ebx; 3758 __u32 ecx; 3633 __u32 ecx; 3759 __u32 edx; 3634 __u32 edx; 3760 __u32 padding[3]; 3635 __u32 padding[3]; 3761 }; 3636 }; 3762 3637 3763 This ioctl returns x86 cpuid features which a 3638 This ioctl returns x86 cpuid features which are emulated by 3764 kvm.Userspace can use the information returne 3639 kvm.Userspace can use the information returned by this ioctl to query 3765 which features are emulated by kvm instead of 3640 which features are emulated by kvm instead of being present natively. 3766 3641 3767 Userspace invokes KVM_GET_EMULATED_CPUID by p 3642 Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2 3768 structure with the 'nent' field indicating th 3643 structure with the 'nent' field indicating the number of entries in 3769 the variable-size array 'entries'. If the num 3644 the variable-size array 'entries'. If the number of entries is too low 3770 to describe the cpu capabilities, an error (E 3645 to describe the cpu capabilities, an error (E2BIG) is returned. If the 3771 number is too high, the 'nent' field is adjus 3646 number is too high, the 'nent' field is adjusted and an error (ENOMEM) 3772 is returned. If the number is just right, the 3647 is returned. If the number is just right, the 'nent' field is adjusted 3773 to the number of valid entries in the 'entrie 3648 to the number of valid entries in the 'entries' array, which is then 3774 filled. 3649 filled. 3775 3650 3776 The entries returned are the set CPUID bits o 3651 The entries returned are the set CPUID bits of the respective features 3777 which kvm emulates, as returned by the CPUID 3652 which kvm emulates, as returned by the CPUID instruction, with unknown 3778 or unsupported feature bits cleared. 3653 or unsupported feature bits cleared. 3779 3654 3780 Features like x2apic, for example, may not be 3655 Features like x2apic, for example, may not be present in the host cpu 3781 but are exposed by kvm in KVM_GET_SUPPORTED_C 3656 but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be 3782 emulated efficiently and thus not included he 3657 emulated efficiently and thus not included here. 3783 3658 3784 The fields in each entry are defined as follo 3659 The fields in each entry are defined as follows: 3785 3660 3786 function: 3661 function: 3787 the eax value used to obtain the ent 3662 the eax value used to obtain the entry 3788 index: 3663 index: 3789 the ecx value used to obtain the ent 3664 the ecx value used to obtain the entry (for entries that are 3790 affected by ecx) 3665 affected by ecx) 3791 flags: 3666 flags: 3792 an OR of zero or more of the following: 3667 an OR of zero or more of the following: 3793 3668 3794 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 3669 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 3795 if the index field is valid 3670 if the index field is valid 3796 3671 3797 eax, ebx, ecx, edx: 3672 eax, ebx, ecx, edx: 3798 3673 3799 the values returned by the cpuid ins 3674 the values returned by the cpuid instruction for 3800 this function/index combination 3675 this function/index combination 3801 3676 3802 4.89 KVM_S390_MEM_OP 3677 4.89 KVM_S390_MEM_OP 3803 -------------------- 3678 -------------------- 3804 3679 3805 :Capability: KVM_CAP_S390_MEM_OP, KVM_CAP_S39 3680 :Capability: KVM_CAP_S390_MEM_OP, KVM_CAP_S390_PROTECTED, KVM_CAP_S390_MEM_OP_EXTENSION 3806 :Architectures: s390 3681 :Architectures: s390 3807 :Type: vm ioctl, vcpu ioctl 3682 :Type: vm ioctl, vcpu ioctl 3808 :Parameters: struct kvm_s390_mem_op (in) 3683 :Parameters: struct kvm_s390_mem_op (in) 3809 :Returns: = 0 on success, 3684 :Returns: = 0 on success, 3810 < 0 on generic error (e.g. -EFAULT 3685 < 0 on generic error (e.g. -EFAULT or -ENOMEM), 3811 16 bit program exception code if th !! 3686 > 0 if an exception occurred while walking the page tables 3812 3687 3813 Read or write data from/to the VM's memory. 3688 Read or write data from/to the VM's memory. 3814 The KVM_CAP_S390_MEM_OP_EXTENSION capability 3689 The KVM_CAP_S390_MEM_OP_EXTENSION capability specifies what functionality is 3815 supported. 3690 supported. 3816 3691 3817 Parameters are specified via the following st 3692 Parameters are specified via the following structure:: 3818 3693 3819 struct kvm_s390_mem_op { 3694 struct kvm_s390_mem_op { 3820 __u64 gaddr; /* the guest 3695 __u64 gaddr; /* the guest address */ 3821 __u64 flags; /* flags */ 3696 __u64 flags; /* flags */ 3822 __u32 size; /* amount of 3697 __u32 size; /* amount of bytes */ 3823 __u32 op; /* type of op 3698 __u32 op; /* type of operation */ 3824 __u64 buf; /* buffer in 3699 __u64 buf; /* buffer in userspace */ 3825 union { 3700 union { 3826 struct { 3701 struct { 3827 __u8 ar; /* th 3702 __u8 ar; /* the access register number */ 3828 __u8 key; /* ac 3703 __u8 key; /* access key, ignored if flag unset */ 3829 __u8 pad1[6]; /* ig << 3830 __u64 old_addr; /* ig << 3831 }; 3704 }; 3832 __u32 sida_offset; /* offset 3705 __u32 sida_offset; /* offset into the sida */ 3833 __u8 reserved[32]; /* ignored 3706 __u8 reserved[32]; /* ignored */ 3834 }; 3707 }; 3835 }; 3708 }; 3836 3709 3837 The start address of the memory region has to 3710 The start address of the memory region has to be specified in the "gaddr" 3838 field, and the length of the region in the "s 3711 field, and the length of the region in the "size" field (which must not 3839 be 0). The maximum value for "size" can be ob 3712 be 0). The maximum value for "size" can be obtained by checking the 3840 KVM_CAP_S390_MEM_OP capability. "buf" is the 3713 KVM_CAP_S390_MEM_OP capability. "buf" is the buffer supplied by the 3841 userspace application where the read data sho 3714 userspace application where the read data should be written to for 3842 a read access, or where the data that should 3715 a read access, or where the data that should be written is stored for 3843 a write access. The "reserved" field is mean 3716 a write access. The "reserved" field is meant for future extensions. 3844 Reserved and unused values are ignored. Futur 3717 Reserved and unused values are ignored. Future extension that add members must 3845 introduce new flags. 3718 introduce new flags. 3846 3719 3847 The type of operation is specified in the "op 3720 The type of operation is specified in the "op" field. Flags modifying 3848 their behavior can be set in the "flags" fiel 3721 their behavior can be set in the "flags" field. Undefined flag bits must 3849 be set to 0. 3722 be set to 0. 3850 3723 3851 Possible operations are: 3724 Possible operations are: 3852 * ``KVM_S390_MEMOP_LOGICAL_READ`` 3725 * ``KVM_S390_MEMOP_LOGICAL_READ`` 3853 * ``KVM_S390_MEMOP_LOGICAL_WRITE`` 3726 * ``KVM_S390_MEMOP_LOGICAL_WRITE`` 3854 * ``KVM_S390_MEMOP_ABSOLUTE_READ`` 3727 * ``KVM_S390_MEMOP_ABSOLUTE_READ`` 3855 * ``KVM_S390_MEMOP_ABSOLUTE_WRITE`` 3728 * ``KVM_S390_MEMOP_ABSOLUTE_WRITE`` 3856 * ``KVM_S390_MEMOP_SIDA_READ`` 3729 * ``KVM_S390_MEMOP_SIDA_READ`` 3857 * ``KVM_S390_MEMOP_SIDA_WRITE`` 3730 * ``KVM_S390_MEMOP_SIDA_WRITE`` 3858 * ``KVM_S390_MEMOP_ABSOLUTE_CMPXCHG`` << 3859 3731 3860 Logical read/write: 3732 Logical read/write: 3861 ^^^^^^^^^^^^^^^^^^^ 3733 ^^^^^^^^^^^^^^^^^^^ 3862 3734 3863 Access logical memory, i.e. translate the giv 3735 Access logical memory, i.e. translate the given guest address to an absolute 3864 address given the state of the VCPU and use t 3736 address given the state of the VCPU and use the absolute address as target of 3865 the access. "ar" designates the access regist 3737 the access. "ar" designates the access register number to be used; the valid 3866 range is 0..15. 3738 range is 0..15. 3867 Logical accesses are permitted for the VCPU i 3739 Logical accesses are permitted for the VCPU ioctl only. 3868 Logical accesses are permitted for non-protec 3740 Logical accesses are permitted for non-protected guests only. 3869 3741 3870 Supported flags: 3742 Supported flags: 3871 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` 3743 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` 3872 * ``KVM_S390_MEMOP_F_INJECT_EXCEPTION`` 3744 * ``KVM_S390_MEMOP_F_INJECT_EXCEPTION`` 3873 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3745 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3874 3746 3875 The KVM_S390_MEMOP_F_CHECK_ONLY flag can be s 3747 The KVM_S390_MEMOP_F_CHECK_ONLY flag can be set to check whether the 3876 corresponding memory access would cause an ac 3748 corresponding memory access would cause an access exception; however, 3877 no actual access to the data in memory at the 3749 no actual access to the data in memory at the destination is performed. 3878 In this case, "buf" is unused and can be NULL 3750 In this case, "buf" is unused and can be NULL. 3879 3751 3880 In case an access exception occurred during t 3752 In case an access exception occurred during the access (or would occur 3881 in case of KVM_S390_MEMOP_F_CHECK_ONLY), the 3753 in case of KVM_S390_MEMOP_F_CHECK_ONLY), the ioctl returns a positive 3882 error number indicating the type of exception 3754 error number indicating the type of exception. This exception is also 3883 raised directly at the corresponding VCPU if 3755 raised directly at the corresponding VCPU if the flag 3884 KVM_S390_MEMOP_F_INJECT_EXCEPTION is set. 3756 KVM_S390_MEMOP_F_INJECT_EXCEPTION is set. 3885 On protection exceptions, unless specified ot << 3886 translation-exception identifier (TEID) indic << 3887 3757 3888 If the KVM_S390_MEMOP_F_SKEY_PROTECTION flag 3758 If the KVM_S390_MEMOP_F_SKEY_PROTECTION flag is set, storage key 3889 protection is also in effect and may cause ex 3759 protection is also in effect and may cause exceptions if accesses are 3890 prohibited given the access key designated by 3760 prohibited given the access key designated by "key"; the valid range is 0..15. 3891 KVM_S390_MEMOP_F_SKEY_PROTECTION is available 3761 KVM_S390_MEMOP_F_SKEY_PROTECTION is available if KVM_CAP_S390_MEM_OP_EXTENSION 3892 is > 0. 3762 is > 0. 3893 Since the accessed memory may span multiple p << 3894 different storage keys, it is possible that a << 3895 after memory has been modified. In this case, << 3896 the TEID does not indicate suppression. << 3897 3763 3898 Absolute read/write: 3764 Absolute read/write: 3899 ^^^^^^^^^^^^^^^^^^^^ 3765 ^^^^^^^^^^^^^^^^^^^^ 3900 3766 3901 Access absolute memory. This operation is int 3767 Access absolute memory. This operation is intended to be used with the 3902 KVM_S390_MEMOP_F_SKEY_PROTECTION flag, to all 3768 KVM_S390_MEMOP_F_SKEY_PROTECTION flag, to allow accessing memory and performing 3903 the checks required for storage key protectio 3769 the checks required for storage key protection as one operation (as opposed to 3904 user space getting the storage keys, performi 3770 user space getting the storage keys, performing the checks, and accessing 3905 memory thereafter, which could lead to a dela 3771 memory thereafter, which could lead to a delay between check and access). 3906 Absolute accesses are permitted for the VM io 3772 Absolute accesses are permitted for the VM ioctl if KVM_CAP_S390_MEM_OP_EXTENSION 3907 has the KVM_S390_MEMOP_EXTENSION_CAP_BASE bit !! 3773 is > 0. 3908 Currently absolute accesses are not permitted 3774 Currently absolute accesses are not permitted for VCPU ioctls. 3909 Absolute accesses are permitted for non-prote 3775 Absolute accesses are permitted for non-protected guests only. 3910 3776 3911 Supported flags: 3777 Supported flags: 3912 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` 3778 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` 3913 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3779 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3914 3780 3915 The semantics of the flags common with logica !! 3781 The semantics of the flags are as for logical accesses. 3916 accesses. << 3917 << 3918 Absolute cmpxchg: << 3919 ^^^^^^^^^^^^^^^^^ << 3920 << 3921 Perform cmpxchg on absolute guest memory. Int << 3922 KVM_S390_MEMOP_F_SKEY_PROTECTION flag. << 3923 Instead of doing an unconditional write, the << 3924 location contains the value pointed to by "ol << 3925 This is performed as an atomic cmpxchg with t << 3926 parameter. "size" must be a power of two up t << 3927 If the exchange did not take place because th << 3928 old value, the value "old_addr" points to is << 3929 User space can tell if an exchange took place << 3930 occurred. The cmpxchg op is permitted for the << 3931 KVM_CAP_S390_MEM_OP_EXTENSION has flag KVM_S3 << 3932 << 3933 Supported flags: << 3934 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` << 3935 3782 3936 SIDA read/write: 3783 SIDA read/write: 3937 ^^^^^^^^^^^^^^^^ 3784 ^^^^^^^^^^^^^^^^ 3938 3785 3939 Access the secure instruction data area which 3786 Access the secure instruction data area which contains memory operands necessary 3940 for instruction emulation for protected guest 3787 for instruction emulation for protected guests. 3941 SIDA accesses are available if the KVM_CAP_S3 3788 SIDA accesses are available if the KVM_CAP_S390_PROTECTED capability is available. 3942 SIDA accesses are permitted for the VCPU ioct 3789 SIDA accesses are permitted for the VCPU ioctl only. 3943 SIDA accesses are permitted for protected gue 3790 SIDA accesses are permitted for protected guests only. 3944 3791 3945 No flags are supported. 3792 No flags are supported. 3946 3793 3947 4.90 KVM_S390_GET_SKEYS 3794 4.90 KVM_S390_GET_SKEYS 3948 ----------------------- 3795 ----------------------- 3949 3796 3950 :Capability: KVM_CAP_S390_SKEYS 3797 :Capability: KVM_CAP_S390_SKEYS 3951 :Architectures: s390 3798 :Architectures: s390 3952 :Type: vm ioctl 3799 :Type: vm ioctl 3953 :Parameters: struct kvm_s390_skeys 3800 :Parameters: struct kvm_s390_skeys 3954 :Returns: 0 on success, KVM_S390_GET_SKEYS_NO 3801 :Returns: 0 on success, KVM_S390_GET_SKEYS_NONE if guest is not using storage 3955 keys, negative value on error 3802 keys, negative value on error 3956 3803 3957 This ioctl is used to get guest storage key v 3804 This ioctl is used to get guest storage key values on the s390 3958 architecture. The ioctl takes parameters via 3805 architecture. The ioctl takes parameters via the kvm_s390_skeys struct:: 3959 3806 3960 struct kvm_s390_skeys { 3807 struct kvm_s390_skeys { 3961 __u64 start_gfn; 3808 __u64 start_gfn; 3962 __u64 count; 3809 __u64 count; 3963 __u64 skeydata_addr; 3810 __u64 skeydata_addr; 3964 __u32 flags; 3811 __u32 flags; 3965 __u32 reserved[9]; 3812 __u32 reserved[9]; 3966 }; 3813 }; 3967 3814 3968 The start_gfn field is the number of the firs 3815 The start_gfn field is the number of the first guest frame whose storage keys 3969 you want to get. 3816 you want to get. 3970 3817 3971 The count field is the number of consecutive 3818 The count field is the number of consecutive frames (starting from start_gfn) 3972 whose storage keys to get. The count field mu 3819 whose storage keys to get. The count field must be at least 1 and the maximum 3973 allowed value is defined as KVM_S390_SKEYS_MA 3820 allowed value is defined as KVM_S390_SKEYS_MAX. Values outside this range 3974 will cause the ioctl to return -EINVAL. 3821 will cause the ioctl to return -EINVAL. 3975 3822 3976 The skeydata_addr field is the address to a b 3823 The skeydata_addr field is the address to a buffer large enough to hold count 3977 bytes. This buffer will be filled with storag 3824 bytes. This buffer will be filled with storage key data by the ioctl. 3978 3825 3979 4.91 KVM_S390_SET_SKEYS 3826 4.91 KVM_S390_SET_SKEYS 3980 ----------------------- 3827 ----------------------- 3981 3828 3982 :Capability: KVM_CAP_S390_SKEYS 3829 :Capability: KVM_CAP_S390_SKEYS 3983 :Architectures: s390 3830 :Architectures: s390 3984 :Type: vm ioctl 3831 :Type: vm ioctl 3985 :Parameters: struct kvm_s390_skeys 3832 :Parameters: struct kvm_s390_skeys 3986 :Returns: 0 on success, negative value on err 3833 :Returns: 0 on success, negative value on error 3987 3834 3988 This ioctl is used to set guest storage key v 3835 This ioctl is used to set guest storage key values on the s390 3989 architecture. The ioctl takes parameters via 3836 architecture. The ioctl takes parameters via the kvm_s390_skeys struct. 3990 See section on KVM_S390_GET_SKEYS for struct 3837 See section on KVM_S390_GET_SKEYS for struct definition. 3991 3838 3992 The start_gfn field is the number of the firs 3839 The start_gfn field is the number of the first guest frame whose storage keys 3993 you want to set. 3840 you want to set. 3994 3841 3995 The count field is the number of consecutive 3842 The count field is the number of consecutive frames (starting from start_gfn) 3996 whose storage keys to get. The count field mu 3843 whose storage keys to get. The count field must be at least 1 and the maximum 3997 allowed value is defined as KVM_S390_SKEYS_MA 3844 allowed value is defined as KVM_S390_SKEYS_MAX. Values outside this range 3998 will cause the ioctl to return -EINVAL. 3845 will cause the ioctl to return -EINVAL. 3999 3846 4000 The skeydata_addr field is the address to a b 3847 The skeydata_addr field is the address to a buffer containing count bytes of 4001 storage keys. Each byte in the buffer will be 3848 storage keys. Each byte in the buffer will be set as the storage key for a 4002 single frame starting at start_gfn for count 3849 single frame starting at start_gfn for count frames. 4003 3850 4004 Note: If any architecturally invalid key valu 3851 Note: If any architecturally invalid key value is found in the given data then 4005 the ioctl will return -EINVAL. 3852 the ioctl will return -EINVAL. 4006 3853 4007 4.92 KVM_S390_IRQ 3854 4.92 KVM_S390_IRQ 4008 ----------------- 3855 ----------------- 4009 3856 4010 :Capability: KVM_CAP_S390_INJECT_IRQ 3857 :Capability: KVM_CAP_S390_INJECT_IRQ 4011 :Architectures: s390 3858 :Architectures: s390 4012 :Type: vcpu ioctl 3859 :Type: vcpu ioctl 4013 :Parameters: struct kvm_s390_irq (in) 3860 :Parameters: struct kvm_s390_irq (in) 4014 :Returns: 0 on success, -1 on error 3861 :Returns: 0 on success, -1 on error 4015 3862 4016 Errors: 3863 Errors: 4017 3864 4018 3865 4019 ====== =================================== 3866 ====== ================================================================= 4020 EINVAL interrupt type is invalid 3867 EINVAL interrupt type is invalid 4021 type is KVM_S390_SIGP_STOP and flag 3868 type is KVM_S390_SIGP_STOP and flag parameter is invalid value, 4022 type is KVM_S390_INT_EXTERNAL_CALL 3869 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger 4023 than the maximum of VCPUs 3870 than the maximum of VCPUs 4024 EBUSY type is KVM_S390_SIGP_SET_PREFIX an 3871 EBUSY type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped, 4025 type is KVM_S390_SIGP_STOP and a st 3872 type is KVM_S390_SIGP_STOP and a stop irq is already pending, 4026 type is KVM_S390_INT_EXTERNAL_CALL 3873 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt 4027 is already pending 3874 is already pending 4028 ====== =================================== 3875 ====== ================================================================= 4029 3876 4030 Allows to inject an interrupt to the guest. 3877 Allows to inject an interrupt to the guest. 4031 3878 4032 Using struct kvm_s390_irq as a parameter allo 3879 Using struct kvm_s390_irq as a parameter allows 4033 to inject additional payload which is not 3880 to inject additional payload which is not 4034 possible via KVM_S390_INTERRUPT. 3881 possible via KVM_S390_INTERRUPT. 4035 3882 4036 Interrupt parameters are passed via kvm_s390_ 3883 Interrupt parameters are passed via kvm_s390_irq:: 4037 3884 4038 struct kvm_s390_irq { 3885 struct kvm_s390_irq { 4039 __u64 type; 3886 __u64 type; 4040 union { 3887 union { 4041 struct kvm_s390_io_info io; 3888 struct kvm_s390_io_info io; 4042 struct kvm_s390_ext_info ext; 3889 struct kvm_s390_ext_info ext; 4043 struct kvm_s390_pgm_info pgm; 3890 struct kvm_s390_pgm_info pgm; 4044 struct kvm_s390_emerg_info em 3891 struct kvm_s390_emerg_info emerg; 4045 struct kvm_s390_extcall_info 3892 struct kvm_s390_extcall_info extcall; 4046 struct kvm_s390_prefix_info p 3893 struct kvm_s390_prefix_info prefix; 4047 struct kvm_s390_stop_info sto 3894 struct kvm_s390_stop_info stop; 4048 struct kvm_s390_mchk_info mch 3895 struct kvm_s390_mchk_info mchk; 4049 char reserved[64]; 3896 char reserved[64]; 4050 } u; 3897 } u; 4051 }; 3898 }; 4052 3899 4053 type can be one of the following: 3900 type can be one of the following: 4054 3901 4055 - KVM_S390_SIGP_STOP - sigp stop; parameter i 3902 - KVM_S390_SIGP_STOP - sigp stop; parameter in .stop 4056 - KVM_S390_PROGRAM_INT - program check; param 3903 - KVM_S390_PROGRAM_INT - program check; parameters in .pgm 4057 - KVM_S390_SIGP_SET_PREFIX - sigp set prefix; 3904 - KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix 4058 - KVM_S390_RESTART - restart; no parameters 3905 - KVM_S390_RESTART - restart; no parameters 4059 - KVM_S390_INT_CLOCK_COMP - clock comparator 3906 - KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters 4060 - KVM_S390_INT_CPU_TIMER - CPU timer interrup 3907 - KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters 4061 - KVM_S390_INT_EMERGENCY - sigp emergency; pa 3908 - KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg 4062 - KVM_S390_INT_EXTERNAL_CALL - sigp external 3909 - KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall 4063 - KVM_S390_MCHK - machine check interrupt; pa 3910 - KVM_S390_MCHK - machine check interrupt; parameters in .mchk 4064 3911 4065 This is an asynchronous vcpu ioctl and can be 3912 This is an asynchronous vcpu ioctl and can be invoked from any thread. 4066 3913 4067 4.94 KVM_S390_GET_IRQ_STATE 3914 4.94 KVM_S390_GET_IRQ_STATE 4068 --------------------------- 3915 --------------------------- 4069 3916 4070 :Capability: KVM_CAP_S390_IRQ_STATE 3917 :Capability: KVM_CAP_S390_IRQ_STATE 4071 :Architectures: s390 3918 :Architectures: s390 4072 :Type: vcpu ioctl 3919 :Type: vcpu ioctl 4073 :Parameters: struct kvm_s390_irq_state (out) 3920 :Parameters: struct kvm_s390_irq_state (out) 4074 :Returns: >= number of bytes copied into buff 3921 :Returns: >= number of bytes copied into buffer, 4075 -EINVAL if buffer size is 0, 3922 -EINVAL if buffer size is 0, 4076 -ENOBUFS if buffer size is too smal 3923 -ENOBUFS if buffer size is too small to fit all pending interrupts, 4077 -EFAULT if the buffer address was i 3924 -EFAULT if the buffer address was invalid 4078 3925 4079 This ioctl allows userspace to retrieve the c 3926 This ioctl allows userspace to retrieve the complete state of all currently 4080 pending interrupts in a single buffer. Use ca 3927 pending interrupts in a single buffer. Use cases include migration 4081 and introspection. The parameter structure co 3928 and introspection. The parameter structure contains the address of a 4082 userspace buffer and its length:: 3929 userspace buffer and its length:: 4083 3930 4084 struct kvm_s390_irq_state { 3931 struct kvm_s390_irq_state { 4085 __u64 buf; 3932 __u64 buf; 4086 __u32 flags; /* will stay unus 3933 __u32 flags; /* will stay unused for compatibility reasons */ 4087 __u32 len; 3934 __u32 len; 4088 __u32 reserved[4]; /* will stay unus 3935 __u32 reserved[4]; /* will stay unused for compatibility reasons */ 4089 }; 3936 }; 4090 3937 4091 Userspace passes in the above struct and for 3938 Userspace passes in the above struct and for each pending interrupt a 4092 struct kvm_s390_irq is copied to the provided 3939 struct kvm_s390_irq is copied to the provided buffer. 4093 3940 4094 The structure contains a flags and a reserved 3941 The structure contains a flags and a reserved field for future extensions. As 4095 the kernel never checked for flags == 0 and Q 3942 the kernel never checked for flags == 0 and QEMU never pre-zeroed flags and 4096 reserved, these fields can not be used in the 3943 reserved, these fields can not be used in the future without breaking 4097 compatibility. 3944 compatibility. 4098 3945 4099 If -ENOBUFS is returned the buffer provided w 3946 If -ENOBUFS is returned the buffer provided was too small and userspace 4100 may retry with a bigger buffer. 3947 may retry with a bigger buffer. 4101 3948 4102 4.95 KVM_S390_SET_IRQ_STATE 3949 4.95 KVM_S390_SET_IRQ_STATE 4103 --------------------------- 3950 --------------------------- 4104 3951 4105 :Capability: KVM_CAP_S390_IRQ_STATE 3952 :Capability: KVM_CAP_S390_IRQ_STATE 4106 :Architectures: s390 3953 :Architectures: s390 4107 :Type: vcpu ioctl 3954 :Type: vcpu ioctl 4108 :Parameters: struct kvm_s390_irq_state (in) 3955 :Parameters: struct kvm_s390_irq_state (in) 4109 :Returns: 0 on success, 3956 :Returns: 0 on success, 4110 -EFAULT if the buffer address was i 3957 -EFAULT if the buffer address was invalid, 4111 -EINVAL for an invalid buffer lengt 3958 -EINVAL for an invalid buffer length (see below), 4112 -EBUSY if there were already interr 3959 -EBUSY if there were already interrupts pending, 4113 errors occurring when actually inje 3960 errors occurring when actually injecting the 4114 interrupt. See KVM_S390_IRQ. 3961 interrupt. See KVM_S390_IRQ. 4115 3962 4116 This ioctl allows userspace to set the comple 3963 This ioctl allows userspace to set the complete state of all cpu-local 4117 interrupts currently pending for the vcpu. It 3964 interrupts currently pending for the vcpu. It is intended for restoring 4118 interrupt state after a migration. The input 3965 interrupt state after a migration. The input parameter is a userspace buffer 4119 containing a struct kvm_s390_irq_state:: 3966 containing a struct kvm_s390_irq_state:: 4120 3967 4121 struct kvm_s390_irq_state { 3968 struct kvm_s390_irq_state { 4122 __u64 buf; 3969 __u64 buf; 4123 __u32 flags; /* will stay unus 3970 __u32 flags; /* will stay unused for compatibility reasons */ 4124 __u32 len; 3971 __u32 len; 4125 __u32 reserved[4]; /* will stay unus 3972 __u32 reserved[4]; /* will stay unused for compatibility reasons */ 4126 }; 3973 }; 4127 3974 4128 The restrictions for flags and reserved apply 3975 The restrictions for flags and reserved apply as well. 4129 (see KVM_S390_GET_IRQ_STATE) 3976 (see KVM_S390_GET_IRQ_STATE) 4130 3977 4131 The userspace memory referenced by buf contai 3978 The userspace memory referenced by buf contains a struct kvm_s390_irq 4132 for each interrupt to be injected into the gu 3979 for each interrupt to be injected into the guest. 4133 If one of the interrupts could not be injecte 3980 If one of the interrupts could not be injected for some reason the 4134 ioctl aborts. 3981 ioctl aborts. 4135 3982 4136 len must be a multiple of sizeof(struct kvm_s 3983 len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0 4137 and it must not exceed (max_vcpus + 32) * siz 3984 and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq), 4138 which is the maximum number of possibly pendi 3985 which is the maximum number of possibly pending cpu-local interrupts. 4139 3986 4140 4.96 KVM_SMI 3987 4.96 KVM_SMI 4141 ------------ 3988 ------------ 4142 3989 4143 :Capability: KVM_CAP_X86_SMM 3990 :Capability: KVM_CAP_X86_SMM 4144 :Architectures: x86 3991 :Architectures: x86 4145 :Type: vcpu ioctl 3992 :Type: vcpu ioctl 4146 :Parameters: none 3993 :Parameters: none 4147 :Returns: 0 on success, -1 on error 3994 :Returns: 0 on success, -1 on error 4148 3995 4149 Queues an SMI on the thread's vcpu. 3996 Queues an SMI on the thread's vcpu. 4150 3997 4151 4.97 KVM_X86_SET_MSR_FILTER 3998 4.97 KVM_X86_SET_MSR_FILTER 4152 ---------------------------- 3999 ---------------------------- 4153 4000 4154 :Capability: KVM_CAP_X86_MSR_FILTER !! 4001 :Capability: KVM_X86_SET_MSR_FILTER 4155 :Architectures: x86 4002 :Architectures: x86 4156 :Type: vm ioctl 4003 :Type: vm ioctl 4157 :Parameters: struct kvm_msr_filter 4004 :Parameters: struct kvm_msr_filter 4158 :Returns: 0 on success, < 0 on error 4005 :Returns: 0 on success, < 0 on error 4159 4006 4160 :: 4007 :: 4161 4008 4162 struct kvm_msr_filter_range { 4009 struct kvm_msr_filter_range { 4163 #define KVM_MSR_FILTER_READ (1 << 0) 4010 #define KVM_MSR_FILTER_READ (1 << 0) 4164 #define KVM_MSR_FILTER_WRITE (1 << 1) 4011 #define KVM_MSR_FILTER_WRITE (1 << 1) 4165 __u32 flags; 4012 __u32 flags; 4166 __u32 nmsrs; /* number of msrs in bit 4013 __u32 nmsrs; /* number of msrs in bitmap */ 4167 __u32 base; /* MSR index the bitmap 4014 __u32 base; /* MSR index the bitmap starts at */ 4168 __u8 *bitmap; /* a 1 bit allows the o 4015 __u8 *bitmap; /* a 1 bit allows the operations in flags, 0 denies */ 4169 }; 4016 }; 4170 4017 4171 #define KVM_MSR_FILTER_MAX_RANGES 16 4018 #define KVM_MSR_FILTER_MAX_RANGES 16 4172 struct kvm_msr_filter { 4019 struct kvm_msr_filter { 4173 #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 4020 #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 0) 4174 #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 4021 #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 0) 4175 __u32 flags; 4022 __u32 flags; 4176 struct kvm_msr_filter_range ranges[KV 4023 struct kvm_msr_filter_range ranges[KVM_MSR_FILTER_MAX_RANGES]; 4177 }; 4024 }; 4178 4025 4179 flags values for ``struct kvm_msr_filter_rang 4026 flags values for ``struct kvm_msr_filter_range``: 4180 4027 4181 ``KVM_MSR_FILTER_READ`` 4028 ``KVM_MSR_FILTER_READ`` 4182 4029 4183 Filter read accesses to MSRs using the give 4030 Filter read accesses to MSRs using the given bitmap. A 0 in the bitmap 4184 indicates that read accesses should be deni !! 4031 indicates that a read should immediately fail, while a 1 indicates that 4185 a read for a particular MSR should be allow !! 4032 a read for a particular MSR should be handled regardless of the default 4186 filter action. 4033 filter action. 4187 4034 4188 ``KVM_MSR_FILTER_WRITE`` 4035 ``KVM_MSR_FILTER_WRITE`` 4189 4036 4190 Filter write accesses to MSRs using the giv 4037 Filter write accesses to MSRs using the given bitmap. A 0 in the bitmap 4191 indicates that write accesses should be den !! 4038 indicates that a write should immediately fail, while a 1 indicates that 4192 a write for a particular MSR should be allo !! 4039 a write for a particular MSR should be handled regardless of the default 4193 filter action. 4040 filter action. 4194 4041 >> 4042 ``KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE`` >> 4043 >> 4044 Filter both read and write accesses to MSRs using the given bitmap. A 0 >> 4045 in the bitmap indicates that both reads and writes should immediately fail, >> 4046 while a 1 indicates that reads and writes for a particular MSR are not >> 4047 filtered by this range. >> 4048 4195 flags values for ``struct kvm_msr_filter``: 4049 flags values for ``struct kvm_msr_filter``: 4196 4050 4197 ``KVM_MSR_FILTER_DEFAULT_ALLOW`` 4051 ``KVM_MSR_FILTER_DEFAULT_ALLOW`` 4198 4052 4199 If no filter range matches an MSR index tha 4053 If no filter range matches an MSR index that is getting accessed, KVM will 4200 allow accesses to all MSRs by default. !! 4054 fall back to allowing access to the MSR. 4201 4055 4202 ``KVM_MSR_FILTER_DEFAULT_DENY`` 4056 ``KVM_MSR_FILTER_DEFAULT_DENY`` 4203 4057 4204 If no filter range matches an MSR index tha 4058 If no filter range matches an MSR index that is getting accessed, KVM will 4205 deny accesses to all MSRs by default. !! 4059 fall back to rejecting access to the MSR. In this mode, all MSRs that should >> 4060 be processed by KVM need to explicitly be marked as allowed in the bitmaps. 4206 4061 4207 This ioctl allows userspace to define up to 1 !! 4062 This ioctl allows user space to define up to 16 bitmaps of MSR ranges to 4208 guest MSR accesses that would normally be all !! 4063 specify whether a certain MSR access should be explicitly filtered for or not. 4209 covered by a specific range, the "default" fi << 4210 bitmap range covers MSRs from [base .. base+n << 4211 << 4212 If an MSR access is denied by userspace, the << 4213 whether or not KVM_CAP_X86_USER_SPACE_MSR's K << 4214 enabled. If KVM_MSR_EXIT_REASON_FILTER is en << 4215 on denied accesses, i.e. userspace effectivel << 4216 KVM_MSR_EXIT_REASON_FILTER is not enabled, KV << 4217 on denied accesses. Note, if an MSR access i << 4218 load/stores during VMX transitions, KVM ignor << 4219 See the below warning for full details. << 4220 << 4221 If an MSR access is allowed by userspace, KVM << 4222 the access in accordance with the vCPU model. << 4223 inject a #GP if an access is allowed by users << 4224 the MSR, or to follow architectural behavior << 4225 4064 4226 By default, KVM operates in KVM_MSR_FILTER_DE !! 4065 If this ioctl has never been invoked, MSR accesses are not guarded and the 4227 filters. !! 4066 default KVM in-kernel emulation behavior is fully preserved. 4228 4067 4229 Calling this ioctl with an empty set of range 4068 Calling this ioctl with an empty set of ranges (all nmsrs == 0) disables MSR 4230 filtering. In that mode, ``KVM_MSR_FILTER_DEF 4069 filtering. In that mode, ``KVM_MSR_FILTER_DEFAULT_DENY`` is invalid and causes 4231 an error. 4070 an error. 4232 4071 4233 .. warning:: !! 4072 As soon as the filtering is in place, every MSR access is processed through 4234 MSR accesses that are side effects of inst !! 4073 the filtering except for accesses to the x2APIC MSRs (from 0x800 to 0x8ff); 4235 native) are not filtered as hardware does !! 4074 x2APIC MSRs are always allowed, independent of the ``default_allow`` setting, 4236 RDMSR and WRMSR, and KVM mimics that behav !! 4075 and their behavior depends on the ``X2APIC_ENABLE`` bit of the APIC base 4237 to avoid pointless divergence from hardwar !! 4076 register. 4238 SYSENTER reads the SYSENTER MSRs, etc. << 4239 << 4240 MSRs that are loaded/stored via dedicated << 4241 part of VM-Enter/VM-Exit emulation. << 4242 << 4243 MSRs that are loaded/store via VMX's load/ << 4244 of VM-Enter/VM-Exit emulation. If an MSR << 4245 synthesizes a consistency check VM-Exit(EX << 4246 MSR access is denied on VM-Exit, KVM synth << 4247 extends Intel's architectural list of MSRs << 4248 the VM-Enter/VM-Exit MSR list. It is plat << 4249 to communicate any such restrictions to th << 4250 << 4251 x2APIC MSR accesses cannot be filtered (KV << 4252 cover any x2APIC MSRs). << 4253 4077 4254 Note, invoking this ioctl while a vCPU is run !! 4078 .. warning:: 4255 KVM does guarantee that vCPUs will see either !! 4079 MSR accesses coming from nested vmentry/vmexit are not filtered. 4256 filter, e.g. MSRs with identical settings in !! 4080 This includes both writes to individual VMCS fields and reads/writes 4257 have deterministic behavior. !! 4081 through the MSR lists pointed to by the VMCS. >> 4082 >> 4083 If a bit is within one of the defined ranges, read and write accesses are >> 4084 guarded by the bitmap's value for the MSR index if the kind of access >> 4085 is included in the ``struct kvm_msr_filter_range`` flags. If no range >> 4086 cover this particular access, the behavior is determined by the flags >> 4087 field in the kvm_msr_filter struct: ``KVM_MSR_FILTER_DEFAULT_ALLOW`` >> 4088 and ``KVM_MSR_FILTER_DEFAULT_DENY``. >> 4089 >> 4090 Each bitmap range specifies a range of MSRs to potentially allow access on. >> 4091 The range goes from MSR index [base .. base+nmsrs]. The flags field >> 4092 indicates whether reads, writes or both reads and writes are filtered >> 4093 by setting a 1 bit in the bitmap for the corresponding MSR index. >> 4094 >> 4095 If an MSR access is not permitted through the filtering, it generates a >> 4096 #GP inside the guest. When combined with KVM_CAP_X86_USER_SPACE_MSR, that >> 4097 allows user space to deflect and potentially handle various MSR accesses >> 4098 into user space. 4258 4099 4259 Similarly, if userspace wishes to intercept o !! 4100 If a vCPU is in running state while this ioctl is invoked, the vCPU may 4260 KVM_MSR_EXIT_REASON_FILTER must be enabled be !! 4101 experience inconsistent filtering behavior on MSR accesses. 4261 left enabled until after all filters are deac << 4262 result in KVM injecting a #GP instead of exit << 4263 4102 4264 4.98 KVM_CREATE_SPAPR_TCE_64 4103 4.98 KVM_CREATE_SPAPR_TCE_64 4265 ---------------------------- 4104 ---------------------------- 4266 4105 4267 :Capability: KVM_CAP_SPAPR_TCE_64 4106 :Capability: KVM_CAP_SPAPR_TCE_64 4268 :Architectures: powerpc 4107 :Architectures: powerpc 4269 :Type: vm ioctl 4108 :Type: vm ioctl 4270 :Parameters: struct kvm_create_spapr_tce_64 ( 4109 :Parameters: struct kvm_create_spapr_tce_64 (in) 4271 :Returns: file descriptor for manipulating th 4110 :Returns: file descriptor for manipulating the created TCE table 4272 4111 4273 This is an extension for KVM_CAP_SPAPR_TCE wh 4112 This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit 4274 windows, described in 4.62 KVM_CREATE_SPAPR_T 4113 windows, described in 4.62 KVM_CREATE_SPAPR_TCE 4275 4114 4276 This capability uses extended struct in ioctl 4115 This capability uses extended struct in ioctl interface:: 4277 4116 4278 /* for KVM_CAP_SPAPR_TCE_64 */ 4117 /* for KVM_CAP_SPAPR_TCE_64 */ 4279 struct kvm_create_spapr_tce_64 { 4118 struct kvm_create_spapr_tce_64 { 4280 __u64 liobn; 4119 __u64 liobn; 4281 __u32 page_shift; 4120 __u32 page_shift; 4282 __u32 flags; 4121 __u32 flags; 4283 __u64 offset; /* in pages */ 4122 __u64 offset; /* in pages */ 4284 __u64 size; /* in pages */ 4123 __u64 size; /* in pages */ 4285 }; 4124 }; 4286 4125 4287 The aim of extension is to support an additio 4126 The aim of extension is to support an additional bigger DMA window with 4288 a variable page size. 4127 a variable page size. 4289 KVM_CREATE_SPAPR_TCE_64 receives a 64bit wind 4128 KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and 4290 a bus offset of the corresponding DMA window, 4129 a bus offset of the corresponding DMA window, @size and @offset are numbers 4291 of IOMMU pages. 4130 of IOMMU pages. 4292 4131 4293 @flags are not used at the moment. 4132 @flags are not used at the moment. 4294 4133 4295 The rest of functionality is identical to KVM 4134 The rest of functionality is identical to KVM_CREATE_SPAPR_TCE. 4296 4135 4297 4.99 KVM_REINJECT_CONTROL 4136 4.99 KVM_REINJECT_CONTROL 4298 ------------------------- 4137 ------------------------- 4299 4138 4300 :Capability: KVM_CAP_REINJECT_CONTROL 4139 :Capability: KVM_CAP_REINJECT_CONTROL 4301 :Architectures: x86 4140 :Architectures: x86 4302 :Type: vm ioctl 4141 :Type: vm ioctl 4303 :Parameters: struct kvm_reinject_control (in) 4142 :Parameters: struct kvm_reinject_control (in) 4304 :Returns: 0 on success, 4143 :Returns: 0 on success, 4305 -EFAULT if struct kvm_reinject_contr 4144 -EFAULT if struct kvm_reinject_control cannot be read, 4306 -ENXIO if KVM_CREATE_PIT or KVM_CREA 4145 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier. 4307 4146 4308 i8254 (PIT) has two modes, reinject and !rein 4147 i8254 (PIT) has two modes, reinject and !reinject. The default is reinject, 4309 where KVM queues elapsed i8254 ticks and moni 4148 where KVM queues elapsed i8254 ticks and monitors completion of interrupt from 4310 vector(s) that i8254 injects. Reinject mode 4149 vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its 4311 interrupt whenever there isn't a pending inte 4150 interrupt whenever there isn't a pending interrupt from i8254. 4312 !reinject mode injects an interrupt as soon a 4151 !reinject mode injects an interrupt as soon as a tick arrives. 4313 4152 4314 :: 4153 :: 4315 4154 4316 struct kvm_reinject_control { 4155 struct kvm_reinject_control { 4317 __u8 pit_reinject; 4156 __u8 pit_reinject; 4318 __u8 reserved[31]; 4157 __u8 reserved[31]; 4319 }; 4158 }; 4320 4159 4321 pit_reinject = 0 (!reinject mode) is recommen 4160 pit_reinject = 0 (!reinject mode) is recommended, unless running an old 4322 operating system that uses the PIT for timing 4161 operating system that uses the PIT for timing (e.g. Linux 2.4.x). 4323 4162 4324 4.100 KVM_PPC_CONFIGURE_V3_MMU 4163 4.100 KVM_PPC_CONFIGURE_V3_MMU 4325 ------------------------------ 4164 ------------------------------ 4326 4165 4327 :Capability: KVM_CAP_PPC_MMU_RADIX or KVM_CAP !! 4166 :Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3 4328 :Architectures: ppc 4167 :Architectures: ppc 4329 :Type: vm ioctl 4168 :Type: vm ioctl 4330 :Parameters: struct kvm_ppc_mmuv3_cfg (in) 4169 :Parameters: struct kvm_ppc_mmuv3_cfg (in) 4331 :Returns: 0 on success, 4170 :Returns: 0 on success, 4332 -EFAULT if struct kvm_ppc_mmuv3_cfg 4171 -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read, 4333 -EINVAL if the configuration is inva 4172 -EINVAL if the configuration is invalid 4334 4173 4335 This ioctl controls whether the guest will us 4174 This ioctl controls whether the guest will use radix or HPT (hashed 4336 page table) translation, and sets the pointer 4175 page table) translation, and sets the pointer to the process table for 4337 the guest. 4176 the guest. 4338 4177 4339 :: 4178 :: 4340 4179 4341 struct kvm_ppc_mmuv3_cfg { 4180 struct kvm_ppc_mmuv3_cfg { 4342 __u64 flags; 4181 __u64 flags; 4343 __u64 process_table; 4182 __u64 process_table; 4344 }; 4183 }; 4345 4184 4346 There are two bits that can be set in flags; 4185 There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and 4347 KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if 4186 KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest 4348 to use radix tree translation, and if clear, 4187 to use radix tree translation, and if clear, to use HPT translation. 4349 KVM_PPC_MMUV3_GTSE, if set and if KVM permits 4188 KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest 4350 to be able to use the global TLB and SLB inva 4189 to be able to use the global TLB and SLB invalidation instructions; 4351 if clear, the guest may not use these instruc 4190 if clear, the guest may not use these instructions. 4352 4191 4353 The process_table field specifies the address 4192 The process_table field specifies the address and size of the guest 4354 process table, which is in the guest's space. 4193 process table, which is in the guest's space. This field is formatted 4355 as the second doubleword of the partition tab 4194 as the second doubleword of the partition table entry, as defined in 4356 the Power ISA V3.00, Book III section 5.7.6.1 4195 the Power ISA V3.00, Book III section 5.7.6.1. 4357 4196 4358 4.101 KVM_PPC_GET_RMMU_INFO 4197 4.101 KVM_PPC_GET_RMMU_INFO 4359 --------------------------- 4198 --------------------------- 4360 4199 4361 :Capability: KVM_CAP_PPC_MMU_RADIX !! 4200 :Capability: KVM_CAP_PPC_RADIX_MMU 4362 :Architectures: ppc 4201 :Architectures: ppc 4363 :Type: vm ioctl 4202 :Type: vm ioctl 4364 :Parameters: struct kvm_ppc_rmmu_info (out) 4203 :Parameters: struct kvm_ppc_rmmu_info (out) 4365 :Returns: 0 on success, 4204 :Returns: 0 on success, 4366 -EFAULT if struct kvm_ppc_rmmu_info 4205 -EFAULT if struct kvm_ppc_rmmu_info cannot be written, 4367 -EINVAL if no useful information can 4206 -EINVAL if no useful information can be returned 4368 4207 4369 This ioctl returns a structure containing two 4208 This ioctl returns a structure containing two things: (a) a list 4370 containing supported radix tree geometries, a 4209 containing supported radix tree geometries, and (b) a list that maps 4371 page sizes to put in the "AP" (actual page si 4210 page sizes to put in the "AP" (actual page size) field for the tlbie 4372 (TLB invalidate entry) instruction. 4211 (TLB invalidate entry) instruction. 4373 4212 4374 :: 4213 :: 4375 4214 4376 struct kvm_ppc_rmmu_info { 4215 struct kvm_ppc_rmmu_info { 4377 struct kvm_ppc_radix_geom { 4216 struct kvm_ppc_radix_geom { 4378 __u8 page_shift; 4217 __u8 page_shift; 4379 __u8 level_bits[4]; 4218 __u8 level_bits[4]; 4380 __u8 pad[3]; 4219 __u8 pad[3]; 4381 } geometries[8]; 4220 } geometries[8]; 4382 __u32 ap_encodings[8]; 4221 __u32 ap_encodings[8]; 4383 }; 4222 }; 4384 4223 4385 The geometries[] field gives up to 8 supporte 4224 The geometries[] field gives up to 8 supported geometries for the 4386 radix page table, in terms of the log base 2 4225 radix page table, in terms of the log base 2 of the smallest page 4387 size, and the number of bits indexed at each 4226 size, and the number of bits indexed at each level of the tree, from 4388 the PTE level up to the PGD level in that ord 4227 the PTE level up to the PGD level in that order. Any unused entries 4389 will have 0 in the page_shift field. 4228 will have 0 in the page_shift field. 4390 4229 4391 The ap_encodings gives the supported page siz 4230 The ap_encodings gives the supported page sizes and their AP field 4392 encodings, encoded with the AP value in the t 4231 encodings, encoded with the AP value in the top 3 bits and the log 4393 base 2 of the page size in the bottom 6 bits. 4232 base 2 of the page size in the bottom 6 bits. 4394 4233 4395 4.102 KVM_PPC_RESIZE_HPT_PREPARE 4234 4.102 KVM_PPC_RESIZE_HPT_PREPARE 4396 -------------------------------- 4235 -------------------------------- 4397 4236 4398 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4237 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4399 :Architectures: powerpc 4238 :Architectures: powerpc 4400 :Type: vm ioctl 4239 :Type: vm ioctl 4401 :Parameters: struct kvm_ppc_resize_hpt (in) 4240 :Parameters: struct kvm_ppc_resize_hpt (in) 4402 :Returns: 0 on successful completion, 4241 :Returns: 0 on successful completion, 4403 >0 if a new HPT is being prepared, t 4242 >0 if a new HPT is being prepared, the value is an estimated 4404 number of milliseconds until prepara 4243 number of milliseconds until preparation is complete, 4405 -EFAULT if struct kvm_reinject_contr 4244 -EFAULT if struct kvm_reinject_control cannot be read, 4406 -EINVAL if the supplied shift or fla 4245 -EINVAL if the supplied shift or flags are invalid, 4407 -ENOMEM if unable to allocate the ne 4246 -ENOMEM if unable to allocate the new HPT, 4408 4247 4409 Used to implement the PAPR extension for runt 4248 Used to implement the PAPR extension for runtime resizing of a guest's 4410 Hashed Page Table (HPT). Specifically this s 4249 Hashed Page Table (HPT). Specifically this starts, stops or monitors 4411 the preparation of a new potential HPT for th 4250 the preparation of a new potential HPT for the guest, essentially 4412 implementing the H_RESIZE_HPT_PREPARE hyperca 4251 implementing the H_RESIZE_HPT_PREPARE hypercall. 4413 4252 4414 :: 4253 :: 4415 4254 4416 struct kvm_ppc_resize_hpt { 4255 struct kvm_ppc_resize_hpt { 4417 __u64 flags; 4256 __u64 flags; 4418 __u32 shift; 4257 __u32 shift; 4419 __u32 pad; 4258 __u32 pad; 4420 }; 4259 }; 4421 4260 4422 If called with shift > 0 when there is no pen 4261 If called with shift > 0 when there is no pending HPT for the guest, 4423 this begins preparation of a new pending HPT 4262 this begins preparation of a new pending HPT of size 2^(shift) bytes. 4424 It then returns a positive integer with the e 4263 It then returns a positive integer with the estimated number of 4425 milliseconds until preparation is complete. 4264 milliseconds until preparation is complete. 4426 4265 4427 If called when there is a pending HPT whose s 4266 If called when there is a pending HPT whose size does not match that 4428 requested in the parameters, discards the exi 4267 requested in the parameters, discards the existing pending HPT and 4429 creates a new one as above. 4268 creates a new one as above. 4430 4269 4431 If called when there is a pending HPT of the 4270 If called when there is a pending HPT of the size requested, will: 4432 4271 4433 * If preparation of the pending HPT is alre 4272 * If preparation of the pending HPT is already complete, return 0 4434 * If preparation of the pending HPT has fai 4273 * If preparation of the pending HPT has failed, return an error 4435 code, then discard the pending HPT. 4274 code, then discard the pending HPT. 4436 * If preparation of the pending HPT is stil 4275 * If preparation of the pending HPT is still in progress, return an 4437 estimated number of milliseconds until pr 4276 estimated number of milliseconds until preparation is complete. 4438 4277 4439 If called with shift == 0, discards any curre 4278 If called with shift == 0, discards any currently pending HPT and 4440 returns 0 (i.e. cancels any in-progress prepa 4279 returns 0 (i.e. cancels any in-progress preparation). 4441 4280 4442 flags is reserved for future expansion, curre 4281 flags is reserved for future expansion, currently setting any bits in 4443 flags will result in an -EINVAL. 4282 flags will result in an -EINVAL. 4444 4283 4445 Normally this will be called repeatedly with 4284 Normally this will be called repeatedly with the same parameters until 4446 it returns <= 0. The first call will initiat 4285 it returns <= 0. The first call will initiate preparation, subsequent 4447 ones will monitor preparation until it comple 4286 ones will monitor preparation until it completes or fails. 4448 4287 4449 4.103 KVM_PPC_RESIZE_HPT_COMMIT 4288 4.103 KVM_PPC_RESIZE_HPT_COMMIT 4450 ------------------------------- 4289 ------------------------------- 4451 4290 4452 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4291 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4453 :Architectures: powerpc 4292 :Architectures: powerpc 4454 :Type: vm ioctl 4293 :Type: vm ioctl 4455 :Parameters: struct kvm_ppc_resize_hpt (in) 4294 :Parameters: struct kvm_ppc_resize_hpt (in) 4456 :Returns: 0 on successful completion, 4295 :Returns: 0 on successful completion, 4457 -EFAULT if struct kvm_reinject_contr 4296 -EFAULT if struct kvm_reinject_control cannot be read, 4458 -EINVAL if the supplied shift or fla 4297 -EINVAL if the supplied shift or flags are invalid, 4459 -ENXIO is there is no pending HPT, o 4298 -ENXIO is there is no pending HPT, or the pending HPT doesn't 4460 have the requested size, 4299 have the requested size, 4461 -EBUSY if the pending HPT is not ful 4300 -EBUSY if the pending HPT is not fully prepared, 4462 -ENOSPC if there was a hash collisio 4301 -ENOSPC if there was a hash collision when moving existing 4463 HPT entries to the new HPT, 4302 HPT entries to the new HPT, 4464 -EIO on other error conditions 4303 -EIO on other error conditions 4465 4304 4466 Used to implement the PAPR extension for runt 4305 Used to implement the PAPR extension for runtime resizing of a guest's 4467 Hashed Page Table (HPT). Specifically this r 4306 Hashed Page Table (HPT). Specifically this requests that the guest be 4468 transferred to working with the new HPT, esse 4307 transferred to working with the new HPT, essentially implementing the 4469 H_RESIZE_HPT_COMMIT hypercall. 4308 H_RESIZE_HPT_COMMIT hypercall. 4470 4309 4471 :: 4310 :: 4472 4311 4473 struct kvm_ppc_resize_hpt { 4312 struct kvm_ppc_resize_hpt { 4474 __u64 flags; 4313 __u64 flags; 4475 __u32 shift; 4314 __u32 shift; 4476 __u32 pad; 4315 __u32 pad; 4477 }; 4316 }; 4478 4317 4479 This should only be called after KVM_PPC_RESI 4318 This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has 4480 returned 0 with the same parameters. In othe 4319 returned 0 with the same parameters. In other cases 4481 KVM_PPC_RESIZE_HPT_COMMIT will return an erro 4320 KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or 4482 -EBUSY, though others may be possible if the 4321 -EBUSY, though others may be possible if the preparation was started, 4483 but failed). 4322 but failed). 4484 4323 4485 This will have undefined effects on the guest 4324 This will have undefined effects on the guest if it has not already 4486 placed itself in a quiescent state where no v 4325 placed itself in a quiescent state where no vcpu will make MMU enabled 4487 memory accesses. 4326 memory accesses. 4488 4327 4489 On successful completion, the pending HPT wil !! 4328 On succsful completion, the pending HPT will become the guest's active 4490 HPT and the previous HPT will be discarded. 4329 HPT and the previous HPT will be discarded. 4491 4330 4492 On failure, the guest will still be operating 4331 On failure, the guest will still be operating on its previous HPT. 4493 4332 4494 4.104 KVM_X86_GET_MCE_CAP_SUPPORTED 4333 4.104 KVM_X86_GET_MCE_CAP_SUPPORTED 4495 ----------------------------------- 4334 ----------------------------------- 4496 4335 4497 :Capability: KVM_CAP_MCE 4336 :Capability: KVM_CAP_MCE 4498 :Architectures: x86 4337 :Architectures: x86 4499 :Type: system ioctl 4338 :Type: system ioctl 4500 :Parameters: u64 mce_cap (out) 4339 :Parameters: u64 mce_cap (out) 4501 :Returns: 0 on success, -1 on error 4340 :Returns: 0 on success, -1 on error 4502 4341 4503 Returns supported MCE capabilities. The u64 m 4342 Returns supported MCE capabilities. The u64 mce_cap parameter 4504 has the same format as the MSR_IA32_MCG_CAP r 4343 has the same format as the MSR_IA32_MCG_CAP register. Supported 4505 capabilities will have the corresponding bits 4344 capabilities will have the corresponding bits set. 4506 4345 4507 4.105 KVM_X86_SETUP_MCE 4346 4.105 KVM_X86_SETUP_MCE 4508 ----------------------- 4347 ----------------------- 4509 4348 4510 :Capability: KVM_CAP_MCE 4349 :Capability: KVM_CAP_MCE 4511 :Architectures: x86 4350 :Architectures: x86 4512 :Type: vcpu ioctl 4351 :Type: vcpu ioctl 4513 :Parameters: u64 mcg_cap (in) 4352 :Parameters: u64 mcg_cap (in) 4514 :Returns: 0 on success, 4353 :Returns: 0 on success, 4515 -EFAULT if u64 mcg_cap cannot be rea 4354 -EFAULT if u64 mcg_cap cannot be read, 4516 -EINVAL if the requested number of b 4355 -EINVAL if the requested number of banks is invalid, 4517 -EINVAL if requested MCE capability 4356 -EINVAL if requested MCE capability is not supported. 4518 4357 4519 Initializes MCE support for use. The u64 mcg_ 4358 Initializes MCE support for use. The u64 mcg_cap parameter 4520 has the same format as the MSR_IA32_MCG_CAP r 4359 has the same format as the MSR_IA32_MCG_CAP register and 4521 specifies which capabilities should be enable 4360 specifies which capabilities should be enabled. The maximum 4522 supported number of error-reporting banks can 4361 supported number of error-reporting banks can be retrieved when 4523 checking for KVM_CAP_MCE. The supported capab 4362 checking for KVM_CAP_MCE. The supported capabilities can be 4524 retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. 4363 retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. 4525 4364 4526 4.106 KVM_X86_SET_MCE 4365 4.106 KVM_X86_SET_MCE 4527 --------------------- 4366 --------------------- 4528 4367 4529 :Capability: KVM_CAP_MCE 4368 :Capability: KVM_CAP_MCE 4530 :Architectures: x86 4369 :Architectures: x86 4531 :Type: vcpu ioctl 4370 :Type: vcpu ioctl 4532 :Parameters: struct kvm_x86_mce (in) 4371 :Parameters: struct kvm_x86_mce (in) 4533 :Returns: 0 on success, 4372 :Returns: 0 on success, 4534 -EFAULT if struct kvm_x86_mce cannot 4373 -EFAULT if struct kvm_x86_mce cannot be read, 4535 -EINVAL if the bank number is invali 4374 -EINVAL if the bank number is invalid, 4536 -EINVAL if VAL bit is not set in sta 4375 -EINVAL if VAL bit is not set in status field. 4537 4376 4538 Inject a machine check error (MCE) into the g 4377 Inject a machine check error (MCE) into the guest. The input 4539 parameter is:: 4378 parameter is:: 4540 4379 4541 struct kvm_x86_mce { 4380 struct kvm_x86_mce { 4542 __u64 status; 4381 __u64 status; 4543 __u64 addr; 4382 __u64 addr; 4544 __u64 misc; 4383 __u64 misc; 4545 __u64 mcg_status; 4384 __u64 mcg_status; 4546 __u8 bank; 4385 __u8 bank; 4547 __u8 pad1[7]; 4386 __u8 pad1[7]; 4548 __u64 pad2[3]; 4387 __u64 pad2[3]; 4549 }; 4388 }; 4550 4389 4551 If the MCE being reported is an uncorrected e 4390 If the MCE being reported is an uncorrected error, KVM will 4552 inject it as an MCE exception into the guest. 4391 inject it as an MCE exception into the guest. If the guest 4553 MCG_STATUS register reports that an MCE is in 4392 MCG_STATUS register reports that an MCE is in progress, KVM 4554 causes an KVM_EXIT_SHUTDOWN vmexit. 4393 causes an KVM_EXIT_SHUTDOWN vmexit. 4555 4394 4556 Otherwise, if the MCE is a corrected error, K 4395 Otherwise, if the MCE is a corrected error, KVM will just 4557 store it in the corresponding bank (provided 4396 store it in the corresponding bank (provided this bank is 4558 not holding a previously reported uncorrected 4397 not holding a previously reported uncorrected error). 4559 4398 4560 4.107 KVM_S390_GET_CMMA_BITS 4399 4.107 KVM_S390_GET_CMMA_BITS 4561 ---------------------------- 4400 ---------------------------- 4562 4401 4563 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4402 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4564 :Architectures: s390 4403 :Architectures: s390 4565 :Type: vm ioctl 4404 :Type: vm ioctl 4566 :Parameters: struct kvm_s390_cmma_log (in, ou 4405 :Parameters: struct kvm_s390_cmma_log (in, out) 4567 :Returns: 0 on success, a negative value on e 4406 :Returns: 0 on success, a negative value on error 4568 4407 4569 Errors: << 4570 << 4571 ====== ================================ << 4572 ENOMEM not enough memory can be allocat << 4573 ENXIO if CMMA is not enabled << 4574 EINVAL if KVM_S390_CMMA_PEEK is not set << 4575 EINVAL if KVM_S390_CMMA_PEEK is not set << 4576 disabled (and thus migration mod << 4577 EFAULT if the userspace address is inva << 4578 present for the addresses (e.g. << 4579 ====== ================================ << 4580 << 4581 This ioctl is used to get the values of the C 4408 This ioctl is used to get the values of the CMMA bits on the s390 4582 architecture. It is meant to be used in two s 4409 architecture. It is meant to be used in two scenarios: 4583 4410 4584 - During live migration to save the CMMA valu 4411 - During live migration to save the CMMA values. Live migration needs 4585 to be enabled via the KVM_REQ_START_MIGRATI 4412 to be enabled via the KVM_REQ_START_MIGRATION VM property. 4586 - To non-destructively peek at the CMMA value 4413 - To non-destructively peek at the CMMA values, with the flag 4587 KVM_S390_CMMA_PEEK set. 4414 KVM_S390_CMMA_PEEK set. 4588 4415 4589 The ioctl takes parameters via the kvm_s390_c 4416 The ioctl takes parameters via the kvm_s390_cmma_log struct. The desired 4590 values are written to a buffer whose location 4417 values are written to a buffer whose location is indicated via the "values" 4591 member in the kvm_s390_cmma_log struct. The 4418 member in the kvm_s390_cmma_log struct. The values in the input struct are 4592 also updated as needed. 4419 also updated as needed. 4593 4420 4594 Each CMMA value takes up one byte. 4421 Each CMMA value takes up one byte. 4595 4422 4596 :: 4423 :: 4597 4424 4598 struct kvm_s390_cmma_log { 4425 struct kvm_s390_cmma_log { 4599 __u64 start_gfn; 4426 __u64 start_gfn; 4600 __u32 count; 4427 __u32 count; 4601 __u32 flags; 4428 __u32 flags; 4602 union { 4429 union { 4603 __u64 remaining; 4430 __u64 remaining; 4604 __u64 mask; 4431 __u64 mask; 4605 }; 4432 }; 4606 __u64 values; 4433 __u64 values; 4607 }; 4434 }; 4608 4435 4609 start_gfn is the number of the first guest fr 4436 start_gfn is the number of the first guest frame whose CMMA values are 4610 to be retrieved, 4437 to be retrieved, 4611 4438 4612 count is the length of the buffer in bytes, 4439 count is the length of the buffer in bytes, 4613 4440 4614 values points to the buffer where the result 4441 values points to the buffer where the result will be written to. 4615 4442 4616 If count is greater than KVM_S390_SKEYS_MAX, 4443 If count is greater than KVM_S390_SKEYS_MAX, then it is considered to be 4617 KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re- 4444 KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re-used for consistency with 4618 other ioctls. 4445 other ioctls. 4619 4446 4620 The result is written in the buffer pointed t 4447 The result is written in the buffer pointed to by the field values, and 4621 the values of the input parameter are updated 4448 the values of the input parameter are updated as follows. 4622 4449 4623 Depending on the flags, different actions are 4450 Depending on the flags, different actions are performed. The only 4624 supported flag so far is KVM_S390_CMMA_PEEK. 4451 supported flag so far is KVM_S390_CMMA_PEEK. 4625 4452 4626 The default behaviour if KVM_S390_CMMA_PEEK i 4453 The default behaviour if KVM_S390_CMMA_PEEK is not set is: 4627 start_gfn will indicate the first page frame 4454 start_gfn will indicate the first page frame whose CMMA bits were dirty. 4628 It is not necessarily the same as the one pas 4455 It is not necessarily the same as the one passed as input, as clean pages 4629 are skipped. 4456 are skipped. 4630 4457 4631 count will indicate the number of bytes actua 4458 count will indicate the number of bytes actually written in the buffer. 4632 It can (and very often will) be smaller than 4459 It can (and very often will) be smaller than the input value, since the 4633 buffer is only filled until 16 bytes of clean 4460 buffer is only filled until 16 bytes of clean values are found (which 4634 are then not copied in the buffer). Since a C 4461 are then not copied in the buffer). Since a CMMA migration block needs 4635 the base address and the length, for a total 4462 the base address and the length, for a total of 16 bytes, we will send 4636 back some clean data if there is some dirty d 4463 back some clean data if there is some dirty data afterwards, as long as 4637 the size of the clean data does not exceed th 4464 the size of the clean data does not exceed the size of the header. This 4638 allows to minimize the amount of data to be s 4465 allows to minimize the amount of data to be saved or transferred over 4639 the network at the expense of more roundtrips 4466 the network at the expense of more roundtrips to userspace. The next 4640 invocation of the ioctl will skip over all th 4467 invocation of the ioctl will skip over all the clean values, saving 4641 potentially more than just the 16 bytes we fo 4468 potentially more than just the 16 bytes we found. 4642 4469 4643 If KVM_S390_CMMA_PEEK is set: 4470 If KVM_S390_CMMA_PEEK is set: 4644 the existing storage attributes are read even 4471 the existing storage attributes are read even when not in migration 4645 mode, and no other action is performed; 4472 mode, and no other action is performed; 4646 4473 4647 the output start_gfn will be equal to the inp 4474 the output start_gfn will be equal to the input start_gfn, 4648 4475 4649 the output count will be equal to the input c 4476 the output count will be equal to the input count, except if the end of 4650 memory has been reached. 4477 memory has been reached. 4651 4478 4652 In both cases: 4479 In both cases: 4653 the field "remaining" will indicate the total 4480 the field "remaining" will indicate the total number of dirty CMMA values 4654 still remaining, or 0 if KVM_S390_CMMA_PEEK i 4481 still remaining, or 0 if KVM_S390_CMMA_PEEK is set and migration mode is 4655 not enabled. 4482 not enabled. 4656 4483 4657 mask is unused. 4484 mask is unused. 4658 4485 4659 values points to the userspace buffer where t 4486 values points to the userspace buffer where the result will be stored. 4660 4487 >> 4488 This ioctl can fail with -ENOMEM if not enough memory can be allocated to >> 4489 complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if >> 4490 KVM_S390_CMMA_PEEK is not set but migration mode was not enabled, with >> 4491 -EFAULT if the userspace address is invalid or if no page table is >> 4492 present for the addresses (e.g. when using hugepages). >> 4493 4661 4.108 KVM_S390_SET_CMMA_BITS 4494 4.108 KVM_S390_SET_CMMA_BITS 4662 ---------------------------- 4495 ---------------------------- 4663 4496 4664 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4497 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4665 :Architectures: s390 4498 :Architectures: s390 4666 :Type: vm ioctl 4499 :Type: vm ioctl 4667 :Parameters: struct kvm_s390_cmma_log (in) 4500 :Parameters: struct kvm_s390_cmma_log (in) 4668 :Returns: 0 on success, a negative value on e 4501 :Returns: 0 on success, a negative value on error 4669 4502 4670 This ioctl is used to set the values of the C 4503 This ioctl is used to set the values of the CMMA bits on the s390 4671 architecture. It is meant to be used during l 4504 architecture. It is meant to be used during live migration to restore 4672 the CMMA values, but there are no restriction 4505 the CMMA values, but there are no restrictions on its use. 4673 The ioctl takes parameters via the kvm_s390_c 4506 The ioctl takes parameters via the kvm_s390_cmma_values struct. 4674 Each CMMA value takes up one byte. 4507 Each CMMA value takes up one byte. 4675 4508 4676 :: 4509 :: 4677 4510 4678 struct kvm_s390_cmma_log { 4511 struct kvm_s390_cmma_log { 4679 __u64 start_gfn; 4512 __u64 start_gfn; 4680 __u32 count; 4513 __u32 count; 4681 __u32 flags; 4514 __u32 flags; 4682 union { 4515 union { 4683 __u64 remaining; 4516 __u64 remaining; 4684 __u64 mask; 4517 __u64 mask; 4685 }; 4518 }; 4686 __u64 values; 4519 __u64 values; 4687 }; 4520 }; 4688 4521 4689 start_gfn indicates the starting guest frame 4522 start_gfn indicates the starting guest frame number, 4690 4523 4691 count indicates how many values are to be con 4524 count indicates how many values are to be considered in the buffer, 4692 4525 4693 flags is not used and must be 0. 4526 flags is not used and must be 0. 4694 4527 4695 mask indicates which PGSTE bits are to be con 4528 mask indicates which PGSTE bits are to be considered. 4696 4529 4697 remaining is not used. 4530 remaining is not used. 4698 4531 4699 values points to the buffer in userspace wher 4532 values points to the buffer in userspace where to store the values. 4700 4533 4701 This ioctl can fail with -ENOMEM if not enoug 4534 This ioctl can fail with -ENOMEM if not enough memory can be allocated to 4702 complete the task, with -ENXIO if CMMA is not 4535 complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if 4703 the count field is too large (e.g. more than 4536 the count field is too large (e.g. more than KVM_S390_CMMA_SIZE_MAX) or 4704 if the flags field was not 0, with -EFAULT if 4537 if the flags field was not 0, with -EFAULT if the userspace address is 4705 invalid, if invalid pages are written to (e.g 4538 invalid, if invalid pages are written to (e.g. after the end of memory) 4706 or if no page table is present for the addres 4539 or if no page table is present for the addresses (e.g. when using 4707 hugepages). 4540 hugepages). 4708 4541 4709 4.109 KVM_PPC_GET_CPU_CHAR 4542 4.109 KVM_PPC_GET_CPU_CHAR 4710 -------------------------- 4543 -------------------------- 4711 4544 4712 :Capability: KVM_CAP_PPC_GET_CPU_CHAR 4545 :Capability: KVM_CAP_PPC_GET_CPU_CHAR 4713 :Architectures: powerpc 4546 :Architectures: powerpc 4714 :Type: vm ioctl 4547 :Type: vm ioctl 4715 :Parameters: struct kvm_ppc_cpu_char (out) 4548 :Parameters: struct kvm_ppc_cpu_char (out) 4716 :Returns: 0 on successful completion, 4549 :Returns: 0 on successful completion, 4717 -EFAULT if struct kvm_ppc_cpu_char c 4550 -EFAULT if struct kvm_ppc_cpu_char cannot be written 4718 4551 4719 This ioctl gives userspace information about 4552 This ioctl gives userspace information about certain characteristics 4720 of the CPU relating to speculative execution 4553 of the CPU relating to speculative execution of instructions and 4721 possible information leakage resulting from s 4554 possible information leakage resulting from speculative execution (see 4722 CVE-2017-5715, CVE-2017-5753 and CVE-2017-575 4555 CVE-2017-5715, CVE-2017-5753 and CVE-2017-5754). The information is 4723 returned in struct kvm_ppc_cpu_char, which lo 4556 returned in struct kvm_ppc_cpu_char, which looks like this:: 4724 4557 4725 struct kvm_ppc_cpu_char { 4558 struct kvm_ppc_cpu_char { 4726 __u64 character; /* ch 4559 __u64 character; /* characteristics of the CPU */ 4727 __u64 behaviour; /* re 4560 __u64 behaviour; /* recommended software behaviour */ 4728 __u64 character_mask; /* va 4561 __u64 character_mask; /* valid bits in character */ 4729 __u64 behaviour_mask; /* va 4562 __u64 behaviour_mask; /* valid bits in behaviour */ 4730 }; 4563 }; 4731 4564 4732 For extensibility, the character_mask and beh 4565 For extensibility, the character_mask and behaviour_mask fields 4733 indicate which bits of character and behaviou 4566 indicate which bits of character and behaviour have been filled in by 4734 the kernel. If the set of defined bits is ex 4567 the kernel. If the set of defined bits is extended in future then 4735 userspace will be able to tell whether it is 4568 userspace will be able to tell whether it is running on a kernel that 4736 knows about the new bits. 4569 knows about the new bits. 4737 4570 4738 The character field describes attributes of t 4571 The character field describes attributes of the CPU which can help 4739 with preventing inadvertent information discl 4572 with preventing inadvertent information disclosure - specifically, 4740 whether there is an instruction to flash-inva 4573 whether there is an instruction to flash-invalidate the L1 data cache 4741 (ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether 4574 (ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether the L1 data cache is set 4742 to a mode where entries can only be used by t 4575 to a mode where entries can only be used by the thread that created 4743 them, whether the bcctr[l] instruction preven 4576 them, whether the bcctr[l] instruction prevents speculation, and 4744 whether a speculation barrier instruction (or 4577 whether a speculation barrier instruction (ori 31,31,0) is provided. 4745 4578 4746 The behaviour field describes actions that so 4579 The behaviour field describes actions that software should take to 4747 prevent inadvertent information disclosure, a 4580 prevent inadvertent information disclosure, and thus describes which 4748 vulnerabilities the hardware is subject to; s 4581 vulnerabilities the hardware is subject to; specifically whether the 4749 L1 data cache should be flushed when returnin 4582 L1 data cache should be flushed when returning to user mode from the 4750 kernel, and whether a speculation barrier sho 4583 kernel, and whether a speculation barrier should be placed between an 4751 array bounds check and the array access. 4584 array bounds check and the array access. 4752 4585 4753 These fields use the same bit definitions as 4586 These fields use the same bit definitions as the new 4754 H_GET_CPU_CHARACTERISTICS hypercall. 4587 H_GET_CPU_CHARACTERISTICS hypercall. 4755 4588 4756 4.110 KVM_MEMORY_ENCRYPT_OP 4589 4.110 KVM_MEMORY_ENCRYPT_OP 4757 --------------------------- 4590 --------------------------- 4758 4591 4759 :Capability: basic 4592 :Capability: basic 4760 :Architectures: x86 4593 :Architectures: x86 4761 :Type: vm 4594 :Type: vm 4762 :Parameters: an opaque platform specific stru 4595 :Parameters: an opaque platform specific structure (in/out) 4763 :Returns: 0 on success; -1 on error 4596 :Returns: 0 on success; -1 on error 4764 4597 4765 If the platform supports creating encrypted V 4598 If the platform supports creating encrypted VMs then this ioctl can be used 4766 for issuing platform-specific memory encrypti 4599 for issuing platform-specific memory encryption commands to manage those 4767 encrypted VMs. 4600 encrypted VMs. 4768 4601 4769 Currently, this ioctl is used for issuing Sec 4602 Currently, this ioctl is used for issuing Secure Encrypted Virtualization 4770 (SEV) commands on AMD Processors. The SEV com 4603 (SEV) commands on AMD Processors. The SEV commands are defined in 4771 Documentation/virt/kvm/x86/amd-memory-encrypt !! 4604 Documentation/virt/kvm/amd-memory-encryption.rst. 4772 4605 4773 4.111 KVM_MEMORY_ENCRYPT_REG_REGION 4606 4.111 KVM_MEMORY_ENCRYPT_REG_REGION 4774 ----------------------------------- 4607 ----------------------------------- 4775 4608 4776 :Capability: basic 4609 :Capability: basic 4777 :Architectures: x86 4610 :Architectures: x86 4778 :Type: system 4611 :Type: system 4779 :Parameters: struct kvm_enc_region (in) 4612 :Parameters: struct kvm_enc_region (in) 4780 :Returns: 0 on success; -1 on error 4613 :Returns: 0 on success; -1 on error 4781 4614 4782 This ioctl can be used to register a guest me 4615 This ioctl can be used to register a guest memory region which may 4783 contain encrypted data (e.g. guest RAM, SMRAM 4616 contain encrypted data (e.g. guest RAM, SMRAM etc). 4784 4617 4785 It is used in the SEV-enabled guest. When enc 4618 It is used in the SEV-enabled guest. When encryption is enabled, a guest 4786 memory region may contain encrypted data. The 4619 memory region may contain encrypted data. The SEV memory encryption 4787 engine uses a tweak such that two identical p 4620 engine uses a tweak such that two identical plaintext pages, each at 4788 different locations will have differing ciphe 4621 different locations will have differing ciphertexts. So swapping or 4789 moving ciphertext of those pages will not res 4622 moving ciphertext of those pages will not result in plaintext being 4790 swapped. So relocating (or migrating) physica 4623 swapped. So relocating (or migrating) physical backing pages for the SEV 4791 guest will require some additional steps. 4624 guest will require some additional steps. 4792 4625 4793 Note: The current SEV key management spec doe 4626 Note: The current SEV key management spec does not provide commands to 4794 swap or migrate (move) ciphertext pages. Henc 4627 swap or migrate (move) ciphertext pages. Hence, for now we pin the guest 4795 memory region registered with the ioctl. 4628 memory region registered with the ioctl. 4796 4629 4797 4.112 KVM_MEMORY_ENCRYPT_UNREG_REGION 4630 4.112 KVM_MEMORY_ENCRYPT_UNREG_REGION 4798 ------------------------------------- 4631 ------------------------------------- 4799 4632 4800 :Capability: basic 4633 :Capability: basic 4801 :Architectures: x86 4634 :Architectures: x86 4802 :Type: system 4635 :Type: system 4803 :Parameters: struct kvm_enc_region (in) 4636 :Parameters: struct kvm_enc_region (in) 4804 :Returns: 0 on success; -1 on error 4637 :Returns: 0 on success; -1 on error 4805 4638 4806 This ioctl can be used to unregister the gues 4639 This ioctl can be used to unregister the guest memory region registered 4807 with KVM_MEMORY_ENCRYPT_REG_REGION ioctl abov 4640 with KVM_MEMORY_ENCRYPT_REG_REGION ioctl above. 4808 4641 4809 4.113 KVM_HYPERV_EVENTFD 4642 4.113 KVM_HYPERV_EVENTFD 4810 ------------------------ 4643 ------------------------ 4811 4644 4812 :Capability: KVM_CAP_HYPERV_EVENTFD 4645 :Capability: KVM_CAP_HYPERV_EVENTFD 4813 :Architectures: x86 4646 :Architectures: x86 4814 :Type: vm ioctl 4647 :Type: vm ioctl 4815 :Parameters: struct kvm_hyperv_eventfd (in) 4648 :Parameters: struct kvm_hyperv_eventfd (in) 4816 4649 4817 This ioctl (un)registers an eventfd to receiv 4650 This ioctl (un)registers an eventfd to receive notifications from the guest on 4818 the specified Hyper-V connection id through t 4651 the specified Hyper-V connection id through the SIGNAL_EVENT hypercall, without 4819 causing a user exit. SIGNAL_EVENT hypercall 4652 causing a user exit. SIGNAL_EVENT hypercall with non-zero event flag number 4820 (bits 24-31) still triggers a KVM_EXIT_HYPERV 4653 (bits 24-31) still triggers a KVM_EXIT_HYPERV_HCALL user exit. 4821 4654 4822 :: 4655 :: 4823 4656 4824 struct kvm_hyperv_eventfd { 4657 struct kvm_hyperv_eventfd { 4825 __u32 conn_id; 4658 __u32 conn_id; 4826 __s32 fd; 4659 __s32 fd; 4827 __u32 flags; 4660 __u32 flags; 4828 __u32 padding[3]; 4661 __u32 padding[3]; 4829 }; 4662 }; 4830 4663 4831 The conn_id field should fit within 24 bits:: 4664 The conn_id field should fit within 24 bits:: 4832 4665 4833 #define KVM_HYPERV_CONN_ID_MASK 4666 #define KVM_HYPERV_CONN_ID_MASK 0x00ffffff 4834 4667 4835 The acceptable values for the flags field are 4668 The acceptable values for the flags field are:: 4836 4669 4837 #define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 4670 #define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 0) 4838 4671 4839 :Returns: 0 on success, 4672 :Returns: 0 on success, 4840 -EINVAL if conn_id or flags is outs 4673 -EINVAL if conn_id or flags is outside the allowed range, 4841 -ENOENT on deassign if the conn_id 4674 -ENOENT on deassign if the conn_id isn't registered, 4842 -EEXIST on assign if the conn_id is 4675 -EEXIST on assign if the conn_id is already registered 4843 4676 4844 4.114 KVM_GET_NESTED_STATE 4677 4.114 KVM_GET_NESTED_STATE 4845 -------------------------- 4678 -------------------------- 4846 4679 4847 :Capability: KVM_CAP_NESTED_STATE 4680 :Capability: KVM_CAP_NESTED_STATE 4848 :Architectures: x86 4681 :Architectures: x86 4849 :Type: vcpu ioctl 4682 :Type: vcpu ioctl 4850 :Parameters: struct kvm_nested_state (in/out) 4683 :Parameters: struct kvm_nested_state (in/out) 4851 :Returns: 0 on success, -1 on error 4684 :Returns: 0 on success, -1 on error 4852 4685 4853 Errors: 4686 Errors: 4854 4687 4855 ===== ================================ 4688 ===== ============================================================= 4856 E2BIG the total state size exceeds the 4689 E2BIG the total state size exceeds the value of 'size' specified by 4857 the user; the size required will 4690 the user; the size required will be written into size. 4858 ===== ================================ 4691 ===== ============================================================= 4859 4692 4860 :: 4693 :: 4861 4694 4862 struct kvm_nested_state { 4695 struct kvm_nested_state { 4863 __u16 flags; 4696 __u16 flags; 4864 __u16 format; 4697 __u16 format; 4865 __u32 size; 4698 __u32 size; 4866 4699 4867 union { 4700 union { 4868 struct kvm_vmx_nested_state_h 4701 struct kvm_vmx_nested_state_hdr vmx; 4869 struct kvm_svm_nested_state_h 4702 struct kvm_svm_nested_state_hdr svm; 4870 4703 4871 /* Pad the header to 128 byte 4704 /* Pad the header to 128 bytes. */ 4872 __u8 pad[120]; 4705 __u8 pad[120]; 4873 } hdr; 4706 } hdr; 4874 4707 4875 union { 4708 union { 4876 struct kvm_vmx_nested_state_d 4709 struct kvm_vmx_nested_state_data vmx[0]; 4877 struct kvm_svm_nested_state_d 4710 struct kvm_svm_nested_state_data svm[0]; 4878 } data; 4711 } data; 4879 }; 4712 }; 4880 4713 4881 #define KVM_STATE_NESTED_GUEST_MODE 4714 #define KVM_STATE_NESTED_GUEST_MODE 0x00000001 4882 #define KVM_STATE_NESTED_RUN_PENDING 4715 #define KVM_STATE_NESTED_RUN_PENDING 0x00000002 4883 #define KVM_STATE_NESTED_EVMCS 4716 #define KVM_STATE_NESTED_EVMCS 0x00000004 4884 4717 4885 #define KVM_STATE_NESTED_FORMAT_VMX 4718 #define KVM_STATE_NESTED_FORMAT_VMX 0 4886 #define KVM_STATE_NESTED_FORMAT_SVM 4719 #define KVM_STATE_NESTED_FORMAT_SVM 1 4887 4720 4888 #define KVM_STATE_NESTED_VMX_VMCS_SIZE 4721 #define KVM_STATE_NESTED_VMX_VMCS_SIZE 0x1000 4889 4722 4890 #define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 4723 #define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 0x00000001 4891 #define KVM_STATE_NESTED_VMX_SMM_VMXON 4724 #define KVM_STATE_NESTED_VMX_SMM_VMXON 0x00000002 4892 4725 4893 #define KVM_STATE_VMX_PREEMPTION_TIMER_DEAD 4726 #define KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE 0x00000001 4894 4727 4895 struct kvm_vmx_nested_state_hdr { 4728 struct kvm_vmx_nested_state_hdr { 4896 __u64 vmxon_pa; 4729 __u64 vmxon_pa; 4897 __u64 vmcs12_pa; 4730 __u64 vmcs12_pa; 4898 4731 4899 struct { 4732 struct { 4900 __u16 flags; 4733 __u16 flags; 4901 } smm; 4734 } smm; 4902 4735 4903 __u32 flags; 4736 __u32 flags; 4904 __u64 preemption_timer_deadline; 4737 __u64 preemption_timer_deadline; 4905 }; 4738 }; 4906 4739 4907 struct kvm_vmx_nested_state_data { 4740 struct kvm_vmx_nested_state_data { 4908 __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS 4741 __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE]; 4909 __u8 shadow_vmcs12[KVM_STATE_NESTED_V 4742 __u8 shadow_vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE]; 4910 }; 4743 }; 4911 4744 4912 This ioctl copies the vcpu's nested virtualiz 4745 This ioctl copies the vcpu's nested virtualization state from the kernel to 4913 userspace. 4746 userspace. 4914 4747 4915 The maximum size of the state can be retrieve 4748 The maximum size of the state can be retrieved by passing KVM_CAP_NESTED_STATE 4916 to the KVM_CHECK_EXTENSION ioctl(). 4749 to the KVM_CHECK_EXTENSION ioctl(). 4917 4750 4918 4.115 KVM_SET_NESTED_STATE 4751 4.115 KVM_SET_NESTED_STATE 4919 -------------------------- 4752 -------------------------- 4920 4753 4921 :Capability: KVM_CAP_NESTED_STATE 4754 :Capability: KVM_CAP_NESTED_STATE 4922 :Architectures: x86 4755 :Architectures: x86 4923 :Type: vcpu ioctl 4756 :Type: vcpu ioctl 4924 :Parameters: struct kvm_nested_state (in) 4757 :Parameters: struct kvm_nested_state (in) 4925 :Returns: 0 on success, -1 on error 4758 :Returns: 0 on success, -1 on error 4926 4759 4927 This copies the vcpu's kvm_nested_state struc 4760 This copies the vcpu's kvm_nested_state struct from userspace to the kernel. 4928 For the definition of struct kvm_nested_state 4761 For the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE. 4929 4762 4930 4.116 KVM_(UN)REGISTER_COALESCED_MMIO 4763 4.116 KVM_(UN)REGISTER_COALESCED_MMIO 4931 ------------------------------------- 4764 ------------------------------------- 4932 4765 4933 :Capability: KVM_CAP_COALESCED_MMIO (for coal 4766 :Capability: KVM_CAP_COALESCED_MMIO (for coalesced mmio) 4934 KVM_CAP_COALESCED_PIO (for coale 4767 KVM_CAP_COALESCED_PIO (for coalesced pio) 4935 :Architectures: all 4768 :Architectures: all 4936 :Type: vm ioctl 4769 :Type: vm ioctl 4937 :Parameters: struct kvm_coalesced_mmio_zone 4770 :Parameters: struct kvm_coalesced_mmio_zone 4938 :Returns: 0 on success, < 0 on error 4771 :Returns: 0 on success, < 0 on error 4939 4772 4940 Coalesced I/O is a performance optimization t 4773 Coalesced I/O is a performance optimization that defers hardware 4941 register write emulation so that userspace ex 4774 register write emulation so that userspace exits are avoided. It is 4942 typically used to reduce the overhead of emul 4775 typically used to reduce the overhead of emulating frequently accessed 4943 hardware registers. 4776 hardware registers. 4944 4777 4945 When a hardware register is configured for co 4778 When a hardware register is configured for coalesced I/O, write accesses 4946 do not exit to userspace and their value is r 4779 do not exit to userspace and their value is recorded in a ring buffer 4947 that is shared between kernel and userspace. 4780 that is shared between kernel and userspace. 4948 4781 4949 Coalesced I/O is used if one or more write ac 4782 Coalesced I/O is used if one or more write accesses to a hardware 4950 register can be deferred until a read or a wr 4783 register can be deferred until a read or a write to another hardware 4951 register on the same device. This last acces 4784 register on the same device. This last access will cause a vmexit and 4952 userspace will process accesses from the ring 4785 userspace will process accesses from the ring buffer before emulating 4953 it. That will avoid exiting to userspace on r 4786 it. That will avoid exiting to userspace on repeated writes. 4954 4787 4955 Coalesced pio is based on coalesced mmio. The 4788 Coalesced pio is based on coalesced mmio. There is little difference 4956 between coalesced mmio and pio except that co 4789 between coalesced mmio and pio except that coalesced pio records accesses 4957 to I/O ports. 4790 to I/O ports. 4958 4791 4959 4.117 KVM_CLEAR_DIRTY_LOG (vm ioctl) 4792 4.117 KVM_CLEAR_DIRTY_LOG (vm ioctl) 4960 ------------------------------------ 4793 ------------------------------------ 4961 4794 4962 :Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT 4795 :Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 4963 :Architectures: x86, arm64, mips 4796 :Architectures: x86, arm64, mips 4964 :Type: vm ioctl 4797 :Type: vm ioctl 4965 :Parameters: struct kvm_clear_dirty_log (in) 4798 :Parameters: struct kvm_clear_dirty_log (in) 4966 :Returns: 0 on success, -1 on error 4799 :Returns: 0 on success, -1 on error 4967 4800 4968 :: 4801 :: 4969 4802 4970 /* for KVM_CLEAR_DIRTY_LOG */ 4803 /* for KVM_CLEAR_DIRTY_LOG */ 4971 struct kvm_clear_dirty_log { 4804 struct kvm_clear_dirty_log { 4972 __u32 slot; 4805 __u32 slot; 4973 __u32 num_pages; 4806 __u32 num_pages; 4974 __u64 first_page; 4807 __u64 first_page; 4975 union { 4808 union { 4976 void __user *dirty_bitmap; /* 4809 void __user *dirty_bitmap; /* one bit per page */ 4977 __u64 padding; 4810 __u64 padding; 4978 }; 4811 }; 4979 }; 4812 }; 4980 4813 4981 The ioctl clears the dirty status of pages in 4814 The ioctl clears the dirty status of pages in a memory slot, according to 4982 the bitmap that is passed in struct kvm_clear 4815 the bitmap that is passed in struct kvm_clear_dirty_log's dirty_bitmap 4983 field. Bit 0 of the bitmap corresponds to pa 4816 field. Bit 0 of the bitmap corresponds to page "first_page" in the 4984 memory slot, and num_pages is the size in bit 4817 memory slot, and num_pages is the size in bits of the input bitmap. 4985 first_page must be a multiple of 64; num_page 4818 first_page must be a multiple of 64; num_pages must also be a multiple of 4986 64 unless first_page + num_pages is the size 4819 64 unless first_page + num_pages is the size of the memory slot. For each 4987 bit that is set in the input bitmap, the corr 4820 bit that is set in the input bitmap, the corresponding page is marked "clean" 4988 in KVM's dirty bitmap, and dirty tracking is 4821 in KVM's dirty bitmap, and dirty tracking is re-enabled for that page 4989 (for example via write-protection, or by clea 4822 (for example via write-protection, or by clearing the dirty bit in 4990 a page table entry). 4823 a page table entry). 4991 4824 4992 If KVM_CAP_MULTI_ADDRESS_SPACE is available, 4825 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of slot field specifies 4993 the address space for which you want to clear 4826 the address space for which you want to clear the dirty status. See 4994 KVM_SET_USER_MEMORY_REGION for details on the 4827 KVM_SET_USER_MEMORY_REGION for details on the usage of slot field. 4995 4828 4996 This ioctl is mostly useful when KVM_CAP_MANU 4829 This ioctl is mostly useful when KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 4997 is enabled; for more information, see the des 4830 is enabled; for more information, see the description of the capability. 4998 However, it can always be used as long as KVM 4831 However, it can always be used as long as KVM_CHECK_EXTENSION confirms 4999 that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is pre 4832 that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is present. 5000 4833 5001 4.118 KVM_GET_SUPPORTED_HV_CPUID 4834 4.118 KVM_GET_SUPPORTED_HV_CPUID 5002 -------------------------------- 4835 -------------------------------- 5003 4836 5004 :Capability: KVM_CAP_HYPERV_CPUID (vcpu), KVM 4837 :Capability: KVM_CAP_HYPERV_CPUID (vcpu), KVM_CAP_SYS_HYPERV_CPUID (system) 5005 :Architectures: x86 4838 :Architectures: x86 5006 :Type: system ioctl, vcpu ioctl 4839 :Type: system ioctl, vcpu ioctl 5007 :Parameters: struct kvm_cpuid2 (in/out) 4840 :Parameters: struct kvm_cpuid2 (in/out) 5008 :Returns: 0 on success, -1 on error 4841 :Returns: 0 on success, -1 on error 5009 4842 5010 :: 4843 :: 5011 4844 5012 struct kvm_cpuid2 { 4845 struct kvm_cpuid2 { 5013 __u32 nent; 4846 __u32 nent; 5014 __u32 padding; 4847 __u32 padding; 5015 struct kvm_cpuid_entry2 entries[0]; 4848 struct kvm_cpuid_entry2 entries[0]; 5016 }; 4849 }; 5017 4850 5018 struct kvm_cpuid_entry2 { 4851 struct kvm_cpuid_entry2 { 5019 __u32 function; 4852 __u32 function; 5020 __u32 index; 4853 __u32 index; 5021 __u32 flags; 4854 __u32 flags; 5022 __u32 eax; 4855 __u32 eax; 5023 __u32 ebx; 4856 __u32 ebx; 5024 __u32 ecx; 4857 __u32 ecx; 5025 __u32 edx; 4858 __u32 edx; 5026 __u32 padding[3]; 4859 __u32 padding[3]; 5027 }; 4860 }; 5028 4861 5029 This ioctl returns x86 cpuid features leaves 4862 This ioctl returns x86 cpuid features leaves related to Hyper-V emulation in 5030 KVM. Userspace can use the information retur 4863 KVM. Userspace can use the information returned by this ioctl to construct 5031 cpuid information presented to guests consumi 4864 cpuid information presented to guests consuming Hyper-V enlightenments (e.g. 5032 Windows or Hyper-V guests). 4865 Windows or Hyper-V guests). 5033 4866 5034 CPUID feature leaves returned by this ioctl a 4867 CPUID feature leaves returned by this ioctl are defined by Hyper-V Top Level 5035 Functional Specification (TLFS). These leaves 4868 Functional Specification (TLFS). These leaves can't be obtained with 5036 KVM_GET_SUPPORTED_CPUID ioctl because some of 4869 KVM_GET_SUPPORTED_CPUID ioctl because some of them intersect with KVM feature 5037 leaves (0x40000000, 0x40000001). 4870 leaves (0x40000000, 0x40000001). 5038 4871 5039 Currently, the following list of CPUID leaves 4872 Currently, the following list of CPUID leaves are returned: 5040 4873 5041 - HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS 4874 - HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS 5042 - HYPERV_CPUID_INTERFACE 4875 - HYPERV_CPUID_INTERFACE 5043 - HYPERV_CPUID_VERSION 4876 - HYPERV_CPUID_VERSION 5044 - HYPERV_CPUID_FEATURES 4877 - HYPERV_CPUID_FEATURES 5045 - HYPERV_CPUID_ENLIGHTMENT_INFO 4878 - HYPERV_CPUID_ENLIGHTMENT_INFO 5046 - HYPERV_CPUID_IMPLEMENT_LIMITS 4879 - HYPERV_CPUID_IMPLEMENT_LIMITS 5047 - HYPERV_CPUID_NESTED_FEATURES 4880 - HYPERV_CPUID_NESTED_FEATURES 5048 - HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIO 4881 - HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS 5049 - HYPERV_CPUID_SYNDBG_INTERFACE 4882 - HYPERV_CPUID_SYNDBG_INTERFACE 5050 - HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES 4883 - HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES 5051 4884 5052 Userspace invokes KVM_GET_SUPPORTED_HV_CPUID 4885 Userspace invokes KVM_GET_SUPPORTED_HV_CPUID by passing a kvm_cpuid2 structure 5053 with the 'nent' field indicating the number o 4886 with the 'nent' field indicating the number of entries in the variable-size 5054 array 'entries'. If the number of entries is 4887 array 'entries'. If the number of entries is too low to describe all Hyper-V 5055 feature leaves, an error (E2BIG) is returned. 4888 feature leaves, an error (E2BIG) is returned. If the number is more or equal 5056 to the number of Hyper-V feature leaves, the 4889 to the number of Hyper-V feature leaves, the 'nent' field is adjusted to the 5057 number of valid entries in the 'entries' arra 4890 number of valid entries in the 'entries' array, which is then filled. 5058 4891 5059 'index' and 'flags' fields in 'struct kvm_cpu 4892 'index' and 'flags' fields in 'struct kvm_cpuid_entry2' are currently reserved, 5060 userspace should not expect to get any partic 4893 userspace should not expect to get any particular value there. 5061 4894 5062 Note, vcpu version of KVM_GET_SUPPORTED_HV_CP 4895 Note, vcpu version of KVM_GET_SUPPORTED_HV_CPUID is currently deprecated. Unlike 5063 system ioctl which exposes all supported feat 4896 system ioctl which exposes all supported feature bits unconditionally, vcpu 5064 version has the following quirks: 4897 version has the following quirks: 5065 4898 5066 - HYPERV_CPUID_NESTED_FEATURES leaf and HV_X6 4899 - HYPERV_CPUID_NESTED_FEATURES leaf and HV_X64_ENLIGHTENED_VMCS_RECOMMENDED 5067 feature bit are only exposed when Enlighten 4900 feature bit are only exposed when Enlightened VMCS was previously enabled 5068 on the corresponding vCPU (KVM_CAP_HYPERV_E 4901 on the corresponding vCPU (KVM_CAP_HYPERV_ENLIGHTENED_VMCS). 5069 - HV_STIMER_DIRECT_MODE_AVAILABLE bit is only 4902 - HV_STIMER_DIRECT_MODE_AVAILABLE bit is only exposed with in-kernel LAPIC. 5070 (presumes KVM_CREATE_IRQCHIP has already be 4903 (presumes KVM_CREATE_IRQCHIP has already been called). 5071 4904 5072 4.119 KVM_ARM_VCPU_FINALIZE 4905 4.119 KVM_ARM_VCPU_FINALIZE 5073 --------------------------- 4906 --------------------------- 5074 4907 5075 :Architectures: arm64 4908 :Architectures: arm64 5076 :Type: vcpu ioctl 4909 :Type: vcpu ioctl 5077 :Parameters: int feature (in) 4910 :Parameters: int feature (in) 5078 :Returns: 0 on success, -1 on error 4911 :Returns: 0 on success, -1 on error 5079 4912 5080 Errors: 4913 Errors: 5081 4914 5082 ====== ================================ 4915 ====== ============================================================== 5083 EPERM feature not enabled, needs confi 4916 EPERM feature not enabled, needs configuration, or already finalized 5084 EINVAL feature unknown or not present 4917 EINVAL feature unknown or not present 5085 ====== ================================ 4918 ====== ============================================================== 5086 4919 5087 Recognised values for feature: 4920 Recognised values for feature: 5088 4921 5089 ===== ================================ 4922 ===== =========================================== 5090 arm64 KVM_ARM_VCPU_SVE (requires KVM_C 4923 arm64 KVM_ARM_VCPU_SVE (requires KVM_CAP_ARM_SVE) 5091 ===== ================================ 4924 ===== =========================================== 5092 4925 5093 Finalizes the configuration of the specified 4926 Finalizes the configuration of the specified vcpu feature. 5094 4927 5095 The vcpu must already have been initialised, 4928 The vcpu must already have been initialised, enabling the affected feature, by 5096 means of a successful KVM_ARM_VCPU_INIT call 4929 means of a successful KVM_ARM_VCPU_INIT call with the appropriate flag set in 5097 features[]. 4930 features[]. 5098 4931 5099 For affected vcpu features, this is a mandato 4932 For affected vcpu features, this is a mandatory step that must be performed 5100 before the vcpu is fully usable. 4933 before the vcpu is fully usable. 5101 4934 5102 Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FI 4935 Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FINALIZE, the feature may be 5103 configured by use of ioctls such as KVM_SET_O 4936 configured by use of ioctls such as KVM_SET_ONE_REG. The exact configuration 5104 that should be performed and how to do it are !! 4937 that should be performaned and how to do it are feature-dependent. 5105 4938 5106 Other calls that depend on a particular featu 4939 Other calls that depend on a particular feature being finalized, such as 5107 KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG an 4940 KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG and KVM_SET_ONE_REG, will fail with 5108 -EPERM unless the feature has already been fi 4941 -EPERM unless the feature has already been finalized by means of a 5109 KVM_ARM_VCPU_FINALIZE call. 4942 KVM_ARM_VCPU_FINALIZE call. 5110 4943 5111 See KVM_ARM_VCPU_INIT for details of vcpu fea 4944 See KVM_ARM_VCPU_INIT for details of vcpu features that require finalization 5112 using this ioctl. 4945 using this ioctl. 5113 4946 5114 4.120 KVM_SET_PMU_EVENT_FILTER 4947 4.120 KVM_SET_PMU_EVENT_FILTER 5115 ------------------------------ 4948 ------------------------------ 5116 4949 5117 :Capability: KVM_CAP_PMU_EVENT_FILTER 4950 :Capability: KVM_CAP_PMU_EVENT_FILTER 5118 :Architectures: x86 4951 :Architectures: x86 5119 :Type: vm ioctl 4952 :Type: vm ioctl 5120 :Parameters: struct kvm_pmu_event_filter (in) 4953 :Parameters: struct kvm_pmu_event_filter (in) 5121 :Returns: 0 on success, -1 on error 4954 :Returns: 0 on success, -1 on error 5122 4955 5123 Errors: << 5124 << 5125 ====== ================================ << 5126 EFAULT args[0] cannot be accessed << 5127 EINVAL args[0] contains invalid data in << 5128 E2BIG nevents is too large << 5129 EBUSY not enough memory to allocate th << 5130 ====== ================================ << 5131 << 5132 :: 4956 :: 5133 4957 5134 struct kvm_pmu_event_filter { 4958 struct kvm_pmu_event_filter { 5135 __u32 action; 4959 __u32 action; 5136 __u32 nevents; 4960 __u32 nevents; 5137 __u32 fixed_counter_bitmap; 4961 __u32 fixed_counter_bitmap; 5138 __u32 flags; 4962 __u32 flags; 5139 __u32 pad[4]; 4963 __u32 pad[4]; 5140 __u64 events[0]; 4964 __u64 events[0]; 5141 }; 4965 }; 5142 4966 5143 This ioctl restricts the set of PMU events th !! 4967 This ioctl restricts the set of PMU events that the guest can program. 5144 which event select and unit mask combinations !! 4968 The argument holds a list of events which will be allowed or denied. >> 4969 The eventsel+umask of each event the guest attempts to program is compared >> 4970 against the events field to determine whether the guest should have access. >> 4971 The events field only controls general purpose counters; fixed purpose >> 4972 counters are controlled by the fixed_counter_bitmap. 5145 4973 5146 The argument holds a list of filter events wh !! 4974 No flags are defined yet, the field must be zero. 5147 << 5148 Filter events only control general purpose co << 5149 are controlled by the fixed_counter_bitmap. << 5150 << 5151 Valid values for 'flags':: << 5152 << 5153 ``0`` << 5154 << 5155 To use this mode, clear the 'flags' field. << 5156 << 5157 In this mode each event will contain an event << 5158 << 5159 When the guest attempts to program the PMU th << 5160 unit mask is compared against the filter even << 5161 guest should have access. << 5162 << 5163 ``KVM_PMU_EVENT_FLAG_MASKED_EVENTS`` << 5164 :Capability: KVM_CAP_PMU_EVENT_MASKED_EVENTS << 5165 << 5166 In this mode each filter event will contain a << 5167 exclude value. To encode a masked event use: << 5168 << 5169 KVM_PMU_ENCODE_MASKED_ENTRY() << 5170 << 5171 An encoded event will follow this layout:: << 5172 << 5173 Bits Description << 5174 ---- ----------- << 5175 7:0 event select (low bits) << 5176 15:8 umask match << 5177 31:16 unused << 5178 35:32 event select (high bits) << 5179 36:54 unused << 5180 55 exclude bit << 5181 63:56 umask mask << 5182 << 5183 When the guest attempts to program the PMU, t << 5184 determining if the guest should have access: << 5185 << 5186 1. Match the event select from the guest aga << 5187 2. If a match is found, match the guest's un << 5188 values of the included filter events. << 5189 I.e. (unit mask & mask) == match && !excl << 5190 3. If a match is found, match the guest's un << 5191 values of the excluded filter events. << 5192 I.e. (unit mask & mask) == match && exclu << 5193 4. << 5194 a. If an included match is found and an ex << 5195 the event. << 5196 b. For everything else, do not filter the << 5197 5. << 5198 a. If the event is filtered and it's an al << 5199 program the event. << 5200 b. If the event is filtered and it's a den << 5201 program the event. << 5202 << 5203 When setting a new pmu event filter, -EINVAL << 5204 unused fields are set or if any of the high b << 5205 select are set when called on Intel. << 5206 4975 5207 Valid values for 'action':: 4976 Valid values for 'action':: 5208 4977 5209 #define KVM_PMU_EVENT_ALLOW 0 4978 #define KVM_PMU_EVENT_ALLOW 0 5210 #define KVM_PMU_EVENT_DENY 1 4979 #define KVM_PMU_EVENT_DENY 1 5211 4980 5212 Via this API, KVM userspace can also control << 5213 counters (if any) by configuring the "action" << 5214 << 5215 Specifically, KVM follows the following pseud << 5216 allow the guest FixCtr[i] to count its pre-de << 5217 << 5218 FixCtr[i]_is_allowed = (action == ALLOW) && << 5219 (action == DENY) && !(bitmap & BIT(i)); << 5220 FixCtr[i]_is_denied = !FixCtr[i]_is_allowed << 5221 << 5222 KVM always consumes fixed_counter_bitmap, it' << 5223 ensure fixed_counter_bitmap is set correctly, << 5224 a filter that only affects general purpose co << 5225 << 5226 Note, the "events" field also applies to fixe << 5227 and unit_mask values. "fixed_counter_bitmap" << 5228 if there is a contradiction between the two. << 5229 << 5230 4.121 KVM_PPC_SVM_OFF 4981 4.121 KVM_PPC_SVM_OFF 5231 --------------------- 4982 --------------------- 5232 4983 5233 :Capability: basic 4984 :Capability: basic 5234 :Architectures: powerpc 4985 :Architectures: powerpc 5235 :Type: vm ioctl 4986 :Type: vm ioctl 5236 :Parameters: none 4987 :Parameters: none 5237 :Returns: 0 on successful completion, 4988 :Returns: 0 on successful completion, 5238 4989 5239 Errors: 4990 Errors: 5240 4991 5241 ====== ================================ 4992 ====== ================================================================ 5242 EINVAL if ultravisor failed to terminat 4993 EINVAL if ultravisor failed to terminate the secure guest 5243 ENOMEM if hypervisor failed to allocate 4994 ENOMEM if hypervisor failed to allocate new radix page tables for guest 5244 ====== ================================ 4995 ====== ================================================================ 5245 4996 5246 This ioctl is used to turn off the secure mod 4997 This ioctl is used to turn off the secure mode of the guest or transition 5247 the guest from secure mode to normal mode. Th 4998 the guest from secure mode to normal mode. This is invoked when the guest 5248 is reset. This has no effect if called for a 4999 is reset. This has no effect if called for a normal guest. 5249 5000 5250 This ioctl issues an ultravisor call to termi 5001 This ioctl issues an ultravisor call to terminate the secure guest, 5251 unpins the VPA pages and releases all the dev 5002 unpins the VPA pages and releases all the device pages that are used to 5252 track the secure pages by hypervisor. 5003 track the secure pages by hypervisor. 5253 5004 5254 4.122 KVM_S390_NORMAL_RESET 5005 4.122 KVM_S390_NORMAL_RESET 5255 --------------------------- 5006 --------------------------- 5256 5007 5257 :Capability: KVM_CAP_S390_VCPU_RESETS 5008 :Capability: KVM_CAP_S390_VCPU_RESETS 5258 :Architectures: s390 5009 :Architectures: s390 5259 :Type: vcpu ioctl 5010 :Type: vcpu ioctl 5260 :Parameters: none 5011 :Parameters: none 5261 :Returns: 0 5012 :Returns: 0 5262 5013 5263 This ioctl resets VCPU registers and control 5014 This ioctl resets VCPU registers and control structures according to 5264 the cpu reset definition in the POP (Principl 5015 the cpu reset definition in the POP (Principles Of Operation). 5265 5016 5266 4.123 KVM_S390_INITIAL_RESET 5017 4.123 KVM_S390_INITIAL_RESET 5267 ---------------------------- 5018 ---------------------------- 5268 5019 5269 :Capability: none 5020 :Capability: none 5270 :Architectures: s390 5021 :Architectures: s390 5271 :Type: vcpu ioctl 5022 :Type: vcpu ioctl 5272 :Parameters: none 5023 :Parameters: none 5273 :Returns: 0 5024 :Returns: 0 5274 5025 5275 This ioctl resets VCPU registers and control 5026 This ioctl resets VCPU registers and control structures according to 5276 the initial cpu reset definition in the POP. 5027 the initial cpu reset definition in the POP. However, the cpu is not 5277 put into ESA mode. This reset is a superset o 5028 put into ESA mode. This reset is a superset of the normal reset. 5278 5029 5279 4.124 KVM_S390_CLEAR_RESET 5030 4.124 KVM_S390_CLEAR_RESET 5280 -------------------------- 5031 -------------------------- 5281 5032 5282 :Capability: KVM_CAP_S390_VCPU_RESETS 5033 :Capability: KVM_CAP_S390_VCPU_RESETS 5283 :Architectures: s390 5034 :Architectures: s390 5284 :Type: vcpu ioctl 5035 :Type: vcpu ioctl 5285 :Parameters: none 5036 :Parameters: none 5286 :Returns: 0 5037 :Returns: 0 5287 5038 5288 This ioctl resets VCPU registers and control 5039 This ioctl resets VCPU registers and control structures according to 5289 the clear cpu reset definition in the POP. Ho 5040 the clear cpu reset definition in the POP. However, the cpu is not put 5290 into ESA mode. This reset is a superset of th 5041 into ESA mode. This reset is a superset of the initial reset. 5291 5042 5292 5043 5293 4.125 KVM_S390_PV_COMMAND 5044 4.125 KVM_S390_PV_COMMAND 5294 ------------------------- 5045 ------------------------- 5295 5046 5296 :Capability: KVM_CAP_S390_PROTECTED 5047 :Capability: KVM_CAP_S390_PROTECTED 5297 :Architectures: s390 5048 :Architectures: s390 5298 :Type: vm ioctl 5049 :Type: vm ioctl 5299 :Parameters: struct kvm_pv_cmd 5050 :Parameters: struct kvm_pv_cmd 5300 :Returns: 0 on success, < 0 on error 5051 :Returns: 0 on success, < 0 on error 5301 5052 5302 :: 5053 :: 5303 5054 5304 struct kvm_pv_cmd { 5055 struct kvm_pv_cmd { 5305 __u32 cmd; /* Command to be exec 5056 __u32 cmd; /* Command to be executed */ 5306 __u16 rc; /* Ultravisor return 5057 __u16 rc; /* Ultravisor return code */ 5307 __u16 rrc; /* Ultravisor return 5058 __u16 rrc; /* Ultravisor return reason code */ 5308 __u64 data; /* Data or address */ 5059 __u64 data; /* Data or address */ 5309 __u32 flags; /* flags for future e 5060 __u32 flags; /* flags for future extensions. Must be 0 for now */ 5310 __u32 reserved[3]; 5061 __u32 reserved[3]; 5311 }; 5062 }; 5312 5063 5313 **Ultravisor return codes** !! 5064 cmd values: 5314 The Ultravisor return (reason) codes are prov << 5315 Ultravisor call has been executed to achieve << 5316 the command. Therefore they are independent o << 5317 code. If KVM changes `rc`, its value will alw << 5318 hence setting it to 0 before issuing a PV com << 5319 able to detect a change of `rc`. << 5320 << 5321 **cmd values:** << 5322 5065 5323 KVM_PV_ENABLE 5066 KVM_PV_ENABLE 5324 Allocate memory and register the VM with th 5067 Allocate memory and register the VM with the Ultravisor, thereby 5325 donating memory to the Ultravisor that will 5068 donating memory to the Ultravisor that will become inaccessible to 5326 KVM. All existing CPUs are converted to pro 5069 KVM. All existing CPUs are converted to protected ones. After this 5327 command has succeeded, any CPU added via ho 5070 command has succeeded, any CPU added via hotplug will become 5328 protected during its creation as well. 5071 protected during its creation as well. 5329 5072 5330 Errors: 5073 Errors: 5331 5074 5332 ===== ============================= 5075 ===== ============================= 5333 EINTR an unmasked signal is pending 5076 EINTR an unmasked signal is pending 5334 ===== ============================= 5077 ===== ============================= 5335 5078 5336 KVM_PV_DISABLE 5079 KVM_PV_DISABLE 5337 Deregister the VM from the Ultravisor and r !! 5080 5338 been donated to the Ultravisor, making it u !! 5081 Deregister the VM from the Ultravisor and reclaim the memory that 5339 All registered VCPUs are converted back to !! 5082 had been donated to the Ultravisor, making it usable by the kernel 5340 previous protected VM had been prepared for !! 5083 again. All registered VCPUs are converted back to non-protected 5341 KVM_PV_ASYNC_CLEANUP_PREPARE and not subseq !! 5084 ones. 5342 KVM_PV_ASYNC_CLEANUP_PERFORM, it will be to << 5343 together with the current protected VM. << 5344 5085 5345 KVM_PV_VM_SET_SEC_PARMS 5086 KVM_PV_VM_SET_SEC_PARMS 5346 Pass the image header from VM memory to the 5087 Pass the image header from VM memory to the Ultravisor in 5347 preparation of image unpacking and verifica 5088 preparation of image unpacking and verification. 5348 5089 5349 KVM_PV_VM_UNPACK 5090 KVM_PV_VM_UNPACK 5350 Unpack (protect and decrypt) a page of the 5091 Unpack (protect and decrypt) a page of the encrypted boot image. 5351 5092 5352 KVM_PV_VM_VERIFY 5093 KVM_PV_VM_VERIFY 5353 Verify the integrity of the unpacked image. 5094 Verify the integrity of the unpacked image. Only if this succeeds, 5354 KVM is allowed to start protected VCPUs. 5095 KVM is allowed to start protected VCPUs. 5355 5096 5356 KVM_PV_INFO !! 5097 4.126 KVM_X86_SET_MSR_FILTER 5357 :Capability: KVM_CAP_S390_PROTECTED_DUMP !! 5098 ---------------------------- 5358 5099 5359 Presents an API that provides Ultravisor re !! 5100 :Capability: KVM_CAP_X86_MSR_FILTER 5360 via subcommands. len_max is the size of the !! 5101 :Architectures: x86 5361 len_written is KVM's indication of how much !! 5102 :Type: vm ioctl 5362 were actually written to. len_written can b !! 5103 :Parameters: struct kvm_msr_filter 5363 valid fields if more response fields are ad !! 5104 :Returns: 0 on success, < 0 on error 5364 << 5365 :: << 5366 << 5367 enum pv_cmd_info_id { << 5368 KVM_PV_INFO_VM, << 5369 KVM_PV_INFO_DUMP, << 5370 }; << 5371 << 5372 struct kvm_s390_pv_info_header { << 5373 __u32 id; << 5374 __u32 len_max; << 5375 __u32 len_written; << 5376 __u32 reserved; << 5377 }; << 5378 5105 5379 struct kvm_s390_pv_info { !! 5106 :: 5380 struct kvm_s390_pv_info_header header !! 5107 5381 struct kvm_s390_pv_info_dump dump; !! 5108 struct kvm_msr_filter_range { 5382 struct kvm_s390_pv_info_vm vm; !! 5109 #define KVM_MSR_FILTER_READ (1 << 0) 5383 }; !! 5110 #define KVM_MSR_FILTER_WRITE (1 << 1) 5384 !! 5111 __u32 flags; 5385 **subcommands:** !! 5112 __u32 nmsrs; /* number of msrs in bitmap */ 5386 !! 5113 __u32 base; /* MSR index the bitmap starts at */ 5387 KVM_PV_INFO_VM !! 5114 __u8 *bitmap; /* a 1 bit allows the operations in flags, 0 denies */ 5388 This subcommand provides basic Ultravisor !! 5115 }; 5389 hosts. These values are likely also expor !! 5116 5390 firmware UV query interface but they are !! 5117 #define KVM_MSR_FILTER_MAX_RANGES 16 5391 programs in this API. !! 5118 struct kvm_msr_filter { 5392 !! 5119 #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 0) 5393 The installed calls and feature_indicatio !! 5120 #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 0) 5394 installed UV calls and the UV's other fea !! 5121 __u32 flags; 5395 !! 5122 struct kvm_msr_filter_range ranges[KVM_MSR_FILTER_MAX_RANGES]; 5396 The max_* members provide information abo !! 5123 }; 5397 vcpus, PV guests and PV guest memory size !! 5124 5398 !! 5125 flags values for ``struct kvm_msr_filter_range``: 5399 :: !! 5126 5400 !! 5127 ``KVM_MSR_FILTER_READ`` 5401 struct kvm_s390_pv_info_vm { << 5402 __u64 inst_calls_list[4]; << 5403 __u64 max_cpus; << 5404 __u64 max_guests; << 5405 __u64 max_guest_addr; << 5406 __u64 feature_indication; << 5407 }; << 5408 5128 >> 5129 Filter read accesses to MSRs using the given bitmap. A 0 in the bitmap >> 5130 indicates that a read should immediately fail, while a 1 indicates that >> 5131 a read for a particular MSR should be handled regardless of the default >> 5132 filter action. 5409 5133 5410 KVM_PV_INFO_DUMP !! 5134 ``KVM_MSR_FILTER_WRITE`` 5411 This subcommand provides information rela << 5412 5135 5413 :: !! 5136 Filter write accesses to MSRs using the given bitmap. A 0 in the bitmap >> 5137 indicates that a write should immediately fail, while a 1 indicates that >> 5138 a write for a particular MSR should be handled regardless of the default >> 5139 filter action. 5414 5140 5415 struct kvm_s390_pv_info_dump { !! 5141 ``KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE`` 5416 __u64 dump_cpu_buffer_len; << 5417 __u64 dump_config_mem_buffer_per_1m; << 5418 __u64 dump_config_finalize_len; << 5419 }; << 5420 5142 5421 KVM_PV_DUMP !! 5143 Filter both read and write accesses to MSRs using the given bitmap. A 0 5422 :Capability: KVM_CAP_S390_PROTECTED_DUMP !! 5144 in the bitmap indicates that both reads and writes should immediately fail, >> 5145 while a 1 indicates that reads and writes for a particular MSR are not >> 5146 filtered by this range. 5423 5147 5424 Presents an API that provides calls which f !! 5148 flags values for ``struct kvm_msr_filter``: 5425 protected VM. << 5426 5149 5427 :: !! 5150 ``KVM_MSR_FILTER_DEFAULT_ALLOW`` >> 5151 >> 5152 If no filter range matches an MSR index that is getting accessed, KVM will >> 5153 fall back to allowing access to the MSR. >> 5154 >> 5155 ``KVM_MSR_FILTER_DEFAULT_DENY`` >> 5156 >> 5157 If no filter range matches an MSR index that is getting accessed, KVM will >> 5158 fall back to rejecting access to the MSR. In this mode, all MSRs that should >> 5159 be processed by KVM need to explicitly be marked as allowed in the bitmaps. >> 5160 >> 5161 This ioctl allows user space to define up to 16 bitmaps of MSR ranges to >> 5162 specify whether a certain MSR access should be explicitly filtered for or not. >> 5163 >> 5164 If this ioctl has never been invoked, MSR accesses are not guarded and the >> 5165 default KVM in-kernel emulation behavior is fully preserved. >> 5166 >> 5167 Calling this ioctl with an empty set of ranges (all nmsrs == 0) disables MSR >> 5168 filtering. In that mode, ``KVM_MSR_FILTER_DEFAULT_DENY`` is invalid and causes >> 5169 an error. 5428 5170 5429 struct kvm_s390_pv_dmp { !! 5171 As soon as the filtering is in place, every MSR access is processed through 5430 __u64 subcmd; !! 5172 the filtering except for accesses to the x2APIC MSRs (from 0x800 to 0x8ff); 5431 __u64 buff_addr; !! 5173 x2APIC MSRs are always allowed, independent of the ``default_allow`` setting, 5432 __u64 buff_len; !! 5174 and their behavior depends on the ``X2APIC_ENABLE`` bit of the APIC base 5433 __u64 gaddr; /* For dump s !! 5175 register. 5434 }; !! 5176 5435 !! 5177 If a bit is within one of the defined ranges, read and write accesses are 5436 **subcommands:** !! 5178 guarded by the bitmap's value for the MSR index if the kind of access 5437 !! 5179 is included in the ``struct kvm_msr_filter_range`` flags. If no range 5438 KVM_PV_DUMP_INIT !! 5180 cover this particular access, the behavior is determined by the flags 5439 Initializes the dump process of a protect !! 5181 field in the kvm_msr_filter struct: ``KVM_MSR_FILTER_DEFAULT_ALLOW`` 5440 not succeed all other subcommands will fa !! 5182 and ``KVM_MSR_FILTER_DEFAULT_DENY``. 5441 subcommand will return -EINVAL if a dump !! 5183 5442 completed. !! 5184 Each bitmap range specifies a range of MSRs to potentially allow access on. 5443 !! 5185 The range goes from MSR index [base .. base+nmsrs]. The flags field 5444 Not all PV vms can be dumped, the owner n !! 5186 indicates whether reads, writes or both reads and writes are filtered 5445 allowed` PCF bit 34 in the SE header to a !! 5187 by setting a 1 bit in the bitmap for the corresponding MSR index. 5446 !! 5188 5447 KVM_PV_DUMP_CONFIG_STOR_STATE !! 5189 If an MSR access is not permitted through the filtering, it generates a 5448 Stores `buff_len` bytes of tweak compone !! 5190 #GP inside the guest. When combined with KVM_CAP_X86_USER_SPACE_MSR, that 5449 the 1MB block specified by the absolute !! 5191 allows user space to deflect and potentially handle various MSR accesses 5450 (`gaddr`). `buff_len` needs to be `conf_ !! 5192 into user space. 5451 aligned and at least >= the `conf_dump_s << 5452 provided by the dump uv_info data. buff_ << 5453 even if an error rc is returned. For ins << 5454 fault after writing the first page of da << 5455 << 5456 KVM_PV_DUMP_COMPLETE << 5457 If the subcommand succeeds it completes t << 5458 KVM_PV_DUMP_INIT be called again. << 5459 << 5460 On success `conf_dump_finalize_len` bytes << 5461 stored to the `buff_addr`. The completion << 5462 derivation seed, IV, tweak nonce and encr << 5463 authentication tag all of which are neede << 5464 later time. << 5465 << 5466 KVM_PV_ASYNC_CLEANUP_PREPARE << 5467 :Capability: KVM_CAP_S390_PROTECTED_ASYNC_D << 5468 << 5469 Prepare the current protected VM for asynch << 5470 resources used by the current protected VM << 5471 subsequent asynchronous teardown. The curre << 5472 resume execution immediately as non-protect << 5473 one protected VM prepared for asynchronous << 5474 a protected VM had already been prepared fo << 5475 subsequently calling KVM_PV_ASYNC_CLEANUP_P << 5476 fail. In that case, the userspace process s << 5477 KVM_PV_DISABLE. The resources set aside wit << 5478 be cleaned up with a subsequent call to KVM << 5479 or KVM_PV_DISABLE, otherwise they will be c << 5480 terminates. KVM_PV_ASYNC_CLEANUP_PREPARE ca << 5481 as cleanup starts, i.e. before KVM_PV_ASYNC << 5482 << 5483 KVM_PV_ASYNC_CLEANUP_PERFORM << 5484 :Capability: KVM_CAP_S390_PROTECTED_ASYNC_D << 5485 << 5486 Tear down the protected VM previously prepa << 5487 KVM_PV_ASYNC_CLEANUP_PREPARE. The resources << 5488 will be freed during the execution of this << 5489 should ideally be issued by userspace from << 5490 fatal signal is received (or the process te << 5491 command will terminate immediately without << 5492 KVM shutdown procedure will take care of cl << 5493 protected VMs, including the ones whose tea << 5494 process termination. << 5495 5193 5496 4.126 KVM_XEN_HVM_SET_ATTR !! 5194 Note, invoking this ioctl with a vCPU is running is inherently racy. However, >> 5195 KVM does guarantee that vCPUs will see either the previous filter or the new >> 5196 filter, e.g. MSRs with identical settings in both the old and new filter will >> 5197 have deterministic behavior. >> 5198 >> 5199 4.127 KVM_XEN_HVM_SET_ATTR 5497 -------------------------- 5200 -------------------------- 5498 5201 5499 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5202 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO 5500 :Architectures: x86 5203 :Architectures: x86 5501 :Type: vm ioctl 5204 :Type: vm ioctl 5502 :Parameters: struct kvm_xen_hvm_attr 5205 :Parameters: struct kvm_xen_hvm_attr 5503 :Returns: 0 on success, < 0 on error 5206 :Returns: 0 on success, < 0 on error 5504 5207 5505 :: 5208 :: 5506 5209 5507 struct kvm_xen_hvm_attr { 5210 struct kvm_xen_hvm_attr { 5508 __u16 type; 5211 __u16 type; 5509 __u16 pad[3]; 5212 __u16 pad[3]; 5510 union { 5213 union { 5511 __u8 long_mode; 5214 __u8 long_mode; 5512 __u8 vector; 5215 __u8 vector; 5513 __u8 runstate_update_flag; !! 5216 struct { 5514 union { << 5515 __u64 gfn; 5217 __u64 gfn; 5516 __u64 hva; << 5517 } shared_info; 5218 } shared_info; 5518 struct { !! 5219 __u64 pad[4]; 5519 __u32 send_port; << 5520 __u32 type; /* EVTCHN << 5521 __u32 flags; << 5522 union { << 5523 struct { << 5524 __u32 << 5525 __u32 << 5526 __u32 << 5527 } port; << 5528 struct { << 5529 __u32 << 5530 __s32 << 5531 } eventfd; << 5532 __u32 padding << 5533 } deliver; << 5534 } evtchn; << 5535 __u32 xen_version; << 5536 __u64 pad[8]; << 5537 } u; 5220 } u; 5538 }; 5221 }; 5539 5222 5540 type values: 5223 type values: 5541 5224 5542 KVM_XEN_ATTR_TYPE_LONG_MODE 5225 KVM_XEN_ATTR_TYPE_LONG_MODE 5543 Sets the ABI mode of the VM to 32-bit or 64 5226 Sets the ABI mode of the VM to 32-bit or 64-bit (long mode). This 5544 determines the layout of the shared_info pa !! 5227 determines the layout of the shared info pages exposed to the VM. 5545 5228 5546 KVM_XEN_ATTR_TYPE_SHARED_INFO 5229 KVM_XEN_ATTR_TYPE_SHARED_INFO 5547 Sets the guest physical frame number at whi !! 5230 Sets the guest physical frame number at which the Xen "shared info" 5548 page resides. Note that although Xen places 5231 page resides. Note that although Xen places vcpu_info for the first 5549 32 vCPUs in the shared_info page, KVM does 5232 32 vCPUs in the shared_info page, KVM does not automatically do so 5550 and instead requires that KVM_XEN_VCPU_ATTR !! 5233 and instead requires that KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO be used 5551 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA be use !! 5234 explicitly even when the vcpu_info for a given vCPU resides at the 5552 the vcpu_info for a given vCPU resides at t !! 5235 "default" location in the shared_info page. This is because KVM is 5553 in the shared_info page. This is because KV !! 5236 not aware of the Xen CPU id which is used as the index into the 5554 the Xen CPU id which is used as the index i !! 5237 vcpu_info[] array, so cannot know the correct default location. 5555 array, so may know the correct default loca << 5556 5238 5557 Note that the shared_info page may be const !! 5239 Note that the shared info page may be constantly written to by KVM; 5558 it contains the event channel bitmap used t 5240 it contains the event channel bitmap used to deliver interrupts to 5559 a Xen guest, amongst other things. It is ex 5241 a Xen guest, amongst other things. It is exempt from dirty tracking 5560 mechanisms — KVM will not explicitly mark 5242 mechanisms — KVM will not explicitly mark the page as dirty each 5561 time an event channel interrupt is delivere 5243 time an event channel interrupt is delivered to the guest! Thus, 5562 userspace should always assume that the des 5244 userspace should always assume that the designated GFN is dirty if 5563 any vCPU has been running or any event chan 5245 any vCPU has been running or any event channel interrupts can be 5564 routed to the guest. 5246 routed to the guest. 5565 5247 5566 Setting the gfn to KVM_XEN_INVALID_GFN will << 5567 page. << 5568 << 5569 KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA << 5570 If the KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA f << 5571 Xen capabilities, then this attribute may b << 5572 userspace address at which the shared_info << 5573 will always be fixed in the VMM regardless << 5574 in guest physical address space. This attri << 5575 preference to KVM_XEN_ATTR_TYPE_SHARED_INFO << 5576 unnecessary invalidation of an internal cac << 5577 re-mapped in guest physcial address space. << 5578 << 5579 Setting the hva to zero will disable the sh << 5580 << 5581 KVM_XEN_ATTR_TYPE_UPCALL_VECTOR 5248 KVM_XEN_ATTR_TYPE_UPCALL_VECTOR 5582 Sets the exception vector used to deliver X 5249 Sets the exception vector used to deliver Xen event channel upcalls. 5583 This is the HVM-wide vector injected direct << 5584 (not through the local APIC), typically con << 5585 HVM_PARAM_CALLBACK_IRQ. This can be disable << 5586 SHUTDOWN_soft_reset) by setting it to zero. << 5587 << 5588 KVM_XEN_ATTR_TYPE_EVTCHN << 5589 This attribute is available when the KVM_CA << 5590 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5591 an outbound port number for interception of << 5592 from the guest. A given sending port number << 5593 a specified vCPU (by APIC ID) / port / prio << 5594 trigger events on an eventfd. The vCPU and << 5595 by setting KVM_XEN_EVTCHN_UPDATE in a subse << 5596 fields cannot change for a given sending po << 5597 removed by using KVM_XEN_EVTCHN_DEASSIGN in << 5598 KVM_XEN_EVTCHN_RESET in the flags field rem << 5599 outbound event channels. The values of the << 5600 exclusive and cannot be combined as a bitma << 5601 << 5602 KVM_XEN_ATTR_TYPE_XEN_VERSION << 5603 This attribute is available when the KVM_CA << 5604 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5605 the 32-bit version code returned to the gue << 5606 XENVER_version call; typically (XEN_MAJOR < << 5607 Xen guests will often use this to as a dumm << 5608 event channel delivery, so responding withi << 5609 exiting to userspace is beneficial. << 5610 << 5611 KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG << 5612 This attribute is available when the KVM_CA << 5613 support for KVM_XEN_HVM_CONFIG_RUNSTATE_UPD << 5614 XEN_RUNSTATE_UPDATE flag which allows guest << 5615 other vCPUs' vcpu_runstate_info. Xen guests << 5616 the VMASST_TYPE_runstate_update_flag of the << 5617 hypercall. << 5618 5250 5619 4.127 KVM_XEN_HVM_GET_ATTR 5251 4.127 KVM_XEN_HVM_GET_ATTR 5620 -------------------------- 5252 -------------------------- 5621 5253 5622 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5254 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO 5623 :Architectures: x86 5255 :Architectures: x86 5624 :Type: vm ioctl 5256 :Type: vm ioctl 5625 :Parameters: struct kvm_xen_hvm_attr 5257 :Parameters: struct kvm_xen_hvm_attr 5626 :Returns: 0 on success, < 0 on error 5258 :Returns: 0 on success, < 0 on error 5627 5259 5628 Allows Xen VM attributes to be read. For the 5260 Allows Xen VM attributes to be read. For the structure and types, 5629 see KVM_XEN_HVM_SET_ATTR above. The KVM_XEN_A !! 5261 see KVM_XEN_HVM_SET_ATTR above. 5630 attribute cannot be read. << 5631 5262 5632 4.128 KVM_XEN_VCPU_SET_ATTR 5263 4.128 KVM_XEN_VCPU_SET_ATTR 5633 --------------------------- 5264 --------------------------- 5634 5265 5635 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5266 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO 5636 :Architectures: x86 5267 :Architectures: x86 5637 :Type: vcpu ioctl 5268 :Type: vcpu ioctl 5638 :Parameters: struct kvm_xen_vcpu_attr 5269 :Parameters: struct kvm_xen_vcpu_attr 5639 :Returns: 0 on success, < 0 on error 5270 :Returns: 0 on success, < 0 on error 5640 5271 5641 :: 5272 :: 5642 5273 5643 struct kvm_xen_vcpu_attr { 5274 struct kvm_xen_vcpu_attr { 5644 __u16 type; 5275 __u16 type; 5645 __u16 pad[3]; 5276 __u16 pad[3]; 5646 union { 5277 union { 5647 __u64 gpa; 5278 __u64 gpa; 5648 __u64 pad[4]; 5279 __u64 pad[4]; 5649 struct { 5280 struct { 5650 __u64 state; 5281 __u64 state; 5651 __u64 state_entry_tim 5282 __u64 state_entry_time; 5652 __u64 time_running; 5283 __u64 time_running; 5653 __u64 time_runnable; 5284 __u64 time_runnable; 5654 __u64 time_blocked; 5285 __u64 time_blocked; 5655 __u64 time_offline; 5286 __u64 time_offline; 5656 } runstate; 5287 } runstate; 5657 __u32 vcpu_id; << 5658 struct { << 5659 __u32 port; << 5660 __u32 priority; << 5661 __u64 expires_ns; << 5662 } timer; << 5663 __u8 vector; << 5664 } u; 5288 } u; 5665 }; 5289 }; 5666 5290 5667 type values: 5291 type values: 5668 5292 5669 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO 5293 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO 5670 Sets the guest physical address of the vcpu 5294 Sets the guest physical address of the vcpu_info for a given vCPU. 5671 As with the shared_info page for the VM, th 5295 As with the shared_info page for the VM, the corresponding page may be 5672 dirtied at any time if event channel interr 5296 dirtied at any time if event channel interrupt delivery is enabled, so 5673 userspace should always assume that the pag 5297 userspace should always assume that the page is dirty without relying 5674 on dirty logging. Setting the gpa to KVM_XE !! 5298 on dirty logging. 5675 the vcpu_info. << 5676 << 5677 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA << 5678 If the KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA f << 5679 Xen capabilities, then this attribute may b << 5680 userspace address of the vcpu_info for a gi << 5681 only be used when the vcpu_info resides at << 5682 in the shared_info page. In this case it is << 5683 userspace address will not change, because << 5684 an overlay on guest memory and remains at a << 5685 regardless of where it is mapped in guest p << 5686 and hence unnecessary invalidation of an in << 5687 avoided if the guest memory layout is modif << 5688 If the vcpu_info does not reside at the "de << 5689 it is not guaranteed to remain at the same << 5690 hence the aforementioned cache invalidation << 5691 5299 5692 KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO 5300 KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO 5693 Sets the guest physical address of an addit 5301 Sets the guest physical address of an additional pvclock structure 5694 for a given vCPU. This is typically used fo 5302 for a given vCPU. This is typically used for guest vsyscall support. 5695 Setting the gpa to KVM_XEN_INVALID_GPA will << 5696 5303 5697 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR 5304 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR 5698 Sets the guest physical address of the vcpu 5305 Sets the guest physical address of the vcpu_runstate_info for a given 5699 vCPU. This is how a Xen guest tracks CPU st 5306 vCPU. This is how a Xen guest tracks CPU state such as steal time. 5700 Setting the gpa to KVM_XEN_INVALID_GPA will << 5701 5307 5702 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT 5308 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT 5703 Sets the runstate (RUNSTATE_running/_runnab 5309 Sets the runstate (RUNSTATE_running/_runnable/_blocked/_offline) of 5704 the given vCPU from the .u.runstate.state m 5310 the given vCPU from the .u.runstate.state member of the structure. 5705 KVM automatically accounts running and runn 5311 KVM automatically accounts running and runnable time but blocked 5706 and offline states are only entered explici 5312 and offline states are only entered explicitly. 5707 5313 5708 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA 5314 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA 5709 Sets all fields of the vCPU runstate data f 5315 Sets all fields of the vCPU runstate data from the .u.runstate member 5710 of the structure, including the current run 5316 of the structure, including the current runstate. The state_entry_time 5711 must equal the sum of the other four times. 5317 must equal the sum of the other four times. 5712 5318 5713 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST 5319 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST 5714 This *adds* the contents of the .u.runstate 5320 This *adds* the contents of the .u.runstate members of the structure 5715 to the corresponding members of the given v 5321 to the corresponding members of the given vCPU's runstate data, thus 5716 permitting atomic adjustments to the runsta 5322 permitting atomic adjustments to the runstate times. The adjustment 5717 to the state_entry_time must equal the sum 5323 to the state_entry_time must equal the sum of the adjustments to the 5718 other four times. The state field must be s 5324 other four times. The state field must be set to -1, or to a valid 5719 runstate value (RUNSTATE_running, RUNSTATE_ 5325 runstate value (RUNSTATE_running, RUNSTATE_runnable, RUNSTATE_blocked 5720 or RUNSTATE_offline) to set the current acc 5326 or RUNSTATE_offline) to set the current accounted state as of the 5721 adjusted state_entry_time. 5327 adjusted state_entry_time. 5722 5328 5723 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID << 5724 This attribute is available when the KVM_CA << 5725 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5726 vCPU ID of the given vCPU, to allow timer-r << 5727 be intercepted by KVM. << 5728 << 5729 KVM_XEN_VCPU_ATTR_TYPE_TIMER << 5730 This attribute is available when the KVM_CA << 5731 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5732 event channel port/priority for the VIRQ_TI << 5733 as allowing a pending timer to be saved/res << 5734 port to zero disables kernel handling of th << 5735 << 5736 KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR << 5737 This attribute is available when the KVM_CA << 5738 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 5739 per-vCPU local APIC upcall vector, configur << 5740 the HVMOP_set_evtchn_upcall_vector hypercal << 5741 used by Windows guests, and is distinct fro << 5742 vector configured with HVM_PARAM_CALLBACK_I << 5743 setting the vector to zero. << 5744 << 5745 << 5746 4.129 KVM_XEN_VCPU_GET_ATTR 5329 4.129 KVM_XEN_VCPU_GET_ATTR 5747 --------------------------- 5330 --------------------------- 5748 5331 5749 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5332 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO 5750 :Architectures: x86 5333 :Architectures: x86 5751 :Type: vcpu ioctl 5334 :Type: vcpu ioctl 5752 :Parameters: struct kvm_xen_vcpu_attr 5335 :Parameters: struct kvm_xen_vcpu_attr 5753 :Returns: 0 on success, < 0 on error 5336 :Returns: 0 on success, < 0 on error 5754 5337 5755 Allows Xen vCPU attributes to be read. For th 5338 Allows Xen vCPU attributes to be read. For the structure and types, 5756 see KVM_XEN_VCPU_SET_ATTR above. 5339 see KVM_XEN_VCPU_SET_ATTR above. 5757 5340 5758 The KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST ty 5341 The KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST type may not be used 5759 with the KVM_XEN_VCPU_GET_ATTR ioctl. 5342 with the KVM_XEN_VCPU_GET_ATTR ioctl. 5760 5343 5761 4.130 KVM_ARM_MTE_COPY_TAGS 5344 4.130 KVM_ARM_MTE_COPY_TAGS 5762 --------------------------- 5345 --------------------------- 5763 5346 5764 :Capability: KVM_CAP_ARM_MTE 5347 :Capability: KVM_CAP_ARM_MTE 5765 :Architectures: arm64 5348 :Architectures: arm64 5766 :Type: vm ioctl 5349 :Type: vm ioctl 5767 :Parameters: struct kvm_arm_copy_mte_tags 5350 :Parameters: struct kvm_arm_copy_mte_tags 5768 :Returns: number of bytes copied, < 0 on erro 5351 :Returns: number of bytes copied, < 0 on error (-EINVAL for incorrect 5769 arguments, -EFAULT if memory cannot 5352 arguments, -EFAULT if memory cannot be accessed). 5770 5353 5771 :: 5354 :: 5772 5355 5773 struct kvm_arm_copy_mte_tags { 5356 struct kvm_arm_copy_mte_tags { 5774 __u64 guest_ipa; 5357 __u64 guest_ipa; 5775 __u64 length; 5358 __u64 length; 5776 void __user *addr; 5359 void __user *addr; 5777 __u64 flags; 5360 __u64 flags; 5778 __u64 reserved[2]; 5361 __u64 reserved[2]; 5779 }; 5362 }; 5780 5363 5781 Copies Memory Tagging Extension (MTE) tags to 5364 Copies Memory Tagging Extension (MTE) tags to/from guest tag memory. The 5782 ``guest_ipa`` and ``length`` fields must be ` !! 5365 ``guest_ipa`` and ``length`` fields must be ``PAGE_SIZE`` aligned. The ``addr`` 5783 ``length`` must not be bigger than 2^31 - PAG << 5784 field must point to a buffer which the tags w 5366 field must point to a buffer which the tags will be copied to or from. 5785 5367 5786 ``flags`` specifies the direction of copy, ei 5368 ``flags`` specifies the direction of copy, either ``KVM_ARM_TAGS_TO_GUEST`` or 5787 ``KVM_ARM_TAGS_FROM_GUEST``. 5369 ``KVM_ARM_TAGS_FROM_GUEST``. 5788 5370 5789 The size of the buffer to store the tags is ` 5371 The size of the buffer to store the tags is ``(length / 16)`` bytes 5790 (granules in MTE are 16 bytes long). Each byt 5372 (granules in MTE are 16 bytes long). Each byte contains a single tag 5791 value. This matches the format of ``PTRACE_PE 5373 value. This matches the format of ``PTRACE_PEEKMTETAGS`` and 5792 ``PTRACE_POKEMTETAGS``. 5374 ``PTRACE_POKEMTETAGS``. 5793 5375 5794 If an error occurs before any data is copied 5376 If an error occurs before any data is copied then a negative error code is 5795 returned. If some tags have been copied befor 5377 returned. If some tags have been copied before an error occurs then the number 5796 of bytes successfully copied is returned. If 5378 of bytes successfully copied is returned. If the call completes successfully 5797 then ``length`` is returned. 5379 then ``length`` is returned. 5798 5380 5799 4.131 KVM_GET_SREGS2 5381 4.131 KVM_GET_SREGS2 5800 -------------------- 5382 -------------------- 5801 5383 5802 :Capability: KVM_CAP_SREGS2 5384 :Capability: KVM_CAP_SREGS2 5803 :Architectures: x86 5385 :Architectures: x86 5804 :Type: vcpu ioctl 5386 :Type: vcpu ioctl 5805 :Parameters: struct kvm_sregs2 (out) 5387 :Parameters: struct kvm_sregs2 (out) 5806 :Returns: 0 on success, -1 on error 5388 :Returns: 0 on success, -1 on error 5807 5389 5808 Reads special registers from the vcpu. 5390 Reads special registers from the vcpu. 5809 This ioctl (when supported) replaces the KVM_ 5391 This ioctl (when supported) replaces the KVM_GET_SREGS. 5810 5392 5811 :: 5393 :: 5812 5394 5813 struct kvm_sregs2 { 5395 struct kvm_sregs2 { 5814 /* out (KVM_GET_SREGS2) / in 5396 /* out (KVM_GET_SREGS2) / in (KVM_SET_SREGS2) */ 5815 struct kvm_segment cs, ds, es 5397 struct kvm_segment cs, ds, es, fs, gs, ss; 5816 struct kvm_segment tr, ldt; 5398 struct kvm_segment tr, ldt; 5817 struct kvm_dtable gdt, idt; 5399 struct kvm_dtable gdt, idt; 5818 __u64 cr0, cr2, cr3, cr4, cr8 5400 __u64 cr0, cr2, cr3, cr4, cr8; 5819 __u64 efer; 5401 __u64 efer; 5820 __u64 apic_base; 5402 __u64 apic_base; 5821 __u64 flags; 5403 __u64 flags; 5822 __u64 pdptrs[4]; 5404 __u64 pdptrs[4]; 5823 }; 5405 }; 5824 5406 5825 flags values for ``kvm_sregs2``: 5407 flags values for ``kvm_sregs2``: 5826 5408 5827 ``KVM_SREGS2_FLAGS_PDPTRS_VALID`` 5409 ``KVM_SREGS2_FLAGS_PDPTRS_VALID`` 5828 5410 5829 Indicates that the struct contains valid PD !! 5411 Indicates thats the struct contain valid PDPTR values. 5830 5412 5831 5413 5832 4.132 KVM_SET_SREGS2 5414 4.132 KVM_SET_SREGS2 5833 -------------------- 5415 -------------------- 5834 5416 5835 :Capability: KVM_CAP_SREGS2 5417 :Capability: KVM_CAP_SREGS2 5836 :Architectures: x86 5418 :Architectures: x86 5837 :Type: vcpu ioctl 5419 :Type: vcpu ioctl 5838 :Parameters: struct kvm_sregs2 (in) 5420 :Parameters: struct kvm_sregs2 (in) 5839 :Returns: 0 on success, -1 on error 5421 :Returns: 0 on success, -1 on error 5840 5422 5841 Writes special registers into the vcpu. 5423 Writes special registers into the vcpu. 5842 See KVM_GET_SREGS2 for the data structures. 5424 See KVM_GET_SREGS2 for the data structures. 5843 This ioctl (when supported) replaces the KVM_ 5425 This ioctl (when supported) replaces the KVM_SET_SREGS. 5844 5426 5845 4.133 KVM_GET_STATS_FD 5427 4.133 KVM_GET_STATS_FD 5846 ---------------------- 5428 ---------------------- 5847 5429 5848 :Capability: KVM_CAP_STATS_BINARY_FD 5430 :Capability: KVM_CAP_STATS_BINARY_FD 5849 :Architectures: all 5431 :Architectures: all 5850 :Type: vm ioctl, vcpu ioctl 5432 :Type: vm ioctl, vcpu ioctl 5851 :Parameters: none 5433 :Parameters: none 5852 :Returns: statistics file descriptor on succe 5434 :Returns: statistics file descriptor on success, < 0 on error 5853 5435 5854 Errors: 5436 Errors: 5855 5437 5856 ====== ================================ 5438 ====== ====================================================== 5857 ENOMEM if the fd could not be created d 5439 ENOMEM if the fd could not be created due to lack of memory 5858 EMFILE if the number of opened files ex 5440 EMFILE if the number of opened files exceeds the limit 5859 ====== ================================ 5441 ====== ====================================================== 5860 5442 5861 The returned file descriptor can be used to r 5443 The returned file descriptor can be used to read VM/vCPU statistics data in 5862 binary format. The data in the file descripto 5444 binary format. The data in the file descriptor consists of four blocks 5863 organized as follows: 5445 organized as follows: 5864 5446 5865 +-------------+ 5447 +-------------+ 5866 | Header | 5448 | Header | 5867 +-------------+ 5449 +-------------+ 5868 | id string | 5450 | id string | 5869 +-------------+ 5451 +-------------+ 5870 | Descriptors | 5452 | Descriptors | 5871 +-------------+ 5453 +-------------+ 5872 | Stats Data | 5454 | Stats Data | 5873 +-------------+ 5455 +-------------+ 5874 5456 5875 Apart from the header starting at offset 0, p 5457 Apart from the header starting at offset 0, please be aware that it is 5876 not guaranteed that the four blocks are adjac 5458 not guaranteed that the four blocks are adjacent or in the above order; 5877 the offsets of the id, descriptors and data b 5459 the offsets of the id, descriptors and data blocks are found in the 5878 header. However, all four blocks are aligned 5460 header. However, all four blocks are aligned to 64 bit offsets in the 5879 file and they do not overlap. 5461 file and they do not overlap. 5880 5462 5881 All blocks except the data block are immutabl 5463 All blocks except the data block are immutable. Userspace can read them 5882 only one time after retrieving the file descr 5464 only one time after retrieving the file descriptor, and then use ``pread`` or 5883 ``lseek`` to read the statistics repeatedly. 5465 ``lseek`` to read the statistics repeatedly. 5884 5466 5885 All data is in system endianness. 5467 All data is in system endianness. 5886 5468 5887 The format of the header is as follows:: 5469 The format of the header is as follows:: 5888 5470 5889 struct kvm_stats_header { 5471 struct kvm_stats_header { 5890 __u32 flags; 5472 __u32 flags; 5891 __u32 name_size; 5473 __u32 name_size; 5892 __u32 num_desc; 5474 __u32 num_desc; 5893 __u32 id_offset; 5475 __u32 id_offset; 5894 __u32 desc_offset; 5476 __u32 desc_offset; 5895 __u32 data_offset; 5477 __u32 data_offset; 5896 }; 5478 }; 5897 5479 5898 The ``flags`` field is not used at the moment 5480 The ``flags`` field is not used at the moment. It is always read as 0. 5899 5481 5900 The ``name_size`` field is the size (in byte) 5482 The ``name_size`` field is the size (in byte) of the statistics name string 5901 (including trailing '\0') which is contained 5483 (including trailing '\0') which is contained in the "id string" block and 5902 appended at the end of every descriptor. 5484 appended at the end of every descriptor. 5903 5485 5904 The ``num_desc`` field is the number of descr 5486 The ``num_desc`` field is the number of descriptors that are included in the 5905 descriptor block. (The actual number of valu 5487 descriptor block. (The actual number of values in the data block may be 5906 larger, since each descriptor may comprise mo 5488 larger, since each descriptor may comprise more than one value). 5907 5489 5908 The ``id_offset`` field is the offset of the 5490 The ``id_offset`` field is the offset of the id string from the start of the 5909 file indicated by the file descriptor. It is 5491 file indicated by the file descriptor. It is a multiple of 8. 5910 5492 5911 The ``desc_offset`` field is the offset of th 5493 The ``desc_offset`` field is the offset of the Descriptors block from the start 5912 of the file indicated by the file descriptor. 5494 of the file indicated by the file descriptor. It is a multiple of 8. 5913 5495 5914 The ``data_offset`` field is the offset of th 5496 The ``data_offset`` field is the offset of the Stats Data block from the start 5915 of the file indicated by the file descriptor. 5497 of the file indicated by the file descriptor. It is a multiple of 8. 5916 5498 5917 The id string block contains a string which i 5499 The id string block contains a string which identifies the file descriptor on 5918 which KVM_GET_STATS_FD was invoked. The size 5500 which KVM_GET_STATS_FD was invoked. The size of the block, including the 5919 trailing ``'\0'``, is indicated by the ``name 5501 trailing ``'\0'``, is indicated by the ``name_size`` field in the header. 5920 5502 5921 The descriptors block is only needed to be re 5503 The descriptors block is only needed to be read once for the lifetime of the 5922 file descriptor contains a sequence of ``stru 5504 file descriptor contains a sequence of ``struct kvm_stats_desc``, each followed 5923 by a string of size ``name_size``. 5505 by a string of size ``name_size``. 5924 :: 5506 :: 5925 5507 5926 #define KVM_STATS_TYPE_SHIFT 5508 #define KVM_STATS_TYPE_SHIFT 0 5927 #define KVM_STATS_TYPE_MASK 5509 #define KVM_STATS_TYPE_MASK (0xF << KVM_STATS_TYPE_SHIFT) 5928 #define KVM_STATS_TYPE_CUMULATIVE 5510 #define KVM_STATS_TYPE_CUMULATIVE (0x0 << KVM_STATS_TYPE_SHIFT) 5929 #define KVM_STATS_TYPE_INSTANT 5511 #define KVM_STATS_TYPE_INSTANT (0x1 << KVM_STATS_TYPE_SHIFT) 5930 #define KVM_STATS_TYPE_PEAK 5512 #define KVM_STATS_TYPE_PEAK (0x2 << KVM_STATS_TYPE_SHIFT) 5931 #define KVM_STATS_TYPE_LINEAR_HIST 5513 #define KVM_STATS_TYPE_LINEAR_HIST (0x3 << KVM_STATS_TYPE_SHIFT) 5932 #define KVM_STATS_TYPE_LOG_HIST 5514 #define KVM_STATS_TYPE_LOG_HIST (0x4 << KVM_STATS_TYPE_SHIFT) 5933 #define KVM_STATS_TYPE_MAX 5515 #define KVM_STATS_TYPE_MAX KVM_STATS_TYPE_LOG_HIST 5934 5516 5935 #define KVM_STATS_UNIT_SHIFT 5517 #define KVM_STATS_UNIT_SHIFT 4 5936 #define KVM_STATS_UNIT_MASK 5518 #define KVM_STATS_UNIT_MASK (0xF << KVM_STATS_UNIT_SHIFT) 5937 #define KVM_STATS_UNIT_NONE 5519 #define KVM_STATS_UNIT_NONE (0x0 << KVM_STATS_UNIT_SHIFT) 5938 #define KVM_STATS_UNIT_BYTES 5520 #define KVM_STATS_UNIT_BYTES (0x1 << KVM_STATS_UNIT_SHIFT) 5939 #define KVM_STATS_UNIT_SECONDS 5521 #define KVM_STATS_UNIT_SECONDS (0x2 << KVM_STATS_UNIT_SHIFT) 5940 #define KVM_STATS_UNIT_CYCLES 5522 #define KVM_STATS_UNIT_CYCLES (0x3 << KVM_STATS_UNIT_SHIFT) 5941 #define KVM_STATS_UNIT_BOOLEAN !! 5523 #define KVM_STATS_UNIT_MAX KVM_STATS_UNIT_CYCLES 5942 #define KVM_STATS_UNIT_MAX << 5943 5524 5944 #define KVM_STATS_BASE_SHIFT 5525 #define KVM_STATS_BASE_SHIFT 8 5945 #define KVM_STATS_BASE_MASK 5526 #define KVM_STATS_BASE_MASK (0xF << KVM_STATS_BASE_SHIFT) 5946 #define KVM_STATS_BASE_POW10 5527 #define KVM_STATS_BASE_POW10 (0x0 << KVM_STATS_BASE_SHIFT) 5947 #define KVM_STATS_BASE_POW2 5528 #define KVM_STATS_BASE_POW2 (0x1 << KVM_STATS_BASE_SHIFT) 5948 #define KVM_STATS_BASE_MAX 5529 #define KVM_STATS_BASE_MAX KVM_STATS_BASE_POW2 5949 5530 5950 struct kvm_stats_desc { 5531 struct kvm_stats_desc { 5951 __u32 flags; 5532 __u32 flags; 5952 __s16 exponent; 5533 __s16 exponent; 5953 __u16 size; 5534 __u16 size; 5954 __u32 offset; 5535 __u32 offset; 5955 __u32 bucket_size; 5536 __u32 bucket_size; 5956 char name[]; 5537 char name[]; 5957 }; 5538 }; 5958 5539 5959 The ``flags`` field contains the type and uni 5540 The ``flags`` field contains the type and unit of the statistics data described 5960 by this descriptor. Its endianness is CPU nat 5541 by this descriptor. Its endianness is CPU native. 5961 The following flags are supported: 5542 The following flags are supported: 5962 5543 5963 Bits 0-3 of ``flags`` encode the type: 5544 Bits 0-3 of ``flags`` encode the type: 5964 5545 5965 * ``KVM_STATS_TYPE_CUMULATIVE`` 5546 * ``KVM_STATS_TYPE_CUMULATIVE`` 5966 The statistics reports a cumulative count 5547 The statistics reports a cumulative count. The value of data can only be increased. 5967 Most of the counters used in KVM are of t 5548 Most of the counters used in KVM are of this type. 5968 The corresponding ``size`` field for this 5549 The corresponding ``size`` field for this type is always 1. 5969 All cumulative statistics data are read/w 5550 All cumulative statistics data are read/write. 5970 * ``KVM_STATS_TYPE_INSTANT`` 5551 * ``KVM_STATS_TYPE_INSTANT`` 5971 The statistics reports an instantaneous v 5552 The statistics reports an instantaneous value. Its value can be increased or 5972 decreased. This type is usually used as a 5553 decreased. This type is usually used as a measurement of some resources, 5973 like the number of dirty pages, the numbe 5554 like the number of dirty pages, the number of large pages, etc. 5974 All instant statistics are read only. 5555 All instant statistics are read only. 5975 The corresponding ``size`` field for this 5556 The corresponding ``size`` field for this type is always 1. 5976 * ``KVM_STATS_TYPE_PEAK`` 5557 * ``KVM_STATS_TYPE_PEAK`` 5977 The statistics data reports a peak value, 5558 The statistics data reports a peak value, for example the maximum number 5978 of items in a hash table bucket, the long 5559 of items in a hash table bucket, the longest time waited and so on. 5979 The value of data can only be increased. 5560 The value of data can only be increased. 5980 The corresponding ``size`` field for this 5561 The corresponding ``size`` field for this type is always 1. 5981 * ``KVM_STATS_TYPE_LINEAR_HIST`` 5562 * ``KVM_STATS_TYPE_LINEAR_HIST`` 5982 The statistic is reported as a linear his 5563 The statistic is reported as a linear histogram. The number of 5983 buckets is specified by the ``size`` fiel 5564 buckets is specified by the ``size`` field. The size of buckets is specified 5984 by the ``hist_param`` field. The range of 5565 by the ``hist_param`` field. The range of the Nth bucket (1 <= N < ``size``) 5985 is [``hist_param``*(N-1), ``hist_param``* 5566 is [``hist_param``*(N-1), ``hist_param``*N), while the range of the last 5986 bucket is [``hist_param``*(``size``-1), + 5567 bucket is [``hist_param``*(``size``-1), +INF). (+INF means positive infinity 5987 value.) !! 5568 value.) The bucket value indicates how many samples fell in the bucket's range. 5988 * ``KVM_STATS_TYPE_LOG_HIST`` 5569 * ``KVM_STATS_TYPE_LOG_HIST`` 5989 The statistic is reported as a logarithmi 5570 The statistic is reported as a logarithmic histogram. The number of 5990 buckets is specified by the ``size`` fiel 5571 buckets is specified by the ``size`` field. The range of the first bucket is 5991 [0, 1), while the range of the last bucke 5572 [0, 1), while the range of the last bucket is [pow(2, ``size``-2), +INF). 5992 Otherwise, The Nth bucket (1 < N < ``size 5573 Otherwise, The Nth bucket (1 < N < ``size``) covers 5993 [pow(2, N-2), pow(2, N-1)). !! 5574 [pow(2, N-2), pow(2, N-1)). The bucket value indicates how many samples fell >> 5575 in the bucket's range. 5994 5576 5995 Bits 4-7 of ``flags`` encode the unit: 5577 Bits 4-7 of ``flags`` encode the unit: 5996 5578 5997 * ``KVM_STATS_UNIT_NONE`` 5579 * ``KVM_STATS_UNIT_NONE`` 5998 There is no unit for the value of statist 5580 There is no unit for the value of statistics data. This usually means that 5999 the value is a simple counter of an event 5581 the value is a simple counter of an event. 6000 * ``KVM_STATS_UNIT_BYTES`` 5582 * ``KVM_STATS_UNIT_BYTES`` 6001 It indicates that the statistics data is 5583 It indicates that the statistics data is used to measure memory size, in the 6002 unit of Byte, KiByte, MiByte, GiByte, etc 5584 unit of Byte, KiByte, MiByte, GiByte, etc. The unit of the data is 6003 determined by the ``exponent`` field in t 5585 determined by the ``exponent`` field in the descriptor. 6004 * ``KVM_STATS_UNIT_SECONDS`` 5586 * ``KVM_STATS_UNIT_SECONDS`` 6005 It indicates that the statistics data is 5587 It indicates that the statistics data is used to measure time or latency. 6006 * ``KVM_STATS_UNIT_CYCLES`` 5588 * ``KVM_STATS_UNIT_CYCLES`` 6007 It indicates that the statistics data is 5589 It indicates that the statistics data is used to measure CPU clock cycles. 6008 * ``KVM_STATS_UNIT_BOOLEAN`` << 6009 It indicates that the statistic will alwa << 6010 statistics of "peak" type will never go b << 6011 statistics can be linear histograms (with << 6012 histograms. << 6013 << 6014 Note that, in the case of histograms, the uni << 6015 ranges, while the bucket value indicates how << 6016 bucket's range. << 6017 5590 6018 Bits 8-11 of ``flags``, together with ``expon 5591 Bits 8-11 of ``flags``, together with ``exponent``, encode the scale of the 6019 unit: 5592 unit: 6020 5593 6021 * ``KVM_STATS_BASE_POW10`` 5594 * ``KVM_STATS_BASE_POW10`` 6022 The scale is based on power of 10. It is 5595 The scale is based on power of 10. It is used for measurement of time and 6023 CPU clock cycles. For example, an expone 5596 CPU clock cycles. For example, an exponent of -9 can be used with 6024 ``KVM_STATS_UNIT_SECONDS`` to express tha 5597 ``KVM_STATS_UNIT_SECONDS`` to express that the unit is nanoseconds. 6025 * ``KVM_STATS_BASE_POW2`` 5598 * ``KVM_STATS_BASE_POW2`` 6026 The scale is based on power of 2. It is u 5599 The scale is based on power of 2. It is used for measurement of memory size. 6027 For example, an exponent of 20 can be use 5600 For example, an exponent of 20 can be used with ``KVM_STATS_UNIT_BYTES`` to 6028 express that the unit is MiB. 5601 express that the unit is MiB. 6029 5602 6030 The ``size`` field is the number of values of 5603 The ``size`` field is the number of values of this statistics data. Its 6031 value is usually 1 for most of simple statist 5604 value is usually 1 for most of simple statistics. 1 means it contains an 6032 unsigned 64bit data. 5605 unsigned 64bit data. 6033 5606 6034 The ``offset`` field is the offset from the s 5607 The ``offset`` field is the offset from the start of Data Block to the start of 6035 the corresponding statistics data. 5608 the corresponding statistics data. 6036 5609 6037 The ``bucket_size`` field is used as a parame 5610 The ``bucket_size`` field is used as a parameter for histogram statistics data. 6038 It is only used by linear histogram statistic 5611 It is only used by linear histogram statistics data, specifying the size of a 6039 bucket in the unit expressed by bits 4-11 of !! 5612 bucket. 6040 5613 6041 The ``name`` field is the name string of the 5614 The ``name`` field is the name string of the statistics data. The name string 6042 starts at the end of ``struct kvm_stats_desc` 5615 starts at the end of ``struct kvm_stats_desc``. The maximum length including 6043 the trailing ``'\0'``, is indicated by ``name 5616 the trailing ``'\0'``, is indicated by ``name_size`` in the header. 6044 5617 6045 The Stats Data block contains an array of 64- 5618 The Stats Data block contains an array of 64-bit values in the same order 6046 as the descriptors in Descriptors block. 5619 as the descriptors in Descriptors block. 6047 5620 6048 4.134 KVM_GET_XSAVE2 5621 4.134 KVM_GET_XSAVE2 6049 -------------------- 5622 -------------------- 6050 5623 6051 :Capability: KVM_CAP_XSAVE2 5624 :Capability: KVM_CAP_XSAVE2 6052 :Architectures: x86 5625 :Architectures: x86 6053 :Type: vcpu ioctl 5626 :Type: vcpu ioctl 6054 :Parameters: struct kvm_xsave (out) 5627 :Parameters: struct kvm_xsave (out) 6055 :Returns: 0 on success, -1 on error 5628 :Returns: 0 on success, -1 on error 6056 5629 6057 5630 6058 :: 5631 :: 6059 5632 6060 struct kvm_xsave { 5633 struct kvm_xsave { 6061 __u32 region[1024]; 5634 __u32 region[1024]; 6062 __u32 extra[0]; 5635 __u32 extra[0]; 6063 }; 5636 }; 6064 5637 6065 This ioctl would copy current vcpu's xsave st 5638 This ioctl would copy current vcpu's xsave struct to the userspace. It 6066 copies as many bytes as are returned by KVM_C 5639 copies as many bytes as are returned by KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) 6067 when invoked on the vm file descriptor. The s 5640 when invoked on the vm file descriptor. The size value returned by 6068 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will alwa 5641 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will always be at least 4096. 6069 Currently, it is only greater than 4096 if a 5642 Currently, it is only greater than 4096 if a dynamic feature has been 6070 enabled with ``arch_prctl()``, but this may c 5643 enabled with ``arch_prctl()``, but this may change in the future. 6071 5644 6072 The offsets of the state save areas in struct 5645 The offsets of the state save areas in struct kvm_xsave follow the contents 6073 of CPUID leaf 0xD on the host. 5646 of CPUID leaf 0xD on the host. 6074 5647 6075 4.135 KVM_XEN_HVM_EVTCHN_SEND << 6076 ----------------------------- << 6077 << 6078 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO << 6079 :Architectures: x86 << 6080 :Type: vm ioctl << 6081 :Parameters: struct kvm_irq_routing_xen_evtch << 6082 :Returns: 0 on success, < 0 on error << 6083 << 6084 << 6085 :: << 6086 << 6087 struct kvm_irq_routing_xen_evtchn { << 6088 __u32 port; << 6089 __u32 vcpu; << 6090 __u32 priority; << 6091 }; << 6092 << 6093 This ioctl injects an event channel interrupt << 6094 << 6095 4.136 KVM_S390_PV_CPU_COMMAND << 6096 ----------------------------- << 6097 << 6098 :Capability: KVM_CAP_S390_PROTECTED_DUMP << 6099 :Architectures: s390 << 6100 :Type: vcpu ioctl << 6101 :Parameters: none << 6102 :Returns: 0 on success, < 0 on error << 6103 << 6104 This ioctl closely mirrors `KVM_S390_PV_COMMA << 6105 for vcpus. It re-uses the kvm_s390_pv_dmp str << 6106 the command ids. << 6107 << 6108 **command:** << 6109 << 6110 KVM_PV_DUMP << 6111 Presents an API that provides calls which f << 6112 of a protected VM. << 6113 << 6114 **subcommand:** << 6115 << 6116 KVM_PV_DUMP_CPU << 6117 Provides encrypted dump data like register << 6118 The length of the returned data is provided << 6119 << 6120 4.137 KVM_S390_ZPCI_OP << 6121 ---------------------- << 6122 << 6123 :Capability: KVM_CAP_S390_ZPCI_OP << 6124 :Architectures: s390 << 6125 :Type: vm ioctl << 6126 :Parameters: struct kvm_s390_zpci_op (in) << 6127 :Returns: 0 on success, <0 on error << 6128 << 6129 Used to manage hardware-assisted virtualizati << 6130 << 6131 Parameters are specified via the following st << 6132 << 6133 struct kvm_s390_zpci_op { << 6134 /* in */ << 6135 __u32 fh; /* target dev << 6136 __u8 op; /* operation << 6137 __u8 pad[3]; << 6138 union { << 6139 /* for KVM_S390_ZPCIOP_REG_AE << 6140 struct { << 6141 __u64 ibv; /* Gu << 6142 __u64 sb; /* Gu << 6143 __u32 flags; << 6144 __u32 noi; /* Nu << 6145 __u8 isc; /* Gu << 6146 __u8 sbo; /* Of << 6147 __u16 pad; << 6148 } reg_aen; << 6149 __u64 reserved[8]; << 6150 } u; << 6151 }; << 6152 << 6153 The type of operation is specified in the "op << 6154 KVM_S390_ZPCIOP_REG_AEN is used to register t << 6155 notification interpretation, which will allow << 6156 events directly to the vm, with KVM providing << 6157 KVM_S390_ZPCIOP_DEREG_AEN is used to subseque << 6158 adapter event notifications. << 6159 << 6160 The target zPCI function must also be specifi << 6161 KVM_S390_ZPCIOP_REG_AEN operation, additional << 6162 delivery must be provided via the "reg_aen" s << 6163 << 6164 The "pad" and "reserved" fields may be used f << 6165 set to 0s by userspace. << 6166 << 6167 4.138 KVM_ARM_SET_COUNTER_OFFSET << 6168 -------------------------------- << 6169 << 6170 :Capability: KVM_CAP_COUNTER_OFFSET << 6171 :Architectures: arm64 << 6172 :Type: vm ioctl << 6173 :Parameters: struct kvm_arm_counter_offset (i << 6174 :Returns: 0 on success, < 0 on error << 6175 << 6176 This capability indicates that userspace is a << 6177 offset to both the virtual and physical count << 6178 using the KVM_ARM_SET_CNT_OFFSET ioctl and th << 6179 << 6180 :: << 6181 << 6182 struct kvm_arm_counter_offset { << 6183 __u64 counter_offset; << 6184 __u64 reserved; << 6185 }; << 6186 << 6187 The offset describes a number of counter cycl << 6188 both virtual and physical counter views (simi << 6189 CNTVOFF_EL2 and CNTPOFF_EL2 system registers, << 6190 always applies to all vcpus (already created << 6191 for this VM. << 6192 << 6193 It is userspace's responsibility to compute t << 6194 on previous values of the guest counters. << 6195 << 6196 Any value other than 0 for the "reserved" fie << 6197 (-EINVAL) being returned. This ioctl can also << 6198 ioctl is issued concurrently. << 6199 << 6200 Note that using this ioctl results in KVM ign << 6201 writes to the CNTVCT_EL0 and CNTPCT_EL0 regis << 6202 interface. No error will be returned, but the << 6203 applied. << 6204 << 6205 .. _KVM_ARM_GET_REG_WRITABLE_MASKS: << 6206 << 6207 4.139 KVM_ARM_GET_REG_WRITABLE_MASKS << 6208 ------------------------------------------- << 6209 << 6210 :Capability: KVM_CAP_ARM_SUPPORTED_REG_MASK_R << 6211 :Architectures: arm64 << 6212 :Type: vm ioctl << 6213 :Parameters: struct reg_mask_range (in/out) << 6214 :Returns: 0 on success, < 0 on error << 6215 << 6216 << 6217 :: << 6218 << 6219 #define KVM_ARM_FEATURE_ID_RANGE << 6220 #define KVM_ARM_FEATURE_ID_RANGE_SIZE << 6221 << 6222 struct reg_mask_range { << 6223 __u64 addr; /* Po << 6224 __u32 range; /* Re << 6225 __u32 reserved[13]; << 6226 }; << 6227 << 6228 This ioctl copies the writable masks for a se << 6229 userspace. << 6230 << 6231 The ``addr`` field is a pointer to the destin << 6232 the writable masks. << 6233 << 6234 The ``range`` field indicates the requested r << 6235 ``KVM_CHECK_EXTENSION`` for the ``KVM_CAP_ARM << 6236 capability returns the supported ranges, expr << 6237 flag's bit index represents a possible value << 6238 All other values are reserved for future use << 6239 << 6240 The ``reserved[13]`` array is reserved for fu << 6241 KVM may return an error. << 6242 << 6243 KVM_ARM_FEATURE_ID_RANGE (0) << 6244 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ << 6245 << 6246 The Feature ID range is defined as the AArch6 << 6247 op0==3, op1=={0, 1, 3}, CRn==0, CRm=={0-7}, o << 6248 << 6249 The mask returned array pointed to by ``addr` << 6250 ``ARM64_FEATURE_ID_RANGE_IDX(op0, op1, crn, c << 6251 to know what fields can be changed for the sy << 6252 ``op0, op1, crn, crm, op2``. KVM rejects ID r << 6253 superset of the features supported by the sys << 6254 << 6255 4.140 KVM_SET_USER_MEMORY_REGION2 << 6256 --------------------------------- << 6257 << 6258 :Capability: KVM_CAP_USER_MEMORY2 << 6259 :Architectures: all << 6260 :Type: vm ioctl << 6261 :Parameters: struct kvm_userspace_memory_regi << 6262 :Returns: 0 on success, -1 on error << 6263 << 6264 KVM_SET_USER_MEMORY_REGION2 is an extension t << 6265 allows mapping guest_memfd memory into a gues << 6266 KVM_SET_USER_MEMORY_REGION identically. User << 6267 in flags to have KVM bind the memory region t << 6268 [guest_memfd_offset, guest_memfd_offset + mem << 6269 must point at a file created via KVM_CREATE_G << 6270 the target range must not be bound to any oth << 6271 bounds checks apply (use common sense). << 6272 << 6273 :: << 6274 << 6275 struct kvm_userspace_memory_region2 { << 6276 __u32 slot; << 6277 __u32 flags; << 6278 __u64 guest_phys_addr; << 6279 __u64 memory_size; /* bytes */ << 6280 __u64 userspace_addr; /* start of the << 6281 __u64 guest_memfd_offset; << 6282 __u32 guest_memfd; << 6283 __u32 pad1; << 6284 __u64 pad2[14]; << 6285 }; << 6286 << 6287 A KVM_MEM_GUEST_MEMFD region _must_ have a va << 6288 userspace_addr (shared memory). However, "va << 6289 means that the address itself must be a legal << 6290 mapping for userspace_addr is not required to << 6291 KVM_SET_USER_MEMORY_REGION2, e.g. shared memo << 6292 on-demand. << 6293 << 6294 When mapping a gfn into the guest, KVM select << 6295 userspace_addr vs. guest_memfd, based on the << 6296 state. At VM creation time, all memory is sh << 6297 is '0' for all gfns. Userspace can control w << 6298 toggling KVM_MEMORY_ATTRIBUTE_PRIVATE via KVM << 6299 << 6300 S390: << 6301 ^^^^^ << 6302 << 6303 Returns -EINVAL if the VM has the KVM_VM_S390 << 6304 Returns -EINVAL if called on a protected VM. << 6305 << 6306 4.141 KVM_SET_MEMORY_ATTRIBUTES << 6307 ------------------------------- << 6308 << 6309 :Capability: KVM_CAP_MEMORY_ATTRIBUTES << 6310 :Architectures: x86 << 6311 :Type: vm ioctl << 6312 :Parameters: struct kvm_memory_attributes (in << 6313 :Returns: 0 on success, <0 on error << 6314 << 6315 KVM_SET_MEMORY_ATTRIBUTES allows userspace to << 6316 of guest physical memory. << 6317 << 6318 :: << 6319 << 6320 struct kvm_memory_attributes { << 6321 __u64 address; << 6322 __u64 size; << 6323 __u64 attributes; << 6324 __u64 flags; << 6325 }; << 6326 << 6327 #define KVM_MEMORY_ATTRIBUTE_PRIVATE << 6328 << 6329 The address and size must be page aligned. T << 6330 retrieved via ioctl(KVM_CHECK_EXTENSION) on K << 6331 executed on a VM, KVM_CAP_MEMORY_ATTRIBUTES p << 6332 supported by that VM. If executed at system << 6333 returns all attributes supported by KVM. The << 6334 time is KVM_MEMORY_ATTRIBUTE_PRIVATE, which m << 6335 guest private memory. << 6336 << 6337 Note, there is no "get" API. Userspace is re << 6338 the state of a gfn/page as needed. << 6339 << 6340 The "flags" field is reserved for future exte << 6341 << 6342 4.142 KVM_CREATE_GUEST_MEMFD << 6343 ---------------------------- << 6344 << 6345 :Capability: KVM_CAP_GUEST_MEMFD << 6346 :Architectures: none << 6347 :Type: vm ioctl << 6348 :Parameters: struct kvm_create_guest_memfd(in << 6349 :Returns: A file descriptor on success, <0 on << 6350 << 6351 KVM_CREATE_GUEST_MEMFD creates an anonymous f << 6352 that refers to it. guest_memfd files are rou << 6353 via memfd_create(), e.g. guest_memfd files li << 6354 and are automatically released when the last << 6355 "regular" memfd_create() files, guest_memfd f << 6356 virtual machine (see below), cannot be mapped << 6357 and cannot be resized (guest_memfd files do << 6358 << 6359 :: << 6360 << 6361 struct kvm_create_guest_memfd { << 6362 __u64 size; << 6363 __u64 flags; << 6364 __u64 reserved[6]; << 6365 }; << 6366 << 6367 Conceptually, the inode backing a guest_memfd << 6368 i.e. is coupled to the virtual machine as a t << 6369 file itself, which is bound to a "struct kvm" << 6370 underlying memory, e.g. effectively provides << 6371 to host memory. This allows for use cases wh << 6372 used to manage a single virtual machine, e.g. << 6373 migration of a virtual machine. << 6374 << 6375 KVM currently only supports mapping guest_mem << 6376 and more specifically via the guest_memfd and << 6377 "struct kvm_userspace_memory_region2", where << 6378 into the guest_memfd instance. For a given g << 6379 most one mapping per page, i.e. binding multi << 6380 guest_memfd range is not allowed (any number << 6381 a single guest_memfd file, but the bound rang << 6382 << 6383 See KVM_SET_USER_MEMORY_REGION2 for additiona << 6384 << 6385 4.143 KVM_PRE_FAULT_MEMORY << 6386 --------------------------- << 6387 << 6388 :Capability: KVM_CAP_PRE_FAULT_MEMORY << 6389 :Architectures: none << 6390 :Type: vcpu ioctl << 6391 :Parameters: struct kvm_pre_fault_memory (in/ << 6392 :Returns: 0 if at least one page is processed << 6393 << 6394 Errors: << 6395 << 6396 ========== ================================ << 6397 EINVAL The specified `gpa` and `size` w << 6398 page aligned, causes an overflow << 6399 ENOENT The specified `gpa` is outside d << 6400 EINTR An unmasked signal is pending an << 6401 EFAULT The parameter address was invali << 6402 EOPNOTSUPP Mapping memory for a GPA is unsu << 6403 hypervisor, and/or for the curre << 6404 EIO unexpected error conditions (als << 6405 ========== ================================ << 6406 << 6407 :: << 6408 << 6409 struct kvm_pre_fault_memory { << 6410 /* in/out */ << 6411 __u64 gpa; << 6412 __u64 size; << 6413 /* in */ << 6414 __u64 flags; << 6415 __u64 padding[5]; << 6416 }; << 6417 << 6418 KVM_PRE_FAULT_MEMORY populates KVM's stage-2 << 6419 for the current vCPU state. KVM maps memory << 6420 stage-2 read page fault, e.g. faults in memor << 6421 CoW. However, KVM does not mark any newly cr << 6422 << 6423 In the case of confidential VM types where th << 6424 private guest memory before the guest is 'fin << 6425 should only be issued after completing all th << 6426 guest into a 'finalized' state so that the ab << 6427 ensured. << 6428 << 6429 In some cases, multiple vCPUs might share the << 6430 case, the ioctl can be called in parallel. << 6431 << 6432 When the ioctl returns, the input values are << 6433 remaining range. If `size` > 0 on return, th << 6434 the ioctl again with the same `struct kvm_map << 6435 << 6436 Shadow page tables cannot support this ioctl << 6437 are indexed by virtual address or nested gues << 6438 Calling this ioctl when the guest is using sh << 6439 example because it is running a nested guest << 6440 will fail with `EOPNOTSUPP` even if `KVM_CHEC << 6441 the capability to be present. << 6442 << 6443 `flags` must currently be zero. << 6444 << 6445 5648 6446 5. The kvm_run structure 5649 5. The kvm_run structure 6447 ======================== 5650 ======================== 6448 5651 6449 Application code obtains a pointer to the kvm 5652 Application code obtains a pointer to the kvm_run structure by 6450 mmap()ing a vcpu fd. From that point, applic 5653 mmap()ing a vcpu fd. From that point, application code can control 6451 execution by changing fields in kvm_run prior 5654 execution by changing fields in kvm_run prior to calling the KVM_RUN 6452 ioctl, and obtain information about the reaso 5655 ioctl, and obtain information about the reason KVM_RUN returned by 6453 looking up structure members. 5656 looking up structure members. 6454 5657 6455 :: 5658 :: 6456 5659 6457 struct kvm_run { 5660 struct kvm_run { 6458 /* in */ 5661 /* in */ 6459 __u8 request_interrupt_window; 5662 __u8 request_interrupt_window; 6460 5663 6461 Request that KVM_RUN return when it becomes p 5664 Request that KVM_RUN return when it becomes possible to inject external 6462 interrupts into the guest. Useful in conjunc 5665 interrupts into the guest. Useful in conjunction with KVM_INTERRUPT. 6463 5666 6464 :: 5667 :: 6465 5668 6466 __u8 immediate_exit; 5669 __u8 immediate_exit; 6467 5670 6468 This field is polled once when KVM_RUN starts 5671 This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN 6469 exits immediately, returning -EINTR. In the 5672 exits immediately, returning -EINTR. In the common scenario where a 6470 signal is used to "kick" a VCPU out of KVM_RU 5673 signal is used to "kick" a VCPU out of KVM_RUN, this field can be used 6471 to avoid usage of KVM_SET_SIGNAL_MASK, which 5674 to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability. 6472 Rather than blocking the signal outside KVM_R 5675 Rather than blocking the signal outside KVM_RUN, userspace can set up 6473 a signal handler that sets run->immediate_exi 5676 a signal handler that sets run->immediate_exit to a non-zero value. 6474 5677 6475 This field is ignored if KVM_CAP_IMMEDIATE_EX 5678 This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available. 6476 5679 6477 :: 5680 :: 6478 5681 6479 __u8 padding1[6]; 5682 __u8 padding1[6]; 6480 5683 6481 /* out */ 5684 /* out */ 6482 __u32 exit_reason; 5685 __u32 exit_reason; 6483 5686 6484 When KVM_RUN has returned successfully (retur 5687 When KVM_RUN has returned successfully (return value 0), this informs 6485 application code why KVM_RUN has returned. A 5688 application code why KVM_RUN has returned. Allowable values for this 6486 field are detailed below. 5689 field are detailed below. 6487 5690 6488 :: 5691 :: 6489 5692 6490 __u8 ready_for_interrupt_injection; 5693 __u8 ready_for_interrupt_injection; 6491 5694 6492 If request_interrupt_window has been specifie 5695 If request_interrupt_window has been specified, this field indicates 6493 an interrupt can be injected now with KVM_INT 5696 an interrupt can be injected now with KVM_INTERRUPT. 6494 5697 6495 :: 5698 :: 6496 5699 6497 __u8 if_flag; 5700 __u8 if_flag; 6498 5701 6499 The value of the current interrupt flag. Onl 5702 The value of the current interrupt flag. Only valid if in-kernel 6500 local APIC is not used. 5703 local APIC is not used. 6501 5704 6502 :: 5705 :: 6503 5706 6504 __u16 flags; 5707 __u16 flags; 6505 5708 6506 More architecture-specific flags detailing st 5709 More architecture-specific flags detailing state of the VCPU that may 6507 affect the device's behavior. Current defined 5710 affect the device's behavior. Current defined flags:: 6508 5711 6509 /* x86, set if the VCPU is in system manage 5712 /* x86, set if the VCPU is in system management mode */ 6510 #define KVM_RUN_X86_SMM (1 << 0) !! 5713 #define KVM_RUN_X86_SMM (1 << 0) 6511 /* x86, set if bus lock detected in VM */ 5714 /* x86, set if bus lock detected in VM */ 6512 #define KVM_RUN_X86_BUS_LOCK (1 << 1) !! 5715 #define KVM_RUN_BUS_LOCK (1 << 1) 6513 /* x86, set if the VCPU is executing a nest << 6514 #define KVM_RUN_X86_GUEST_MODE (1 << 2) << 6515 << 6516 /* arm64, set for KVM_EXIT_DEBUG */ << 6517 #define KVM_DEBUG_ARCH_HSR_HIGH_VALID (1 < << 6518 5716 6519 :: 5717 :: 6520 5718 6521 /* in (pre_kvm_run), out (post_kvm_ru 5719 /* in (pre_kvm_run), out (post_kvm_run) */ 6522 __u64 cr8; 5720 __u64 cr8; 6523 5721 6524 The value of the cr8 register. Only valid if 5722 The value of the cr8 register. Only valid if in-kernel local APIC is 6525 not used. Both input and output. 5723 not used. Both input and output. 6526 5724 6527 :: 5725 :: 6528 5726 6529 __u64 apic_base; 5727 __u64 apic_base; 6530 5728 6531 The value of the APIC BASE msr. Only valid i 5729 The value of the APIC BASE msr. Only valid if in-kernel local 6532 APIC is not used. Both input and output. 5730 APIC is not used. Both input and output. 6533 5731 6534 :: 5732 :: 6535 5733 6536 union { 5734 union { 6537 /* KVM_EXIT_UNKNOWN */ 5735 /* KVM_EXIT_UNKNOWN */ 6538 struct { 5736 struct { 6539 __u64 hardware_exit_r 5737 __u64 hardware_exit_reason; 6540 } hw; 5738 } hw; 6541 5739 6542 If exit_reason is KVM_EXIT_UNKNOWN, the vcpu 5740 If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown 6543 reasons. Further architecture-specific infor 5741 reasons. Further architecture-specific information is available in 6544 hardware_exit_reason. 5742 hardware_exit_reason. 6545 5743 6546 :: 5744 :: 6547 5745 6548 /* KVM_EXIT_FAIL_ENTRY */ 5746 /* KVM_EXIT_FAIL_ENTRY */ 6549 struct { 5747 struct { 6550 __u64 hardware_entry_ 5748 __u64 hardware_entry_failure_reason; 6551 __u32 cpu; /* if KVM_ 5749 __u32 cpu; /* if KVM_LAST_CPU */ 6552 } fail_entry; 5750 } fail_entry; 6553 5751 6554 If exit_reason is KVM_EXIT_FAIL_ENTRY, the vc 5752 If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due 6555 to unknown reasons. Further architecture-spe 5753 to unknown reasons. Further architecture-specific information is 6556 available in hardware_entry_failure_reason. 5754 available in hardware_entry_failure_reason. 6557 5755 6558 :: 5756 :: 6559 5757 6560 /* KVM_EXIT_EXCEPTION */ 5758 /* KVM_EXIT_EXCEPTION */ 6561 struct { 5759 struct { 6562 __u32 exception; 5760 __u32 exception; 6563 __u32 error_code; 5761 __u32 error_code; 6564 } ex; 5762 } ex; 6565 5763 6566 Unused. 5764 Unused. 6567 5765 6568 :: 5766 :: 6569 5767 6570 /* KVM_EXIT_IO */ 5768 /* KVM_EXIT_IO */ 6571 struct { 5769 struct { 6572 #define KVM_EXIT_IO_IN 0 5770 #define KVM_EXIT_IO_IN 0 6573 #define KVM_EXIT_IO_OUT 1 5771 #define KVM_EXIT_IO_OUT 1 6574 __u8 direction; 5772 __u8 direction; 6575 __u8 size; /* bytes * 5773 __u8 size; /* bytes */ 6576 __u16 port; 5774 __u16 port; 6577 __u32 count; 5775 __u32 count; 6578 __u64 data_offset; /* 5776 __u64 data_offset; /* relative to kvm_run start */ 6579 } io; 5777 } io; 6580 5778 6581 If exit_reason is KVM_EXIT_IO, then the vcpu 5779 If exit_reason is KVM_EXIT_IO, then the vcpu has 6582 executed a port I/O instruction which could n 5780 executed a port I/O instruction which could not be satisfied by kvm. 6583 data_offset describes where the data is locat 5781 data_offset describes where the data is located (KVM_EXIT_IO_OUT) or 6584 where kvm expects application code to place t 5782 where kvm expects application code to place the data for the next 6585 KVM_RUN invocation (KVM_EXIT_IO_IN). Data fo 5783 KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array. 6586 5784 6587 :: 5785 :: 6588 5786 6589 /* KVM_EXIT_DEBUG */ 5787 /* KVM_EXIT_DEBUG */ 6590 struct { 5788 struct { 6591 struct kvm_debug_exit 5789 struct kvm_debug_exit_arch arch; 6592 } debug; 5790 } debug; 6593 5791 6594 If the exit_reason is KVM_EXIT_DEBUG, then a 5792 If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event 6595 for which architecture specific information i 5793 for which architecture specific information is returned. 6596 5794 6597 :: 5795 :: 6598 5796 6599 /* KVM_EXIT_MMIO */ 5797 /* KVM_EXIT_MMIO */ 6600 struct { 5798 struct { 6601 __u64 phys_addr; 5799 __u64 phys_addr; 6602 __u8 data[8]; 5800 __u8 data[8]; 6603 __u32 len; 5801 __u32 len; 6604 __u8 is_write; 5802 __u8 is_write; 6605 } mmio; 5803 } mmio; 6606 5804 6607 If exit_reason is KVM_EXIT_MMIO, then the vcp 5805 If exit_reason is KVM_EXIT_MMIO, then the vcpu has 6608 executed a memory-mapped I/O instruction whic 5806 executed a memory-mapped I/O instruction which could not be satisfied 6609 by kvm. The 'data' member contains the writt 5807 by kvm. The 'data' member contains the written data if 'is_write' is 6610 true, and should be filled by application cod 5808 true, and should be filled by application code otherwise. 6611 5809 6612 The 'data' member contains, in its first 'len 5810 The 'data' member contains, in its first 'len' bytes, the value as it would 6613 appear if the VCPU performed a load or store 5811 appear if the VCPU performed a load or store of the appropriate width directly 6614 to the byte array. 5812 to the byte array. 6615 5813 6616 .. note:: 5814 .. note:: 6617 5815 6618 For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXI 5816 For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR, KVM_EXIT_XEN, 6619 KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KV 5817 KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR the corresponding 6620 operations are complete (and guest stat 5818 operations are complete (and guest state is consistent) only after userspace 6621 has re-entered the kernel with KVM_RUN. 5819 has re-entered the kernel with KVM_RUN. The kernel side will first finish 6622 incomplete operations and then check fo 5820 incomplete operations and then check for pending signals. 6623 5821 6624 The pending state of the operation is n 5822 The pending state of the operation is not preserved in state which is 6625 visible to userspace, thus userspace sh 5823 visible to userspace, thus userspace should ensure that the operation is 6626 completed before performing a live migr 5824 completed before performing a live migration. Userspace can re-enter the 6627 guest with an unmasked signal pending o 5825 guest with an unmasked signal pending or with the immediate_exit field set 6628 to complete pending operations without 5826 to complete pending operations without allowing any further instructions 6629 to be executed. 5827 to be executed. 6630 5828 6631 :: 5829 :: 6632 5830 6633 /* KVM_EXIT_HYPERCALL */ 5831 /* KVM_EXIT_HYPERCALL */ 6634 struct { 5832 struct { 6635 __u64 nr; 5833 __u64 nr; 6636 __u64 args[6]; 5834 __u64 args[6]; 6637 __u64 ret; 5835 __u64 ret; 6638 __u64 flags; !! 5836 __u32 longmode; >> 5837 __u32 pad; 6639 } hypercall; 5838 } hypercall; 6640 5839 6641 !! 5840 Unused. This was once used for 'hypercall to userspace'. To implement 6642 It is strongly recommended that userspace use !! 5841 such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390). 6643 ``KVM_EXIT_MMIO`` (all except s390) to implem << 6644 requires a guest to interact with host usersp << 6645 5842 6646 .. note:: KVM_EXIT_IO is significantly faster 5843 .. note:: KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO. 6647 5844 6648 For arm64: << 6649 ---------- << 6650 << 6651 SMCCC exits can be enabled depending on the c << 6652 filter. See the Documentation/virt/kvm/device << 6653 ``KVM_ARM_SMCCC_FILTER`` for more details. << 6654 << 6655 ``nr`` contains the function ID of the guest' << 6656 expected to use the ``KVM_GET_ONE_REG`` ioctl << 6657 parameters from the vCPU's GPRs. << 6658 << 6659 Definition of ``flags``: << 6660 - ``KVM_HYPERCALL_EXIT_SMC``: Indicates that << 6661 conduit to initiate the SMCCC call. If thi << 6662 used the HVC conduit for the SMCCC call. << 6663 << 6664 - ``KVM_HYPERCALL_EXIT_16BIT``: Indicates th << 6665 instruction to initiate the SMCCC call. If << 6666 guest used a 32bit instruction. An AArch64 << 6667 bit set to 0. << 6668 << 6669 At the point of exit, PC points to the instru << 6670 the trapping instruction. << 6671 << 6672 :: 5845 :: 6673 5846 6674 /* KVM_EXIT_TPR_ACCESS */ 5847 /* KVM_EXIT_TPR_ACCESS */ 6675 struct { 5848 struct { 6676 __u64 rip; 5849 __u64 rip; 6677 __u32 is_write; 5850 __u32 is_write; 6678 __u32 pad; 5851 __u32 pad; 6679 } tpr_access; 5852 } tpr_access; 6680 5853 6681 To be documented (KVM_TPR_ACCESS_REPORTING). 5854 To be documented (KVM_TPR_ACCESS_REPORTING). 6682 5855 6683 :: 5856 :: 6684 5857 6685 /* KVM_EXIT_S390_SIEIC */ 5858 /* KVM_EXIT_S390_SIEIC */ 6686 struct { 5859 struct { 6687 __u8 icptcode; 5860 __u8 icptcode; 6688 __u64 mask; /* psw up 5861 __u64 mask; /* psw upper half */ 6689 __u64 addr; /* psw lo 5862 __u64 addr; /* psw lower half */ 6690 __u16 ipa; 5863 __u16 ipa; 6691 __u32 ipb; 5864 __u32 ipb; 6692 } s390_sieic; 5865 } s390_sieic; 6693 5866 6694 s390 specific. 5867 s390 specific. 6695 5868 6696 :: 5869 :: 6697 5870 6698 /* KVM_EXIT_S390_RESET */ 5871 /* KVM_EXIT_S390_RESET */ 6699 #define KVM_S390_RESET_POR 1 5872 #define KVM_S390_RESET_POR 1 6700 #define KVM_S390_RESET_CLEAR 2 5873 #define KVM_S390_RESET_CLEAR 2 6701 #define KVM_S390_RESET_SUBSYSTEM 4 5874 #define KVM_S390_RESET_SUBSYSTEM 4 6702 #define KVM_S390_RESET_CPU_INIT 8 5875 #define KVM_S390_RESET_CPU_INIT 8 6703 #define KVM_S390_RESET_IPL 16 5876 #define KVM_S390_RESET_IPL 16 6704 __u64 s390_reset_flags; 5877 __u64 s390_reset_flags; 6705 5878 6706 s390 specific. 5879 s390 specific. 6707 5880 6708 :: 5881 :: 6709 5882 6710 /* KVM_EXIT_S390_UCONTROL */ 5883 /* KVM_EXIT_S390_UCONTROL */ 6711 struct { 5884 struct { 6712 __u64 trans_exc_code; 5885 __u64 trans_exc_code; 6713 __u32 pgm_code; 5886 __u32 pgm_code; 6714 } s390_ucontrol; 5887 } s390_ucontrol; 6715 5888 6716 s390 specific. A page fault has occurred for 5889 s390 specific. A page fault has occurred for a user controlled virtual 6717 machine (KVM_VM_S390_UNCONTROL) on its host p !! 5890 machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be 6718 resolved by the kernel. 5891 resolved by the kernel. 6719 The program code and the translation exceptio 5892 The program code and the translation exception code that were placed 6720 in the cpu's lowcore are presented here as de 5893 in the cpu's lowcore are presented here as defined by the z Architecture 6721 Principles of Operation Book in the Chapter f 5894 Principles of Operation Book in the Chapter for Dynamic Address Translation 6722 (DAT) 5895 (DAT) 6723 5896 6724 :: 5897 :: 6725 5898 6726 /* KVM_EXIT_DCR */ 5899 /* KVM_EXIT_DCR */ 6727 struct { 5900 struct { 6728 __u32 dcrn; 5901 __u32 dcrn; 6729 __u32 data; 5902 __u32 data; 6730 __u8 is_write; 5903 __u8 is_write; 6731 } dcr; 5904 } dcr; 6732 5905 6733 Deprecated - was used for 440 KVM. 5906 Deprecated - was used for 440 KVM. 6734 5907 6735 :: 5908 :: 6736 5909 6737 /* KVM_EXIT_OSI */ 5910 /* KVM_EXIT_OSI */ 6738 struct { 5911 struct { 6739 __u64 gprs[32]; 5912 __u64 gprs[32]; 6740 } osi; 5913 } osi; 6741 5914 6742 MOL uses a special hypercall interface it cal 5915 MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch 6743 hypercalls and exit with this exit struct tha 5916 hypercalls and exit with this exit struct that contains all the guest gprs. 6744 5917 6745 If exit_reason is KVM_EXIT_OSI, then the vcpu 5918 If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall. 6746 Userspace can now handle the hypercall and wh 5919 Userspace can now handle the hypercall and when it's done modify the gprs as 6747 necessary. Upon guest entry all guest GPRs wi 5920 necessary. Upon guest entry all guest GPRs will then be replaced by the values 6748 in this struct. 5921 in this struct. 6749 5922 6750 :: 5923 :: 6751 5924 6752 /* KVM_EXIT_PAPR_HCALL */ 5925 /* KVM_EXIT_PAPR_HCALL */ 6753 struct { 5926 struct { 6754 __u64 nr; 5927 __u64 nr; 6755 __u64 ret; 5928 __u64 ret; 6756 __u64 args[9]; 5929 __u64 args[9]; 6757 } papr_hcall; 5930 } papr_hcall; 6758 5931 6759 This is used on 64-bit PowerPC when emulating 5932 This is used on 64-bit PowerPC when emulating a pSeries partition, 6760 e.g. with the 'pseries' machine type in qemu. 5933 e.g. with the 'pseries' machine type in qemu. It occurs when the 6761 guest does a hypercall using the 'sc 1' instr 5934 guest does a hypercall using the 'sc 1' instruction. The 'nr' field 6762 contains the hypercall number (from the guest 5935 contains the hypercall number (from the guest R3), and 'args' contains 6763 the arguments (from the guest R4 - R12). Use 5936 the arguments (from the guest R4 - R12). Userspace should put the 6764 return code in 'ret' and any extra returned v 5937 return code in 'ret' and any extra returned values in args[]. 6765 The possible hypercalls are defined in the Po 5938 The possible hypercalls are defined in the Power Architecture Platform 6766 Requirements (PAPR) document available from w 5939 Requirements (PAPR) document available from www.power.org (free 6767 developer registration required to access it) 5940 developer registration required to access it). 6768 5941 6769 :: 5942 :: 6770 5943 6771 /* KVM_EXIT_S390_TSCH */ 5944 /* KVM_EXIT_S390_TSCH */ 6772 struct { 5945 struct { 6773 __u16 subchannel_id; 5946 __u16 subchannel_id; 6774 __u16 subchannel_nr; 5947 __u16 subchannel_nr; 6775 __u32 io_int_parm; 5948 __u32 io_int_parm; 6776 __u32 io_int_word; 5949 __u32 io_int_word; 6777 __u32 ipb; 5950 __u32 ipb; 6778 __u8 dequeued; 5951 __u8 dequeued; 6779 } s390_tsch; 5952 } s390_tsch; 6780 5953 6781 s390 specific. This exit occurs when KVM_CAP_ 5954 s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled 6782 and TEST SUBCHANNEL was intercepted. If deque 5955 and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O 6783 interrupt for the target subchannel has been 5956 interrupt for the target subchannel has been dequeued and subchannel_id, 6784 subchannel_nr, io_int_parm and io_int_word co 5957 subchannel_nr, io_int_parm and io_int_word contain the parameters for that 6785 interrupt. ipb is needed for instruction para 5958 interrupt. ipb is needed for instruction parameter decoding. 6786 5959 6787 :: 5960 :: 6788 5961 6789 /* KVM_EXIT_EPR */ 5962 /* KVM_EXIT_EPR */ 6790 struct { 5963 struct { 6791 __u32 epr; 5964 __u32 epr; 6792 } epr; 5965 } epr; 6793 5966 6794 On FSL BookE PowerPC chips, the interrupt con 5967 On FSL BookE PowerPC chips, the interrupt controller has a fast patch 6795 interrupt acknowledge path to the core. When 5968 interrupt acknowledge path to the core. When the core successfully 6796 delivers an interrupt, it automatically popul 5969 delivers an interrupt, it automatically populates the EPR register with 6797 the interrupt vector number and acknowledges 5970 the interrupt vector number and acknowledges the interrupt inside 6798 the interrupt controller. 5971 the interrupt controller. 6799 5972 6800 In case the interrupt controller lives in use 5973 In case the interrupt controller lives in user space, we need to do 6801 the interrupt acknowledge cycle through it to 5974 the interrupt acknowledge cycle through it to fetch the next to be 6802 delivered interrupt vector using this exit. 5975 delivered interrupt vector using this exit. 6803 5976 6804 It gets triggered whenever both KVM_CAP_PPC_E 5977 It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an 6805 external interrupt has just been delivered in 5978 external interrupt has just been delivered into the guest. User space 6806 should put the acknowledged interrupt vector 5979 should put the acknowledged interrupt vector into the 'epr' field. 6807 5980 6808 :: 5981 :: 6809 5982 6810 /* KVM_EXIT_SYSTEM_EVENT */ 5983 /* KVM_EXIT_SYSTEM_EVENT */ 6811 struct { 5984 struct { 6812 #define KVM_SYSTEM_EVENT_SHUTDOWN 1 5985 #define KVM_SYSTEM_EVENT_SHUTDOWN 1 6813 #define KVM_SYSTEM_EVENT_RESET 2 5986 #define KVM_SYSTEM_EVENT_RESET 2 6814 #define KVM_SYSTEM_EVENT_CRASH 3 5987 #define KVM_SYSTEM_EVENT_CRASH 3 6815 #define KVM_SYSTEM_EVENT_WAKEUP 4 << 6816 #define KVM_SYSTEM_EVENT_SUSPEND 5 << 6817 #define KVM_SYSTEM_EVENT_SEV_TERM 6 << 6818 __u32 type; 5988 __u32 type; 6819 __u32 ndata; 5989 __u32 ndata; 6820 __u64 data[16]; 5990 __u64 data[16]; 6821 } system_event; 5991 } system_event; 6822 5992 6823 If exit_reason is KVM_EXIT_SYSTEM_EVENT then 5993 If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered 6824 a system-level event using some architecture 5994 a system-level event using some architecture specific mechanism (hypercall 6825 or some special instruction). In case of ARM6 5995 or some special instruction). In case of ARM64, this is triggered using 6826 HVC instruction based PSCI call from the vcpu 5996 HVC instruction based PSCI call from the vcpu. 6827 5997 6828 The 'type' field describes the system-level e 5998 The 'type' field describes the system-level event type. 6829 Valid values for 'type' are: 5999 Valid values for 'type' are: 6830 6000 6831 - KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has 6001 - KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the 6832 VM. Userspace is not obliged to honour thi 6002 VM. Userspace is not obliged to honour this, and if it does honour 6833 this does not need to destroy the VM synch 6003 this does not need to destroy the VM synchronously (ie it may call 6834 KVM_RUN again before shutdown finally occu 6004 KVM_RUN again before shutdown finally occurs). 6835 - KVM_SYSTEM_EVENT_RESET -- the guest has re 6005 - KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM. 6836 As with SHUTDOWN, userspace can choose to 6006 As with SHUTDOWN, userspace can choose to ignore the request, or 6837 to schedule the reset to occur in the futu 6007 to schedule the reset to occur in the future and may call KVM_RUN again. 6838 - KVM_SYSTEM_EVENT_CRASH -- the guest crash 6008 - KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest 6839 has requested a crash condition maintenanc 6009 has requested a crash condition maintenance. Userspace can choose 6840 to ignore the request, or to gather VM mem 6010 to ignore the request, or to gather VM memory core dump and/or 6841 reset/shutdown of the VM. 6011 reset/shutdown of the VM. 6842 - KVM_SYSTEM_EVENT_SEV_TERM -- an AMD SEV gu << 6843 The guest physical address of the guest's << 6844 - KVM_SYSTEM_EVENT_WAKEUP -- the exiting vCP << 6845 KVM has recognized a wakeup event. Userspa << 6846 marking the exiting vCPU as runnable, or d << 6847 - KVM_SYSTEM_EVENT_SUSPEND -- the guest has << 6848 the VM. << 6849 6012 6850 If KVM_CAP_SYSTEM_EVENT_DATA is present, the 6013 If KVM_CAP_SYSTEM_EVENT_DATA is present, the 'data' field can contain 6851 architecture specific information for the sys 6014 architecture specific information for the system-level event. Only 6852 the first `ndata` items (possibly zero) of th 6015 the first `ndata` items (possibly zero) of the data array are valid. 6853 6016 6854 - for arm64, data[0] is set to KVM_SYSTEM_EV 6017 - for arm64, data[0] is set to KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2 if 6855 the guest issued a SYSTEM_RESET2 call acco 6018 the guest issued a SYSTEM_RESET2 call according to v1.1 of the PSCI 6856 specification. 6019 specification. 6857 6020 6858 - for RISC-V, data[0] is set to the value of 6021 - for RISC-V, data[0] is set to the value of the second argument of the 6859 ``sbi_system_reset`` call. 6022 ``sbi_system_reset`` call. 6860 6023 6861 Previous versions of Linux defined a `flags` 6024 Previous versions of Linux defined a `flags` member in this struct. The 6862 field is now aliased to `data[0]`. Userspace 6025 field is now aliased to `data[0]`. Userspace can assume that it is only 6863 written if ndata is greater than 0. 6026 written if ndata is greater than 0. 6864 6027 6865 For arm/arm64: << 6866 -------------- << 6867 << 6868 KVM_SYSTEM_EVENT_SUSPEND exits are enabled wi << 6869 KVM_CAP_ARM_SYSTEM_SUSPEND VM capability. If << 6870 SYSTEM_SUSPEND function, KVM will exit to use << 6871 type. << 6872 << 6873 It is the sole responsibility of userspace to << 6874 SYSTEM_SUSPEND call according to ARM DEN0022D << 6875 KVM does not change the vCPU's state before e << 6876 the call parameters are left in-place in the << 6877 << 6878 Userspace is _required_ to take action for su << 6879 either: << 6880 << 6881 - Honor the guest request to suspend the VM. << 6882 in-kernel emulation of suspension by setti << 6883 state to KVM_MP_STATE_SUSPENDED. Userspace << 6884 state according to the parameters passed t << 6885 the calling vCPU is resumed. See ARM DEN00 << 6886 for details on the function parameters. << 6887 << 6888 - Deny the guest request to suspend the VM. << 6889 "Caller responsibilities" for possible ret << 6890 << 6891 :: 6028 :: 6892 6029 6893 /* KVM_EXIT_IOAPIC_EOI */ 6030 /* KVM_EXIT_IOAPIC_EOI */ 6894 struct { 6031 struct { 6895 __u8 vector; 6032 __u8 vector; 6896 } eoi; 6033 } eoi; 6897 6034 6898 Indicates that the VCPU's in-kernel local API 6035 Indicates that the VCPU's in-kernel local APIC received an EOI for a 6899 level-triggered IOAPIC interrupt. This exit 6036 level-triggered IOAPIC interrupt. This exit only triggers when the 6900 IOAPIC is implemented in userspace (i.e. KVM_ 6037 IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled); 6901 the userspace IOAPIC should process the EOI a 6038 the userspace IOAPIC should process the EOI and retrigger the interrupt if 6902 it is still asserted. Vector is the LAPIC in 6039 it is still asserted. Vector is the LAPIC interrupt vector for which the 6903 EOI was received. 6040 EOI was received. 6904 6041 6905 :: 6042 :: 6906 6043 6907 struct kvm_hyperv_exit { 6044 struct kvm_hyperv_exit { 6908 #define KVM_EXIT_HYPERV_SYNIC 1 6045 #define KVM_EXIT_HYPERV_SYNIC 1 6909 #define KVM_EXIT_HYPERV_HCALL 2 6046 #define KVM_EXIT_HYPERV_HCALL 2 6910 #define KVM_EXIT_HYPERV_SYNDBG 3 6047 #define KVM_EXIT_HYPERV_SYNDBG 3 6911 __u32 type; 6048 __u32 type; 6912 __u32 pad1; 6049 __u32 pad1; 6913 union { 6050 union { 6914 struct { 6051 struct { 6915 __u32 6052 __u32 msr; 6916 __u32 6053 __u32 pad2; 6917 __u64 6054 __u64 control; 6918 __u64 6055 __u64 evt_page; 6919 __u64 6056 __u64 msg_page; 6920 } synic; 6057 } synic; 6921 struct { 6058 struct { 6922 __u64 6059 __u64 input; 6923 __u64 6060 __u64 result; 6924 __u64 6061 __u64 params[2]; 6925 } hcall; 6062 } hcall; 6926 struct { 6063 struct { 6927 __u32 6064 __u32 msr; 6928 __u32 6065 __u32 pad2; 6929 __u64 6066 __u64 control; 6930 __u64 6067 __u64 status; 6931 __u64 6068 __u64 send_page; 6932 __u64 6069 __u64 recv_page; 6933 __u64 6070 __u64 pending_page; 6934 } syndbg; 6071 } syndbg; 6935 } u; 6072 } u; 6936 }; 6073 }; 6937 /* KVM_EXIT_HYPERV */ 6074 /* KVM_EXIT_HYPERV */ 6938 struct kvm_hyperv_exit hyperv 6075 struct kvm_hyperv_exit hyperv; 6939 6076 6940 Indicates that the VCPU exits into userspace 6077 Indicates that the VCPU exits into userspace to process some tasks 6941 related to Hyper-V emulation. 6078 related to Hyper-V emulation. 6942 6079 6943 Valid values for 'type' are: 6080 Valid values for 'type' are: 6944 6081 6945 - KVM_EXIT_HYPERV_SYNIC -- synchronou 6082 - KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about 6946 6083 6947 Hyper-V SynIC state change. Notification is u 6084 Hyper-V SynIC state change. Notification is used to remap SynIC 6948 event/message pages and to enable/disable Syn 6085 event/message pages and to enable/disable SynIC messages/events processing 6949 in userspace. 6086 in userspace. 6950 6087 6951 - KVM_EXIT_HYPERV_SYNDBG -- synchrono 6088 - KVM_EXIT_HYPERV_SYNDBG -- synchronously notify user-space about 6952 6089 6953 Hyper-V Synthetic debugger state change. Noti 6090 Hyper-V Synthetic debugger state change. Notification is used to either update 6954 the pending_page location or to send a contro 6091 the pending_page location or to send a control command (send the buffer located 6955 in send_page or recv a buffer to recv_page). 6092 in send_page or recv a buffer to recv_page). 6956 6093 6957 :: 6094 :: 6958 6095 6959 /* KVM_EXIT_ARM_NISV */ 6096 /* KVM_EXIT_ARM_NISV */ 6960 struct { 6097 struct { 6961 __u64 esr_iss; 6098 __u64 esr_iss; 6962 __u64 fault_ipa; 6099 __u64 fault_ipa; 6963 } arm_nisv; 6100 } arm_nisv; 6964 6101 6965 Used on arm64 systems. If a guest accesses me 6102 Used on arm64 systems. If a guest accesses memory not in a memslot, 6966 KVM will typically return to userspace and as 6103 KVM will typically return to userspace and ask it to do MMIO emulation on its 6967 behalf. However, for certain classes of instr 6104 behalf. However, for certain classes of instructions, no instruction decode 6968 (direction, length of memory access) is provi 6105 (direction, length of memory access) is provided, and fetching and decoding 6969 the instruction from the VM is overly complic 6106 the instruction from the VM is overly complicated to live in the kernel. 6970 6107 6971 Historically, when this situation occurred, K 6108 Historically, when this situation occurred, KVM would print a warning and kill 6972 the VM. KVM assumed that if the guest accesse 6109 the VM. KVM assumed that if the guest accessed non-memslot memory, it was 6973 trying to do I/O, which just couldn't be emul 6110 trying to do I/O, which just couldn't be emulated, and the warning message was 6974 phrased accordingly. However, what happened m 6111 phrased accordingly. However, what happened more often was that a guest bug 6975 caused access outside the guest memory areas 6112 caused access outside the guest memory areas which should lead to a more 6976 meaningful warning message and an external ab 6113 meaningful warning message and an external abort in the guest, if the access 6977 did not fall within an I/O window. 6114 did not fall within an I/O window. 6978 6115 6979 Userspace implementations can query for KVM_C 6116 Userspace implementations can query for KVM_CAP_ARM_NISV_TO_USER, and enable 6980 this capability at VM creation. Once this is 6117 this capability at VM creation. Once this is done, these types of errors will 6981 instead return to userspace with KVM_EXIT_ARM 6118 instead return to userspace with KVM_EXIT_ARM_NISV, with the valid bits from 6982 the ESR_EL2 in the esr_iss field, and the fau 6119 the ESR_EL2 in the esr_iss field, and the faulting IPA in the fault_ipa field. 6983 Userspace can either fix up the access if it' 6120 Userspace can either fix up the access if it's actually an I/O access by 6984 decoding the instruction from guest memory (i 6121 decoding the instruction from guest memory (if it's very brave) and continue 6985 executing the guest, or it can decide to susp 6122 executing the guest, or it can decide to suspend, dump, or restart the guest. 6986 6123 6987 Note that KVM does not skip the faulting inst 6124 Note that KVM does not skip the faulting instruction as it does for 6988 KVM_EXIT_MMIO, but userspace has to emulate a 6125 KVM_EXIT_MMIO, but userspace has to emulate any change to the processing state 6989 if it decides to decode and emulate the instr 6126 if it decides to decode and emulate the instruction. 6990 6127 6991 This feature isn't available to protected VMs << 6992 have access to the state that is required to << 6993 Instead, a data abort exception is directly i << 6994 Note that although KVM_CAP_ARM_NISV_TO_USER w << 6995 queried outside of a protected VM context, th << 6996 exposed if queried on a protected VM file des << 6997 << 6998 :: 6128 :: 6999 6129 7000 /* KVM_EXIT_X86_RDMSR / KVM_E 6130 /* KVM_EXIT_X86_RDMSR / KVM_EXIT_X86_WRMSR */ 7001 struct { 6131 struct { 7002 __u8 error; /* user - 6132 __u8 error; /* user -> kernel */ 7003 __u8 pad[7]; 6133 __u8 pad[7]; 7004 __u32 reason; /* kern 6134 __u32 reason; /* kernel -> user */ 7005 __u32 index; /* kerne 6135 __u32 index; /* kernel -> user */ 7006 __u64 data; /* kernel 6136 __u64 data; /* kernel <-> user */ 7007 } msr; 6137 } msr; 7008 6138 7009 Used on x86 systems. When the VM capability K 6139 Used on x86 systems. When the VM capability KVM_CAP_X86_USER_SPACE_MSR is 7010 enabled, MSR accesses to registers that would 6140 enabled, MSR accesses to registers that would invoke a #GP by KVM kernel code 7011 may instead trigger a KVM_EXIT_X86_RDMSR exit !! 6141 will instead trigger a KVM_EXIT_X86_RDMSR exit for reads and KVM_EXIT_X86_WRMSR 7012 exit for writes. 6142 exit for writes. 7013 6143 7014 The "reason" field specifies why the MSR inte !! 6144 The "reason" field specifies why the MSR trap occurred. User space will only 7015 only receive MSR exits when a particular reas !! 6145 receive MSR exit traps when a particular reason was requested during through 7016 ENABLE_CAP. Currently valid exit reasons are: 6146 ENABLE_CAP. Currently valid exit reasons are: 7017 6147 7018 ============================ ================ !! 6148 KVM_MSR_EXIT_REASON_UNKNOWN - access to MSR that is unknown to KVM 7019 KVM_MSR_EXIT_REASON_UNKNOWN access to MSR th !! 6149 KVM_MSR_EXIT_REASON_INVAL - access to invalid MSRs or reserved bits 7020 KVM_MSR_EXIT_REASON_INVAL access to invali !! 6150 KVM_MSR_EXIT_REASON_FILTER - access blocked by KVM_X86_SET_MSR_FILTER 7021 KVM_MSR_EXIT_REASON_FILTER access blocked b << 7022 ============================ ================ << 7023 6151 7024 For KVM_EXIT_X86_RDMSR, the "index" field tel !! 6152 For KVM_EXIT_X86_RDMSR, the "index" field tells user space which MSR the guest 7025 wants to read. To respond to this request wit !! 6153 wants to read. To respond to this request with a successful read, user space 7026 writes the respective data into the "data" fi 6154 writes the respective data into the "data" field and must continue guest 7027 execution to ensure the read data is transfer 6155 execution to ensure the read data is transferred into guest register state. 7028 6156 7029 If the RDMSR request was unsuccessful, usersp !! 6157 If the RDMSR request was unsuccessful, user space indicates that with a "1" in 7030 the "error" field. This will inject a #GP int 6158 the "error" field. This will inject a #GP into the guest when the VCPU is 7031 executed again. 6159 executed again. 7032 6160 7033 For KVM_EXIT_X86_WRMSR, the "index" field tel !! 6161 For KVM_EXIT_X86_WRMSR, the "index" field tells user space which MSR the guest 7034 wants to write. Once finished processing the !! 6162 wants to write. Once finished processing the event, user space must continue 7035 vCPU execution. If the MSR write was unsucces !! 6163 vCPU execution. If the MSR write was unsuccessful, user space also sets the 7036 "error" field to "1". 6164 "error" field to "1". 7037 6165 7038 See KVM_X86_SET_MSR_FILTER for details on the << 7039 << 7040 :: 6166 :: 7041 6167 7042 6168 7043 struct kvm_xen_exit { 6169 struct kvm_xen_exit { 7044 #define KVM_EXIT_XEN_HCALL 1 6170 #define KVM_EXIT_XEN_HCALL 1 7045 __u32 type; 6171 __u32 type; 7046 union { 6172 union { 7047 struct { 6173 struct { 7048 __u32 6174 __u32 longmode; 7049 __u32 6175 __u32 cpl; 7050 __u64 6176 __u64 input; 7051 __u64 6177 __u64 result; 7052 __u64 6178 __u64 params[6]; 7053 } hcall; 6179 } hcall; 7054 } u; 6180 } u; 7055 }; 6181 }; 7056 /* KVM_EXIT_XEN */ 6182 /* KVM_EXIT_XEN */ 7057 struct kvm_hyperv_exit xen; 6183 struct kvm_hyperv_exit xen; 7058 6184 7059 Indicates that the VCPU exits into userspace 6185 Indicates that the VCPU exits into userspace to process some tasks 7060 related to Xen emulation. 6186 related to Xen emulation. 7061 6187 7062 Valid values for 'type' are: 6188 Valid values for 'type' are: 7063 6189 7064 - KVM_EXIT_XEN_HCALL -- synchronously notif 6190 - KVM_EXIT_XEN_HCALL -- synchronously notify user-space about Xen hypercall. 7065 Userspace is expected to place the hyperc 6191 Userspace is expected to place the hypercall result into the appropriate 7066 field before invoking KVM_RUN again. 6192 field before invoking KVM_RUN again. 7067 6193 7068 :: 6194 :: 7069 6195 7070 /* KVM_EXIT_RISCV_SBI */ 6196 /* KVM_EXIT_RISCV_SBI */ 7071 struct { 6197 struct { 7072 unsigned long extensi 6198 unsigned long extension_id; 7073 unsigned long functio 6199 unsigned long function_id; 7074 unsigned long args[6] 6200 unsigned long args[6]; 7075 unsigned long ret[2]; 6201 unsigned long ret[2]; 7076 } riscv_sbi; 6202 } riscv_sbi; 7077 6203 7078 If exit reason is KVM_EXIT_RISCV_SBI then it 6204 If exit reason is KVM_EXIT_RISCV_SBI then it indicates that the VCPU has 7079 done a SBI call which is not handled by KVM R 6205 done a SBI call which is not handled by KVM RISC-V kernel module. The details 7080 of the SBI call are available in 'riscv_sbi' 6206 of the SBI call are available in 'riscv_sbi' member of kvm_run structure. The 7081 'extension_id' field of 'riscv_sbi' represent 6207 'extension_id' field of 'riscv_sbi' represents SBI extension ID whereas the 7082 'function_id' field represents function ID of 6208 'function_id' field represents function ID of given SBI extension. The 'args' 7083 array field of 'riscv_sbi' represents paramet 6209 array field of 'riscv_sbi' represents parameters for the SBI call and 'ret' 7084 array field represents return values. The use 6210 array field represents return values. The userspace should update the return 7085 values of SBI call before resuming the VCPU. 6211 values of SBI call before resuming the VCPU. For more details on RISC-V SBI 7086 spec refer, https://github.com/riscv/riscv-sb 6212 spec refer, https://github.com/riscv/riscv-sbi-doc. 7087 6213 7088 :: 6214 :: 7089 6215 7090 /* KVM_EXIT_MEMORY_FAULT */ << 7091 struct { << 7092 #define KVM_MEMORY_EXIT_FLAG_PRIVATE (1ULL << 7093 __u64 flags; << 7094 __u64 gpa; << 7095 __u64 size; << 7096 } memory_fault; << 7097 << 7098 KVM_EXIT_MEMORY_FAULT indicates the vCPU has << 7099 could not be resolved by KVM. The 'gpa' and << 7100 guest physical address range [gpa, gpa + size << 7101 describes properties of the faulting access t << 7102 << 7103 - KVM_MEMORY_EXIT_FLAG_PRIVATE - When set, i << 7104 on a private memory access. When clear, i << 7105 shared access. << 7106 << 7107 Note! KVM_EXIT_MEMORY_FAULT is unique among << 7108 accompanies a return code of '-1', not '0'! << 7109 or EHWPOISON when KVM exits with KVM_EXIT_MEM << 7110 kvm_run.exit_reason is stale/undefined for al << 7111 << 7112 :: << 7113 << 7114 /* KVM_EXIT_NOTIFY */ << 7115 struct { << 7116 #define KVM_NOTIFY_CONTEXT_INVALID (1 << << 7117 __u32 flags; << 7118 } notify; << 7119 << 7120 Used on x86 systems. When the VM capability K << 7121 enabled, a VM exit generated if no event wind << 7122 for a specified amount of time. Once KVM_X86_ << 7123 enabling the cap, it would exit to userspace << 7124 KVM_EXIT_NOTIFY for further handling. The "fl << 7125 detailed info. << 7126 << 7127 The valid value for 'flags' is: << 7128 << 7129 - KVM_NOTIFY_CONTEXT_INVALID -- the VM cont << 7130 in VMCS. It would run into unknown result << 7131 << 7132 :: << 7133 << 7134 /* Fix the size of the union. 6216 /* Fix the size of the union. */ 7135 char padding[256]; 6217 char padding[256]; 7136 }; 6218 }; 7137 6219 7138 /* 6220 /* 7139 * shared registers between kvm and u 6221 * shared registers between kvm and userspace. 7140 * kvm_valid_regs specifies the regis 6222 * kvm_valid_regs specifies the register classes set by the host 7141 * kvm_dirty_regs specified the regis 6223 * kvm_dirty_regs specified the register classes dirtied by userspace 7142 * struct kvm_sync_regs is architectu 6224 * struct kvm_sync_regs is architecture specific, as well as the 7143 * bits for kvm_valid_regs and kvm_di 6225 * bits for kvm_valid_regs and kvm_dirty_regs 7144 */ 6226 */ 7145 __u64 kvm_valid_regs; 6227 __u64 kvm_valid_regs; 7146 __u64 kvm_dirty_regs; 6228 __u64 kvm_dirty_regs; 7147 union { 6229 union { 7148 struct kvm_sync_regs regs; 6230 struct kvm_sync_regs regs; 7149 char padding[SYNC_REGS_SIZE_B 6231 char padding[SYNC_REGS_SIZE_BYTES]; 7150 } s; 6232 } s; 7151 6233 7152 If KVM_CAP_SYNC_REGS is defined, these fields 6234 If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access 7153 certain guest registers without having to cal 6235 certain guest registers without having to call SET/GET_*REGS. Thus we can 7154 avoid some system call overhead if userspace 6236 avoid some system call overhead if userspace has to handle the exit. 7155 Userspace can query the validity of the struc 6237 Userspace can query the validity of the structure by checking 7156 kvm_valid_regs for specific bits. These bits 6238 kvm_valid_regs for specific bits. These bits are architecture specific 7157 and usually define the validity of a groups o 6239 and usually define the validity of a groups of registers. (e.g. one bit 7158 for general purpose registers) 6240 for general purpose registers) 7159 6241 7160 Please note that the kernel is allowed to use 6242 Please note that the kernel is allowed to use the kvm_run structure as the 7161 primary storage for certain register types. T 6243 primary storage for certain register types. Therefore, the kernel may use the 7162 values in kvm_run even if the corresponding b 6244 values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set. 7163 6245 >> 6246 :: >> 6247 >> 6248 }; >> 6249 >> 6250 7164 6251 7165 6. Capabilities that can be enabled on vCPUs 6252 6. Capabilities that can be enabled on vCPUs 7166 ============================================ 6253 ============================================ 7167 6254 7168 There are certain capabilities that change th 6255 There are certain capabilities that change the behavior of the virtual CPU or 7169 the virtual machine when enabled. To enable t 6256 the virtual machine when enabled. To enable them, please see section 4.37. 7170 Below you can find a list of capabilities and 6257 Below you can find a list of capabilities and what their effect on the vCPU or 7171 the virtual machine is when enabling them. 6258 the virtual machine is when enabling them. 7172 6259 7173 The following information is provided along w 6260 The following information is provided along with the description: 7174 6261 7175 Architectures: 6262 Architectures: 7176 which instruction set architectures pro 6263 which instruction set architectures provide this ioctl. 7177 x86 includes both i386 and x86_64. 6264 x86 includes both i386 and x86_64. 7178 6265 7179 Target: 6266 Target: 7180 whether this is a per-vcpu or per-vm ca 6267 whether this is a per-vcpu or per-vm capability. 7181 6268 7182 Parameters: 6269 Parameters: 7183 what parameters are accepted by the cap 6270 what parameters are accepted by the capability. 7184 6271 7185 Returns: 6272 Returns: 7186 the return value. General error number 6273 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 7187 are not detailed, but errors with speci 6274 are not detailed, but errors with specific meanings are. 7188 6275 7189 6276 7190 6.1 KVM_CAP_PPC_OSI 6277 6.1 KVM_CAP_PPC_OSI 7191 ------------------- 6278 ------------------- 7192 6279 7193 :Architectures: ppc 6280 :Architectures: ppc 7194 :Target: vcpu 6281 :Target: vcpu 7195 :Parameters: none 6282 :Parameters: none 7196 :Returns: 0 on success; -1 on error 6283 :Returns: 0 on success; -1 on error 7197 6284 7198 This capability enables interception of OSI h 6285 This capability enables interception of OSI hypercalls that otherwise would 7199 be treated as normal system calls to be injec 6286 be treated as normal system calls to be injected into the guest. OSI hypercalls 7200 were invented by Mac-on-Linux to have a stand 6287 were invented by Mac-on-Linux to have a standardized communication mechanism 7201 between the guest and the host. 6288 between the guest and the host. 7202 6289 7203 When this capability is enabled, KVM_EXIT_OSI 6290 When this capability is enabled, KVM_EXIT_OSI can occur. 7204 6291 7205 6292 7206 6.2 KVM_CAP_PPC_PAPR 6293 6.2 KVM_CAP_PPC_PAPR 7207 -------------------- 6294 -------------------- 7208 6295 7209 :Architectures: ppc 6296 :Architectures: ppc 7210 :Target: vcpu 6297 :Target: vcpu 7211 :Parameters: none 6298 :Parameters: none 7212 :Returns: 0 on success; -1 on error 6299 :Returns: 0 on success; -1 on error 7213 6300 7214 This capability enables interception of PAPR 6301 This capability enables interception of PAPR hypercalls. PAPR hypercalls are 7215 done using the hypercall instruction "sc 1". 6302 done using the hypercall instruction "sc 1". 7216 6303 7217 It also sets the guest privilege level to "su 6304 It also sets the guest privilege level to "supervisor" mode. Usually the guest 7218 runs in "hypervisor" privilege mode with a fe 6305 runs in "hypervisor" privilege mode with a few missing features. 7219 6306 7220 In addition to the above, it changes the sema 6307 In addition to the above, it changes the semantics of SDR1. In this mode, the 7221 HTAB address part of SDR1 contains an HVA ins 6308 HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the 7222 HTAB invisible to the guest. 6309 HTAB invisible to the guest. 7223 6310 7224 When this capability is enabled, KVM_EXIT_PAP 6311 When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur. 7225 6312 7226 6313 7227 6.3 KVM_CAP_SW_TLB 6314 6.3 KVM_CAP_SW_TLB 7228 ------------------ 6315 ------------------ 7229 6316 7230 :Architectures: ppc 6317 :Architectures: ppc 7231 :Target: vcpu 6318 :Target: vcpu 7232 :Parameters: args[0] is the address of a stru 6319 :Parameters: args[0] is the address of a struct kvm_config_tlb 7233 :Returns: 0 on success; -1 on error 6320 :Returns: 0 on success; -1 on error 7234 6321 7235 :: 6322 :: 7236 6323 7237 struct kvm_config_tlb { 6324 struct kvm_config_tlb { 7238 __u64 params; 6325 __u64 params; 7239 __u64 array; 6326 __u64 array; 7240 __u32 mmu_type; 6327 __u32 mmu_type; 7241 __u32 array_len; 6328 __u32 array_len; 7242 }; 6329 }; 7243 6330 7244 Configures the virtual CPU's TLB array, estab 6331 Configures the virtual CPU's TLB array, establishing a shared memory area 7245 between userspace and KVM. The "params" and 6332 between userspace and KVM. The "params" and "array" fields are userspace 7246 addresses of mmu-type-specific data structure 6333 addresses of mmu-type-specific data structures. The "array_len" field is an 7247 safety mechanism, and should be set to the si 6334 safety mechanism, and should be set to the size in bytes of the memory that 7248 userspace has reserved for the array. It mus 6335 userspace has reserved for the array. It must be at least the size dictated 7249 by "mmu_type" and "params". 6336 by "mmu_type" and "params". 7250 6337 7251 While KVM_RUN is active, the shared region is 6338 While KVM_RUN is active, the shared region is under control of KVM. Its 7252 contents are undefined, and any modification 6339 contents are undefined, and any modification by userspace results in 7253 boundedly undefined behavior. 6340 boundedly undefined behavior. 7254 6341 7255 On return from KVM_RUN, the shared region wil 6342 On return from KVM_RUN, the shared region will reflect the current state of 7256 the guest's TLB. If userspace makes any chan 6343 the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB 7257 to tell KVM which entries have been changed, 6344 to tell KVM which entries have been changed, prior to calling KVM_RUN again 7258 on this vcpu. 6345 on this vcpu. 7259 6346 7260 For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_ 6347 For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV: 7261 6348 7262 - The "params" field is of type "struct kvm_ 6349 - The "params" field is of type "struct kvm_book3e_206_tlb_params". 7263 - The "array" field points to an array of ty 6350 - The "array" field points to an array of type "struct 7264 kvm_book3e_206_tlb_entry". 6351 kvm_book3e_206_tlb_entry". 7265 - The array consists of all entries in the f 6352 - The array consists of all entries in the first TLB, followed by all 7266 entries in the second TLB. 6353 entries in the second TLB. 7267 - Within a TLB, entries are ordered first by 6354 - Within a TLB, entries are ordered first by increasing set number. Within a 7268 set, entries are ordered by way (increasin 6355 set, entries are ordered by way (increasing ESEL). 7269 - The hash for determining set number in TLB 6356 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1) 7270 where "num_sets" is the tlb_sizes[] value 6357 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value. 7271 - The tsize field of mas1 shall be set to 4K 6358 - The tsize field of mas1 shall be set to 4K on TLB0, even though the 7272 hardware ignores this value for TLB0. 6359 hardware ignores this value for TLB0. 7273 6360 7274 6.4 KVM_CAP_S390_CSS_SUPPORT 6361 6.4 KVM_CAP_S390_CSS_SUPPORT 7275 ---------------------------- 6362 ---------------------------- 7276 6363 7277 :Architectures: s390 6364 :Architectures: s390 7278 :Target: vcpu 6365 :Target: vcpu 7279 :Parameters: none 6366 :Parameters: none 7280 :Returns: 0 on success; -1 on error 6367 :Returns: 0 on success; -1 on error 7281 6368 7282 This capability enables support for handling 6369 This capability enables support for handling of channel I/O instructions. 7283 6370 7284 TEST PENDING INTERRUPTION and the interrupt p 6371 TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are 7285 handled in-kernel, while the other I/O instru 6372 handled in-kernel, while the other I/O instructions are passed to userspace. 7286 6373 7287 When this capability is enabled, KVM_EXIT_S39 6374 When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST 7288 SUBCHANNEL intercepts. 6375 SUBCHANNEL intercepts. 7289 6376 7290 Note that even though this capability is enab 6377 Note that even though this capability is enabled per-vcpu, the complete 7291 virtual machine is affected. 6378 virtual machine is affected. 7292 6379 7293 6.5 KVM_CAP_PPC_EPR 6380 6.5 KVM_CAP_PPC_EPR 7294 ------------------- 6381 ------------------- 7295 6382 7296 :Architectures: ppc 6383 :Architectures: ppc 7297 :Target: vcpu 6384 :Target: vcpu 7298 :Parameters: args[0] defines whether the prox 6385 :Parameters: args[0] defines whether the proxy facility is active 7299 :Returns: 0 on success; -1 on error 6386 :Returns: 0 on success; -1 on error 7300 6387 7301 This capability enables or disables the deliv 6388 This capability enables or disables the delivery of interrupts through the 7302 external proxy facility. 6389 external proxy facility. 7303 6390 7304 When enabled (args[0] != 0), every time the g 6391 When enabled (args[0] != 0), every time the guest gets an external interrupt 7305 delivered, it automatically exits into user s 6392 delivered, it automatically exits into user space with a KVM_EXIT_EPR exit 7306 to receive the topmost interrupt vector. 6393 to receive the topmost interrupt vector. 7307 6394 7308 When disabled (args[0] == 0), behavior is as 6395 When disabled (args[0] == 0), behavior is as if this facility is unsupported. 7309 6396 7310 When this capability is enabled, KVM_EXIT_EPR 6397 When this capability is enabled, KVM_EXIT_EPR can occur. 7311 6398 7312 6.6 KVM_CAP_IRQ_MPIC 6399 6.6 KVM_CAP_IRQ_MPIC 7313 -------------------- 6400 -------------------- 7314 6401 7315 :Architectures: ppc 6402 :Architectures: ppc 7316 :Parameters: args[0] is the MPIC device fd; 6403 :Parameters: args[0] is the MPIC device fd; 7317 args[1] is the MPIC CPU number f 6404 args[1] is the MPIC CPU number for this vcpu 7318 6405 7319 This capability connects the vcpu to an in-ke 6406 This capability connects the vcpu to an in-kernel MPIC device. 7320 6407 7321 6.7 KVM_CAP_IRQ_XICS 6408 6.7 KVM_CAP_IRQ_XICS 7322 -------------------- 6409 -------------------- 7323 6410 7324 :Architectures: ppc 6411 :Architectures: ppc 7325 :Target: vcpu 6412 :Target: vcpu 7326 :Parameters: args[0] is the XICS device fd; 6413 :Parameters: args[0] is the XICS device fd; 7327 args[1] is the XICS CPU number ( 6414 args[1] is the XICS CPU number (server ID) for this vcpu 7328 6415 7329 This capability connects the vcpu to an in-ke 6416 This capability connects the vcpu to an in-kernel XICS device. 7330 6417 7331 6.8 KVM_CAP_S390_IRQCHIP 6418 6.8 KVM_CAP_S390_IRQCHIP 7332 ------------------------ 6419 ------------------------ 7333 6420 7334 :Architectures: s390 6421 :Architectures: s390 7335 :Target: vm 6422 :Target: vm 7336 :Parameters: none 6423 :Parameters: none 7337 6424 7338 This capability enables the in-kernel irqchip 6425 This capability enables the in-kernel irqchip for s390. Please refer to 7339 "4.24 KVM_CREATE_IRQCHIP" for details. 6426 "4.24 KVM_CREATE_IRQCHIP" for details. 7340 6427 7341 6.9 KVM_CAP_MIPS_FPU 6428 6.9 KVM_CAP_MIPS_FPU 7342 -------------------- 6429 -------------------- 7343 6430 7344 :Architectures: mips 6431 :Architectures: mips 7345 :Target: vcpu 6432 :Target: vcpu 7346 :Parameters: args[0] is reserved for future u 6433 :Parameters: args[0] is reserved for future use (should be 0). 7347 6434 7348 This capability allows the use of the host Fl 6435 This capability allows the use of the host Floating Point Unit by the guest. It 7349 allows the Config1.FP bit to be set to enable 6436 allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is 7350 done the ``KVM_REG_MIPS_FPR_*`` and ``KVM_REG 6437 done the ``KVM_REG_MIPS_FPR_*`` and ``KVM_REG_MIPS_FCR_*`` registers can be 7351 accessed (depending on the current guest FPU 6438 accessed (depending on the current guest FPU register mode), and the Status.FR, 7352 Config5.FRE bits are accessible via the KVM A 6439 Config5.FRE bits are accessible via the KVM API and also from the guest, 7353 depending on them being supported by the FPU. 6440 depending on them being supported by the FPU. 7354 6441 7355 6.10 KVM_CAP_MIPS_MSA 6442 6.10 KVM_CAP_MIPS_MSA 7356 --------------------- 6443 --------------------- 7357 6444 7358 :Architectures: mips 6445 :Architectures: mips 7359 :Target: vcpu 6446 :Target: vcpu 7360 :Parameters: args[0] is reserved for future u 6447 :Parameters: args[0] is reserved for future use (should be 0). 7361 6448 7362 This capability allows the use of the MIPS SI 6449 This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest. 7363 It allows the Config3.MSAP bit to be set to e 6450 It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest. 7364 Once this is done the ``KVM_REG_MIPS_VEC_*`` 6451 Once this is done the ``KVM_REG_MIPS_VEC_*`` and ``KVM_REG_MIPS_MSA_*`` 7365 registers can be accessed, and the Config5.MS 6452 registers can be accessed, and the Config5.MSAEn bit is accessible via the 7366 KVM API and also from the guest. 6453 KVM API and also from the guest. 7367 6454 7368 6.74 KVM_CAP_SYNC_REGS 6455 6.74 KVM_CAP_SYNC_REGS 7369 ---------------------- 6456 ---------------------- 7370 6457 7371 :Architectures: s390, x86 6458 :Architectures: s390, x86 7372 :Target: s390: always enabled, x86: vcpu 6459 :Target: s390: always enabled, x86: vcpu 7373 :Parameters: none 6460 :Parameters: none 7374 :Returns: x86: KVM_CHECK_EXTENSION returns a 6461 :Returns: x86: KVM_CHECK_EXTENSION returns a bit-array indicating which register 7375 sets are supported 6462 sets are supported 7376 (bitfields defined in arch/x86/incl 6463 (bitfields defined in arch/x86/include/uapi/asm/kvm.h). 7377 6464 7378 As described above in the kvm_sync_regs struc 6465 As described above in the kvm_sync_regs struct info in section 5 (kvm_run): 7379 KVM_CAP_SYNC_REGS "allow[s] userspace to acce 6466 KVM_CAP_SYNC_REGS "allow[s] userspace to access certain guest registers 7380 without having to call SET/GET_*REGS". This r 6467 without having to call SET/GET_*REGS". This reduces overhead by eliminating 7381 repeated ioctl calls for setting and/or getti 6468 repeated ioctl calls for setting and/or getting register values. This is 7382 particularly important when userspace is maki 6469 particularly important when userspace is making synchronous guest state 7383 modifications, e.g. when emulating and/or int 6470 modifications, e.g. when emulating and/or intercepting instructions in 7384 userspace. 6471 userspace. 7385 6472 7386 For s390 specifics, please refer to the sourc 6473 For s390 specifics, please refer to the source code. 7387 6474 7388 For x86: 6475 For x86: 7389 6476 7390 - the register sets to be copied out to kvm_r 6477 - the register sets to be copied out to kvm_run are selectable 7391 by userspace (rather that all sets being co 6478 by userspace (rather that all sets being copied out for every exit). 7392 - vcpu_events are available in addition to re 6479 - vcpu_events are available in addition to regs and sregs. 7393 6480 7394 For x86, the 'kvm_valid_regs' field of struct 6481 For x86, the 'kvm_valid_regs' field of struct kvm_run is overloaded to 7395 function as an input bit-array field set by u 6482 function as an input bit-array field set by userspace to indicate the 7396 specific register sets to be copied out on th 6483 specific register sets to be copied out on the next exit. 7397 6484 7398 To indicate when userspace has modified value 6485 To indicate when userspace has modified values that should be copied into 7399 the vCPU, the all architecture bitarray field 6486 the vCPU, the all architecture bitarray field, 'kvm_dirty_regs' must be set. 7400 This is done using the same bitflags as for t 6487 This is done using the same bitflags as for the 'kvm_valid_regs' field. 7401 If the dirty bit is not set, then the registe 6488 If the dirty bit is not set, then the register set values will not be copied 7402 into the vCPU even if they've been modified. 6489 into the vCPU even if they've been modified. 7403 6490 7404 Unused bitfields in the bitarrays must be set 6491 Unused bitfields in the bitarrays must be set to zero. 7405 6492 7406 :: 6493 :: 7407 6494 7408 struct kvm_sync_regs { 6495 struct kvm_sync_regs { 7409 struct kvm_regs regs; 6496 struct kvm_regs regs; 7410 struct kvm_sregs sregs; 6497 struct kvm_sregs sregs; 7411 struct kvm_vcpu_events events; 6498 struct kvm_vcpu_events events; 7412 }; 6499 }; 7413 6500 7414 6.75 KVM_CAP_PPC_IRQ_XIVE 6501 6.75 KVM_CAP_PPC_IRQ_XIVE 7415 ------------------------- 6502 ------------------------- 7416 6503 7417 :Architectures: ppc 6504 :Architectures: ppc 7418 :Target: vcpu 6505 :Target: vcpu 7419 :Parameters: args[0] is the XIVE device fd; 6506 :Parameters: args[0] is the XIVE device fd; 7420 args[1] is the XIVE CPU number ( 6507 args[1] is the XIVE CPU number (server ID) for this vcpu 7421 6508 7422 This capability connects the vcpu to an in-ke 6509 This capability connects the vcpu to an in-kernel XIVE device. 7423 6510 7424 7. Capabilities that can be enabled on VMs 6511 7. Capabilities that can be enabled on VMs 7425 ========================================== 6512 ========================================== 7426 6513 7427 There are certain capabilities that change th 6514 There are certain capabilities that change the behavior of the virtual 7428 machine when enabled. To enable them, please 6515 machine when enabled. To enable them, please see section 4.37. Below 7429 you can find a list of capabilities and what 6516 you can find a list of capabilities and what their effect on the VM 7430 is when enabling them. 6517 is when enabling them. 7431 6518 7432 The following information is provided along w 6519 The following information is provided along with the description: 7433 6520 7434 Architectures: 6521 Architectures: 7435 which instruction set architectures pro 6522 which instruction set architectures provide this ioctl. 7436 x86 includes both i386 and x86_64. 6523 x86 includes both i386 and x86_64. 7437 6524 7438 Parameters: 6525 Parameters: 7439 what parameters are accepted by the cap 6526 what parameters are accepted by the capability. 7440 6527 7441 Returns: 6528 Returns: 7442 the return value. General error number 6529 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 7443 are not detailed, but errors with speci 6530 are not detailed, but errors with specific meanings are. 7444 6531 7445 6532 7446 7.1 KVM_CAP_PPC_ENABLE_HCALL 6533 7.1 KVM_CAP_PPC_ENABLE_HCALL 7447 ---------------------------- 6534 ---------------------------- 7448 6535 7449 :Architectures: ppc 6536 :Architectures: ppc 7450 :Parameters: args[0] is the sPAPR hcall numbe 6537 :Parameters: args[0] is the sPAPR hcall number; 7451 args[1] is 0 to disable, 1 to en 6538 args[1] is 0 to disable, 1 to enable in-kernel handling 7452 6539 7453 This capability controls whether individual s 6540 This capability controls whether individual sPAPR hypercalls (hcalls) 7454 get handled by the kernel or not. Enabling o 6541 get handled by the kernel or not. Enabling or disabling in-kernel 7455 handling of an hcall is effective across the 6542 handling of an hcall is effective across the VM. On creation, an 7456 initial set of hcalls are enabled for in-kern 6543 initial set of hcalls are enabled for in-kernel handling, which 7457 consists of those hcalls for which in-kernel 6544 consists of those hcalls for which in-kernel handlers were implemented 7458 before this capability was implemented. If d 6545 before this capability was implemented. If disabled, the kernel will 7459 not to attempt to handle the hcall, but will 6546 not to attempt to handle the hcall, but will always exit to userspace 7460 to handle it. Note that it may not make sens 6547 to handle it. Note that it may not make sense to enable some and 7461 disable others of a group of related hcalls, 6548 disable others of a group of related hcalls, but KVM does not prevent 7462 userspace from doing that. 6549 userspace from doing that. 7463 6550 7464 If the hcall number specified is not one that 6551 If the hcall number specified is not one that has an in-kernel 7465 implementation, the KVM_ENABLE_CAP ioctl will 6552 implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL 7466 error. 6553 error. 7467 6554 7468 7.2 KVM_CAP_S390_USER_SIGP 6555 7.2 KVM_CAP_S390_USER_SIGP 7469 -------------------------- 6556 -------------------------- 7470 6557 7471 :Architectures: s390 6558 :Architectures: s390 7472 :Parameters: none 6559 :Parameters: none 7473 6560 7474 This capability controls which SIGP orders wi 6561 This capability controls which SIGP orders will be handled completely in user 7475 space. With this capability enabled, all fast 6562 space. With this capability enabled, all fast orders will be handled completely 7476 in the kernel: 6563 in the kernel: 7477 6564 7478 - SENSE 6565 - SENSE 7479 - SENSE RUNNING 6566 - SENSE RUNNING 7480 - EXTERNAL CALL 6567 - EXTERNAL CALL 7481 - EMERGENCY SIGNAL 6568 - EMERGENCY SIGNAL 7482 - CONDITIONAL EMERGENCY SIGNAL 6569 - CONDITIONAL EMERGENCY SIGNAL 7483 6570 7484 All other orders will be handled completely i 6571 All other orders will be handled completely in user space. 7485 6572 7486 Only privileged operation exceptions will be 6573 Only privileged operation exceptions will be checked for in the kernel (or even 7487 in the hardware prior to interception). If th 6574 in the hardware prior to interception). If this capability is not enabled, the 7488 old way of handling SIGP orders is used (part 6575 old way of handling SIGP orders is used (partially in kernel and user space). 7489 6576 7490 7.3 KVM_CAP_S390_VECTOR_REGISTERS 6577 7.3 KVM_CAP_S390_VECTOR_REGISTERS 7491 --------------------------------- 6578 --------------------------------- 7492 6579 7493 :Architectures: s390 6580 :Architectures: s390 7494 :Parameters: none 6581 :Parameters: none 7495 :Returns: 0 on success, negative value on err 6582 :Returns: 0 on success, negative value on error 7496 6583 7497 Allows use of the vector registers introduced 6584 Allows use of the vector registers introduced with z13 processor, and 7498 provides for the synchronization between host 6585 provides for the synchronization between host and user space. Will 7499 return -EINVAL if the machine does not suppor 6586 return -EINVAL if the machine does not support vectors. 7500 6587 7501 7.4 KVM_CAP_S390_USER_STSI 6588 7.4 KVM_CAP_S390_USER_STSI 7502 -------------------------- 6589 -------------------------- 7503 6590 7504 :Architectures: s390 6591 :Architectures: s390 7505 :Parameters: none 6592 :Parameters: none 7506 6593 7507 This capability allows post-handlers for the 6594 This capability allows post-handlers for the STSI instruction. After 7508 initial handling in the kernel, KVM exits to 6595 initial handling in the kernel, KVM exits to user space with 7509 KVM_EXIT_S390_STSI to allow user space to ins 6596 KVM_EXIT_S390_STSI to allow user space to insert further data. 7510 6597 7511 Before exiting to userspace, kvm handlers sho 6598 Before exiting to userspace, kvm handlers should fill in s390_stsi field of 7512 vcpu->run:: 6599 vcpu->run:: 7513 6600 7514 struct { 6601 struct { 7515 __u64 addr; 6602 __u64 addr; 7516 __u8 ar; 6603 __u8 ar; 7517 __u8 reserved; 6604 __u8 reserved; 7518 __u8 fc; 6605 __u8 fc; 7519 __u8 sel1; 6606 __u8 sel1; 7520 __u16 sel2; 6607 __u16 sel2; 7521 } s390_stsi; 6608 } s390_stsi; 7522 6609 7523 @addr - guest address of STSI SYSIB 6610 @addr - guest address of STSI SYSIB 7524 @fc - function code 6611 @fc - function code 7525 @sel1 - selector 1 6612 @sel1 - selector 1 7526 @sel2 - selector 2 6613 @sel2 - selector 2 7527 @ar - access register number 6614 @ar - access register number 7528 6615 7529 KVM handlers should exit to userspace with rc 6616 KVM handlers should exit to userspace with rc = -EREMOTE. 7530 6617 7531 7.5 KVM_CAP_SPLIT_IRQCHIP 6618 7.5 KVM_CAP_SPLIT_IRQCHIP 7532 ------------------------- 6619 ------------------------- 7533 6620 7534 :Architectures: x86 6621 :Architectures: x86 7535 :Parameters: args[0] - number of routes reser 6622 :Parameters: args[0] - number of routes reserved for userspace IOAPICs 7536 :Returns: 0 on success, -1 on error 6623 :Returns: 0 on success, -1 on error 7537 6624 7538 Create a local apic for each processor in the 6625 Create a local apic for each processor in the kernel. This can be used 7539 instead of KVM_CREATE_IRQCHIP if the userspac 6626 instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the 7540 IOAPIC and PIC (and also the PIT, even though 6627 IOAPIC and PIC (and also the PIT, even though this has to be enabled 7541 separately). 6628 separately). 7542 6629 7543 This capability also enables in kernel routin 6630 This capability also enables in kernel routing of interrupt requests; 7544 when KVM_CAP_SPLIT_IRQCHIP only routes of KVM 6631 when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are 7545 used in the IRQ routing table. The first arg 6632 used in the IRQ routing table. The first args[0] MSI routes are reserved 7546 for the IOAPIC pins. Whenever the LAPIC rece 6633 for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes, 7547 a KVM_EXIT_IOAPIC_EOI vmexit will be reported 6634 a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace. 7548 6635 7549 Fails if VCPU has already been created, or if 6636 Fails if VCPU has already been created, or if the irqchip is already in the 7550 kernel (i.e. KVM_CREATE_IRQCHIP has already b 6637 kernel (i.e. KVM_CREATE_IRQCHIP has already been called). 7551 6638 7552 7.6 KVM_CAP_S390_RI 6639 7.6 KVM_CAP_S390_RI 7553 ------------------- 6640 ------------------- 7554 6641 7555 :Architectures: s390 6642 :Architectures: s390 7556 :Parameters: none 6643 :Parameters: none 7557 6644 7558 Allows use of runtime-instrumentation introdu 6645 Allows use of runtime-instrumentation introduced with zEC12 processor. 7559 Will return -EINVAL if the machine does not s 6646 Will return -EINVAL if the machine does not support runtime-instrumentation. 7560 Will return -EBUSY if a VCPU has already been 6647 Will return -EBUSY if a VCPU has already been created. 7561 6648 7562 7.7 KVM_CAP_X2APIC_API 6649 7.7 KVM_CAP_X2APIC_API 7563 ---------------------- 6650 ---------------------- 7564 6651 7565 :Architectures: x86 6652 :Architectures: x86 7566 :Parameters: args[0] - features that should b 6653 :Parameters: args[0] - features that should be enabled 7567 :Returns: 0 on success, -EINVAL when args[0] 6654 :Returns: 0 on success, -EINVAL when args[0] contains invalid features 7568 6655 7569 Valid feature flags in args[0] are:: 6656 Valid feature flags in args[0] are:: 7570 6657 7571 #define KVM_X2APIC_API_USE_32BIT_IDS 6658 #define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0) 7572 #define KVM_X2APIC_API_DISABLE_BROADCAST_QU 6659 #define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1) 7573 6660 7574 Enabling KVM_X2APIC_API_USE_32BIT_IDS changes 6661 Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of 7575 KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_ 6662 KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC, 7576 allowing the use of 32-bit APIC IDs. See KVM 6663 allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their 7577 respective sections. 6664 respective sections. 7578 6665 7579 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must b 6666 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work 7580 in logical mode or with more than 255 VCPUs. 6667 in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff 7581 as a broadcast even in x2APIC mode in order t 6668 as a broadcast even in x2APIC mode in order to support physical x2APIC 7582 without interrupt remapping. This is undesir 6669 without interrupt remapping. This is undesirable in logical mode, 7583 where 0xff represents CPUs 0-7 in cluster 0. 6670 where 0xff represents CPUs 0-7 in cluster 0. 7584 6671 7585 7.8 KVM_CAP_S390_USER_INSTR0 6672 7.8 KVM_CAP_S390_USER_INSTR0 7586 ---------------------------- 6673 ---------------------------- 7587 6674 7588 :Architectures: s390 6675 :Architectures: s390 7589 :Parameters: none 6676 :Parameters: none 7590 6677 7591 With this capability enabled, all illegal ins 6678 With this capability enabled, all illegal instructions 0x0000 (2 bytes) will 7592 be intercepted and forwarded to user space. U 6679 be intercepted and forwarded to user space. User space can use this 7593 mechanism e.g. to realize 2-byte software bre 6680 mechanism e.g. to realize 2-byte software breakpoints. The kernel will 7594 not inject an operating exception for these i 6681 not inject an operating exception for these instructions, user space has 7595 to take care of that. 6682 to take care of that. 7596 6683 7597 This capability can be enabled dynamically ev 6684 This capability can be enabled dynamically even if VCPUs were already 7598 created and are running. 6685 created and are running. 7599 6686 7600 7.9 KVM_CAP_S390_GS 6687 7.9 KVM_CAP_S390_GS 7601 ------------------- 6688 ------------------- 7602 6689 7603 :Architectures: s390 6690 :Architectures: s390 7604 :Parameters: none 6691 :Parameters: none 7605 :Returns: 0 on success; -EINVAL if the machin 6692 :Returns: 0 on success; -EINVAL if the machine does not support 7606 guarded storage; -EBUSY if a VCPU h 6693 guarded storage; -EBUSY if a VCPU has already been created. 7607 6694 7608 Allows use of guarded storage for the KVM gue 6695 Allows use of guarded storage for the KVM guest. 7609 6696 7610 7.10 KVM_CAP_S390_AIS 6697 7.10 KVM_CAP_S390_AIS 7611 --------------------- 6698 --------------------- 7612 6699 7613 :Architectures: s390 6700 :Architectures: s390 7614 :Parameters: none 6701 :Parameters: none 7615 6702 7616 Allow use of adapter-interruption suppression 6703 Allow use of adapter-interruption suppression. 7617 :Returns: 0 on success; -EBUSY if a VCPU has 6704 :Returns: 0 on success; -EBUSY if a VCPU has already been created. 7618 6705 7619 7.11 KVM_CAP_PPC_SMT 6706 7.11 KVM_CAP_PPC_SMT 7620 -------------------- 6707 -------------------- 7621 6708 7622 :Architectures: ppc 6709 :Architectures: ppc 7623 :Parameters: vsmt_mode, flags 6710 :Parameters: vsmt_mode, flags 7624 6711 7625 Enabling this capability on a VM provides use 6712 Enabling this capability on a VM provides userspace with a way to set 7626 the desired virtual SMT mode (i.e. the number 6713 the desired virtual SMT mode (i.e. the number of virtual CPUs per 7627 virtual core). The virtual SMT mode, vsmt_mo 6714 virtual core). The virtual SMT mode, vsmt_mode, must be a power of 2 7628 between 1 and 8. On POWER8, vsmt_mode must a 6715 between 1 and 8. On POWER8, vsmt_mode must also be no greater than 7629 the number of threads per subcore for the hos 6716 the number of threads per subcore for the host. Currently flags must 7630 be 0. A successful call to enable this capab 6717 be 0. A successful call to enable this capability will result in 7631 vsmt_mode being returned when the KVM_CAP_PPC 6718 vsmt_mode being returned when the KVM_CAP_PPC_SMT capability is 7632 subsequently queried for the VM. This capabi 6719 subsequently queried for the VM. This capability is only supported by 7633 HV KVM, and can only be set before any VCPUs 6720 HV KVM, and can only be set before any VCPUs have been created. 7634 The KVM_CAP_PPC_SMT_POSSIBLE capability indic 6721 The KVM_CAP_PPC_SMT_POSSIBLE capability indicates which virtual SMT 7635 modes are available. 6722 modes are available. 7636 6723 7637 7.12 KVM_CAP_PPC_FWNMI 6724 7.12 KVM_CAP_PPC_FWNMI 7638 ---------------------- 6725 ---------------------- 7639 6726 7640 :Architectures: ppc 6727 :Architectures: ppc 7641 :Parameters: none 6728 :Parameters: none 7642 6729 7643 With this capability a machine check exceptio 6730 With this capability a machine check exception in the guest address 7644 space will cause KVM to exit the guest with N 6731 space will cause KVM to exit the guest with NMI exit reason. This 7645 enables QEMU to build error log and branch to 6732 enables QEMU to build error log and branch to guest kernel registered 7646 machine check handling routine. Without this 6733 machine check handling routine. Without this capability KVM will 7647 branch to guests' 0x200 interrupt vector. 6734 branch to guests' 0x200 interrupt vector. 7648 6735 7649 7.13 KVM_CAP_X86_DISABLE_EXITS 6736 7.13 KVM_CAP_X86_DISABLE_EXITS 7650 ------------------------------ 6737 ------------------------------ 7651 6738 7652 :Architectures: x86 6739 :Architectures: x86 7653 :Parameters: args[0] defines which exits are 6740 :Parameters: args[0] defines which exits are disabled 7654 :Returns: 0 on success, -EINVAL when args[0] 6741 :Returns: 0 on success, -EINVAL when args[0] contains invalid exits 7655 6742 7656 Valid bits in args[0] are:: 6743 Valid bits in args[0] are:: 7657 6744 7658 #define KVM_X86_DISABLE_EXITS_MWAIT 6745 #define KVM_X86_DISABLE_EXITS_MWAIT (1 << 0) 7659 #define KVM_X86_DISABLE_EXITS_HLT 6746 #define KVM_X86_DISABLE_EXITS_HLT (1 << 1) 7660 #define KVM_X86_DISABLE_EXITS_PAUSE 6747 #define KVM_X86_DISABLE_EXITS_PAUSE (1 << 2) 7661 #define KVM_X86_DISABLE_EXITS_CSTATE 6748 #define KVM_X86_DISABLE_EXITS_CSTATE (1 << 3) 7662 6749 7663 Enabling this capability on a VM provides use 6750 Enabling this capability on a VM provides userspace with a way to no 7664 longer intercept some instructions for improv 6751 longer intercept some instructions for improved latency in some 7665 workloads, and is suggested when vCPUs are as 6752 workloads, and is suggested when vCPUs are associated to dedicated 7666 physical CPUs. More bits can be added in the 6753 physical CPUs. More bits can be added in the future; userspace can 7667 just pass the KVM_CHECK_EXTENSION result to K 6754 just pass the KVM_CHECK_EXTENSION result to KVM_ENABLE_CAP to disable 7668 all such vmexits. 6755 all such vmexits. 7669 6756 7670 Do not enable KVM_FEATURE_PV_UNHALT if you di 6757 Do not enable KVM_FEATURE_PV_UNHALT if you disable HLT exits. 7671 6758 7672 7.14 KVM_CAP_S390_HPAGE_1M 6759 7.14 KVM_CAP_S390_HPAGE_1M 7673 -------------------------- 6760 -------------------------- 7674 6761 7675 :Architectures: s390 6762 :Architectures: s390 7676 :Parameters: none 6763 :Parameters: none 7677 :Returns: 0 on success, -EINVAL if hpage modu 6764 :Returns: 0 on success, -EINVAL if hpage module parameter was not set 7678 or cmma is enabled, or the VM has t 6765 or cmma is enabled, or the VM has the KVM_VM_S390_UCONTROL 7679 flag set 6766 flag set 7680 6767 7681 With this capability the KVM support for memo 6768 With this capability the KVM support for memory backing with 1m pages 7682 through hugetlbfs can be enabled for a VM. Af 6769 through hugetlbfs can be enabled for a VM. After the capability is 7683 enabled, cmma can't be enabled anymore and pf 6770 enabled, cmma can't be enabled anymore and pfmfi and the storage key 7684 interpretation are disabled. If cmma has alre 6771 interpretation are disabled. If cmma has already been enabled or the 7685 hpage module parameter is not set to 1, -EINV 6772 hpage module parameter is not set to 1, -EINVAL is returned. 7686 6773 7687 While it is generally possible to create a hu 6774 While it is generally possible to create a huge page backed VM without 7688 this capability, the VM will not be able to r 6775 this capability, the VM will not be able to run. 7689 6776 7690 7.15 KVM_CAP_MSR_PLATFORM_INFO 6777 7.15 KVM_CAP_MSR_PLATFORM_INFO 7691 ------------------------------ 6778 ------------------------------ 7692 6779 7693 :Architectures: x86 6780 :Architectures: x86 7694 :Parameters: args[0] whether feature should b 6781 :Parameters: args[0] whether feature should be enabled or not 7695 6782 7696 With this capability, a guest may read the MS 6783 With this capability, a guest may read the MSR_PLATFORM_INFO MSR. Otherwise, 7697 a #GP would be raised when the guest tries to 6784 a #GP would be raised when the guest tries to access. Currently, this 7698 capability does not enable write permissions 6785 capability does not enable write permissions of this MSR for the guest. 7699 6786 7700 7.16 KVM_CAP_PPC_NESTED_HV 6787 7.16 KVM_CAP_PPC_NESTED_HV 7701 -------------------------- 6788 -------------------------- 7702 6789 7703 :Architectures: ppc 6790 :Architectures: ppc 7704 :Parameters: none 6791 :Parameters: none 7705 :Returns: 0 on success, -EINVAL when the impl 6792 :Returns: 0 on success, -EINVAL when the implementation doesn't support 7706 nested-HV virtualization. 6793 nested-HV virtualization. 7707 6794 7708 HV-KVM on POWER9 and later systems allows for 6795 HV-KVM on POWER9 and later systems allows for "nested-HV" 7709 virtualization, which provides a way for a gu 6796 virtualization, which provides a way for a guest VM to run guests that 7710 can run using the CPU's supervisor mode (priv 6797 can run using the CPU's supervisor mode (privileged non-hypervisor 7711 state). Enabling this capability on a VM dep 6798 state). Enabling this capability on a VM depends on the CPU having 7712 the necessary functionality and on the facili 6799 the necessary functionality and on the facility being enabled with a 7713 kvm-hv module parameter. 6800 kvm-hv module parameter. 7714 6801 7715 7.17 KVM_CAP_EXCEPTION_PAYLOAD 6802 7.17 KVM_CAP_EXCEPTION_PAYLOAD 7716 ------------------------------ 6803 ------------------------------ 7717 6804 7718 :Architectures: x86 6805 :Architectures: x86 7719 :Parameters: args[0] whether feature should b 6806 :Parameters: args[0] whether feature should be enabled or not 7720 6807 7721 With this capability enabled, CR2 will not be 6808 With this capability enabled, CR2 will not be modified prior to the 7722 emulated VM-exit when L1 intercepts a #PF exc 6809 emulated VM-exit when L1 intercepts a #PF exception that occurs in 7723 L2. Similarly, for kvm-intel only, DR6 will n 6810 L2. Similarly, for kvm-intel only, DR6 will not be modified prior to 7724 the emulated VM-exit when L1 intercepts a #DB 6811 the emulated VM-exit when L1 intercepts a #DB exception that occurs in 7725 L2. As a result, when KVM_GET_VCPU_EVENTS rep 6812 L2. As a result, when KVM_GET_VCPU_EVENTS reports a pending #PF (or 7726 #DB) exception for L2, exception.has_payload 6813 #DB) exception for L2, exception.has_payload will be set and the 7727 faulting address (or the new DR6 bits*) will 6814 faulting address (or the new DR6 bits*) will be reported in the 7728 exception_payload field. Similarly, when user 6815 exception_payload field. Similarly, when userspace injects a #PF (or 7729 #DB) into L2 using KVM_SET_VCPU_EVENTS, it is 6816 #DB) into L2 using KVM_SET_VCPU_EVENTS, it is expected to set 7730 exception.has_payload and to put the faulting 6817 exception.has_payload and to put the faulting address - or the new DR6 7731 bits\ [#]_ - in the exception_payload field. 6818 bits\ [#]_ - in the exception_payload field. 7732 6819 7733 This capability also enables exception.pendin 6820 This capability also enables exception.pending in struct 7734 kvm_vcpu_events, which allows userspace to di 6821 kvm_vcpu_events, which allows userspace to distinguish between pending 7735 and injected exceptions. 6822 and injected exceptions. 7736 6823 7737 6824 7738 .. [#] For the new DR6 bits, note that bit 16 6825 .. [#] For the new DR6 bits, note that bit 16 is set iff the #DB exception 7739 will clear DR6.RTM. 6826 will clear DR6.RTM. 7740 6827 7741 7.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 6828 7.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 7742 -------------------------------------- << 7743 6829 7744 :Architectures: x86, arm64, mips 6830 :Architectures: x86, arm64, mips 7745 :Parameters: args[0] whether feature should b 6831 :Parameters: args[0] whether feature should be enabled or not 7746 6832 7747 Valid flags are:: 6833 Valid flags are:: 7748 6834 7749 #define KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 6835 #define KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (1 << 0) 7750 #define KVM_DIRTY_LOG_INITIALLY_SET 6836 #define KVM_DIRTY_LOG_INITIALLY_SET (1 << 1) 7751 6837 7752 With KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE is s 6838 With KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE is set, KVM_GET_DIRTY_LOG will not 7753 automatically clear and write-protect all pag 6839 automatically clear and write-protect all pages that are returned as dirty. 7754 Rather, userspace will have to do this operat 6840 Rather, userspace will have to do this operation separately using 7755 KVM_CLEAR_DIRTY_LOG. 6841 KVM_CLEAR_DIRTY_LOG. 7756 6842 7757 At the cost of a slightly more complicated op 6843 At the cost of a slightly more complicated operation, this provides better 7758 scalability and responsiveness for two reason 6844 scalability and responsiveness for two reasons. First, 7759 KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64 6845 KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64-page granularity rather 7760 than requiring to sync a full memslot; this e 6846 than requiring to sync a full memslot; this ensures that KVM does not 7761 take spinlocks for an extended period of time 6847 take spinlocks for an extended period of time. Second, in some cases a 7762 large amount of time can pass between a call 6848 large amount of time can pass between a call to KVM_GET_DIRTY_LOG and 7763 userspace actually using the data in the page 6849 userspace actually using the data in the page. Pages can be modified 7764 during this time, which is inefficient for bo 6850 during this time, which is inefficient for both the guest and userspace: 7765 the guest will incur a higher penalty due to 6851 the guest will incur a higher penalty due to write protection faults, 7766 while userspace can see false reports of dirt 6852 while userspace can see false reports of dirty pages. Manual reprotection 7767 helps reducing this time, improving guest per 6853 helps reducing this time, improving guest performance and reducing the 7768 number of dirty log false positives. 6854 number of dirty log false positives. 7769 6855 7770 With KVM_DIRTY_LOG_INITIALLY_SET set, all the 6856 With KVM_DIRTY_LOG_INITIALLY_SET set, all the bits of the dirty bitmap 7771 will be initialized to 1 when created. This 6857 will be initialized to 1 when created. This also improves performance because 7772 dirty logging can be enabled gradually in sma 6858 dirty logging can be enabled gradually in small chunks on the first call 7773 to KVM_CLEAR_DIRTY_LOG. KVM_DIRTY_LOG_INITIA 6859 to KVM_CLEAR_DIRTY_LOG. KVM_DIRTY_LOG_INITIALLY_SET depends on 7774 KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (it is al 6860 KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (it is also only available on 7775 x86 and arm64 for now). 6861 x86 and arm64 for now). 7776 6862 7777 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previou 6863 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previously available under the name 7778 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the imp 6864 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the implementation had bugs that make 7779 it hard or impossible to use it correctly. T 6865 it hard or impossible to use it correctly. The availability of 7780 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 signals tha 6866 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 signals that those bugs are fixed. 7781 Userspace should not try to use KVM_CAP_MANUA 6867 Userspace should not try to use KVM_CAP_MANUAL_DIRTY_LOG_PROTECT. 7782 6868 7783 7.19 KVM_CAP_PPC_SECURE_GUEST 6869 7.19 KVM_CAP_PPC_SECURE_GUEST 7784 ------------------------------ 6870 ------------------------------ 7785 6871 7786 :Architectures: ppc 6872 :Architectures: ppc 7787 6873 7788 This capability indicates that KVM is running 6874 This capability indicates that KVM is running on a host that has 7789 ultravisor firmware and thus can support a se 6875 ultravisor firmware and thus can support a secure guest. On such a 7790 system, a guest can ask the ultravisor to mak 6876 system, a guest can ask the ultravisor to make it a secure guest, 7791 one whose memory is inaccessible to the host 6877 one whose memory is inaccessible to the host except for pages which 7792 are explicitly requested to be shared with th 6878 are explicitly requested to be shared with the host. The ultravisor 7793 notifies KVM when a guest requests to become 6879 notifies KVM when a guest requests to become a secure guest, and KVM 7794 has the opportunity to veto the transition. 6880 has the opportunity to veto the transition. 7795 6881 7796 If present, this capability can be enabled fo 6882 If present, this capability can be enabled for a VM, meaning that KVM 7797 will allow the transition to secure guest mod 6883 will allow the transition to secure guest mode. Otherwise KVM will 7798 veto the transition. 6884 veto the transition. 7799 6885 7800 7.20 KVM_CAP_HALT_POLL 6886 7.20 KVM_CAP_HALT_POLL 7801 ---------------------- 6887 ---------------------- 7802 6888 7803 :Architectures: all 6889 :Architectures: all 7804 :Target: VM 6890 :Target: VM 7805 :Parameters: args[0] is the maximum poll time 6891 :Parameters: args[0] is the maximum poll time in nanoseconds 7806 :Returns: 0 on success; -1 on error 6892 :Returns: 0 on success; -1 on error 7807 6893 7808 KVM_CAP_HALT_POLL overrides the kvm.halt_poll !! 6894 This capability overrides the kvm module parameter halt_poll_ns for the 7809 maximum halt-polling time for all vCPUs in th !! 6895 target VM. 7810 be invoked at any time and any number of time << 7811 maximum halt-polling time. << 7812 6896 7813 See Documentation/virt/kvm/halt-polling.rst f !! 6897 VCPU polling allows a VCPU to poll for wakeup events instead of immediately 7814 polling. !! 6898 scheduling during guest halts. The maximum time a VCPU can spend polling is >> 6899 controlled by the kvm module parameter halt_poll_ns. This capability allows >> 6900 the maximum halt time to specified on a per-VM basis, effectively overriding >> 6901 the module parameter for the target VM. 7815 6902 7816 7.21 KVM_CAP_X86_USER_SPACE_MSR 6903 7.21 KVM_CAP_X86_USER_SPACE_MSR 7817 ------------------------------- 6904 ------------------------------- 7818 6905 7819 :Architectures: x86 6906 :Architectures: x86 7820 :Target: VM 6907 :Target: VM 7821 :Parameters: args[0] contains the mask of KVM 6908 :Parameters: args[0] contains the mask of KVM_MSR_EXIT_REASON_* events to report 7822 :Returns: 0 on success; -1 on error 6909 :Returns: 0 on success; -1 on error 7823 6910 7824 This capability allows userspace to intercept !! 6911 This capability enables trapping of #GP invoking RDMSR and WRMSR instructions 7825 access to an MSR is denied. By default, KVM !! 6912 into user space. 7826 6913 7827 When a guest requests to read or write an MSR 6914 When a guest requests to read or write an MSR, KVM may not implement all MSRs 7828 that are relevant to a respective system. It 6915 that are relevant to a respective system. It also does not differentiate by 7829 CPU type. 6916 CPU type. 7830 6917 7831 To allow more fine grained control over MSR h !! 6918 To allow more fine grained control over MSR handling, user space may enable 7832 this capability. With it enabled, MSR accesse 6919 this capability. With it enabled, MSR accesses that match the mask specified in 7833 args[0] and would trigger a #GP inside the gu !! 6920 args[0] and trigger a #GP event inside the guest by KVM will instead trigger 7834 KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exi !! 6921 KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exit notifications which user space 7835 can then implement model specific MSR handlin !! 6922 can then handle to implement model specific MSR handling and/or user notifications 7836 to inform a user that an MSR was not emulated !! 6923 to inform a user that an MSR was not handled. 7837 << 7838 The valid mask flags are: << 7839 << 7840 ============================ ================ << 7841 KVM_MSR_EXIT_REASON_UNKNOWN intercept access << 7842 KVM_MSR_EXIT_REASON_INVAL intercept access << 7843 invalid accordin << 7844 KVM_MSR_EXIT_REASON_FILTER intercept access << 7845 via KVM_X86_SET_ << 7846 ============================ ================ << 7847 6924 7848 7.22 KVM_CAP_X86_BUS_LOCK_EXIT 6925 7.22 KVM_CAP_X86_BUS_LOCK_EXIT 7849 ------------------------------- 6926 ------------------------------- 7850 6927 7851 :Architectures: x86 6928 :Architectures: x86 7852 :Target: VM 6929 :Target: VM 7853 :Parameters: args[0] defines the policy used 6930 :Parameters: args[0] defines the policy used when bus locks detected in guest 7854 :Returns: 0 on success, -EINVAL when args[0] 6931 :Returns: 0 on success, -EINVAL when args[0] contains invalid bits 7855 6932 7856 Valid bits in args[0] are:: 6933 Valid bits in args[0] are:: 7857 6934 7858 #define KVM_BUS_LOCK_DETECTION_OFF (1 6935 #define KVM_BUS_LOCK_DETECTION_OFF (1 << 0) 7859 #define KVM_BUS_LOCK_DETECTION_EXIT (1 6936 #define KVM_BUS_LOCK_DETECTION_EXIT (1 << 1) 7860 6937 7861 Enabling this capability on a VM provides use !! 6938 Enabling this capability on a VM provides userspace with a way to select 7862 policy to handle the bus locks detected in gu !! 6939 a policy to handle the bus locks detected in guest. Userspace can obtain 7863 supported modes from the result of KVM_CHECK_ !! 6940 the supported modes from the result of KVM_CHECK_EXTENSION and define it 7864 the KVM_ENABLE_CAP. The supported modes are m !! 6941 through the KVM_ENABLE_CAP. 7865 !! 6942 7866 This capability allows userspace to force VM !! 6943 KVM_BUS_LOCK_DETECTION_OFF and KVM_BUS_LOCK_DETECTION_EXIT are supported 7867 guest, irrespective whether or not the host h !! 6944 currently and mutually exclusive with each other. More bits can be added in 7868 (which triggers an #AC exception that KVM int !! 6945 the future. 7869 intended to mitigate attacks where a maliciou !! 6946 7870 locks to degrade the performance of the whole !! 6947 With KVM_BUS_LOCK_DETECTION_OFF set, bus locks in guest will not cause vm exits 7871 !! 6948 so that no additional actions are needed. This is the default mode. 7872 If KVM_BUS_LOCK_DETECTION_OFF is set, KVM doe !! 6949 7873 exit, although the host kernel's split-lock # !! 6950 With KVM_BUS_LOCK_DETECTION_EXIT set, vm exits happen when bus lock detected 7874 enabled. !! 6951 in VM. KVM just exits to userspace when handling them. Userspace can enforce 7875 !! 6952 its own throttling or other policy based mitigations. 7876 If KVM_BUS_LOCK_DETECTION_EXIT is set, KVM en !! 6953 7877 bus locks in the guest trigger a VM exit, and !! 6954 This capability is aimed to address the thread that VM can exploit bus locks to 7878 such VM exits, e.g. to allow userspace to thr !! 6955 degree the performance of the whole system. Once the userspace enable this 7879 apply some other policy-based mitigation. Whe !! 6956 capability and select the KVM_BUS_LOCK_DETECTION_EXIT mode, KVM will set the 7880 KVM_RUN_X86_BUS_LOCK in vcpu-run->flags, and !! 6957 KVM_RUN_BUS_LOCK flag in vcpu-run->flags field and exit to userspace. Concerning 7881 to KVM_EXIT_X86_BUS_LOCK. !! 6958 the bus lock vm exit can be preempted by a higher priority VM exit, the exit 7882 !! 6959 notifications to userspace can be KVM_EXIT_BUS_LOCK or other reasons. 7883 Note! Detected bus locks may be coincident wi !! 6960 KVM_RUN_BUS_LOCK flag is used to distinguish between them. 7884 KVM_RUN_X86_BUS_LOCK should be checked regard << 7885 userspace wants to take action on all detecte << 7886 6961 7887 7.23 KVM_CAP_PPC_DAWR1 6962 7.23 KVM_CAP_PPC_DAWR1 7888 ---------------------- 6963 ---------------------- 7889 6964 7890 :Architectures: ppc 6965 :Architectures: ppc 7891 :Parameters: none 6966 :Parameters: none 7892 :Returns: 0 on success, -EINVAL when CPU does 6967 :Returns: 0 on success, -EINVAL when CPU doesn't support 2nd DAWR 7893 6968 7894 This capability can be used to check / enable 6969 This capability can be used to check / enable 2nd DAWR feature provided 7895 by POWER10 processor. 6970 by POWER10 processor. 7896 6971 7897 6972 7898 7.24 KVM_CAP_VM_COPY_ENC_CONTEXT_FROM 6973 7.24 KVM_CAP_VM_COPY_ENC_CONTEXT_FROM 7899 ------------------------------------- 6974 ------------------------------------- 7900 6975 7901 Architectures: x86 SEV enabled 6976 Architectures: x86 SEV enabled 7902 Type: vm 6977 Type: vm 7903 Parameters: args[0] is the fd of the source v 6978 Parameters: args[0] is the fd of the source vm 7904 Returns: 0 on success; ENOTTY on error 6979 Returns: 0 on success; ENOTTY on error 7905 6980 7906 This capability enables userspace to copy enc 6981 This capability enables userspace to copy encryption context from the vm 7907 indicated by the fd to the vm this is called 6982 indicated by the fd to the vm this is called on. 7908 6983 7909 This is intended to support in-guest workload 6984 This is intended to support in-guest workloads scheduled by the host. This 7910 allows the in-guest workload to maintain its 6985 allows the in-guest workload to maintain its own NPTs and keeps the two vms 7911 from accidentally clobbering each other with 6986 from accidentally clobbering each other with interrupts and the like (separate 7912 APIC/MSRs/etc). 6987 APIC/MSRs/etc). 7913 6988 7914 7.25 KVM_CAP_SGX_ATTRIBUTE 6989 7.25 KVM_CAP_SGX_ATTRIBUTE 7915 -------------------------- 6990 -------------------------- 7916 6991 7917 :Architectures: x86 6992 :Architectures: x86 7918 :Target: VM 6993 :Target: VM 7919 :Parameters: args[0] is a file handle of a SG 6994 :Parameters: args[0] is a file handle of a SGX attribute file in securityfs 7920 :Returns: 0 on success, -EINVAL if the file h 6995 :Returns: 0 on success, -EINVAL if the file handle is invalid or if a requested 7921 attribute is not supported by KVM. 6996 attribute is not supported by KVM. 7922 6997 7923 KVM_CAP_SGX_ATTRIBUTE enables a userspace VMM 6998 KVM_CAP_SGX_ATTRIBUTE enables a userspace VMM to grant a VM access to one or 7924 more privileged enclave attributes. args[0] !! 6999 more priveleged enclave attributes. args[0] must hold a file handle to a valid 7925 SGX attribute file corresponding to an attrib 7000 SGX attribute file corresponding to an attribute that is supported/restricted 7926 by KVM (currently only PROVISIONKEY). 7001 by KVM (currently only PROVISIONKEY). 7927 7002 7928 The SGX subsystem restricts access to a subse 7003 The SGX subsystem restricts access to a subset of enclave attributes to provide 7929 additional security for an uncompromised kern 7004 additional security for an uncompromised kernel, e.g. use of the PROVISIONKEY 7930 is restricted to deter malware from using the 7005 is restricted to deter malware from using the PROVISIONKEY to obtain a stable 7931 system fingerprint. To prevent userspace fro 7006 system fingerprint. To prevent userspace from circumventing such restrictions 7932 by running an enclave in a VM, KVM prevents a 7007 by running an enclave in a VM, KVM prevents access to privileged attributes by 7933 default. 7008 default. 7934 7009 7935 See Documentation/arch/x86/sgx.rst for more d !! 7010 See Documentation/x86/sgx.rst for more details. 7936 7011 7937 7.26 KVM_CAP_PPC_RPT_INVALIDATE 7012 7.26 KVM_CAP_PPC_RPT_INVALIDATE 7938 ------------------------------- 7013 ------------------------------- 7939 7014 7940 :Capability: KVM_CAP_PPC_RPT_INVALIDATE 7015 :Capability: KVM_CAP_PPC_RPT_INVALIDATE 7941 :Architectures: ppc 7016 :Architectures: ppc 7942 :Type: vm 7017 :Type: vm 7943 7018 7944 This capability indicates that the kernel is 7019 This capability indicates that the kernel is capable of handling 7945 H_RPT_INVALIDATE hcall. 7020 H_RPT_INVALIDATE hcall. 7946 7021 7947 In order to enable the use of H_RPT_INVALIDAT 7022 In order to enable the use of H_RPT_INVALIDATE in the guest, 7948 user space might have to advertise it for the 7023 user space might have to advertise it for the guest. For example, 7949 IBM pSeries (sPAPR) guest starts using it if 7024 IBM pSeries (sPAPR) guest starts using it if "hcall-rpt-invalidate" is 7950 present in the "ibm,hypertas-functions" devic 7025 present in the "ibm,hypertas-functions" device-tree property. 7951 7026 7952 This capability is enabled for hypervisors on 7027 This capability is enabled for hypervisors on platforms like POWER9 7953 that support radix MMU. 7028 that support radix MMU. 7954 7029 7955 7.27 KVM_CAP_EXIT_ON_EMULATION_FAILURE 7030 7.27 KVM_CAP_EXIT_ON_EMULATION_FAILURE 7956 -------------------------------------- 7031 -------------------------------------- 7957 7032 7958 :Architectures: x86 7033 :Architectures: x86 7959 :Parameters: args[0] whether the feature shou 7034 :Parameters: args[0] whether the feature should be enabled or not 7960 7035 7961 When this capability is enabled, an emulation 7036 When this capability is enabled, an emulation failure will result in an exit 7962 to userspace with KVM_INTERNAL_ERROR (except 7037 to userspace with KVM_INTERNAL_ERROR (except when the emulator was invoked 7963 to handle a VMware backdoor instruction). Fur 7038 to handle a VMware backdoor instruction). Furthermore, KVM will now provide up 7964 to 15 instruction bytes for any exit to users 7039 to 15 instruction bytes for any exit to userspace resulting from an emulation 7965 failure. When these exits to userspace occur 7040 failure. When these exits to userspace occur use the emulation_failure struct 7966 instead of the internal struct. They both ha 7041 instead of the internal struct. They both have the same layout, but the 7967 emulation_failure struct matches the content 7042 emulation_failure struct matches the content better. It also explicitly 7968 defines the 'flags' field which is used to de 7043 defines the 'flags' field which is used to describe the fields in the struct 7969 that are valid (ie: if KVM_INTERNAL_ERROR_EMU 7044 that are valid (ie: if KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES is 7970 set in the 'flags' field then both 'insn_size 7045 set in the 'flags' field then both 'insn_size' and 'insn_bytes' have valid data 7971 in them.) 7046 in them.) 7972 7047 7973 7.28 KVM_CAP_ARM_MTE 7048 7.28 KVM_CAP_ARM_MTE 7974 -------------------- 7049 -------------------- 7975 7050 7976 :Architectures: arm64 7051 :Architectures: arm64 7977 :Parameters: none 7052 :Parameters: none 7978 7053 7979 This capability indicates that KVM (and the h 7054 This capability indicates that KVM (and the hardware) supports exposing the 7980 Memory Tagging Extensions (MTE) to the guest. 7055 Memory Tagging Extensions (MTE) to the guest. It must also be enabled by the 7981 VMM before creating any VCPUs to allow the gu 7056 VMM before creating any VCPUs to allow the guest access. Note that MTE is only 7982 available to a guest running in AArch64 mode 7057 available to a guest running in AArch64 mode and enabling this capability will 7983 cause attempts to create AArch32 VCPUs to fai 7058 cause attempts to create AArch32 VCPUs to fail. 7984 7059 7985 When enabled the guest is able to access tags 7060 When enabled the guest is able to access tags associated with any memory given 7986 to the guest. KVM will ensure that the tags a 7061 to the guest. KVM will ensure that the tags are maintained during swap or 7987 hibernation of the host; however the VMM need 7062 hibernation of the host; however the VMM needs to manually save/restore the 7988 tags as appropriate if the VM is migrated. 7063 tags as appropriate if the VM is migrated. 7989 7064 7990 When this capability is enabled all memory in 7065 When this capability is enabled all memory in memslots must be mapped as 7991 ``MAP_ANONYMOUS`` or with a RAM-based file ma !! 7066 not-shareable (no MAP_SHARED), attempts to create a memslot with a 7992 attempts to create a memslot with an invalid !! 7067 MAP_SHARED mmap will result in an -EINVAL return. 7993 -EINVAL return. << 7994 7068 7995 When enabled the VMM may make use of the ``KV 7069 When enabled the VMM may make use of the ``KVM_ARM_MTE_COPY_TAGS`` ioctl to 7996 perform a bulk copy of tags to/from the guest 7070 perform a bulk copy of tags to/from the guest. 7997 7071 7998 7.29 KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM 7072 7.29 KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM 7999 ------------------------------------- 7073 ------------------------------------- 8000 7074 8001 :Architectures: x86 SEV enabled !! 7075 Architectures: x86 SEV enabled 8002 :Type: vm !! 7076 Type: vm 8003 :Parameters: args[0] is the fd of the source !! 7077 Parameters: args[0] is the fd of the source vm 8004 :Returns: 0 on success !! 7078 Returns: 0 on success 8005 7079 8006 This capability enables userspace to migrate 7080 This capability enables userspace to migrate the encryption context from the VM 8007 indicated by the fd to the VM this is called 7081 indicated by the fd to the VM this is called on. 8008 7082 8009 This is intended to support intra-host migrat 7083 This is intended to support intra-host migration of VMs between userspace VMMs, 8010 upgrading the VMM process without interruptin 7084 upgrading the VMM process without interrupting the guest. 8011 7085 8012 7.30 KVM_CAP_PPC_AIL_MODE_3 7086 7.30 KVM_CAP_PPC_AIL_MODE_3 8013 ------------------------------- 7087 ------------------------------- 8014 7088 8015 :Capability: KVM_CAP_PPC_AIL_MODE_3 7089 :Capability: KVM_CAP_PPC_AIL_MODE_3 8016 :Architectures: ppc 7090 :Architectures: ppc 8017 :Type: vm 7091 :Type: vm 8018 7092 8019 This capability indicates that the kernel sup 7093 This capability indicates that the kernel supports the mode 3 setting for the 8020 "Address Translation Mode on Interrupt" aka " 7094 "Address Translation Mode on Interrupt" aka "Alternate Interrupt Location" 8021 resource that is controlled with the H_SET_MO 7095 resource that is controlled with the H_SET_MODE hypercall. 8022 7096 8023 This capability allows a guest kernel to use 7097 This capability allows a guest kernel to use a better-performance mode for 8024 handling interrupts and system calls. 7098 handling interrupts and system calls. 8025 7099 8026 7.31 KVM_CAP_DISABLE_QUIRKS2 7100 7.31 KVM_CAP_DISABLE_QUIRKS2 8027 ---------------------------- 7101 ---------------------------- 8028 7102 8029 :Capability: KVM_CAP_DISABLE_QUIRKS2 7103 :Capability: KVM_CAP_DISABLE_QUIRKS2 8030 :Parameters: args[0] - set of KVM quirks to d 7104 :Parameters: args[0] - set of KVM quirks to disable 8031 :Architectures: x86 7105 :Architectures: x86 8032 :Type: vm 7106 :Type: vm 8033 7107 8034 This capability, if enabled, will cause KVM t 7108 This capability, if enabled, will cause KVM to disable some behavior 8035 quirks. 7109 quirks. 8036 7110 8037 Calling KVM_CHECK_EXTENSION for this capabili 7111 Calling KVM_CHECK_EXTENSION for this capability returns a bitmask of 8038 quirks that can be disabled in KVM. 7112 quirks that can be disabled in KVM. 8039 7113 8040 The argument to KVM_ENABLE_CAP for this capab 7114 The argument to KVM_ENABLE_CAP for this capability is a bitmask of 8041 quirks to disable, and must be a subset of th 7115 quirks to disable, and must be a subset of the bitmask returned by 8042 KVM_CHECK_EXTENSION. 7116 KVM_CHECK_EXTENSION. 8043 7117 8044 The valid bits in cap.args[0] are: 7118 The valid bits in cap.args[0] are: 8045 7119 8046 =================================== ========= 7120 =================================== ============================================ 8047 KVM_X86_QUIRK_LINT0_REENABLED By defaul 7121 KVM_X86_QUIRK_LINT0_REENABLED By default, the reset value for the LVT 8048 LINT0 reg 7122 LINT0 register is 0x700 (APIC_MODE_EXTINT). 8049 When this 7123 When this quirk is disabled, the reset value 8050 is 0x1000 7124 is 0x10000 (APIC_LVT_MASKED). 8051 7125 8052 KVM_X86_QUIRK_CD_NW_CLEARED By defaul !! 7126 KVM_X86_QUIRK_CD_NW_CLEARED By default, KVM clears CR0.CD and CR0.NW. 8053 AMD CPUs << 8054 that runs << 8055 with cach << 8056 << 8057 When this 7127 When this quirk is disabled, KVM does not 8058 change th 7128 change the value of CR0.CD and CR0.NW. 8059 7129 8060 KVM_X86_QUIRK_LAPIC_MMIO_HOLE By defaul 7130 KVM_X86_QUIRK_LAPIC_MMIO_HOLE By default, the MMIO LAPIC interface is 8061 available 7131 available even when configured for x2APIC 8062 mode. Whe 7132 mode. When this quirk is disabled, KVM 8063 disables 7133 disables the MMIO LAPIC interface if the 8064 LAPIC is 7134 LAPIC is in x2APIC mode. 8065 7135 8066 KVM_X86_QUIRK_OUT_7E_INC_RIP By defaul 7136 KVM_X86_QUIRK_OUT_7E_INC_RIP By default, KVM pre-increments %rip before 8067 exiting t 7137 exiting to userspace for an OUT instruction 8068 to port 0 7138 to port 0x7e. When this quirk is disabled, 8069 KVM does 7139 KVM does not pre-increment %rip before 8070 exiting t 7140 exiting to userspace. 8071 7141 8072 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT When this 7142 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT When this quirk is disabled, KVM sets 8073 CPUID.01H 7143 CPUID.01H:ECX[bit 3] (MONITOR/MWAIT) if 8074 IA32_MISC 7144 IA32_MISC_ENABLE[bit 18] (MWAIT) is set. 8075 Additiona 7145 Additionally, when this quirk is disabled, 8076 KVM clear 7146 KVM clears CPUID.01H:ECX[bit 3] if 8077 IA32_MISC 7147 IA32_MISC_ENABLE[bit 18] is cleared. 8078 << 8079 KVM_X86_QUIRK_FIX_HYPERCALL_INSN By defaul << 8080 VMMCALL/V << 8081 vendor's << 8082 system. W << 8083 will no l << 8084 hypercall << 8085 incorrect << 8086 generate << 8087 << 8088 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS By defaul << 8089 they are << 8090 whether o << 8091 according << 8092 is disabl << 8093 is not se << 8094 KVM will << 8095 they're u << 8096 KVM will << 8097 guest CPU << 8098 KVM_X86_Q << 8099 disabled. << 8100 << 8101 KVM_X86_QUIRK_SLOT_ZAP_ALL By defaul << 8102 invalidat << 8103 address s << 8104 moved. W << 8105 VM type i << 8106 ensures t << 8107 or moved << 8108 _may_ inv << 8109 memslot. << 8110 =================================== ========= 7148 =================================== ============================================ 8111 7149 8112 7.32 KVM_CAP_MAX_VCPU_ID << 8113 ------------------------ << 8114 << 8115 :Architectures: x86 << 8116 :Target: VM << 8117 :Parameters: args[0] - maximum APIC ID value << 8118 :Returns: 0 on success, -EINVAL if args[0] is << 8119 supported in KVM or if it has been << 8120 << 8121 This capability allows userspace to specify m << 8122 assigned for current VM session prior to the << 8123 memory for data structures indexed by the API << 8124 to calculate the limit to APIC ID values from << 8125 CPU topology. << 8126 << 8127 The value can be changed only until KVM_ENABL << 8128 value or until a vCPU is created. Upon creat << 8129 if the value was set to zero or KVM_ENABLE_CA << 8130 uses the return value of KVM_CHECK_EXTENSION( << 8131 the maximum APIC ID. << 8132 << 8133 7.33 KVM_CAP_X86_NOTIFY_VMEXIT << 8134 ------------------------------ << 8135 << 8136 :Architectures: x86 << 8137 :Target: VM << 8138 :Parameters: args[0] is the value of notify w << 8139 :Returns: 0 on success, -EINVAL if args[0] co << 8140 VM exit is unsupported. << 8141 << 8142 Bits 63:32 of args[0] are used for notify win << 8143 Bits 31:0 of args[0] are for some flags. Vali << 8144 << 8145 #define KVM_X86_NOTIFY_VMEXIT_ENABLED (1 << 8146 #define KVM_X86_NOTIFY_VMEXIT_USER (1 << 8147 << 8148 This capability allows userspace to configure << 8149 in per-VM scope during VM creation. Notify VM << 8150 When userspace sets KVM_X86_NOTIFY_VMEXIT_ENA << 8151 enable this feature with the notify window pr << 8152 a VM exit if no event window occurs in VM non << 8153 time (notify window). << 8154 << 8155 If KVM_X86_NOTIFY_VMEXIT_USER is set in args[ << 8156 KVM would exit to userspace for handling. << 8157 << 8158 This capability is aimed to mitigate the thre << 8159 cause CPU stuck (due to event windows don't o << 8160 unavailable to host or other VMs. << 8161 << 8162 7.34 KVM_CAP_MEMORY_FAULT_INFO << 8163 ------------------------------ << 8164 << 8165 :Architectures: x86 << 8166 :Returns: Informational only, -EINVAL on dire << 8167 << 8168 The presence of this capability indicates tha << 8169 kvm_run.memory_fault if KVM cannot resolve a << 8170 there is a valid memslot but no backing VMA f << 8171 address. << 8172 << 8173 The information in kvm_run.memory_fault is va << 8174 an error with errno=EFAULT or errno=EHWPOISON << 8175 to KVM_EXIT_MEMORY_FAULT. << 8176 << 8177 Note: Userspaces which attempt to resolve mem << 8178 KVM_RUN are encouraged to guard against repea << 8179 error/annotated fault. << 8180 << 8181 See KVM_EXIT_MEMORY_FAULT for more informatio << 8182 << 8183 7.35 KVM_CAP_X86_APIC_BUS_CYCLES_NS << 8184 ----------------------------------- << 8185 << 8186 :Architectures: x86 << 8187 :Target: VM << 8188 :Parameters: args[0] is the desired APIC bus << 8189 :Returns: 0 on success, -EINVAL if args[0] co << 8190 frequency or if any vCPUs have been << 8191 local APIC has not been created usi << 8192 << 8193 This capability sets the VM's APIC bus clock << 8194 virtual APIC when emulating APIC timers. KVM << 8195 by KVM_CHECK_EXTENSION. << 8196 << 8197 Note: Userspace is responsible for correctly << 8198 core crystal clock frequency, if a non-zero C << 8199 << 8200 7.36 KVM_CAP_X86_GUEST_MODE << 8201 ------------------------------ << 8202 << 8203 :Architectures: x86 << 8204 :Returns: Informational only, -EINVAL on dire << 8205 << 8206 The presence of this capability indicates tha << 8207 KVM_RUN_X86_GUEST_MODE bit in kvm_run.flags t << 8208 vCPU was executing nested guest code when it << 8209 << 8210 KVM exits with the register state of either t << 8211 depending on which executed at the time of an << 8212 take care to differentiate between these case << 8213 << 8214 8. Other capabilities. 7150 8. Other capabilities. 8215 ====================== 7151 ====================== 8216 7152 8217 This section lists capabilities that give inf 7153 This section lists capabilities that give information about other 8218 features of the KVM implementation. 7154 features of the KVM implementation. 8219 7155 8220 8.1 KVM_CAP_PPC_HWRNG 7156 8.1 KVM_CAP_PPC_HWRNG 8221 --------------------- 7157 --------------------- 8222 7158 8223 :Architectures: ppc 7159 :Architectures: ppc 8224 7160 8225 This capability, if KVM_CHECK_EXTENSION indic 7161 This capability, if KVM_CHECK_EXTENSION indicates that it is 8226 available, means that the kernel has an imple 7162 available, means that the kernel has an implementation of the 8227 H_RANDOM hypercall backed by a hardware rando 7163 H_RANDOM hypercall backed by a hardware random-number generator. 8228 If present, the kernel H_RANDOM handler can b 7164 If present, the kernel H_RANDOM handler can be enabled for guest use 8229 with the KVM_CAP_PPC_ENABLE_HCALL capability. 7165 with the KVM_CAP_PPC_ENABLE_HCALL capability. 8230 7166 8231 8.2 KVM_CAP_HYPERV_SYNIC 7167 8.2 KVM_CAP_HYPERV_SYNIC 8232 ------------------------ 7168 ------------------------ 8233 7169 8234 :Architectures: x86 7170 :Architectures: x86 8235 7171 8236 This capability, if KVM_CHECK_EXTENSION indic 7172 This capability, if KVM_CHECK_EXTENSION indicates that it is 8237 available, means that the kernel has an imple 7173 available, means that the kernel has an implementation of the 8238 Hyper-V Synthetic interrupt controller(SynIC) 7174 Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is 8239 used to support Windows Hyper-V based guest p 7175 used to support Windows Hyper-V based guest paravirt drivers(VMBus). 8240 7176 8241 In order to use SynIC, it has to be activated 7177 In order to use SynIC, it has to be activated by setting this 8242 capability via KVM_ENABLE_CAP ioctl on the vc 7178 capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this 8243 will disable the use of APIC hardware virtual 7179 will disable the use of APIC hardware virtualization even if supported 8244 by the CPU, as it's incompatible with SynIC a 7180 by the CPU, as it's incompatible with SynIC auto-EOI behavior. 8245 7181 8246 8.3 KVM_CAP_PPC_MMU_RADIX !! 7182 8.3 KVM_CAP_PPC_RADIX_MMU 8247 ------------------------- 7183 ------------------------- 8248 7184 8249 :Architectures: ppc 7185 :Architectures: ppc 8250 7186 8251 This capability, if KVM_CHECK_EXTENSION indic 7187 This capability, if KVM_CHECK_EXTENSION indicates that it is 8252 available, means that the kernel can support 7188 available, means that the kernel can support guests using the 8253 radix MMU defined in Power ISA V3.00 (as impl 7189 radix MMU defined in Power ISA V3.00 (as implemented in the POWER9 8254 processor). 7190 processor). 8255 7191 8256 8.4 KVM_CAP_PPC_MMU_HASH_V3 !! 7192 8.4 KVM_CAP_PPC_HASH_MMU_V3 8257 --------------------------- 7193 --------------------------- 8258 7194 8259 :Architectures: ppc 7195 :Architectures: ppc 8260 7196 8261 This capability, if KVM_CHECK_EXTENSION indic 7197 This capability, if KVM_CHECK_EXTENSION indicates that it is 8262 available, means that the kernel can support 7198 available, means that the kernel can support guests using the 8263 hashed page table MMU defined in Power ISA V3 7199 hashed page table MMU defined in Power ISA V3.00 (as implemented in 8264 the POWER9 processor), including in-memory se 7200 the POWER9 processor), including in-memory segment tables. 8265 7201 8266 8.5 KVM_CAP_MIPS_VZ 7202 8.5 KVM_CAP_MIPS_VZ 8267 ------------------- 7203 ------------------- 8268 7204 8269 :Architectures: mips 7205 :Architectures: mips 8270 7206 8271 This capability, if KVM_CHECK_EXTENSION on th 7207 This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that 8272 it is available, means that full hardware ass 7208 it is available, means that full hardware assisted virtualization capabilities 8273 of the hardware are available for use through 7209 of the hardware are available for use through KVM. An appropriate 8274 KVM_VM_MIPS_* type must be passed to KVM_CREA 7210 KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which 8275 utilises it. 7211 utilises it. 8276 7212 8277 If KVM_CHECK_EXTENSION on a kvm VM handle ind 7213 If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is 8278 available, it means that the VM is using full 7214 available, it means that the VM is using full hardware assisted virtualization 8279 capabilities of the hardware. This is useful 7215 capabilities of the hardware. This is useful to check after creating a VM with 8280 KVM_VM_MIPS_DEFAULT. 7216 KVM_VM_MIPS_DEFAULT. 8281 7217 8282 The value returned by KVM_CHECK_EXTENSION sho 7218 The value returned by KVM_CHECK_EXTENSION should be compared against known 8283 values (see below). All other values are rese 7219 values (see below). All other values are reserved. This is to allow for the 8284 possibility of other hardware assisted virtua 7220 possibility of other hardware assisted virtualization implementations which 8285 may be incompatible with the MIPS VZ ASE. 7221 may be incompatible with the MIPS VZ ASE. 8286 7222 8287 == ========================================= 7223 == ========================================================================== 8288 0 The trap & emulate implementation is in u 7224 0 The trap & emulate implementation is in use to run guest code in user 8289 mode. Guest virtual memory segments are r 7225 mode. Guest virtual memory segments are rearranged to fit the guest in the 8290 user mode address space. 7226 user mode address space. 8291 7227 8292 1 The MIPS VZ ASE is in use, providing full 7228 1 The MIPS VZ ASE is in use, providing full hardware assisted 8293 virtualization, including standard guest 7229 virtualization, including standard guest virtual memory segments. 8294 == ========================================= 7230 == ========================================================================== 8295 7231 8296 8.6 KVM_CAP_MIPS_TE 7232 8.6 KVM_CAP_MIPS_TE 8297 ------------------- 7233 ------------------- 8298 7234 8299 :Architectures: mips 7235 :Architectures: mips 8300 7236 8301 This capability, if KVM_CHECK_EXTENSION on th 7237 This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that 8302 it is available, means that the trap & emulat 7238 it is available, means that the trap & emulate implementation is available to 8303 run guest code in user mode, even if KVM_CAP_ 7239 run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware 8304 assisted virtualisation is also available. KV 7240 assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed 8305 to KVM_CREATE_VM to create a VM which utilise 7241 to KVM_CREATE_VM to create a VM which utilises it. 8306 7242 8307 If KVM_CHECK_EXTENSION on a kvm VM handle ind 7243 If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is 8308 available, it means that the VM is using trap 7244 available, it means that the VM is using trap & emulate. 8309 7245 8310 8.7 KVM_CAP_MIPS_64BIT 7246 8.7 KVM_CAP_MIPS_64BIT 8311 ---------------------- 7247 ---------------------- 8312 7248 8313 :Architectures: mips 7249 :Architectures: mips 8314 7250 8315 This capability indicates the supported archi 7251 This capability indicates the supported architecture type of the guest, i.e. the 8316 supported register and address width. 7252 supported register and address width. 8317 7253 8318 The values returned when this capability is c 7254 The values returned when this capability is checked by KVM_CHECK_EXTENSION on a 8319 kvm VM handle correspond roughly to the CP0_C 7255 kvm VM handle correspond roughly to the CP0_Config.AT register field, and should 8320 be checked specifically against known values 7256 be checked specifically against known values (see below). All other values are 8321 reserved. 7257 reserved. 8322 7258 8323 == ========================================= 7259 == ======================================================================== 8324 0 MIPS32 or microMIPS32. 7260 0 MIPS32 or microMIPS32. 8325 Both registers and addresses are 32-bits 7261 Both registers and addresses are 32-bits wide. 8326 It will only be possible to run 32-bit gu 7262 It will only be possible to run 32-bit guest code. 8327 7263 8328 1 MIPS64 or microMIPS64 with access only to 7264 1 MIPS64 or microMIPS64 with access only to 32-bit compatibility segments. 8329 Registers are 64-bits wide, but addresses 7265 Registers are 64-bits wide, but addresses are 32-bits wide. 8330 64-bit guest code may run but cannot acce 7266 64-bit guest code may run but cannot access MIPS64 memory segments. 8331 It will also be possible to run 32-bit gu 7267 It will also be possible to run 32-bit guest code. 8332 7268 8333 2 MIPS64 or microMIPS64 with access to all 7269 2 MIPS64 or microMIPS64 with access to all address segments. 8334 Both registers and addresses are 64-bits 7270 Both registers and addresses are 64-bits wide. 8335 It will be possible to run 64-bit or 32-b 7271 It will be possible to run 64-bit or 32-bit guest code. 8336 == ========================================= 7272 == ======================================================================== 8337 7273 8338 8.9 KVM_CAP_ARM_USER_IRQ 7274 8.9 KVM_CAP_ARM_USER_IRQ 8339 ------------------------ 7275 ------------------------ 8340 7276 8341 :Architectures: arm64 7277 :Architectures: arm64 8342 7278 8343 This capability, if KVM_CHECK_EXTENSION indic 7279 This capability, if KVM_CHECK_EXTENSION indicates that it is available, means 8344 that if userspace creates a VM without an in- 7280 that if userspace creates a VM without an in-kernel interrupt controller, it 8345 will be notified of changes to the output lev 7281 will be notified of changes to the output level of in-kernel emulated devices, 8346 which can generate virtual interrupts, presen 7282 which can generate virtual interrupts, presented to the VM. 8347 For such VMs, on every return to userspace, t 7283 For such VMs, on every return to userspace, the kernel 8348 updates the vcpu's run->s.regs.device_irq_lev 7284 updates the vcpu's run->s.regs.device_irq_level field to represent the actual 8349 output level of the device. 7285 output level of the device. 8350 7286 8351 Whenever kvm detects a change in the device o 7287 Whenever kvm detects a change in the device output level, kvm guarantees at 8352 least one return to userspace before running 7288 least one return to userspace before running the VM. This exit could either 8353 be a KVM_EXIT_INTR or any other exit event, l 7289 be a KVM_EXIT_INTR or any other exit event, like KVM_EXIT_MMIO. This way, 8354 userspace can always sample the device output 7290 userspace can always sample the device output level and re-compute the state of 8355 the userspace interrupt controller. Userspac 7291 the userspace interrupt controller. Userspace should always check the state 8356 of run->s.regs.device_irq_level on every kvm 7292 of run->s.regs.device_irq_level on every kvm exit. 8357 The value in run->s.regs.device_irq_level can 7293 The value in run->s.regs.device_irq_level can represent both level and edge 8358 triggered interrupt signals, depending on the 7294 triggered interrupt signals, depending on the device. Edge triggered interrupt 8359 signals will exit to userspace with the bit i 7295 signals will exit to userspace with the bit in run->s.regs.device_irq_level 8360 set exactly once per edge signal. 7296 set exactly once per edge signal. 8361 7297 8362 The field run->s.regs.device_irq_level is ava 7298 The field run->s.regs.device_irq_level is available independent of 8363 run->kvm_valid_regs or run->kvm_dirty_regs bi 7299 run->kvm_valid_regs or run->kvm_dirty_regs bits. 8364 7300 8365 If KVM_CAP_ARM_USER_IRQ is supported, the KVM 7301 If KVM_CAP_ARM_USER_IRQ is supported, the KVM_CHECK_EXTENSION ioctl returns a 8366 number larger than 0 indicating the version o 7302 number larger than 0 indicating the version of this capability is implemented 8367 and thereby which bits in run->s.regs.device_ 7303 and thereby which bits in run->s.regs.device_irq_level can signal values. 8368 7304 8369 Currently the following bits are defined for 7305 Currently the following bits are defined for the device_irq_level bitmap:: 8370 7306 8371 KVM_CAP_ARM_USER_IRQ >= 1: 7307 KVM_CAP_ARM_USER_IRQ >= 1: 8372 7308 8373 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual tim 7309 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual timer 8374 KVM_ARM_DEV_EL1_PTIMER - EL1 physical ti 7310 KVM_ARM_DEV_EL1_PTIMER - EL1 physical timer 8375 KVM_ARM_DEV_PMU - ARM PMU overflo 7311 KVM_ARM_DEV_PMU - ARM PMU overflow interrupt signal 8376 7312 8377 Future versions of kvm may implement addition 7313 Future versions of kvm may implement additional events. These will get 8378 indicated by returning a higher number from K 7314 indicated by returning a higher number from KVM_CHECK_EXTENSION and will be 8379 listed above. 7315 listed above. 8380 7316 8381 8.10 KVM_CAP_PPC_SMT_POSSIBLE 7317 8.10 KVM_CAP_PPC_SMT_POSSIBLE 8382 ----------------------------- 7318 ----------------------------- 8383 7319 8384 :Architectures: ppc 7320 :Architectures: ppc 8385 7321 8386 Querying this capability returns a bitmap ind 7322 Querying this capability returns a bitmap indicating the possible 8387 virtual SMT modes that can be set using KVM_C 7323 virtual SMT modes that can be set using KVM_CAP_PPC_SMT. If bit N 8388 (counting from the right) is set, then a virt 7324 (counting from the right) is set, then a virtual SMT mode of 2^N is 8389 available. 7325 available. 8390 7326 8391 8.11 KVM_CAP_HYPERV_SYNIC2 7327 8.11 KVM_CAP_HYPERV_SYNIC2 8392 -------------------------- 7328 -------------------------- 8393 7329 8394 :Architectures: x86 7330 :Architectures: x86 8395 7331 8396 This capability enables a newer version of Hy 7332 This capability enables a newer version of Hyper-V Synthetic interrupt 8397 controller (SynIC). The only difference with 7333 controller (SynIC). The only difference with KVM_CAP_HYPERV_SYNIC is that KVM 8398 doesn't clear SynIC message and event flags p 7334 doesn't clear SynIC message and event flags pages when they are enabled by 8399 writing to the respective MSRs. 7335 writing to the respective MSRs. 8400 7336 8401 8.12 KVM_CAP_HYPERV_VP_INDEX 7337 8.12 KVM_CAP_HYPERV_VP_INDEX 8402 ---------------------------- 7338 ---------------------------- 8403 7339 8404 :Architectures: x86 7340 :Architectures: x86 8405 7341 8406 This capability indicates that userspace can 7342 This capability indicates that userspace can load HV_X64_MSR_VP_INDEX msr. Its 8407 value is used to denote the target vcpu for a 7343 value is used to denote the target vcpu for a SynIC interrupt. For 8408 compatibility, KVM initializes this msr to KV !! 7344 compatibilty, KVM initializes this msr to KVM's internal vcpu index. When this 8409 capability is absent, userspace can still que 7345 capability is absent, userspace can still query this msr's value. 8410 7346 8411 8.13 KVM_CAP_S390_AIS_MIGRATION 7347 8.13 KVM_CAP_S390_AIS_MIGRATION 8412 ------------------------------- 7348 ------------------------------- 8413 7349 8414 :Architectures: s390 7350 :Architectures: s390 8415 :Parameters: none 7351 :Parameters: none 8416 7352 8417 This capability indicates if the flic device 7353 This capability indicates if the flic device will be able to get/set the 8418 AIS states for migration via the KVM_DEV_FLIC 7354 AIS states for migration via the KVM_DEV_FLIC_AISM_ALL attribute and allows 8419 to discover this without having to create a f 7355 to discover this without having to create a flic device. 8420 7356 8421 8.14 KVM_CAP_S390_PSW 7357 8.14 KVM_CAP_S390_PSW 8422 --------------------- 7358 --------------------- 8423 7359 8424 :Architectures: s390 7360 :Architectures: s390 8425 7361 8426 This capability indicates that the PSW is exp 7362 This capability indicates that the PSW is exposed via the kvm_run structure. 8427 7363 8428 8.15 KVM_CAP_S390_GMAP 7364 8.15 KVM_CAP_S390_GMAP 8429 ---------------------- 7365 ---------------------- 8430 7366 8431 :Architectures: s390 7367 :Architectures: s390 8432 7368 8433 This capability indicates that the user space 7369 This capability indicates that the user space memory used as guest mapping can 8434 be anywhere in the user memory address space, 7370 be anywhere in the user memory address space, as long as the memory slots are 8435 aligned and sized to a segment (1MB) boundary 7371 aligned and sized to a segment (1MB) boundary. 8436 7372 8437 8.16 KVM_CAP_S390_COW 7373 8.16 KVM_CAP_S390_COW 8438 --------------------- 7374 --------------------- 8439 7375 8440 :Architectures: s390 7376 :Architectures: s390 8441 7377 8442 This capability indicates that the user space 7378 This capability indicates that the user space memory used as guest mapping can 8443 use copy-on-write semantics as well as dirty 7379 use copy-on-write semantics as well as dirty pages tracking via read-only page 8444 tables. 7380 tables. 8445 7381 8446 8.17 KVM_CAP_S390_BPB 7382 8.17 KVM_CAP_S390_BPB 8447 --------------------- 7383 --------------------- 8448 7384 8449 :Architectures: s390 7385 :Architectures: s390 8450 7386 8451 This capability indicates that kvm will imple 7387 This capability indicates that kvm will implement the interfaces to handle 8452 reset, migration and nested KVM for branch pr 7388 reset, migration and nested KVM for branch prediction blocking. The stfle 8453 facility 82 should not be provided to the gue 7389 facility 82 should not be provided to the guest without this capability. 8454 7390 8455 8.18 KVM_CAP_HYPERV_TLBFLUSH 7391 8.18 KVM_CAP_HYPERV_TLBFLUSH 8456 ---------------------------- 7392 ---------------------------- 8457 7393 8458 :Architectures: x86 7394 :Architectures: x86 8459 7395 8460 This capability indicates that KVM supports p 7396 This capability indicates that KVM supports paravirtualized Hyper-V TLB Flush 8461 hypercalls: 7397 hypercalls: 8462 HvFlushVirtualAddressSpace, HvFlushVirtualAdd 7398 HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx, 8463 HvFlushVirtualAddressList, HvFlushVirtualAddr 7399 HvFlushVirtualAddressList, HvFlushVirtualAddressListEx. 8464 7400 8465 8.19 KVM_CAP_ARM_INJECT_SERROR_ESR 7401 8.19 KVM_CAP_ARM_INJECT_SERROR_ESR 8466 ---------------------------------- 7402 ---------------------------------- 8467 7403 8468 :Architectures: arm64 7404 :Architectures: arm64 8469 7405 8470 This capability indicates that userspace can 7406 This capability indicates that userspace can specify (via the 8471 KVM_SET_VCPU_EVENTS ioctl) the syndrome value 7407 KVM_SET_VCPU_EVENTS ioctl) the syndrome value reported to the guest when it 8472 takes a virtual SError interrupt exception. 7408 takes a virtual SError interrupt exception. 8473 If KVM advertises this capability, userspace 7409 If KVM advertises this capability, userspace can only specify the ISS field for 8474 the ESR syndrome. Other parts of the ESR, suc 7410 the ESR syndrome. Other parts of the ESR, such as the EC are generated by the 8475 CPU when the exception is taken. If this virt 7411 CPU when the exception is taken. If this virtual SError is taken to EL1 using 8476 AArch64, this value will be reported in the I 7412 AArch64, this value will be reported in the ISS field of ESR_ELx. 8477 7413 8478 See KVM_CAP_VCPU_EVENTS for more details. 7414 See KVM_CAP_VCPU_EVENTS for more details. 8479 7415 8480 8.20 KVM_CAP_HYPERV_SEND_IPI 7416 8.20 KVM_CAP_HYPERV_SEND_IPI 8481 ---------------------------- 7417 ---------------------------- 8482 7418 8483 :Architectures: x86 7419 :Architectures: x86 8484 7420 8485 This capability indicates that KVM supports p 7421 This capability indicates that KVM supports paravirtualized Hyper-V IPI send 8486 hypercalls: 7422 hypercalls: 8487 HvCallSendSyntheticClusterIpi, HvCallSendSynt 7423 HvCallSendSyntheticClusterIpi, HvCallSendSyntheticClusterIpiEx. 8488 7424 8489 8.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH 7425 8.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH 8490 ----------------------------------- 7426 ----------------------------------- 8491 7427 8492 :Architectures: x86 7428 :Architectures: x86 8493 7429 8494 This capability indicates that KVM running on 7430 This capability indicates that KVM running on top of Hyper-V hypervisor 8495 enables Direct TLB flush for its guests meani 7431 enables Direct TLB flush for its guests meaning that TLB flush 8496 hypercalls are handled by Level 0 hypervisor 7432 hypercalls are handled by Level 0 hypervisor (Hyper-V) bypassing KVM. 8497 Due to the different ABI for hypercall parame 7433 Due to the different ABI for hypercall parameters between Hyper-V and 8498 KVM, enabling this capability effectively dis 7434 KVM, enabling this capability effectively disables all hypercall 8499 handling by KVM (as some KVM hypercall may be 7435 handling by KVM (as some KVM hypercall may be mistakenly treated as TLB 8500 flush hypercalls by Hyper-V) so userspace sho 7436 flush hypercalls by Hyper-V) so userspace should disable KVM identification 8501 in CPUID and only exposes Hyper-V identificat 7437 in CPUID and only exposes Hyper-V identification. In this case, guest 8502 thinks it's running on Hyper-V and only use H 7438 thinks it's running on Hyper-V and only use Hyper-V hypercalls. 8503 7439 8504 8.22 KVM_CAP_S390_VCPU_RESETS 7440 8.22 KVM_CAP_S390_VCPU_RESETS 8505 ----------------------------- 7441 ----------------------------- 8506 7442 8507 :Architectures: s390 7443 :Architectures: s390 8508 7444 8509 This capability indicates that the KVM_S390_N 7445 This capability indicates that the KVM_S390_NORMAL_RESET and 8510 KVM_S390_CLEAR_RESET ioctls are available. 7446 KVM_S390_CLEAR_RESET ioctls are available. 8511 7447 8512 8.23 KVM_CAP_S390_PROTECTED 7448 8.23 KVM_CAP_S390_PROTECTED 8513 --------------------------- 7449 --------------------------- 8514 7450 8515 :Architectures: s390 7451 :Architectures: s390 8516 7452 8517 This capability indicates that the Ultravisor 7453 This capability indicates that the Ultravisor has been initialized and 8518 KVM can therefore start protected VMs. 7454 KVM can therefore start protected VMs. 8519 This capability governs the KVM_S390_PV_COMMA 7455 This capability governs the KVM_S390_PV_COMMAND ioctl and the 8520 KVM_MP_STATE_LOAD MP_STATE. KVM_SET_MP_STATE 7456 KVM_MP_STATE_LOAD MP_STATE. KVM_SET_MP_STATE can fail for protected 8521 guests when the state change is invalid. 7457 guests when the state change is invalid. 8522 7458 8523 8.24 KVM_CAP_STEAL_TIME 7459 8.24 KVM_CAP_STEAL_TIME 8524 ----------------------- 7460 ----------------------- 8525 7461 8526 :Architectures: arm64, x86 7462 :Architectures: arm64, x86 8527 7463 8528 This capability indicates that KVM supports s 7464 This capability indicates that KVM supports steal time accounting. 8529 When steal time accounting is supported it ma 7465 When steal time accounting is supported it may be enabled with 8530 architecture-specific interfaces. This capab 7466 architecture-specific interfaces. This capability and the architecture- 8531 specific interfaces must be consistent, i.e. 7467 specific interfaces must be consistent, i.e. if one says the feature 8532 is supported, than the other should as well a 7468 is supported, than the other should as well and vice versa. For arm64 8533 see Documentation/virt/kvm/devices/vcpu.rst " 7469 see Documentation/virt/kvm/devices/vcpu.rst "KVM_ARM_VCPU_PVTIME_CTRL". 8534 For x86 see Documentation/virt/kvm/x86/msr.rs !! 7470 For x86 see Documentation/virt/kvm/msr.rst "MSR_KVM_STEAL_TIME". 8535 7471 8536 8.25 KVM_CAP_S390_DIAG318 7472 8.25 KVM_CAP_S390_DIAG318 8537 ------------------------- 7473 ------------------------- 8538 7474 8539 :Architectures: s390 7475 :Architectures: s390 8540 7476 8541 This capability enables a guest to set inform 7477 This capability enables a guest to set information about its control program 8542 (i.e. guest kernel type and version). The inf 7478 (i.e. guest kernel type and version). The information is helpful during 8543 system/firmware service events, providing add 7479 system/firmware service events, providing additional data about the guest 8544 environments running on the machine. 7480 environments running on the machine. 8545 7481 8546 The information is associated with the DIAGNO 7482 The information is associated with the DIAGNOSE 0x318 instruction, which sets 8547 an 8-byte value consisting of a one-byte Cont 7483 an 8-byte value consisting of a one-byte Control Program Name Code (CPNC) and 8548 a 7-byte Control Program Version Code (CPVC). 7484 a 7-byte Control Program Version Code (CPVC). The CPNC determines what 8549 environment the control program is running in 7485 environment the control program is running in (e.g. Linux, z/VM...), and the 8550 CPVC is used for information specific to OS ( 7486 CPVC is used for information specific to OS (e.g. Linux version, Linux 8551 distribution...) 7487 distribution...) 8552 7488 8553 If this capability is available, then the CPN 7489 If this capability is available, then the CPNC and CPVC can be synchronized 8554 between KVM and userspace via the sync regs m 7490 between KVM and userspace via the sync regs mechanism (KVM_SYNC_DIAG318). 8555 7491 8556 8.26 KVM_CAP_X86_USER_SPACE_MSR 7492 8.26 KVM_CAP_X86_USER_SPACE_MSR 8557 ------------------------------- 7493 ------------------------------- 8558 7494 8559 :Architectures: x86 7495 :Architectures: x86 8560 7496 8561 This capability indicates that KVM supports d 7497 This capability indicates that KVM supports deflection of MSR reads and 8562 writes to user space. It can be enabled on a 7498 writes to user space. It can be enabled on a VM level. If enabled, MSR 8563 accesses that would usually trigger a #GP by 7499 accesses that would usually trigger a #GP by KVM into the guest will 8564 instead get bounced to user space through the 7500 instead get bounced to user space through the KVM_EXIT_X86_RDMSR and 8565 KVM_EXIT_X86_WRMSR exit notifications. 7501 KVM_EXIT_X86_WRMSR exit notifications. 8566 7502 8567 8.27 KVM_CAP_X86_MSR_FILTER 7503 8.27 KVM_CAP_X86_MSR_FILTER 8568 --------------------------- 7504 --------------------------- 8569 7505 8570 :Architectures: x86 7506 :Architectures: x86 8571 7507 8572 This capability indicates that KVM supports t 7508 This capability indicates that KVM supports that accesses to user defined MSRs 8573 may be rejected. With this capability exposed 7509 may be rejected. With this capability exposed, KVM exports new VM ioctl 8574 KVM_X86_SET_MSR_FILTER which user space can c 7510 KVM_X86_SET_MSR_FILTER which user space can call to specify bitmaps of MSR 8575 ranges that KVM should deny access to. !! 7511 ranges that KVM should reject access to. 8576 7512 8577 In combination with KVM_CAP_X86_USER_SPACE_MS 7513 In combination with KVM_CAP_X86_USER_SPACE_MSR, this allows user space to 8578 trap and emulate MSRs that are outside of the 7514 trap and emulate MSRs that are outside of the scope of KVM as well as 8579 limit the attack surface on KVM's MSR emulati 7515 limit the attack surface on KVM's MSR emulation code. 8580 7516 8581 8.28 KVM_CAP_ENFORCE_PV_FEATURE_CPUID 7517 8.28 KVM_CAP_ENFORCE_PV_FEATURE_CPUID 8582 ------------------------------------- 7518 ------------------------------------- 8583 7519 8584 Architectures: x86 7520 Architectures: x86 8585 7521 8586 When enabled, KVM will disable paravirtual fe 7522 When enabled, KVM will disable paravirtual features provided to the 8587 guest according to the bits in the KVM_CPUID_ 7523 guest according to the bits in the KVM_CPUID_FEATURES CPUID leaf 8588 (0x40000001). Otherwise, a guest may use the 7524 (0x40000001). Otherwise, a guest may use the paravirtual features 8589 regardless of what has actually been exposed 7525 regardless of what has actually been exposed through the CPUID leaf. 8590 7526 8591 8.29 KVM_CAP_DIRTY_LOG_RING/KVM_CAP_DIRTY_LOG !! 7527 8.29 KVM_CAP_DIRTY_LOG_RING 8592 --------------------------------------------- !! 7528 --------------------------- 8593 7529 8594 :Architectures: x86, arm64 !! 7530 :Architectures: x86 8595 :Parameters: args[0] - size of the dirty log 7531 :Parameters: args[0] - size of the dirty log ring 8596 7532 8597 KVM is capable of tracking dirty memory using 7533 KVM is capable of tracking dirty memory using ring buffers that are 8598 mmapped into userspace; there is one dirty ri !! 7534 mmaped into userspace; there is one dirty ring per vcpu. 8599 7535 8600 The dirty ring is available to userspace as a 7536 The dirty ring is available to userspace as an array of 8601 ``struct kvm_dirty_gfn``. Each dirty entry i !! 7537 ``struct kvm_dirty_gfn``. Each dirty entry it's defined as:: 8602 7538 8603 struct kvm_dirty_gfn { 7539 struct kvm_dirty_gfn { 8604 __u32 flags; 7540 __u32 flags; 8605 __u32 slot; /* as_id | slot_id */ 7541 __u32 slot; /* as_id | slot_id */ 8606 __u64 offset; 7542 __u64 offset; 8607 }; 7543 }; 8608 7544 8609 The following values are defined for the flag 7545 The following values are defined for the flags field to define the 8610 current state of the entry:: 7546 current state of the entry:: 8611 7547 8612 #define KVM_DIRTY_GFN_F_DIRTY BIT 7548 #define KVM_DIRTY_GFN_F_DIRTY BIT(0) 8613 #define KVM_DIRTY_GFN_F_RESET BIT 7549 #define KVM_DIRTY_GFN_F_RESET BIT(1) 8614 #define KVM_DIRTY_GFN_F_MASK 0x3 7550 #define KVM_DIRTY_GFN_F_MASK 0x3 8615 7551 8616 Userspace should call KVM_ENABLE_CAP ioctl ri 7552 Userspace should call KVM_ENABLE_CAP ioctl right after KVM_CREATE_VM 8617 ioctl to enable this capability for the new g 7553 ioctl to enable this capability for the new guest and set the size of 8618 the rings. Enabling the capability is only a 7554 the rings. Enabling the capability is only allowed before creating any 8619 vCPU, and the size of the ring must be a powe 7555 vCPU, and the size of the ring must be a power of two. The larger the 8620 ring buffer, the less likely the ring is full 7556 ring buffer, the less likely the ring is full and the VM is forced to 8621 exit to userspace. The optimal size depends o 7557 exit to userspace. The optimal size depends on the workload, but it is 8622 recommended that it be at least 64 KiB (4096 7558 recommended that it be at least 64 KiB (4096 entries). 8623 7559 8624 Just like for dirty page bitmaps, the buffer 7560 Just like for dirty page bitmaps, the buffer tracks writes to 8625 all user memory regions for which the KVM_MEM 7561 all user memory regions for which the KVM_MEM_LOG_DIRTY_PAGES flag was 8626 set in KVM_SET_USER_MEMORY_REGION. Once a me 7562 set in KVM_SET_USER_MEMORY_REGION. Once a memory region is registered 8627 with the flag set, userspace can start harves 7563 with the flag set, userspace can start harvesting dirty pages from the 8628 ring buffer. 7564 ring buffer. 8629 7565 8630 An entry in the ring buffer can be unused (fl 7566 An entry in the ring buffer can be unused (flag bits ``00``), 8631 dirty (flag bits ``01``) or harvested (flag b 7567 dirty (flag bits ``01``) or harvested (flag bits ``1X``). The 8632 state machine for the entry is as follows:: 7568 state machine for the entry is as follows:: 8633 7569 8634 dirtied harvested re 7570 dirtied harvested reset 8635 00 -----------> 01 -------------> 1X --- 7571 00 -----------> 01 -------------> 1X -------+ 8636 ^ 7572 ^ | 8637 | 7573 | | 8638 +-------------------------------------- 7574 +------------------------------------------+ 8639 7575 8640 To harvest the dirty pages, userspace accesse !! 7576 To harvest the dirty pages, userspace accesses the mmaped ring buffer 8641 to read the dirty GFNs. If the flags has the 7577 to read the dirty GFNs. If the flags has the DIRTY bit set (at this stage 8642 the RESET bit must be cleared), then it means 7578 the RESET bit must be cleared), then it means this GFN is a dirty GFN. 8643 The userspace should harvest this GFN and mar 7579 The userspace should harvest this GFN and mark the flags from state 8644 ``01b`` to ``1Xb`` (bit 0 will be ignored by 7580 ``01b`` to ``1Xb`` (bit 0 will be ignored by KVM, but bit 1 must be set 8645 to show that this GFN is harvested and waitin 7581 to show that this GFN is harvested and waiting for a reset), and move 8646 on to the next GFN. The userspace should con 7582 on to the next GFN. The userspace should continue to do this until the 8647 flags of a GFN have the DIRTY bit cleared, me 7583 flags of a GFN have the DIRTY bit cleared, meaning that it has harvested 8648 all the dirty GFNs that were available. 7584 all the dirty GFNs that were available. 8649 7585 8650 Note that on weakly ordered architectures, us << 8651 ring buffer (and more specifically the 'flags << 8652 using load-acquire/store-release accessors wh << 8653 other memory barrier that will ensure this or << 8654 << 8655 It's not necessary for userspace to harvest t 7586 It's not necessary for userspace to harvest the all dirty GFNs at once. 8656 However it must collect the dirty GFNs in seq 7587 However it must collect the dirty GFNs in sequence, i.e., the userspace 8657 program cannot skip one dirty GFN to collect 7588 program cannot skip one dirty GFN to collect the one next to it. 8658 7589 8659 After processing one or more entries in the r 7590 After processing one or more entries in the ring buffer, userspace 8660 calls the VM ioctl KVM_RESET_DIRTY_RINGS to n 7591 calls the VM ioctl KVM_RESET_DIRTY_RINGS to notify the kernel about 8661 it, so that the kernel will reprotect those c 7592 it, so that the kernel will reprotect those collected GFNs. 8662 Therefore, the ioctl must be called *before* 7593 Therefore, the ioctl must be called *before* reading the content of 8663 the dirty pages. 7594 the dirty pages. 8664 7595 8665 The dirty ring can get full. When it happens 7596 The dirty ring can get full. When it happens, the KVM_RUN of the 8666 vcpu will return with exit reason KVM_EXIT_DI 7597 vcpu will return with exit reason KVM_EXIT_DIRTY_LOG_FULL. 8667 7598 8668 The dirty ring interface has a major differen 7599 The dirty ring interface has a major difference comparing to the 8669 KVM_GET_DIRTY_LOG interface in that, when rea 7600 KVM_GET_DIRTY_LOG interface in that, when reading the dirty ring from 8670 userspace, it's still possible that the kerne 7601 userspace, it's still possible that the kernel has not yet flushed the 8671 processor's dirty page buffers into the kerne 7602 processor's dirty page buffers into the kernel buffer (with dirty bitmaps, the 8672 flushing is done by the KVM_GET_DIRTY_LOG ioc 7603 flushing is done by the KVM_GET_DIRTY_LOG ioctl). To achieve that, one 8673 needs to kick the vcpu out of KVM_RUN using a 7604 needs to kick the vcpu out of KVM_RUN using a signal. The resulting 8674 vmexit ensures that all dirty GFNs are flushe 7605 vmexit ensures that all dirty GFNs are flushed to the dirty rings. 8675 7606 8676 NOTE: KVM_CAP_DIRTY_LOG_RING_ACQ_REL is the o !! 7607 NOTE: the capability KVM_CAP_DIRTY_LOG_RING and the corresponding 8677 should be exposed by weakly ordered architect !! 7608 ioctl KVM_RESET_DIRTY_RINGS are mutual exclusive to the existing ioctls 8678 the additional memory ordering requirements i !! 7609 KVM_GET_DIRTY_LOG and KVM_CLEAR_DIRTY_LOG. After enabling 8679 reading the state of an entry and mutating it !! 7610 KVM_CAP_DIRTY_LOG_RING with an acceptable dirty ring size, the virtual 8680 Architecture with TSO-like ordering (such as !! 7611 machine will switch to ring-buffer dirty page tracking and further 8681 expose both KVM_CAP_DIRTY_LOG_RING and KVM_CA !! 7612 KVM_GET_DIRTY_LOG or KVM_CLEAR_DIRTY_LOG ioctls will fail. 8682 to userspace. << 8683 << 8684 After enabling the dirty rings, the userspace << 8685 capability of KVM_CAP_DIRTY_LOG_RING_WITH_BIT << 8686 ring structures can be backed by per-slot bit << 8687 advertised, it means the architecture can dir << 8688 vcpu/ring context, so that some of the dirty << 8689 maintained in the bitmap structure. KVM_CAP_D << 8690 can't be enabled if the capability of KVM_CAP << 8691 hasn't been enabled, or any memslot has been << 8692 << 8693 Note that the bitmap here is only a backup of << 8694 use of the ring and bitmap combination is onl << 8695 only a very small amount of memory that is di << 8696 context. Otherwise, the stand-alone per-slot << 8697 be considered. << 8698 << 8699 To collect dirty bits in the backup bitmap, u << 8700 KVM_GET_DIRTY_LOG ioctl. KVM_CLEAR_DIRTY_LOG << 8701 the generation of the dirty bits is done in a << 8702 the dirty bitmap should be the very last thin << 8703 considering the state as complete. VMM needs << 8704 state is final and avoid missing dirty pages << 8705 after the bitmap collection. << 8706 << 8707 NOTE: Multiple examples of using the backup b << 8708 tables through command KVM_DEV_ARM_{VGIC_GRP_ << 8709 KVM device "kvm-arm-vgic-its". (2) restore vg << 8710 command KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_RESTO << 8711 "kvm-arm-vgic-its". VGICv3 LPI pending status << 8712 vgic3 pending table through KVM_DEV_ARM_VGIC_ << 8713 command on KVM device "kvm-arm-vgic-v3". << 8714 7613 8715 8.30 KVM_CAP_XEN_HVM 7614 8.30 KVM_CAP_XEN_HVM 8716 -------------------- 7615 -------------------- 8717 7616 8718 :Architectures: x86 7617 :Architectures: x86 8719 7618 8720 This capability indicates the features that X 7619 This capability indicates the features that Xen supports for hosting Xen 8721 PVHVM guests. Valid flags are:: 7620 PVHVM guests. Valid flags are:: 8722 7621 8723 #define KVM_XEN_HVM_CONFIG_HYPERCALL_MSR !! 7622 #define KVM_XEN_HVM_CONFIG_HYPERCALL_MSR (1 << 0) 8724 #define KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL !! 7623 #define KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL (1 << 1) 8725 #define KVM_XEN_HVM_CONFIG_SHARED_INFO !! 7624 #define KVM_XEN_HVM_CONFIG_SHARED_INFO (1 << 2) 8726 #define KVM_XEN_HVM_CONFIG_RUNSTATE !! 7625 #define KVM_XEN_HVM_CONFIG_RUNSTATE (1 << 2) 8727 #define KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL !! 7626 #define KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL (1 << 3) 8728 #define KVM_XEN_HVM_CONFIG_EVTCHN_SEND << 8729 #define KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_ << 8730 #define KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNST << 8731 7627 8732 The KVM_XEN_HVM_CONFIG_HYPERCALL_MSR flag ind 7628 The KVM_XEN_HVM_CONFIG_HYPERCALL_MSR flag indicates that the KVM_XEN_HVM_CONFIG 8733 ioctl is available, for the guest to set its 7629 ioctl is available, for the guest to set its hypercall page. 8734 7630 8735 If KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL is also 7631 If KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL is also set, the same flag may also be 8736 provided in the flags to KVM_XEN_HVM_CONFIG, 7632 provided in the flags to KVM_XEN_HVM_CONFIG, without providing hypercall page 8737 contents, to request that KVM generate hyperc 7633 contents, to request that KVM generate hypercall page content automatically 8738 and also enable interception of guest hyperca 7634 and also enable interception of guest hypercalls with KVM_EXIT_XEN. 8739 7635 8740 The KVM_XEN_HVM_CONFIG_SHARED_INFO flag indic 7636 The KVM_XEN_HVM_CONFIG_SHARED_INFO flag indicates the availability of the 8741 KVM_XEN_HVM_SET_ATTR, KVM_XEN_HVM_GET_ATTR, K 7637 KVM_XEN_HVM_SET_ATTR, KVM_XEN_HVM_GET_ATTR, KVM_XEN_VCPU_SET_ATTR and 8742 KVM_XEN_VCPU_GET_ATTR ioctls, as well as the 7638 KVM_XEN_VCPU_GET_ATTR ioctls, as well as the delivery of exception vectors 8743 for event channel upcalls when the evtchn_upc 7639 for event channel upcalls when the evtchn_upcall_pending field of a vcpu's 8744 vcpu_info is set. 7640 vcpu_info is set. 8745 7641 8746 The KVM_XEN_HVM_CONFIG_RUNSTATE flag indicate 7642 The KVM_XEN_HVM_CONFIG_RUNSTATE flag indicates that the runstate-related 8747 features KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR 7643 features KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR/_CURRENT/_DATA/_ADJUST are 8748 supported by the KVM_XEN_VCPU_SET_ATTR/KVM_XE 7644 supported by the KVM_XEN_VCPU_SET_ATTR/KVM_XEN_VCPU_GET_ATTR ioctls. 8749 7645 8750 The KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL flag ind 7646 The KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL flag indicates that IRQ routing entries 8751 of the type KVM_IRQ_ROUTING_XEN_EVTCHN are su 7647 of the type KVM_IRQ_ROUTING_XEN_EVTCHN are supported, with the priority 8752 field set to indicate 2 level event channel d 7648 field set to indicate 2 level event channel delivery. 8753 7649 8754 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indic << 8755 injecting event channel events directly into << 8756 KVM_XEN_HVM_EVTCHN_SEND ioctl. It also indica << 8757 KVM_XEN_ATTR_TYPE_EVTCHN/XEN_VERSION HVM attr << 8758 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID/TIMER/UPCALL_V << 8759 related to event channel delivery, timers, an << 8760 interception. << 8761 << 8762 The KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG f << 8763 the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG at << 8764 and KVM_XEN_GET_ATTR ioctls. This controls wh << 8765 XEN_RUNSTATE_UPDATE flag in guest memory mapp << 8766 updates of the runstate information. Note tha << 8767 the RUNSTATE feature above, but not the RUNST << 8768 always set the XEN_RUNSTATE_UPDATE flag when << 8769 which is perhaps counterintuitive. When this << 8770 behave more correctly, not using the XEN_RUNS << 8771 specifically enabled (by the guest making the << 8772 to enable the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDA << 8773 << 8774 The KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE f << 8775 clearing the PVCLOCK_TSC_STABLE_BIT flag in X << 8776 done when the KVM_CAP_XEN_HVM ioctl sets the << 8777 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE flag. << 8778 << 8779 8.31 KVM_CAP_PPC_MULTITCE 7650 8.31 KVM_CAP_PPC_MULTITCE 8780 ------------------------- 7651 ------------------------- 8781 7652 8782 :Capability: KVM_CAP_PPC_MULTITCE 7653 :Capability: KVM_CAP_PPC_MULTITCE 8783 :Architectures: ppc 7654 :Architectures: ppc 8784 :Type: vm 7655 :Type: vm 8785 7656 8786 This capability means the kernel is capable o 7657 This capability means the kernel is capable of handling hypercalls 8787 H_PUT_TCE_INDIRECT and H_STUFF_TCE without pa 7658 H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user 8788 space. This significantly accelerates DMA ope 7659 space. This significantly accelerates DMA operations for PPC KVM guests. 8789 User space should expect that its handlers fo 7660 User space should expect that its handlers for these hypercalls 8790 are not going to be called if user space prev 7661 are not going to be called if user space previously registered LIOBN 8791 in KVM (via KVM_CREATE_SPAPR_TCE or similar c 7662 in KVM (via KVM_CREATE_SPAPR_TCE or similar calls). 8792 7663 8793 In order to enable H_PUT_TCE_INDIRECT and H_S 7664 In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest, 8794 user space might have to advertise it for the 7665 user space might have to advertise it for the guest. For example, 8795 IBM pSeries (sPAPR) guest starts using them i 7666 IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is 8796 present in the "ibm,hypertas-functions" devic 7667 present in the "ibm,hypertas-functions" device-tree property. 8797 7668 8798 The hypercalls mentioned above may or may not 7669 The hypercalls mentioned above may or may not be processed successfully 8799 in the kernel based fast path. If they can no 7670 in the kernel based fast path. If they can not be handled by the kernel, 8800 they will get passed on to user space. So use 7671 they will get passed on to user space. So user space still has to have 8801 an implementation for these despite the in ke 7672 an implementation for these despite the in kernel acceleration. 8802 7673 8803 This capability is always enabled. 7674 This capability is always enabled. 8804 7675 8805 8.32 KVM_CAP_PTP_KVM 7676 8.32 KVM_CAP_PTP_KVM 8806 -------------------- 7677 -------------------- 8807 7678 8808 :Architectures: arm64 7679 :Architectures: arm64 8809 7680 8810 This capability indicates that the KVM virtua 7681 This capability indicates that the KVM virtual PTP service is 8811 supported in the host. A VMM can check whethe 7682 supported in the host. A VMM can check whether the service is 8812 available to the guest on migration. 7683 available to the guest on migration. 8813 7684 8814 8.33 KVM_CAP_HYPERV_ENFORCE_CPUID 7685 8.33 KVM_CAP_HYPERV_ENFORCE_CPUID 8815 --------------------------------- 7686 --------------------------------- 8816 7687 8817 Architectures: x86 7688 Architectures: x86 8818 7689 8819 When enabled, KVM will disable emulated Hyper 7690 When enabled, KVM will disable emulated Hyper-V features provided to the 8820 guest according to the bits Hyper-V CPUID fea 7691 guest according to the bits Hyper-V CPUID feature leaves. Otherwise, all 8821 currently implemented Hyper-V features are pr !! 7692 currently implmented Hyper-V features are provided unconditionally when 8822 Hyper-V identification is set in the HYPERV_C 7693 Hyper-V identification is set in the HYPERV_CPUID_INTERFACE (0x40000001) 8823 leaf. 7694 leaf. 8824 7695 8825 8.34 KVM_CAP_EXIT_HYPERCALL 7696 8.34 KVM_CAP_EXIT_HYPERCALL 8826 --------------------------- 7697 --------------------------- 8827 7698 8828 :Capability: KVM_CAP_EXIT_HYPERCALL 7699 :Capability: KVM_CAP_EXIT_HYPERCALL 8829 :Architectures: x86 7700 :Architectures: x86 8830 :Type: vm 7701 :Type: vm 8831 7702 8832 This capability, if enabled, will cause KVM t 7703 This capability, if enabled, will cause KVM to exit to userspace 8833 with KVM_EXIT_HYPERCALL exit reason to proces 7704 with KVM_EXIT_HYPERCALL exit reason to process some hypercalls. 8834 7705 8835 Calling KVM_CHECK_EXTENSION for this capabili 7706 Calling KVM_CHECK_EXTENSION for this capability will return a bitmask 8836 of hypercalls that can be configured to exit 7707 of hypercalls that can be configured to exit to userspace. 8837 Right now, the only such hypercall is KVM_HC_ 7708 Right now, the only such hypercall is KVM_HC_MAP_GPA_RANGE. 8838 7709 8839 The argument to KVM_ENABLE_CAP is also a bitm 7710 The argument to KVM_ENABLE_CAP is also a bitmask, and must be a subset 8840 of the result of KVM_CHECK_EXTENSION. KVM wi 7711 of the result of KVM_CHECK_EXTENSION. KVM will forward to userspace 8841 the hypercalls whose corresponding bit is in 7712 the hypercalls whose corresponding bit is in the argument, and return 8842 ENOSYS for the others. 7713 ENOSYS for the others. 8843 7714 8844 8.35 KVM_CAP_PMU_CAPABILITY 7715 8.35 KVM_CAP_PMU_CAPABILITY 8845 --------------------------- 7716 --------------------------- 8846 7717 8847 :Capability: KVM_CAP_PMU_CAPABILITY !! 7718 :Capability KVM_CAP_PMU_CAPABILITY 8848 :Architectures: x86 7719 :Architectures: x86 8849 :Type: vm 7720 :Type: vm 8850 :Parameters: arg[0] is bitmask of PMU virtual 7721 :Parameters: arg[0] is bitmask of PMU virtualization capabilities. 8851 :Returns: 0 on success, -EINVAL when arg[0] c !! 7722 :Returns 0 on success, -EINVAL when arg[0] contains invalid bits 8852 7723 8853 This capability alters PMU virtualization in 7724 This capability alters PMU virtualization in KVM. 8854 7725 8855 Calling KVM_CHECK_EXTENSION for this capabili 7726 Calling KVM_CHECK_EXTENSION for this capability returns a bitmask of 8856 PMU virtualization capabilities that can be a 7727 PMU virtualization capabilities that can be adjusted on a VM. 8857 7728 8858 The argument to KVM_ENABLE_CAP is also a bitm 7729 The argument to KVM_ENABLE_CAP is also a bitmask and selects specific 8859 PMU virtualization capabilities to be applied 7730 PMU virtualization capabilities to be applied to the VM. This can 8860 only be invoked on a VM prior to the creation 7731 only be invoked on a VM prior to the creation of VCPUs. 8861 7732 8862 At this time, KVM_PMU_CAP_DISABLE is the only 7733 At this time, KVM_PMU_CAP_DISABLE is the only capability. Setting 8863 this capability will disable PMU virtualizati 7734 this capability will disable PMU virtualization for that VM. Usermode 8864 should adjust CPUID leaf 0xA to reflect that 7735 should adjust CPUID leaf 0xA to reflect that the PMU is disabled. 8865 7736 8866 8.36 KVM_CAP_ARM_SYSTEM_SUSPEND << 8867 ------------------------------- << 8868 << 8869 :Capability: KVM_CAP_ARM_SYSTEM_SUSPEND << 8870 :Architectures: arm64 << 8871 :Type: vm << 8872 << 8873 When enabled, KVM will exit to userspace with << 8874 type KVM_SYSTEM_EVENT_SUSPEND to process the << 8875 << 8876 8.37 KVM_CAP_S390_PROTECTED_DUMP << 8877 -------------------------------- << 8878 << 8879 :Capability: KVM_CAP_S390_PROTECTED_DUMP << 8880 :Architectures: s390 << 8881 :Type: vm << 8882 << 8883 This capability indicates that KVM and the Ul << 8884 PV guests. The `KVM_PV_DUMP` command is avail << 8885 `KVM_S390_PV_COMMAND` ioctl and the `KVM_PV_I << 8886 dump related UV data. Also the vcpu ioctl `KV << 8887 available and supports the `KVM_PV_DUMP_CPU` << 8888 << 8889 8.38 KVM_CAP_VM_DISABLE_NX_HUGE_PAGES << 8890 ------------------------------------- << 8891 << 8892 :Capability: KVM_CAP_VM_DISABLE_NX_HUGE_PAGES << 8893 :Architectures: x86 << 8894 :Type: vm << 8895 :Parameters: arg[0] must be 0. << 8896 :Returns: 0 on success, -EPERM if the userspa << 8897 have CAP_SYS_BOOT, -EINVAL if args[ << 8898 created. << 8899 << 8900 This capability disables the NX huge pages mi << 8901 << 8902 The capability has no effect if the nx_huge_p << 8903 << 8904 This capability may only be set before any vC << 8905 << 8906 8.39 KVM_CAP_S390_CPU_TOPOLOGY << 8907 ------------------------------ << 8908 << 8909 :Capability: KVM_CAP_S390_CPU_TOPOLOGY << 8910 :Architectures: s390 << 8911 :Type: vm << 8912 << 8913 This capability indicates that KVM will provi << 8914 facility which consist of the interpretation << 8915 the function code 2 along with interception a << 8916 PTF instruction with function codes 0 or 1 an << 8917 instruction to the userland hypervisor. << 8918 << 8919 The stfle facility 11, CPU Topology facility, << 8920 to the guest without this capability. << 8921 << 8922 When this capability is present, KVM provides << 8923 on vm fd, KVM_S390_VM_CPU_TOPOLOGY. << 8924 This new attribute allows to get, set or clea << 8925 Topology Report (MTCR) bit of the SCA through << 8926 structure. << 8927 << 8928 When getting the Modified Change Topology Rep << 8929 must point to a byte where the value will be << 8930 << 8931 8.40 KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE << 8932 --------------------------------------- << 8933 << 8934 :Capability: KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SI << 8935 :Architectures: arm64 << 8936 :Type: vm << 8937 :Parameters: arg[0] is the new split chunk si << 8938 :Returns: 0 on success, -EINVAL if any memslo << 8939 << 8940 This capability sets the chunk size used in E << 8941 << 8942 Eager Page Splitting improves the performance << 8943 in live migrations) when guest memory is back << 8944 avoids splitting huge-pages (into PAGE_SIZE p << 8945 it eagerly when enabling dirty logging (with << 8946 KVM_MEM_LOG_DIRTY_PAGES flag for a memory reg << 8947 KVM_CLEAR_DIRTY_LOG. << 8948 << 8949 The chunk size specifies how many pages to br << 8950 single allocation for each chunk. Bigger the << 8951 need to be allocated ahead of time. << 8952 << 8953 The chunk size needs to be a valid block size << 8954 block sizes is exposed in KVM_CAP_ARM_SUPPORT << 8955 64-bit bitmap (each bit describing a block si << 8956 0, to disable the eager page splitting. << 8957 << 8958 8.41 KVM_CAP_VM_TYPES << 8959 --------------------- << 8960 << 8961 :Capability: KVM_CAP_MEMORY_ATTRIBUTES << 8962 :Architectures: x86 << 8963 :Type: system ioctl << 8964 << 8965 This capability returns a bitmap of support V << 8966 means the VM type with value @n is supported. << 8967 << 8968 #define KVM_X86_DEFAULT_VM 0 << 8969 #define KVM_X86_SW_PROTECTED_VM 1 << 8970 #define KVM_X86_SEV_VM 2 << 8971 #define KVM_X86_SEV_ES_VM 3 << 8972 << 8973 Note, KVM_X86_SW_PROTECTED_VM is currently on << 8974 Do not use KVM_X86_SW_PROTECTED_VM for "real" << 8975 production. The behavior and effective ABI f << 8976 unstable. << 8977 << 8978 9. Known KVM API problems 7737 9. Known KVM API problems 8979 ========================= 7738 ========================= 8980 7739 8981 In some cases, KVM's API has some inconsisten 7740 In some cases, KVM's API has some inconsistencies or common pitfalls 8982 that userspace need to be aware of. This sec 7741 that userspace need to be aware of. This section details some of 8983 these issues. 7742 these issues. 8984 7743 8985 Most of them are architecture specific, so th 7744 Most of them are architecture specific, so the section is split by 8986 architecture. 7745 architecture. 8987 7746 8988 9.1. x86 7747 9.1. x86 8989 -------- 7748 -------- 8990 7749 8991 ``KVM_GET_SUPPORTED_CPUID`` issues 7750 ``KVM_GET_SUPPORTED_CPUID`` issues 8992 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7751 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8993 7752 8994 In general, ``KVM_GET_SUPPORTED_CPUID`` is de 7753 In general, ``KVM_GET_SUPPORTED_CPUID`` is designed so that it is possible 8995 to take its result and pass it directly to `` 7754 to take its result and pass it directly to ``KVM_SET_CPUID2``. This section 8996 documents some cases in which that requires s 7755 documents some cases in which that requires some care. 8997 7756 8998 Local APIC features 7757 Local APIC features 8999 ~~~~~~~~~~~~~~~~~~~ 7758 ~~~~~~~~~~~~~~~~~~~ 9000 7759 9001 CPU[EAX=1]:ECX[21] (X2APIC) is reported by `` 7760 CPU[EAX=1]:ECX[21] (X2APIC) is reported by ``KVM_GET_SUPPORTED_CPUID``, 9002 but it can only be enabled if ``KVM_CREATE_IR 7761 but it can only be enabled if ``KVM_CREATE_IRQCHIP`` or 9003 ``KVM_ENABLE_CAP(KVM_CAP_IRQCHIP_SPLIT)`` are 7762 ``KVM_ENABLE_CAP(KVM_CAP_IRQCHIP_SPLIT)`` are used to enable in-kernel emulation of 9004 the local APIC. 7763 the local APIC. 9005 7764 9006 The same is true for the ``KVM_FEATURE_PV_UNH 7765 The same is true for the ``KVM_FEATURE_PV_UNHALT`` paravirtualized feature. 9007 7766 9008 CPU[EAX=1]:ECX[24] (TSC_DEADLINE) is not repo 7767 CPU[EAX=1]:ECX[24] (TSC_DEADLINE) is not reported by ``KVM_GET_SUPPORTED_CPUID``. 9009 It can be enabled if ``KVM_CAP_TSC_DEADLINE_T 7768 It can be enabled if ``KVM_CAP_TSC_DEADLINE_TIMER`` is present and the kernel 9010 has enabled in-kernel emulation of the local 7769 has enabled in-kernel emulation of the local APIC. 9011 << 9012 CPU topology << 9013 ~~~~~~~~~~~~ << 9014 << 9015 Several CPUID values include topology informa << 9016 0x0b and 0x1f for Intel systems, 0x8000001e f << 9017 versions of KVM return different values for t << 9018 should not rely on it. Currently they return << 9019 << 9020 If userspace wishes to set up a guest topolog << 9021 the values of these three leaves differ for e << 9022 the APIC ID is found in EDX for all subleaves << 9023 for 0x8000001e; the latter also encodes the c << 9024 7:0 of EBX and ECX respectively. << 9025 7770 9026 Obsolete ioctls and capabilities 7771 Obsolete ioctls and capabilities 9027 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7772 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9028 7773 9029 KVM_CAP_DISABLE_QUIRKS does not let userspace 7774 KVM_CAP_DISABLE_QUIRKS does not let userspace know which quirks are actually 9030 available. Use ``KVM_CHECK_EXTENSION(KVM_CAP 7775 available. Use ``KVM_CHECK_EXTENSION(KVM_CAP_DISABLE_QUIRKS2)`` instead if 9031 available. 7776 available. 9032 7777 9033 Ordering of KVM_GET_*/KVM_SET_* ioctls 7778 Ordering of KVM_GET_*/KVM_SET_* ioctls 9034 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7779 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9035 7780 9036 TBD 7781 TBD
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.