1 .. SPDX-License-Identifier: GPL-2.0 1 .. SPDX-License-Identifier: GPL-2.0 2 2 3 ============================================== 3 =================================================================== 4 The Definitive KVM (Kernel-based Virtual Machi 4 The Definitive KVM (Kernel-based Virtual Machine) API Documentation 5 ============================================== 5 =================================================================== 6 6 7 1. General description 7 1. General description 8 ====================== 8 ====================== 9 9 10 The kvm API is a set of ioctls that are issued 10 The kvm API is a set of ioctls that are issued to control various aspects 11 of a virtual machine. The ioctls belong to th 11 of a virtual machine. The ioctls belong to the following classes: 12 12 13 - System ioctls: These query and set global a 13 - System ioctls: These query and set global attributes which affect the 14 whole kvm subsystem. In addition a system 14 whole kvm subsystem. In addition a system ioctl is used to create 15 virtual machines. 15 virtual machines. 16 16 17 - VM ioctls: These query and set attributes t 17 - VM ioctls: These query and set attributes that affect an entire virtual 18 machine, for example memory layout. In add 18 machine, for example memory layout. In addition a VM ioctl is used to 19 create virtual cpus (vcpus) and devices. 19 create virtual cpus (vcpus) and devices. 20 20 21 VM ioctls must be issued from the same proc 21 VM ioctls must be issued from the same process (address space) that was 22 used to create the VM. 22 used to create the VM. 23 23 24 - vcpu ioctls: These query and set attributes 24 - vcpu ioctls: These query and set attributes that control the operation 25 of a single virtual cpu. 25 of a single virtual cpu. 26 26 27 vcpu ioctls should be issued from the same 27 vcpu ioctls should be issued from the same thread that was used to create 28 the vcpu, except for asynchronous vcpu ioct 28 the vcpu, except for asynchronous vcpu ioctl that are marked as such in 29 the documentation. Otherwise, the first io 29 the documentation. Otherwise, the first ioctl after switching threads 30 could see a performance impact. 30 could see a performance impact. 31 31 32 - device ioctls: These query and set attribut 32 - device ioctls: These query and set attributes that control the operation 33 of a single device. 33 of a single device. 34 34 35 device ioctls must be issued from the same 35 device ioctls must be issued from the same process (address space) that 36 was used to create the VM. 36 was used to create the VM. 37 37 38 2. File descriptors 38 2. File descriptors 39 =================== 39 =================== 40 40 41 The kvm API is centered around file descriptor 41 The kvm API is centered around file descriptors. An initial 42 open("/dev/kvm") obtains a handle to the kvm s 42 open("/dev/kvm") obtains a handle to the kvm subsystem; this handle 43 can be used to issue system ioctls. A KVM_CRE 43 can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this 44 handle will create a VM file descriptor which 44 handle will create a VM file descriptor which can be used to issue VM 45 ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVIC 45 ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVICE ioctl on a VM fd will 46 create a virtual cpu or device and return a fi 46 create a virtual cpu or device and return a file descriptor pointing to 47 the new resource. Finally, ioctls on a vcpu o 47 the new resource. Finally, ioctls on a vcpu or device fd can be used 48 to control the vcpu or device. For vcpus, thi 48 to control the vcpu or device. For vcpus, this includes the important 49 task of actually running guest code. 49 task of actually running guest code. 50 50 51 In general file descriptors can be migrated am 51 In general file descriptors can be migrated among processes by means 52 of fork() and the SCM_RIGHTS facility of unix 52 of fork() and the SCM_RIGHTS facility of unix domain socket. These 53 kinds of tricks are explicitly not supported b 53 kinds of tricks are explicitly not supported by kvm. While they will 54 not cause harm to the host, their actual behav 54 not cause harm to the host, their actual behavior is not guaranteed by 55 the API. See "General description" for detail 55 the API. See "General description" for details on the ioctl usage 56 model that is supported by KVM. 56 model that is supported by KVM. 57 57 58 It is important to note that although VM ioctl 58 It is important to note that although VM ioctls may only be issued from 59 the process that created the VM, a VM's lifecy 59 the process that created the VM, a VM's lifecycle is associated with its 60 file descriptor, not its creator (process). I 60 file descriptor, not its creator (process). In other words, the VM and 61 its resources, *including the associated addre 61 its resources, *including the associated address space*, are not freed 62 until the last reference to the VM's file desc 62 until the last reference to the VM's file descriptor has been released. 63 For example, if fork() is issued after ioctl(K 63 For example, if fork() is issued after ioctl(KVM_CREATE_VM), the VM will 64 not be freed until both the parent (original) 64 not be freed until both the parent (original) process and its child have 65 put their references to the VM's file descript 65 put their references to the VM's file descriptor. 66 66 67 Because a VM's resources are not freed until t 67 Because a VM's resources are not freed until the last reference to its 68 file descriptor is released, creating addition 68 file descriptor is released, creating additional references to a VM 69 via fork(), dup(), etc... without careful cons 69 via fork(), dup(), etc... without careful consideration is strongly 70 discouraged and may have unwanted side effects 70 discouraged and may have unwanted side effects, e.g. memory allocated 71 by and on behalf of the VM's process may not b 71 by and on behalf of the VM's process may not be freed/unaccounted when 72 the VM is shut down. 72 the VM is shut down. 73 73 74 74 75 3. Extensions 75 3. Extensions 76 ============= 76 ============= 77 77 78 As of Linux 2.6.22, the KVM ABI has been stabi 78 As of Linux 2.6.22, the KVM ABI has been stabilized: no backward 79 incompatible change are allowed. However, the 79 incompatible change are allowed. However, there is an extension 80 facility that allows backward-compatible exten 80 facility that allows backward-compatible extensions to the API to be 81 queried and used. 81 queried and used. 82 82 83 The extension mechanism is not based on the Li 83 The extension mechanism is not based on the Linux version number. 84 Instead, kvm defines extension identifiers and 84 Instead, kvm defines extension identifiers and a facility to query 85 whether a particular extension identifier is a 85 whether a particular extension identifier is available. If it is, a 86 set of ioctls is available for application use 86 set of ioctls is available for application use. 87 87 88 88 89 4. API description 89 4. API description 90 ================== 90 ================== 91 91 92 This section describes ioctls that can be used 92 This section describes ioctls that can be used to control kvm guests. 93 For each ioctl, the following information is p 93 For each ioctl, the following information is provided along with a 94 description: 94 description: 95 95 96 Capability: 96 Capability: 97 which KVM extension provides this ioctl. 97 which KVM extension provides this ioctl. Can be 'basic', 98 which means that is will be provided by 98 which means that is will be provided by any kernel that supports 99 API version 12 (see section 4.1), a KVM_ 99 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which 100 means availability needs to be checked w 100 means availability needs to be checked with KVM_CHECK_EXTENSION 101 (see section 4.4), or 'none' which means 101 (see section 4.4), or 'none' which means that while not all kernels 102 support this ioctl, there's no capabilit 102 support this ioctl, there's no capability bit to check its 103 availability: for kernels that don't sup 103 availability: for kernels that don't support the ioctl, 104 the ioctl returns -ENOTTY. 104 the ioctl returns -ENOTTY. 105 105 106 Architectures: 106 Architectures: 107 which instruction set architectures prov 107 which instruction set architectures provide this ioctl. 108 x86 includes both i386 and x86_64. 108 x86 includes both i386 and x86_64. 109 109 110 Type: 110 Type: 111 system, vm, or vcpu. 111 system, vm, or vcpu. 112 112 113 Parameters: 113 Parameters: 114 what parameters are accepted by the ioct 114 what parameters are accepted by the ioctl. 115 115 116 Returns: 116 Returns: 117 the return value. General error numbers 117 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 118 are not detailed, but errors with specif 118 are not detailed, but errors with specific meanings are. 119 119 120 120 121 4.1 KVM_GET_API_VERSION 121 4.1 KVM_GET_API_VERSION 122 ----------------------- 122 ----------------------- 123 123 124 :Capability: basic 124 :Capability: basic 125 :Architectures: all 125 :Architectures: all 126 :Type: system ioctl 126 :Type: system ioctl 127 :Parameters: none 127 :Parameters: none 128 :Returns: the constant KVM_API_VERSION (=12) 128 :Returns: the constant KVM_API_VERSION (=12) 129 129 130 This identifies the API version as the stable 130 This identifies the API version as the stable kvm API. It is not 131 expected that this number will change. Howeve 131 expected that this number will change. However, Linux 2.6.20 and 132 2.6.21 report earlier versions; these are not 132 2.6.21 report earlier versions; these are not documented and not 133 supported. Applications should refuse to run 133 supported. Applications should refuse to run if KVM_GET_API_VERSION 134 returns a value other than 12. If this check 134 returns a value other than 12. If this check passes, all ioctls 135 described as 'basic' will be available. 135 described as 'basic' will be available. 136 136 137 137 138 4.2 KVM_CREATE_VM 138 4.2 KVM_CREATE_VM 139 ----------------- 139 ----------------- 140 140 141 :Capability: basic 141 :Capability: basic 142 :Architectures: all 142 :Architectures: all 143 :Type: system ioctl 143 :Type: system ioctl 144 :Parameters: machine type identifier (KVM_VM_* 144 :Parameters: machine type identifier (KVM_VM_*) 145 :Returns: a VM fd that can be used to control 145 :Returns: a VM fd that can be used to control the new virtual machine. 146 146 147 The new VM has no virtual cpus and no memory. 147 The new VM has no virtual cpus and no memory. 148 You probably want to use 0 as machine type. 148 You probably want to use 0 as machine type. 149 149 150 X86: << 151 ^^^^ << 152 << 153 Supported X86 VM types can be queried via KVM_ << 154 << 155 S390: << 156 ^^^^^ << 157 << 158 In order to create user controlled virtual mac 150 In order to create user controlled virtual machines on S390, check 159 KVM_CAP_S390_UCONTROL and use the flag KVM_VM_ 151 KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as 160 privileged user (CAP_SYS_ADMIN). 152 privileged user (CAP_SYS_ADMIN). 161 153 162 MIPS: << 163 ^^^^^ << 164 << 165 To use hardware assisted virtualization on MIP << 166 the default trap & emulate implementation (whi << 167 memory layout to fit in user mode), check KVM_ << 168 flag KVM_VM_MIPS_VZ. << 169 << 170 ARM64: << 171 ^^^^^^ << 172 << 173 On arm64, the physical address size for a VM ( 154 On arm64, the physical address size for a VM (IPA Size limit) is limited 174 to 40bits by default. The limit can be configu 155 to 40bits by default. The limit can be configured if the host supports the 175 extension KVM_CAP_ARM_VM_IPA_SIZE. When suppor 156 extension KVM_CAP_ARM_VM_IPA_SIZE. When supported, use 176 KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the 157 KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the size in the machine type 177 identifier, where IPA_Bits is the maximum widt 158 identifier, where IPA_Bits is the maximum width of any physical 178 address used by the VM. The IPA_Bits is encode 159 address used by the VM. The IPA_Bits is encoded in bits[7-0] of the 179 machine type identifier. 160 machine type identifier. 180 161 181 e.g, to configure a guest to use 48bit physica 162 e.g, to configure a guest to use 48bit physical address size:: 182 163 183 vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_V 164 vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_VM_TYPE_ARM_IPA_SIZE(48)); 184 165 185 The requested size (IPA_Bits) must be: 166 The requested size (IPA_Bits) must be: 186 167 187 == ======================================== 168 == ========================================================= 188 0 Implies default size, 40bits (for backwa 169 0 Implies default size, 40bits (for backward compatibility) 189 N Implies N bits, where N is a positive in 170 N Implies N bits, where N is a positive integer such that, 190 32 <= N <= Host_IPA_Limit 171 32 <= N <= Host_IPA_Limit 191 == ======================================== 172 == ========================================================= 192 173 193 Host_IPA_Limit is the maximum possible value f 174 Host_IPA_Limit is the maximum possible value for IPA_Bits on the host and 194 is dependent on the CPU capability and the ker 175 is dependent on the CPU capability and the kernel configuration. The limit can 195 be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of 176 be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of the KVM_CHECK_EXTENSION 196 ioctl() at run-time. 177 ioctl() at run-time. 197 178 198 Creation of the VM will fail if the requested 179 Creation of the VM will fail if the requested IPA size (whether it is 199 implicit or explicit) is unsupported on the ho 180 implicit or explicit) is unsupported on the host. 200 181 201 Please note that configuring the IPA size does 182 Please note that configuring the IPA size does not affect the capability 202 exposed by the guest CPUs in ID_AA64MMFR0_EL1[ 183 exposed by the guest CPUs in ID_AA64MMFR0_EL1[PARange]. It only affects 203 size of the address translated by the stage2 l 184 size of the address translated by the stage2 level (guest physical to 204 host physical address translations). 185 host physical address translations). 205 186 206 187 207 4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATUR 188 4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST 208 ---------------------------------------------- 189 ---------------------------------------------------------- 209 190 210 :Capability: basic, KVM_CAP_GET_MSR_FEATURES f 191 :Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST 211 :Architectures: x86 192 :Architectures: x86 212 :Type: system ioctl 193 :Type: system ioctl 213 :Parameters: struct kvm_msr_list (in/out) 194 :Parameters: struct kvm_msr_list (in/out) 214 :Returns: 0 on success; -1 on error 195 :Returns: 0 on success; -1 on error 215 196 216 Errors: 197 Errors: 217 198 218 ====== ================================= 199 ====== ============================================================ 219 EFAULT the msr index list cannot be read 200 EFAULT the msr index list cannot be read from or written to 220 E2BIG the msr index list is too big to 201 E2BIG the msr index list is too big to fit in the array specified by 221 the user. 202 the user. 222 ====== ================================= 203 ====== ============================================================ 223 204 224 :: 205 :: 225 206 226 struct kvm_msr_list { 207 struct kvm_msr_list { 227 __u32 nmsrs; /* number of msrs in entr 208 __u32 nmsrs; /* number of msrs in entries */ 228 __u32 indices[0]; 209 __u32 indices[0]; 229 }; 210 }; 230 211 231 The user fills in the size of the indices arra 212 The user fills in the size of the indices array in nmsrs, and in return 232 kvm adjusts nmsrs to reflect the actual number 213 kvm adjusts nmsrs to reflect the actual number of msrs and fills in the 233 indices array with their numbers. 214 indices array with their numbers. 234 215 235 KVM_GET_MSR_INDEX_LIST returns the guest msrs 216 KVM_GET_MSR_INDEX_LIST returns the guest msrs that are supported. The list 236 varies by kvm version and host processor, but 217 varies by kvm version and host processor, but does not change otherwise. 237 218 238 Note: if kvm indicates supports MCE (KVM_CAP_M 219 Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are 239 not returned in the MSR list, as different vcp 220 not returned in the MSR list, as different vcpus can have a different number 240 of banks, as set via the KVM_X86_SETUP_MCE ioc 221 of banks, as set via the KVM_X86_SETUP_MCE ioctl. 241 222 242 KVM_GET_MSR_FEATURE_INDEX_LIST returns the lis 223 KVM_GET_MSR_FEATURE_INDEX_LIST returns the list of MSRs that can be passed 243 to the KVM_GET_MSRS system ioctl. This lets u 224 to the KVM_GET_MSRS system ioctl. This lets userspace probe host capabilities 244 and processor features that are exposed via MS 225 and processor features that are exposed via MSRs (e.g., VMX capabilities). 245 This list also varies by kvm version and host 226 This list also varies by kvm version and host processor, but does not change 246 otherwise. 227 otherwise. 247 228 248 229 249 4.4 KVM_CHECK_EXTENSION 230 4.4 KVM_CHECK_EXTENSION 250 ----------------------- 231 ----------------------- 251 232 252 :Capability: basic, KVM_CAP_CHECK_EXTENSION_VM 233 :Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl 253 :Architectures: all 234 :Architectures: all 254 :Type: system ioctl, vm ioctl 235 :Type: system ioctl, vm ioctl 255 :Parameters: extension identifier (KVM_CAP_*) 236 :Parameters: extension identifier (KVM_CAP_*) 256 :Returns: 0 if unsupported; 1 (or some other p 237 :Returns: 0 if unsupported; 1 (or some other positive integer) if supported 257 238 258 The API allows the application to query about 239 The API allows the application to query about extensions to the core 259 kvm API. Userspace passes an extension identi 240 kvm API. Userspace passes an extension identifier (an integer) and 260 receives an integer that describes the extensi 241 receives an integer that describes the extension availability. 261 Generally 0 means no and 1 means yes, but some 242 Generally 0 means no and 1 means yes, but some extensions may report 262 additional information in the integer return v 243 additional information in the integer return value. 263 244 264 Based on their initialization different VMs ma 245 Based on their initialization different VMs may have different capabilities. 265 It is thus encouraged to use the vm ioctl to q 246 It is thus encouraged to use the vm ioctl to query for capabilities (available 266 with KVM_CAP_CHECK_EXTENSION_VM on the vm fd) 247 with KVM_CAP_CHECK_EXTENSION_VM on the vm fd) 267 248 268 4.5 KVM_GET_VCPU_MMAP_SIZE 249 4.5 KVM_GET_VCPU_MMAP_SIZE 269 -------------------------- 250 -------------------------- 270 251 271 :Capability: basic 252 :Capability: basic 272 :Architectures: all 253 :Architectures: all 273 :Type: system ioctl 254 :Type: system ioctl 274 :Parameters: none 255 :Parameters: none 275 :Returns: size of vcpu mmap area, in bytes 256 :Returns: size of vcpu mmap area, in bytes 276 257 277 The KVM_RUN ioctl (cf.) communicates with user 258 The KVM_RUN ioctl (cf.) communicates with userspace via a shared 278 memory region. This ioctl returns the size of 259 memory region. This ioctl returns the size of that region. See the 279 KVM_RUN documentation for details. 260 KVM_RUN documentation for details. 280 261 281 Besides the size of the KVM_RUN communication 262 Besides the size of the KVM_RUN communication region, other areas of 282 the VCPU file descriptor can be mmap-ed, inclu 263 the VCPU file descriptor can be mmap-ed, including: 283 264 284 - if KVM_CAP_COALESCED_MMIO is available, a pa 265 - if KVM_CAP_COALESCED_MMIO is available, a page at 285 KVM_COALESCED_MMIO_PAGE_OFFSET * PAGE_SIZE; 266 KVM_COALESCED_MMIO_PAGE_OFFSET * PAGE_SIZE; for historical reasons, 286 this page is included in the result of KVM_G 267 this page is included in the result of KVM_GET_VCPU_MMAP_SIZE. 287 KVM_CAP_COALESCED_MMIO is not documented yet 268 KVM_CAP_COALESCED_MMIO is not documented yet. 288 269 289 - if KVM_CAP_DIRTY_LOG_RING is available, a nu 270 - if KVM_CAP_DIRTY_LOG_RING is available, a number of pages at 290 KVM_DIRTY_LOG_PAGE_OFFSET * PAGE_SIZE. For 271 KVM_DIRTY_LOG_PAGE_OFFSET * PAGE_SIZE. For more information on 291 KVM_CAP_DIRTY_LOG_RING, see section 8.3. 272 KVM_CAP_DIRTY_LOG_RING, see section 8.3. 292 273 293 274 >> 275 4.6 KVM_SET_MEMORY_REGION >> 276 ------------------------- >> 277 >> 278 :Capability: basic >> 279 :Architectures: all >> 280 :Type: vm ioctl >> 281 :Parameters: struct kvm_memory_region (in) >> 282 :Returns: 0 on success, -1 on error >> 283 >> 284 This ioctl is obsolete and has been removed. >> 285 >> 286 294 4.7 KVM_CREATE_VCPU 287 4.7 KVM_CREATE_VCPU 295 ------------------- 288 ------------------- 296 289 297 :Capability: basic 290 :Capability: basic 298 :Architectures: all 291 :Architectures: all 299 :Type: vm ioctl 292 :Type: vm ioctl 300 :Parameters: vcpu id (apic id on x86) 293 :Parameters: vcpu id (apic id on x86) 301 :Returns: vcpu fd on success, -1 on error 294 :Returns: vcpu fd on success, -1 on error 302 295 303 This API adds a vcpu to a virtual machine. No 296 This API adds a vcpu to a virtual machine. No more than max_vcpus may be added. 304 The vcpu id is an integer in the range [0, max 297 The vcpu id is an integer in the range [0, max_vcpu_id). 305 298 306 The recommended max_vcpus value can be retriev 299 The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of 307 the KVM_CHECK_EXTENSION ioctl() at run-time. 300 the KVM_CHECK_EXTENSION ioctl() at run-time. 308 The maximum possible value for max_vcpus can b 301 The maximum possible value for max_vcpus can be retrieved using the 309 KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION i 302 KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time. 310 303 311 If the KVM_CAP_NR_VCPUS does not exist, you sh 304 If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4 312 cpus max. 305 cpus max. 313 If the KVM_CAP_MAX_VCPUS does not exist, you s 306 If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is 314 same as the value returned from KVM_CAP_NR_VCP 307 same as the value returned from KVM_CAP_NR_VCPUS. 315 308 316 The maximum possible value for max_vcpu_id can 309 The maximum possible value for max_vcpu_id can be retrieved using the 317 KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION 310 KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time. 318 311 319 If the KVM_CAP_MAX_VCPU_ID does not exist, you 312 If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id 320 is the same as the value returned from KVM_CAP 313 is the same as the value returned from KVM_CAP_MAX_VCPUS. 321 314 322 On powerpc using book3s_hv mode, the vcpus are 315 On powerpc using book3s_hv mode, the vcpus are mapped onto virtual 323 threads in one or more virtual CPU cores. (Th 316 threads in one or more virtual CPU cores. (This is because the 324 hardware requires all the hardware threads in 317 hardware requires all the hardware threads in a CPU core to be in the 325 same partition.) The KVM_CAP_PPC_SMT capabili 318 same partition.) The KVM_CAP_PPC_SMT capability indicates the number 326 of vcpus per virtual core (vcore). The vcore 319 of vcpus per virtual core (vcore). The vcore id is obtained by 327 dividing the vcpu id by the number of vcpus pe 320 dividing the vcpu id by the number of vcpus per vcore. The vcpus in a 328 given vcore will always be in the same physica 321 given vcore will always be in the same physical core as each other 329 (though that might be a different physical cor 322 (though that might be a different physical core from time to time). 330 Userspace can control the threading (SMT) mode 323 Userspace can control the threading (SMT) mode of the guest by its 331 allocation of vcpu ids. For example, if users 324 allocation of vcpu ids. For example, if userspace wants 332 single-threaded guest vcpus, it should make al 325 single-threaded guest vcpus, it should make all vcpu ids be a multiple 333 of the number of vcpus per vcore. 326 of the number of vcpus per vcore. 334 327 335 For virtual cpus that have been created with S 328 For virtual cpus that have been created with S390 user controlled virtual 336 machines, the resulting vcpu fd can be memory 329 machines, the resulting vcpu fd can be memory mapped at page offset 337 KVM_S390_SIE_PAGE_OFFSET in order to obtain a 330 KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual 338 cpu's hardware control block. 331 cpu's hardware control block. 339 332 340 333 341 4.8 KVM_GET_DIRTY_LOG (vm ioctl) 334 4.8 KVM_GET_DIRTY_LOG (vm ioctl) 342 -------------------------------- 335 -------------------------------- 343 336 344 :Capability: basic 337 :Capability: basic 345 :Architectures: all 338 :Architectures: all 346 :Type: vm ioctl 339 :Type: vm ioctl 347 :Parameters: struct kvm_dirty_log (in/out) 340 :Parameters: struct kvm_dirty_log (in/out) 348 :Returns: 0 on success, -1 on error 341 :Returns: 0 on success, -1 on error 349 342 350 :: 343 :: 351 344 352 /* for KVM_GET_DIRTY_LOG */ 345 /* for KVM_GET_DIRTY_LOG */ 353 struct kvm_dirty_log { 346 struct kvm_dirty_log { 354 __u32 slot; 347 __u32 slot; 355 __u32 padding; 348 __u32 padding; 356 union { 349 union { 357 void __user *dirty_bitmap; /* 350 void __user *dirty_bitmap; /* one bit per page */ 358 __u64 padding; 351 __u64 padding; 359 }; 352 }; 360 }; 353 }; 361 354 362 Given a memory slot, return a bitmap containin 355 Given a memory slot, return a bitmap containing any pages dirtied 363 since the last call to this ioctl. Bit 0 is t 356 since the last call to this ioctl. Bit 0 is the first page in the 364 memory slot. Ensure the entire structure is c 357 memory slot. Ensure the entire structure is cleared to avoid padding 365 issues. 358 issues. 366 359 367 If KVM_CAP_MULTI_ADDRESS_SPACE is available, b 360 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of slot field specifies 368 the address space for which you want to return 361 the address space for which you want to return the dirty bitmap. See 369 KVM_SET_USER_MEMORY_REGION for details on the 362 KVM_SET_USER_MEMORY_REGION for details on the usage of slot field. 370 363 371 The bits in the dirty bitmap are cleared befor 364 The bits in the dirty bitmap are cleared before the ioctl returns, unless 372 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. 365 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. For more information, 373 see the description of the capability. 366 see the description of the capability. 374 367 375 Note that the Xen shared_info page, if configu !! 368 Note that the Xen shared info page, if configured, shall always be assumed 376 to be dirty. KVM will not explicitly mark it s 369 to be dirty. KVM will not explicitly mark it such. 377 370 >> 371 4.9 KVM_SET_MEMORY_ALIAS >> 372 ------------------------ >> 373 >> 374 :Capability: basic >> 375 :Architectures: x86 >> 376 :Type: vm ioctl >> 377 :Parameters: struct kvm_memory_alias (in) >> 378 :Returns: 0 (success), -1 (error) >> 379 >> 380 This ioctl is obsolete and has been removed. >> 381 378 382 379 4.10 KVM_RUN 383 4.10 KVM_RUN 380 ------------ 384 ------------ 381 385 382 :Capability: basic 386 :Capability: basic 383 :Architectures: all 387 :Architectures: all 384 :Type: vcpu ioctl 388 :Type: vcpu ioctl 385 :Parameters: none 389 :Parameters: none 386 :Returns: 0 on success, -1 on error 390 :Returns: 0 on success, -1 on error 387 391 388 Errors: 392 Errors: 389 393 390 ======= ================================= 394 ======= ============================================================== 391 EINTR an unmasked signal is pending 395 EINTR an unmasked signal is pending 392 ENOEXEC the vcpu hasn't been initialized 396 ENOEXEC the vcpu hasn't been initialized or the guest tried to execute 393 instructions from device memory ( 397 instructions from device memory (arm64) 394 ENOSYS data abort outside memslots with 398 ENOSYS data abort outside memslots with no syndrome info and 395 KVM_CAP_ARM_NISV_TO_USER not enab 399 KVM_CAP_ARM_NISV_TO_USER not enabled (arm64) 396 EPERM SVE feature set but not finalized 400 EPERM SVE feature set but not finalized (arm64) 397 ======= ================================= 401 ======= ============================================================== 398 402 399 This ioctl is used to run a guest virtual cpu. 403 This ioctl is used to run a guest virtual cpu. While there are no 400 explicit parameters, there is an implicit para 404 explicit parameters, there is an implicit parameter block that can be 401 obtained by mmap()ing the vcpu fd at offset 0, 405 obtained by mmap()ing the vcpu fd at offset 0, with the size given by 402 KVM_GET_VCPU_MMAP_SIZE. The parameter block i 406 KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct 403 kvm_run' (see below). 407 kvm_run' (see below). 404 408 405 409 406 4.11 KVM_GET_REGS 410 4.11 KVM_GET_REGS 407 ----------------- 411 ----------------- 408 412 409 :Capability: basic 413 :Capability: basic 410 :Architectures: all except arm64 414 :Architectures: all except arm64 411 :Type: vcpu ioctl 415 :Type: vcpu ioctl 412 :Parameters: struct kvm_regs (out) 416 :Parameters: struct kvm_regs (out) 413 :Returns: 0 on success, -1 on error 417 :Returns: 0 on success, -1 on error 414 418 415 Reads the general purpose registers from the v 419 Reads the general purpose registers from the vcpu. 416 420 417 :: 421 :: 418 422 419 /* x86 */ 423 /* x86 */ 420 struct kvm_regs { 424 struct kvm_regs { 421 /* out (KVM_GET_REGS) / in (KVM_SET_RE 425 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ 422 __u64 rax, rbx, rcx, rdx; 426 __u64 rax, rbx, rcx, rdx; 423 __u64 rsi, rdi, rsp, rbp; 427 __u64 rsi, rdi, rsp, rbp; 424 __u64 r8, r9, r10, r11; 428 __u64 r8, r9, r10, r11; 425 __u64 r12, r13, r14, r15; 429 __u64 r12, r13, r14, r15; 426 __u64 rip, rflags; 430 __u64 rip, rflags; 427 }; 431 }; 428 432 429 /* mips */ 433 /* mips */ 430 struct kvm_regs { 434 struct kvm_regs { 431 /* out (KVM_GET_REGS) / in (KVM_SET_RE 435 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ 432 __u64 gpr[32]; 436 __u64 gpr[32]; 433 __u64 hi; 437 __u64 hi; 434 __u64 lo; 438 __u64 lo; 435 __u64 pc; 439 __u64 pc; 436 }; 440 }; 437 441 438 /* LoongArch */ << 439 struct kvm_regs { << 440 /* out (KVM_GET_REGS) / in (KVM_SET_RE << 441 unsigned long gpr[32]; << 442 unsigned long pc; << 443 }; << 444 << 445 442 446 4.12 KVM_SET_REGS 443 4.12 KVM_SET_REGS 447 ----------------- 444 ----------------- 448 445 449 :Capability: basic 446 :Capability: basic 450 :Architectures: all except arm64 447 :Architectures: all except arm64 451 :Type: vcpu ioctl 448 :Type: vcpu ioctl 452 :Parameters: struct kvm_regs (in) 449 :Parameters: struct kvm_regs (in) 453 :Returns: 0 on success, -1 on error 450 :Returns: 0 on success, -1 on error 454 451 455 Writes the general purpose registers into the 452 Writes the general purpose registers into the vcpu. 456 453 457 See KVM_GET_REGS for the data structure. 454 See KVM_GET_REGS for the data structure. 458 455 459 456 460 4.13 KVM_GET_SREGS 457 4.13 KVM_GET_SREGS 461 ------------------ 458 ------------------ 462 459 463 :Capability: basic 460 :Capability: basic 464 :Architectures: x86, ppc 461 :Architectures: x86, ppc 465 :Type: vcpu ioctl 462 :Type: vcpu ioctl 466 :Parameters: struct kvm_sregs (out) 463 :Parameters: struct kvm_sregs (out) 467 :Returns: 0 on success, -1 on error 464 :Returns: 0 on success, -1 on error 468 465 469 Reads special registers from the vcpu. 466 Reads special registers from the vcpu. 470 467 471 :: 468 :: 472 469 473 /* x86 */ 470 /* x86 */ 474 struct kvm_sregs { 471 struct kvm_sregs { 475 struct kvm_segment cs, ds, es, fs, gs, 472 struct kvm_segment cs, ds, es, fs, gs, ss; 476 struct kvm_segment tr, ldt; 473 struct kvm_segment tr, ldt; 477 struct kvm_dtable gdt, idt; 474 struct kvm_dtable gdt, idt; 478 __u64 cr0, cr2, cr3, cr4, cr8; 475 __u64 cr0, cr2, cr3, cr4, cr8; 479 __u64 efer; 476 __u64 efer; 480 __u64 apic_base; 477 __u64 apic_base; 481 __u64 interrupt_bitmap[(KVM_NR_INTERRU 478 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64]; 482 }; 479 }; 483 480 484 /* ppc -- see arch/powerpc/include/uapi/asm/ 481 /* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */ 485 482 486 interrupt_bitmap is a bitmap of pending extern 483 interrupt_bitmap is a bitmap of pending external interrupts. At most 487 one bit may be set. This interrupt has been a 484 one bit may be set. This interrupt has been acknowledged by the APIC 488 but not yet injected into the cpu core. 485 but not yet injected into the cpu core. 489 486 490 487 491 4.14 KVM_SET_SREGS 488 4.14 KVM_SET_SREGS 492 ------------------ 489 ------------------ 493 490 494 :Capability: basic 491 :Capability: basic 495 :Architectures: x86, ppc 492 :Architectures: x86, ppc 496 :Type: vcpu ioctl 493 :Type: vcpu ioctl 497 :Parameters: struct kvm_sregs (in) 494 :Parameters: struct kvm_sregs (in) 498 :Returns: 0 on success, -1 on error 495 :Returns: 0 on success, -1 on error 499 496 500 Writes special registers into the vcpu. See K 497 Writes special registers into the vcpu. See KVM_GET_SREGS for the 501 data structures. 498 data structures. 502 499 503 500 504 4.15 KVM_TRANSLATE 501 4.15 KVM_TRANSLATE 505 ------------------ 502 ------------------ 506 503 507 :Capability: basic 504 :Capability: basic 508 :Architectures: x86 505 :Architectures: x86 509 :Type: vcpu ioctl 506 :Type: vcpu ioctl 510 :Parameters: struct kvm_translation (in/out) 507 :Parameters: struct kvm_translation (in/out) 511 :Returns: 0 on success, -1 on error 508 :Returns: 0 on success, -1 on error 512 509 513 Translates a virtual address according to the 510 Translates a virtual address according to the vcpu's current address 514 translation mode. 511 translation mode. 515 512 516 :: 513 :: 517 514 518 struct kvm_translation { 515 struct kvm_translation { 519 /* in */ 516 /* in */ 520 __u64 linear_address; 517 __u64 linear_address; 521 518 522 /* out */ 519 /* out */ 523 __u64 physical_address; 520 __u64 physical_address; 524 __u8 valid; 521 __u8 valid; 525 __u8 writeable; 522 __u8 writeable; 526 __u8 usermode; 523 __u8 usermode; 527 __u8 pad[5]; 524 __u8 pad[5]; 528 }; 525 }; 529 526 530 527 531 4.16 KVM_INTERRUPT 528 4.16 KVM_INTERRUPT 532 ------------------ 529 ------------------ 533 530 534 :Capability: basic 531 :Capability: basic 535 :Architectures: x86, ppc, mips, riscv, loongar !! 532 :Architectures: x86, ppc, mips, riscv 536 :Type: vcpu ioctl 533 :Type: vcpu ioctl 537 :Parameters: struct kvm_interrupt (in) 534 :Parameters: struct kvm_interrupt (in) 538 :Returns: 0 on success, negative on failure. 535 :Returns: 0 on success, negative on failure. 539 536 540 Queues a hardware interrupt vector to be injec 537 Queues a hardware interrupt vector to be injected. 541 538 542 :: 539 :: 543 540 544 /* for KVM_INTERRUPT */ 541 /* for KVM_INTERRUPT */ 545 struct kvm_interrupt { 542 struct kvm_interrupt { 546 /* in */ 543 /* in */ 547 __u32 irq; 544 __u32 irq; 548 }; 545 }; 549 546 550 X86: 547 X86: 551 ^^^^ 548 ^^^^ 552 549 553 :Returns: 550 :Returns: 554 551 555 ========= ============================ 552 ========= =================================== 556 0 on success, 553 0 on success, 557 -EEXIST if an interrupt is already e 554 -EEXIST if an interrupt is already enqueued 558 -EINVAL the irq number is invalid 555 -EINVAL the irq number is invalid 559 -ENXIO if the PIC is in the kernel 556 -ENXIO if the PIC is in the kernel 560 -EFAULT if the pointer is invalid 557 -EFAULT if the pointer is invalid 561 ========= ============================ 558 ========= =================================== 562 559 563 Note 'irq' is an interrupt vector, not an inte 560 Note 'irq' is an interrupt vector, not an interrupt pin or line. This 564 ioctl is useful if the in-kernel PIC is not us 561 ioctl is useful if the in-kernel PIC is not used. 565 562 566 PPC: 563 PPC: 567 ^^^^ 564 ^^^^ 568 565 569 Queues an external interrupt to be injected. T !! 566 Queues an external interrupt to be injected. This ioctl is overleaded 570 with 3 different irq values: 567 with 3 different irq values: 571 568 572 a) KVM_INTERRUPT_SET 569 a) KVM_INTERRUPT_SET 573 570 574 This injects an edge type external interrup 571 This injects an edge type external interrupt into the guest once it's ready 575 to receive interrupts. When injected, the i 572 to receive interrupts. When injected, the interrupt is done. 576 573 577 b) KVM_INTERRUPT_UNSET 574 b) KVM_INTERRUPT_UNSET 578 575 579 This unsets any pending interrupt. 576 This unsets any pending interrupt. 580 577 581 Only available with KVM_CAP_PPC_UNSET_IRQ. 578 Only available with KVM_CAP_PPC_UNSET_IRQ. 582 579 583 c) KVM_INTERRUPT_SET_LEVEL 580 c) KVM_INTERRUPT_SET_LEVEL 584 581 585 This injects a level type external interrup 582 This injects a level type external interrupt into the guest context. The 586 interrupt stays pending until a specific io 583 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET 587 is triggered. 584 is triggered. 588 585 589 Only available with KVM_CAP_PPC_IRQ_LEVEL. 586 Only available with KVM_CAP_PPC_IRQ_LEVEL. 590 587 591 Note that any value for 'irq' other than the o 588 Note that any value for 'irq' other than the ones stated above is invalid 592 and incurs unexpected behavior. 589 and incurs unexpected behavior. 593 590 594 This is an asynchronous vcpu ioctl and can be 591 This is an asynchronous vcpu ioctl and can be invoked from any thread. 595 592 596 MIPS: 593 MIPS: 597 ^^^^^ 594 ^^^^^ 598 595 599 Queues an external interrupt to be injected in 596 Queues an external interrupt to be injected into the virtual CPU. A negative 600 interrupt number dequeues the interrupt. 597 interrupt number dequeues the interrupt. 601 598 602 This is an asynchronous vcpu ioctl and can be 599 This is an asynchronous vcpu ioctl and can be invoked from any thread. 603 600 604 RISC-V: 601 RISC-V: 605 ^^^^^^^ 602 ^^^^^^^ 606 603 607 Queues an external interrupt to be injected in !! 604 Queues an external interrupt to be injected into the virutal CPU. This ioctl 608 is overloaded with 2 different irq values: 605 is overloaded with 2 different irq values: 609 606 610 a) KVM_INTERRUPT_SET 607 a) KVM_INTERRUPT_SET 611 608 612 This sets external interrupt for a virtual 609 This sets external interrupt for a virtual CPU and it will receive 613 once it is ready. 610 once it is ready. 614 611 615 b) KVM_INTERRUPT_UNSET 612 b) KVM_INTERRUPT_UNSET 616 613 617 This clears pending external interrupt for 614 This clears pending external interrupt for a virtual CPU. 618 615 619 This is an asynchronous vcpu ioctl and can be 616 This is an asynchronous vcpu ioctl and can be invoked from any thread. 620 617 621 LOONGARCH: << 622 ^^^^^^^^^^ << 623 618 624 Queues an external interrupt to be injected in !! 619 4.17 KVM_DEBUG_GUEST 625 interrupt number dequeues the interrupt. !! 620 -------------------- 626 621 627 This is an asynchronous vcpu ioctl and can be !! 622 :Capability: basic >> 623 :Architectures: none >> 624 :Type: vcpu ioctl >> 625 :Parameters: none) >> 626 :Returns: -1 on error >> 627 >> 628 Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead. 628 629 629 630 630 4.18 KVM_GET_MSRS 631 4.18 KVM_GET_MSRS 631 ----------------- 632 ----------------- 632 633 633 :Capability: basic (vcpu), KVM_CAP_GET_MSR_FEA 634 :Capability: basic (vcpu), KVM_CAP_GET_MSR_FEATURES (system) 634 :Architectures: x86 635 :Architectures: x86 635 :Type: system ioctl, vcpu ioctl 636 :Type: system ioctl, vcpu ioctl 636 :Parameters: struct kvm_msrs (in/out) 637 :Parameters: struct kvm_msrs (in/out) 637 :Returns: number of msrs successfully returned 638 :Returns: number of msrs successfully returned; 638 -1 on error 639 -1 on error 639 640 640 When used as a system ioctl: 641 When used as a system ioctl: 641 Reads the values of MSR-based features that ar 642 Reads the values of MSR-based features that are available for the VM. This 642 is similar to KVM_GET_SUPPORTED_CPUID, but it 643 is similar to KVM_GET_SUPPORTED_CPUID, but it returns MSR indices and values. 643 The list of msr-based features can be obtained 644 The list of msr-based features can be obtained using KVM_GET_MSR_FEATURE_INDEX_LIST 644 in a system ioctl. 645 in a system ioctl. 645 646 646 When used as a vcpu ioctl: 647 When used as a vcpu ioctl: 647 Reads model-specific registers from the vcpu. 648 Reads model-specific registers from the vcpu. Supported msr indices can 648 be obtained using KVM_GET_MSR_INDEX_LIST in a 649 be obtained using KVM_GET_MSR_INDEX_LIST in a system ioctl. 649 650 650 :: 651 :: 651 652 652 struct kvm_msrs { 653 struct kvm_msrs { 653 __u32 nmsrs; /* number of msrs in entr 654 __u32 nmsrs; /* number of msrs in entries */ 654 __u32 pad; 655 __u32 pad; 655 656 656 struct kvm_msr_entry entries[0]; 657 struct kvm_msr_entry entries[0]; 657 }; 658 }; 658 659 659 struct kvm_msr_entry { 660 struct kvm_msr_entry { 660 __u32 index; 661 __u32 index; 661 __u32 reserved; 662 __u32 reserved; 662 __u64 data; 663 __u64 data; 663 }; 664 }; 664 665 665 Application code should set the 'nmsrs' member 666 Application code should set the 'nmsrs' member (which indicates the 666 size of the entries array) and the 'index' mem 667 size of the entries array) and the 'index' member of each array entry. 667 kvm will fill in the 'data' member. 668 kvm will fill in the 'data' member. 668 669 669 670 670 4.19 KVM_SET_MSRS 671 4.19 KVM_SET_MSRS 671 ----------------- 672 ----------------- 672 673 673 :Capability: basic 674 :Capability: basic 674 :Architectures: x86 675 :Architectures: x86 675 :Type: vcpu ioctl 676 :Type: vcpu ioctl 676 :Parameters: struct kvm_msrs (in) 677 :Parameters: struct kvm_msrs (in) 677 :Returns: number of msrs successfully set (see 678 :Returns: number of msrs successfully set (see below), -1 on error 678 679 679 Writes model-specific registers to the vcpu. 680 Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the 680 data structures. 681 data structures. 681 682 682 Application code should set the 'nmsrs' member 683 Application code should set the 'nmsrs' member (which indicates the 683 size of the entries array), and the 'index' an 684 size of the entries array), and the 'index' and 'data' members of each 684 array entry. 685 array entry. 685 686 686 It tries to set the MSRs in array entries[] on 687 It tries to set the MSRs in array entries[] one by one. If setting an MSR 687 fails, e.g., due to setting reserved bits, the 688 fails, e.g., due to setting reserved bits, the MSR isn't supported/emulated 688 by KVM, etc..., it stops processing the MSR li 689 by KVM, etc..., it stops processing the MSR list and returns the number of 689 MSRs that have been set successfully. 690 MSRs that have been set successfully. 690 691 691 692 692 4.20 KVM_SET_CPUID 693 4.20 KVM_SET_CPUID 693 ------------------ 694 ------------------ 694 695 695 :Capability: basic 696 :Capability: basic 696 :Architectures: x86 697 :Architectures: x86 697 :Type: vcpu ioctl 698 :Type: vcpu ioctl 698 :Parameters: struct kvm_cpuid (in) 699 :Parameters: struct kvm_cpuid (in) 699 :Returns: 0 on success, -1 on error 700 :Returns: 0 on success, -1 on error 700 701 701 Defines the vcpu responses to the cpuid instru 702 Defines the vcpu responses to the cpuid instruction. Applications 702 should use the KVM_SET_CPUID2 ioctl if availab 703 should use the KVM_SET_CPUID2 ioctl if available. 703 704 704 Caveat emptor: 705 Caveat emptor: 705 - If this IOCTL fails, KVM gives no guarante 706 - If this IOCTL fails, KVM gives no guarantees that previous valid CPUID 706 configuration (if there is) is not corrupt 707 configuration (if there is) is not corrupted. Userspace can get a copy 707 of the resulting CPUID configuration throu 708 of the resulting CPUID configuration through KVM_GET_CPUID2 in case. 708 - Using KVM_SET_CPUID{,2} after KVM_RUN, i.e 709 - Using KVM_SET_CPUID{,2} after KVM_RUN, i.e. changing the guest vCPU model 709 after running the guest, may cause guest i 710 after running the guest, may cause guest instability. 710 - Using heterogeneous CPUID configurations, 711 - Using heterogeneous CPUID configurations, modulo APIC IDs, topology, etc... 711 may cause guest instability. 712 may cause guest instability. 712 713 713 :: 714 :: 714 715 715 struct kvm_cpuid_entry { 716 struct kvm_cpuid_entry { 716 __u32 function; 717 __u32 function; 717 __u32 eax; 718 __u32 eax; 718 __u32 ebx; 719 __u32 ebx; 719 __u32 ecx; 720 __u32 ecx; 720 __u32 edx; 721 __u32 edx; 721 __u32 padding; 722 __u32 padding; 722 }; 723 }; 723 724 724 /* for KVM_SET_CPUID */ 725 /* for KVM_SET_CPUID */ 725 struct kvm_cpuid { 726 struct kvm_cpuid { 726 __u32 nent; 727 __u32 nent; 727 __u32 padding; 728 __u32 padding; 728 struct kvm_cpuid_entry entries[0]; 729 struct kvm_cpuid_entry entries[0]; 729 }; 730 }; 730 731 731 732 732 4.21 KVM_SET_SIGNAL_MASK 733 4.21 KVM_SET_SIGNAL_MASK 733 ------------------------ 734 ------------------------ 734 735 735 :Capability: basic 736 :Capability: basic 736 :Architectures: all 737 :Architectures: all 737 :Type: vcpu ioctl 738 :Type: vcpu ioctl 738 :Parameters: struct kvm_signal_mask (in) 739 :Parameters: struct kvm_signal_mask (in) 739 :Returns: 0 on success, -1 on error 740 :Returns: 0 on success, -1 on error 740 741 741 Defines which signals are blocked during execu 742 Defines which signals are blocked during execution of KVM_RUN. This 742 signal mask temporarily overrides the threads 743 signal mask temporarily overrides the threads signal mask. Any 743 unblocked signal received (except SIGKILL and 744 unblocked signal received (except SIGKILL and SIGSTOP, which retain 744 their traditional behaviour) will cause KVM_RU 745 their traditional behaviour) will cause KVM_RUN to return with -EINTR. 745 746 746 Note the signal will only be delivered if not 747 Note the signal will only be delivered if not blocked by the original 747 signal mask. 748 signal mask. 748 749 749 :: 750 :: 750 751 751 /* for KVM_SET_SIGNAL_MASK */ 752 /* for KVM_SET_SIGNAL_MASK */ 752 struct kvm_signal_mask { 753 struct kvm_signal_mask { 753 __u32 len; 754 __u32 len; 754 __u8 sigset[0]; 755 __u8 sigset[0]; 755 }; 756 }; 756 757 757 758 758 4.22 KVM_GET_FPU 759 4.22 KVM_GET_FPU 759 ---------------- 760 ---------------- 760 761 761 :Capability: basic 762 :Capability: basic 762 :Architectures: x86, loongarch !! 763 :Architectures: x86 763 :Type: vcpu ioctl 764 :Type: vcpu ioctl 764 :Parameters: struct kvm_fpu (out) 765 :Parameters: struct kvm_fpu (out) 765 :Returns: 0 on success, -1 on error 766 :Returns: 0 on success, -1 on error 766 767 767 Reads the floating point state from the vcpu. 768 Reads the floating point state from the vcpu. 768 769 769 :: 770 :: 770 771 771 /* x86: for KVM_GET_FPU and KVM_SET_FPU */ !! 772 /* for KVM_GET_FPU and KVM_SET_FPU */ 772 struct kvm_fpu { 773 struct kvm_fpu { 773 __u8 fpr[8][16]; 774 __u8 fpr[8][16]; 774 __u16 fcw; 775 __u16 fcw; 775 __u16 fsw; 776 __u16 fsw; 776 __u8 ftwx; /* in fxsave format */ 777 __u8 ftwx; /* in fxsave format */ 777 __u8 pad1; 778 __u8 pad1; 778 __u16 last_opcode; 779 __u16 last_opcode; 779 __u64 last_ip; 780 __u64 last_ip; 780 __u64 last_dp; 781 __u64 last_dp; 781 __u8 xmm[16][16]; 782 __u8 xmm[16][16]; 782 __u32 mxcsr; 783 __u32 mxcsr; 783 __u32 pad2; 784 __u32 pad2; 784 }; 785 }; 785 786 786 /* LoongArch: for KVM_GET_FPU and KVM_SET_FP << 787 struct kvm_fpu { << 788 __u32 fcsr; << 789 __u64 fcc; << 790 struct kvm_fpureg { << 791 __u64 val64[4]; << 792 }fpr[32]; << 793 }; << 794 << 795 787 796 4.23 KVM_SET_FPU 788 4.23 KVM_SET_FPU 797 ---------------- 789 ---------------- 798 790 799 :Capability: basic 791 :Capability: basic 800 :Architectures: x86, loongarch !! 792 :Architectures: x86 801 :Type: vcpu ioctl 793 :Type: vcpu ioctl 802 :Parameters: struct kvm_fpu (in) 794 :Parameters: struct kvm_fpu (in) 803 :Returns: 0 on success, -1 on error 795 :Returns: 0 on success, -1 on error 804 796 805 Writes the floating point state to the vcpu. 797 Writes the floating point state to the vcpu. 806 798 807 :: 799 :: 808 800 809 /* x86: for KVM_GET_FPU and KVM_SET_FPU */ !! 801 /* for KVM_GET_FPU and KVM_SET_FPU */ 810 struct kvm_fpu { 802 struct kvm_fpu { 811 __u8 fpr[8][16]; 803 __u8 fpr[8][16]; 812 __u16 fcw; 804 __u16 fcw; 813 __u16 fsw; 805 __u16 fsw; 814 __u8 ftwx; /* in fxsave format */ 806 __u8 ftwx; /* in fxsave format */ 815 __u8 pad1; 807 __u8 pad1; 816 __u16 last_opcode; 808 __u16 last_opcode; 817 __u64 last_ip; 809 __u64 last_ip; 818 __u64 last_dp; 810 __u64 last_dp; 819 __u8 xmm[16][16]; 811 __u8 xmm[16][16]; 820 __u32 mxcsr; 812 __u32 mxcsr; 821 __u32 pad2; 813 __u32 pad2; 822 }; 814 }; 823 815 824 /* LoongArch: for KVM_GET_FPU and KVM_SET_FP << 825 struct kvm_fpu { << 826 __u32 fcsr; << 827 __u64 fcc; << 828 struct kvm_fpureg { << 829 __u64 val64[4]; << 830 }fpr[32]; << 831 }; << 832 << 833 816 834 4.24 KVM_CREATE_IRQCHIP 817 4.24 KVM_CREATE_IRQCHIP 835 ----------------------- 818 ----------------------- 836 819 837 :Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQ 820 :Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390) 838 :Architectures: x86, arm64, s390 821 :Architectures: x86, arm64, s390 839 :Type: vm ioctl 822 :Type: vm ioctl 840 :Parameters: none 823 :Parameters: none 841 :Returns: 0 on success, -1 on error 824 :Returns: 0 on success, -1 on error 842 825 843 Creates an interrupt controller model in the k 826 Creates an interrupt controller model in the kernel. 844 On x86, creates a virtual ioapic, a virtual PI 827 On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up 845 future vcpus to have a local APIC. IRQ routin 828 future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both 846 PIC and IOAPIC; GSI 16-23 only go to the IOAPI 829 PIC and IOAPIC; GSI 16-23 only go to the IOAPIC. 847 On arm64, a GICv2 is created. Any other GIC ve 830 On arm64, a GICv2 is created. Any other GIC versions require the usage of 848 KVM_CREATE_DEVICE, which also supports creatin 831 KVM_CREATE_DEVICE, which also supports creating a GICv2. Using 849 KVM_CREATE_DEVICE is preferred over KVM_CREATE 832 KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2. 850 On s390, a dummy irq routing table is created. 833 On s390, a dummy irq routing table is created. 851 834 852 Note that on s390 the KVM_CAP_S390_IRQCHIP vm 835 Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled 853 before KVM_CREATE_IRQCHIP can be used. 836 before KVM_CREATE_IRQCHIP can be used. 854 837 855 838 856 4.25 KVM_IRQ_LINE 839 4.25 KVM_IRQ_LINE 857 ----------------- 840 ----------------- 858 841 859 :Capability: KVM_CAP_IRQCHIP 842 :Capability: KVM_CAP_IRQCHIP 860 :Architectures: x86, arm64 843 :Architectures: x86, arm64 861 :Type: vm ioctl 844 :Type: vm ioctl 862 :Parameters: struct kvm_irq_level 845 :Parameters: struct kvm_irq_level 863 :Returns: 0 on success, -1 on error 846 :Returns: 0 on success, -1 on error 864 847 865 Sets the level of a GSI input to the interrupt 848 Sets the level of a GSI input to the interrupt controller model in the kernel. 866 On some architectures it is required that an i 849 On some architectures it is required that an interrupt controller model has 867 been previously created with KVM_CREATE_IRQCHI 850 been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered 868 interrupts require the level to be set to 1 an 851 interrupts require the level to be set to 1 and then back to 0. 869 852 870 On real hardware, interrupt pins can be active 853 On real hardware, interrupt pins can be active-low or active-high. This 871 does not matter for the level field of struct 854 does not matter for the level field of struct kvm_irq_level: 1 always 872 means active (asserted), 0 means inactive (dea 855 means active (asserted), 0 means inactive (deasserted). 873 856 874 x86 allows the operating system to program the 857 x86 allows the operating system to program the interrupt polarity 875 (active-low/active-high) for level-triggered i 858 (active-low/active-high) for level-triggered interrupts, and KVM used 876 to consider the polarity. However, due to bit 859 to consider the polarity. However, due to bitrot in the handling of 877 active-low interrupts, the above convention is 860 active-low interrupts, the above convention is now valid on x86 too. 878 This is signaled by KVM_CAP_X86_IOAPIC_POLARIT 861 This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace 879 should not present interrupts to the guest as 862 should not present interrupts to the guest as active-low unless this 880 capability is present (or unless it is not usi 863 capability is present (or unless it is not using the in-kernel irqchip, 881 of course). 864 of course). 882 865 883 866 884 arm64 can signal an interrupt either at the CP 867 arm64 can signal an interrupt either at the CPU level, or at the 885 in-kernel irqchip (GIC), and for in-kernel irq 868 in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to 886 use PPIs designated for specific cpus. The ir 869 use PPIs designated for specific cpus. The irq field is interpreted 887 like this:: 870 like this:: 888 871 889 bits: | 31 ... 28 | 27 ... 24 | 23 ... 1 872 bits: | 31 ... 28 | 27 ... 24 | 23 ... 16 | 15 ... 0 | 890 field: | vcpu2_index | irq_type | vcpu_inde 873 field: | vcpu2_index | irq_type | vcpu_index | irq_id | 891 874 892 The irq_type field has the following values: 875 The irq_type field has the following values: 893 876 894 - KVM_ARM_IRQ_TYPE_CPU: !! 877 - irq_type[0]: 895 out-of-kernel GIC: irq_id 0 is 878 out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ 896 - KVM_ARM_IRQ_TYPE_SPI: !! 879 - irq_type[1]: 897 in-kernel GIC: SPI, irq_id betw 880 in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.) 898 (the vcpu_index field is ignore 881 (the vcpu_index field is ignored) 899 - KVM_ARM_IRQ_TYPE_PPI: !! 882 - irq_type[2]: 900 in-kernel GIC: PPI, irq_id betw 883 in-kernel GIC: PPI, irq_id between 16 and 31 (incl.) 901 884 902 (The irq_id field thus corresponds nicely to t 885 (The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs) 903 886 904 In both cases, level is used to assert/deasser 887 In both cases, level is used to assert/deassert the line. 905 888 906 When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supporte 889 When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supported, the target vcpu is 907 identified as (256 * vcpu2_index + vcpu_index) 890 identified as (256 * vcpu2_index + vcpu_index). Otherwise, vcpu2_index 908 must be zero. 891 must be zero. 909 892 910 Note that on arm64, the KVM_CAP_IRQCHIP capabi 893 Note that on arm64, the KVM_CAP_IRQCHIP capability only conditions 911 injection of interrupts for the in-kernel irqc 894 injection of interrupts for the in-kernel irqchip. KVM_IRQ_LINE can always 912 be used for a userspace interrupt controller. 895 be used for a userspace interrupt controller. 913 896 914 :: 897 :: 915 898 916 struct kvm_irq_level { 899 struct kvm_irq_level { 917 union { 900 union { 918 __u32 irq; /* GSI */ 901 __u32 irq; /* GSI */ 919 __s32 status; /* not used for 902 __s32 status; /* not used for KVM_IRQ_LEVEL */ 920 }; 903 }; 921 __u32 level; /* 0 or 1 */ 904 __u32 level; /* 0 or 1 */ 922 }; 905 }; 923 906 924 907 925 4.26 KVM_GET_IRQCHIP 908 4.26 KVM_GET_IRQCHIP 926 -------------------- 909 -------------------- 927 910 928 :Capability: KVM_CAP_IRQCHIP 911 :Capability: KVM_CAP_IRQCHIP 929 :Architectures: x86 912 :Architectures: x86 930 :Type: vm ioctl 913 :Type: vm ioctl 931 :Parameters: struct kvm_irqchip (in/out) 914 :Parameters: struct kvm_irqchip (in/out) 932 :Returns: 0 on success, -1 on error 915 :Returns: 0 on success, -1 on error 933 916 934 Reads the state of a kernel interrupt controll 917 Reads the state of a kernel interrupt controller created with 935 KVM_CREATE_IRQCHIP into a buffer provided by t 918 KVM_CREATE_IRQCHIP into a buffer provided by the caller. 936 919 937 :: 920 :: 938 921 939 struct kvm_irqchip { 922 struct kvm_irqchip { 940 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 923 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ 941 __u32 pad; 924 __u32 pad; 942 union { 925 union { 943 char dummy[512]; /* reserving 926 char dummy[512]; /* reserving space */ 944 struct kvm_pic_state pic; 927 struct kvm_pic_state pic; 945 struct kvm_ioapic_state ioapic 928 struct kvm_ioapic_state ioapic; 946 } chip; 929 } chip; 947 }; 930 }; 948 931 949 932 950 4.27 KVM_SET_IRQCHIP 933 4.27 KVM_SET_IRQCHIP 951 -------------------- 934 -------------------- 952 935 953 :Capability: KVM_CAP_IRQCHIP 936 :Capability: KVM_CAP_IRQCHIP 954 :Architectures: x86 937 :Architectures: x86 955 :Type: vm ioctl 938 :Type: vm ioctl 956 :Parameters: struct kvm_irqchip (in) 939 :Parameters: struct kvm_irqchip (in) 957 :Returns: 0 on success, -1 on error 940 :Returns: 0 on success, -1 on error 958 941 959 Sets the state of a kernel interrupt controlle 942 Sets the state of a kernel interrupt controller created with 960 KVM_CREATE_IRQCHIP from a buffer provided by t 943 KVM_CREATE_IRQCHIP from a buffer provided by the caller. 961 944 962 :: 945 :: 963 946 964 struct kvm_irqchip { 947 struct kvm_irqchip { 965 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 948 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ 966 __u32 pad; 949 __u32 pad; 967 union { 950 union { 968 char dummy[512]; /* reserving 951 char dummy[512]; /* reserving space */ 969 struct kvm_pic_state pic; 952 struct kvm_pic_state pic; 970 struct kvm_ioapic_state ioapic 953 struct kvm_ioapic_state ioapic; 971 } chip; 954 } chip; 972 }; 955 }; 973 956 974 957 975 4.28 KVM_XEN_HVM_CONFIG 958 4.28 KVM_XEN_HVM_CONFIG 976 ----------------------- 959 ----------------------- 977 960 978 :Capability: KVM_CAP_XEN_HVM 961 :Capability: KVM_CAP_XEN_HVM 979 :Architectures: x86 962 :Architectures: x86 980 :Type: vm ioctl 963 :Type: vm ioctl 981 :Parameters: struct kvm_xen_hvm_config (in) 964 :Parameters: struct kvm_xen_hvm_config (in) 982 :Returns: 0 on success, -1 on error 965 :Returns: 0 on success, -1 on error 983 966 984 Sets the MSR that the Xen HVM guest uses to in 967 Sets the MSR that the Xen HVM guest uses to initialize its hypercall 985 page, and provides the starting address and si 968 page, and provides the starting address and size of the hypercall 986 blobs in userspace. When the guest writes the 969 blobs in userspace. When the guest writes the MSR, kvm copies one 987 page of a blob (32- or 64-bit, depending on th 970 page of a blob (32- or 64-bit, depending on the vcpu mode) to guest 988 memory. 971 memory. 989 972 990 :: 973 :: 991 974 992 struct kvm_xen_hvm_config { 975 struct kvm_xen_hvm_config { 993 __u32 flags; 976 __u32 flags; 994 __u32 msr; 977 __u32 msr; 995 __u64 blob_addr_32; 978 __u64 blob_addr_32; 996 __u64 blob_addr_64; 979 __u64 blob_addr_64; 997 __u8 blob_size_32; 980 __u8 blob_size_32; 998 __u8 blob_size_64; 981 __u8 blob_size_64; 999 __u8 pad2[30]; 982 __u8 pad2[30]; 1000 }; 983 }; 1001 984 1002 If certain flags are returned from the KVM_CA 985 If certain flags are returned from the KVM_CAP_XEN_HVM check, they may 1003 be set in the flags field of this ioctl: 986 be set in the flags field of this ioctl: 1004 987 1005 The KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL flag r 988 The KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL flag requests KVM to generate 1006 the contents of the hypercall page automatica 989 the contents of the hypercall page automatically; hypercalls will be 1007 intercepted and passed to userspace through K 990 intercepted and passed to userspace through KVM_EXIT_XEN. In this 1008 case, all of the blob size and address fields !! 991 ase, all of the blob size and address fields must be zero. 1009 992 1010 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indic 993 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indicates to KVM that userspace 1011 will always use the KVM_XEN_HVM_EVTCHN_SEND i 994 will always use the KVM_XEN_HVM_EVTCHN_SEND ioctl to deliver event 1012 channel interrupts rather than manipulating t 995 channel interrupts rather than manipulating the guest's shared_info 1013 structures directly. This, in turn, may allow 996 structures directly. This, in turn, may allow KVM to enable features 1014 such as intercepting the SCHEDOP_poll hyperca 997 such as intercepting the SCHEDOP_poll hypercall to accelerate PV 1015 spinlock operation for the guest. Userspace m 998 spinlock operation for the guest. Userspace may still use the ioctl 1016 to deliver events if it was advertised, even 999 to deliver events if it was advertised, even if userspace does not 1017 send this indication that it will always do s 1000 send this indication that it will always do so 1018 1001 1019 No other flags are currently valid in the str 1002 No other flags are currently valid in the struct kvm_xen_hvm_config. 1020 1003 1021 4.29 KVM_GET_CLOCK 1004 4.29 KVM_GET_CLOCK 1022 ------------------ 1005 ------------------ 1023 1006 1024 :Capability: KVM_CAP_ADJUST_CLOCK 1007 :Capability: KVM_CAP_ADJUST_CLOCK 1025 :Architectures: x86 1008 :Architectures: x86 1026 :Type: vm ioctl 1009 :Type: vm ioctl 1027 :Parameters: struct kvm_clock_data (out) 1010 :Parameters: struct kvm_clock_data (out) 1028 :Returns: 0 on success, -1 on error 1011 :Returns: 0 on success, -1 on error 1029 1012 1030 Gets the current timestamp of kvmclock as see 1013 Gets the current timestamp of kvmclock as seen by the current guest. In 1031 conjunction with KVM_SET_CLOCK, it is used to 1014 conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios 1032 such as migration. 1015 such as migration. 1033 1016 1034 When KVM_CAP_ADJUST_CLOCK is passed to KVM_CH 1017 When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the 1035 set of bits that KVM can return in struct kvm 1018 set of bits that KVM can return in struct kvm_clock_data's flag member. 1036 1019 1037 The following flags are defined: 1020 The following flags are defined: 1038 1021 1039 KVM_CLOCK_TSC_STABLE 1022 KVM_CLOCK_TSC_STABLE 1040 If set, the returned value is the exact kvm 1023 If set, the returned value is the exact kvmclock 1041 value seen by all VCPUs at the instant when 1024 value seen by all VCPUs at the instant when KVM_GET_CLOCK was called. 1042 If clear, the returned value is simply CLOC 1025 If clear, the returned value is simply CLOCK_MONOTONIC plus a constant 1043 offset; the offset can be modified with KVM 1026 offset; the offset can be modified with KVM_SET_CLOCK. KVM will try 1044 to make all VCPUs follow this clock, but th 1027 to make all VCPUs follow this clock, but the exact value read by each 1045 VCPU could differ, because the host TSC is 1028 VCPU could differ, because the host TSC is not stable. 1046 1029 1047 KVM_CLOCK_REALTIME 1030 KVM_CLOCK_REALTIME 1048 If set, the `realtime` field in the kvm_clo 1031 If set, the `realtime` field in the kvm_clock_data 1049 structure is populated with the value of th 1032 structure is populated with the value of the host's real time 1050 clocksource at the instant when KVM_GET_CLO 1033 clocksource at the instant when KVM_GET_CLOCK was called. If clear, 1051 the `realtime` field does not contain a val 1034 the `realtime` field does not contain a value. 1052 1035 1053 KVM_CLOCK_HOST_TSC 1036 KVM_CLOCK_HOST_TSC 1054 If set, the `host_tsc` field in the kvm_clo 1037 If set, the `host_tsc` field in the kvm_clock_data 1055 structure is populated with the value of th 1038 structure is populated with the value of the host's timestamp counter (TSC) 1056 at the instant when KVM_GET_CLOCK was calle 1039 at the instant when KVM_GET_CLOCK was called. If clear, the `host_tsc` field 1057 does not contain a value. 1040 does not contain a value. 1058 1041 1059 :: 1042 :: 1060 1043 1061 struct kvm_clock_data { 1044 struct kvm_clock_data { 1062 __u64 clock; /* kvmclock current val 1045 __u64 clock; /* kvmclock current value */ 1063 __u32 flags; 1046 __u32 flags; 1064 __u32 pad0; 1047 __u32 pad0; 1065 __u64 realtime; 1048 __u64 realtime; 1066 __u64 host_tsc; 1049 __u64 host_tsc; 1067 __u32 pad[4]; 1050 __u32 pad[4]; 1068 }; 1051 }; 1069 1052 1070 1053 1071 4.30 KVM_SET_CLOCK 1054 4.30 KVM_SET_CLOCK 1072 ------------------ 1055 ------------------ 1073 1056 1074 :Capability: KVM_CAP_ADJUST_CLOCK 1057 :Capability: KVM_CAP_ADJUST_CLOCK 1075 :Architectures: x86 1058 :Architectures: x86 1076 :Type: vm ioctl 1059 :Type: vm ioctl 1077 :Parameters: struct kvm_clock_data (in) 1060 :Parameters: struct kvm_clock_data (in) 1078 :Returns: 0 on success, -1 on error 1061 :Returns: 0 on success, -1 on error 1079 1062 1080 Sets the current timestamp of kvmclock to the 1063 Sets the current timestamp of kvmclock to the value specified in its parameter. 1081 In conjunction with KVM_GET_CLOCK, it is used 1064 In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios 1082 such as migration. 1065 such as migration. 1083 1066 1084 The following flags can be passed: 1067 The following flags can be passed: 1085 1068 1086 KVM_CLOCK_REALTIME 1069 KVM_CLOCK_REALTIME 1087 If set, KVM will compare the value of the ` 1070 If set, KVM will compare the value of the `realtime` field 1088 with the value of the host's real time cloc 1071 with the value of the host's real time clocksource at the instant when 1089 KVM_SET_CLOCK was called. The difference in 1072 KVM_SET_CLOCK was called. The difference in elapsed time is added to the final 1090 kvmclock value that will be provided to gue 1073 kvmclock value that will be provided to guests. 1091 1074 1092 Other flags returned by ``KVM_GET_CLOCK`` are 1075 Other flags returned by ``KVM_GET_CLOCK`` are accepted but ignored. 1093 1076 1094 :: 1077 :: 1095 1078 1096 struct kvm_clock_data { 1079 struct kvm_clock_data { 1097 __u64 clock; /* kvmclock current val 1080 __u64 clock; /* kvmclock current value */ 1098 __u32 flags; 1081 __u32 flags; 1099 __u32 pad0; 1082 __u32 pad0; 1100 __u64 realtime; 1083 __u64 realtime; 1101 __u64 host_tsc; 1084 __u64 host_tsc; 1102 __u32 pad[4]; 1085 __u32 pad[4]; 1103 }; 1086 }; 1104 1087 1105 1088 1106 4.31 KVM_GET_VCPU_EVENTS 1089 4.31 KVM_GET_VCPU_EVENTS 1107 ------------------------ 1090 ------------------------ 1108 1091 1109 :Capability: KVM_CAP_VCPU_EVENTS 1092 :Capability: KVM_CAP_VCPU_EVENTS 1110 :Extended by: KVM_CAP_INTR_SHADOW 1093 :Extended by: KVM_CAP_INTR_SHADOW 1111 :Architectures: x86, arm64 1094 :Architectures: x86, arm64 1112 :Type: vcpu ioctl 1095 :Type: vcpu ioctl 1113 :Parameters: struct kvm_vcpu_events (out) !! 1096 :Parameters: struct kvm_vcpu_event (out) 1114 :Returns: 0 on success, -1 on error 1097 :Returns: 0 on success, -1 on error 1115 1098 1116 X86: 1099 X86: 1117 ^^^^ 1100 ^^^^ 1118 1101 1119 Gets currently pending exceptions, interrupts 1102 Gets currently pending exceptions, interrupts, and NMIs as well as related 1120 states of the vcpu. 1103 states of the vcpu. 1121 1104 1122 :: 1105 :: 1123 1106 1124 struct kvm_vcpu_events { 1107 struct kvm_vcpu_events { 1125 struct { 1108 struct { 1126 __u8 injected; 1109 __u8 injected; 1127 __u8 nr; 1110 __u8 nr; 1128 __u8 has_error_code; 1111 __u8 has_error_code; 1129 __u8 pending; 1112 __u8 pending; 1130 __u32 error_code; 1113 __u32 error_code; 1131 } exception; 1114 } exception; 1132 struct { 1115 struct { 1133 __u8 injected; 1116 __u8 injected; 1134 __u8 nr; 1117 __u8 nr; 1135 __u8 soft; 1118 __u8 soft; 1136 __u8 shadow; 1119 __u8 shadow; 1137 } interrupt; 1120 } interrupt; 1138 struct { 1121 struct { 1139 __u8 injected; 1122 __u8 injected; 1140 __u8 pending; 1123 __u8 pending; 1141 __u8 masked; 1124 __u8 masked; 1142 __u8 pad; 1125 __u8 pad; 1143 } nmi; 1126 } nmi; 1144 __u32 sipi_vector; 1127 __u32 sipi_vector; 1145 __u32 flags; 1128 __u32 flags; 1146 struct { 1129 struct { 1147 __u8 smm; 1130 __u8 smm; 1148 __u8 pending; 1131 __u8 pending; 1149 __u8 smm_inside_nmi; 1132 __u8 smm_inside_nmi; 1150 __u8 latched_init; 1133 __u8 latched_init; 1151 } smi; 1134 } smi; 1152 __u8 reserved[27]; 1135 __u8 reserved[27]; 1153 __u8 exception_has_payload; 1136 __u8 exception_has_payload; 1154 __u64 exception_payload; 1137 __u64 exception_payload; 1155 }; 1138 }; 1156 1139 1157 The following bits are defined in the flags f 1140 The following bits are defined in the flags field: 1158 1141 1159 - KVM_VCPUEVENT_VALID_SHADOW may be set to si 1142 - KVM_VCPUEVENT_VALID_SHADOW may be set to signal that 1160 interrupt.shadow contains a valid state. 1143 interrupt.shadow contains a valid state. 1161 1144 1162 - KVM_VCPUEVENT_VALID_SMM may be set to signa 1145 - KVM_VCPUEVENT_VALID_SMM may be set to signal that smi contains a 1163 valid state. 1146 valid state. 1164 1147 1165 - KVM_VCPUEVENT_VALID_PAYLOAD may be set to s 1148 - KVM_VCPUEVENT_VALID_PAYLOAD may be set to signal that the 1166 exception_has_payload, exception_payload, a 1149 exception_has_payload, exception_payload, and exception.pending 1167 fields contain a valid state. This bit will 1150 fields contain a valid state. This bit will be set whenever 1168 KVM_CAP_EXCEPTION_PAYLOAD is enabled. 1151 KVM_CAP_EXCEPTION_PAYLOAD is enabled. 1169 1152 1170 - KVM_VCPUEVENT_VALID_TRIPLE_FAULT may be set 1153 - KVM_VCPUEVENT_VALID_TRIPLE_FAULT may be set to signal that the 1171 triple_fault_pending field contains a valid 1154 triple_fault_pending field contains a valid state. This bit will 1172 be set whenever KVM_CAP_X86_TRIPLE_FAULT_EV 1155 be set whenever KVM_CAP_X86_TRIPLE_FAULT_EVENT is enabled. 1173 1156 1174 ARM64: 1157 ARM64: 1175 ^^^^^^ 1158 ^^^^^^ 1176 1159 1177 If the guest accesses a device that is being 1160 If the guest accesses a device that is being emulated by the host kernel in 1178 such a way that a real device would generate 1161 such a way that a real device would generate a physical SError, KVM may make 1179 a virtual SError pending for that VCPU. This 1162 a virtual SError pending for that VCPU. This system error interrupt remains 1180 pending until the guest takes the exception b 1163 pending until the guest takes the exception by unmasking PSTATE.A. 1181 1164 1182 Running the VCPU may cause it to take a pendi 1165 Running the VCPU may cause it to take a pending SError, or make an access that 1183 causes an SError to become pending. The event 1166 causes an SError to become pending. The event's description is only valid while 1184 the VPCU is not running. 1167 the VPCU is not running. 1185 1168 1186 This API provides a way to read and write the 1169 This API provides a way to read and write the pending 'event' state that is not 1187 visible to the guest. To save, restore or mig 1170 visible to the guest. To save, restore or migrate a VCPU the struct representing 1188 the state can be read then written using this 1171 the state can be read then written using this GET/SET API, along with the other 1189 guest-visible registers. It is not possible t 1172 guest-visible registers. It is not possible to 'cancel' an SError that has been 1190 made pending. 1173 made pending. 1191 1174 1192 A device being emulated in user-space may als 1175 A device being emulated in user-space may also wish to generate an SError. To do 1193 this the events structure can be populated by 1176 this the events structure can be populated by user-space. The current state 1194 should be read first, to ensure no existing S 1177 should be read first, to ensure no existing SError is pending. If an existing 1195 SError is pending, the architecture's 'Multip 1178 SError is pending, the architecture's 'Multiple SError interrupts' rules should 1196 be followed. (2.5.3 of DDI0587.a "ARM Reliabi 1179 be followed. (2.5.3 of DDI0587.a "ARM Reliability, Availability, and 1197 Serviceability (RAS) Specification"). 1180 Serviceability (RAS) Specification"). 1198 1181 1199 SError exceptions always have an ESR value. S 1182 SError exceptions always have an ESR value. Some CPUs have the ability to 1200 specify what the virtual SError's ESR value s 1183 specify what the virtual SError's ESR value should be. These systems will 1201 advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In t 1184 advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In this case exception.has_esr will 1202 always have a non-zero value when read, and t 1185 always have a non-zero value when read, and the agent making an SError pending 1203 should specify the ISS field in the lower 24 1186 should specify the ISS field in the lower 24 bits of exception.serror_esr. If 1204 the system supports KVM_CAP_ARM_INJECT_SERROR 1187 the system supports KVM_CAP_ARM_INJECT_SERROR_ESR, but user-space sets the events 1205 with exception.has_esr as zero, KVM will choo 1188 with exception.has_esr as zero, KVM will choose an ESR. 1206 1189 1207 Specifying exception.has_esr on a system that 1190 Specifying exception.has_esr on a system that does not support it will return 1208 -EINVAL. Setting anything other than the lowe 1191 -EINVAL. Setting anything other than the lower 24bits of exception.serror_esr 1209 will return -EINVAL. 1192 will return -EINVAL. 1210 1193 1211 It is not possible to read back a pending ext 1194 It is not possible to read back a pending external abort (injected via 1212 KVM_SET_VCPU_EVENTS or otherwise) because suc 1195 KVM_SET_VCPU_EVENTS or otherwise) because such an exception is always delivered 1213 directly to the virtual CPU). 1196 directly to the virtual CPU). 1214 1197 1215 :: 1198 :: 1216 1199 1217 struct kvm_vcpu_events { 1200 struct kvm_vcpu_events { 1218 struct { 1201 struct { 1219 __u8 serror_pending; 1202 __u8 serror_pending; 1220 __u8 serror_has_esr; 1203 __u8 serror_has_esr; 1221 __u8 ext_dabt_pending; 1204 __u8 ext_dabt_pending; 1222 /* Align it to 8 bytes */ 1205 /* Align it to 8 bytes */ 1223 __u8 pad[5]; 1206 __u8 pad[5]; 1224 __u64 serror_esr; 1207 __u64 serror_esr; 1225 } exception; 1208 } exception; 1226 __u32 reserved[12]; 1209 __u32 reserved[12]; 1227 }; 1210 }; 1228 1211 1229 4.32 KVM_SET_VCPU_EVENTS 1212 4.32 KVM_SET_VCPU_EVENTS 1230 ------------------------ 1213 ------------------------ 1231 1214 1232 :Capability: KVM_CAP_VCPU_EVENTS 1215 :Capability: KVM_CAP_VCPU_EVENTS 1233 :Extended by: KVM_CAP_INTR_SHADOW 1216 :Extended by: KVM_CAP_INTR_SHADOW 1234 :Architectures: x86, arm64 1217 :Architectures: x86, arm64 1235 :Type: vcpu ioctl 1218 :Type: vcpu ioctl 1236 :Parameters: struct kvm_vcpu_events (in) !! 1219 :Parameters: struct kvm_vcpu_event (in) 1237 :Returns: 0 on success, -1 on error 1220 :Returns: 0 on success, -1 on error 1238 1221 1239 X86: 1222 X86: 1240 ^^^^ 1223 ^^^^ 1241 1224 1242 Set pending exceptions, interrupts, and NMIs 1225 Set pending exceptions, interrupts, and NMIs as well as related states of the 1243 vcpu. 1226 vcpu. 1244 1227 1245 See KVM_GET_VCPU_EVENTS for the data structur 1228 See KVM_GET_VCPU_EVENTS for the data structure. 1246 1229 1247 Fields that may be modified asynchronously by 1230 Fields that may be modified asynchronously by running VCPUs can be excluded 1248 from the update. These fields are nmi.pending 1231 from the update. These fields are nmi.pending, sipi_vector, smi.smm, 1249 smi.pending. Keep the corresponding bits in t 1232 smi.pending. Keep the corresponding bits in the flags field cleared to 1250 suppress overwriting the current in-kernel st 1233 suppress overwriting the current in-kernel state. The bits are: 1251 1234 1252 =============================== ============ 1235 =============================== ================================== 1253 KVM_VCPUEVENT_VALID_NMI_PENDING transfer nmi 1236 KVM_VCPUEVENT_VALID_NMI_PENDING transfer nmi.pending to the kernel 1254 KVM_VCPUEVENT_VALID_SIPI_VECTOR transfer sip 1237 KVM_VCPUEVENT_VALID_SIPI_VECTOR transfer sipi_vector 1255 KVM_VCPUEVENT_VALID_SMM transfer the 1238 KVM_VCPUEVENT_VALID_SMM transfer the smi sub-struct. 1256 =============================== ============ 1239 =============================== ================================== 1257 1240 1258 If KVM_CAP_INTR_SHADOW is available, KVM_VCPU 1241 If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in 1259 the flags field to signal that interrupt.shad 1242 the flags field to signal that interrupt.shadow contains a valid state and 1260 shall be written into the VCPU. 1243 shall be written into the VCPU. 1261 1244 1262 KVM_VCPUEVENT_VALID_SMM can only be set if KV 1245 KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available. 1263 1246 1264 If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_ 1247 If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_VCPUEVENT_VALID_PAYLOAD 1265 can be set in the flags field to signal that 1248 can be set in the flags field to signal that the 1266 exception_has_payload, exception_payload, and 1249 exception_has_payload, exception_payload, and exception.pending fields 1267 contain a valid state and shall be written in 1250 contain a valid state and shall be written into the VCPU. 1268 1251 1269 If KVM_CAP_X86_TRIPLE_FAULT_EVENT is enabled, 1252 If KVM_CAP_X86_TRIPLE_FAULT_EVENT is enabled, KVM_VCPUEVENT_VALID_TRIPLE_FAULT 1270 can be set in flags field to signal that the 1253 can be set in flags field to signal that the triple_fault field contains 1271 a valid state and shall be written into the V 1254 a valid state and shall be written into the VCPU. 1272 1255 1273 ARM64: 1256 ARM64: 1274 ^^^^^^ 1257 ^^^^^^ 1275 1258 1276 User space may need to inject several types o 1259 User space may need to inject several types of events to the guest. 1277 1260 1278 Set the pending SError exception state for th 1261 Set the pending SError exception state for this VCPU. It is not possible to 1279 'cancel' an Serror that has been made pending 1262 'cancel' an Serror that has been made pending. 1280 1263 1281 If the guest performed an access to I/O memor 1264 If the guest performed an access to I/O memory which could not be handled by 1282 userspace, for example because of missing ins 1265 userspace, for example because of missing instruction syndrome decode 1283 information or because there is no device map 1266 information or because there is no device mapped at the accessed IPA, then 1284 userspace can ask the kernel to inject an ext 1267 userspace can ask the kernel to inject an external abort using the address 1285 from the exiting fault on the VCPU. It is a p 1268 from the exiting fault on the VCPU. It is a programming error to set 1286 ext_dabt_pending after an exit which was not 1269 ext_dabt_pending after an exit which was not either KVM_EXIT_MMIO or 1287 KVM_EXIT_ARM_NISV. This feature is only avail 1270 KVM_EXIT_ARM_NISV. This feature is only available if the system supports 1288 KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper 1271 KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper which provides commonality in 1289 how userspace reports accesses for the above 1272 how userspace reports accesses for the above cases to guests, across different 1290 userspace implementations. Nevertheless, user 1273 userspace implementations. Nevertheless, userspace can still emulate all Arm 1291 exceptions by manipulating individual registe 1274 exceptions by manipulating individual registers using the KVM_SET_ONE_REG API. 1292 1275 1293 See KVM_GET_VCPU_EVENTS for the data structur 1276 See KVM_GET_VCPU_EVENTS for the data structure. 1294 1277 1295 1278 1296 4.33 KVM_GET_DEBUGREGS 1279 4.33 KVM_GET_DEBUGREGS 1297 ---------------------- 1280 ---------------------- 1298 1281 1299 :Capability: KVM_CAP_DEBUGREGS 1282 :Capability: KVM_CAP_DEBUGREGS 1300 :Architectures: x86 1283 :Architectures: x86 1301 :Type: vm ioctl 1284 :Type: vm ioctl 1302 :Parameters: struct kvm_debugregs (out) 1285 :Parameters: struct kvm_debugregs (out) 1303 :Returns: 0 on success, -1 on error 1286 :Returns: 0 on success, -1 on error 1304 1287 1305 Reads debug registers from the vcpu. 1288 Reads debug registers from the vcpu. 1306 1289 1307 :: 1290 :: 1308 1291 1309 struct kvm_debugregs { 1292 struct kvm_debugregs { 1310 __u64 db[4]; 1293 __u64 db[4]; 1311 __u64 dr6; 1294 __u64 dr6; 1312 __u64 dr7; 1295 __u64 dr7; 1313 __u64 flags; 1296 __u64 flags; 1314 __u64 reserved[9]; 1297 __u64 reserved[9]; 1315 }; 1298 }; 1316 1299 1317 1300 1318 4.34 KVM_SET_DEBUGREGS 1301 4.34 KVM_SET_DEBUGREGS 1319 ---------------------- 1302 ---------------------- 1320 1303 1321 :Capability: KVM_CAP_DEBUGREGS 1304 :Capability: KVM_CAP_DEBUGREGS 1322 :Architectures: x86 1305 :Architectures: x86 1323 :Type: vm ioctl 1306 :Type: vm ioctl 1324 :Parameters: struct kvm_debugregs (in) 1307 :Parameters: struct kvm_debugregs (in) 1325 :Returns: 0 on success, -1 on error 1308 :Returns: 0 on success, -1 on error 1326 1309 1327 Writes debug registers into the vcpu. 1310 Writes debug registers into the vcpu. 1328 1311 1329 See KVM_GET_DEBUGREGS for the data structure. 1312 See KVM_GET_DEBUGREGS for the data structure. The flags field is unused 1330 yet and must be cleared on entry. 1313 yet and must be cleared on entry. 1331 1314 1332 1315 1333 4.35 KVM_SET_USER_MEMORY_REGION 1316 4.35 KVM_SET_USER_MEMORY_REGION 1334 ------------------------------- 1317 ------------------------------- 1335 1318 1336 :Capability: KVM_CAP_USER_MEMORY 1319 :Capability: KVM_CAP_USER_MEMORY 1337 :Architectures: all 1320 :Architectures: all 1338 :Type: vm ioctl 1321 :Type: vm ioctl 1339 :Parameters: struct kvm_userspace_memory_regi 1322 :Parameters: struct kvm_userspace_memory_region (in) 1340 :Returns: 0 on success, -1 on error 1323 :Returns: 0 on success, -1 on error 1341 1324 1342 :: 1325 :: 1343 1326 1344 struct kvm_userspace_memory_region { 1327 struct kvm_userspace_memory_region { 1345 __u32 slot; 1328 __u32 slot; 1346 __u32 flags; 1329 __u32 flags; 1347 __u64 guest_phys_addr; 1330 __u64 guest_phys_addr; 1348 __u64 memory_size; /* bytes */ 1331 __u64 memory_size; /* bytes */ 1349 __u64 userspace_addr; /* start of the 1332 __u64 userspace_addr; /* start of the userspace allocated memory */ 1350 }; 1333 }; 1351 1334 1352 /* for kvm_userspace_memory_region::flags * !! 1335 /* for kvm_memory_region::flags */ 1353 #define KVM_MEM_LOG_DIRTY_PAGES (1UL 1336 #define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0) 1354 #define KVM_MEM_READONLY (1UL << 1) 1337 #define KVM_MEM_READONLY (1UL << 1) 1355 1338 1356 This ioctl allows the user to create, modify 1339 This ioctl allows the user to create, modify or delete a guest physical 1357 memory slot. Bits 0-15 of "slot" specify the 1340 memory slot. Bits 0-15 of "slot" specify the slot id and this value 1358 should be less than the maximum number of use 1341 should be less than the maximum number of user memory slots supported per 1359 VM. The maximum allowed slots can be queried 1342 VM. The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS. 1360 Slots may not overlap in guest physical addre 1343 Slots may not overlap in guest physical address space. 1361 1344 1362 If KVM_CAP_MULTI_ADDRESS_SPACE is available, 1345 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot" 1363 specifies the address space which is being mo 1346 specifies the address space which is being modified. They must be 1364 less than the value that KVM_CHECK_EXTENSION 1347 less than the value that KVM_CHECK_EXTENSION returns for the 1365 KVM_CAP_MULTI_ADDRESS_SPACE capability. Slot 1348 KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces 1366 are unrelated; the restriction on overlapping 1349 are unrelated; the restriction on overlapping slots only applies within 1367 each address space. 1350 each address space. 1368 1351 1369 Deleting a slot is done by passing zero for m 1352 Deleting a slot is done by passing zero for memory_size. When changing 1370 an existing slot, it may be moved in the gues 1353 an existing slot, it may be moved in the guest physical memory space, 1371 or its flags may be modified, but it may not 1354 or its flags may be modified, but it may not be resized. 1372 1355 1373 Memory for the region is taken starting at th 1356 Memory for the region is taken starting at the address denoted by the 1374 field userspace_addr, which must point at use 1357 field userspace_addr, which must point at user addressable memory for 1375 the entire memory slot size. Any object may 1358 the entire memory slot size. Any object may back this memory, including 1376 anonymous memory, ordinary files, and hugetlb 1359 anonymous memory, ordinary files, and hugetlbfs. 1377 1360 1378 On architectures that support a form of addre 1361 On architectures that support a form of address tagging, userspace_addr must 1379 be an untagged address. 1362 be an untagged address. 1380 1363 1381 It is recommended that the lower 21 bits of g 1364 It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr 1382 be identical. This allows large pages in the 1365 be identical. This allows large pages in the guest to be backed by large 1383 pages in the host. 1366 pages in the host. 1384 1367 1385 The flags field supports two flags: KVM_MEM_L 1368 The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and 1386 KVM_MEM_READONLY. The former can be set to i 1369 KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of 1387 writes to memory within the slot. See KVM_GE 1370 writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to 1388 use it. The latter can be set, if KVM_CAP_RE 1371 use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it, 1389 to make a new slot read-only. In this case, 1372 to make a new slot read-only. In this case, writes to this memory will be 1390 posted to userspace as KVM_EXIT_MMIO exits. 1373 posted to userspace as KVM_EXIT_MMIO exits. 1391 1374 1392 When the KVM_CAP_SYNC_MMU capability is avail 1375 When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of 1393 the memory region are automatically reflected 1376 the memory region are automatically reflected into the guest. For example, an 1394 mmap() that affects the region will be made v 1377 mmap() that affects the region will be made visible immediately. Another 1395 example is madvise(MADV_DROP). 1378 example is madvise(MADV_DROP). 1396 1379 1397 Note: On arm64, a write generated by the page !! 1380 It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl. 1398 the Access and Dirty flags, for example) neve !! 1381 The KVM_SET_MEMORY_REGION does not allow fine grained control over memory 1399 KVM_EXIT_MMIO exit when the slot has the KVM_ !! 1382 allocation and is deprecated. 1400 is because KVM cannot provide the data that w << 1401 page-table walker, making it impossible to em << 1402 Instead, an abort (data abort if the cause of << 1403 was a load or a store, instruction abort if i << 1404 fetch) is injected in the guest. << 1405 << 1406 S390: << 1407 ^^^^^ << 1408 1383 1409 Returns -EINVAL if the VM has the KVM_VM_S390 << 1410 Returns -EINVAL if called on a protected VM. << 1411 1384 1412 4.36 KVM_SET_TSS_ADDR 1385 4.36 KVM_SET_TSS_ADDR 1413 --------------------- 1386 --------------------- 1414 1387 1415 :Capability: KVM_CAP_SET_TSS_ADDR 1388 :Capability: KVM_CAP_SET_TSS_ADDR 1416 :Architectures: x86 1389 :Architectures: x86 1417 :Type: vm ioctl 1390 :Type: vm ioctl 1418 :Parameters: unsigned long tss_address (in) 1391 :Parameters: unsigned long tss_address (in) 1419 :Returns: 0 on success, -1 on error 1392 :Returns: 0 on success, -1 on error 1420 1393 1421 This ioctl defines the physical address of a 1394 This ioctl defines the physical address of a three-page region in the guest 1422 physical address space. The region must be w 1395 physical address space. The region must be within the first 4GB of the 1423 guest physical address space and must not con 1396 guest physical address space and must not conflict with any memory slot 1424 or any mmio address. The guest may malfuncti 1397 or any mmio address. The guest may malfunction if it accesses this memory 1425 region. 1398 region. 1426 1399 1427 This ioctl is required on Intel-based hosts. 1400 This ioctl is required on Intel-based hosts. This is needed on Intel hardware 1428 because of a quirk in the virtualization impl 1401 because of a quirk in the virtualization implementation (see the internals 1429 documentation when it pops into existence). 1402 documentation when it pops into existence). 1430 1403 1431 1404 1432 4.37 KVM_ENABLE_CAP 1405 4.37 KVM_ENABLE_CAP 1433 ------------------- 1406 ------------------- 1434 1407 1435 :Capability: KVM_CAP_ENABLE_CAP 1408 :Capability: KVM_CAP_ENABLE_CAP 1436 :Architectures: mips, ppc, s390, x86, loongar !! 1409 :Architectures: mips, ppc, s390, x86 1437 :Type: vcpu ioctl 1410 :Type: vcpu ioctl 1438 :Parameters: struct kvm_enable_cap (in) 1411 :Parameters: struct kvm_enable_cap (in) 1439 :Returns: 0 on success; -1 on error 1412 :Returns: 0 on success; -1 on error 1440 1413 1441 :Capability: KVM_CAP_ENABLE_CAP_VM 1414 :Capability: KVM_CAP_ENABLE_CAP_VM 1442 :Architectures: all 1415 :Architectures: all 1443 :Type: vm ioctl 1416 :Type: vm ioctl 1444 :Parameters: struct kvm_enable_cap (in) 1417 :Parameters: struct kvm_enable_cap (in) 1445 :Returns: 0 on success; -1 on error 1418 :Returns: 0 on success; -1 on error 1446 1419 1447 .. note:: 1420 .. note:: 1448 1421 1449 Not all extensions are enabled by default. 1422 Not all extensions are enabled by default. Using this ioctl the application 1450 can enable an extension, making it availab 1423 can enable an extension, making it available to the guest. 1451 1424 1452 On systems that do not support this ioctl, it 1425 On systems that do not support this ioctl, it always fails. On systems that 1453 do support it, it only works for extensions t 1426 do support it, it only works for extensions that are supported for enablement. 1454 1427 1455 To check if a capability can be enabled, the 1428 To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should 1456 be used. 1429 be used. 1457 1430 1458 :: 1431 :: 1459 1432 1460 struct kvm_enable_cap { 1433 struct kvm_enable_cap { 1461 /* in */ 1434 /* in */ 1462 __u32 cap; 1435 __u32 cap; 1463 1436 1464 The capability that is supposed to get enable 1437 The capability that is supposed to get enabled. 1465 1438 1466 :: 1439 :: 1467 1440 1468 __u32 flags; 1441 __u32 flags; 1469 1442 1470 A bitfield indicating future enhancements. Ha 1443 A bitfield indicating future enhancements. Has to be 0 for now. 1471 1444 1472 :: 1445 :: 1473 1446 1474 __u64 args[4]; 1447 __u64 args[4]; 1475 1448 1476 Arguments for enabling a feature. If a featur 1449 Arguments for enabling a feature. If a feature needs initial values to 1477 function properly, this is the place to put t 1450 function properly, this is the place to put them. 1478 1451 1479 :: 1452 :: 1480 1453 1481 __u8 pad[64]; 1454 __u8 pad[64]; 1482 }; 1455 }; 1483 1456 1484 The vcpu ioctl should be used for vcpu-specif 1457 The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl 1485 for vm-wide capabilities. 1458 for vm-wide capabilities. 1486 1459 1487 4.38 KVM_GET_MP_STATE 1460 4.38 KVM_GET_MP_STATE 1488 --------------------- 1461 --------------------- 1489 1462 1490 :Capability: KVM_CAP_MP_STATE 1463 :Capability: KVM_CAP_MP_STATE 1491 :Architectures: x86, s390, arm64, riscv, loon !! 1464 :Architectures: x86, s390, arm64, riscv 1492 :Type: vcpu ioctl 1465 :Type: vcpu ioctl 1493 :Parameters: struct kvm_mp_state (out) 1466 :Parameters: struct kvm_mp_state (out) 1494 :Returns: 0 on success; -1 on error 1467 :Returns: 0 on success; -1 on error 1495 1468 1496 :: 1469 :: 1497 1470 1498 struct kvm_mp_state { 1471 struct kvm_mp_state { 1499 __u32 mp_state; 1472 __u32 mp_state; 1500 }; 1473 }; 1501 1474 1502 Returns the vcpu's current "multiprocessing s 1475 Returns the vcpu's current "multiprocessing state" (though also valid on 1503 uniprocessor guests). 1476 uniprocessor guests). 1504 1477 1505 Possible values are: 1478 Possible values are: 1506 1479 1507 ========================== ============ 1480 ========================== =============================================== 1508 KVM_MP_STATE_RUNNABLE the vcpu is 1481 KVM_MP_STATE_RUNNABLE the vcpu is currently running 1509 [x86,arm64,r !! 1482 [x86,arm64,riscv] 1510 KVM_MP_STATE_UNINITIALIZED the vcpu is 1483 KVM_MP_STATE_UNINITIALIZED the vcpu is an application processor (AP) 1511 which has no 1484 which has not yet received an INIT signal [x86] 1512 KVM_MP_STATE_INIT_RECEIVED the vcpu has 1485 KVM_MP_STATE_INIT_RECEIVED the vcpu has received an INIT signal, and is 1513 now ready fo 1486 now ready for a SIPI [x86] 1514 KVM_MP_STATE_HALTED the vcpu has 1487 KVM_MP_STATE_HALTED the vcpu has executed a HLT instruction and 1515 is waiting f 1488 is waiting for an interrupt [x86] 1516 KVM_MP_STATE_SIPI_RECEIVED the vcpu has 1489 KVM_MP_STATE_SIPI_RECEIVED the vcpu has just received a SIPI (vector 1517 accessible v 1490 accessible via KVM_GET_VCPU_EVENTS) [x86] 1518 KVM_MP_STATE_STOPPED the vcpu is 1491 KVM_MP_STATE_STOPPED the vcpu is stopped [s390,arm64,riscv] 1519 KVM_MP_STATE_CHECK_STOP the vcpu is 1492 KVM_MP_STATE_CHECK_STOP the vcpu is in a special error state [s390] 1520 KVM_MP_STATE_OPERATING the vcpu is 1493 KVM_MP_STATE_OPERATING the vcpu is operating (running or halted) 1521 [s390] 1494 [s390] 1522 KVM_MP_STATE_LOAD the vcpu is 1495 KVM_MP_STATE_LOAD the vcpu is in a special load/startup state 1523 [s390] 1496 [s390] 1524 KVM_MP_STATE_SUSPENDED the vcpu is 1497 KVM_MP_STATE_SUSPENDED the vcpu is in a suspend state and is waiting 1525 for a wakeup 1498 for a wakeup event [arm64] 1526 ========================== ============ 1499 ========================== =============================================== 1527 1500 1528 On x86, this ioctl is only useful after KVM_C 1501 On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an 1529 in-kernel irqchip, the multiprocessing state 1502 in-kernel irqchip, the multiprocessing state must be maintained by userspace on 1530 these architectures. 1503 these architectures. 1531 1504 1532 For arm64: 1505 For arm64: 1533 ^^^^^^^^^^ 1506 ^^^^^^^^^^ 1534 1507 1535 If a vCPU is in the KVM_MP_STATE_SUSPENDED st 1508 If a vCPU is in the KVM_MP_STATE_SUSPENDED state, KVM will emulate the 1536 architectural execution of a WFI instruction. 1509 architectural execution of a WFI instruction. 1537 1510 1538 If a wakeup event is recognized, KVM will exi 1511 If a wakeup event is recognized, KVM will exit to userspace with a 1539 KVM_SYSTEM_EVENT exit, where the event type i 1512 KVM_SYSTEM_EVENT exit, where the event type is KVM_SYSTEM_EVENT_WAKEUP. If 1540 userspace wants to honor the wakeup, it must 1513 userspace wants to honor the wakeup, it must set the vCPU's MP state to 1541 KVM_MP_STATE_RUNNABLE. If it does not, KVM wi 1514 KVM_MP_STATE_RUNNABLE. If it does not, KVM will continue to await a wakeup 1542 event in subsequent calls to KVM_RUN. 1515 event in subsequent calls to KVM_RUN. 1543 1516 1544 .. warning:: 1517 .. warning:: 1545 1518 1546 If userspace intends to keep the vCPU in 1519 If userspace intends to keep the vCPU in a SUSPENDED state, it is 1547 strongly recommended that userspace take 1520 strongly recommended that userspace take action to suppress the 1548 wakeup event (such as masking an interru 1521 wakeup event (such as masking an interrupt). Otherwise, subsequent 1549 calls to KVM_RUN will immediately exit w 1522 calls to KVM_RUN will immediately exit with a KVM_SYSTEM_EVENT_WAKEUP 1550 event and inadvertently waste CPU cycles 1523 event and inadvertently waste CPU cycles. 1551 1524 1552 Additionally, if userspace takes action 1525 Additionally, if userspace takes action to suppress a wakeup event, 1553 it is strongly recommended that it also 1526 it is strongly recommended that it also restores the vCPU to its 1554 original state when the vCPU is made RUN 1527 original state when the vCPU is made RUNNABLE again. For example, 1555 if userspace masked a pending interrupt 1528 if userspace masked a pending interrupt to suppress the wakeup, 1556 the interrupt should be unmasked before 1529 the interrupt should be unmasked before returning control to the 1557 guest. 1530 guest. 1558 1531 1559 For riscv: 1532 For riscv: 1560 ^^^^^^^^^^ 1533 ^^^^^^^^^^ 1561 1534 1562 The only states that are valid are KVM_MP_STA 1535 The only states that are valid are KVM_MP_STATE_STOPPED and 1563 KVM_MP_STATE_RUNNABLE which reflect if the vc 1536 KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not. 1564 1537 1565 On LoongArch, only the KVM_MP_STATE_RUNNABLE << 1566 whether the vcpu is runnable. << 1567 << 1568 4.39 KVM_SET_MP_STATE 1538 4.39 KVM_SET_MP_STATE 1569 --------------------- 1539 --------------------- 1570 1540 1571 :Capability: KVM_CAP_MP_STATE 1541 :Capability: KVM_CAP_MP_STATE 1572 :Architectures: x86, s390, arm64, riscv, loon !! 1542 :Architectures: x86, s390, arm64, riscv 1573 :Type: vcpu ioctl 1543 :Type: vcpu ioctl 1574 :Parameters: struct kvm_mp_state (in) 1544 :Parameters: struct kvm_mp_state (in) 1575 :Returns: 0 on success; -1 on error 1545 :Returns: 0 on success; -1 on error 1576 1546 1577 Sets the vcpu's current "multiprocessing stat 1547 Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for 1578 arguments. 1548 arguments. 1579 1549 1580 On x86, this ioctl is only useful after KVM_C 1550 On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an 1581 in-kernel irqchip, the multiprocessing state 1551 in-kernel irqchip, the multiprocessing state must be maintained by userspace on 1582 these architectures. 1552 these architectures. 1583 1553 1584 For arm64/riscv: 1554 For arm64/riscv: 1585 ^^^^^^^^^^^^^^^^ 1555 ^^^^^^^^^^^^^^^^ 1586 1556 1587 The only states that are valid are KVM_MP_STA 1557 The only states that are valid are KVM_MP_STATE_STOPPED and 1588 KVM_MP_STATE_RUNNABLE which reflect if the vc 1558 KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not. 1589 1559 1590 On LoongArch, only the KVM_MP_STATE_RUNNABLE << 1591 whether the vcpu is runnable. << 1592 << 1593 4.40 KVM_SET_IDENTITY_MAP_ADDR 1560 4.40 KVM_SET_IDENTITY_MAP_ADDR 1594 ------------------------------ 1561 ------------------------------ 1595 1562 1596 :Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR 1563 :Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR 1597 :Architectures: x86 1564 :Architectures: x86 1598 :Type: vm ioctl 1565 :Type: vm ioctl 1599 :Parameters: unsigned long identity (in) 1566 :Parameters: unsigned long identity (in) 1600 :Returns: 0 on success, -1 on error 1567 :Returns: 0 on success, -1 on error 1601 1568 1602 This ioctl defines the physical address of a 1569 This ioctl defines the physical address of a one-page region in the guest 1603 physical address space. The region must be w 1570 physical address space. The region must be within the first 4GB of the 1604 guest physical address space and must not con 1571 guest physical address space and must not conflict with any memory slot 1605 or any mmio address. The guest may malfuncti 1572 or any mmio address. The guest may malfunction if it accesses this memory 1606 region. 1573 region. 1607 1574 1608 Setting the address to 0 will result in reset 1575 Setting the address to 0 will result in resetting the address to its default 1609 (0xfffbc000). 1576 (0xfffbc000). 1610 1577 1611 This ioctl is required on Intel-based hosts. 1578 This ioctl is required on Intel-based hosts. This is needed on Intel hardware 1612 because of a quirk in the virtualization impl 1579 because of a quirk in the virtualization implementation (see the internals 1613 documentation when it pops into existence). 1580 documentation when it pops into existence). 1614 1581 1615 Fails if any VCPU has already been created. 1582 Fails if any VCPU has already been created. 1616 1583 1617 4.41 KVM_SET_BOOT_CPU_ID 1584 4.41 KVM_SET_BOOT_CPU_ID 1618 ------------------------ 1585 ------------------------ 1619 1586 1620 :Capability: KVM_CAP_SET_BOOT_CPU_ID 1587 :Capability: KVM_CAP_SET_BOOT_CPU_ID 1621 :Architectures: x86 1588 :Architectures: x86 1622 :Type: vm ioctl 1589 :Type: vm ioctl 1623 :Parameters: unsigned long vcpu_id 1590 :Parameters: unsigned long vcpu_id 1624 :Returns: 0 on success, -1 on error 1591 :Returns: 0 on success, -1 on error 1625 1592 1626 Define which vcpu is the Bootstrap Processor 1593 Define which vcpu is the Bootstrap Processor (BSP). Values are the same 1627 as the vcpu id in KVM_CREATE_VCPU. If this i 1594 as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default 1628 is vcpu 0. This ioctl has to be called before 1595 is vcpu 0. This ioctl has to be called before vcpu creation, 1629 otherwise it will return EBUSY error. 1596 otherwise it will return EBUSY error. 1630 1597 1631 1598 1632 4.42 KVM_GET_XSAVE 1599 4.42 KVM_GET_XSAVE 1633 ------------------ 1600 ------------------ 1634 1601 1635 :Capability: KVM_CAP_XSAVE 1602 :Capability: KVM_CAP_XSAVE 1636 :Architectures: x86 1603 :Architectures: x86 1637 :Type: vcpu ioctl 1604 :Type: vcpu ioctl 1638 :Parameters: struct kvm_xsave (out) 1605 :Parameters: struct kvm_xsave (out) 1639 :Returns: 0 on success, -1 on error 1606 :Returns: 0 on success, -1 on error 1640 1607 1641 1608 1642 :: 1609 :: 1643 1610 1644 struct kvm_xsave { 1611 struct kvm_xsave { 1645 __u32 region[1024]; 1612 __u32 region[1024]; 1646 __u32 extra[0]; 1613 __u32 extra[0]; 1647 }; 1614 }; 1648 1615 1649 This ioctl would copy current vcpu's xsave st 1616 This ioctl would copy current vcpu's xsave struct to the userspace. 1650 1617 1651 1618 1652 4.43 KVM_SET_XSAVE 1619 4.43 KVM_SET_XSAVE 1653 ------------------ 1620 ------------------ 1654 1621 1655 :Capability: KVM_CAP_XSAVE and KVM_CAP_XSAVE2 1622 :Capability: KVM_CAP_XSAVE and KVM_CAP_XSAVE2 1656 :Architectures: x86 1623 :Architectures: x86 1657 :Type: vcpu ioctl 1624 :Type: vcpu ioctl 1658 :Parameters: struct kvm_xsave (in) 1625 :Parameters: struct kvm_xsave (in) 1659 :Returns: 0 on success, -1 on error 1626 :Returns: 0 on success, -1 on error 1660 1627 1661 :: 1628 :: 1662 1629 1663 1630 1664 struct kvm_xsave { 1631 struct kvm_xsave { 1665 __u32 region[1024]; 1632 __u32 region[1024]; 1666 __u32 extra[0]; 1633 __u32 extra[0]; 1667 }; 1634 }; 1668 1635 1669 This ioctl would copy userspace's xsave struc 1636 This ioctl would copy userspace's xsave struct to the kernel. It copies 1670 as many bytes as are returned by KVM_CHECK_EX 1637 as many bytes as are returned by KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2), 1671 when invoked on the vm file descriptor. The s 1638 when invoked on the vm file descriptor. The size value returned by 1672 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will alwa 1639 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will always be at least 4096. 1673 Currently, it is only greater than 4096 if a 1640 Currently, it is only greater than 4096 if a dynamic feature has been 1674 enabled with ``arch_prctl()``, but this may c 1641 enabled with ``arch_prctl()``, but this may change in the future. 1675 1642 1676 The offsets of the state save areas in struct 1643 The offsets of the state save areas in struct kvm_xsave follow the 1677 contents of CPUID leaf 0xD on the host. 1644 contents of CPUID leaf 0xD on the host. 1678 1645 1679 1646 1680 4.44 KVM_GET_XCRS 1647 4.44 KVM_GET_XCRS 1681 ----------------- 1648 ----------------- 1682 1649 1683 :Capability: KVM_CAP_XCRS 1650 :Capability: KVM_CAP_XCRS 1684 :Architectures: x86 1651 :Architectures: x86 1685 :Type: vcpu ioctl 1652 :Type: vcpu ioctl 1686 :Parameters: struct kvm_xcrs (out) 1653 :Parameters: struct kvm_xcrs (out) 1687 :Returns: 0 on success, -1 on error 1654 :Returns: 0 on success, -1 on error 1688 1655 1689 :: 1656 :: 1690 1657 1691 struct kvm_xcr { 1658 struct kvm_xcr { 1692 __u32 xcr; 1659 __u32 xcr; 1693 __u32 reserved; 1660 __u32 reserved; 1694 __u64 value; 1661 __u64 value; 1695 }; 1662 }; 1696 1663 1697 struct kvm_xcrs { 1664 struct kvm_xcrs { 1698 __u32 nr_xcrs; 1665 __u32 nr_xcrs; 1699 __u32 flags; 1666 __u32 flags; 1700 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1667 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1701 __u64 padding[16]; 1668 __u64 padding[16]; 1702 }; 1669 }; 1703 1670 1704 This ioctl would copy current vcpu's xcrs to 1671 This ioctl would copy current vcpu's xcrs to the userspace. 1705 1672 1706 1673 1707 4.45 KVM_SET_XCRS 1674 4.45 KVM_SET_XCRS 1708 ----------------- 1675 ----------------- 1709 1676 1710 :Capability: KVM_CAP_XCRS 1677 :Capability: KVM_CAP_XCRS 1711 :Architectures: x86 1678 :Architectures: x86 1712 :Type: vcpu ioctl 1679 :Type: vcpu ioctl 1713 :Parameters: struct kvm_xcrs (in) 1680 :Parameters: struct kvm_xcrs (in) 1714 :Returns: 0 on success, -1 on error 1681 :Returns: 0 on success, -1 on error 1715 1682 1716 :: 1683 :: 1717 1684 1718 struct kvm_xcr { 1685 struct kvm_xcr { 1719 __u32 xcr; 1686 __u32 xcr; 1720 __u32 reserved; 1687 __u32 reserved; 1721 __u64 value; 1688 __u64 value; 1722 }; 1689 }; 1723 1690 1724 struct kvm_xcrs { 1691 struct kvm_xcrs { 1725 __u32 nr_xcrs; 1692 __u32 nr_xcrs; 1726 __u32 flags; 1693 __u32 flags; 1727 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1694 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1728 __u64 padding[16]; 1695 __u64 padding[16]; 1729 }; 1696 }; 1730 1697 1731 This ioctl would set vcpu's xcr to the value 1698 This ioctl would set vcpu's xcr to the value userspace specified. 1732 1699 1733 1700 1734 4.46 KVM_GET_SUPPORTED_CPUID 1701 4.46 KVM_GET_SUPPORTED_CPUID 1735 ---------------------------- 1702 ---------------------------- 1736 1703 1737 :Capability: KVM_CAP_EXT_CPUID 1704 :Capability: KVM_CAP_EXT_CPUID 1738 :Architectures: x86 1705 :Architectures: x86 1739 :Type: system ioctl 1706 :Type: system ioctl 1740 :Parameters: struct kvm_cpuid2 (in/out) 1707 :Parameters: struct kvm_cpuid2 (in/out) 1741 :Returns: 0 on success, -1 on error 1708 :Returns: 0 on success, -1 on error 1742 1709 1743 :: 1710 :: 1744 1711 1745 struct kvm_cpuid2 { 1712 struct kvm_cpuid2 { 1746 __u32 nent; 1713 __u32 nent; 1747 __u32 padding; 1714 __u32 padding; 1748 struct kvm_cpuid_entry2 entries[0]; 1715 struct kvm_cpuid_entry2 entries[0]; 1749 }; 1716 }; 1750 1717 1751 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1718 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) 1752 #define KVM_CPUID_FLAG_STATEFUL_FUNC 1719 #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) /* deprecated */ 1753 #define KVM_CPUID_FLAG_STATE_READ_NEXT 1720 #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) /* deprecated */ 1754 1721 1755 struct kvm_cpuid_entry2 { 1722 struct kvm_cpuid_entry2 { 1756 __u32 function; 1723 __u32 function; 1757 __u32 index; 1724 __u32 index; 1758 __u32 flags; 1725 __u32 flags; 1759 __u32 eax; 1726 __u32 eax; 1760 __u32 ebx; 1727 __u32 ebx; 1761 __u32 ecx; 1728 __u32 ecx; 1762 __u32 edx; 1729 __u32 edx; 1763 __u32 padding[3]; 1730 __u32 padding[3]; 1764 }; 1731 }; 1765 1732 1766 This ioctl returns x86 cpuid features which a 1733 This ioctl returns x86 cpuid features which are supported by both the 1767 hardware and kvm in its default configuration 1734 hardware and kvm in its default configuration. Userspace can use the 1768 information returned by this ioctl to constru 1735 information returned by this ioctl to construct cpuid information (for 1769 KVM_SET_CPUID2) that is consistent with hardw 1736 KVM_SET_CPUID2) that is consistent with hardware, kernel, and 1770 userspace capabilities, and with user require 1737 userspace capabilities, and with user requirements (for example, the 1771 user may wish to constrain cpuid to emulate o 1738 user may wish to constrain cpuid to emulate older hardware, or for 1772 feature consistency across a cluster). 1739 feature consistency across a cluster). 1773 1740 1774 Dynamically-enabled feature bits need to be r 1741 Dynamically-enabled feature bits need to be requested with 1775 ``arch_prctl()`` before calling this ioctl. F 1742 ``arch_prctl()`` before calling this ioctl. Feature bits that have not 1776 been requested are excluded from the result. 1743 been requested are excluded from the result. 1777 1744 1778 Note that certain capabilities, such as KVM_C 1745 Note that certain capabilities, such as KVM_CAP_X86_DISABLE_EXITS, may 1779 expose cpuid features (e.g. MONITOR) which ar 1746 expose cpuid features (e.g. MONITOR) which are not supported by kvm in 1780 its default configuration. If userspace enabl 1747 its default configuration. If userspace enables such capabilities, it 1781 is responsible for modifying the results of t 1748 is responsible for modifying the results of this ioctl appropriately. 1782 1749 1783 Userspace invokes KVM_GET_SUPPORTED_CPUID by 1750 Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure 1784 with the 'nent' field indicating the number o 1751 with the 'nent' field indicating the number of entries in the variable-size 1785 array 'entries'. If the number of entries is 1752 array 'entries'. If the number of entries is too low to describe the cpu 1786 capabilities, an error (E2BIG) is returned. 1753 capabilities, an error (E2BIG) is returned. If the number is too high, 1787 the 'nent' field is adjusted and an error (EN 1754 the 'nent' field is adjusted and an error (ENOMEM) is returned. If the 1788 number is just right, the 'nent' field is adj 1755 number is just right, the 'nent' field is adjusted to the number of valid 1789 entries in the 'entries' array, which is then 1756 entries in the 'entries' array, which is then filled. 1790 1757 1791 The entries returned are the host cpuid as re 1758 The entries returned are the host cpuid as returned by the cpuid instruction, 1792 with unknown or unsupported features masked o 1759 with unknown or unsupported features masked out. Some features (for example, 1793 x2apic), may not be present in the host cpu, 1760 x2apic), may not be present in the host cpu, but are exposed by kvm if it can 1794 emulate them efficiently. The fields in each 1761 emulate them efficiently. The fields in each entry are defined as follows: 1795 1762 1796 function: 1763 function: 1797 the eax value used to obtain the ent 1764 the eax value used to obtain the entry 1798 1765 1799 index: 1766 index: 1800 the ecx value used to obtain the ent 1767 the ecx value used to obtain the entry (for entries that are 1801 affected by ecx) 1768 affected by ecx) 1802 1769 1803 flags: 1770 flags: 1804 an OR of zero or more of the following: 1771 an OR of zero or more of the following: 1805 1772 1806 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 1773 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 1807 if the index field is valid 1774 if the index field is valid 1808 1775 1809 eax, ebx, ecx, edx: 1776 eax, ebx, ecx, edx: 1810 the values returned by the cpuid ins 1777 the values returned by the cpuid instruction for 1811 this function/index combination 1778 this function/index combination 1812 1779 1813 The TSC deadline timer feature (CPUID leaf 1, 1780 The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned 1814 as false, since the feature depends on KVM_CR 1781 as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC 1815 support. Instead it is reported via:: 1782 support. Instead it is reported via:: 1816 1783 1817 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEAD 1784 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER) 1818 1785 1819 if that returns true and you use KVM_CREATE_I 1786 if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the 1820 feature in userspace, then you can enable the 1787 feature in userspace, then you can enable the feature for KVM_SET_CPUID2. 1821 1788 1822 1789 1823 4.47 KVM_PPC_GET_PVINFO 1790 4.47 KVM_PPC_GET_PVINFO 1824 ----------------------- 1791 ----------------------- 1825 1792 1826 :Capability: KVM_CAP_PPC_GET_PVINFO 1793 :Capability: KVM_CAP_PPC_GET_PVINFO 1827 :Architectures: ppc 1794 :Architectures: ppc 1828 :Type: vm ioctl 1795 :Type: vm ioctl 1829 :Parameters: struct kvm_ppc_pvinfo (out) 1796 :Parameters: struct kvm_ppc_pvinfo (out) 1830 :Returns: 0 on success, !0 on error 1797 :Returns: 0 on success, !0 on error 1831 1798 1832 :: 1799 :: 1833 1800 1834 struct kvm_ppc_pvinfo { 1801 struct kvm_ppc_pvinfo { 1835 __u32 flags; 1802 __u32 flags; 1836 __u32 hcall[4]; 1803 __u32 hcall[4]; 1837 __u8 pad[108]; 1804 __u8 pad[108]; 1838 }; 1805 }; 1839 1806 1840 This ioctl fetches PV specific information th 1807 This ioctl fetches PV specific information that need to be passed to the guest 1841 using the device tree or other means from vm 1808 using the device tree or other means from vm context. 1842 1809 1843 The hcall array defines 4 instructions that m 1810 The hcall array defines 4 instructions that make up a hypercall. 1844 1811 1845 If any additional field gets added to this st 1812 If any additional field gets added to this structure later on, a bit for that 1846 additional piece of information will be set i 1813 additional piece of information will be set in the flags bitmap. 1847 1814 1848 The flags bitmap is defined as:: 1815 The flags bitmap is defined as:: 1849 1816 1850 /* the host supports the ePAPR idle hcall 1817 /* the host supports the ePAPR idle hcall 1851 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1< 1818 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0) 1852 1819 1853 4.52 KVM_SET_GSI_ROUTING 1820 4.52 KVM_SET_GSI_ROUTING 1854 ------------------------ 1821 ------------------------ 1855 1822 1856 :Capability: KVM_CAP_IRQ_ROUTING 1823 :Capability: KVM_CAP_IRQ_ROUTING 1857 :Architectures: x86 s390 arm64 1824 :Architectures: x86 s390 arm64 1858 :Type: vm ioctl 1825 :Type: vm ioctl 1859 :Parameters: struct kvm_irq_routing (in) 1826 :Parameters: struct kvm_irq_routing (in) 1860 :Returns: 0 on success, -1 on error 1827 :Returns: 0 on success, -1 on error 1861 1828 1862 Sets the GSI routing table entries, overwriti 1829 Sets the GSI routing table entries, overwriting any previously set entries. 1863 1830 1864 On arm64, GSI routing has the following limit 1831 On arm64, GSI routing has the following limitation: 1865 1832 1866 - GSI routing does not apply to KVM_IRQ_LINE 1833 - GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD. 1867 1834 1868 :: 1835 :: 1869 1836 1870 struct kvm_irq_routing { 1837 struct kvm_irq_routing { 1871 __u32 nr; 1838 __u32 nr; 1872 __u32 flags; 1839 __u32 flags; 1873 struct kvm_irq_routing_entry entries[ 1840 struct kvm_irq_routing_entry entries[0]; 1874 }; 1841 }; 1875 1842 1876 No flags are specified so far, the correspond 1843 No flags are specified so far, the corresponding field must be set to zero. 1877 1844 1878 :: 1845 :: 1879 1846 1880 struct kvm_irq_routing_entry { 1847 struct kvm_irq_routing_entry { 1881 __u32 gsi; 1848 __u32 gsi; 1882 __u32 type; 1849 __u32 type; 1883 __u32 flags; 1850 __u32 flags; 1884 __u32 pad; 1851 __u32 pad; 1885 union { 1852 union { 1886 struct kvm_irq_routing_irqchi 1853 struct kvm_irq_routing_irqchip irqchip; 1887 struct kvm_irq_routing_msi ms 1854 struct kvm_irq_routing_msi msi; 1888 struct kvm_irq_routing_s390_a 1855 struct kvm_irq_routing_s390_adapter adapter; 1889 struct kvm_irq_routing_hv_sin 1856 struct kvm_irq_routing_hv_sint hv_sint; 1890 struct kvm_irq_routing_xen_ev 1857 struct kvm_irq_routing_xen_evtchn xen_evtchn; 1891 __u32 pad[8]; 1858 __u32 pad[8]; 1892 } u; 1859 } u; 1893 }; 1860 }; 1894 1861 1895 /* gsi routing entry types */ 1862 /* gsi routing entry types */ 1896 #define KVM_IRQ_ROUTING_IRQCHIP 1 1863 #define KVM_IRQ_ROUTING_IRQCHIP 1 1897 #define KVM_IRQ_ROUTING_MSI 2 1864 #define KVM_IRQ_ROUTING_MSI 2 1898 #define KVM_IRQ_ROUTING_S390_ADAPTER 3 1865 #define KVM_IRQ_ROUTING_S390_ADAPTER 3 1899 #define KVM_IRQ_ROUTING_HV_SINT 4 1866 #define KVM_IRQ_ROUTING_HV_SINT 4 1900 #define KVM_IRQ_ROUTING_XEN_EVTCHN 5 1867 #define KVM_IRQ_ROUTING_XEN_EVTCHN 5 1901 1868 1902 flags: 1869 flags: 1903 1870 1904 - KVM_MSI_VALID_DEVID: used along with KVM_IR 1871 - KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry 1905 type, specifies that the devid field contai 1872 type, specifies that the devid field contains a valid value. The per-VM 1906 KVM_CAP_MSI_DEVID capability advertises the 1873 KVM_CAP_MSI_DEVID capability advertises the requirement to provide 1907 the device ID. If this capability is not a 1874 the device ID. If this capability is not available, userspace should 1908 never set the KVM_MSI_VALID_DEVID flag as t 1875 never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. 1909 - zero otherwise 1876 - zero otherwise 1910 1877 1911 :: 1878 :: 1912 1879 1913 struct kvm_irq_routing_irqchip { 1880 struct kvm_irq_routing_irqchip { 1914 __u32 irqchip; 1881 __u32 irqchip; 1915 __u32 pin; 1882 __u32 pin; 1916 }; 1883 }; 1917 1884 1918 struct kvm_irq_routing_msi { 1885 struct kvm_irq_routing_msi { 1919 __u32 address_lo; 1886 __u32 address_lo; 1920 __u32 address_hi; 1887 __u32 address_hi; 1921 __u32 data; 1888 __u32 data; 1922 union { 1889 union { 1923 __u32 pad; 1890 __u32 pad; 1924 __u32 devid; 1891 __u32 devid; 1925 }; 1892 }; 1926 }; 1893 }; 1927 1894 1928 If KVM_MSI_VALID_DEVID is set, devid contains 1895 If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier 1929 for the device that wrote the MSI message. F 1896 for the device that wrote the MSI message. For PCI, this is usually a 1930 BDF identifier in the lower 16 bits. !! 1897 BFD identifier in the lower 16 bits. 1931 1898 1932 On x86, address_hi is ignored unless the KVM_ 1899 On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS 1933 feature of KVM_CAP_X2APIC_API capability is e 1900 feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, 1934 address_hi bits 31-8 provide bits 31-8 of the 1901 address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of 1935 address_hi must be zero. 1902 address_hi must be zero. 1936 1903 1937 :: 1904 :: 1938 1905 1939 struct kvm_irq_routing_s390_adapter { 1906 struct kvm_irq_routing_s390_adapter { 1940 __u64 ind_addr; 1907 __u64 ind_addr; 1941 __u64 summary_addr; 1908 __u64 summary_addr; 1942 __u64 ind_offset; 1909 __u64 ind_offset; 1943 __u32 summary_offset; 1910 __u32 summary_offset; 1944 __u32 adapter_id; 1911 __u32 adapter_id; 1945 }; 1912 }; 1946 1913 1947 struct kvm_irq_routing_hv_sint { 1914 struct kvm_irq_routing_hv_sint { 1948 __u32 vcpu; 1915 __u32 vcpu; 1949 __u32 sint; 1916 __u32 sint; 1950 }; 1917 }; 1951 1918 1952 struct kvm_irq_routing_xen_evtchn { 1919 struct kvm_irq_routing_xen_evtchn { 1953 __u32 port; 1920 __u32 port; 1954 __u32 vcpu; 1921 __u32 vcpu; 1955 __u32 priority; 1922 __u32 priority; 1956 }; 1923 }; 1957 1924 1958 1925 1959 When KVM_CAP_XEN_HVM includes the KVM_XEN_HVM 1926 When KVM_CAP_XEN_HVM includes the KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL bit 1960 in its indication of supported features, rout 1927 in its indication of supported features, routing to Xen event channels 1961 is supported. Although the priority field is 1928 is supported. Although the priority field is present, only the value 1962 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL is supported 1929 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL is supported, which means delivery by 1963 2 level event channels. FIFO event channel su 1930 2 level event channels. FIFO event channel support may be added in 1964 the future. 1931 the future. 1965 1932 1966 1933 1967 4.55 KVM_SET_TSC_KHZ 1934 4.55 KVM_SET_TSC_KHZ 1968 -------------------- 1935 -------------------- 1969 1936 1970 :Capability: KVM_CAP_TSC_CONTROL / KVM_CAP_VM 1937 :Capability: KVM_CAP_TSC_CONTROL / KVM_CAP_VM_TSC_CONTROL 1971 :Architectures: x86 1938 :Architectures: x86 1972 :Type: vcpu ioctl / vm ioctl 1939 :Type: vcpu ioctl / vm ioctl 1973 :Parameters: virtual tsc_khz 1940 :Parameters: virtual tsc_khz 1974 :Returns: 0 on success, -1 on error 1941 :Returns: 0 on success, -1 on error 1975 1942 1976 Specifies the tsc frequency for the virtual m 1943 Specifies the tsc frequency for the virtual machine. The unit of the 1977 frequency is KHz. 1944 frequency is KHz. 1978 1945 1979 If the KVM_CAP_VM_TSC_CONTROL capability is a 1946 If the KVM_CAP_VM_TSC_CONTROL capability is advertised, this can also 1980 be used as a vm ioctl to set the initial tsc 1947 be used as a vm ioctl to set the initial tsc frequency of subsequently 1981 created vCPUs. 1948 created vCPUs. 1982 1949 1983 4.56 KVM_GET_TSC_KHZ 1950 4.56 KVM_GET_TSC_KHZ 1984 -------------------- 1951 -------------------- 1985 1952 1986 :Capability: KVM_CAP_GET_TSC_KHZ / KVM_CAP_VM 1953 :Capability: KVM_CAP_GET_TSC_KHZ / KVM_CAP_VM_TSC_CONTROL 1987 :Architectures: x86 1954 :Architectures: x86 1988 :Type: vcpu ioctl / vm ioctl 1955 :Type: vcpu ioctl / vm ioctl 1989 :Parameters: none 1956 :Parameters: none 1990 :Returns: virtual tsc-khz on success, negativ 1957 :Returns: virtual tsc-khz on success, negative value on error 1991 1958 1992 Returns the tsc frequency of the guest. The u 1959 Returns the tsc frequency of the guest. The unit of the return value is 1993 KHz. If the host has unstable tsc this ioctl 1960 KHz. If the host has unstable tsc this ioctl returns -EIO instead as an 1994 error. 1961 error. 1995 1962 1996 1963 1997 4.57 KVM_GET_LAPIC 1964 4.57 KVM_GET_LAPIC 1998 ------------------ 1965 ------------------ 1999 1966 2000 :Capability: KVM_CAP_IRQCHIP 1967 :Capability: KVM_CAP_IRQCHIP 2001 :Architectures: x86 1968 :Architectures: x86 2002 :Type: vcpu ioctl 1969 :Type: vcpu ioctl 2003 :Parameters: struct kvm_lapic_state (out) 1970 :Parameters: struct kvm_lapic_state (out) 2004 :Returns: 0 on success, -1 on error 1971 :Returns: 0 on success, -1 on error 2005 1972 2006 :: 1973 :: 2007 1974 2008 #define KVM_APIC_REG_SIZE 0x400 1975 #define KVM_APIC_REG_SIZE 0x400 2009 struct kvm_lapic_state { 1976 struct kvm_lapic_state { 2010 char regs[KVM_APIC_REG_SIZE]; 1977 char regs[KVM_APIC_REG_SIZE]; 2011 }; 1978 }; 2012 1979 2013 Reads the Local APIC registers and copies the 1980 Reads the Local APIC registers and copies them into the input argument. The 2014 data format and layout are the same as docume 1981 data format and layout are the same as documented in the architecture manual. 2015 1982 2016 If KVM_X2APIC_API_USE_32BIT_IDS feature of KV 1983 If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is 2017 enabled, then the format of APIC_ID register 1984 enabled, then the format of APIC_ID register depends on the APIC mode 2018 (reported by MSR_IA32_APICBASE) of its VCPU. 1985 (reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in 2019 the APIC_ID register (bytes 32-35). xAPIC on 1986 the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID 2020 which is stored in bits 31-24 of the APIC reg 1987 which is stored in bits 31-24 of the APIC register, or equivalently in 2021 byte 35 of struct kvm_lapic_state's regs fiel 1988 byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then 2022 be called after MSR_IA32_APICBASE has been se 1989 be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR. 2023 1990 2024 If KVM_X2APIC_API_USE_32BIT_IDS feature is di 1991 If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state 2025 always uses xAPIC format. 1992 always uses xAPIC format. 2026 1993 2027 1994 2028 4.58 KVM_SET_LAPIC 1995 4.58 KVM_SET_LAPIC 2029 ------------------ 1996 ------------------ 2030 1997 2031 :Capability: KVM_CAP_IRQCHIP 1998 :Capability: KVM_CAP_IRQCHIP 2032 :Architectures: x86 1999 :Architectures: x86 2033 :Type: vcpu ioctl 2000 :Type: vcpu ioctl 2034 :Parameters: struct kvm_lapic_state (in) 2001 :Parameters: struct kvm_lapic_state (in) 2035 :Returns: 0 on success, -1 on error 2002 :Returns: 0 on success, -1 on error 2036 2003 2037 :: 2004 :: 2038 2005 2039 #define KVM_APIC_REG_SIZE 0x400 2006 #define KVM_APIC_REG_SIZE 0x400 2040 struct kvm_lapic_state { 2007 struct kvm_lapic_state { 2041 char regs[KVM_APIC_REG_SIZE]; 2008 char regs[KVM_APIC_REG_SIZE]; 2042 }; 2009 }; 2043 2010 2044 Copies the input argument into the Local APIC 2011 Copies the input argument into the Local APIC registers. The data format 2045 and layout are the same as documented in the 2012 and layout are the same as documented in the architecture manual. 2046 2013 2047 The format of the APIC ID register (bytes 32- 2014 The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's 2048 regs field) depends on the state of the KVM_C 2015 regs field) depends on the state of the KVM_CAP_X2APIC_API capability. 2049 See the note in KVM_GET_LAPIC. 2016 See the note in KVM_GET_LAPIC. 2050 2017 2051 2018 2052 4.59 KVM_IOEVENTFD 2019 4.59 KVM_IOEVENTFD 2053 ------------------ 2020 ------------------ 2054 2021 2055 :Capability: KVM_CAP_IOEVENTFD 2022 :Capability: KVM_CAP_IOEVENTFD 2056 :Architectures: all 2023 :Architectures: all 2057 :Type: vm ioctl 2024 :Type: vm ioctl 2058 :Parameters: struct kvm_ioeventfd (in) 2025 :Parameters: struct kvm_ioeventfd (in) 2059 :Returns: 0 on success, !0 on error 2026 :Returns: 0 on success, !0 on error 2060 2027 2061 This ioctl attaches or detaches an ioeventfd 2028 This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address 2062 within the guest. A guest write in the regis 2029 within the guest. A guest write in the registered address will signal the 2063 provided event instead of triggering an exit. 2030 provided event instead of triggering an exit. 2064 2031 2065 :: 2032 :: 2066 2033 2067 struct kvm_ioeventfd { 2034 struct kvm_ioeventfd { 2068 __u64 datamatch; 2035 __u64 datamatch; 2069 __u64 addr; /* legal pio/mmio 2036 __u64 addr; /* legal pio/mmio address */ 2070 __u32 len; /* 0, 1, 2, 4, or 2037 __u32 len; /* 0, 1, 2, 4, or 8 bytes */ 2071 __s32 fd; 2038 __s32 fd; 2072 __u32 flags; 2039 __u32 flags; 2073 __u8 pad[36]; 2040 __u8 pad[36]; 2074 }; 2041 }; 2075 2042 2076 For the special case of virtio-ccw devices on 2043 For the special case of virtio-ccw devices on s390, the ioevent is matched 2077 to a subchannel/virtqueue tuple instead. 2044 to a subchannel/virtqueue tuple instead. 2078 2045 2079 The following flags are defined:: 2046 The following flags are defined:: 2080 2047 2081 #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << 2048 #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch) 2082 #define KVM_IOEVENTFD_FLAG_PIO (1 << 2049 #define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio) 2083 #define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << 2050 #define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign) 2084 #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIF 2051 #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \ 2085 (1 << kvm_ioeventfd_flag_nr_virtio_cc 2052 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify) 2086 2053 2087 If datamatch flag is set, the event will be s 2054 If datamatch flag is set, the event will be signaled only if the written value 2088 to the registered address is equal to datamat 2055 to the registered address is equal to datamatch in struct kvm_ioeventfd. 2089 2056 2090 For virtio-ccw devices, addr contains the sub 2057 For virtio-ccw devices, addr contains the subchannel id and datamatch the 2091 virtqueue index. 2058 virtqueue index. 2092 2059 2093 With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero len 2060 With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and 2094 the kernel will ignore the length of guest wr 2061 the kernel will ignore the length of guest write and may get a faster vmexit. 2095 The speedup may only apply to specific archit 2062 The speedup may only apply to specific architectures, but the ioeventfd will 2096 work anyway. 2063 work anyway. 2097 2064 2098 4.60 KVM_DIRTY_TLB 2065 4.60 KVM_DIRTY_TLB 2099 ------------------ 2066 ------------------ 2100 2067 2101 :Capability: KVM_CAP_SW_TLB 2068 :Capability: KVM_CAP_SW_TLB 2102 :Architectures: ppc 2069 :Architectures: ppc 2103 :Type: vcpu ioctl 2070 :Type: vcpu ioctl 2104 :Parameters: struct kvm_dirty_tlb (in) 2071 :Parameters: struct kvm_dirty_tlb (in) 2105 :Returns: 0 on success, -1 on error 2072 :Returns: 0 on success, -1 on error 2106 2073 2107 :: 2074 :: 2108 2075 2109 struct kvm_dirty_tlb { 2076 struct kvm_dirty_tlb { 2110 __u64 bitmap; 2077 __u64 bitmap; 2111 __u32 num_dirty; 2078 __u32 num_dirty; 2112 }; 2079 }; 2113 2080 2114 This must be called whenever userspace has ch 2081 This must be called whenever userspace has changed an entry in the shared 2115 TLB, prior to calling KVM_RUN on the associat 2082 TLB, prior to calling KVM_RUN on the associated vcpu. 2116 2083 2117 The "bitmap" field is the userspace address o 2084 The "bitmap" field is the userspace address of an array. This array 2118 consists of a number of bits, equal to the to 2085 consists of a number of bits, equal to the total number of TLB entries as 2119 determined by the last successful call to KVM 2086 determined by the last successful call to KVM_CONFIG_TLB, rounded up to the 2120 nearest multiple of 64. 2087 nearest multiple of 64. 2121 2088 2122 Each bit corresponds to one TLB entry, ordere 2089 Each bit corresponds to one TLB entry, ordered the same as in the shared TLB 2123 array. 2090 array. 2124 2091 2125 The array is little-endian: the bit 0 is the 2092 The array is little-endian: the bit 0 is the least significant bit of the 2126 first byte, bit 8 is the least significant bi 2093 first byte, bit 8 is the least significant bit of the second byte, etc. 2127 This avoids any complications with differing 2094 This avoids any complications with differing word sizes. 2128 2095 2129 The "num_dirty" field is a performance hint f 2096 The "num_dirty" field is a performance hint for KVM to determine whether it 2130 should skip processing the bitmap and just in 2097 should skip processing the bitmap and just invalidate everything. It must 2131 be set to the number of set bits in the bitma 2098 be set to the number of set bits in the bitmap. 2132 2099 2133 2100 2134 4.62 KVM_CREATE_SPAPR_TCE 2101 4.62 KVM_CREATE_SPAPR_TCE 2135 ------------------------- 2102 ------------------------- 2136 2103 2137 :Capability: KVM_CAP_SPAPR_TCE 2104 :Capability: KVM_CAP_SPAPR_TCE 2138 :Architectures: powerpc 2105 :Architectures: powerpc 2139 :Type: vm ioctl 2106 :Type: vm ioctl 2140 :Parameters: struct kvm_create_spapr_tce (in) 2107 :Parameters: struct kvm_create_spapr_tce (in) 2141 :Returns: file descriptor for manipulating th 2108 :Returns: file descriptor for manipulating the created TCE table 2142 2109 2143 This creates a virtual TCE (translation contr 2110 This creates a virtual TCE (translation control entry) table, which 2144 is an IOMMU for PAPR-style virtual I/O. It i 2111 is an IOMMU for PAPR-style virtual I/O. It is used to translate 2145 logical addresses used in virtual I/O into gu 2112 logical addresses used in virtual I/O into guest physical addresses, 2146 and provides a scatter/gather capability for 2113 and provides a scatter/gather capability for PAPR virtual I/O. 2147 2114 2148 :: 2115 :: 2149 2116 2150 /* for KVM_CAP_SPAPR_TCE */ 2117 /* for KVM_CAP_SPAPR_TCE */ 2151 struct kvm_create_spapr_tce { 2118 struct kvm_create_spapr_tce { 2152 __u64 liobn; 2119 __u64 liobn; 2153 __u32 window_size; 2120 __u32 window_size; 2154 }; 2121 }; 2155 2122 2156 The liobn field gives the logical IO bus numb 2123 The liobn field gives the logical IO bus number for which to create a 2157 TCE table. The window_size field specifies t 2124 TCE table. The window_size field specifies the size of the DMA window 2158 which this TCE table will translate - the tab 2125 which this TCE table will translate - the table will contain one 64 2159 bit TCE entry for every 4kiB of the DMA windo 2126 bit TCE entry for every 4kiB of the DMA window. 2160 2127 2161 When the guest issues an H_PUT_TCE hcall on a 2128 When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE 2162 table has been created using this ioctl(), th 2129 table has been created using this ioctl(), the kernel will handle it 2163 in real mode, updating the TCE table. H_PUT_ 2130 in real mode, updating the TCE table. H_PUT_TCE calls for other 2164 liobns will cause a vm exit and must be handl 2131 liobns will cause a vm exit and must be handled by userspace. 2165 2132 2166 The return value is a file descriptor which c 2133 The return value is a file descriptor which can be passed to mmap(2) 2167 to map the created TCE table into userspace. 2134 to map the created TCE table into userspace. This lets userspace read 2168 the entries written by kernel-handled H_PUT_T 2135 the entries written by kernel-handled H_PUT_TCE calls, and also lets 2169 userspace update the TCE table directly which 2136 userspace update the TCE table directly which is useful in some 2170 circumstances. 2137 circumstances. 2171 2138 2172 2139 2173 4.63 KVM_ALLOCATE_RMA 2140 4.63 KVM_ALLOCATE_RMA 2174 --------------------- 2141 --------------------- 2175 2142 2176 :Capability: KVM_CAP_PPC_RMA 2143 :Capability: KVM_CAP_PPC_RMA 2177 :Architectures: powerpc 2144 :Architectures: powerpc 2178 :Type: vm ioctl 2145 :Type: vm ioctl 2179 :Parameters: struct kvm_allocate_rma (out) 2146 :Parameters: struct kvm_allocate_rma (out) 2180 :Returns: file descriptor for mapping the all 2147 :Returns: file descriptor for mapping the allocated RMA 2181 2148 2182 This allocates a Real Mode Area (RMA) from th 2149 This allocates a Real Mode Area (RMA) from the pool allocated at boot 2183 time by the kernel. An RMA is a physically-c 2150 time by the kernel. An RMA is a physically-contiguous, aligned region 2184 of memory used on older POWER processors to p 2151 of memory used on older POWER processors to provide the memory which 2185 will be accessed by real-mode (MMU off) acces 2152 will be accessed by real-mode (MMU off) accesses in a KVM guest. 2186 POWER processors support a set of sizes for t 2153 POWER processors support a set of sizes for the RMA that usually 2187 includes 64MB, 128MB, 256MB and some larger p 2154 includes 64MB, 128MB, 256MB and some larger powers of two. 2188 2155 2189 :: 2156 :: 2190 2157 2191 /* for KVM_ALLOCATE_RMA */ 2158 /* for KVM_ALLOCATE_RMA */ 2192 struct kvm_allocate_rma { 2159 struct kvm_allocate_rma { 2193 __u64 rma_size; 2160 __u64 rma_size; 2194 }; 2161 }; 2195 2162 2196 The return value is a file descriptor which c 2163 The return value is a file descriptor which can be passed to mmap(2) 2197 to map the allocated RMA into userspace. The 2164 to map the allocated RMA into userspace. The mapped area can then be 2198 passed to the KVM_SET_USER_MEMORY_REGION ioct 2165 passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the 2199 RMA for a virtual machine. The size of the R 2166 RMA for a virtual machine. The size of the RMA in bytes (which is 2200 fixed at host kernel boot time) is returned i 2167 fixed at host kernel boot time) is returned in the rma_size field of 2201 the argument structure. 2168 the argument structure. 2202 2169 2203 The KVM_CAP_PPC_RMA capability is 1 or 2 if t 2170 The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl 2204 is supported; 2 if the processor requires all 2171 is supported; 2 if the processor requires all virtual machines to have 2205 an RMA, or 1 if the processor can use an RMA 2172 an RMA, or 1 if the processor can use an RMA but doesn't require it, 2206 because it supports the Virtual RMA (VRMA) fa 2173 because it supports the Virtual RMA (VRMA) facility. 2207 2174 2208 2175 2209 4.64 KVM_NMI 2176 4.64 KVM_NMI 2210 ------------ 2177 ------------ 2211 2178 2212 :Capability: KVM_CAP_USER_NMI 2179 :Capability: KVM_CAP_USER_NMI 2213 :Architectures: x86 2180 :Architectures: x86 2214 :Type: vcpu ioctl 2181 :Type: vcpu ioctl 2215 :Parameters: none 2182 :Parameters: none 2216 :Returns: 0 on success, -1 on error 2183 :Returns: 0 on success, -1 on error 2217 2184 2218 Queues an NMI on the thread's vcpu. Note thi 2185 Queues an NMI on the thread's vcpu. Note this is well defined only 2219 when KVM_CREATE_IRQCHIP has not been called, 2186 when KVM_CREATE_IRQCHIP has not been called, since this is an interface 2220 between the virtual cpu core and virtual loca 2187 between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP 2221 has been called, this interface is completely 2188 has been called, this interface is completely emulated within the kernel. 2222 2189 2223 To use this to emulate the LINT1 input with K 2190 To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the 2224 following algorithm: 2191 following algorithm: 2225 2192 2226 - pause the vcpu 2193 - pause the vcpu 2227 - read the local APIC's state (KVM_GET_LAPI 2194 - read the local APIC's state (KVM_GET_LAPIC) 2228 - check whether changing LINT1 will queue a 2195 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1) 2229 - if so, issue KVM_NMI 2196 - if so, issue KVM_NMI 2230 - resume the vcpu 2197 - resume the vcpu 2231 2198 2232 Some guests configure the LINT1 NMI input to 2199 Some guests configure the LINT1 NMI input to cause a panic, aiding in 2233 debugging. 2200 debugging. 2234 2201 2235 2202 2236 4.65 KVM_S390_UCAS_MAP 2203 4.65 KVM_S390_UCAS_MAP 2237 ---------------------- 2204 ---------------------- 2238 2205 2239 :Capability: KVM_CAP_S390_UCONTROL 2206 :Capability: KVM_CAP_S390_UCONTROL 2240 :Architectures: s390 2207 :Architectures: s390 2241 :Type: vcpu ioctl 2208 :Type: vcpu ioctl 2242 :Parameters: struct kvm_s390_ucas_mapping (in 2209 :Parameters: struct kvm_s390_ucas_mapping (in) 2243 :Returns: 0 in case of success 2210 :Returns: 0 in case of success 2244 2211 2245 The parameter is defined like this:: 2212 The parameter is defined like this:: 2246 2213 2247 struct kvm_s390_ucas_mapping { 2214 struct kvm_s390_ucas_mapping { 2248 __u64 user_addr; 2215 __u64 user_addr; 2249 __u64 vcpu_addr; 2216 __u64 vcpu_addr; 2250 __u64 length; 2217 __u64 length; 2251 }; 2218 }; 2252 2219 2253 This ioctl maps the memory at "user_addr" wit 2220 This ioctl maps the memory at "user_addr" with the length "length" to 2254 the vcpu's address space starting at "vcpu_ad 2221 the vcpu's address space starting at "vcpu_addr". All parameters need to 2255 be aligned by 1 megabyte. 2222 be aligned by 1 megabyte. 2256 2223 2257 2224 2258 4.66 KVM_S390_UCAS_UNMAP 2225 4.66 KVM_S390_UCAS_UNMAP 2259 ------------------------ 2226 ------------------------ 2260 2227 2261 :Capability: KVM_CAP_S390_UCONTROL 2228 :Capability: KVM_CAP_S390_UCONTROL 2262 :Architectures: s390 2229 :Architectures: s390 2263 :Type: vcpu ioctl 2230 :Type: vcpu ioctl 2264 :Parameters: struct kvm_s390_ucas_mapping (in 2231 :Parameters: struct kvm_s390_ucas_mapping (in) 2265 :Returns: 0 in case of success 2232 :Returns: 0 in case of success 2266 2233 2267 The parameter is defined like this:: 2234 The parameter is defined like this:: 2268 2235 2269 struct kvm_s390_ucas_mapping { 2236 struct kvm_s390_ucas_mapping { 2270 __u64 user_addr; 2237 __u64 user_addr; 2271 __u64 vcpu_addr; 2238 __u64 vcpu_addr; 2272 __u64 length; 2239 __u64 length; 2273 }; 2240 }; 2274 2241 2275 This ioctl unmaps the memory in the vcpu's ad 2242 This ioctl unmaps the memory in the vcpu's address space starting at 2276 "vcpu_addr" with the length "length". The fie 2243 "vcpu_addr" with the length "length". The field "user_addr" is ignored. 2277 All parameters need to be aligned by 1 megaby 2244 All parameters need to be aligned by 1 megabyte. 2278 2245 2279 2246 2280 4.67 KVM_S390_VCPU_FAULT 2247 4.67 KVM_S390_VCPU_FAULT 2281 ------------------------ 2248 ------------------------ 2282 2249 2283 :Capability: KVM_CAP_S390_UCONTROL 2250 :Capability: KVM_CAP_S390_UCONTROL 2284 :Architectures: s390 2251 :Architectures: s390 2285 :Type: vcpu ioctl 2252 :Type: vcpu ioctl 2286 :Parameters: vcpu absolute address (in) 2253 :Parameters: vcpu absolute address (in) 2287 :Returns: 0 in case of success 2254 :Returns: 0 in case of success 2288 2255 2289 This call creates a page table entry on the v 2256 This call creates a page table entry on the virtual cpu's address space 2290 (for user controlled virtual machines) or the 2257 (for user controlled virtual machines) or the virtual machine's address 2291 space (for regular virtual machines). This on 2258 space (for regular virtual machines). This only works for minor faults, 2292 thus it's recommended to access subject memor 2259 thus it's recommended to access subject memory page via the user page 2293 table upfront. This is useful to handle valid 2260 table upfront. This is useful to handle validity intercepts for user 2294 controlled virtual machines to fault in the v 2261 controlled virtual machines to fault in the virtual cpu's lowcore pages 2295 prior to calling the KVM_RUN ioctl. 2262 prior to calling the KVM_RUN ioctl. 2296 2263 2297 2264 2298 4.68 KVM_SET_ONE_REG 2265 4.68 KVM_SET_ONE_REG 2299 -------------------- 2266 -------------------- 2300 2267 2301 :Capability: KVM_CAP_ONE_REG 2268 :Capability: KVM_CAP_ONE_REG 2302 :Architectures: all 2269 :Architectures: all 2303 :Type: vcpu ioctl 2270 :Type: vcpu ioctl 2304 :Parameters: struct kvm_one_reg (in) 2271 :Parameters: struct kvm_one_reg (in) 2305 :Returns: 0 on success, negative value on fai 2272 :Returns: 0 on success, negative value on failure 2306 2273 2307 Errors: 2274 Errors: 2308 2275 2309 ====== ================================== 2276 ====== ============================================================ 2310 ENOENT no such register 2277 ENOENT no such register 2311 EINVAL invalid register ID, or no such re 2278 EINVAL invalid register ID, or no such register or used with VMs in 2312 protected virtualization mode on s 2279 protected virtualization mode on s390 2313 EPERM (arm64) register access not allowe 2280 EPERM (arm64) register access not allowed before vcpu finalization 2314 EBUSY (riscv) changing register value no << 2315 has run at least once << 2316 ====== ================================== 2281 ====== ============================================================ 2317 2282 2318 (These error codes are indicative only: do no 2283 (These error codes are indicative only: do not rely on a specific error 2319 code being returned in a specific situation.) 2284 code being returned in a specific situation.) 2320 2285 2321 :: 2286 :: 2322 2287 2323 struct kvm_one_reg { 2288 struct kvm_one_reg { 2324 __u64 id; 2289 __u64 id; 2325 __u64 addr; 2290 __u64 addr; 2326 }; 2291 }; 2327 2292 2328 Using this ioctl, a single vcpu register can 2293 Using this ioctl, a single vcpu register can be set to a specific value 2329 defined by user space with the passed in stru 2294 defined by user space with the passed in struct kvm_one_reg, where id 2330 refers to the register identifier as describe 2295 refers to the register identifier as described below and addr is a pointer 2331 to a variable with the respective size. There 2296 to a variable with the respective size. There can be architecture agnostic 2332 and architecture specific registers. Each hav 2297 and architecture specific registers. Each have their own range of operation 2333 and their own constants and width. To keep tr 2298 and their own constants and width. To keep track of the implemented 2334 registers, find a list below: 2299 registers, find a list below: 2335 2300 2336 ======= =============================== === 2301 ======= =============================== ============ 2337 Arch Register Wid 2302 Arch Register Width (bits) 2338 ======= =============================== === 2303 ======= =============================== ============ 2339 PPC KVM_REG_PPC_HIOR 64 2304 PPC KVM_REG_PPC_HIOR 64 2340 PPC KVM_REG_PPC_IAC1 64 2305 PPC KVM_REG_PPC_IAC1 64 2341 PPC KVM_REG_PPC_IAC2 64 2306 PPC KVM_REG_PPC_IAC2 64 2342 PPC KVM_REG_PPC_IAC3 64 2307 PPC KVM_REG_PPC_IAC3 64 2343 PPC KVM_REG_PPC_IAC4 64 2308 PPC KVM_REG_PPC_IAC4 64 2344 PPC KVM_REG_PPC_DAC1 64 2309 PPC KVM_REG_PPC_DAC1 64 2345 PPC KVM_REG_PPC_DAC2 64 2310 PPC KVM_REG_PPC_DAC2 64 2346 PPC KVM_REG_PPC_DABR 64 2311 PPC KVM_REG_PPC_DABR 64 2347 PPC KVM_REG_PPC_DSCR 64 2312 PPC KVM_REG_PPC_DSCR 64 2348 PPC KVM_REG_PPC_PURR 64 2313 PPC KVM_REG_PPC_PURR 64 2349 PPC KVM_REG_PPC_SPURR 64 2314 PPC KVM_REG_PPC_SPURR 64 2350 PPC KVM_REG_PPC_DAR 64 2315 PPC KVM_REG_PPC_DAR 64 2351 PPC KVM_REG_PPC_DSISR 32 2316 PPC KVM_REG_PPC_DSISR 32 2352 PPC KVM_REG_PPC_AMR 64 2317 PPC KVM_REG_PPC_AMR 64 2353 PPC KVM_REG_PPC_UAMOR 64 2318 PPC KVM_REG_PPC_UAMOR 64 2354 PPC KVM_REG_PPC_MMCR0 64 2319 PPC KVM_REG_PPC_MMCR0 64 2355 PPC KVM_REG_PPC_MMCR1 64 2320 PPC KVM_REG_PPC_MMCR1 64 2356 PPC KVM_REG_PPC_MMCRA 64 2321 PPC KVM_REG_PPC_MMCRA 64 2357 PPC KVM_REG_PPC_MMCR2 64 2322 PPC KVM_REG_PPC_MMCR2 64 2358 PPC KVM_REG_PPC_MMCRS 64 2323 PPC KVM_REG_PPC_MMCRS 64 2359 PPC KVM_REG_PPC_MMCR3 64 2324 PPC KVM_REG_PPC_MMCR3 64 2360 PPC KVM_REG_PPC_SIAR 64 2325 PPC KVM_REG_PPC_SIAR 64 2361 PPC KVM_REG_PPC_SDAR 64 2326 PPC KVM_REG_PPC_SDAR 64 2362 PPC KVM_REG_PPC_SIER 64 2327 PPC KVM_REG_PPC_SIER 64 2363 PPC KVM_REG_PPC_SIER2 64 2328 PPC KVM_REG_PPC_SIER2 64 2364 PPC KVM_REG_PPC_SIER3 64 2329 PPC KVM_REG_PPC_SIER3 64 2365 PPC KVM_REG_PPC_PMC1 32 2330 PPC KVM_REG_PPC_PMC1 32 2366 PPC KVM_REG_PPC_PMC2 32 2331 PPC KVM_REG_PPC_PMC2 32 2367 PPC KVM_REG_PPC_PMC3 32 2332 PPC KVM_REG_PPC_PMC3 32 2368 PPC KVM_REG_PPC_PMC4 32 2333 PPC KVM_REG_PPC_PMC4 32 2369 PPC KVM_REG_PPC_PMC5 32 2334 PPC KVM_REG_PPC_PMC5 32 2370 PPC KVM_REG_PPC_PMC6 32 2335 PPC KVM_REG_PPC_PMC6 32 2371 PPC KVM_REG_PPC_PMC7 32 2336 PPC KVM_REG_PPC_PMC7 32 2372 PPC KVM_REG_PPC_PMC8 32 2337 PPC KVM_REG_PPC_PMC8 32 2373 PPC KVM_REG_PPC_FPR0 64 2338 PPC KVM_REG_PPC_FPR0 64 2374 ... 2339 ... 2375 PPC KVM_REG_PPC_FPR31 64 2340 PPC KVM_REG_PPC_FPR31 64 2376 PPC KVM_REG_PPC_VR0 128 2341 PPC KVM_REG_PPC_VR0 128 2377 ... 2342 ... 2378 PPC KVM_REG_PPC_VR31 128 2343 PPC KVM_REG_PPC_VR31 128 2379 PPC KVM_REG_PPC_VSR0 128 2344 PPC KVM_REG_PPC_VSR0 128 2380 ... 2345 ... 2381 PPC KVM_REG_PPC_VSR31 128 2346 PPC KVM_REG_PPC_VSR31 128 2382 PPC KVM_REG_PPC_FPSCR 64 2347 PPC KVM_REG_PPC_FPSCR 64 2383 PPC KVM_REG_PPC_VSCR 32 2348 PPC KVM_REG_PPC_VSCR 32 2384 PPC KVM_REG_PPC_VPA_ADDR 64 2349 PPC KVM_REG_PPC_VPA_ADDR 64 2385 PPC KVM_REG_PPC_VPA_SLB 128 2350 PPC KVM_REG_PPC_VPA_SLB 128 2386 PPC KVM_REG_PPC_VPA_DTL 128 2351 PPC KVM_REG_PPC_VPA_DTL 128 2387 PPC KVM_REG_PPC_EPCR 32 2352 PPC KVM_REG_PPC_EPCR 32 2388 PPC KVM_REG_PPC_EPR 32 2353 PPC KVM_REG_PPC_EPR 32 2389 PPC KVM_REG_PPC_TCR 32 2354 PPC KVM_REG_PPC_TCR 32 2390 PPC KVM_REG_PPC_TSR 32 2355 PPC KVM_REG_PPC_TSR 32 2391 PPC KVM_REG_PPC_OR_TSR 32 2356 PPC KVM_REG_PPC_OR_TSR 32 2392 PPC KVM_REG_PPC_CLEAR_TSR 32 2357 PPC KVM_REG_PPC_CLEAR_TSR 32 2393 PPC KVM_REG_PPC_MAS0 32 2358 PPC KVM_REG_PPC_MAS0 32 2394 PPC KVM_REG_PPC_MAS1 32 2359 PPC KVM_REG_PPC_MAS1 32 2395 PPC KVM_REG_PPC_MAS2 64 2360 PPC KVM_REG_PPC_MAS2 64 2396 PPC KVM_REG_PPC_MAS7_3 64 2361 PPC KVM_REG_PPC_MAS7_3 64 2397 PPC KVM_REG_PPC_MAS4 32 2362 PPC KVM_REG_PPC_MAS4 32 2398 PPC KVM_REG_PPC_MAS6 32 2363 PPC KVM_REG_PPC_MAS6 32 2399 PPC KVM_REG_PPC_MMUCFG 32 2364 PPC KVM_REG_PPC_MMUCFG 32 2400 PPC KVM_REG_PPC_TLB0CFG 32 2365 PPC KVM_REG_PPC_TLB0CFG 32 2401 PPC KVM_REG_PPC_TLB1CFG 32 2366 PPC KVM_REG_PPC_TLB1CFG 32 2402 PPC KVM_REG_PPC_TLB2CFG 32 2367 PPC KVM_REG_PPC_TLB2CFG 32 2403 PPC KVM_REG_PPC_TLB3CFG 32 2368 PPC KVM_REG_PPC_TLB3CFG 32 2404 PPC KVM_REG_PPC_TLB0PS 32 2369 PPC KVM_REG_PPC_TLB0PS 32 2405 PPC KVM_REG_PPC_TLB1PS 32 2370 PPC KVM_REG_PPC_TLB1PS 32 2406 PPC KVM_REG_PPC_TLB2PS 32 2371 PPC KVM_REG_PPC_TLB2PS 32 2407 PPC KVM_REG_PPC_TLB3PS 32 2372 PPC KVM_REG_PPC_TLB3PS 32 2408 PPC KVM_REG_PPC_EPTCFG 32 2373 PPC KVM_REG_PPC_EPTCFG 32 2409 PPC KVM_REG_PPC_ICP_STATE 64 2374 PPC KVM_REG_PPC_ICP_STATE 64 2410 PPC KVM_REG_PPC_VP_STATE 128 2375 PPC KVM_REG_PPC_VP_STATE 128 2411 PPC KVM_REG_PPC_TB_OFFSET 64 2376 PPC KVM_REG_PPC_TB_OFFSET 64 2412 PPC KVM_REG_PPC_SPMC1 32 2377 PPC KVM_REG_PPC_SPMC1 32 2413 PPC KVM_REG_PPC_SPMC2 32 2378 PPC KVM_REG_PPC_SPMC2 32 2414 PPC KVM_REG_PPC_IAMR 64 2379 PPC KVM_REG_PPC_IAMR 64 2415 PPC KVM_REG_PPC_TFHAR 64 2380 PPC KVM_REG_PPC_TFHAR 64 2416 PPC KVM_REG_PPC_TFIAR 64 2381 PPC KVM_REG_PPC_TFIAR 64 2417 PPC KVM_REG_PPC_TEXASR 64 2382 PPC KVM_REG_PPC_TEXASR 64 2418 PPC KVM_REG_PPC_FSCR 64 2383 PPC KVM_REG_PPC_FSCR 64 2419 PPC KVM_REG_PPC_PSPB 32 2384 PPC KVM_REG_PPC_PSPB 32 2420 PPC KVM_REG_PPC_EBBHR 64 2385 PPC KVM_REG_PPC_EBBHR 64 2421 PPC KVM_REG_PPC_EBBRR 64 2386 PPC KVM_REG_PPC_EBBRR 64 2422 PPC KVM_REG_PPC_BESCR 64 2387 PPC KVM_REG_PPC_BESCR 64 2423 PPC KVM_REG_PPC_TAR 64 2388 PPC KVM_REG_PPC_TAR 64 2424 PPC KVM_REG_PPC_DPDES 64 2389 PPC KVM_REG_PPC_DPDES 64 2425 PPC KVM_REG_PPC_DAWR 64 2390 PPC KVM_REG_PPC_DAWR 64 2426 PPC KVM_REG_PPC_DAWRX 64 2391 PPC KVM_REG_PPC_DAWRX 64 2427 PPC KVM_REG_PPC_CIABR 64 2392 PPC KVM_REG_PPC_CIABR 64 2428 PPC KVM_REG_PPC_IC 64 2393 PPC KVM_REG_PPC_IC 64 2429 PPC KVM_REG_PPC_VTB 64 2394 PPC KVM_REG_PPC_VTB 64 2430 PPC KVM_REG_PPC_CSIGR 64 2395 PPC KVM_REG_PPC_CSIGR 64 2431 PPC KVM_REG_PPC_TACR 64 2396 PPC KVM_REG_PPC_TACR 64 2432 PPC KVM_REG_PPC_TCSCR 64 2397 PPC KVM_REG_PPC_TCSCR 64 2433 PPC KVM_REG_PPC_PID 64 2398 PPC KVM_REG_PPC_PID 64 2434 PPC KVM_REG_PPC_ACOP 64 2399 PPC KVM_REG_PPC_ACOP 64 2435 PPC KVM_REG_PPC_VRSAVE 32 2400 PPC KVM_REG_PPC_VRSAVE 32 2436 PPC KVM_REG_PPC_LPCR 32 2401 PPC KVM_REG_PPC_LPCR 32 2437 PPC KVM_REG_PPC_LPCR_64 64 2402 PPC KVM_REG_PPC_LPCR_64 64 2438 PPC KVM_REG_PPC_PPR 64 2403 PPC KVM_REG_PPC_PPR 64 2439 PPC KVM_REG_PPC_ARCH_COMPAT 32 2404 PPC KVM_REG_PPC_ARCH_COMPAT 32 2440 PPC KVM_REG_PPC_DABRX 32 2405 PPC KVM_REG_PPC_DABRX 32 2441 PPC KVM_REG_PPC_WORT 64 2406 PPC KVM_REG_PPC_WORT 64 2442 PPC KVM_REG_PPC_SPRG9 64 2407 PPC KVM_REG_PPC_SPRG9 64 2443 PPC KVM_REG_PPC_DBSR 32 2408 PPC KVM_REG_PPC_DBSR 32 2444 PPC KVM_REG_PPC_TIDR 64 2409 PPC KVM_REG_PPC_TIDR 64 2445 PPC KVM_REG_PPC_PSSCR 64 2410 PPC KVM_REG_PPC_PSSCR 64 2446 PPC KVM_REG_PPC_DEC_EXPIRY 64 2411 PPC KVM_REG_PPC_DEC_EXPIRY 64 2447 PPC KVM_REG_PPC_PTCR 64 2412 PPC KVM_REG_PPC_PTCR 64 2448 PPC KVM_REG_PPC_HASHKEYR 64 << 2449 PPC KVM_REG_PPC_HASHPKEYR 64 << 2450 PPC KVM_REG_PPC_DAWR1 64 2413 PPC KVM_REG_PPC_DAWR1 64 2451 PPC KVM_REG_PPC_DAWRX1 64 2414 PPC KVM_REG_PPC_DAWRX1 64 2452 PPC KVM_REG_PPC_DEXCR 64 << 2453 PPC KVM_REG_PPC_TM_GPR0 64 2415 PPC KVM_REG_PPC_TM_GPR0 64 2454 ... 2416 ... 2455 PPC KVM_REG_PPC_TM_GPR31 64 2417 PPC KVM_REG_PPC_TM_GPR31 64 2456 PPC KVM_REG_PPC_TM_VSR0 128 2418 PPC KVM_REG_PPC_TM_VSR0 128 2457 ... 2419 ... 2458 PPC KVM_REG_PPC_TM_VSR63 128 2420 PPC KVM_REG_PPC_TM_VSR63 128 2459 PPC KVM_REG_PPC_TM_CR 64 2421 PPC KVM_REG_PPC_TM_CR 64 2460 PPC KVM_REG_PPC_TM_LR 64 2422 PPC KVM_REG_PPC_TM_LR 64 2461 PPC KVM_REG_PPC_TM_CTR 64 2423 PPC KVM_REG_PPC_TM_CTR 64 2462 PPC KVM_REG_PPC_TM_FPSCR 64 2424 PPC KVM_REG_PPC_TM_FPSCR 64 2463 PPC KVM_REG_PPC_TM_AMR 64 2425 PPC KVM_REG_PPC_TM_AMR 64 2464 PPC KVM_REG_PPC_TM_PPR 64 2426 PPC KVM_REG_PPC_TM_PPR 64 2465 PPC KVM_REG_PPC_TM_VRSAVE 64 2427 PPC KVM_REG_PPC_TM_VRSAVE 64 2466 PPC KVM_REG_PPC_TM_VSCR 32 2428 PPC KVM_REG_PPC_TM_VSCR 32 2467 PPC KVM_REG_PPC_TM_DSCR 64 2429 PPC KVM_REG_PPC_TM_DSCR 64 2468 PPC KVM_REG_PPC_TM_TAR 64 2430 PPC KVM_REG_PPC_TM_TAR 64 2469 PPC KVM_REG_PPC_TM_XER 64 2431 PPC KVM_REG_PPC_TM_XER 64 2470 2432 2471 MIPS KVM_REG_MIPS_R0 64 2433 MIPS KVM_REG_MIPS_R0 64 2472 ... 2434 ... 2473 MIPS KVM_REG_MIPS_R31 64 2435 MIPS KVM_REG_MIPS_R31 64 2474 MIPS KVM_REG_MIPS_HI 64 2436 MIPS KVM_REG_MIPS_HI 64 2475 MIPS KVM_REG_MIPS_LO 64 2437 MIPS KVM_REG_MIPS_LO 64 2476 MIPS KVM_REG_MIPS_PC 64 2438 MIPS KVM_REG_MIPS_PC 64 2477 MIPS KVM_REG_MIPS_CP0_INDEX 32 2439 MIPS KVM_REG_MIPS_CP0_INDEX 32 2478 MIPS KVM_REG_MIPS_CP0_ENTRYLO0 64 2440 MIPS KVM_REG_MIPS_CP0_ENTRYLO0 64 2479 MIPS KVM_REG_MIPS_CP0_ENTRYLO1 64 2441 MIPS KVM_REG_MIPS_CP0_ENTRYLO1 64 2480 MIPS KVM_REG_MIPS_CP0_CONTEXT 64 2442 MIPS KVM_REG_MIPS_CP0_CONTEXT 64 2481 MIPS KVM_REG_MIPS_CP0_CONTEXTCONFIG 32 2443 MIPS KVM_REG_MIPS_CP0_CONTEXTCONFIG 32 2482 MIPS KVM_REG_MIPS_CP0_USERLOCAL 64 2444 MIPS KVM_REG_MIPS_CP0_USERLOCAL 64 2483 MIPS KVM_REG_MIPS_CP0_XCONTEXTCONFIG 64 2445 MIPS KVM_REG_MIPS_CP0_XCONTEXTCONFIG 64 2484 MIPS KVM_REG_MIPS_CP0_PAGEMASK 32 2446 MIPS KVM_REG_MIPS_CP0_PAGEMASK 32 2485 MIPS KVM_REG_MIPS_CP0_PAGEGRAIN 32 2447 MIPS KVM_REG_MIPS_CP0_PAGEGRAIN 32 2486 MIPS KVM_REG_MIPS_CP0_SEGCTL0 64 2448 MIPS KVM_REG_MIPS_CP0_SEGCTL0 64 2487 MIPS KVM_REG_MIPS_CP0_SEGCTL1 64 2449 MIPS KVM_REG_MIPS_CP0_SEGCTL1 64 2488 MIPS KVM_REG_MIPS_CP0_SEGCTL2 64 2450 MIPS KVM_REG_MIPS_CP0_SEGCTL2 64 2489 MIPS KVM_REG_MIPS_CP0_PWBASE 64 2451 MIPS KVM_REG_MIPS_CP0_PWBASE 64 2490 MIPS KVM_REG_MIPS_CP0_PWFIELD 64 2452 MIPS KVM_REG_MIPS_CP0_PWFIELD 64 2491 MIPS KVM_REG_MIPS_CP0_PWSIZE 64 2453 MIPS KVM_REG_MIPS_CP0_PWSIZE 64 2492 MIPS KVM_REG_MIPS_CP0_WIRED 32 2454 MIPS KVM_REG_MIPS_CP0_WIRED 32 2493 MIPS KVM_REG_MIPS_CP0_PWCTL 32 2455 MIPS KVM_REG_MIPS_CP0_PWCTL 32 2494 MIPS KVM_REG_MIPS_CP0_HWRENA 32 2456 MIPS KVM_REG_MIPS_CP0_HWRENA 32 2495 MIPS KVM_REG_MIPS_CP0_BADVADDR 64 2457 MIPS KVM_REG_MIPS_CP0_BADVADDR 64 2496 MIPS KVM_REG_MIPS_CP0_BADINSTR 32 2458 MIPS KVM_REG_MIPS_CP0_BADINSTR 32 2497 MIPS KVM_REG_MIPS_CP0_BADINSTRP 32 2459 MIPS KVM_REG_MIPS_CP0_BADINSTRP 32 2498 MIPS KVM_REG_MIPS_CP0_COUNT 32 2460 MIPS KVM_REG_MIPS_CP0_COUNT 32 2499 MIPS KVM_REG_MIPS_CP0_ENTRYHI 64 2461 MIPS KVM_REG_MIPS_CP0_ENTRYHI 64 2500 MIPS KVM_REG_MIPS_CP0_COMPARE 32 2462 MIPS KVM_REG_MIPS_CP0_COMPARE 32 2501 MIPS KVM_REG_MIPS_CP0_STATUS 32 2463 MIPS KVM_REG_MIPS_CP0_STATUS 32 2502 MIPS KVM_REG_MIPS_CP0_INTCTL 32 2464 MIPS KVM_REG_MIPS_CP0_INTCTL 32 2503 MIPS KVM_REG_MIPS_CP0_CAUSE 32 2465 MIPS KVM_REG_MIPS_CP0_CAUSE 32 2504 MIPS KVM_REG_MIPS_CP0_EPC 64 2466 MIPS KVM_REG_MIPS_CP0_EPC 64 2505 MIPS KVM_REG_MIPS_CP0_PRID 32 2467 MIPS KVM_REG_MIPS_CP0_PRID 32 2506 MIPS KVM_REG_MIPS_CP0_EBASE 64 2468 MIPS KVM_REG_MIPS_CP0_EBASE 64 2507 MIPS KVM_REG_MIPS_CP0_CONFIG 32 2469 MIPS KVM_REG_MIPS_CP0_CONFIG 32 2508 MIPS KVM_REG_MIPS_CP0_CONFIG1 32 2470 MIPS KVM_REG_MIPS_CP0_CONFIG1 32 2509 MIPS KVM_REG_MIPS_CP0_CONFIG2 32 2471 MIPS KVM_REG_MIPS_CP0_CONFIG2 32 2510 MIPS KVM_REG_MIPS_CP0_CONFIG3 32 2472 MIPS KVM_REG_MIPS_CP0_CONFIG3 32 2511 MIPS KVM_REG_MIPS_CP0_CONFIG4 32 2473 MIPS KVM_REG_MIPS_CP0_CONFIG4 32 2512 MIPS KVM_REG_MIPS_CP0_CONFIG5 32 2474 MIPS KVM_REG_MIPS_CP0_CONFIG5 32 2513 MIPS KVM_REG_MIPS_CP0_CONFIG7 32 2475 MIPS KVM_REG_MIPS_CP0_CONFIG7 32 2514 MIPS KVM_REG_MIPS_CP0_XCONTEXT 64 2476 MIPS KVM_REG_MIPS_CP0_XCONTEXT 64 2515 MIPS KVM_REG_MIPS_CP0_ERROREPC 64 2477 MIPS KVM_REG_MIPS_CP0_ERROREPC 64 2516 MIPS KVM_REG_MIPS_CP0_KSCRATCH1 64 2478 MIPS KVM_REG_MIPS_CP0_KSCRATCH1 64 2517 MIPS KVM_REG_MIPS_CP0_KSCRATCH2 64 2479 MIPS KVM_REG_MIPS_CP0_KSCRATCH2 64 2518 MIPS KVM_REG_MIPS_CP0_KSCRATCH3 64 2480 MIPS KVM_REG_MIPS_CP0_KSCRATCH3 64 2519 MIPS KVM_REG_MIPS_CP0_KSCRATCH4 64 2481 MIPS KVM_REG_MIPS_CP0_KSCRATCH4 64 2520 MIPS KVM_REG_MIPS_CP0_KSCRATCH5 64 2482 MIPS KVM_REG_MIPS_CP0_KSCRATCH5 64 2521 MIPS KVM_REG_MIPS_CP0_KSCRATCH6 64 2483 MIPS KVM_REG_MIPS_CP0_KSCRATCH6 64 2522 MIPS KVM_REG_MIPS_CP0_MAAR(0..63) 64 2484 MIPS KVM_REG_MIPS_CP0_MAAR(0..63) 64 2523 MIPS KVM_REG_MIPS_COUNT_CTL 64 2485 MIPS KVM_REG_MIPS_COUNT_CTL 64 2524 MIPS KVM_REG_MIPS_COUNT_RESUME 64 2486 MIPS KVM_REG_MIPS_COUNT_RESUME 64 2525 MIPS KVM_REG_MIPS_COUNT_HZ 64 2487 MIPS KVM_REG_MIPS_COUNT_HZ 64 2526 MIPS KVM_REG_MIPS_FPR_32(0..31) 32 2488 MIPS KVM_REG_MIPS_FPR_32(0..31) 32 2527 MIPS KVM_REG_MIPS_FPR_64(0..31) 64 2489 MIPS KVM_REG_MIPS_FPR_64(0..31) 64 2528 MIPS KVM_REG_MIPS_VEC_128(0..31) 128 2490 MIPS KVM_REG_MIPS_VEC_128(0..31) 128 2529 MIPS KVM_REG_MIPS_FCR_IR 32 2491 MIPS KVM_REG_MIPS_FCR_IR 32 2530 MIPS KVM_REG_MIPS_FCR_CSR 32 2492 MIPS KVM_REG_MIPS_FCR_CSR 32 2531 MIPS KVM_REG_MIPS_MSA_IR 32 2493 MIPS KVM_REG_MIPS_MSA_IR 32 2532 MIPS KVM_REG_MIPS_MSA_CSR 32 2494 MIPS KVM_REG_MIPS_MSA_CSR 32 2533 ======= =============================== === 2495 ======= =============================== ============ 2534 2496 2535 ARM registers are mapped using the lower 32 b 2497 ARM registers are mapped using the lower 32 bits. The upper 16 of that 2536 is the register group type, or coprocessor nu 2498 is the register group type, or coprocessor number: 2537 2499 2538 ARM core registers have the following id bit 2500 ARM core registers have the following id bit patterns:: 2539 2501 2540 0x4020 0000 0010 <index into the kvm_regs s 2502 0x4020 0000 0010 <index into the kvm_regs struct:16> 2541 2503 2542 ARM 32-bit CP15 registers have the following 2504 ARM 32-bit CP15 registers have the following id bit patterns:: 2543 2505 2544 0x4020 0000 000F <zero:1> <crn:4> <crm:4> < 2506 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3> 2545 2507 2546 ARM 64-bit CP15 registers have the following 2508 ARM 64-bit CP15 registers have the following id bit patterns:: 2547 2509 2548 0x4030 0000 000F <zero:1> <zero:4> <crm:4> 2510 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3> 2549 2511 2550 ARM CCSIDR registers are demultiplexed by CSS 2512 ARM CCSIDR registers are demultiplexed by CSSELR value:: 2551 2513 2552 0x4020 0000 0011 00 <csselr:8> 2514 0x4020 0000 0011 00 <csselr:8> 2553 2515 2554 ARM 32-bit VFP control registers have the fol 2516 ARM 32-bit VFP control registers have the following id bit patterns:: 2555 2517 2556 0x4020 0000 0012 1 <regno:12> 2518 0x4020 0000 0012 1 <regno:12> 2557 2519 2558 ARM 64-bit FP registers have the following id 2520 ARM 64-bit FP registers have the following id bit patterns:: 2559 2521 2560 0x4030 0000 0012 0 <regno:12> 2522 0x4030 0000 0012 0 <regno:12> 2561 2523 2562 ARM firmware pseudo-registers have the follow 2524 ARM firmware pseudo-registers have the following bit pattern:: 2563 2525 2564 0x4030 0000 0014 <regno:16> 2526 0x4030 0000 0014 <regno:16> 2565 2527 2566 2528 2567 arm64 registers are mapped using the lower 32 2529 arm64 registers are mapped using the lower 32 bits. The upper 16 of 2568 that is the register group type, or coprocess 2530 that is the register group type, or coprocessor number: 2569 2531 2570 arm64 core/FP-SIMD registers have the followi 2532 arm64 core/FP-SIMD registers have the following id bit patterns. Note 2571 that the size of the access is variable, as t 2533 that the size of the access is variable, as the kvm_regs structure 2572 contains elements ranging from 32 to 128 bits 2534 contains elements ranging from 32 to 128 bits. The index is a 32bit 2573 value in the kvm_regs structure seen as a 32b 2535 value in the kvm_regs structure seen as a 32bit array:: 2574 2536 2575 0x60x0 0000 0010 <index into the kvm_regs s 2537 0x60x0 0000 0010 <index into the kvm_regs struct:16> 2576 2538 2577 Specifically: 2539 Specifically: 2578 2540 2579 ======================= ========= ===== ===== 2541 ======================= ========= ===== ======================================= 2580 Encoding Register Bits kvm_r 2542 Encoding Register Bits kvm_regs member 2581 ======================= ========= ===== ===== 2543 ======================= ========= ===== ======================================= 2582 0x6030 0000 0010 0000 X0 64 regs. 2544 0x6030 0000 0010 0000 X0 64 regs.regs[0] 2583 0x6030 0000 0010 0002 X1 64 regs. 2545 0x6030 0000 0010 0002 X1 64 regs.regs[1] 2584 ... 2546 ... 2585 0x6030 0000 0010 003c X30 64 regs. 2547 0x6030 0000 0010 003c X30 64 regs.regs[30] 2586 0x6030 0000 0010 003e SP 64 regs. 2548 0x6030 0000 0010 003e SP 64 regs.sp 2587 0x6030 0000 0010 0040 PC 64 regs. 2549 0x6030 0000 0010 0040 PC 64 regs.pc 2588 0x6030 0000 0010 0042 PSTATE 64 regs. 2550 0x6030 0000 0010 0042 PSTATE 64 regs.pstate 2589 0x6030 0000 0010 0044 SP_EL1 64 sp_el 2551 0x6030 0000 0010 0044 SP_EL1 64 sp_el1 2590 0x6030 0000 0010 0046 ELR_EL1 64 elr_e 2552 0x6030 0000 0010 0046 ELR_EL1 64 elr_el1 2591 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[ 2553 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[KVM_SPSR_EL1] (alias SPSR_SVC) 2592 0x6030 0000 0010 004a SPSR_ABT 64 spsr[ 2554 0x6030 0000 0010 004a SPSR_ABT 64 spsr[KVM_SPSR_ABT] 2593 0x6030 0000 0010 004c SPSR_UND 64 spsr[ 2555 0x6030 0000 0010 004c SPSR_UND 64 spsr[KVM_SPSR_UND] 2594 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[ 2556 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[KVM_SPSR_IRQ] 2595 0x6030 0000 0010 0050 SPSR_FIQ 64 spsr[ !! 2557 0x6060 0000 0010 0050 SPSR_FIQ 64 spsr[KVM_SPSR_FIQ] 2596 0x6040 0000 0010 0054 V0 128 fp_re 2558 0x6040 0000 0010 0054 V0 128 fp_regs.vregs[0] [1]_ 2597 0x6040 0000 0010 0058 V1 128 fp_re 2559 0x6040 0000 0010 0058 V1 128 fp_regs.vregs[1] [1]_ 2598 ... 2560 ... 2599 0x6040 0000 0010 00d0 V31 128 fp_re 2561 0x6040 0000 0010 00d0 V31 128 fp_regs.vregs[31] [1]_ 2600 0x6020 0000 0010 00d4 FPSR 32 fp_re 2562 0x6020 0000 0010 00d4 FPSR 32 fp_regs.fpsr 2601 0x6020 0000 0010 00d5 FPCR 32 fp_re 2563 0x6020 0000 0010 00d5 FPCR 32 fp_regs.fpcr 2602 ======================= ========= ===== ===== 2564 ======================= ========= ===== ======================================= 2603 2565 2604 .. [1] These encodings are not accepted for S 2566 .. [1] These encodings are not accepted for SVE-enabled vcpus. See 2605 KVM_ARM_VCPU_INIT. 2567 KVM_ARM_VCPU_INIT. 2606 2568 2607 The equivalent register content can be 2569 The equivalent register content can be accessed via bits [127:0] of 2608 the corresponding SVE Zn registers ins 2570 the corresponding SVE Zn registers instead for vcpus that have SVE 2609 enabled (see below). 2571 enabled (see below). 2610 2572 2611 arm64 CCSIDR registers are demultiplexed by C 2573 arm64 CCSIDR registers are demultiplexed by CSSELR value:: 2612 2574 2613 0x6020 0000 0011 00 <csselr:8> 2575 0x6020 0000 0011 00 <csselr:8> 2614 2576 2615 arm64 system registers have the following id 2577 arm64 system registers have the following id bit patterns:: 2616 2578 2617 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <c 2579 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3> 2618 2580 2619 .. warning:: 2581 .. warning:: 2620 2582 2621 Two system register IDs do not follow th 2583 Two system register IDs do not follow the specified pattern. These 2622 are KVM_REG_ARM_TIMER_CVAL and KVM_REG_A 2584 are KVM_REG_ARM_TIMER_CVAL and KVM_REG_ARM_TIMER_CNT, which map to 2623 system registers CNTV_CVAL_EL0 and CNTVC 2585 system registers CNTV_CVAL_EL0 and CNTVCT_EL0 respectively. These 2624 two had their values accidentally swappe 2586 two had their values accidentally swapped, which means TIMER_CVAL is 2625 derived from the register encoding for C 2587 derived from the register encoding for CNTVCT_EL0 and TIMER_CNT is 2626 derived from the register encoding for C 2588 derived from the register encoding for CNTV_CVAL_EL0. As this is 2627 API, it must remain this way. 2589 API, it must remain this way. 2628 2590 2629 arm64 firmware pseudo-registers have the foll 2591 arm64 firmware pseudo-registers have the following bit pattern:: 2630 2592 2631 0x6030 0000 0014 <regno:16> 2593 0x6030 0000 0014 <regno:16> 2632 2594 2633 arm64 SVE registers have the following bit pa 2595 arm64 SVE registers have the following bit patterns:: 2634 2596 2635 0x6080 0000 0015 00 <n:5> <slice:5> Zn bi 2597 0x6080 0000 0015 00 <n:5> <slice:5> Zn bits[2048*slice + 2047 : 2048*slice] 2636 0x6050 0000 0015 04 <n:4> <slice:5> Pn bi 2598 0x6050 0000 0015 04 <n:4> <slice:5> Pn bits[256*slice + 255 : 256*slice] 2637 0x6050 0000 0015 060 <slice:5> FFR b 2599 0x6050 0000 0015 060 <slice:5> FFR bits[256*slice + 255 : 256*slice] 2638 0x6060 0000 0015 ffff KVM_R 2600 0x6060 0000 0015 ffff KVM_REG_ARM64_SVE_VLS pseudo-register 2639 2601 2640 Access to register IDs where 2048 * slice >= 2602 Access to register IDs where 2048 * slice >= 128 * max_vq will fail with 2641 ENOENT. max_vq is the vcpu's maximum support 2603 ENOENT. max_vq is the vcpu's maximum supported vector length in 128-bit 2642 quadwords: see [2]_ below. 2604 quadwords: see [2]_ below. 2643 2605 2644 These registers are only accessible on vcpus 2606 These registers are only accessible on vcpus for which SVE is enabled. 2645 See KVM_ARM_VCPU_INIT for details. 2607 See KVM_ARM_VCPU_INIT for details. 2646 2608 2647 In addition, except for KVM_REG_ARM64_SVE_VLS 2609 In addition, except for KVM_REG_ARM64_SVE_VLS, these registers are not 2648 accessible until the vcpu's SVE configuration 2610 accessible until the vcpu's SVE configuration has been finalized 2649 using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE) 2611 using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). See KVM_ARM_VCPU_INIT 2650 and KVM_ARM_VCPU_FINALIZE for more informatio 2612 and KVM_ARM_VCPU_FINALIZE for more information about this procedure. 2651 2613 2652 KVM_REG_ARM64_SVE_VLS is a pseudo-register th 2614 KVM_REG_ARM64_SVE_VLS is a pseudo-register that allows the set of vector 2653 lengths supported by the vcpu to be discovere 2615 lengths supported by the vcpu to be discovered and configured by 2654 userspace. When transferred to or from user 2616 userspace. When transferred to or from user memory via KVM_GET_ONE_REG 2655 or KVM_SET_ONE_REG, the value of this registe 2617 or KVM_SET_ONE_REG, the value of this register is of type 2656 __u64[KVM_ARM64_SVE_VLS_WORDS], and encodes t 2618 __u64[KVM_ARM64_SVE_VLS_WORDS], and encodes the set of vector lengths as 2657 follows:: 2619 follows:: 2658 2620 2659 __u64 vector_lengths[KVM_ARM64_SVE_VLS_WORD 2621 __u64 vector_lengths[KVM_ARM64_SVE_VLS_WORDS]; 2660 2622 2661 if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX && 2623 if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX && 2662 ((vector_lengths[(vq - KVM_ARM64_SVE_VQ 2624 ((vector_lengths[(vq - KVM_ARM64_SVE_VQ_MIN) / 64] >> 2663 ((vq - KVM_ARM64_SVE_VQ_MIN) 2625 ((vq - KVM_ARM64_SVE_VQ_MIN) % 64)) & 1)) 2664 /* Vector length vq * 16 bytes suppor 2626 /* Vector length vq * 16 bytes supported */ 2665 else 2627 else 2666 /* Vector length vq * 16 bytes not su 2628 /* Vector length vq * 16 bytes not supported */ 2667 2629 2668 .. [2] The maximum value vq for which the abo 2630 .. [2] The maximum value vq for which the above condition is true is 2669 max_vq. This is the maximum vector le 2631 max_vq. This is the maximum vector length available to the guest on 2670 this vcpu, and determines which regist 2632 this vcpu, and determines which register slices are visible through 2671 this ioctl interface. 2633 this ioctl interface. 2672 2634 2673 (See Documentation/arch/arm64/sve.rst for an !! 2635 (See Documentation/arm64/sve.rst for an explanation of the "vq" 2674 nomenclature.) 2636 nomenclature.) 2675 2637 2676 KVM_REG_ARM64_SVE_VLS is only accessible afte 2638 KVM_REG_ARM64_SVE_VLS is only accessible after KVM_ARM_VCPU_INIT. 2677 KVM_ARM_VCPU_INIT initialises it to the best 2639 KVM_ARM_VCPU_INIT initialises it to the best set of vector lengths that 2678 the host supports. 2640 the host supports. 2679 2641 2680 Userspace may subsequently modify it if desir 2642 Userspace may subsequently modify it if desired until the vcpu's SVE 2681 configuration is finalized using KVM_ARM_VCPU 2643 configuration is finalized using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). 2682 2644 2683 Apart from simply removing all vector lengths 2645 Apart from simply removing all vector lengths from the host set that 2684 exceed some value, support for arbitrarily ch 2646 exceed some value, support for arbitrarily chosen sets of vector lengths 2685 is hardware-dependent and may not be availabl 2647 is hardware-dependent and may not be available. Attempting to configure 2686 an invalid set of vector lengths via KVM_SET_ 2648 an invalid set of vector lengths via KVM_SET_ONE_REG will fail with 2687 EINVAL. 2649 EINVAL. 2688 2650 2689 After the vcpu's SVE configuration is finaliz 2651 After the vcpu's SVE configuration is finalized, further attempts to 2690 write this register will fail with EPERM. 2652 write this register will fail with EPERM. 2691 2653 2692 arm64 bitmap feature firmware pseudo-register 2654 arm64 bitmap feature firmware pseudo-registers have the following bit pattern:: 2693 2655 2694 0x6030 0000 0016 <regno:16> 2656 0x6030 0000 0016 <regno:16> 2695 2657 2696 The bitmap feature firmware registers exposes 2658 The bitmap feature firmware registers exposes the hypercall services that 2697 are available for userspace to configure. The 2659 are available for userspace to configure. The set bits corresponds to the 2698 services that are available for the guests to 2660 services that are available for the guests to access. By default, KVM 2699 sets all the supported bits during VM initial 2661 sets all the supported bits during VM initialization. The userspace can 2700 discover the available services via KVM_GET_O 2662 discover the available services via KVM_GET_ONE_REG, and write back the 2701 bitmap corresponding to the features that it 2663 bitmap corresponding to the features that it wishes guests to see via 2702 KVM_SET_ONE_REG. 2664 KVM_SET_ONE_REG. 2703 2665 2704 Note: These registers are immutable once any 2666 Note: These registers are immutable once any of the vCPUs of the VM has 2705 run at least once. A KVM_SET_ONE_REG in such 2667 run at least once. A KVM_SET_ONE_REG in such a scenario will return 2706 a -EBUSY to userspace. 2668 a -EBUSY to userspace. 2707 2669 2708 (See Documentation/virt/kvm/arm/hypercalls.rs 2670 (See Documentation/virt/kvm/arm/hypercalls.rst for more details.) 2709 2671 2710 2672 2711 MIPS registers are mapped using the lower 32 2673 MIPS registers are mapped using the lower 32 bits. The upper 16 of that is 2712 the register group type: 2674 the register group type: 2713 2675 2714 MIPS core registers (see above) have the foll 2676 MIPS core registers (see above) have the following id bit patterns:: 2715 2677 2716 0x7030 0000 0000 <reg:16> 2678 0x7030 0000 0000 <reg:16> 2717 2679 2718 MIPS CP0 registers (see KVM_REG_MIPS_CP0_* ab 2680 MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit 2719 patterns depending on whether they're 32-bit 2681 patterns depending on whether they're 32-bit or 64-bit registers:: 2720 2682 2721 0x7020 0000 0001 00 <reg:5> <sel:3> (32-b 2683 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit) 2722 0x7030 0000 0001 00 <reg:5> <sel:3> (64-b 2684 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit) 2723 2685 2724 Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_M 2686 Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64 2725 versions of the EntryLo registers regardless 2687 versions of the EntryLo registers regardless of the word size of the host 2726 hardware, host kernel, guest, and whether XPA 2688 hardware, host kernel, guest, and whether XPA is present in the guest, i.e. 2727 with the RI and XI bits (if they exist) in bi 2689 with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and 2728 the PFNX field starting at bit 30. 2690 the PFNX field starting at bit 30. 2729 2691 2730 MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) abov 2692 MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit 2731 patterns:: 2693 patterns:: 2732 2694 2733 0x7030 0000 0001 01 <reg:8> 2695 0x7030 0000 0001 01 <reg:8> 2734 2696 2735 MIPS KVM control registers (see above) have t 2697 MIPS KVM control registers (see above) have the following id bit patterns:: 2736 2698 2737 0x7030 0000 0002 <reg:16> 2699 0x7030 0000 0002 <reg:16> 2738 2700 2739 MIPS FPU registers (see KVM_REG_MIPS_FPR_{32, 2701 MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following 2740 id bit patterns depending on the size of the 2702 id bit patterns depending on the size of the register being accessed. They are 2741 always accessed according to the current gues 2703 always accessed according to the current guest FPU mode (Status.FR and 2742 Config5.FRE), i.e. as the guest would see the 2704 Config5.FRE), i.e. as the guest would see them, and they become unpredictable 2743 if the guest FPU mode is changed. MIPS SIMD A 2705 if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector 2744 registers (see KVM_REG_MIPS_VEC_128() above) 2706 registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they 2745 overlap the FPU registers:: 2707 overlap the FPU registers:: 2746 2708 2747 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit F 2709 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers) 2748 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit F 2710 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers) 2749 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit 2711 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers) 2750 2712 2751 MIPS FPU control registers (see KVM_REG_MIPS_ 2713 MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the 2752 following id bit patterns:: 2714 following id bit patterns:: 2753 2715 2754 0x7020 0000 0003 01 <0:3> <reg:5> 2716 0x7020 0000 0003 01 <0:3> <reg:5> 2755 2717 2756 MIPS MSA control registers (see KVM_REG_MIPS_ 2718 MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the 2757 following id bit patterns:: 2719 following id bit patterns:: 2758 2720 2759 0x7020 0000 0003 02 <0:3> <reg:5> 2721 0x7020 0000 0003 02 <0:3> <reg:5> 2760 2722 2761 RISC-V registers are mapped using the lower 3 2723 RISC-V registers are mapped using the lower 32 bits. The upper 8 bits of 2762 that is the register group type. 2724 that is the register group type. 2763 2725 2764 RISC-V config registers are meant for configu 2726 RISC-V config registers are meant for configuring a Guest VCPU and it has 2765 the following id bit patterns:: 2727 the following id bit patterns:: 2766 2728 2767 0x8020 0000 01 <index into the kvm_riscv_co 2729 0x8020 0000 01 <index into the kvm_riscv_config struct:24> (32bit Host) 2768 0x8030 0000 01 <index into the kvm_riscv_co 2730 0x8030 0000 01 <index into the kvm_riscv_config struct:24> (64bit Host) 2769 2731 2770 Following are the RISC-V config registers: 2732 Following are the RISC-V config registers: 2771 2733 2772 ======================= ========= =========== 2734 ======================= ========= ============================================= 2773 Encoding Register Description 2735 Encoding Register Description 2774 ======================= ========= =========== 2736 ======================= ========= ============================================= 2775 0x80x0 0000 0100 0000 isa ISA feature 2737 0x80x0 0000 0100 0000 isa ISA feature bitmap of Guest VCPU 2776 ======================= ========= =========== 2738 ======================= ========= ============================================= 2777 2739 2778 The isa config register can be read anytime b 2740 The isa config register can be read anytime but can only be written before 2779 a Guest VCPU runs. It will have ISA feature b 2741 a Guest VCPU runs. It will have ISA feature bits matching underlying host 2780 set by default. 2742 set by default. 2781 2743 2782 RISC-V core registers represent the general e !! 2744 RISC-V core registers represent the general excution state of a Guest VCPU 2783 and it has the following id bit patterns:: 2745 and it has the following id bit patterns:: 2784 2746 2785 0x8020 0000 02 <index into the kvm_riscv_co 2747 0x8020 0000 02 <index into the kvm_riscv_core struct:24> (32bit Host) 2786 0x8030 0000 02 <index into the kvm_riscv_co 2748 0x8030 0000 02 <index into the kvm_riscv_core struct:24> (64bit Host) 2787 2749 2788 Following are the RISC-V core registers: 2750 Following are the RISC-V core registers: 2789 2751 2790 ======================= ========= =========== 2752 ======================= ========= ============================================= 2791 Encoding Register Description 2753 Encoding Register Description 2792 ======================= ========= =========== 2754 ======================= ========= ============================================= 2793 0x80x0 0000 0200 0000 regs.pc Program cou 2755 0x80x0 0000 0200 0000 regs.pc Program counter 2794 0x80x0 0000 0200 0001 regs.ra Return addr 2756 0x80x0 0000 0200 0001 regs.ra Return address 2795 0x80x0 0000 0200 0002 regs.sp Stack point 2757 0x80x0 0000 0200 0002 regs.sp Stack pointer 2796 0x80x0 0000 0200 0003 regs.gp Global poin 2758 0x80x0 0000 0200 0003 regs.gp Global pointer 2797 0x80x0 0000 0200 0004 regs.tp Task pointe 2759 0x80x0 0000 0200 0004 regs.tp Task pointer 2798 0x80x0 0000 0200 0005 regs.t0 Caller save 2760 0x80x0 0000 0200 0005 regs.t0 Caller saved register 0 2799 0x80x0 0000 0200 0006 regs.t1 Caller save 2761 0x80x0 0000 0200 0006 regs.t1 Caller saved register 1 2800 0x80x0 0000 0200 0007 regs.t2 Caller save 2762 0x80x0 0000 0200 0007 regs.t2 Caller saved register 2 2801 0x80x0 0000 0200 0008 regs.s0 Callee save 2763 0x80x0 0000 0200 0008 regs.s0 Callee saved register 0 2802 0x80x0 0000 0200 0009 regs.s1 Callee save 2764 0x80x0 0000 0200 0009 regs.s1 Callee saved register 1 2803 0x80x0 0000 0200 000a regs.a0 Function ar 2765 0x80x0 0000 0200 000a regs.a0 Function argument (or return value) 0 2804 0x80x0 0000 0200 000b regs.a1 Function ar 2766 0x80x0 0000 0200 000b regs.a1 Function argument (or return value) 1 2805 0x80x0 0000 0200 000c regs.a2 Function ar 2767 0x80x0 0000 0200 000c regs.a2 Function argument 2 2806 0x80x0 0000 0200 000d regs.a3 Function ar 2768 0x80x0 0000 0200 000d regs.a3 Function argument 3 2807 0x80x0 0000 0200 000e regs.a4 Function ar 2769 0x80x0 0000 0200 000e regs.a4 Function argument 4 2808 0x80x0 0000 0200 000f regs.a5 Function ar 2770 0x80x0 0000 0200 000f regs.a5 Function argument 5 2809 0x80x0 0000 0200 0010 regs.a6 Function ar 2771 0x80x0 0000 0200 0010 regs.a6 Function argument 6 2810 0x80x0 0000 0200 0011 regs.a7 Function ar 2772 0x80x0 0000 0200 0011 regs.a7 Function argument 7 2811 0x80x0 0000 0200 0012 regs.s2 Callee save 2773 0x80x0 0000 0200 0012 regs.s2 Callee saved register 2 2812 0x80x0 0000 0200 0013 regs.s3 Callee save 2774 0x80x0 0000 0200 0013 regs.s3 Callee saved register 3 2813 0x80x0 0000 0200 0014 regs.s4 Callee save 2775 0x80x0 0000 0200 0014 regs.s4 Callee saved register 4 2814 0x80x0 0000 0200 0015 regs.s5 Callee save 2776 0x80x0 0000 0200 0015 regs.s5 Callee saved register 5 2815 0x80x0 0000 0200 0016 regs.s6 Callee save 2777 0x80x0 0000 0200 0016 regs.s6 Callee saved register 6 2816 0x80x0 0000 0200 0017 regs.s7 Callee save 2778 0x80x0 0000 0200 0017 regs.s7 Callee saved register 7 2817 0x80x0 0000 0200 0018 regs.s8 Callee save 2779 0x80x0 0000 0200 0018 regs.s8 Callee saved register 8 2818 0x80x0 0000 0200 0019 regs.s9 Callee save 2780 0x80x0 0000 0200 0019 regs.s9 Callee saved register 9 2819 0x80x0 0000 0200 001a regs.s10 Callee save 2781 0x80x0 0000 0200 001a regs.s10 Callee saved register 10 2820 0x80x0 0000 0200 001b regs.s11 Callee save 2782 0x80x0 0000 0200 001b regs.s11 Callee saved register 11 2821 0x80x0 0000 0200 001c regs.t3 Caller save 2783 0x80x0 0000 0200 001c regs.t3 Caller saved register 3 2822 0x80x0 0000 0200 001d regs.t4 Caller save 2784 0x80x0 0000 0200 001d regs.t4 Caller saved register 4 2823 0x80x0 0000 0200 001e regs.t5 Caller save 2785 0x80x0 0000 0200 001e regs.t5 Caller saved register 5 2824 0x80x0 0000 0200 001f regs.t6 Caller save 2786 0x80x0 0000 0200 001f regs.t6 Caller saved register 6 2825 0x80x0 0000 0200 0020 mode Privilege m 2787 0x80x0 0000 0200 0020 mode Privilege mode (1 = S-mode or 0 = U-mode) 2826 ======================= ========= =========== 2788 ======================= ========= ============================================= 2827 2789 2828 RISC-V csr registers represent the supervisor 2790 RISC-V csr registers represent the supervisor mode control/status registers 2829 of a Guest VCPU and it has the following id b 2791 of a Guest VCPU and it has the following id bit patterns:: 2830 2792 2831 0x8020 0000 03 <index into the kvm_riscv_cs 2793 0x8020 0000 03 <index into the kvm_riscv_csr struct:24> (32bit Host) 2832 0x8030 0000 03 <index into the kvm_riscv_cs 2794 0x8030 0000 03 <index into the kvm_riscv_csr struct:24> (64bit Host) 2833 2795 2834 Following are the RISC-V csr registers: 2796 Following are the RISC-V csr registers: 2835 2797 2836 ======================= ========= =========== 2798 ======================= ========= ============================================= 2837 Encoding Register Description 2799 Encoding Register Description 2838 ======================= ========= =========== 2800 ======================= ========= ============================================= 2839 0x80x0 0000 0300 0000 sstatus Supervisor 2801 0x80x0 0000 0300 0000 sstatus Supervisor status 2840 0x80x0 0000 0300 0001 sie Supervisor 2802 0x80x0 0000 0300 0001 sie Supervisor interrupt enable 2841 0x80x0 0000 0300 0002 stvec Supervisor 2803 0x80x0 0000 0300 0002 stvec Supervisor trap vector base 2842 0x80x0 0000 0300 0003 sscratch Supervisor 2804 0x80x0 0000 0300 0003 sscratch Supervisor scratch register 2843 0x80x0 0000 0300 0004 sepc Supervisor 2805 0x80x0 0000 0300 0004 sepc Supervisor exception program counter 2844 0x80x0 0000 0300 0005 scause Supervisor 2806 0x80x0 0000 0300 0005 scause Supervisor trap cause 2845 0x80x0 0000 0300 0006 stval Supervisor 2807 0x80x0 0000 0300 0006 stval Supervisor bad address or instruction 2846 0x80x0 0000 0300 0007 sip Supervisor 2808 0x80x0 0000 0300 0007 sip Supervisor interrupt pending 2847 0x80x0 0000 0300 0008 satp Supervisor 2809 0x80x0 0000 0300 0008 satp Supervisor address translation and protection 2848 ======================= ========= =========== 2810 ======================= ========= ============================================= 2849 2811 2850 RISC-V timer registers represent the timer st 2812 RISC-V timer registers represent the timer state of a Guest VCPU and it has 2851 the following id bit patterns:: 2813 the following id bit patterns:: 2852 2814 2853 0x8030 0000 04 <index into the kvm_riscv_ti 2815 0x8030 0000 04 <index into the kvm_riscv_timer struct:24> 2854 2816 2855 Following are the RISC-V timer registers: 2817 Following are the RISC-V timer registers: 2856 2818 2857 ======================= ========= =========== 2819 ======================= ========= ============================================= 2858 Encoding Register Description 2820 Encoding Register Description 2859 ======================= ========= =========== 2821 ======================= ========= ============================================= 2860 0x8030 0000 0400 0000 frequency Time base f 2822 0x8030 0000 0400 0000 frequency Time base frequency (read-only) 2861 0x8030 0000 0400 0001 time Time value 2823 0x8030 0000 0400 0001 time Time value visible to Guest 2862 0x8030 0000 0400 0002 compare Time compar 2824 0x8030 0000 0400 0002 compare Time compare programmed by Guest 2863 0x8030 0000 0400 0003 state Time compar 2825 0x8030 0000 0400 0003 state Time compare state (1 = ON or 0 = OFF) 2864 ======================= ========= =========== 2826 ======================= ========= ============================================= 2865 2827 2866 RISC-V F-extension registers represent the si 2828 RISC-V F-extension registers represent the single precision floating point 2867 state of a Guest VCPU and it has the followin 2829 state of a Guest VCPU and it has the following id bit patterns:: 2868 2830 2869 0x8020 0000 05 <index into the __riscv_f_ex 2831 0x8020 0000 05 <index into the __riscv_f_ext_state struct:24> 2870 2832 2871 Following are the RISC-V F-extension register 2833 Following are the RISC-V F-extension registers: 2872 2834 2873 ======================= ========= =========== 2835 ======================= ========= ============================================= 2874 Encoding Register Description 2836 Encoding Register Description 2875 ======================= ========= =========== 2837 ======================= ========= ============================================= 2876 0x8020 0000 0500 0000 f[0] Floating po 2838 0x8020 0000 0500 0000 f[0] Floating point register 0 2877 ... 2839 ... 2878 0x8020 0000 0500 001f f[31] Floating po 2840 0x8020 0000 0500 001f f[31] Floating point register 31 2879 0x8020 0000 0500 0020 fcsr Floating po 2841 0x8020 0000 0500 0020 fcsr Floating point control and status register 2880 ======================= ========= =========== 2842 ======================= ========= ============================================= 2881 2843 2882 RISC-V D-extension registers represent the do 2844 RISC-V D-extension registers represent the double precision floating point 2883 state of a Guest VCPU and it has the followin 2845 state of a Guest VCPU and it has the following id bit patterns:: 2884 2846 2885 0x8020 0000 06 <index into the __riscv_d_ex 2847 0x8020 0000 06 <index into the __riscv_d_ext_state struct:24> (fcsr) 2886 0x8030 0000 06 <index into the __riscv_d_ex 2848 0x8030 0000 06 <index into the __riscv_d_ext_state struct:24> (non-fcsr) 2887 2849 2888 Following are the RISC-V D-extension register 2850 Following are the RISC-V D-extension registers: 2889 2851 2890 ======================= ========= =========== 2852 ======================= ========= ============================================= 2891 Encoding Register Description 2853 Encoding Register Description 2892 ======================= ========= =========== 2854 ======================= ========= ============================================= 2893 0x8030 0000 0600 0000 f[0] Floating po 2855 0x8030 0000 0600 0000 f[0] Floating point register 0 2894 ... 2856 ... 2895 0x8030 0000 0600 001f f[31] Floating po 2857 0x8030 0000 0600 001f f[31] Floating point register 31 2896 0x8020 0000 0600 0020 fcsr Floating po 2858 0x8020 0000 0600 0020 fcsr Floating point control and status register 2897 ======================= ========= =========== 2859 ======================= ========= ============================================= 2898 2860 2899 LoongArch registers are mapped using the lowe << 2900 that is the register group type. << 2901 << 2902 LoongArch csr registers are used to control g << 2903 cpu, and they have the following id bit patte << 2904 << 2905 0x9030 0000 0001 00 <reg:5> <sel:3> (64-b << 2906 << 2907 LoongArch KVM control registers are used to i << 2908 such as set vcpu counter or reset vcpu, and t << 2909 << 2910 0x9030 0000 0002 <reg:16> << 2911 << 2912 2861 2913 4.69 KVM_GET_ONE_REG 2862 4.69 KVM_GET_ONE_REG 2914 -------------------- 2863 -------------------- 2915 2864 2916 :Capability: KVM_CAP_ONE_REG 2865 :Capability: KVM_CAP_ONE_REG 2917 :Architectures: all 2866 :Architectures: all 2918 :Type: vcpu ioctl 2867 :Type: vcpu ioctl 2919 :Parameters: struct kvm_one_reg (in and out) 2868 :Parameters: struct kvm_one_reg (in and out) 2920 :Returns: 0 on success, negative value on fai 2869 :Returns: 0 on success, negative value on failure 2921 2870 2922 Errors include: 2871 Errors include: 2923 2872 2924 ======== ================================== 2873 ======== ============================================================ 2925 ENOENT no such register 2874 ENOENT no such register 2926 EINVAL invalid register ID, or no such re 2875 EINVAL invalid register ID, or no such register or used with VMs in 2927 protected virtualization mode on s 2876 protected virtualization mode on s390 2928 EPERM (arm64) register access not allowe 2877 EPERM (arm64) register access not allowed before vcpu finalization 2929 ======== ================================== 2878 ======== ============================================================ 2930 2879 2931 (These error codes are indicative only: do no 2880 (These error codes are indicative only: do not rely on a specific error 2932 code being returned in a specific situation.) 2881 code being returned in a specific situation.) 2933 2882 2934 This ioctl allows to receive the value of a s 2883 This ioctl allows to receive the value of a single register implemented 2935 in a vcpu. The register to read is indicated 2884 in a vcpu. The register to read is indicated by the "id" field of the 2936 kvm_one_reg struct passed in. On success, the 2885 kvm_one_reg struct passed in. On success, the register value can be found 2937 at the memory location pointed to by "addr". 2886 at the memory location pointed to by "addr". 2938 2887 2939 The list of registers accessible using this i 2888 The list of registers accessible using this interface is identical to the 2940 list in 4.68. 2889 list in 4.68. 2941 2890 2942 2891 2943 4.70 KVM_KVMCLOCK_CTRL 2892 4.70 KVM_KVMCLOCK_CTRL 2944 ---------------------- 2893 ---------------------- 2945 2894 2946 :Capability: KVM_CAP_KVMCLOCK_CTRL 2895 :Capability: KVM_CAP_KVMCLOCK_CTRL 2947 :Architectures: Any that implement pvclocks ( 2896 :Architectures: Any that implement pvclocks (currently x86 only) 2948 :Type: vcpu ioctl 2897 :Type: vcpu ioctl 2949 :Parameters: None 2898 :Parameters: None 2950 :Returns: 0 on success, -1 on error 2899 :Returns: 0 on success, -1 on error 2951 2900 2952 This ioctl sets a flag accessible to the gues 2901 This ioctl sets a flag accessible to the guest indicating that the specified 2953 vCPU has been paused by the host userspace. 2902 vCPU has been paused by the host userspace. 2954 2903 2955 The host will set a flag in the pvclock struc 2904 The host will set a flag in the pvclock structure that is checked from the 2956 soft lockup watchdog. The flag is part of th 2905 soft lockup watchdog. The flag is part of the pvclock structure that is 2957 shared between guest and host, specifically t 2906 shared between guest and host, specifically the second bit of the flags 2958 field of the pvclock_vcpu_time_info structure 2907 field of the pvclock_vcpu_time_info structure. It will be set exclusively by 2959 the host and read/cleared exclusively by the 2908 the host and read/cleared exclusively by the guest. The guest operation of 2960 checking and clearing the flag must be an ato 2909 checking and clearing the flag must be an atomic operation so 2961 load-link/store-conditional, or equivalent mu 2910 load-link/store-conditional, or equivalent must be used. There are two cases 2962 where the guest will clear the flag: when the 2911 where the guest will clear the flag: when the soft lockup watchdog timer resets 2963 itself or when a soft lockup is detected. Th 2912 itself or when a soft lockup is detected. This ioctl can be called any time 2964 after pausing the vcpu, but before it is resu 2913 after pausing the vcpu, but before it is resumed. 2965 2914 2966 2915 2967 4.71 KVM_SIGNAL_MSI 2916 4.71 KVM_SIGNAL_MSI 2968 ------------------- 2917 ------------------- 2969 2918 2970 :Capability: KVM_CAP_SIGNAL_MSI 2919 :Capability: KVM_CAP_SIGNAL_MSI 2971 :Architectures: x86 arm64 2920 :Architectures: x86 arm64 2972 :Type: vm ioctl 2921 :Type: vm ioctl 2973 :Parameters: struct kvm_msi (in) 2922 :Parameters: struct kvm_msi (in) 2974 :Returns: >0 on delivery, 0 if guest blocked 2923 :Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error 2975 2924 2976 Directly inject a MSI message. Only valid wit 2925 Directly inject a MSI message. Only valid with in-kernel irqchip that handles 2977 MSI messages. 2926 MSI messages. 2978 2927 2979 :: 2928 :: 2980 2929 2981 struct kvm_msi { 2930 struct kvm_msi { 2982 __u32 address_lo; 2931 __u32 address_lo; 2983 __u32 address_hi; 2932 __u32 address_hi; 2984 __u32 data; 2933 __u32 data; 2985 __u32 flags; 2934 __u32 flags; 2986 __u32 devid; 2935 __u32 devid; 2987 __u8 pad[12]; 2936 __u8 pad[12]; 2988 }; 2937 }; 2989 2938 2990 flags: 2939 flags: 2991 KVM_MSI_VALID_DEVID: devid contains a valid 2940 KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM 2992 KVM_CAP_MSI_DEVID capability advertises the 2941 KVM_CAP_MSI_DEVID capability advertises the requirement to provide 2993 the device ID. If this capability is not a 2942 the device ID. If this capability is not available, userspace 2994 should never set the KVM_MSI_VALID_DEVID fl 2943 should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. 2995 2944 2996 If KVM_MSI_VALID_DEVID is set, devid contains 2945 If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier 2997 for the device that wrote the MSI message. F 2946 for the device that wrote the MSI message. For PCI, this is usually a 2998 BDF identifier in the lower 16 bits. !! 2947 BFD identifier in the lower 16 bits. 2999 2948 3000 On x86, address_hi is ignored unless the KVM_ 2949 On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS 3001 feature of KVM_CAP_X2APIC_API capability is e 2950 feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, 3002 address_hi bits 31-8 provide bits 31-8 of the 2951 address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of 3003 address_hi must be zero. 2952 address_hi must be zero. 3004 2953 3005 2954 3006 4.71 KVM_CREATE_PIT2 2955 4.71 KVM_CREATE_PIT2 3007 -------------------- 2956 -------------------- 3008 2957 3009 :Capability: KVM_CAP_PIT2 2958 :Capability: KVM_CAP_PIT2 3010 :Architectures: x86 2959 :Architectures: x86 3011 :Type: vm ioctl 2960 :Type: vm ioctl 3012 :Parameters: struct kvm_pit_config (in) 2961 :Parameters: struct kvm_pit_config (in) 3013 :Returns: 0 on success, -1 on error 2962 :Returns: 0 on success, -1 on error 3014 2963 3015 Creates an in-kernel device model for the i82 2964 Creates an in-kernel device model for the i8254 PIT. This call is only valid 3016 after enabling in-kernel irqchip support via 2965 after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following 3017 parameters have to be passed:: 2966 parameters have to be passed:: 3018 2967 3019 struct kvm_pit_config { 2968 struct kvm_pit_config { 3020 __u32 flags; 2969 __u32 flags; 3021 __u32 pad[15]; 2970 __u32 pad[15]; 3022 }; 2971 }; 3023 2972 3024 Valid flags are:: 2973 Valid flags are:: 3025 2974 3026 #define KVM_PIT_SPEAKER_DUMMY 1 /* emul 2975 #define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */ 3027 2976 3028 PIT timer interrupts may use a per-VM kernel 2977 PIT timer interrupts may use a per-VM kernel thread for injection. If it 3029 exists, this thread will have a name of the f 2978 exists, this thread will have a name of the following pattern:: 3030 2979 3031 kvm-pit/<owner-process-pid> 2980 kvm-pit/<owner-process-pid> 3032 2981 3033 When running a guest with elevated priorities 2982 When running a guest with elevated priorities, the scheduling parameters of 3034 this thread may have to be adjusted according 2983 this thread may have to be adjusted accordingly. 3035 2984 3036 This IOCTL replaces the obsolete KVM_CREATE_P 2985 This IOCTL replaces the obsolete KVM_CREATE_PIT. 3037 2986 3038 2987 3039 4.72 KVM_GET_PIT2 2988 4.72 KVM_GET_PIT2 3040 ----------------- 2989 ----------------- 3041 2990 3042 :Capability: KVM_CAP_PIT_STATE2 2991 :Capability: KVM_CAP_PIT_STATE2 3043 :Architectures: x86 2992 :Architectures: x86 3044 :Type: vm ioctl 2993 :Type: vm ioctl 3045 :Parameters: struct kvm_pit_state2 (out) 2994 :Parameters: struct kvm_pit_state2 (out) 3046 :Returns: 0 on success, -1 on error 2995 :Returns: 0 on success, -1 on error 3047 2996 3048 Retrieves the state of the in-kernel PIT mode 2997 Retrieves the state of the in-kernel PIT model. Only valid after 3049 KVM_CREATE_PIT2. The state is returned in the 2998 KVM_CREATE_PIT2. The state is returned in the following structure:: 3050 2999 3051 struct kvm_pit_state2 { 3000 struct kvm_pit_state2 { 3052 struct kvm_pit_channel_state channels 3001 struct kvm_pit_channel_state channels[3]; 3053 __u32 flags; 3002 __u32 flags; 3054 __u32 reserved[9]; 3003 __u32 reserved[9]; 3055 }; 3004 }; 3056 3005 3057 Valid flags are:: 3006 Valid flags are:: 3058 3007 3059 /* disable PIT in HPET legacy mode */ 3008 /* disable PIT in HPET legacy mode */ 3060 #define KVM_PIT_FLAGS_HPET_LEGACY 0x000 3009 #define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001 3061 /* speaker port data bit enabled */ 3010 /* speaker port data bit enabled */ 3062 #define KVM_PIT_FLAGS_SPEAKER_DATA_ON 0x000 3011 #define KVM_PIT_FLAGS_SPEAKER_DATA_ON 0x00000002 3063 3012 3064 This IOCTL replaces the obsolete KVM_GET_PIT. 3013 This IOCTL replaces the obsolete KVM_GET_PIT. 3065 3014 3066 3015 3067 4.73 KVM_SET_PIT2 3016 4.73 KVM_SET_PIT2 3068 ----------------- 3017 ----------------- 3069 3018 3070 :Capability: KVM_CAP_PIT_STATE2 3019 :Capability: KVM_CAP_PIT_STATE2 3071 :Architectures: x86 3020 :Architectures: x86 3072 :Type: vm ioctl 3021 :Type: vm ioctl 3073 :Parameters: struct kvm_pit_state2 (in) 3022 :Parameters: struct kvm_pit_state2 (in) 3074 :Returns: 0 on success, -1 on error 3023 :Returns: 0 on success, -1 on error 3075 3024 3076 Sets the state of the in-kernel PIT model. On 3025 Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2. 3077 See KVM_GET_PIT2 for details on struct kvm_pi 3026 See KVM_GET_PIT2 for details on struct kvm_pit_state2. 3078 3027 3079 This IOCTL replaces the obsolete KVM_SET_PIT. 3028 This IOCTL replaces the obsolete KVM_SET_PIT. 3080 3029 3081 3030 3082 4.74 KVM_PPC_GET_SMMU_INFO 3031 4.74 KVM_PPC_GET_SMMU_INFO 3083 -------------------------- 3032 -------------------------- 3084 3033 3085 :Capability: KVM_CAP_PPC_GET_SMMU_INFO 3034 :Capability: KVM_CAP_PPC_GET_SMMU_INFO 3086 :Architectures: powerpc 3035 :Architectures: powerpc 3087 :Type: vm ioctl 3036 :Type: vm ioctl 3088 :Parameters: None 3037 :Parameters: None 3089 :Returns: 0 on success, -1 on error 3038 :Returns: 0 on success, -1 on error 3090 3039 3091 This populates and returns a structure descri 3040 This populates and returns a structure describing the features of 3092 the "Server" class MMU emulation supported by 3041 the "Server" class MMU emulation supported by KVM. 3093 This can in turn be used by userspace to gene 3042 This can in turn be used by userspace to generate the appropriate 3094 device-tree properties for the guest operatin 3043 device-tree properties for the guest operating system. 3095 3044 3096 The structure contains some global informatio 3045 The structure contains some global information, followed by an 3097 array of supported segment page sizes:: 3046 array of supported segment page sizes:: 3098 3047 3099 struct kvm_ppc_smmu_info { 3048 struct kvm_ppc_smmu_info { 3100 __u64 flags; 3049 __u64 flags; 3101 __u32 slb_size; 3050 __u32 slb_size; 3102 __u32 pad; 3051 __u32 pad; 3103 struct kvm_ppc_one_seg_page_size 3052 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ]; 3104 }; 3053 }; 3105 3054 3106 The supported flags are: 3055 The supported flags are: 3107 3056 3108 - KVM_PPC_PAGE_SIZES_REAL: 3057 - KVM_PPC_PAGE_SIZES_REAL: 3109 When that flag is set, guest page siz 3058 When that flag is set, guest page sizes must "fit" the backing 3110 store page sizes. When not set, any p 3059 store page sizes. When not set, any page size in the list can 3111 be used regardless of how they are ba 3060 be used regardless of how they are backed by userspace. 3112 3061 3113 - KVM_PPC_1T_SEGMENTS 3062 - KVM_PPC_1T_SEGMENTS 3114 The emulated MMU supports 1T segments 3063 The emulated MMU supports 1T segments in addition to the 3115 standard 256M ones. 3064 standard 256M ones. 3116 3065 3117 - KVM_PPC_NO_HASH 3066 - KVM_PPC_NO_HASH 3118 This flag indicates that HPT guests a 3067 This flag indicates that HPT guests are not supported by KVM, 3119 thus all guests must use radix MMU mo 3068 thus all guests must use radix MMU mode. 3120 3069 3121 The "slb_size" field indicates how many SLB e 3070 The "slb_size" field indicates how many SLB entries are supported 3122 3071 3123 The "sps" array contains 8 entries indicating 3072 The "sps" array contains 8 entries indicating the supported base 3124 page sizes for a segment in increasing order. 3073 page sizes for a segment in increasing order. Each entry is defined 3125 as follow:: 3074 as follow:: 3126 3075 3127 struct kvm_ppc_one_seg_page_size { 3076 struct kvm_ppc_one_seg_page_size { 3128 __u32 page_shift; /* Base page 3077 __u32 page_shift; /* Base page shift of segment (or 0) */ 3129 __u32 slb_enc; /* SLB encodi 3078 __u32 slb_enc; /* SLB encoding for BookS */ 3130 struct kvm_ppc_one_page_size enc[KVM_ 3079 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ]; 3131 }; 3080 }; 3132 3081 3133 An entry with a "page_shift" of 0 is unused. 3082 An entry with a "page_shift" of 0 is unused. Because the array is 3134 organized in increasing order, a lookup can s !! 3083 organized in increasing order, a lookup can stop when encoutering 3135 such an entry. 3084 such an entry. 3136 3085 3137 The "slb_enc" field provides the encoding to 3086 The "slb_enc" field provides the encoding to use in the SLB for the 3138 page size. The bits are in positions such as 3087 page size. The bits are in positions such as the value can directly 3139 be OR'ed into the "vsid" argument of the slbm 3088 be OR'ed into the "vsid" argument of the slbmte instruction. 3140 3089 3141 The "enc" array is a list which for each of t 3090 The "enc" array is a list which for each of those segment base page 3142 size provides the list of supported actual pa 3091 size provides the list of supported actual page sizes (which can be 3143 only larger or equal to the base page size), 3092 only larger or equal to the base page size), along with the 3144 corresponding encoding in the hash PTE. Simil 3093 corresponding encoding in the hash PTE. Similarly, the array is 3145 8 entries sorted by increasing sizes and an e 3094 8 entries sorted by increasing sizes and an entry with a "0" shift 3146 is an empty entry and a terminator:: 3095 is an empty entry and a terminator:: 3147 3096 3148 struct kvm_ppc_one_page_size { 3097 struct kvm_ppc_one_page_size { 3149 __u32 page_shift; /* Page shift 3098 __u32 page_shift; /* Page shift (or 0) */ 3150 __u32 pte_enc; /* Encoding i 3099 __u32 pte_enc; /* Encoding in the HPTE (>>12) */ 3151 }; 3100 }; 3152 3101 3153 The "pte_enc" field provides a value that can 3102 The "pte_enc" field provides a value that can OR'ed into the hash 3154 PTE's RPN field (ie, it needs to be shifted l 3103 PTE's RPN field (ie, it needs to be shifted left by 12 to OR it 3155 into the hash PTE second double word). 3104 into the hash PTE second double word). 3156 3105 3157 4.75 KVM_IRQFD 3106 4.75 KVM_IRQFD 3158 -------------- 3107 -------------- 3159 3108 3160 :Capability: KVM_CAP_IRQFD 3109 :Capability: KVM_CAP_IRQFD 3161 :Architectures: x86 s390 arm64 3110 :Architectures: x86 s390 arm64 3162 :Type: vm ioctl 3111 :Type: vm ioctl 3163 :Parameters: struct kvm_irqfd (in) 3112 :Parameters: struct kvm_irqfd (in) 3164 :Returns: 0 on success, -1 on error 3113 :Returns: 0 on success, -1 on error 3165 3114 3166 Allows setting an eventfd to directly trigger 3115 Allows setting an eventfd to directly trigger a guest interrupt. 3167 kvm_irqfd.fd specifies the file descriptor to 3116 kvm_irqfd.fd specifies the file descriptor to use as the eventfd and 3168 kvm_irqfd.gsi specifies the irqchip pin toggl 3117 kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When 3169 an event is triggered on the eventfd, an inte 3118 an event is triggered on the eventfd, an interrupt is injected into 3170 the guest using the specified gsi pin. The i 3119 the guest using the specified gsi pin. The irqfd is removed using 3171 the KVM_IRQFD_FLAG_DEASSIGN flag, specifying 3120 the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd 3172 and kvm_irqfd.gsi. 3121 and kvm_irqfd.gsi. 3173 3122 3174 With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD suppor 3123 With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify 3175 mechanism allowing emulation of level-trigger 3124 mechanism allowing emulation of level-triggered, irqfd-based 3176 interrupts. When KVM_IRQFD_FLAG_RESAMPLE is 3125 interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an 3177 additional eventfd in the kvm_irqfd.resamplef 3126 additional eventfd in the kvm_irqfd.resamplefd field. When operating 3178 in resample mode, posting of an interrupt thr 3127 in resample mode, posting of an interrupt through kvm_irq.fd asserts 3179 the specified gsi in the irqchip. When the i 3128 the specified gsi in the irqchip. When the irqchip is resampled, such 3180 as from an EOI, the gsi is de-asserted and th 3129 as from an EOI, the gsi is de-asserted and the user is notified via 3181 kvm_irqfd.resamplefd. It is the user's respo 3130 kvm_irqfd.resamplefd. It is the user's responsibility to re-queue 3182 the interrupt if the device making use of it 3131 the interrupt if the device making use of it still requires service. 3183 Note that closing the resamplefd is not suffi 3132 Note that closing the resamplefd is not sufficient to disable the 3184 irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only n 3133 irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment 3185 and need not be specified with KVM_IRQFD_FLAG 3134 and need not be specified with KVM_IRQFD_FLAG_DEASSIGN. 3186 3135 3187 On arm64, gsi routing being supported, the fo 3136 On arm64, gsi routing being supported, the following can happen: 3188 3137 3189 - in case no routing entry is associated to t 3138 - in case no routing entry is associated to this gsi, injection fails 3190 - in case the gsi is associated to an irqchip 3139 - in case the gsi is associated to an irqchip routing entry, 3191 irqchip.pin + 32 corresponds to the injecte 3140 irqchip.pin + 32 corresponds to the injected SPI ID. 3192 - in case the gsi is associated to an MSI rou 3141 - in case the gsi is associated to an MSI routing entry, the MSI 3193 message and device ID are translated into a 3142 message and device ID are translated into an LPI (support restricted 3194 to GICv3 ITS in-kernel emulation). 3143 to GICv3 ITS in-kernel emulation). 3195 3144 3196 4.76 KVM_PPC_ALLOCATE_HTAB 3145 4.76 KVM_PPC_ALLOCATE_HTAB 3197 -------------------------- 3146 -------------------------- 3198 3147 3199 :Capability: KVM_CAP_PPC_ALLOC_HTAB 3148 :Capability: KVM_CAP_PPC_ALLOC_HTAB 3200 :Architectures: powerpc 3149 :Architectures: powerpc 3201 :Type: vm ioctl 3150 :Type: vm ioctl 3202 :Parameters: Pointer to u32 containing hash t 3151 :Parameters: Pointer to u32 containing hash table order (in/out) 3203 :Returns: 0 on success, -1 on error 3152 :Returns: 0 on success, -1 on error 3204 3153 3205 This requests the host kernel to allocate an 3154 This requests the host kernel to allocate an MMU hash table for a 3206 guest using the PAPR paravirtualization inter 3155 guest using the PAPR paravirtualization interface. This only does 3207 anything if the kernel is configured to use t 3156 anything if the kernel is configured to use the Book 3S HV style of 3208 virtualization. Otherwise the capability doe 3157 virtualization. Otherwise the capability doesn't exist and the ioctl 3209 returns an ENOTTY error. The rest of this de 3158 returns an ENOTTY error. The rest of this description assumes Book 3S 3210 HV. 3159 HV. 3211 3160 3212 There must be no vcpus running when this ioct 3161 There must be no vcpus running when this ioctl is called; if there 3213 are, it will do nothing and return an EBUSY e 3162 are, it will do nothing and return an EBUSY error. 3214 3163 3215 The parameter is a pointer to a 32-bit unsign 3164 The parameter is a pointer to a 32-bit unsigned integer variable 3216 containing the order (log base 2) of the desi 3165 containing the order (log base 2) of the desired size of the hash 3217 table, which must be between 18 and 46. On s 3166 table, which must be between 18 and 46. On successful return from the 3218 ioctl, the value will not be changed by the k 3167 ioctl, the value will not be changed by the kernel. 3219 3168 3220 If no hash table has been allocated when any 3169 If no hash table has been allocated when any vcpu is asked to run 3221 (with the KVM_RUN ioctl), the host kernel wil 3170 (with the KVM_RUN ioctl), the host kernel will allocate a 3222 default-sized hash table (16 MB). 3171 default-sized hash table (16 MB). 3223 3172 3224 If this ioctl is called when a hash table has 3173 If this ioctl is called when a hash table has already been allocated, 3225 with a different order from the existing hash 3174 with a different order from the existing hash table, the existing hash 3226 table will be freed and a new one allocated. 3175 table will be freed and a new one allocated. If this is ioctl is 3227 called when a hash table has already been all 3176 called when a hash table has already been allocated of the same order 3228 as specified, the kernel will clear out the e 3177 as specified, the kernel will clear out the existing hash table (zero 3229 all HPTEs). In either case, if the guest is 3178 all HPTEs). In either case, if the guest is using the virtualized 3230 real-mode area (VRMA) facility, the kernel wi 3179 real-mode area (VRMA) facility, the kernel will re-create the VMRA 3231 HPTEs on the next KVM_RUN of any vcpu. 3180 HPTEs on the next KVM_RUN of any vcpu. 3232 3181 3233 4.77 KVM_S390_INTERRUPT 3182 4.77 KVM_S390_INTERRUPT 3234 ----------------------- 3183 ----------------------- 3235 3184 3236 :Capability: basic 3185 :Capability: basic 3237 :Architectures: s390 3186 :Architectures: s390 3238 :Type: vm ioctl, vcpu ioctl 3187 :Type: vm ioctl, vcpu ioctl 3239 :Parameters: struct kvm_s390_interrupt (in) 3188 :Parameters: struct kvm_s390_interrupt (in) 3240 :Returns: 0 on success, -1 on error 3189 :Returns: 0 on success, -1 on error 3241 3190 3242 Allows to inject an interrupt to the guest. I 3191 Allows to inject an interrupt to the guest. Interrupts can be floating 3243 (vm ioctl) or per cpu (vcpu ioctl), depending 3192 (vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type. 3244 3193 3245 Interrupt parameters are passed via kvm_s390_ 3194 Interrupt parameters are passed via kvm_s390_interrupt:: 3246 3195 3247 struct kvm_s390_interrupt { 3196 struct kvm_s390_interrupt { 3248 __u32 type; 3197 __u32 type; 3249 __u32 parm; 3198 __u32 parm; 3250 __u64 parm64; 3199 __u64 parm64; 3251 }; 3200 }; 3252 3201 3253 type can be one of the following: 3202 type can be one of the following: 3254 3203 3255 KVM_S390_SIGP_STOP (vcpu) 3204 KVM_S390_SIGP_STOP (vcpu) 3256 - sigp stop; optional flags in parm 3205 - sigp stop; optional flags in parm 3257 KVM_S390_PROGRAM_INT (vcpu) 3206 KVM_S390_PROGRAM_INT (vcpu) 3258 - program check; code in parm 3207 - program check; code in parm 3259 KVM_S390_SIGP_SET_PREFIX (vcpu) 3208 KVM_S390_SIGP_SET_PREFIX (vcpu) 3260 - sigp set prefix; prefix address in parm 3209 - sigp set prefix; prefix address in parm 3261 KVM_S390_RESTART (vcpu) 3210 KVM_S390_RESTART (vcpu) 3262 - restart 3211 - restart 3263 KVM_S390_INT_CLOCK_COMP (vcpu) 3212 KVM_S390_INT_CLOCK_COMP (vcpu) 3264 - clock comparator interrupt 3213 - clock comparator interrupt 3265 KVM_S390_INT_CPU_TIMER (vcpu) 3214 KVM_S390_INT_CPU_TIMER (vcpu) 3266 - CPU timer interrupt 3215 - CPU timer interrupt 3267 KVM_S390_INT_VIRTIO (vm) 3216 KVM_S390_INT_VIRTIO (vm) 3268 - virtio external interrupt; external int 3217 - virtio external interrupt; external interrupt 3269 parameters in parm and parm64 3218 parameters in parm and parm64 3270 KVM_S390_INT_SERVICE (vm) 3219 KVM_S390_INT_SERVICE (vm) 3271 - sclp external interrupt; sclp parameter 3220 - sclp external interrupt; sclp parameter in parm 3272 KVM_S390_INT_EMERGENCY (vcpu) 3221 KVM_S390_INT_EMERGENCY (vcpu) 3273 - sigp emergency; source cpu in parm 3222 - sigp emergency; source cpu in parm 3274 KVM_S390_INT_EXTERNAL_CALL (vcpu) 3223 KVM_S390_INT_EXTERNAL_CALL (vcpu) 3275 - sigp external call; source cpu in parm 3224 - sigp external call; source cpu in parm 3276 KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) 3225 KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) 3277 - compound value to indicate an 3226 - compound value to indicate an 3278 I/O interrupt (ai - adapter interrupt; 3227 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel); 3279 I/O interruption parameters in parm (su 3228 I/O interruption parameters in parm (subchannel) and parm64 (intparm, 3280 interruption subclass) 3229 interruption subclass) 3281 KVM_S390_MCHK (vm, vcpu) 3230 KVM_S390_MCHK (vm, vcpu) 3282 - machine check interrupt; cr 14 bits in 3231 - machine check interrupt; cr 14 bits in parm, machine check interrupt 3283 code in parm64 (note that machine check 3232 code in parm64 (note that machine checks needing further payload are not 3284 supported by this ioctl) 3233 supported by this ioctl) 3285 3234 3286 This is an asynchronous vcpu ioctl and can be 3235 This is an asynchronous vcpu ioctl and can be invoked from any thread. 3287 3236 3288 4.78 KVM_PPC_GET_HTAB_FD 3237 4.78 KVM_PPC_GET_HTAB_FD 3289 ------------------------ 3238 ------------------------ 3290 3239 3291 :Capability: KVM_CAP_PPC_HTAB_FD 3240 :Capability: KVM_CAP_PPC_HTAB_FD 3292 :Architectures: powerpc 3241 :Architectures: powerpc 3293 :Type: vm ioctl 3242 :Type: vm ioctl 3294 :Parameters: Pointer to struct kvm_get_htab_f 3243 :Parameters: Pointer to struct kvm_get_htab_fd (in) 3295 :Returns: file descriptor number (>= 0) on su 3244 :Returns: file descriptor number (>= 0) on success, -1 on error 3296 3245 3297 This returns a file descriptor that can be us 3246 This returns a file descriptor that can be used either to read out the 3298 entries in the guest's hashed page table (HPT 3247 entries in the guest's hashed page table (HPT), or to write entries to 3299 initialize the HPT. The returned fd can only 3248 initialize the HPT. The returned fd can only be written to if the 3300 KVM_GET_HTAB_WRITE bit is set in the flags fi 3249 KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and 3301 can only be read if that bit is clear. The a 3250 can only be read if that bit is clear. The argument struct looks like 3302 this:: 3251 this:: 3303 3252 3304 /* For KVM_PPC_GET_HTAB_FD */ 3253 /* For KVM_PPC_GET_HTAB_FD */ 3305 struct kvm_get_htab_fd { 3254 struct kvm_get_htab_fd { 3306 __u64 flags; 3255 __u64 flags; 3307 __u64 start_index; 3256 __u64 start_index; 3308 __u64 reserved[2]; 3257 __u64 reserved[2]; 3309 }; 3258 }; 3310 3259 3311 /* Values for kvm_get_htab_fd.flags */ 3260 /* Values for kvm_get_htab_fd.flags */ 3312 #define KVM_GET_HTAB_BOLTED_ONLY ((__u 3261 #define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1) 3313 #define KVM_GET_HTAB_WRITE ((__u 3262 #define KVM_GET_HTAB_WRITE ((__u64)0x2) 3314 3263 3315 The 'start_index' field gives the index in th 3264 The 'start_index' field gives the index in the HPT of the entry at 3316 which to start reading. It is ignored when w 3265 which to start reading. It is ignored when writing. 3317 3266 3318 Reads on the fd will initially supply informa 3267 Reads on the fd will initially supply information about all 3319 "interesting" HPT entries. Interesting entri 3268 "interesting" HPT entries. Interesting entries are those with the 3320 bolted bit set, if the KVM_GET_HTAB_BOLTED_ON 3269 bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise 3321 all entries. When the end of the HPT is reac 3270 all entries. When the end of the HPT is reached, the read() will 3322 return. If read() is called again on the fd, 3271 return. If read() is called again on the fd, it will start again from 3323 the beginning of the HPT, but will only retur 3272 the beginning of the HPT, but will only return HPT entries that have 3324 changed since they were last read. 3273 changed since they were last read. 3325 3274 3326 Data read or written is structured as a heade 3275 Data read or written is structured as a header (8 bytes) followed by a 3327 series of valid HPT entries (16 bytes) each. 3276 series of valid HPT entries (16 bytes) each. The header indicates how 3328 many valid HPT entries there are and how many 3277 many valid HPT entries there are and how many invalid entries follow 3329 the valid entries. The invalid entries are n 3278 the valid entries. The invalid entries are not represented explicitly 3330 in the stream. The header format is:: 3279 in the stream. The header format is:: 3331 3280 3332 struct kvm_get_htab_header { 3281 struct kvm_get_htab_header { 3333 __u32 index; 3282 __u32 index; 3334 __u16 n_valid; 3283 __u16 n_valid; 3335 __u16 n_invalid; 3284 __u16 n_invalid; 3336 }; 3285 }; 3337 3286 3338 Writes to the fd create HPT entries starting 3287 Writes to the fd create HPT entries starting at the index given in the 3339 header; first 'n_valid' valid entries with co 3288 header; first 'n_valid' valid entries with contents from the data 3340 written, then 'n_invalid' invalid entries, in 3289 written, then 'n_invalid' invalid entries, invalidating any previously 3341 valid entries found. 3290 valid entries found. 3342 3291 3343 4.79 KVM_CREATE_DEVICE 3292 4.79 KVM_CREATE_DEVICE 3344 ---------------------- 3293 ---------------------- 3345 3294 3346 :Capability: KVM_CAP_DEVICE_CTRL 3295 :Capability: KVM_CAP_DEVICE_CTRL 3347 :Architectures: all << 3348 :Type: vm ioctl 3296 :Type: vm ioctl 3349 :Parameters: struct kvm_create_device (in/out 3297 :Parameters: struct kvm_create_device (in/out) 3350 :Returns: 0 on success, -1 on error 3298 :Returns: 0 on success, -1 on error 3351 3299 3352 Errors: 3300 Errors: 3353 3301 3354 ====== =================================== 3302 ====== ======================================================= 3355 ENODEV The device type is unknown or unsup 3303 ENODEV The device type is unknown or unsupported 3356 EEXIST Device already created, and this ty 3304 EEXIST Device already created, and this type of device may not 3357 be instantiated multiple times 3305 be instantiated multiple times 3358 ====== =================================== 3306 ====== ======================================================= 3359 3307 3360 Other error conditions may be defined by in 3308 Other error conditions may be defined by individual device types or 3361 have their standard meanings. 3309 have their standard meanings. 3362 3310 3363 Creates an emulated device in the kernel. Th 3311 Creates an emulated device in the kernel. The file descriptor returned 3364 in fd can be used with KVM_SET/GET/HAS_DEVICE 3312 in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR. 3365 3313 3366 If the KVM_CREATE_DEVICE_TEST flag is set, on 3314 If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the 3367 device type is supported (not necessarily whe 3315 device type is supported (not necessarily whether it can be created 3368 in the current vm). 3316 in the current vm). 3369 3317 3370 Individual devices should not define flags. 3318 Individual devices should not define flags. Attributes should be used 3371 for specifying any behavior that is not impli 3319 for specifying any behavior that is not implied by the device type 3372 number. 3320 number. 3373 3321 3374 :: 3322 :: 3375 3323 3376 struct kvm_create_device { 3324 struct kvm_create_device { 3377 __u32 type; /* in: KVM_DEV_TYPE_x 3325 __u32 type; /* in: KVM_DEV_TYPE_xxx */ 3378 __u32 fd; /* out: device handle 3326 __u32 fd; /* out: device handle */ 3379 __u32 flags; /* in: KVM_CREATE_DEV 3327 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */ 3380 }; 3328 }; 3381 3329 3382 4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR 3330 4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR 3383 -------------------------------------------- 3331 -------------------------------------------- 3384 3332 3385 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ 3333 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, 3386 KVM_CAP_VCPU_ATTRIBUTES for vcpu 3334 KVM_CAP_VCPU_ATTRIBUTES for vcpu device 3387 KVM_CAP_SYS_ATTRIBUTES for syste 3335 KVM_CAP_SYS_ATTRIBUTES for system (/dev/kvm) device (no set) 3388 :Architectures: x86, arm64, s390 << 3389 :Type: device ioctl, vm ioctl, vcpu ioctl 3336 :Type: device ioctl, vm ioctl, vcpu ioctl 3390 :Parameters: struct kvm_device_attr 3337 :Parameters: struct kvm_device_attr 3391 :Returns: 0 on success, -1 on error 3338 :Returns: 0 on success, -1 on error 3392 3339 3393 Errors: 3340 Errors: 3394 3341 3395 ===== =================================== 3342 ===== ============================================================= 3396 ENXIO The group or attribute is unknown/u 3343 ENXIO The group or attribute is unknown/unsupported for this device 3397 or hardware support is missing. 3344 or hardware support is missing. 3398 EPERM The attribute cannot (currently) be 3345 EPERM The attribute cannot (currently) be accessed this way 3399 (e.g. read-only attribute, or attri 3346 (e.g. read-only attribute, or attribute that only makes 3400 sense when the device is in a diffe 3347 sense when the device is in a different state) 3401 ===== =================================== 3348 ===== ============================================================= 3402 3349 3403 Other error conditions may be defined by in 3350 Other error conditions may be defined by individual device types. 3404 3351 3405 Gets/sets a specified piece of device configu 3352 Gets/sets a specified piece of device configuration and/or state. The 3406 semantics are device-specific. See individua 3353 semantics are device-specific. See individual device documentation in 3407 the "devices" directory. As with ONE_REG, th 3354 the "devices" directory. As with ONE_REG, the size of the data 3408 transferred is defined by the particular attr 3355 transferred is defined by the particular attribute. 3409 3356 3410 :: 3357 :: 3411 3358 3412 struct kvm_device_attr { 3359 struct kvm_device_attr { 3413 __u32 flags; /* no flags c 3360 __u32 flags; /* no flags currently defined */ 3414 __u32 group; /* device-def 3361 __u32 group; /* device-defined */ 3415 __u64 attr; /* group-defi 3362 __u64 attr; /* group-defined */ 3416 __u64 addr; /* userspace 3363 __u64 addr; /* userspace address of attr data */ 3417 }; 3364 }; 3418 3365 3419 4.81 KVM_HAS_DEVICE_ATTR 3366 4.81 KVM_HAS_DEVICE_ATTR 3420 ------------------------ 3367 ------------------------ 3421 3368 3422 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ 3369 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, 3423 KVM_CAP_VCPU_ATTRIBUTES for vcpu 3370 KVM_CAP_VCPU_ATTRIBUTES for vcpu device 3424 KVM_CAP_SYS_ATTRIBUTES for syste 3371 KVM_CAP_SYS_ATTRIBUTES for system (/dev/kvm) device 3425 :Type: device ioctl, vm ioctl, vcpu ioctl 3372 :Type: device ioctl, vm ioctl, vcpu ioctl 3426 :Parameters: struct kvm_device_attr 3373 :Parameters: struct kvm_device_attr 3427 :Returns: 0 on success, -1 on error 3374 :Returns: 0 on success, -1 on error 3428 3375 3429 Errors: 3376 Errors: 3430 3377 3431 ===== =================================== 3378 ===== ============================================================= 3432 ENXIO The group or attribute is unknown/u 3379 ENXIO The group or attribute is unknown/unsupported for this device 3433 or hardware support is missing. 3380 or hardware support is missing. 3434 ===== =================================== 3381 ===== ============================================================= 3435 3382 3436 Tests whether a device supports a particular 3383 Tests whether a device supports a particular attribute. A successful 3437 return indicates the attribute is implemented 3384 return indicates the attribute is implemented. It does not necessarily 3438 indicate that the attribute can be read or wr 3385 indicate that the attribute can be read or written in the device's 3439 current state. "addr" is ignored. 3386 current state. "addr" is ignored. 3440 3387 3441 .. _KVM_ARM_VCPU_INIT: << 3442 << 3443 4.82 KVM_ARM_VCPU_INIT 3388 4.82 KVM_ARM_VCPU_INIT 3444 ---------------------- 3389 ---------------------- 3445 3390 3446 :Capability: basic 3391 :Capability: basic 3447 :Architectures: arm64 3392 :Architectures: arm64 3448 :Type: vcpu ioctl 3393 :Type: vcpu ioctl 3449 :Parameters: struct kvm_vcpu_init (in) 3394 :Parameters: struct kvm_vcpu_init (in) 3450 :Returns: 0 on success; -1 on error 3395 :Returns: 0 on success; -1 on error 3451 3396 3452 Errors: 3397 Errors: 3453 3398 3454 ====== ================================ 3399 ====== ================================================================= 3455 EINVAL the target is unknown, or the co 3400 EINVAL the target is unknown, or the combination of features is invalid. 3456 ENOENT a features bit specified is unkn 3401 ENOENT a features bit specified is unknown. 3457 ====== ================================ 3402 ====== ================================================================= 3458 3403 3459 This tells KVM what type of CPU to present to 3404 This tells KVM what type of CPU to present to the guest, and what 3460 optional features it should have. This will 3405 optional features it should have. This will cause a reset of the cpu 3461 registers to their initial values. If this i 3406 registers to their initial values. If this is not called, KVM_RUN will 3462 return ENOEXEC for that vcpu. 3407 return ENOEXEC for that vcpu. 3463 3408 3464 The initial values are defined as: 3409 The initial values are defined as: 3465 - Processor state: 3410 - Processor state: 3466 * AArch64: EL1h, D, A, I and 3411 * AArch64: EL1h, D, A, I and F bits set. All other bits 3467 are cleared. 3412 are cleared. 3468 * AArch32: SVC, A, I and F bi 3413 * AArch32: SVC, A, I and F bits set. All other bits are 3469 cleared. 3414 cleared. 3470 - General Purpose registers, includin 3415 - General Purpose registers, including PC and SP: set to 0 3471 - FPSIMD/NEON registers: set to 0 3416 - FPSIMD/NEON registers: set to 0 3472 - SVE registers: set to 0 3417 - SVE registers: set to 0 3473 - System registers: Reset to their ar 3418 - System registers: Reset to their architecturally defined 3474 values as for a warm reset to EL1 ( 3419 values as for a warm reset to EL1 (resp. SVC) 3475 3420 3476 Note that because some registers reflect mach 3421 Note that because some registers reflect machine topology, all vcpus 3477 should be created before this ioctl is invoke 3422 should be created before this ioctl is invoked. 3478 3423 3479 Userspace can call this function multiple tim 3424 Userspace can call this function multiple times for a given vcpu, including 3480 after the vcpu has been run. This will reset 3425 after the vcpu has been run. This will reset the vcpu to its initial 3481 state. All calls to this function after the i 3426 state. All calls to this function after the initial call must use the same 3482 target and same set of feature flags, otherwi 3427 target and same set of feature flags, otherwise EINVAL will be returned. 3483 3428 3484 Possible features: 3429 Possible features: 3485 3430 3486 - KVM_ARM_VCPU_POWER_OFF: Starts the 3431 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state. 3487 Depends on KVM_CAP_ARM_PSCI. If no 3432 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on 3488 and execute guest code when KVM_RUN 3433 and execute guest code when KVM_RUN is called. 3489 - KVM_ARM_VCPU_EL1_32BIT: Starts the 3434 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode. 3490 Depends on KVM_CAP_ARM_EL1_32BIT (a 3435 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only). 3491 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI 3436 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 (or a future revision 3492 backward compatible with v0.2) for 3437 backward compatible with v0.2) for the CPU. 3493 Depends on KVM_CAP_ARM_PSCI_0_2. 3438 Depends on KVM_CAP_ARM_PSCI_0_2. 3494 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 3439 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU. 3495 Depends on KVM_CAP_ARM_PMU_V3. 3440 Depends on KVM_CAP_ARM_PMU_V3. 3496 3441 3497 - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enabl 3442 - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enables Address Pointer authentication 3498 for arm64 only. 3443 for arm64 only. 3499 Depends on KVM_CAP_ARM_PTRAUTH_ADDR 3444 Depends on KVM_CAP_ARM_PTRAUTH_ADDRESS. 3500 If KVM_CAP_ARM_PTRAUTH_ADDRESS and 3445 If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are 3501 both present, then both KVM_ARM_VCP 3446 both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and 3502 KVM_ARM_VCPU_PTRAUTH_GENERIC must b 3447 KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be 3503 requested. 3448 requested. 3504 3449 3505 - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enabl 3450 - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enables Generic Pointer authentication 3506 for arm64 only. 3451 for arm64 only. 3507 Depends on KVM_CAP_ARM_PTRAUTH_GENE 3452 Depends on KVM_CAP_ARM_PTRAUTH_GENERIC. 3508 If KVM_CAP_ARM_PTRAUTH_ADDRESS and 3453 If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are 3509 both present, then both KVM_ARM_VCP 3454 both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and 3510 KVM_ARM_VCPU_PTRAUTH_GENERIC must b 3455 KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be 3511 requested. 3456 requested. 3512 3457 3513 - KVM_ARM_VCPU_SVE: Enables SVE for t 3458 - KVM_ARM_VCPU_SVE: Enables SVE for the CPU (arm64 only). 3514 Depends on KVM_CAP_ARM_SVE. 3459 Depends on KVM_CAP_ARM_SVE. 3515 Requires KVM_ARM_VCPU_FINALIZE(KVM_ 3460 Requires KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3516 3461 3517 * After KVM_ARM_VCPU_INIT: 3462 * After KVM_ARM_VCPU_INIT: 3518 3463 3519 - KVM_REG_ARM64_SVE_VLS may be 3464 - KVM_REG_ARM64_SVE_VLS may be read using KVM_GET_ONE_REG: the 3520 initial value of this pseudo- 3465 initial value of this pseudo-register indicates the best set of 3521 vector lengths possible for a 3466 vector lengths possible for a vcpu on this host. 3522 3467 3523 * Before KVM_ARM_VCPU_FINALIZE(KVM 3468 * Before KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3524 3469 3525 - KVM_RUN and KVM_GET_REG_LIST 3470 - KVM_RUN and KVM_GET_REG_LIST are not available; 3526 3471 3527 - KVM_GET_ONE_REG and KVM_SET_O 3472 - KVM_GET_ONE_REG and KVM_SET_ONE_REG cannot be used to access 3528 the scalable architectural SV !! 3473 the scalable archietctural SVE registers 3529 KVM_REG_ARM64_SVE_ZREG(), KVM 3474 KVM_REG_ARM64_SVE_ZREG(), KVM_REG_ARM64_SVE_PREG() or 3530 KVM_REG_ARM64_SVE_FFR; 3475 KVM_REG_ARM64_SVE_FFR; 3531 3476 3532 - KVM_REG_ARM64_SVE_VLS may opt 3477 - KVM_REG_ARM64_SVE_VLS may optionally be written using 3533 KVM_SET_ONE_REG, to modify th 3478 KVM_SET_ONE_REG, to modify the set of vector lengths available 3534 for the vcpu. 3479 for the vcpu. 3535 3480 3536 * After KVM_ARM_VCPU_FINALIZE(KVM_ 3481 * After KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3537 3482 3538 - the KVM_REG_ARM64_SVE_VLS pse 3483 - the KVM_REG_ARM64_SVE_VLS pseudo-register is immutable, and can 3539 no longer be written using KV 3484 no longer be written using KVM_SET_ONE_REG. 3540 3485 3541 4.83 KVM_ARM_PREFERRED_TARGET 3486 4.83 KVM_ARM_PREFERRED_TARGET 3542 ----------------------------- 3487 ----------------------------- 3543 3488 3544 :Capability: basic 3489 :Capability: basic 3545 :Architectures: arm64 3490 :Architectures: arm64 3546 :Type: vm ioctl 3491 :Type: vm ioctl 3547 :Parameters: struct kvm_vcpu_init (out) 3492 :Parameters: struct kvm_vcpu_init (out) 3548 :Returns: 0 on success; -1 on error 3493 :Returns: 0 on success; -1 on error 3549 3494 3550 Errors: 3495 Errors: 3551 3496 3552 ====== ================================ 3497 ====== ========================================== 3553 ENODEV no preferred target available fo 3498 ENODEV no preferred target available for the host 3554 ====== ================================ 3499 ====== ========================================== 3555 3500 3556 This queries KVM for preferred CPU target typ 3501 This queries KVM for preferred CPU target type which can be emulated 3557 by KVM on underlying host. 3502 by KVM on underlying host. 3558 3503 3559 The ioctl returns struct kvm_vcpu_init instan 3504 The ioctl returns struct kvm_vcpu_init instance containing information 3560 about preferred CPU target type and recommend 3505 about preferred CPU target type and recommended features for it. The 3561 kvm_vcpu_init->features bitmap returned will 3506 kvm_vcpu_init->features bitmap returned will have feature bits set if 3562 the preferred target recommends setting these 3507 the preferred target recommends setting these features, but this is 3563 not mandatory. 3508 not mandatory. 3564 3509 3565 The information returned by this ioctl can be 3510 The information returned by this ioctl can be used to prepare an instance 3566 of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT 3511 of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in 3567 VCPU matching underlying host. 3512 VCPU matching underlying host. 3568 3513 3569 3514 3570 4.84 KVM_GET_REG_LIST 3515 4.84 KVM_GET_REG_LIST 3571 --------------------- 3516 --------------------- 3572 3517 3573 :Capability: basic 3518 :Capability: basic 3574 :Architectures: arm64, mips, riscv !! 3519 :Architectures: arm64, mips 3575 :Type: vcpu ioctl 3520 :Type: vcpu ioctl 3576 :Parameters: struct kvm_reg_list (in/out) 3521 :Parameters: struct kvm_reg_list (in/out) 3577 :Returns: 0 on success; -1 on error 3522 :Returns: 0 on success; -1 on error 3578 3523 3579 Errors: 3524 Errors: 3580 3525 3581 ===== ================================ 3526 ===== ============================================================== 3582 E2BIG the reg index list is too big to 3527 E2BIG the reg index list is too big to fit in the array specified by 3583 the user (the number required wi 3528 the user (the number required will be written into n). 3584 ===== ================================ 3529 ===== ============================================================== 3585 3530 3586 :: 3531 :: 3587 3532 3588 struct kvm_reg_list { 3533 struct kvm_reg_list { 3589 __u64 n; /* number of registers in re 3534 __u64 n; /* number of registers in reg[] */ 3590 __u64 reg[0]; 3535 __u64 reg[0]; 3591 }; 3536 }; 3592 3537 3593 This ioctl returns the guest registers that a 3538 This ioctl returns the guest registers that are supported for the 3594 KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. 3539 KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. 3595 3540 3596 3541 3597 4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated) 3542 4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated) 3598 ----------------------------------------- 3543 ----------------------------------------- 3599 3544 3600 :Capability: KVM_CAP_ARM_SET_DEVICE_ADDR 3545 :Capability: KVM_CAP_ARM_SET_DEVICE_ADDR 3601 :Architectures: arm64 3546 :Architectures: arm64 3602 :Type: vm ioctl 3547 :Type: vm ioctl 3603 :Parameters: struct kvm_arm_device_address (i 3548 :Parameters: struct kvm_arm_device_address (in) 3604 :Returns: 0 on success, -1 on error 3549 :Returns: 0 on success, -1 on error 3605 3550 3606 Errors: 3551 Errors: 3607 3552 3608 ====== =================================== 3553 ====== ============================================ 3609 ENODEV The device id is unknown 3554 ENODEV The device id is unknown 3610 ENXIO Device not supported on current sys 3555 ENXIO Device not supported on current system 3611 EEXIST Address already set 3556 EEXIST Address already set 3612 E2BIG Address outside guest physical addr 3557 E2BIG Address outside guest physical address space 3613 EBUSY Address overlaps with other device 3558 EBUSY Address overlaps with other device range 3614 ====== =================================== 3559 ====== ============================================ 3615 3560 3616 :: 3561 :: 3617 3562 3618 struct kvm_arm_device_addr { 3563 struct kvm_arm_device_addr { 3619 __u64 id; 3564 __u64 id; 3620 __u64 addr; 3565 __u64 addr; 3621 }; 3566 }; 3622 3567 3623 Specify a device address in the guest's physi 3568 Specify a device address in the guest's physical address space where guests 3624 can access emulated or directly exposed devic 3569 can access emulated or directly exposed devices, which the host kernel needs 3625 to know about. The id field is an architectur 3570 to know about. The id field is an architecture specific identifier for a 3626 specific device. 3571 specific device. 3627 3572 3628 arm64 divides the id field into two parts, a 3573 arm64 divides the id field into two parts, a device id and an 3629 address type id specific to the individual de 3574 address type id specific to the individual device:: 3630 3575 3631 bits: | 63 ... 32 | 31 ... 3576 bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 | 3632 field: | 0x00000000 | devic 3577 field: | 0x00000000 | device id | addr type id | 3633 3578 3634 arm64 currently only require this when using 3579 arm64 currently only require this when using the in-kernel GIC 3635 support for the hardware VGIC features, using 3580 support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2 3636 as the device id. When setting the base addr 3581 as the device id. When setting the base address for the guest's 3637 mapping of the VGIC virtual CPU and distribut 3582 mapping of the VGIC virtual CPU and distributor interface, the ioctl 3638 must be called after calling KVM_CREATE_IRQCH 3583 must be called after calling KVM_CREATE_IRQCHIP, but before calling 3639 KVM_RUN on any of the VCPUs. Calling this io 3584 KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the 3640 base addresses will return -EEXIST. 3585 base addresses will return -EEXIST. 3641 3586 3642 Note, this IOCTL is deprecated and the more f 3587 Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API 3643 should be used instead. 3588 should be used instead. 3644 3589 3645 3590 3646 4.86 KVM_PPC_RTAS_DEFINE_TOKEN 3591 4.86 KVM_PPC_RTAS_DEFINE_TOKEN 3647 ------------------------------ 3592 ------------------------------ 3648 3593 3649 :Capability: KVM_CAP_PPC_RTAS 3594 :Capability: KVM_CAP_PPC_RTAS 3650 :Architectures: ppc 3595 :Architectures: ppc 3651 :Type: vm ioctl 3596 :Type: vm ioctl 3652 :Parameters: struct kvm_rtas_token_args 3597 :Parameters: struct kvm_rtas_token_args 3653 :Returns: 0 on success, -1 on error 3598 :Returns: 0 on success, -1 on error 3654 3599 3655 Defines a token value for a RTAS (Run Time Ab 3600 Defines a token value for a RTAS (Run Time Abstraction Services) 3656 service in order to allow it to be handled in 3601 service in order to allow it to be handled in the kernel. The 3657 argument struct gives the name of the service 3602 argument struct gives the name of the service, which must be the name 3658 of a service that has a kernel-side implement 3603 of a service that has a kernel-side implementation. If the token 3659 value is non-zero, it will be associated with 3604 value is non-zero, it will be associated with that service, and 3660 subsequent RTAS calls by the guest specifying 3605 subsequent RTAS calls by the guest specifying that token will be 3661 handled by the kernel. If the token value is 3606 handled by the kernel. If the token value is 0, then any token 3662 associated with the service will be forgotten 3607 associated with the service will be forgotten, and subsequent RTAS 3663 calls by the guest for that service will be p 3608 calls by the guest for that service will be passed to userspace to be 3664 handled. 3609 handled. 3665 3610 3666 4.87 KVM_SET_GUEST_DEBUG 3611 4.87 KVM_SET_GUEST_DEBUG 3667 ------------------------ 3612 ------------------------ 3668 3613 3669 :Capability: KVM_CAP_SET_GUEST_DEBUG 3614 :Capability: KVM_CAP_SET_GUEST_DEBUG 3670 :Architectures: x86, s390, ppc, arm64 3615 :Architectures: x86, s390, ppc, arm64 3671 :Type: vcpu ioctl 3616 :Type: vcpu ioctl 3672 :Parameters: struct kvm_guest_debug (in) 3617 :Parameters: struct kvm_guest_debug (in) 3673 :Returns: 0 on success; -1 on error 3618 :Returns: 0 on success; -1 on error 3674 3619 3675 :: 3620 :: 3676 3621 3677 struct kvm_guest_debug { 3622 struct kvm_guest_debug { 3678 __u32 control; 3623 __u32 control; 3679 __u32 pad; 3624 __u32 pad; 3680 struct kvm_guest_debug_arch arch; 3625 struct kvm_guest_debug_arch arch; 3681 }; 3626 }; 3682 3627 3683 Set up the processor specific debug registers 3628 Set up the processor specific debug registers and configure vcpu for 3684 handling guest debug events. There are two pa 3629 handling guest debug events. There are two parts to the structure, the 3685 first a control bitfield indicates the type o 3630 first a control bitfield indicates the type of debug events to handle 3686 when running. Common control bits are: 3631 when running. Common control bits are: 3687 3632 3688 - KVM_GUESTDBG_ENABLE: guest debuggi 3633 - KVM_GUESTDBG_ENABLE: guest debugging is enabled 3689 - KVM_GUESTDBG_SINGLESTEP: the next run 3634 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step 3690 3635 3691 The top 16 bits of the control field are arch 3636 The top 16 bits of the control field are architecture specific control 3692 flags which can include the following: 3637 flags which can include the following: 3693 3638 3694 - KVM_GUESTDBG_USE_SW_BP: using softwar 3639 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64] 3695 - KVM_GUESTDBG_USE_HW_BP: using hardwar 3640 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390] 3696 - KVM_GUESTDBG_USE_HW: using hardwar 3641 - KVM_GUESTDBG_USE_HW: using hardware debug events [arm64] 3697 - KVM_GUESTDBG_INJECT_DB: inject DB typ 3642 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86] 3698 - KVM_GUESTDBG_INJECT_BP: inject BP typ 3643 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86] 3699 - KVM_GUESTDBG_EXIT_PENDING: trigger an im 3644 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390] 3700 - KVM_GUESTDBG_BLOCKIRQ: avoid injecti 3645 - KVM_GUESTDBG_BLOCKIRQ: avoid injecting interrupts/NMI/SMI [x86] 3701 3646 3702 For example KVM_GUESTDBG_USE_SW_BP indicates 3647 For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints 3703 are enabled in memory so we need to ensure br 3648 are enabled in memory so we need to ensure breakpoint exceptions are 3704 correctly trapped and the KVM run loop exits 3649 correctly trapped and the KVM run loop exits at the breakpoint and not 3705 running off into the normal guest vector. For 3650 running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP 3706 we need to ensure the guest vCPUs architectur 3651 we need to ensure the guest vCPUs architecture specific registers are 3707 updated to the correct (supplied) values. 3652 updated to the correct (supplied) values. 3708 3653 3709 The second part of the structure is architect 3654 The second part of the structure is architecture specific and 3710 typically contains a set of debug registers. 3655 typically contains a set of debug registers. 3711 3656 3712 For arm64 the number of debug registers is im 3657 For arm64 the number of debug registers is implementation defined and 3713 can be determined by querying the KVM_CAP_GUE 3658 can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and 3714 KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which 3659 KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number 3715 indicating the number of supported registers. 3660 indicating the number of supported registers. 3716 3661 3717 For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP ca 3662 For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP capability indicates whether 3718 the single-step debug event (KVM_GUESTDBG_SIN 3663 the single-step debug event (KVM_GUESTDBG_SINGLESTEP) is supported. 3719 3664 3720 Also when supported, KVM_CAP_SET_GUEST_DEBUG2 3665 Also when supported, KVM_CAP_SET_GUEST_DEBUG2 capability indicates the 3721 supported KVM_GUESTDBG_* bits in the control 3666 supported KVM_GUESTDBG_* bits in the control field. 3722 3667 3723 When debug events exit the main run loop with 3668 When debug events exit the main run loop with the reason 3724 KVM_EXIT_DEBUG with the kvm_debug_exit_arch p 3669 KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run 3725 structure containing architecture specific de 3670 structure containing architecture specific debug information. 3726 3671 3727 4.88 KVM_GET_EMULATED_CPUID 3672 4.88 KVM_GET_EMULATED_CPUID 3728 --------------------------- 3673 --------------------------- 3729 3674 3730 :Capability: KVM_CAP_EXT_EMUL_CPUID 3675 :Capability: KVM_CAP_EXT_EMUL_CPUID 3731 :Architectures: x86 3676 :Architectures: x86 3732 :Type: system ioctl 3677 :Type: system ioctl 3733 :Parameters: struct kvm_cpuid2 (in/out) 3678 :Parameters: struct kvm_cpuid2 (in/out) 3734 :Returns: 0 on success, -1 on error 3679 :Returns: 0 on success, -1 on error 3735 3680 3736 :: 3681 :: 3737 3682 3738 struct kvm_cpuid2 { 3683 struct kvm_cpuid2 { 3739 __u32 nent; 3684 __u32 nent; 3740 __u32 flags; 3685 __u32 flags; 3741 struct kvm_cpuid_entry2 entries[0]; 3686 struct kvm_cpuid_entry2 entries[0]; 3742 }; 3687 }; 3743 3688 3744 The member 'flags' is used for passing flags 3689 The member 'flags' is used for passing flags from userspace. 3745 3690 3746 :: 3691 :: 3747 3692 3748 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 3693 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) 3749 #define KVM_CPUID_FLAG_STATEFUL_FUNC 3694 #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) /* deprecated */ 3750 #define KVM_CPUID_FLAG_STATE_READ_NEXT 3695 #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) /* deprecated */ 3751 3696 3752 struct kvm_cpuid_entry2 { 3697 struct kvm_cpuid_entry2 { 3753 __u32 function; 3698 __u32 function; 3754 __u32 index; 3699 __u32 index; 3755 __u32 flags; 3700 __u32 flags; 3756 __u32 eax; 3701 __u32 eax; 3757 __u32 ebx; 3702 __u32 ebx; 3758 __u32 ecx; 3703 __u32 ecx; 3759 __u32 edx; 3704 __u32 edx; 3760 __u32 padding[3]; 3705 __u32 padding[3]; 3761 }; 3706 }; 3762 3707 3763 This ioctl returns x86 cpuid features which a 3708 This ioctl returns x86 cpuid features which are emulated by 3764 kvm.Userspace can use the information returne 3709 kvm.Userspace can use the information returned by this ioctl to query 3765 which features are emulated by kvm instead of 3710 which features are emulated by kvm instead of being present natively. 3766 3711 3767 Userspace invokes KVM_GET_EMULATED_CPUID by p 3712 Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2 3768 structure with the 'nent' field indicating th 3713 structure with the 'nent' field indicating the number of entries in 3769 the variable-size array 'entries'. If the num 3714 the variable-size array 'entries'. If the number of entries is too low 3770 to describe the cpu capabilities, an error (E 3715 to describe the cpu capabilities, an error (E2BIG) is returned. If the 3771 number is too high, the 'nent' field is adjus 3716 number is too high, the 'nent' field is adjusted and an error (ENOMEM) 3772 is returned. If the number is just right, the 3717 is returned. If the number is just right, the 'nent' field is adjusted 3773 to the number of valid entries in the 'entrie 3718 to the number of valid entries in the 'entries' array, which is then 3774 filled. 3719 filled. 3775 3720 3776 The entries returned are the set CPUID bits o 3721 The entries returned are the set CPUID bits of the respective features 3777 which kvm emulates, as returned by the CPUID 3722 which kvm emulates, as returned by the CPUID instruction, with unknown 3778 or unsupported feature bits cleared. 3723 or unsupported feature bits cleared. 3779 3724 3780 Features like x2apic, for example, may not be 3725 Features like x2apic, for example, may not be present in the host cpu 3781 but are exposed by kvm in KVM_GET_SUPPORTED_C 3726 but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be 3782 emulated efficiently and thus not included he 3727 emulated efficiently and thus not included here. 3783 3728 3784 The fields in each entry are defined as follo 3729 The fields in each entry are defined as follows: 3785 3730 3786 function: 3731 function: 3787 the eax value used to obtain the ent 3732 the eax value used to obtain the entry 3788 index: 3733 index: 3789 the ecx value used to obtain the ent 3734 the ecx value used to obtain the entry (for entries that are 3790 affected by ecx) 3735 affected by ecx) 3791 flags: 3736 flags: 3792 an OR of zero or more of the following: 3737 an OR of zero or more of the following: 3793 3738 3794 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 3739 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 3795 if the index field is valid 3740 if the index field is valid 3796 3741 3797 eax, ebx, ecx, edx: 3742 eax, ebx, ecx, edx: 3798 3743 3799 the values returned by the cpuid ins 3744 the values returned by the cpuid instruction for 3800 this function/index combination 3745 this function/index combination 3801 3746 3802 4.89 KVM_S390_MEM_OP 3747 4.89 KVM_S390_MEM_OP 3803 -------------------- 3748 -------------------- 3804 3749 3805 :Capability: KVM_CAP_S390_MEM_OP, KVM_CAP_S39 3750 :Capability: KVM_CAP_S390_MEM_OP, KVM_CAP_S390_PROTECTED, KVM_CAP_S390_MEM_OP_EXTENSION 3806 :Architectures: s390 3751 :Architectures: s390 3807 :Type: vm ioctl, vcpu ioctl 3752 :Type: vm ioctl, vcpu ioctl 3808 :Parameters: struct kvm_s390_mem_op (in) 3753 :Parameters: struct kvm_s390_mem_op (in) 3809 :Returns: = 0 on success, 3754 :Returns: = 0 on success, 3810 < 0 on generic error (e.g. -EFAULT 3755 < 0 on generic error (e.g. -EFAULT or -ENOMEM), 3811 16 bit program exception code if th !! 3756 > 0 if an exception occurred while walking the page tables 3812 3757 3813 Read or write data from/to the VM's memory. 3758 Read or write data from/to the VM's memory. 3814 The KVM_CAP_S390_MEM_OP_EXTENSION capability 3759 The KVM_CAP_S390_MEM_OP_EXTENSION capability specifies what functionality is 3815 supported. 3760 supported. 3816 3761 3817 Parameters are specified via the following st 3762 Parameters are specified via the following structure:: 3818 3763 3819 struct kvm_s390_mem_op { 3764 struct kvm_s390_mem_op { 3820 __u64 gaddr; /* the guest 3765 __u64 gaddr; /* the guest address */ 3821 __u64 flags; /* flags */ 3766 __u64 flags; /* flags */ 3822 __u32 size; /* amount of 3767 __u32 size; /* amount of bytes */ 3823 __u32 op; /* type of op 3768 __u32 op; /* type of operation */ 3824 __u64 buf; /* buffer in 3769 __u64 buf; /* buffer in userspace */ 3825 union { 3770 union { 3826 struct { 3771 struct { 3827 __u8 ar; /* th 3772 __u8 ar; /* the access register number */ 3828 __u8 key; /* ac 3773 __u8 key; /* access key, ignored if flag unset */ 3829 __u8 pad1[6]; /* ig << 3830 __u64 old_addr; /* ig << 3831 }; 3774 }; 3832 __u32 sida_offset; /* offset 3775 __u32 sida_offset; /* offset into the sida */ 3833 __u8 reserved[32]; /* ignored 3776 __u8 reserved[32]; /* ignored */ 3834 }; 3777 }; 3835 }; 3778 }; 3836 3779 3837 The start address of the memory region has to 3780 The start address of the memory region has to be specified in the "gaddr" 3838 field, and the length of the region in the "s 3781 field, and the length of the region in the "size" field (which must not 3839 be 0). The maximum value for "size" can be ob 3782 be 0). The maximum value for "size" can be obtained by checking the 3840 KVM_CAP_S390_MEM_OP capability. "buf" is the 3783 KVM_CAP_S390_MEM_OP capability. "buf" is the buffer supplied by the 3841 userspace application where the read data sho 3784 userspace application where the read data should be written to for 3842 a read access, or where the data that should 3785 a read access, or where the data that should be written is stored for 3843 a write access. The "reserved" field is mean 3786 a write access. The "reserved" field is meant for future extensions. 3844 Reserved and unused values are ignored. Futur 3787 Reserved and unused values are ignored. Future extension that add members must 3845 introduce new flags. 3788 introduce new flags. 3846 3789 3847 The type of operation is specified in the "op 3790 The type of operation is specified in the "op" field. Flags modifying 3848 their behavior can be set in the "flags" fiel 3791 their behavior can be set in the "flags" field. Undefined flag bits must 3849 be set to 0. 3792 be set to 0. 3850 3793 3851 Possible operations are: 3794 Possible operations are: 3852 * ``KVM_S390_MEMOP_LOGICAL_READ`` 3795 * ``KVM_S390_MEMOP_LOGICAL_READ`` 3853 * ``KVM_S390_MEMOP_LOGICAL_WRITE`` 3796 * ``KVM_S390_MEMOP_LOGICAL_WRITE`` 3854 * ``KVM_S390_MEMOP_ABSOLUTE_READ`` 3797 * ``KVM_S390_MEMOP_ABSOLUTE_READ`` 3855 * ``KVM_S390_MEMOP_ABSOLUTE_WRITE`` 3798 * ``KVM_S390_MEMOP_ABSOLUTE_WRITE`` 3856 * ``KVM_S390_MEMOP_SIDA_READ`` 3799 * ``KVM_S390_MEMOP_SIDA_READ`` 3857 * ``KVM_S390_MEMOP_SIDA_WRITE`` 3800 * ``KVM_S390_MEMOP_SIDA_WRITE`` 3858 * ``KVM_S390_MEMOP_ABSOLUTE_CMPXCHG`` << 3859 3801 3860 Logical read/write: 3802 Logical read/write: 3861 ^^^^^^^^^^^^^^^^^^^ 3803 ^^^^^^^^^^^^^^^^^^^ 3862 3804 3863 Access logical memory, i.e. translate the giv 3805 Access logical memory, i.e. translate the given guest address to an absolute 3864 address given the state of the VCPU and use t 3806 address given the state of the VCPU and use the absolute address as target of 3865 the access. "ar" designates the access regist 3807 the access. "ar" designates the access register number to be used; the valid 3866 range is 0..15. 3808 range is 0..15. 3867 Logical accesses are permitted for the VCPU i 3809 Logical accesses are permitted for the VCPU ioctl only. 3868 Logical accesses are permitted for non-protec 3810 Logical accesses are permitted for non-protected guests only. 3869 3811 3870 Supported flags: 3812 Supported flags: 3871 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` 3813 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` 3872 * ``KVM_S390_MEMOP_F_INJECT_EXCEPTION`` 3814 * ``KVM_S390_MEMOP_F_INJECT_EXCEPTION`` 3873 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3815 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3874 3816 3875 The KVM_S390_MEMOP_F_CHECK_ONLY flag can be s 3817 The KVM_S390_MEMOP_F_CHECK_ONLY flag can be set to check whether the 3876 corresponding memory access would cause an ac 3818 corresponding memory access would cause an access exception; however, 3877 no actual access to the data in memory at the 3819 no actual access to the data in memory at the destination is performed. 3878 In this case, "buf" is unused and can be NULL 3820 In this case, "buf" is unused and can be NULL. 3879 3821 3880 In case an access exception occurred during t 3822 In case an access exception occurred during the access (or would occur 3881 in case of KVM_S390_MEMOP_F_CHECK_ONLY), the 3823 in case of KVM_S390_MEMOP_F_CHECK_ONLY), the ioctl returns a positive 3882 error number indicating the type of exception 3824 error number indicating the type of exception. This exception is also 3883 raised directly at the corresponding VCPU if 3825 raised directly at the corresponding VCPU if the flag 3884 KVM_S390_MEMOP_F_INJECT_EXCEPTION is set. 3826 KVM_S390_MEMOP_F_INJECT_EXCEPTION is set. 3885 On protection exceptions, unless specified ot 3827 On protection exceptions, unless specified otherwise, the injected 3886 translation-exception identifier (TEID) indic 3828 translation-exception identifier (TEID) indicates suppression. 3887 3829 3888 If the KVM_S390_MEMOP_F_SKEY_PROTECTION flag 3830 If the KVM_S390_MEMOP_F_SKEY_PROTECTION flag is set, storage key 3889 protection is also in effect and may cause ex 3831 protection is also in effect and may cause exceptions if accesses are 3890 prohibited given the access key designated by 3832 prohibited given the access key designated by "key"; the valid range is 0..15. 3891 KVM_S390_MEMOP_F_SKEY_PROTECTION is available 3833 KVM_S390_MEMOP_F_SKEY_PROTECTION is available if KVM_CAP_S390_MEM_OP_EXTENSION 3892 is > 0. 3834 is > 0. 3893 Since the accessed memory may span multiple p 3835 Since the accessed memory may span multiple pages and those pages might have 3894 different storage keys, it is possible that a 3836 different storage keys, it is possible that a protection exception occurs 3895 after memory has been modified. In this case, 3837 after memory has been modified. In this case, if the exception is injected, 3896 the TEID does not indicate suppression. 3838 the TEID does not indicate suppression. 3897 3839 3898 Absolute read/write: 3840 Absolute read/write: 3899 ^^^^^^^^^^^^^^^^^^^^ 3841 ^^^^^^^^^^^^^^^^^^^^ 3900 3842 3901 Access absolute memory. This operation is int 3843 Access absolute memory. This operation is intended to be used with the 3902 KVM_S390_MEMOP_F_SKEY_PROTECTION flag, to all 3844 KVM_S390_MEMOP_F_SKEY_PROTECTION flag, to allow accessing memory and performing 3903 the checks required for storage key protectio 3845 the checks required for storage key protection as one operation (as opposed to 3904 user space getting the storage keys, performi 3846 user space getting the storage keys, performing the checks, and accessing 3905 memory thereafter, which could lead to a dela 3847 memory thereafter, which could lead to a delay between check and access). 3906 Absolute accesses are permitted for the VM io 3848 Absolute accesses are permitted for the VM ioctl if KVM_CAP_S390_MEM_OP_EXTENSION 3907 has the KVM_S390_MEMOP_EXTENSION_CAP_BASE bit !! 3849 is > 0. 3908 Currently absolute accesses are not permitted 3850 Currently absolute accesses are not permitted for VCPU ioctls. 3909 Absolute accesses are permitted for non-prote 3851 Absolute accesses are permitted for non-protected guests only. 3910 3852 3911 Supported flags: 3853 Supported flags: 3912 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` 3854 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` 3913 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3855 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3914 3856 3915 The semantics of the flags common with logica !! 3857 The semantics of the flags are as for logical accesses. 3916 accesses. << 3917 << 3918 Absolute cmpxchg: << 3919 ^^^^^^^^^^^^^^^^^ << 3920 << 3921 Perform cmpxchg on absolute guest memory. Int << 3922 KVM_S390_MEMOP_F_SKEY_PROTECTION flag. << 3923 Instead of doing an unconditional write, the << 3924 location contains the value pointed to by "ol << 3925 This is performed as an atomic cmpxchg with t << 3926 parameter. "size" must be a power of two up t << 3927 If the exchange did not take place because th << 3928 old value, the value "old_addr" points to is << 3929 User space can tell if an exchange took place << 3930 occurred. The cmpxchg op is permitted for the << 3931 KVM_CAP_S390_MEM_OP_EXTENSION has flag KVM_S3 << 3932 << 3933 Supported flags: << 3934 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` << 3935 3858 3936 SIDA read/write: 3859 SIDA read/write: 3937 ^^^^^^^^^^^^^^^^ 3860 ^^^^^^^^^^^^^^^^ 3938 3861 3939 Access the secure instruction data area which 3862 Access the secure instruction data area which contains memory operands necessary 3940 for instruction emulation for protected guest 3863 for instruction emulation for protected guests. 3941 SIDA accesses are available if the KVM_CAP_S3 3864 SIDA accesses are available if the KVM_CAP_S390_PROTECTED capability is available. 3942 SIDA accesses are permitted for the VCPU ioct 3865 SIDA accesses are permitted for the VCPU ioctl only. 3943 SIDA accesses are permitted for protected gue 3866 SIDA accesses are permitted for protected guests only. 3944 3867 3945 No flags are supported. 3868 No flags are supported. 3946 3869 3947 4.90 KVM_S390_GET_SKEYS 3870 4.90 KVM_S390_GET_SKEYS 3948 ----------------------- 3871 ----------------------- 3949 3872 3950 :Capability: KVM_CAP_S390_SKEYS 3873 :Capability: KVM_CAP_S390_SKEYS 3951 :Architectures: s390 3874 :Architectures: s390 3952 :Type: vm ioctl 3875 :Type: vm ioctl 3953 :Parameters: struct kvm_s390_skeys 3876 :Parameters: struct kvm_s390_skeys 3954 :Returns: 0 on success, KVM_S390_GET_SKEYS_NO 3877 :Returns: 0 on success, KVM_S390_GET_SKEYS_NONE if guest is not using storage 3955 keys, negative value on error 3878 keys, negative value on error 3956 3879 3957 This ioctl is used to get guest storage key v 3880 This ioctl is used to get guest storage key values on the s390 3958 architecture. The ioctl takes parameters via 3881 architecture. The ioctl takes parameters via the kvm_s390_skeys struct:: 3959 3882 3960 struct kvm_s390_skeys { 3883 struct kvm_s390_skeys { 3961 __u64 start_gfn; 3884 __u64 start_gfn; 3962 __u64 count; 3885 __u64 count; 3963 __u64 skeydata_addr; 3886 __u64 skeydata_addr; 3964 __u32 flags; 3887 __u32 flags; 3965 __u32 reserved[9]; 3888 __u32 reserved[9]; 3966 }; 3889 }; 3967 3890 3968 The start_gfn field is the number of the firs 3891 The start_gfn field is the number of the first guest frame whose storage keys 3969 you want to get. 3892 you want to get. 3970 3893 3971 The count field is the number of consecutive 3894 The count field is the number of consecutive frames (starting from start_gfn) 3972 whose storage keys to get. The count field mu 3895 whose storage keys to get. The count field must be at least 1 and the maximum 3973 allowed value is defined as KVM_S390_SKEYS_MA 3896 allowed value is defined as KVM_S390_SKEYS_MAX. Values outside this range 3974 will cause the ioctl to return -EINVAL. 3897 will cause the ioctl to return -EINVAL. 3975 3898 3976 The skeydata_addr field is the address to a b 3899 The skeydata_addr field is the address to a buffer large enough to hold count 3977 bytes. This buffer will be filled with storag 3900 bytes. This buffer will be filled with storage key data by the ioctl. 3978 3901 3979 4.91 KVM_S390_SET_SKEYS 3902 4.91 KVM_S390_SET_SKEYS 3980 ----------------------- 3903 ----------------------- 3981 3904 3982 :Capability: KVM_CAP_S390_SKEYS 3905 :Capability: KVM_CAP_S390_SKEYS 3983 :Architectures: s390 3906 :Architectures: s390 3984 :Type: vm ioctl 3907 :Type: vm ioctl 3985 :Parameters: struct kvm_s390_skeys 3908 :Parameters: struct kvm_s390_skeys 3986 :Returns: 0 on success, negative value on err 3909 :Returns: 0 on success, negative value on error 3987 3910 3988 This ioctl is used to set guest storage key v 3911 This ioctl is used to set guest storage key values on the s390 3989 architecture. The ioctl takes parameters via 3912 architecture. The ioctl takes parameters via the kvm_s390_skeys struct. 3990 See section on KVM_S390_GET_SKEYS for struct 3913 See section on KVM_S390_GET_SKEYS for struct definition. 3991 3914 3992 The start_gfn field is the number of the firs 3915 The start_gfn field is the number of the first guest frame whose storage keys 3993 you want to set. 3916 you want to set. 3994 3917 3995 The count field is the number of consecutive 3918 The count field is the number of consecutive frames (starting from start_gfn) 3996 whose storage keys to get. The count field mu 3919 whose storage keys to get. The count field must be at least 1 and the maximum 3997 allowed value is defined as KVM_S390_SKEYS_MA 3920 allowed value is defined as KVM_S390_SKEYS_MAX. Values outside this range 3998 will cause the ioctl to return -EINVAL. 3921 will cause the ioctl to return -EINVAL. 3999 3922 4000 The skeydata_addr field is the address to a b 3923 The skeydata_addr field is the address to a buffer containing count bytes of 4001 storage keys. Each byte in the buffer will be 3924 storage keys. Each byte in the buffer will be set as the storage key for a 4002 single frame starting at start_gfn for count 3925 single frame starting at start_gfn for count frames. 4003 3926 4004 Note: If any architecturally invalid key valu 3927 Note: If any architecturally invalid key value is found in the given data then 4005 the ioctl will return -EINVAL. 3928 the ioctl will return -EINVAL. 4006 3929 4007 4.92 KVM_S390_IRQ 3930 4.92 KVM_S390_IRQ 4008 ----------------- 3931 ----------------- 4009 3932 4010 :Capability: KVM_CAP_S390_INJECT_IRQ 3933 :Capability: KVM_CAP_S390_INJECT_IRQ 4011 :Architectures: s390 3934 :Architectures: s390 4012 :Type: vcpu ioctl 3935 :Type: vcpu ioctl 4013 :Parameters: struct kvm_s390_irq (in) 3936 :Parameters: struct kvm_s390_irq (in) 4014 :Returns: 0 on success, -1 on error 3937 :Returns: 0 on success, -1 on error 4015 3938 4016 Errors: 3939 Errors: 4017 3940 4018 3941 4019 ====== =================================== 3942 ====== ================================================================= 4020 EINVAL interrupt type is invalid 3943 EINVAL interrupt type is invalid 4021 type is KVM_S390_SIGP_STOP and flag 3944 type is KVM_S390_SIGP_STOP and flag parameter is invalid value, 4022 type is KVM_S390_INT_EXTERNAL_CALL 3945 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger 4023 than the maximum of VCPUs 3946 than the maximum of VCPUs 4024 EBUSY type is KVM_S390_SIGP_SET_PREFIX an 3947 EBUSY type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped, 4025 type is KVM_S390_SIGP_STOP and a st 3948 type is KVM_S390_SIGP_STOP and a stop irq is already pending, 4026 type is KVM_S390_INT_EXTERNAL_CALL 3949 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt 4027 is already pending 3950 is already pending 4028 ====== =================================== 3951 ====== ================================================================= 4029 3952 4030 Allows to inject an interrupt to the guest. 3953 Allows to inject an interrupt to the guest. 4031 3954 4032 Using struct kvm_s390_irq as a parameter allo 3955 Using struct kvm_s390_irq as a parameter allows 4033 to inject additional payload which is not 3956 to inject additional payload which is not 4034 possible via KVM_S390_INTERRUPT. 3957 possible via KVM_S390_INTERRUPT. 4035 3958 4036 Interrupt parameters are passed via kvm_s390_ 3959 Interrupt parameters are passed via kvm_s390_irq:: 4037 3960 4038 struct kvm_s390_irq { 3961 struct kvm_s390_irq { 4039 __u64 type; 3962 __u64 type; 4040 union { 3963 union { 4041 struct kvm_s390_io_info io; 3964 struct kvm_s390_io_info io; 4042 struct kvm_s390_ext_info ext; 3965 struct kvm_s390_ext_info ext; 4043 struct kvm_s390_pgm_info pgm; 3966 struct kvm_s390_pgm_info pgm; 4044 struct kvm_s390_emerg_info em 3967 struct kvm_s390_emerg_info emerg; 4045 struct kvm_s390_extcall_info 3968 struct kvm_s390_extcall_info extcall; 4046 struct kvm_s390_prefix_info p 3969 struct kvm_s390_prefix_info prefix; 4047 struct kvm_s390_stop_info sto 3970 struct kvm_s390_stop_info stop; 4048 struct kvm_s390_mchk_info mch 3971 struct kvm_s390_mchk_info mchk; 4049 char reserved[64]; 3972 char reserved[64]; 4050 } u; 3973 } u; 4051 }; 3974 }; 4052 3975 4053 type can be one of the following: 3976 type can be one of the following: 4054 3977 4055 - KVM_S390_SIGP_STOP - sigp stop; parameter i 3978 - KVM_S390_SIGP_STOP - sigp stop; parameter in .stop 4056 - KVM_S390_PROGRAM_INT - program check; param 3979 - KVM_S390_PROGRAM_INT - program check; parameters in .pgm 4057 - KVM_S390_SIGP_SET_PREFIX - sigp set prefix; 3980 - KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix 4058 - KVM_S390_RESTART - restart; no parameters 3981 - KVM_S390_RESTART - restart; no parameters 4059 - KVM_S390_INT_CLOCK_COMP - clock comparator 3982 - KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters 4060 - KVM_S390_INT_CPU_TIMER - CPU timer interrup 3983 - KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters 4061 - KVM_S390_INT_EMERGENCY - sigp emergency; pa 3984 - KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg 4062 - KVM_S390_INT_EXTERNAL_CALL - sigp external 3985 - KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall 4063 - KVM_S390_MCHK - machine check interrupt; pa 3986 - KVM_S390_MCHK - machine check interrupt; parameters in .mchk 4064 3987 4065 This is an asynchronous vcpu ioctl and can be 3988 This is an asynchronous vcpu ioctl and can be invoked from any thread. 4066 3989 4067 4.94 KVM_S390_GET_IRQ_STATE 3990 4.94 KVM_S390_GET_IRQ_STATE 4068 --------------------------- 3991 --------------------------- 4069 3992 4070 :Capability: KVM_CAP_S390_IRQ_STATE 3993 :Capability: KVM_CAP_S390_IRQ_STATE 4071 :Architectures: s390 3994 :Architectures: s390 4072 :Type: vcpu ioctl 3995 :Type: vcpu ioctl 4073 :Parameters: struct kvm_s390_irq_state (out) 3996 :Parameters: struct kvm_s390_irq_state (out) 4074 :Returns: >= number of bytes copied into buff 3997 :Returns: >= number of bytes copied into buffer, 4075 -EINVAL if buffer size is 0, 3998 -EINVAL if buffer size is 0, 4076 -ENOBUFS if buffer size is too smal 3999 -ENOBUFS if buffer size is too small to fit all pending interrupts, 4077 -EFAULT if the buffer address was i 4000 -EFAULT if the buffer address was invalid 4078 4001 4079 This ioctl allows userspace to retrieve the c 4002 This ioctl allows userspace to retrieve the complete state of all currently 4080 pending interrupts in a single buffer. Use ca 4003 pending interrupts in a single buffer. Use cases include migration 4081 and introspection. The parameter structure co 4004 and introspection. The parameter structure contains the address of a 4082 userspace buffer and its length:: 4005 userspace buffer and its length:: 4083 4006 4084 struct kvm_s390_irq_state { 4007 struct kvm_s390_irq_state { 4085 __u64 buf; 4008 __u64 buf; 4086 __u32 flags; /* will stay unus 4009 __u32 flags; /* will stay unused for compatibility reasons */ 4087 __u32 len; 4010 __u32 len; 4088 __u32 reserved[4]; /* will stay unus 4011 __u32 reserved[4]; /* will stay unused for compatibility reasons */ 4089 }; 4012 }; 4090 4013 4091 Userspace passes in the above struct and for 4014 Userspace passes in the above struct and for each pending interrupt a 4092 struct kvm_s390_irq is copied to the provided 4015 struct kvm_s390_irq is copied to the provided buffer. 4093 4016 4094 The structure contains a flags and a reserved 4017 The structure contains a flags and a reserved field for future extensions. As 4095 the kernel never checked for flags == 0 and Q 4018 the kernel never checked for flags == 0 and QEMU never pre-zeroed flags and 4096 reserved, these fields can not be used in the 4019 reserved, these fields can not be used in the future without breaking 4097 compatibility. 4020 compatibility. 4098 4021 4099 If -ENOBUFS is returned the buffer provided w 4022 If -ENOBUFS is returned the buffer provided was too small and userspace 4100 may retry with a bigger buffer. 4023 may retry with a bigger buffer. 4101 4024 4102 4.95 KVM_S390_SET_IRQ_STATE 4025 4.95 KVM_S390_SET_IRQ_STATE 4103 --------------------------- 4026 --------------------------- 4104 4027 4105 :Capability: KVM_CAP_S390_IRQ_STATE 4028 :Capability: KVM_CAP_S390_IRQ_STATE 4106 :Architectures: s390 4029 :Architectures: s390 4107 :Type: vcpu ioctl 4030 :Type: vcpu ioctl 4108 :Parameters: struct kvm_s390_irq_state (in) 4031 :Parameters: struct kvm_s390_irq_state (in) 4109 :Returns: 0 on success, 4032 :Returns: 0 on success, 4110 -EFAULT if the buffer address was i 4033 -EFAULT if the buffer address was invalid, 4111 -EINVAL for an invalid buffer lengt 4034 -EINVAL for an invalid buffer length (see below), 4112 -EBUSY if there were already interr 4035 -EBUSY if there were already interrupts pending, 4113 errors occurring when actually inje 4036 errors occurring when actually injecting the 4114 interrupt. See KVM_S390_IRQ. 4037 interrupt. See KVM_S390_IRQ. 4115 4038 4116 This ioctl allows userspace to set the comple 4039 This ioctl allows userspace to set the complete state of all cpu-local 4117 interrupts currently pending for the vcpu. It 4040 interrupts currently pending for the vcpu. It is intended for restoring 4118 interrupt state after a migration. The input 4041 interrupt state after a migration. The input parameter is a userspace buffer 4119 containing a struct kvm_s390_irq_state:: 4042 containing a struct kvm_s390_irq_state:: 4120 4043 4121 struct kvm_s390_irq_state { 4044 struct kvm_s390_irq_state { 4122 __u64 buf; 4045 __u64 buf; 4123 __u32 flags; /* will stay unus 4046 __u32 flags; /* will stay unused for compatibility reasons */ 4124 __u32 len; 4047 __u32 len; 4125 __u32 reserved[4]; /* will stay unus 4048 __u32 reserved[4]; /* will stay unused for compatibility reasons */ 4126 }; 4049 }; 4127 4050 4128 The restrictions for flags and reserved apply 4051 The restrictions for flags and reserved apply as well. 4129 (see KVM_S390_GET_IRQ_STATE) 4052 (see KVM_S390_GET_IRQ_STATE) 4130 4053 4131 The userspace memory referenced by buf contai 4054 The userspace memory referenced by buf contains a struct kvm_s390_irq 4132 for each interrupt to be injected into the gu 4055 for each interrupt to be injected into the guest. 4133 If one of the interrupts could not be injecte 4056 If one of the interrupts could not be injected for some reason the 4134 ioctl aborts. 4057 ioctl aborts. 4135 4058 4136 len must be a multiple of sizeof(struct kvm_s 4059 len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0 4137 and it must not exceed (max_vcpus + 32) * siz 4060 and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq), 4138 which is the maximum number of possibly pendi 4061 which is the maximum number of possibly pending cpu-local interrupts. 4139 4062 4140 4.96 KVM_SMI 4063 4.96 KVM_SMI 4141 ------------ 4064 ------------ 4142 4065 4143 :Capability: KVM_CAP_X86_SMM 4066 :Capability: KVM_CAP_X86_SMM 4144 :Architectures: x86 4067 :Architectures: x86 4145 :Type: vcpu ioctl 4068 :Type: vcpu ioctl 4146 :Parameters: none 4069 :Parameters: none 4147 :Returns: 0 on success, -1 on error 4070 :Returns: 0 on success, -1 on error 4148 4071 4149 Queues an SMI on the thread's vcpu. 4072 Queues an SMI on the thread's vcpu. 4150 4073 4151 4.97 KVM_X86_SET_MSR_FILTER 4074 4.97 KVM_X86_SET_MSR_FILTER 4152 ---------------------------- 4075 ---------------------------- 4153 4076 4154 :Capability: KVM_CAP_X86_MSR_FILTER !! 4077 :Capability: KVM_X86_SET_MSR_FILTER 4155 :Architectures: x86 4078 :Architectures: x86 4156 :Type: vm ioctl 4079 :Type: vm ioctl 4157 :Parameters: struct kvm_msr_filter 4080 :Parameters: struct kvm_msr_filter 4158 :Returns: 0 on success, < 0 on error 4081 :Returns: 0 on success, < 0 on error 4159 4082 4160 :: 4083 :: 4161 4084 4162 struct kvm_msr_filter_range { 4085 struct kvm_msr_filter_range { 4163 #define KVM_MSR_FILTER_READ (1 << 0) 4086 #define KVM_MSR_FILTER_READ (1 << 0) 4164 #define KVM_MSR_FILTER_WRITE (1 << 1) 4087 #define KVM_MSR_FILTER_WRITE (1 << 1) 4165 __u32 flags; 4088 __u32 flags; 4166 __u32 nmsrs; /* number of msrs in bit 4089 __u32 nmsrs; /* number of msrs in bitmap */ 4167 __u32 base; /* MSR index the bitmap 4090 __u32 base; /* MSR index the bitmap starts at */ 4168 __u8 *bitmap; /* a 1 bit allows the o 4091 __u8 *bitmap; /* a 1 bit allows the operations in flags, 0 denies */ 4169 }; 4092 }; 4170 4093 4171 #define KVM_MSR_FILTER_MAX_RANGES 16 4094 #define KVM_MSR_FILTER_MAX_RANGES 16 4172 struct kvm_msr_filter { 4095 struct kvm_msr_filter { 4173 #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 4096 #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 0) 4174 #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 4097 #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 0) 4175 __u32 flags; 4098 __u32 flags; 4176 struct kvm_msr_filter_range ranges[KV 4099 struct kvm_msr_filter_range ranges[KVM_MSR_FILTER_MAX_RANGES]; 4177 }; 4100 }; 4178 4101 4179 flags values for ``struct kvm_msr_filter_rang 4102 flags values for ``struct kvm_msr_filter_range``: 4180 4103 4181 ``KVM_MSR_FILTER_READ`` 4104 ``KVM_MSR_FILTER_READ`` 4182 4105 4183 Filter read accesses to MSRs using the give 4106 Filter read accesses to MSRs using the given bitmap. A 0 in the bitmap 4184 indicates that read accesses should be deni !! 4107 indicates that a read should immediately fail, while a 1 indicates that 4185 a read for a particular MSR should be allow !! 4108 a read for a particular MSR should be handled regardless of the default 4186 filter action. 4109 filter action. 4187 4110 4188 ``KVM_MSR_FILTER_WRITE`` 4111 ``KVM_MSR_FILTER_WRITE`` 4189 4112 4190 Filter write accesses to MSRs using the giv 4113 Filter write accesses to MSRs using the given bitmap. A 0 in the bitmap 4191 indicates that write accesses should be den !! 4114 indicates that a write should immediately fail, while a 1 indicates that 4192 a write for a particular MSR should be allo !! 4115 a write for a particular MSR should be handled regardless of the default 4193 filter action. 4116 filter action. 4194 4117 >> 4118 ``KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE`` >> 4119 >> 4120 Filter both read and write accesses to MSRs using the given bitmap. A 0 >> 4121 in the bitmap indicates that both reads and writes should immediately fail, >> 4122 while a 1 indicates that reads and writes for a particular MSR are not >> 4123 filtered by this range. >> 4124 4195 flags values for ``struct kvm_msr_filter``: 4125 flags values for ``struct kvm_msr_filter``: 4196 4126 4197 ``KVM_MSR_FILTER_DEFAULT_ALLOW`` 4127 ``KVM_MSR_FILTER_DEFAULT_ALLOW`` 4198 4128 4199 If no filter range matches an MSR index tha 4129 If no filter range matches an MSR index that is getting accessed, KVM will 4200 allow accesses to all MSRs by default. !! 4130 fall back to allowing access to the MSR. 4201 4131 4202 ``KVM_MSR_FILTER_DEFAULT_DENY`` 4132 ``KVM_MSR_FILTER_DEFAULT_DENY`` 4203 4133 4204 If no filter range matches an MSR index tha 4134 If no filter range matches an MSR index that is getting accessed, KVM will 4205 deny accesses to all MSRs by default. !! 4135 fall back to rejecting access to the MSR. In this mode, all MSRs that should >> 4136 be processed by KVM need to explicitly be marked as allowed in the bitmaps. 4206 4137 4207 This ioctl allows userspace to define up to 1 !! 4138 This ioctl allows user space to define up to 16 bitmaps of MSR ranges to 4208 guest MSR accesses that would normally be all !! 4139 specify whether a certain MSR access should be explicitly filtered for or not. 4209 covered by a specific range, the "default" fi << 4210 bitmap range covers MSRs from [base .. base+n << 4211 << 4212 If an MSR access is denied by userspace, the << 4213 whether or not KVM_CAP_X86_USER_SPACE_MSR's K << 4214 enabled. If KVM_MSR_EXIT_REASON_FILTER is en << 4215 on denied accesses, i.e. userspace effectivel << 4216 KVM_MSR_EXIT_REASON_FILTER is not enabled, KV << 4217 on denied accesses. Note, if an MSR access i << 4218 load/stores during VMX transitions, KVM ignor << 4219 See the below warning for full details. << 4220 << 4221 If an MSR access is allowed by userspace, KVM << 4222 the access in accordance with the vCPU model. << 4223 inject a #GP if an access is allowed by users << 4224 the MSR, or to follow architectural behavior << 4225 4140 4226 By default, KVM operates in KVM_MSR_FILTER_DE !! 4141 If this ioctl has never been invoked, MSR accesses are not guarded and the 4227 filters. !! 4142 default KVM in-kernel emulation behavior is fully preserved. 4228 4143 4229 Calling this ioctl with an empty set of range 4144 Calling this ioctl with an empty set of ranges (all nmsrs == 0) disables MSR 4230 filtering. In that mode, ``KVM_MSR_FILTER_DEF 4145 filtering. In that mode, ``KVM_MSR_FILTER_DEFAULT_DENY`` is invalid and causes 4231 an error. 4146 an error. 4232 4147 4233 .. warning:: !! 4148 As soon as the filtering is in place, every MSR access is processed through 4234 MSR accesses that are side effects of inst !! 4149 the filtering except for accesses to the x2APIC MSRs (from 0x800 to 0x8ff); 4235 native) are not filtered as hardware does !! 4150 x2APIC MSRs are always allowed, independent of the ``default_allow`` setting, 4236 RDMSR and WRMSR, and KVM mimics that behav !! 4151 and their behavior depends on the ``X2APIC_ENABLE`` bit of the APIC base 4237 to avoid pointless divergence from hardwar !! 4152 register. 4238 SYSENTER reads the SYSENTER MSRs, etc. << 4239 << 4240 MSRs that are loaded/stored via dedicated << 4241 part of VM-Enter/VM-Exit emulation. << 4242 << 4243 MSRs that are loaded/store via VMX's load/ << 4244 of VM-Enter/VM-Exit emulation. If an MSR << 4245 synthesizes a consistency check VM-Exit(EX << 4246 MSR access is denied on VM-Exit, KVM synth << 4247 extends Intel's architectural list of MSRs << 4248 the VM-Enter/VM-Exit MSR list. It is plat << 4249 to communicate any such restrictions to th << 4250 << 4251 x2APIC MSR accesses cannot be filtered (KV << 4252 cover any x2APIC MSRs). << 4253 4153 4254 Note, invoking this ioctl while a vCPU is run !! 4154 .. warning:: 4255 KVM does guarantee that vCPUs will see either !! 4155 MSR accesses coming from nested vmentry/vmexit are not filtered. 4256 filter, e.g. MSRs with identical settings in !! 4156 This includes both writes to individual VMCS fields and reads/writes 4257 have deterministic behavior. !! 4157 through the MSR lists pointed to by the VMCS. >> 4158 >> 4159 If a bit is within one of the defined ranges, read and write accesses are >> 4160 guarded by the bitmap's value for the MSR index if the kind of access >> 4161 is included in the ``struct kvm_msr_filter_range`` flags. If no range >> 4162 cover this particular access, the behavior is determined by the flags >> 4163 field in the kvm_msr_filter struct: ``KVM_MSR_FILTER_DEFAULT_ALLOW`` >> 4164 and ``KVM_MSR_FILTER_DEFAULT_DENY``. >> 4165 >> 4166 Each bitmap range specifies a range of MSRs to potentially allow access on. >> 4167 The range goes from MSR index [base .. base+nmsrs]. The flags field >> 4168 indicates whether reads, writes or both reads and writes are filtered >> 4169 by setting a 1 bit in the bitmap for the corresponding MSR index. >> 4170 >> 4171 If an MSR access is not permitted through the filtering, it generates a >> 4172 #GP inside the guest. When combined with KVM_CAP_X86_USER_SPACE_MSR, that >> 4173 allows user space to deflect and potentially handle various MSR accesses >> 4174 into user space. 4258 4175 4259 Similarly, if userspace wishes to intercept o !! 4176 If a vCPU is in running state while this ioctl is invoked, the vCPU may 4260 KVM_MSR_EXIT_REASON_FILTER must be enabled be !! 4177 experience inconsistent filtering behavior on MSR accesses. 4261 left enabled until after all filters are deac << 4262 result in KVM injecting a #GP instead of exit << 4263 4178 4264 4.98 KVM_CREATE_SPAPR_TCE_64 4179 4.98 KVM_CREATE_SPAPR_TCE_64 4265 ---------------------------- 4180 ---------------------------- 4266 4181 4267 :Capability: KVM_CAP_SPAPR_TCE_64 4182 :Capability: KVM_CAP_SPAPR_TCE_64 4268 :Architectures: powerpc 4183 :Architectures: powerpc 4269 :Type: vm ioctl 4184 :Type: vm ioctl 4270 :Parameters: struct kvm_create_spapr_tce_64 ( 4185 :Parameters: struct kvm_create_spapr_tce_64 (in) 4271 :Returns: file descriptor for manipulating th 4186 :Returns: file descriptor for manipulating the created TCE table 4272 4187 4273 This is an extension for KVM_CAP_SPAPR_TCE wh 4188 This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit 4274 windows, described in 4.62 KVM_CREATE_SPAPR_T 4189 windows, described in 4.62 KVM_CREATE_SPAPR_TCE 4275 4190 4276 This capability uses extended struct in ioctl 4191 This capability uses extended struct in ioctl interface:: 4277 4192 4278 /* for KVM_CAP_SPAPR_TCE_64 */ 4193 /* for KVM_CAP_SPAPR_TCE_64 */ 4279 struct kvm_create_spapr_tce_64 { 4194 struct kvm_create_spapr_tce_64 { 4280 __u64 liobn; 4195 __u64 liobn; 4281 __u32 page_shift; 4196 __u32 page_shift; 4282 __u32 flags; 4197 __u32 flags; 4283 __u64 offset; /* in pages */ 4198 __u64 offset; /* in pages */ 4284 __u64 size; /* in pages */ 4199 __u64 size; /* in pages */ 4285 }; 4200 }; 4286 4201 4287 The aim of extension is to support an additio 4202 The aim of extension is to support an additional bigger DMA window with 4288 a variable page size. 4203 a variable page size. 4289 KVM_CREATE_SPAPR_TCE_64 receives a 64bit wind 4204 KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and 4290 a bus offset of the corresponding DMA window, 4205 a bus offset of the corresponding DMA window, @size and @offset are numbers 4291 of IOMMU pages. 4206 of IOMMU pages. 4292 4207 4293 @flags are not used at the moment. 4208 @flags are not used at the moment. 4294 4209 4295 The rest of functionality is identical to KVM 4210 The rest of functionality is identical to KVM_CREATE_SPAPR_TCE. 4296 4211 4297 4.99 KVM_REINJECT_CONTROL 4212 4.99 KVM_REINJECT_CONTROL 4298 ------------------------- 4213 ------------------------- 4299 4214 4300 :Capability: KVM_CAP_REINJECT_CONTROL 4215 :Capability: KVM_CAP_REINJECT_CONTROL 4301 :Architectures: x86 4216 :Architectures: x86 4302 :Type: vm ioctl 4217 :Type: vm ioctl 4303 :Parameters: struct kvm_reinject_control (in) 4218 :Parameters: struct kvm_reinject_control (in) 4304 :Returns: 0 on success, 4219 :Returns: 0 on success, 4305 -EFAULT if struct kvm_reinject_contr 4220 -EFAULT if struct kvm_reinject_control cannot be read, 4306 -ENXIO if KVM_CREATE_PIT or KVM_CREA 4221 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier. 4307 4222 4308 i8254 (PIT) has two modes, reinject and !rein 4223 i8254 (PIT) has two modes, reinject and !reinject. The default is reinject, 4309 where KVM queues elapsed i8254 ticks and moni 4224 where KVM queues elapsed i8254 ticks and monitors completion of interrupt from 4310 vector(s) that i8254 injects. Reinject mode 4225 vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its 4311 interrupt whenever there isn't a pending inte 4226 interrupt whenever there isn't a pending interrupt from i8254. 4312 !reinject mode injects an interrupt as soon a 4227 !reinject mode injects an interrupt as soon as a tick arrives. 4313 4228 4314 :: 4229 :: 4315 4230 4316 struct kvm_reinject_control { 4231 struct kvm_reinject_control { 4317 __u8 pit_reinject; 4232 __u8 pit_reinject; 4318 __u8 reserved[31]; 4233 __u8 reserved[31]; 4319 }; 4234 }; 4320 4235 4321 pit_reinject = 0 (!reinject mode) is recommen 4236 pit_reinject = 0 (!reinject mode) is recommended, unless running an old 4322 operating system that uses the PIT for timing 4237 operating system that uses the PIT for timing (e.g. Linux 2.4.x). 4323 4238 4324 4.100 KVM_PPC_CONFIGURE_V3_MMU 4239 4.100 KVM_PPC_CONFIGURE_V3_MMU 4325 ------------------------------ 4240 ------------------------------ 4326 4241 4327 :Capability: KVM_CAP_PPC_MMU_RADIX or KVM_CAP !! 4242 :Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3 4328 :Architectures: ppc 4243 :Architectures: ppc 4329 :Type: vm ioctl 4244 :Type: vm ioctl 4330 :Parameters: struct kvm_ppc_mmuv3_cfg (in) 4245 :Parameters: struct kvm_ppc_mmuv3_cfg (in) 4331 :Returns: 0 on success, 4246 :Returns: 0 on success, 4332 -EFAULT if struct kvm_ppc_mmuv3_cfg 4247 -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read, 4333 -EINVAL if the configuration is inva 4248 -EINVAL if the configuration is invalid 4334 4249 4335 This ioctl controls whether the guest will us 4250 This ioctl controls whether the guest will use radix or HPT (hashed 4336 page table) translation, and sets the pointer 4251 page table) translation, and sets the pointer to the process table for 4337 the guest. 4252 the guest. 4338 4253 4339 :: 4254 :: 4340 4255 4341 struct kvm_ppc_mmuv3_cfg { 4256 struct kvm_ppc_mmuv3_cfg { 4342 __u64 flags; 4257 __u64 flags; 4343 __u64 process_table; 4258 __u64 process_table; 4344 }; 4259 }; 4345 4260 4346 There are two bits that can be set in flags; 4261 There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and 4347 KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if 4262 KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest 4348 to use radix tree translation, and if clear, 4263 to use radix tree translation, and if clear, to use HPT translation. 4349 KVM_PPC_MMUV3_GTSE, if set and if KVM permits 4264 KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest 4350 to be able to use the global TLB and SLB inva 4265 to be able to use the global TLB and SLB invalidation instructions; 4351 if clear, the guest may not use these instruc 4266 if clear, the guest may not use these instructions. 4352 4267 4353 The process_table field specifies the address 4268 The process_table field specifies the address and size of the guest 4354 process table, which is in the guest's space. 4269 process table, which is in the guest's space. This field is formatted 4355 as the second doubleword of the partition tab 4270 as the second doubleword of the partition table entry, as defined in 4356 the Power ISA V3.00, Book III section 5.7.6.1 4271 the Power ISA V3.00, Book III section 5.7.6.1. 4357 4272 4358 4.101 KVM_PPC_GET_RMMU_INFO 4273 4.101 KVM_PPC_GET_RMMU_INFO 4359 --------------------------- 4274 --------------------------- 4360 4275 4361 :Capability: KVM_CAP_PPC_MMU_RADIX !! 4276 :Capability: KVM_CAP_PPC_RADIX_MMU 4362 :Architectures: ppc 4277 :Architectures: ppc 4363 :Type: vm ioctl 4278 :Type: vm ioctl 4364 :Parameters: struct kvm_ppc_rmmu_info (out) 4279 :Parameters: struct kvm_ppc_rmmu_info (out) 4365 :Returns: 0 on success, 4280 :Returns: 0 on success, 4366 -EFAULT if struct kvm_ppc_rmmu_info 4281 -EFAULT if struct kvm_ppc_rmmu_info cannot be written, 4367 -EINVAL if no useful information can 4282 -EINVAL if no useful information can be returned 4368 4283 4369 This ioctl returns a structure containing two 4284 This ioctl returns a structure containing two things: (a) a list 4370 containing supported radix tree geometries, a 4285 containing supported radix tree geometries, and (b) a list that maps 4371 page sizes to put in the "AP" (actual page si 4286 page sizes to put in the "AP" (actual page size) field for the tlbie 4372 (TLB invalidate entry) instruction. 4287 (TLB invalidate entry) instruction. 4373 4288 4374 :: 4289 :: 4375 4290 4376 struct kvm_ppc_rmmu_info { 4291 struct kvm_ppc_rmmu_info { 4377 struct kvm_ppc_radix_geom { 4292 struct kvm_ppc_radix_geom { 4378 __u8 page_shift; 4293 __u8 page_shift; 4379 __u8 level_bits[4]; 4294 __u8 level_bits[4]; 4380 __u8 pad[3]; 4295 __u8 pad[3]; 4381 } geometries[8]; 4296 } geometries[8]; 4382 __u32 ap_encodings[8]; 4297 __u32 ap_encodings[8]; 4383 }; 4298 }; 4384 4299 4385 The geometries[] field gives up to 8 supporte 4300 The geometries[] field gives up to 8 supported geometries for the 4386 radix page table, in terms of the log base 2 4301 radix page table, in terms of the log base 2 of the smallest page 4387 size, and the number of bits indexed at each 4302 size, and the number of bits indexed at each level of the tree, from 4388 the PTE level up to the PGD level in that ord 4303 the PTE level up to the PGD level in that order. Any unused entries 4389 will have 0 in the page_shift field. 4304 will have 0 in the page_shift field. 4390 4305 4391 The ap_encodings gives the supported page siz 4306 The ap_encodings gives the supported page sizes and their AP field 4392 encodings, encoded with the AP value in the t 4307 encodings, encoded with the AP value in the top 3 bits and the log 4393 base 2 of the page size in the bottom 6 bits. 4308 base 2 of the page size in the bottom 6 bits. 4394 4309 4395 4.102 KVM_PPC_RESIZE_HPT_PREPARE 4310 4.102 KVM_PPC_RESIZE_HPT_PREPARE 4396 -------------------------------- 4311 -------------------------------- 4397 4312 4398 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4313 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4399 :Architectures: powerpc 4314 :Architectures: powerpc 4400 :Type: vm ioctl 4315 :Type: vm ioctl 4401 :Parameters: struct kvm_ppc_resize_hpt (in) 4316 :Parameters: struct kvm_ppc_resize_hpt (in) 4402 :Returns: 0 on successful completion, 4317 :Returns: 0 on successful completion, 4403 >0 if a new HPT is being prepared, t 4318 >0 if a new HPT is being prepared, the value is an estimated 4404 number of milliseconds until prepara 4319 number of milliseconds until preparation is complete, 4405 -EFAULT if struct kvm_reinject_contr 4320 -EFAULT if struct kvm_reinject_control cannot be read, 4406 -EINVAL if the supplied shift or fla 4321 -EINVAL if the supplied shift or flags are invalid, 4407 -ENOMEM if unable to allocate the ne 4322 -ENOMEM if unable to allocate the new HPT, 4408 4323 4409 Used to implement the PAPR extension for runt 4324 Used to implement the PAPR extension for runtime resizing of a guest's 4410 Hashed Page Table (HPT). Specifically this s 4325 Hashed Page Table (HPT). Specifically this starts, stops or monitors 4411 the preparation of a new potential HPT for th 4326 the preparation of a new potential HPT for the guest, essentially 4412 implementing the H_RESIZE_HPT_PREPARE hyperca 4327 implementing the H_RESIZE_HPT_PREPARE hypercall. 4413 4328 4414 :: 4329 :: 4415 4330 4416 struct kvm_ppc_resize_hpt { 4331 struct kvm_ppc_resize_hpt { 4417 __u64 flags; 4332 __u64 flags; 4418 __u32 shift; 4333 __u32 shift; 4419 __u32 pad; 4334 __u32 pad; 4420 }; 4335 }; 4421 4336 4422 If called with shift > 0 when there is no pen 4337 If called with shift > 0 when there is no pending HPT for the guest, 4423 this begins preparation of a new pending HPT 4338 this begins preparation of a new pending HPT of size 2^(shift) bytes. 4424 It then returns a positive integer with the e 4339 It then returns a positive integer with the estimated number of 4425 milliseconds until preparation is complete. 4340 milliseconds until preparation is complete. 4426 4341 4427 If called when there is a pending HPT whose s 4342 If called when there is a pending HPT whose size does not match that 4428 requested in the parameters, discards the exi 4343 requested in the parameters, discards the existing pending HPT and 4429 creates a new one as above. 4344 creates a new one as above. 4430 4345 4431 If called when there is a pending HPT of the 4346 If called when there is a pending HPT of the size requested, will: 4432 4347 4433 * If preparation of the pending HPT is alre 4348 * If preparation of the pending HPT is already complete, return 0 4434 * If preparation of the pending HPT has fai 4349 * If preparation of the pending HPT has failed, return an error 4435 code, then discard the pending HPT. 4350 code, then discard the pending HPT. 4436 * If preparation of the pending HPT is stil 4351 * If preparation of the pending HPT is still in progress, return an 4437 estimated number of milliseconds until pr 4352 estimated number of milliseconds until preparation is complete. 4438 4353 4439 If called with shift == 0, discards any curre 4354 If called with shift == 0, discards any currently pending HPT and 4440 returns 0 (i.e. cancels any in-progress prepa 4355 returns 0 (i.e. cancels any in-progress preparation). 4441 4356 4442 flags is reserved for future expansion, curre 4357 flags is reserved for future expansion, currently setting any bits in 4443 flags will result in an -EINVAL. 4358 flags will result in an -EINVAL. 4444 4359 4445 Normally this will be called repeatedly with 4360 Normally this will be called repeatedly with the same parameters until 4446 it returns <= 0. The first call will initiat 4361 it returns <= 0. The first call will initiate preparation, subsequent 4447 ones will monitor preparation until it comple 4362 ones will monitor preparation until it completes or fails. 4448 4363 4449 4.103 KVM_PPC_RESIZE_HPT_COMMIT 4364 4.103 KVM_PPC_RESIZE_HPT_COMMIT 4450 ------------------------------- 4365 ------------------------------- 4451 4366 4452 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4367 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4453 :Architectures: powerpc 4368 :Architectures: powerpc 4454 :Type: vm ioctl 4369 :Type: vm ioctl 4455 :Parameters: struct kvm_ppc_resize_hpt (in) 4370 :Parameters: struct kvm_ppc_resize_hpt (in) 4456 :Returns: 0 on successful completion, 4371 :Returns: 0 on successful completion, 4457 -EFAULT if struct kvm_reinject_contr 4372 -EFAULT if struct kvm_reinject_control cannot be read, 4458 -EINVAL if the supplied shift or fla 4373 -EINVAL if the supplied shift or flags are invalid, 4459 -ENXIO is there is no pending HPT, o 4374 -ENXIO is there is no pending HPT, or the pending HPT doesn't 4460 have the requested size, 4375 have the requested size, 4461 -EBUSY if the pending HPT is not ful 4376 -EBUSY if the pending HPT is not fully prepared, 4462 -ENOSPC if there was a hash collisio 4377 -ENOSPC if there was a hash collision when moving existing 4463 HPT entries to the new HPT, 4378 HPT entries to the new HPT, 4464 -EIO on other error conditions 4379 -EIO on other error conditions 4465 4380 4466 Used to implement the PAPR extension for runt 4381 Used to implement the PAPR extension for runtime resizing of a guest's 4467 Hashed Page Table (HPT). Specifically this r 4382 Hashed Page Table (HPT). Specifically this requests that the guest be 4468 transferred to working with the new HPT, esse 4383 transferred to working with the new HPT, essentially implementing the 4469 H_RESIZE_HPT_COMMIT hypercall. 4384 H_RESIZE_HPT_COMMIT hypercall. 4470 4385 4471 :: 4386 :: 4472 4387 4473 struct kvm_ppc_resize_hpt { 4388 struct kvm_ppc_resize_hpt { 4474 __u64 flags; 4389 __u64 flags; 4475 __u32 shift; 4390 __u32 shift; 4476 __u32 pad; 4391 __u32 pad; 4477 }; 4392 }; 4478 4393 4479 This should only be called after KVM_PPC_RESI 4394 This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has 4480 returned 0 with the same parameters. In othe 4395 returned 0 with the same parameters. In other cases 4481 KVM_PPC_RESIZE_HPT_COMMIT will return an erro 4396 KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or 4482 -EBUSY, though others may be possible if the 4397 -EBUSY, though others may be possible if the preparation was started, 4483 but failed). 4398 but failed). 4484 4399 4485 This will have undefined effects on the guest 4400 This will have undefined effects on the guest if it has not already 4486 placed itself in a quiescent state where no v 4401 placed itself in a quiescent state where no vcpu will make MMU enabled 4487 memory accesses. 4402 memory accesses. 4488 4403 4489 On successful completion, the pending HPT wil !! 4404 On succsful completion, the pending HPT will become the guest's active 4490 HPT and the previous HPT will be discarded. 4405 HPT and the previous HPT will be discarded. 4491 4406 4492 On failure, the guest will still be operating 4407 On failure, the guest will still be operating on its previous HPT. 4493 4408 4494 4.104 KVM_X86_GET_MCE_CAP_SUPPORTED 4409 4.104 KVM_X86_GET_MCE_CAP_SUPPORTED 4495 ----------------------------------- 4410 ----------------------------------- 4496 4411 4497 :Capability: KVM_CAP_MCE 4412 :Capability: KVM_CAP_MCE 4498 :Architectures: x86 4413 :Architectures: x86 4499 :Type: system ioctl 4414 :Type: system ioctl 4500 :Parameters: u64 mce_cap (out) 4415 :Parameters: u64 mce_cap (out) 4501 :Returns: 0 on success, -1 on error 4416 :Returns: 0 on success, -1 on error 4502 4417 4503 Returns supported MCE capabilities. The u64 m 4418 Returns supported MCE capabilities. The u64 mce_cap parameter 4504 has the same format as the MSR_IA32_MCG_CAP r 4419 has the same format as the MSR_IA32_MCG_CAP register. Supported 4505 capabilities will have the corresponding bits 4420 capabilities will have the corresponding bits set. 4506 4421 4507 4.105 KVM_X86_SETUP_MCE 4422 4.105 KVM_X86_SETUP_MCE 4508 ----------------------- 4423 ----------------------- 4509 4424 4510 :Capability: KVM_CAP_MCE 4425 :Capability: KVM_CAP_MCE 4511 :Architectures: x86 4426 :Architectures: x86 4512 :Type: vcpu ioctl 4427 :Type: vcpu ioctl 4513 :Parameters: u64 mcg_cap (in) 4428 :Parameters: u64 mcg_cap (in) 4514 :Returns: 0 on success, 4429 :Returns: 0 on success, 4515 -EFAULT if u64 mcg_cap cannot be rea 4430 -EFAULT if u64 mcg_cap cannot be read, 4516 -EINVAL if the requested number of b 4431 -EINVAL if the requested number of banks is invalid, 4517 -EINVAL if requested MCE capability 4432 -EINVAL if requested MCE capability is not supported. 4518 4433 4519 Initializes MCE support for use. The u64 mcg_ 4434 Initializes MCE support for use. The u64 mcg_cap parameter 4520 has the same format as the MSR_IA32_MCG_CAP r 4435 has the same format as the MSR_IA32_MCG_CAP register and 4521 specifies which capabilities should be enable 4436 specifies which capabilities should be enabled. The maximum 4522 supported number of error-reporting banks can 4437 supported number of error-reporting banks can be retrieved when 4523 checking for KVM_CAP_MCE. The supported capab 4438 checking for KVM_CAP_MCE. The supported capabilities can be 4524 retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. 4439 retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. 4525 4440 4526 4.106 KVM_X86_SET_MCE 4441 4.106 KVM_X86_SET_MCE 4527 --------------------- 4442 --------------------- 4528 4443 4529 :Capability: KVM_CAP_MCE 4444 :Capability: KVM_CAP_MCE 4530 :Architectures: x86 4445 :Architectures: x86 4531 :Type: vcpu ioctl 4446 :Type: vcpu ioctl 4532 :Parameters: struct kvm_x86_mce (in) 4447 :Parameters: struct kvm_x86_mce (in) 4533 :Returns: 0 on success, 4448 :Returns: 0 on success, 4534 -EFAULT if struct kvm_x86_mce cannot 4449 -EFAULT if struct kvm_x86_mce cannot be read, 4535 -EINVAL if the bank number is invali 4450 -EINVAL if the bank number is invalid, 4536 -EINVAL if VAL bit is not set in sta 4451 -EINVAL if VAL bit is not set in status field. 4537 4452 4538 Inject a machine check error (MCE) into the g 4453 Inject a machine check error (MCE) into the guest. The input 4539 parameter is:: 4454 parameter is:: 4540 4455 4541 struct kvm_x86_mce { 4456 struct kvm_x86_mce { 4542 __u64 status; 4457 __u64 status; 4543 __u64 addr; 4458 __u64 addr; 4544 __u64 misc; 4459 __u64 misc; 4545 __u64 mcg_status; 4460 __u64 mcg_status; 4546 __u8 bank; 4461 __u8 bank; 4547 __u8 pad1[7]; 4462 __u8 pad1[7]; 4548 __u64 pad2[3]; 4463 __u64 pad2[3]; 4549 }; 4464 }; 4550 4465 4551 If the MCE being reported is an uncorrected e 4466 If the MCE being reported is an uncorrected error, KVM will 4552 inject it as an MCE exception into the guest. 4467 inject it as an MCE exception into the guest. If the guest 4553 MCG_STATUS register reports that an MCE is in 4468 MCG_STATUS register reports that an MCE is in progress, KVM 4554 causes an KVM_EXIT_SHUTDOWN vmexit. 4469 causes an KVM_EXIT_SHUTDOWN vmexit. 4555 4470 4556 Otherwise, if the MCE is a corrected error, K 4471 Otherwise, if the MCE is a corrected error, KVM will just 4557 store it in the corresponding bank (provided 4472 store it in the corresponding bank (provided this bank is 4558 not holding a previously reported uncorrected 4473 not holding a previously reported uncorrected error). 4559 4474 4560 4.107 KVM_S390_GET_CMMA_BITS 4475 4.107 KVM_S390_GET_CMMA_BITS 4561 ---------------------------- 4476 ---------------------------- 4562 4477 4563 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4478 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4564 :Architectures: s390 4479 :Architectures: s390 4565 :Type: vm ioctl 4480 :Type: vm ioctl 4566 :Parameters: struct kvm_s390_cmma_log (in, ou 4481 :Parameters: struct kvm_s390_cmma_log (in, out) 4567 :Returns: 0 on success, a negative value on e 4482 :Returns: 0 on success, a negative value on error 4568 4483 4569 Errors: << 4570 << 4571 ====== ================================ << 4572 ENOMEM not enough memory can be allocat << 4573 ENXIO if CMMA is not enabled << 4574 EINVAL if KVM_S390_CMMA_PEEK is not set << 4575 EINVAL if KVM_S390_CMMA_PEEK is not set << 4576 disabled (and thus migration mod << 4577 EFAULT if the userspace address is inva << 4578 present for the addresses (e.g. << 4579 ====== ================================ << 4580 << 4581 This ioctl is used to get the values of the C 4484 This ioctl is used to get the values of the CMMA bits on the s390 4582 architecture. It is meant to be used in two s 4485 architecture. It is meant to be used in two scenarios: 4583 4486 4584 - During live migration to save the CMMA valu 4487 - During live migration to save the CMMA values. Live migration needs 4585 to be enabled via the KVM_REQ_START_MIGRATI 4488 to be enabled via the KVM_REQ_START_MIGRATION VM property. 4586 - To non-destructively peek at the CMMA value 4489 - To non-destructively peek at the CMMA values, with the flag 4587 KVM_S390_CMMA_PEEK set. 4490 KVM_S390_CMMA_PEEK set. 4588 4491 4589 The ioctl takes parameters via the kvm_s390_c 4492 The ioctl takes parameters via the kvm_s390_cmma_log struct. The desired 4590 values are written to a buffer whose location 4493 values are written to a buffer whose location is indicated via the "values" 4591 member in the kvm_s390_cmma_log struct. The 4494 member in the kvm_s390_cmma_log struct. The values in the input struct are 4592 also updated as needed. 4495 also updated as needed. 4593 4496 4594 Each CMMA value takes up one byte. 4497 Each CMMA value takes up one byte. 4595 4498 4596 :: 4499 :: 4597 4500 4598 struct kvm_s390_cmma_log { 4501 struct kvm_s390_cmma_log { 4599 __u64 start_gfn; 4502 __u64 start_gfn; 4600 __u32 count; 4503 __u32 count; 4601 __u32 flags; 4504 __u32 flags; 4602 union { 4505 union { 4603 __u64 remaining; 4506 __u64 remaining; 4604 __u64 mask; 4507 __u64 mask; 4605 }; 4508 }; 4606 __u64 values; 4509 __u64 values; 4607 }; 4510 }; 4608 4511 4609 start_gfn is the number of the first guest fr 4512 start_gfn is the number of the first guest frame whose CMMA values are 4610 to be retrieved, 4513 to be retrieved, 4611 4514 4612 count is the length of the buffer in bytes, 4515 count is the length of the buffer in bytes, 4613 4516 4614 values points to the buffer where the result 4517 values points to the buffer where the result will be written to. 4615 4518 4616 If count is greater than KVM_S390_SKEYS_MAX, 4519 If count is greater than KVM_S390_SKEYS_MAX, then it is considered to be 4617 KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re- 4520 KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re-used for consistency with 4618 other ioctls. 4521 other ioctls. 4619 4522 4620 The result is written in the buffer pointed t 4523 The result is written in the buffer pointed to by the field values, and 4621 the values of the input parameter are updated 4524 the values of the input parameter are updated as follows. 4622 4525 4623 Depending on the flags, different actions are 4526 Depending on the flags, different actions are performed. The only 4624 supported flag so far is KVM_S390_CMMA_PEEK. 4527 supported flag so far is KVM_S390_CMMA_PEEK. 4625 4528 4626 The default behaviour if KVM_S390_CMMA_PEEK i 4529 The default behaviour if KVM_S390_CMMA_PEEK is not set is: 4627 start_gfn will indicate the first page frame 4530 start_gfn will indicate the first page frame whose CMMA bits were dirty. 4628 It is not necessarily the same as the one pas 4531 It is not necessarily the same as the one passed as input, as clean pages 4629 are skipped. 4532 are skipped. 4630 4533 4631 count will indicate the number of bytes actua 4534 count will indicate the number of bytes actually written in the buffer. 4632 It can (and very often will) be smaller than 4535 It can (and very often will) be smaller than the input value, since the 4633 buffer is only filled until 16 bytes of clean 4536 buffer is only filled until 16 bytes of clean values are found (which 4634 are then not copied in the buffer). Since a C 4537 are then not copied in the buffer). Since a CMMA migration block needs 4635 the base address and the length, for a total 4538 the base address and the length, for a total of 16 bytes, we will send 4636 back some clean data if there is some dirty d 4539 back some clean data if there is some dirty data afterwards, as long as 4637 the size of the clean data does not exceed th 4540 the size of the clean data does not exceed the size of the header. This 4638 allows to minimize the amount of data to be s 4541 allows to minimize the amount of data to be saved or transferred over 4639 the network at the expense of more roundtrips 4542 the network at the expense of more roundtrips to userspace. The next 4640 invocation of the ioctl will skip over all th 4543 invocation of the ioctl will skip over all the clean values, saving 4641 potentially more than just the 16 bytes we fo 4544 potentially more than just the 16 bytes we found. 4642 4545 4643 If KVM_S390_CMMA_PEEK is set: 4546 If KVM_S390_CMMA_PEEK is set: 4644 the existing storage attributes are read even 4547 the existing storage attributes are read even when not in migration 4645 mode, and no other action is performed; 4548 mode, and no other action is performed; 4646 4549 4647 the output start_gfn will be equal to the inp 4550 the output start_gfn will be equal to the input start_gfn, 4648 4551 4649 the output count will be equal to the input c 4552 the output count will be equal to the input count, except if the end of 4650 memory has been reached. 4553 memory has been reached. 4651 4554 4652 In both cases: 4555 In both cases: 4653 the field "remaining" will indicate the total 4556 the field "remaining" will indicate the total number of dirty CMMA values 4654 still remaining, or 0 if KVM_S390_CMMA_PEEK i 4557 still remaining, or 0 if KVM_S390_CMMA_PEEK is set and migration mode is 4655 not enabled. 4558 not enabled. 4656 4559 4657 mask is unused. 4560 mask is unused. 4658 4561 4659 values points to the userspace buffer where t 4562 values points to the userspace buffer where the result will be stored. 4660 4563 >> 4564 This ioctl can fail with -ENOMEM if not enough memory can be allocated to >> 4565 complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if >> 4566 KVM_S390_CMMA_PEEK is not set but migration mode was not enabled, with >> 4567 -EFAULT if the userspace address is invalid or if no page table is >> 4568 present for the addresses (e.g. when using hugepages). >> 4569 4661 4.108 KVM_S390_SET_CMMA_BITS 4570 4.108 KVM_S390_SET_CMMA_BITS 4662 ---------------------------- 4571 ---------------------------- 4663 4572 4664 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4573 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4665 :Architectures: s390 4574 :Architectures: s390 4666 :Type: vm ioctl 4575 :Type: vm ioctl 4667 :Parameters: struct kvm_s390_cmma_log (in) 4576 :Parameters: struct kvm_s390_cmma_log (in) 4668 :Returns: 0 on success, a negative value on e 4577 :Returns: 0 on success, a negative value on error 4669 4578 4670 This ioctl is used to set the values of the C 4579 This ioctl is used to set the values of the CMMA bits on the s390 4671 architecture. It is meant to be used during l 4580 architecture. It is meant to be used during live migration to restore 4672 the CMMA values, but there are no restriction 4581 the CMMA values, but there are no restrictions on its use. 4673 The ioctl takes parameters via the kvm_s390_c 4582 The ioctl takes parameters via the kvm_s390_cmma_values struct. 4674 Each CMMA value takes up one byte. 4583 Each CMMA value takes up one byte. 4675 4584 4676 :: 4585 :: 4677 4586 4678 struct kvm_s390_cmma_log { 4587 struct kvm_s390_cmma_log { 4679 __u64 start_gfn; 4588 __u64 start_gfn; 4680 __u32 count; 4589 __u32 count; 4681 __u32 flags; 4590 __u32 flags; 4682 union { 4591 union { 4683 __u64 remaining; 4592 __u64 remaining; 4684 __u64 mask; 4593 __u64 mask; 4685 }; 4594 }; 4686 __u64 values; 4595 __u64 values; 4687 }; 4596 }; 4688 4597 4689 start_gfn indicates the starting guest frame 4598 start_gfn indicates the starting guest frame number, 4690 4599 4691 count indicates how many values are to be con 4600 count indicates how many values are to be considered in the buffer, 4692 4601 4693 flags is not used and must be 0. 4602 flags is not used and must be 0. 4694 4603 4695 mask indicates which PGSTE bits are to be con 4604 mask indicates which PGSTE bits are to be considered. 4696 4605 4697 remaining is not used. 4606 remaining is not used. 4698 4607 4699 values points to the buffer in userspace wher 4608 values points to the buffer in userspace where to store the values. 4700 4609 4701 This ioctl can fail with -ENOMEM if not enoug 4610 This ioctl can fail with -ENOMEM if not enough memory can be allocated to 4702 complete the task, with -ENXIO if CMMA is not 4611 complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if 4703 the count field is too large (e.g. more than 4612 the count field is too large (e.g. more than KVM_S390_CMMA_SIZE_MAX) or 4704 if the flags field was not 0, with -EFAULT if 4613 if the flags field was not 0, with -EFAULT if the userspace address is 4705 invalid, if invalid pages are written to (e.g 4614 invalid, if invalid pages are written to (e.g. after the end of memory) 4706 or if no page table is present for the addres 4615 or if no page table is present for the addresses (e.g. when using 4707 hugepages). 4616 hugepages). 4708 4617 4709 4.109 KVM_PPC_GET_CPU_CHAR 4618 4.109 KVM_PPC_GET_CPU_CHAR 4710 -------------------------- 4619 -------------------------- 4711 4620 4712 :Capability: KVM_CAP_PPC_GET_CPU_CHAR 4621 :Capability: KVM_CAP_PPC_GET_CPU_CHAR 4713 :Architectures: powerpc 4622 :Architectures: powerpc 4714 :Type: vm ioctl 4623 :Type: vm ioctl 4715 :Parameters: struct kvm_ppc_cpu_char (out) 4624 :Parameters: struct kvm_ppc_cpu_char (out) 4716 :Returns: 0 on successful completion, 4625 :Returns: 0 on successful completion, 4717 -EFAULT if struct kvm_ppc_cpu_char c 4626 -EFAULT if struct kvm_ppc_cpu_char cannot be written 4718 4627 4719 This ioctl gives userspace information about 4628 This ioctl gives userspace information about certain characteristics 4720 of the CPU relating to speculative execution 4629 of the CPU relating to speculative execution of instructions and 4721 possible information leakage resulting from s 4630 possible information leakage resulting from speculative execution (see 4722 CVE-2017-5715, CVE-2017-5753 and CVE-2017-575 4631 CVE-2017-5715, CVE-2017-5753 and CVE-2017-5754). The information is 4723 returned in struct kvm_ppc_cpu_char, which lo 4632 returned in struct kvm_ppc_cpu_char, which looks like this:: 4724 4633 4725 struct kvm_ppc_cpu_char { 4634 struct kvm_ppc_cpu_char { 4726 __u64 character; /* ch 4635 __u64 character; /* characteristics of the CPU */ 4727 __u64 behaviour; /* re 4636 __u64 behaviour; /* recommended software behaviour */ 4728 __u64 character_mask; /* va 4637 __u64 character_mask; /* valid bits in character */ 4729 __u64 behaviour_mask; /* va 4638 __u64 behaviour_mask; /* valid bits in behaviour */ 4730 }; 4639 }; 4731 4640 4732 For extensibility, the character_mask and beh 4641 For extensibility, the character_mask and behaviour_mask fields 4733 indicate which bits of character and behaviou 4642 indicate which bits of character and behaviour have been filled in by 4734 the kernel. If the set of defined bits is ex 4643 the kernel. If the set of defined bits is extended in future then 4735 userspace will be able to tell whether it is 4644 userspace will be able to tell whether it is running on a kernel that 4736 knows about the new bits. 4645 knows about the new bits. 4737 4646 4738 The character field describes attributes of t 4647 The character field describes attributes of the CPU which can help 4739 with preventing inadvertent information discl 4648 with preventing inadvertent information disclosure - specifically, 4740 whether there is an instruction to flash-inva 4649 whether there is an instruction to flash-invalidate the L1 data cache 4741 (ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether 4650 (ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether the L1 data cache is set 4742 to a mode where entries can only be used by t 4651 to a mode where entries can only be used by the thread that created 4743 them, whether the bcctr[l] instruction preven 4652 them, whether the bcctr[l] instruction prevents speculation, and 4744 whether a speculation barrier instruction (or 4653 whether a speculation barrier instruction (ori 31,31,0) is provided. 4745 4654 4746 The behaviour field describes actions that so 4655 The behaviour field describes actions that software should take to 4747 prevent inadvertent information disclosure, a 4656 prevent inadvertent information disclosure, and thus describes which 4748 vulnerabilities the hardware is subject to; s 4657 vulnerabilities the hardware is subject to; specifically whether the 4749 L1 data cache should be flushed when returnin 4658 L1 data cache should be flushed when returning to user mode from the 4750 kernel, and whether a speculation barrier sho 4659 kernel, and whether a speculation barrier should be placed between an 4751 array bounds check and the array access. 4660 array bounds check and the array access. 4752 4661 4753 These fields use the same bit definitions as 4662 These fields use the same bit definitions as the new 4754 H_GET_CPU_CHARACTERISTICS hypercall. 4663 H_GET_CPU_CHARACTERISTICS hypercall. 4755 4664 4756 4.110 KVM_MEMORY_ENCRYPT_OP 4665 4.110 KVM_MEMORY_ENCRYPT_OP 4757 --------------------------- 4666 --------------------------- 4758 4667 4759 :Capability: basic 4668 :Capability: basic 4760 :Architectures: x86 4669 :Architectures: x86 4761 :Type: vm 4670 :Type: vm 4762 :Parameters: an opaque platform specific stru 4671 :Parameters: an opaque platform specific structure (in/out) 4763 :Returns: 0 on success; -1 on error 4672 :Returns: 0 on success; -1 on error 4764 4673 4765 If the platform supports creating encrypted V 4674 If the platform supports creating encrypted VMs then this ioctl can be used 4766 for issuing platform-specific memory encrypti 4675 for issuing platform-specific memory encryption commands to manage those 4767 encrypted VMs. 4676 encrypted VMs. 4768 4677 4769 Currently, this ioctl is used for issuing Sec 4678 Currently, this ioctl is used for issuing Secure Encrypted Virtualization 4770 (SEV) commands on AMD Processors. The SEV com 4679 (SEV) commands on AMD Processors. The SEV commands are defined in 4771 Documentation/virt/kvm/x86/amd-memory-encrypt 4680 Documentation/virt/kvm/x86/amd-memory-encryption.rst. 4772 4681 4773 4.111 KVM_MEMORY_ENCRYPT_REG_REGION 4682 4.111 KVM_MEMORY_ENCRYPT_REG_REGION 4774 ----------------------------------- 4683 ----------------------------------- 4775 4684 4776 :Capability: basic 4685 :Capability: basic 4777 :Architectures: x86 4686 :Architectures: x86 4778 :Type: system 4687 :Type: system 4779 :Parameters: struct kvm_enc_region (in) 4688 :Parameters: struct kvm_enc_region (in) 4780 :Returns: 0 on success; -1 on error 4689 :Returns: 0 on success; -1 on error 4781 4690 4782 This ioctl can be used to register a guest me 4691 This ioctl can be used to register a guest memory region which may 4783 contain encrypted data (e.g. guest RAM, SMRAM 4692 contain encrypted data (e.g. guest RAM, SMRAM etc). 4784 4693 4785 It is used in the SEV-enabled guest. When enc 4694 It is used in the SEV-enabled guest. When encryption is enabled, a guest 4786 memory region may contain encrypted data. The 4695 memory region may contain encrypted data. The SEV memory encryption 4787 engine uses a tweak such that two identical p 4696 engine uses a tweak such that two identical plaintext pages, each at 4788 different locations will have differing ciphe 4697 different locations will have differing ciphertexts. So swapping or 4789 moving ciphertext of those pages will not res 4698 moving ciphertext of those pages will not result in plaintext being 4790 swapped. So relocating (or migrating) physica 4699 swapped. So relocating (or migrating) physical backing pages for the SEV 4791 guest will require some additional steps. 4700 guest will require some additional steps. 4792 4701 4793 Note: The current SEV key management spec doe 4702 Note: The current SEV key management spec does not provide commands to 4794 swap or migrate (move) ciphertext pages. Henc 4703 swap or migrate (move) ciphertext pages. Hence, for now we pin the guest 4795 memory region registered with the ioctl. 4704 memory region registered with the ioctl. 4796 4705 4797 4.112 KVM_MEMORY_ENCRYPT_UNREG_REGION 4706 4.112 KVM_MEMORY_ENCRYPT_UNREG_REGION 4798 ------------------------------------- 4707 ------------------------------------- 4799 4708 4800 :Capability: basic 4709 :Capability: basic 4801 :Architectures: x86 4710 :Architectures: x86 4802 :Type: system 4711 :Type: system 4803 :Parameters: struct kvm_enc_region (in) 4712 :Parameters: struct kvm_enc_region (in) 4804 :Returns: 0 on success; -1 on error 4713 :Returns: 0 on success; -1 on error 4805 4714 4806 This ioctl can be used to unregister the gues 4715 This ioctl can be used to unregister the guest memory region registered 4807 with KVM_MEMORY_ENCRYPT_REG_REGION ioctl abov 4716 with KVM_MEMORY_ENCRYPT_REG_REGION ioctl above. 4808 4717 4809 4.113 KVM_HYPERV_EVENTFD 4718 4.113 KVM_HYPERV_EVENTFD 4810 ------------------------ 4719 ------------------------ 4811 4720 4812 :Capability: KVM_CAP_HYPERV_EVENTFD 4721 :Capability: KVM_CAP_HYPERV_EVENTFD 4813 :Architectures: x86 4722 :Architectures: x86 4814 :Type: vm ioctl 4723 :Type: vm ioctl 4815 :Parameters: struct kvm_hyperv_eventfd (in) 4724 :Parameters: struct kvm_hyperv_eventfd (in) 4816 4725 4817 This ioctl (un)registers an eventfd to receiv 4726 This ioctl (un)registers an eventfd to receive notifications from the guest on 4818 the specified Hyper-V connection id through t 4727 the specified Hyper-V connection id through the SIGNAL_EVENT hypercall, without 4819 causing a user exit. SIGNAL_EVENT hypercall 4728 causing a user exit. SIGNAL_EVENT hypercall with non-zero event flag number 4820 (bits 24-31) still triggers a KVM_EXIT_HYPERV 4729 (bits 24-31) still triggers a KVM_EXIT_HYPERV_HCALL user exit. 4821 4730 4822 :: 4731 :: 4823 4732 4824 struct kvm_hyperv_eventfd { 4733 struct kvm_hyperv_eventfd { 4825 __u32 conn_id; 4734 __u32 conn_id; 4826 __s32 fd; 4735 __s32 fd; 4827 __u32 flags; 4736 __u32 flags; 4828 __u32 padding[3]; 4737 __u32 padding[3]; 4829 }; 4738 }; 4830 4739 4831 The conn_id field should fit within 24 bits:: 4740 The conn_id field should fit within 24 bits:: 4832 4741 4833 #define KVM_HYPERV_CONN_ID_MASK 4742 #define KVM_HYPERV_CONN_ID_MASK 0x00ffffff 4834 4743 4835 The acceptable values for the flags field are 4744 The acceptable values for the flags field are:: 4836 4745 4837 #define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 4746 #define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 0) 4838 4747 4839 :Returns: 0 on success, 4748 :Returns: 0 on success, 4840 -EINVAL if conn_id or flags is outs 4749 -EINVAL if conn_id or flags is outside the allowed range, 4841 -ENOENT on deassign if the conn_id 4750 -ENOENT on deassign if the conn_id isn't registered, 4842 -EEXIST on assign if the conn_id is 4751 -EEXIST on assign if the conn_id is already registered 4843 4752 4844 4.114 KVM_GET_NESTED_STATE 4753 4.114 KVM_GET_NESTED_STATE 4845 -------------------------- 4754 -------------------------- 4846 4755 4847 :Capability: KVM_CAP_NESTED_STATE 4756 :Capability: KVM_CAP_NESTED_STATE 4848 :Architectures: x86 4757 :Architectures: x86 4849 :Type: vcpu ioctl 4758 :Type: vcpu ioctl 4850 :Parameters: struct kvm_nested_state (in/out) 4759 :Parameters: struct kvm_nested_state (in/out) 4851 :Returns: 0 on success, -1 on error 4760 :Returns: 0 on success, -1 on error 4852 4761 4853 Errors: 4762 Errors: 4854 4763 4855 ===== ================================ 4764 ===== ============================================================= 4856 E2BIG the total state size exceeds the 4765 E2BIG the total state size exceeds the value of 'size' specified by 4857 the user; the size required will 4766 the user; the size required will be written into size. 4858 ===== ================================ 4767 ===== ============================================================= 4859 4768 4860 :: 4769 :: 4861 4770 4862 struct kvm_nested_state { 4771 struct kvm_nested_state { 4863 __u16 flags; 4772 __u16 flags; 4864 __u16 format; 4773 __u16 format; 4865 __u32 size; 4774 __u32 size; 4866 4775 4867 union { 4776 union { 4868 struct kvm_vmx_nested_state_h 4777 struct kvm_vmx_nested_state_hdr vmx; 4869 struct kvm_svm_nested_state_h 4778 struct kvm_svm_nested_state_hdr svm; 4870 4779 4871 /* Pad the header to 128 byte 4780 /* Pad the header to 128 bytes. */ 4872 __u8 pad[120]; 4781 __u8 pad[120]; 4873 } hdr; 4782 } hdr; 4874 4783 4875 union { 4784 union { 4876 struct kvm_vmx_nested_state_d 4785 struct kvm_vmx_nested_state_data vmx[0]; 4877 struct kvm_svm_nested_state_d 4786 struct kvm_svm_nested_state_data svm[0]; 4878 } data; 4787 } data; 4879 }; 4788 }; 4880 4789 4881 #define KVM_STATE_NESTED_GUEST_MODE 4790 #define KVM_STATE_NESTED_GUEST_MODE 0x00000001 4882 #define KVM_STATE_NESTED_RUN_PENDING 4791 #define KVM_STATE_NESTED_RUN_PENDING 0x00000002 4883 #define KVM_STATE_NESTED_EVMCS 4792 #define KVM_STATE_NESTED_EVMCS 0x00000004 4884 4793 4885 #define KVM_STATE_NESTED_FORMAT_VMX 4794 #define KVM_STATE_NESTED_FORMAT_VMX 0 4886 #define KVM_STATE_NESTED_FORMAT_SVM 4795 #define KVM_STATE_NESTED_FORMAT_SVM 1 4887 4796 4888 #define KVM_STATE_NESTED_VMX_VMCS_SIZE 4797 #define KVM_STATE_NESTED_VMX_VMCS_SIZE 0x1000 4889 4798 4890 #define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 4799 #define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 0x00000001 4891 #define KVM_STATE_NESTED_VMX_SMM_VMXON 4800 #define KVM_STATE_NESTED_VMX_SMM_VMXON 0x00000002 4892 4801 4893 #define KVM_STATE_VMX_PREEMPTION_TIMER_DEAD 4802 #define KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE 0x00000001 4894 4803 4895 struct kvm_vmx_nested_state_hdr { 4804 struct kvm_vmx_nested_state_hdr { 4896 __u64 vmxon_pa; 4805 __u64 vmxon_pa; 4897 __u64 vmcs12_pa; 4806 __u64 vmcs12_pa; 4898 4807 4899 struct { 4808 struct { 4900 __u16 flags; 4809 __u16 flags; 4901 } smm; 4810 } smm; 4902 4811 4903 __u32 flags; 4812 __u32 flags; 4904 __u64 preemption_timer_deadline; 4813 __u64 preemption_timer_deadline; 4905 }; 4814 }; 4906 4815 4907 struct kvm_vmx_nested_state_data { 4816 struct kvm_vmx_nested_state_data { 4908 __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS 4817 __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE]; 4909 __u8 shadow_vmcs12[KVM_STATE_NESTED_V 4818 __u8 shadow_vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE]; 4910 }; 4819 }; 4911 4820 4912 This ioctl copies the vcpu's nested virtualiz 4821 This ioctl copies the vcpu's nested virtualization state from the kernel to 4913 userspace. 4822 userspace. 4914 4823 4915 The maximum size of the state can be retrieve 4824 The maximum size of the state can be retrieved by passing KVM_CAP_NESTED_STATE 4916 to the KVM_CHECK_EXTENSION ioctl(). 4825 to the KVM_CHECK_EXTENSION ioctl(). 4917 4826 4918 4.115 KVM_SET_NESTED_STATE 4827 4.115 KVM_SET_NESTED_STATE 4919 -------------------------- 4828 -------------------------- 4920 4829 4921 :Capability: KVM_CAP_NESTED_STATE 4830 :Capability: KVM_CAP_NESTED_STATE 4922 :Architectures: x86 4831 :Architectures: x86 4923 :Type: vcpu ioctl 4832 :Type: vcpu ioctl 4924 :Parameters: struct kvm_nested_state (in) 4833 :Parameters: struct kvm_nested_state (in) 4925 :Returns: 0 on success, -1 on error 4834 :Returns: 0 on success, -1 on error 4926 4835 4927 This copies the vcpu's kvm_nested_state struc 4836 This copies the vcpu's kvm_nested_state struct from userspace to the kernel. 4928 For the definition of struct kvm_nested_state 4837 For the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE. 4929 4838 4930 4.116 KVM_(UN)REGISTER_COALESCED_MMIO 4839 4.116 KVM_(UN)REGISTER_COALESCED_MMIO 4931 ------------------------------------- 4840 ------------------------------------- 4932 4841 4933 :Capability: KVM_CAP_COALESCED_MMIO (for coal 4842 :Capability: KVM_CAP_COALESCED_MMIO (for coalesced mmio) 4934 KVM_CAP_COALESCED_PIO (for coale 4843 KVM_CAP_COALESCED_PIO (for coalesced pio) 4935 :Architectures: all 4844 :Architectures: all 4936 :Type: vm ioctl 4845 :Type: vm ioctl 4937 :Parameters: struct kvm_coalesced_mmio_zone 4846 :Parameters: struct kvm_coalesced_mmio_zone 4938 :Returns: 0 on success, < 0 on error 4847 :Returns: 0 on success, < 0 on error 4939 4848 4940 Coalesced I/O is a performance optimization t 4849 Coalesced I/O is a performance optimization that defers hardware 4941 register write emulation so that userspace ex 4850 register write emulation so that userspace exits are avoided. It is 4942 typically used to reduce the overhead of emul 4851 typically used to reduce the overhead of emulating frequently accessed 4943 hardware registers. 4852 hardware registers. 4944 4853 4945 When a hardware register is configured for co 4854 When a hardware register is configured for coalesced I/O, write accesses 4946 do not exit to userspace and their value is r 4855 do not exit to userspace and their value is recorded in a ring buffer 4947 that is shared between kernel and userspace. 4856 that is shared between kernel and userspace. 4948 4857 4949 Coalesced I/O is used if one or more write ac 4858 Coalesced I/O is used if one or more write accesses to a hardware 4950 register can be deferred until a read or a wr 4859 register can be deferred until a read or a write to another hardware 4951 register on the same device. This last acces 4860 register on the same device. This last access will cause a vmexit and 4952 userspace will process accesses from the ring 4861 userspace will process accesses from the ring buffer before emulating 4953 it. That will avoid exiting to userspace on r 4862 it. That will avoid exiting to userspace on repeated writes. 4954 4863 4955 Coalesced pio is based on coalesced mmio. The 4864 Coalesced pio is based on coalesced mmio. There is little difference 4956 between coalesced mmio and pio except that co 4865 between coalesced mmio and pio except that coalesced pio records accesses 4957 to I/O ports. 4866 to I/O ports. 4958 4867 4959 4.117 KVM_CLEAR_DIRTY_LOG (vm ioctl) 4868 4.117 KVM_CLEAR_DIRTY_LOG (vm ioctl) 4960 ------------------------------------ 4869 ------------------------------------ 4961 4870 4962 :Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT 4871 :Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 4963 :Architectures: x86, arm64, mips 4872 :Architectures: x86, arm64, mips 4964 :Type: vm ioctl 4873 :Type: vm ioctl 4965 :Parameters: struct kvm_clear_dirty_log (in) 4874 :Parameters: struct kvm_clear_dirty_log (in) 4966 :Returns: 0 on success, -1 on error 4875 :Returns: 0 on success, -1 on error 4967 4876 4968 :: 4877 :: 4969 4878 4970 /* for KVM_CLEAR_DIRTY_LOG */ 4879 /* for KVM_CLEAR_DIRTY_LOG */ 4971 struct kvm_clear_dirty_log { 4880 struct kvm_clear_dirty_log { 4972 __u32 slot; 4881 __u32 slot; 4973 __u32 num_pages; 4882 __u32 num_pages; 4974 __u64 first_page; 4883 __u64 first_page; 4975 union { 4884 union { 4976 void __user *dirty_bitmap; /* 4885 void __user *dirty_bitmap; /* one bit per page */ 4977 __u64 padding; 4886 __u64 padding; 4978 }; 4887 }; 4979 }; 4888 }; 4980 4889 4981 The ioctl clears the dirty status of pages in 4890 The ioctl clears the dirty status of pages in a memory slot, according to 4982 the bitmap that is passed in struct kvm_clear 4891 the bitmap that is passed in struct kvm_clear_dirty_log's dirty_bitmap 4983 field. Bit 0 of the bitmap corresponds to pa 4892 field. Bit 0 of the bitmap corresponds to page "first_page" in the 4984 memory slot, and num_pages is the size in bit 4893 memory slot, and num_pages is the size in bits of the input bitmap. 4985 first_page must be a multiple of 64; num_page 4894 first_page must be a multiple of 64; num_pages must also be a multiple of 4986 64 unless first_page + num_pages is the size 4895 64 unless first_page + num_pages is the size of the memory slot. For each 4987 bit that is set in the input bitmap, the corr 4896 bit that is set in the input bitmap, the corresponding page is marked "clean" 4988 in KVM's dirty bitmap, and dirty tracking is 4897 in KVM's dirty bitmap, and dirty tracking is re-enabled for that page 4989 (for example via write-protection, or by clea 4898 (for example via write-protection, or by clearing the dirty bit in 4990 a page table entry). 4899 a page table entry). 4991 4900 4992 If KVM_CAP_MULTI_ADDRESS_SPACE is available, 4901 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of slot field specifies 4993 the address space for which you want to clear 4902 the address space for which you want to clear the dirty status. See 4994 KVM_SET_USER_MEMORY_REGION for details on the 4903 KVM_SET_USER_MEMORY_REGION for details on the usage of slot field. 4995 4904 4996 This ioctl is mostly useful when KVM_CAP_MANU 4905 This ioctl is mostly useful when KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 4997 is enabled; for more information, see the des 4906 is enabled; for more information, see the description of the capability. 4998 However, it can always be used as long as KVM 4907 However, it can always be used as long as KVM_CHECK_EXTENSION confirms 4999 that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is pre 4908 that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is present. 5000 4909 5001 4.118 KVM_GET_SUPPORTED_HV_CPUID 4910 4.118 KVM_GET_SUPPORTED_HV_CPUID 5002 -------------------------------- 4911 -------------------------------- 5003 4912 5004 :Capability: KVM_CAP_HYPERV_CPUID (vcpu), KVM 4913 :Capability: KVM_CAP_HYPERV_CPUID (vcpu), KVM_CAP_SYS_HYPERV_CPUID (system) 5005 :Architectures: x86 4914 :Architectures: x86 5006 :Type: system ioctl, vcpu ioctl 4915 :Type: system ioctl, vcpu ioctl 5007 :Parameters: struct kvm_cpuid2 (in/out) 4916 :Parameters: struct kvm_cpuid2 (in/out) 5008 :Returns: 0 on success, -1 on error 4917 :Returns: 0 on success, -1 on error 5009 4918 5010 :: 4919 :: 5011 4920 5012 struct kvm_cpuid2 { 4921 struct kvm_cpuid2 { 5013 __u32 nent; 4922 __u32 nent; 5014 __u32 padding; 4923 __u32 padding; 5015 struct kvm_cpuid_entry2 entries[0]; 4924 struct kvm_cpuid_entry2 entries[0]; 5016 }; 4925 }; 5017 4926 5018 struct kvm_cpuid_entry2 { 4927 struct kvm_cpuid_entry2 { 5019 __u32 function; 4928 __u32 function; 5020 __u32 index; 4929 __u32 index; 5021 __u32 flags; 4930 __u32 flags; 5022 __u32 eax; 4931 __u32 eax; 5023 __u32 ebx; 4932 __u32 ebx; 5024 __u32 ecx; 4933 __u32 ecx; 5025 __u32 edx; 4934 __u32 edx; 5026 __u32 padding[3]; 4935 __u32 padding[3]; 5027 }; 4936 }; 5028 4937 5029 This ioctl returns x86 cpuid features leaves 4938 This ioctl returns x86 cpuid features leaves related to Hyper-V emulation in 5030 KVM. Userspace can use the information retur 4939 KVM. Userspace can use the information returned by this ioctl to construct 5031 cpuid information presented to guests consumi 4940 cpuid information presented to guests consuming Hyper-V enlightenments (e.g. 5032 Windows or Hyper-V guests). 4941 Windows or Hyper-V guests). 5033 4942 5034 CPUID feature leaves returned by this ioctl a 4943 CPUID feature leaves returned by this ioctl are defined by Hyper-V Top Level 5035 Functional Specification (TLFS). These leaves 4944 Functional Specification (TLFS). These leaves can't be obtained with 5036 KVM_GET_SUPPORTED_CPUID ioctl because some of 4945 KVM_GET_SUPPORTED_CPUID ioctl because some of them intersect with KVM feature 5037 leaves (0x40000000, 0x40000001). 4946 leaves (0x40000000, 0x40000001). 5038 4947 5039 Currently, the following list of CPUID leaves 4948 Currently, the following list of CPUID leaves are returned: 5040 4949 5041 - HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS 4950 - HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS 5042 - HYPERV_CPUID_INTERFACE 4951 - HYPERV_CPUID_INTERFACE 5043 - HYPERV_CPUID_VERSION 4952 - HYPERV_CPUID_VERSION 5044 - HYPERV_CPUID_FEATURES 4953 - HYPERV_CPUID_FEATURES 5045 - HYPERV_CPUID_ENLIGHTMENT_INFO 4954 - HYPERV_CPUID_ENLIGHTMENT_INFO 5046 - HYPERV_CPUID_IMPLEMENT_LIMITS 4955 - HYPERV_CPUID_IMPLEMENT_LIMITS 5047 - HYPERV_CPUID_NESTED_FEATURES 4956 - HYPERV_CPUID_NESTED_FEATURES 5048 - HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIO 4957 - HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS 5049 - HYPERV_CPUID_SYNDBG_INTERFACE 4958 - HYPERV_CPUID_SYNDBG_INTERFACE 5050 - HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES 4959 - HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES 5051 4960 5052 Userspace invokes KVM_GET_SUPPORTED_HV_CPUID 4961 Userspace invokes KVM_GET_SUPPORTED_HV_CPUID by passing a kvm_cpuid2 structure 5053 with the 'nent' field indicating the number o 4962 with the 'nent' field indicating the number of entries in the variable-size 5054 array 'entries'. If the number of entries is 4963 array 'entries'. If the number of entries is too low to describe all Hyper-V 5055 feature leaves, an error (E2BIG) is returned. 4964 feature leaves, an error (E2BIG) is returned. If the number is more or equal 5056 to the number of Hyper-V feature leaves, the 4965 to the number of Hyper-V feature leaves, the 'nent' field is adjusted to the 5057 number of valid entries in the 'entries' arra 4966 number of valid entries in the 'entries' array, which is then filled. 5058 4967 5059 'index' and 'flags' fields in 'struct kvm_cpu 4968 'index' and 'flags' fields in 'struct kvm_cpuid_entry2' are currently reserved, 5060 userspace should not expect to get any partic 4969 userspace should not expect to get any particular value there. 5061 4970 5062 Note, vcpu version of KVM_GET_SUPPORTED_HV_CP 4971 Note, vcpu version of KVM_GET_SUPPORTED_HV_CPUID is currently deprecated. Unlike 5063 system ioctl which exposes all supported feat 4972 system ioctl which exposes all supported feature bits unconditionally, vcpu 5064 version has the following quirks: 4973 version has the following quirks: 5065 4974 5066 - HYPERV_CPUID_NESTED_FEATURES leaf and HV_X6 4975 - HYPERV_CPUID_NESTED_FEATURES leaf and HV_X64_ENLIGHTENED_VMCS_RECOMMENDED 5067 feature bit are only exposed when Enlighten 4976 feature bit are only exposed when Enlightened VMCS was previously enabled 5068 on the corresponding vCPU (KVM_CAP_HYPERV_E 4977 on the corresponding vCPU (KVM_CAP_HYPERV_ENLIGHTENED_VMCS). 5069 - HV_STIMER_DIRECT_MODE_AVAILABLE bit is only 4978 - HV_STIMER_DIRECT_MODE_AVAILABLE bit is only exposed with in-kernel LAPIC. 5070 (presumes KVM_CREATE_IRQCHIP has already be 4979 (presumes KVM_CREATE_IRQCHIP has already been called). 5071 4980 5072 4.119 KVM_ARM_VCPU_FINALIZE 4981 4.119 KVM_ARM_VCPU_FINALIZE 5073 --------------------------- 4982 --------------------------- 5074 4983 5075 :Architectures: arm64 4984 :Architectures: arm64 5076 :Type: vcpu ioctl 4985 :Type: vcpu ioctl 5077 :Parameters: int feature (in) 4986 :Parameters: int feature (in) 5078 :Returns: 0 on success, -1 on error 4987 :Returns: 0 on success, -1 on error 5079 4988 5080 Errors: 4989 Errors: 5081 4990 5082 ====== ================================ 4991 ====== ============================================================== 5083 EPERM feature not enabled, needs confi 4992 EPERM feature not enabled, needs configuration, or already finalized 5084 EINVAL feature unknown or not present 4993 EINVAL feature unknown or not present 5085 ====== ================================ 4994 ====== ============================================================== 5086 4995 5087 Recognised values for feature: 4996 Recognised values for feature: 5088 4997 5089 ===== ================================ 4998 ===== =========================================== 5090 arm64 KVM_ARM_VCPU_SVE (requires KVM_C 4999 arm64 KVM_ARM_VCPU_SVE (requires KVM_CAP_ARM_SVE) 5091 ===== ================================ 5000 ===== =========================================== 5092 5001 5093 Finalizes the configuration of the specified 5002 Finalizes the configuration of the specified vcpu feature. 5094 5003 5095 The vcpu must already have been initialised, 5004 The vcpu must already have been initialised, enabling the affected feature, by 5096 means of a successful KVM_ARM_VCPU_INIT call 5005 means of a successful KVM_ARM_VCPU_INIT call with the appropriate flag set in 5097 features[]. 5006 features[]. 5098 5007 5099 For affected vcpu features, this is a mandato 5008 For affected vcpu features, this is a mandatory step that must be performed 5100 before the vcpu is fully usable. 5009 before the vcpu is fully usable. 5101 5010 5102 Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FI 5011 Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FINALIZE, the feature may be 5103 configured by use of ioctls such as KVM_SET_O 5012 configured by use of ioctls such as KVM_SET_ONE_REG. The exact configuration 5104 that should be performed and how to do it are !! 5013 that should be performaned and how to do it are feature-dependent. 5105 5014 5106 Other calls that depend on a particular featu 5015 Other calls that depend on a particular feature being finalized, such as 5107 KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG an 5016 KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG and KVM_SET_ONE_REG, will fail with 5108 -EPERM unless the feature has already been fi 5017 -EPERM unless the feature has already been finalized by means of a 5109 KVM_ARM_VCPU_FINALIZE call. 5018 KVM_ARM_VCPU_FINALIZE call. 5110 5019 5111 See KVM_ARM_VCPU_INIT for details of vcpu fea 5020 See KVM_ARM_VCPU_INIT for details of vcpu features that require finalization 5112 using this ioctl. 5021 using this ioctl. 5113 5022 5114 4.120 KVM_SET_PMU_EVENT_FILTER 5023 4.120 KVM_SET_PMU_EVENT_FILTER 5115 ------------------------------ 5024 ------------------------------ 5116 5025 5117 :Capability: KVM_CAP_PMU_EVENT_FILTER 5026 :Capability: KVM_CAP_PMU_EVENT_FILTER 5118 :Architectures: x86 5027 :Architectures: x86 5119 :Type: vm ioctl 5028 :Type: vm ioctl 5120 :Parameters: struct kvm_pmu_event_filter (in) 5029 :Parameters: struct kvm_pmu_event_filter (in) 5121 :Returns: 0 on success, -1 on error 5030 :Returns: 0 on success, -1 on error 5122 5031 5123 Errors: << 5124 << 5125 ====== ================================ << 5126 EFAULT args[0] cannot be accessed << 5127 EINVAL args[0] contains invalid data in << 5128 E2BIG nevents is too large << 5129 EBUSY not enough memory to allocate th << 5130 ====== ================================ << 5131 << 5132 :: 5032 :: 5133 5033 5134 struct kvm_pmu_event_filter { 5034 struct kvm_pmu_event_filter { 5135 __u32 action; 5035 __u32 action; 5136 __u32 nevents; 5036 __u32 nevents; 5137 __u32 fixed_counter_bitmap; 5037 __u32 fixed_counter_bitmap; 5138 __u32 flags; 5038 __u32 flags; 5139 __u32 pad[4]; 5039 __u32 pad[4]; 5140 __u64 events[0]; 5040 __u64 events[0]; 5141 }; 5041 }; 5142 5042 5143 This ioctl restricts the set of PMU events th !! 5043 This ioctl restricts the set of PMU events that the guest can program. 5144 which event select and unit mask combinations !! 5044 The argument holds a list of events which will be allowed or denied. 5145 !! 5045 The eventsel+umask of each event the guest attempts to program is compared 5146 The argument holds a list of filter events wh !! 5046 against the events field to determine whether the guest should have access. 5147 !! 5047 The events field only controls general purpose counters; fixed purpose 5148 Filter events only control general purpose co !! 5048 counters are controlled by the fixed_counter_bitmap. 5149 are controlled by the fixed_counter_bitmap. << 5150 5049 5151 Valid values for 'flags':: !! 5050 No flags are defined yet, the field must be zero. 5152 << 5153 ``0`` << 5154 << 5155 To use this mode, clear the 'flags' field. << 5156 << 5157 In this mode each event will contain an event << 5158 << 5159 When the guest attempts to program the PMU th << 5160 unit mask is compared against the filter even << 5161 guest should have access. << 5162 << 5163 ``KVM_PMU_EVENT_FLAG_MASKED_EVENTS`` << 5164 :Capability: KVM_CAP_PMU_EVENT_MASKED_EVENTS << 5165 << 5166 In this mode each filter event will contain a << 5167 exclude value. To encode a masked event use: << 5168 << 5169 KVM_PMU_ENCODE_MASKED_ENTRY() << 5170 << 5171 An encoded event will follow this layout:: << 5172 << 5173 Bits Description << 5174 ---- ----------- << 5175 7:0 event select (low bits) << 5176 15:8 umask match << 5177 31:16 unused << 5178 35:32 event select (high bits) << 5179 36:54 unused << 5180 55 exclude bit << 5181 63:56 umask mask << 5182 << 5183 When the guest attempts to program the PMU, t << 5184 determining if the guest should have access: << 5185 << 5186 1. Match the event select from the guest aga << 5187 2. If a match is found, match the guest's un << 5188 values of the included filter events. << 5189 I.e. (unit mask & mask) == match && !excl << 5190 3. If a match is found, match the guest's un << 5191 values of the excluded filter events. << 5192 I.e. (unit mask & mask) == match && exclu << 5193 4. << 5194 a. If an included match is found and an ex << 5195 the event. << 5196 b. For everything else, do not filter the << 5197 5. << 5198 a. If the event is filtered and it's an al << 5199 program the event. << 5200 b. If the event is filtered and it's a den << 5201 program the event. << 5202 << 5203 When setting a new pmu event filter, -EINVAL << 5204 unused fields are set or if any of the high b << 5205 select are set when called on Intel. << 5206 5051 5207 Valid values for 'action':: 5052 Valid values for 'action':: 5208 5053 5209 #define KVM_PMU_EVENT_ALLOW 0 5054 #define KVM_PMU_EVENT_ALLOW 0 5210 #define KVM_PMU_EVENT_DENY 1 5055 #define KVM_PMU_EVENT_DENY 1 5211 5056 5212 Via this API, KVM userspace can also control << 5213 counters (if any) by configuring the "action" << 5214 << 5215 Specifically, KVM follows the following pseud << 5216 allow the guest FixCtr[i] to count its pre-de << 5217 << 5218 FixCtr[i]_is_allowed = (action == ALLOW) && << 5219 (action == DENY) && !(bitmap & BIT(i)); << 5220 FixCtr[i]_is_denied = !FixCtr[i]_is_allowed << 5221 << 5222 KVM always consumes fixed_counter_bitmap, it' << 5223 ensure fixed_counter_bitmap is set correctly, << 5224 a filter that only affects general purpose co << 5225 << 5226 Note, the "events" field also applies to fixe << 5227 and unit_mask values. "fixed_counter_bitmap" << 5228 if there is a contradiction between the two. << 5229 << 5230 4.121 KVM_PPC_SVM_OFF 5057 4.121 KVM_PPC_SVM_OFF 5231 --------------------- 5058 --------------------- 5232 5059 5233 :Capability: basic 5060 :Capability: basic 5234 :Architectures: powerpc 5061 :Architectures: powerpc 5235 :Type: vm ioctl 5062 :Type: vm ioctl 5236 :Parameters: none 5063 :Parameters: none 5237 :Returns: 0 on successful completion, 5064 :Returns: 0 on successful completion, 5238 5065 5239 Errors: 5066 Errors: 5240 5067 5241 ====== ================================ 5068 ====== ================================================================ 5242 EINVAL if ultravisor failed to terminat 5069 EINVAL if ultravisor failed to terminate the secure guest 5243 ENOMEM if hypervisor failed to allocate 5070 ENOMEM if hypervisor failed to allocate new radix page tables for guest 5244 ====== ================================ 5071 ====== ================================================================ 5245 5072 5246 This ioctl is used to turn off the secure mod 5073 This ioctl is used to turn off the secure mode of the guest or transition 5247 the guest from secure mode to normal mode. Th 5074 the guest from secure mode to normal mode. This is invoked when the guest 5248 is reset. This has no effect if called for a 5075 is reset. This has no effect if called for a normal guest. 5249 5076 5250 This ioctl issues an ultravisor call to termi 5077 This ioctl issues an ultravisor call to terminate the secure guest, 5251 unpins the VPA pages and releases all the dev 5078 unpins the VPA pages and releases all the device pages that are used to 5252 track the secure pages by hypervisor. 5079 track the secure pages by hypervisor. 5253 5080 5254 4.122 KVM_S390_NORMAL_RESET 5081 4.122 KVM_S390_NORMAL_RESET 5255 --------------------------- 5082 --------------------------- 5256 5083 5257 :Capability: KVM_CAP_S390_VCPU_RESETS 5084 :Capability: KVM_CAP_S390_VCPU_RESETS 5258 :Architectures: s390 5085 :Architectures: s390 5259 :Type: vcpu ioctl 5086 :Type: vcpu ioctl 5260 :Parameters: none 5087 :Parameters: none 5261 :Returns: 0 5088 :Returns: 0 5262 5089 5263 This ioctl resets VCPU registers and control 5090 This ioctl resets VCPU registers and control structures according to 5264 the cpu reset definition in the POP (Principl 5091 the cpu reset definition in the POP (Principles Of Operation). 5265 5092 5266 4.123 KVM_S390_INITIAL_RESET 5093 4.123 KVM_S390_INITIAL_RESET 5267 ---------------------------- 5094 ---------------------------- 5268 5095 5269 :Capability: none 5096 :Capability: none 5270 :Architectures: s390 5097 :Architectures: s390 5271 :Type: vcpu ioctl 5098 :Type: vcpu ioctl 5272 :Parameters: none 5099 :Parameters: none 5273 :Returns: 0 5100 :Returns: 0 5274 5101 5275 This ioctl resets VCPU registers and control 5102 This ioctl resets VCPU registers and control structures according to 5276 the initial cpu reset definition in the POP. 5103 the initial cpu reset definition in the POP. However, the cpu is not 5277 put into ESA mode. This reset is a superset o 5104 put into ESA mode. This reset is a superset of the normal reset. 5278 5105 5279 4.124 KVM_S390_CLEAR_RESET 5106 4.124 KVM_S390_CLEAR_RESET 5280 -------------------------- 5107 -------------------------- 5281 5108 5282 :Capability: KVM_CAP_S390_VCPU_RESETS 5109 :Capability: KVM_CAP_S390_VCPU_RESETS 5283 :Architectures: s390 5110 :Architectures: s390 5284 :Type: vcpu ioctl 5111 :Type: vcpu ioctl 5285 :Parameters: none 5112 :Parameters: none 5286 :Returns: 0 5113 :Returns: 0 5287 5114 5288 This ioctl resets VCPU registers and control 5115 This ioctl resets VCPU registers and control structures according to 5289 the clear cpu reset definition in the POP. Ho 5116 the clear cpu reset definition in the POP. However, the cpu is not put 5290 into ESA mode. This reset is a superset of th 5117 into ESA mode. This reset is a superset of the initial reset. 5291 5118 5292 5119 5293 4.125 KVM_S390_PV_COMMAND 5120 4.125 KVM_S390_PV_COMMAND 5294 ------------------------- 5121 ------------------------- 5295 5122 5296 :Capability: KVM_CAP_S390_PROTECTED 5123 :Capability: KVM_CAP_S390_PROTECTED 5297 :Architectures: s390 5124 :Architectures: s390 5298 :Type: vm ioctl 5125 :Type: vm ioctl 5299 :Parameters: struct kvm_pv_cmd 5126 :Parameters: struct kvm_pv_cmd 5300 :Returns: 0 on success, < 0 on error 5127 :Returns: 0 on success, < 0 on error 5301 5128 5302 :: 5129 :: 5303 5130 5304 struct kvm_pv_cmd { 5131 struct kvm_pv_cmd { 5305 __u32 cmd; /* Command to be exec 5132 __u32 cmd; /* Command to be executed */ 5306 __u16 rc; /* Ultravisor return 5133 __u16 rc; /* Ultravisor return code */ 5307 __u16 rrc; /* Ultravisor return 5134 __u16 rrc; /* Ultravisor return reason code */ 5308 __u64 data; /* Data or address */ 5135 __u64 data; /* Data or address */ 5309 __u32 flags; /* flags for future e 5136 __u32 flags; /* flags for future extensions. Must be 0 for now */ 5310 __u32 reserved[3]; 5137 __u32 reserved[3]; 5311 }; 5138 }; 5312 5139 5313 **Ultravisor return codes** 5140 **Ultravisor return codes** 5314 The Ultravisor return (reason) codes are prov 5141 The Ultravisor return (reason) codes are provided by the kernel if a 5315 Ultravisor call has been executed to achieve 5142 Ultravisor call has been executed to achieve the results expected by 5316 the command. Therefore they are independent o 5143 the command. Therefore they are independent of the IOCTL return 5317 code. If KVM changes `rc`, its value will alw 5144 code. If KVM changes `rc`, its value will always be greater than 0 5318 hence setting it to 0 before issuing a PV com 5145 hence setting it to 0 before issuing a PV command is advised to be 5319 able to detect a change of `rc`. 5146 able to detect a change of `rc`. 5320 5147 5321 **cmd values:** 5148 **cmd values:** 5322 5149 5323 KVM_PV_ENABLE 5150 KVM_PV_ENABLE 5324 Allocate memory and register the VM with th 5151 Allocate memory and register the VM with the Ultravisor, thereby 5325 donating memory to the Ultravisor that will 5152 donating memory to the Ultravisor that will become inaccessible to 5326 KVM. All existing CPUs are converted to pro 5153 KVM. All existing CPUs are converted to protected ones. After this 5327 command has succeeded, any CPU added via ho 5154 command has succeeded, any CPU added via hotplug will become 5328 protected during its creation as well. 5155 protected during its creation as well. 5329 5156 5330 Errors: 5157 Errors: 5331 5158 5332 ===== ============================= 5159 ===== ============================= 5333 EINTR an unmasked signal is pending 5160 EINTR an unmasked signal is pending 5334 ===== ============================= 5161 ===== ============================= 5335 5162 5336 KVM_PV_DISABLE 5163 KVM_PV_DISABLE 5337 Deregister the VM from the Ultravisor and r !! 5164 Deregister the VM from the Ultravisor and reclaim the memory that 5338 been donated to the Ultravisor, making it u !! 5165 had been donated to the Ultravisor, making it usable by the kernel 5339 All registered VCPUs are converted back to !! 5166 again. All registered VCPUs are converted back to non-protected 5340 previous protected VM had been prepared for !! 5167 ones. 5341 KVM_PV_ASYNC_CLEANUP_PREPARE and not subseq << 5342 KVM_PV_ASYNC_CLEANUP_PERFORM, it will be to << 5343 together with the current protected VM. << 5344 5168 5345 KVM_PV_VM_SET_SEC_PARMS 5169 KVM_PV_VM_SET_SEC_PARMS 5346 Pass the image header from VM memory to the 5170 Pass the image header from VM memory to the Ultravisor in 5347 preparation of image unpacking and verifica 5171 preparation of image unpacking and verification. 5348 5172 5349 KVM_PV_VM_UNPACK 5173 KVM_PV_VM_UNPACK 5350 Unpack (protect and decrypt) a page of the 5174 Unpack (protect and decrypt) a page of the encrypted boot image. 5351 5175 5352 KVM_PV_VM_VERIFY 5176 KVM_PV_VM_VERIFY 5353 Verify the integrity of the unpacked image. 5177 Verify the integrity of the unpacked image. Only if this succeeds, 5354 KVM is allowed to start protected VCPUs. 5178 KVM is allowed to start protected VCPUs. 5355 5179 5356 KVM_PV_INFO 5180 KVM_PV_INFO 5357 :Capability: KVM_CAP_S390_PROTECTED_DUMP 5181 :Capability: KVM_CAP_S390_PROTECTED_DUMP 5358 5182 5359 Presents an API that provides Ultravisor re 5183 Presents an API that provides Ultravisor related data to userspace 5360 via subcommands. len_max is the size of the 5184 via subcommands. len_max is the size of the user space buffer, 5361 len_written is KVM's indication of how much 5185 len_written is KVM's indication of how much bytes of that buffer 5362 were actually written to. len_written can b 5186 were actually written to. len_written can be used to determine the 5363 valid fields if more response fields are ad 5187 valid fields if more response fields are added in the future. 5364 5188 5365 :: 5189 :: 5366 5190 5367 enum pv_cmd_info_id { 5191 enum pv_cmd_info_id { 5368 KVM_PV_INFO_VM, 5192 KVM_PV_INFO_VM, 5369 KVM_PV_INFO_DUMP, 5193 KVM_PV_INFO_DUMP, 5370 }; 5194 }; 5371 5195 5372 struct kvm_s390_pv_info_header { 5196 struct kvm_s390_pv_info_header { 5373 __u32 id; 5197 __u32 id; 5374 __u32 len_max; 5198 __u32 len_max; 5375 __u32 len_written; 5199 __u32 len_written; 5376 __u32 reserved; 5200 __u32 reserved; 5377 }; 5201 }; 5378 5202 5379 struct kvm_s390_pv_info { 5203 struct kvm_s390_pv_info { 5380 struct kvm_s390_pv_info_header header 5204 struct kvm_s390_pv_info_header header; 5381 struct kvm_s390_pv_info_dump dump; 5205 struct kvm_s390_pv_info_dump dump; 5382 struct kvm_s390_pv_info_vm vm; 5206 struct kvm_s390_pv_info_vm vm; 5383 }; 5207 }; 5384 5208 5385 **subcommands:** 5209 **subcommands:** 5386 5210 5387 KVM_PV_INFO_VM 5211 KVM_PV_INFO_VM 5388 This subcommand provides basic Ultravisor 5212 This subcommand provides basic Ultravisor information for PV 5389 hosts. These values are likely also expor 5213 hosts. These values are likely also exported as files in the sysfs 5390 firmware UV query interface but they are 5214 firmware UV query interface but they are more easily available to 5391 programs in this API. 5215 programs in this API. 5392 5216 5393 The installed calls and feature_indicatio 5217 The installed calls and feature_indication members provide the 5394 installed UV calls and the UV's other fea 5218 installed UV calls and the UV's other feature indications. 5395 5219 5396 The max_* members provide information abo 5220 The max_* members provide information about the maximum number of PV 5397 vcpus, PV guests and PV guest memory size 5221 vcpus, PV guests and PV guest memory size. 5398 5222 5399 :: 5223 :: 5400 5224 5401 struct kvm_s390_pv_info_vm { 5225 struct kvm_s390_pv_info_vm { 5402 __u64 inst_calls_list[4]; 5226 __u64 inst_calls_list[4]; 5403 __u64 max_cpus; 5227 __u64 max_cpus; 5404 __u64 max_guests; 5228 __u64 max_guests; 5405 __u64 max_guest_addr; 5229 __u64 max_guest_addr; 5406 __u64 feature_indication; 5230 __u64 feature_indication; 5407 }; 5231 }; 5408 5232 5409 5233 5410 KVM_PV_INFO_DUMP 5234 KVM_PV_INFO_DUMP 5411 This subcommand provides information rela 5235 This subcommand provides information related to dumping PV guests. 5412 5236 5413 :: 5237 :: 5414 5238 5415 struct kvm_s390_pv_info_dump { 5239 struct kvm_s390_pv_info_dump { 5416 __u64 dump_cpu_buffer_len; 5240 __u64 dump_cpu_buffer_len; 5417 __u64 dump_config_mem_buffer_per_1m; 5241 __u64 dump_config_mem_buffer_per_1m; 5418 __u64 dump_config_finalize_len; 5242 __u64 dump_config_finalize_len; 5419 }; 5243 }; 5420 5244 5421 KVM_PV_DUMP 5245 KVM_PV_DUMP 5422 :Capability: KVM_CAP_S390_PROTECTED_DUMP 5246 :Capability: KVM_CAP_S390_PROTECTED_DUMP 5423 5247 5424 Presents an API that provides calls which f 5248 Presents an API that provides calls which facilitate dumping a 5425 protected VM. 5249 protected VM. 5426 5250 5427 :: 5251 :: 5428 5252 5429 struct kvm_s390_pv_dmp { 5253 struct kvm_s390_pv_dmp { 5430 __u64 subcmd; 5254 __u64 subcmd; 5431 __u64 buff_addr; 5255 __u64 buff_addr; 5432 __u64 buff_len; 5256 __u64 buff_len; 5433 __u64 gaddr; /* For dump s 5257 __u64 gaddr; /* For dump storage state */ 5434 }; 5258 }; 5435 5259 5436 **subcommands:** 5260 **subcommands:** 5437 5261 5438 KVM_PV_DUMP_INIT 5262 KVM_PV_DUMP_INIT 5439 Initializes the dump process of a protect 5263 Initializes the dump process of a protected VM. If this call does 5440 not succeed all other subcommands will fa 5264 not succeed all other subcommands will fail with -EINVAL. This 5441 subcommand will return -EINVAL if a dump 5265 subcommand will return -EINVAL if a dump process has not yet been 5442 completed. 5266 completed. 5443 5267 5444 Not all PV vms can be dumped, the owner n 5268 Not all PV vms can be dumped, the owner needs to set `dump 5445 allowed` PCF bit 34 in the SE header to a 5269 allowed` PCF bit 34 in the SE header to allow dumping. 5446 5270 5447 KVM_PV_DUMP_CONFIG_STOR_STATE 5271 KVM_PV_DUMP_CONFIG_STOR_STATE 5448 Stores `buff_len` bytes of tweak compone 5272 Stores `buff_len` bytes of tweak component values starting with 5449 the 1MB block specified by the absolute 5273 the 1MB block specified by the absolute guest address 5450 (`gaddr`). `buff_len` needs to be `conf_ 5274 (`gaddr`). `buff_len` needs to be `conf_dump_storage_state_len` 5451 aligned and at least >= the `conf_dump_s 5275 aligned and at least >= the `conf_dump_storage_state_len` value 5452 provided by the dump uv_info data. buff_ 5276 provided by the dump uv_info data. buff_user might be written to 5453 even if an error rc is returned. For ins 5277 even if an error rc is returned. For instance if we encounter a 5454 fault after writing the first page of da 5278 fault after writing the first page of data. 5455 5279 5456 KVM_PV_DUMP_COMPLETE 5280 KVM_PV_DUMP_COMPLETE 5457 If the subcommand succeeds it completes t 5281 If the subcommand succeeds it completes the dump process and lets 5458 KVM_PV_DUMP_INIT be called again. 5282 KVM_PV_DUMP_INIT be called again. 5459 5283 5460 On success `conf_dump_finalize_len` bytes 5284 On success `conf_dump_finalize_len` bytes of completion data will be 5461 stored to the `buff_addr`. The completion 5285 stored to the `buff_addr`. The completion data contains a key 5462 derivation seed, IV, tweak nonce and encr 5286 derivation seed, IV, tweak nonce and encryption keys as well as an 5463 authentication tag all of which are neede 5287 authentication tag all of which are needed to decrypt the dump at a 5464 later time. 5288 later time. 5465 5289 5466 KVM_PV_ASYNC_CLEANUP_PREPARE << 5467 :Capability: KVM_CAP_S390_PROTECTED_ASYNC_D << 5468 5290 5469 Prepare the current protected VM for asynch !! 5291 4.126 KVM_X86_SET_MSR_FILTER 5470 resources used by the current protected VM !! 5292 ---------------------------- 5471 subsequent asynchronous teardown. The curre !! 5293 5472 resume execution immediately as non-protect !! 5294 :Capability: KVM_CAP_X86_MSR_FILTER 5473 one protected VM prepared for asynchronous !! 5295 :Architectures: x86 5474 a protected VM had already been prepared fo !! 5296 :Type: vm ioctl 5475 subsequently calling KVM_PV_ASYNC_CLEANUP_P !! 5297 :Parameters: struct kvm_msr_filter 5476 fail. In that case, the userspace process s !! 5298 :Returns: 0 on success, < 0 on error 5477 KVM_PV_DISABLE. The resources set aside wit !! 5299 5478 be cleaned up with a subsequent call to KVM !! 5300 :: 5479 or KVM_PV_DISABLE, otherwise they will be c << 5480 terminates. KVM_PV_ASYNC_CLEANUP_PREPARE ca << 5481 as cleanup starts, i.e. before KVM_PV_ASYNC << 5482 << 5483 KVM_PV_ASYNC_CLEANUP_PERFORM << 5484 :Capability: KVM_CAP_S390_PROTECTED_ASYNC_D << 5485 << 5486 Tear down the protected VM previously prepa << 5487 KVM_PV_ASYNC_CLEANUP_PREPARE. The resources << 5488 will be freed during the execution of this << 5489 should ideally be issued by userspace from << 5490 fatal signal is received (or the process te << 5491 command will terminate immediately without << 5492 KVM shutdown procedure will take care of cl << 5493 protected VMs, including the ones whose tea << 5494 process termination. << 5495 5301 5496 4.126 KVM_XEN_HVM_SET_ATTR !! 5302 struct kvm_msr_filter_range { >> 5303 #define KVM_MSR_FILTER_READ (1 << 0) >> 5304 #define KVM_MSR_FILTER_WRITE (1 << 1) >> 5305 __u32 flags; >> 5306 __u32 nmsrs; /* number of msrs in bitmap */ >> 5307 __u32 base; /* MSR index the bitmap starts at */ >> 5308 __u8 *bitmap; /* a 1 bit allows the operations in flags, 0 denies */ >> 5309 }; >> 5310 >> 5311 #define KVM_MSR_FILTER_MAX_RANGES 16 >> 5312 struct kvm_msr_filter { >> 5313 #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 0) >> 5314 #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 0) >> 5315 __u32 flags; >> 5316 struct kvm_msr_filter_range ranges[KVM_MSR_FILTER_MAX_RANGES]; >> 5317 }; >> 5318 >> 5319 flags values for ``struct kvm_msr_filter_range``: >> 5320 >> 5321 ``KVM_MSR_FILTER_READ`` >> 5322 >> 5323 Filter read accesses to MSRs using the given bitmap. A 0 in the bitmap >> 5324 indicates that a read should immediately fail, while a 1 indicates that >> 5325 a read for a particular MSR should be handled regardless of the default >> 5326 filter action. >> 5327 >> 5328 ``KVM_MSR_FILTER_WRITE`` >> 5329 >> 5330 Filter write accesses to MSRs using the given bitmap. A 0 in the bitmap >> 5331 indicates that a write should immediately fail, while a 1 indicates that >> 5332 a write for a particular MSR should be handled regardless of the default >> 5333 filter action. >> 5334 >> 5335 ``KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE`` >> 5336 >> 5337 Filter both read and write accesses to MSRs using the given bitmap. A 0 >> 5338 in the bitmap indicates that both reads and writes should immediately fail, >> 5339 while a 1 indicates that reads and writes for a particular MSR are not >> 5340 filtered by this range. >> 5341 >> 5342 flags values for ``struct kvm_msr_filter``: >> 5343 >> 5344 ``KVM_MSR_FILTER_DEFAULT_ALLOW`` >> 5345 >> 5346 If no filter range matches an MSR index that is getting accessed, KVM will >> 5347 fall back to allowing access to the MSR. >> 5348 >> 5349 ``KVM_MSR_FILTER_DEFAULT_DENY`` >> 5350 >> 5351 If no filter range matches an MSR index that is getting accessed, KVM will >> 5352 fall back to rejecting access to the MSR. In this mode, all MSRs that should >> 5353 be processed by KVM need to explicitly be marked as allowed in the bitmaps. >> 5354 >> 5355 This ioctl allows user space to define up to 16 bitmaps of MSR ranges to >> 5356 specify whether a certain MSR access should be explicitly filtered for or not. >> 5357 >> 5358 If this ioctl has never been invoked, MSR accesses are not guarded and the >> 5359 default KVM in-kernel emulation behavior is fully preserved. >> 5360 >> 5361 Calling this ioctl with an empty set of ranges (all nmsrs == 0) disables MSR >> 5362 filtering. In that mode, ``KVM_MSR_FILTER_DEFAULT_DENY`` is invalid and causes >> 5363 an error. >> 5364 >> 5365 As soon as the filtering is in place, every MSR access is processed through >> 5366 the filtering except for accesses to the x2APIC MSRs (from 0x800 to 0x8ff); >> 5367 x2APIC MSRs are always allowed, independent of the ``default_allow`` setting, >> 5368 and their behavior depends on the ``X2APIC_ENABLE`` bit of the APIC base >> 5369 register. >> 5370 >> 5371 If a bit is within one of the defined ranges, read and write accesses are >> 5372 guarded by the bitmap's value for the MSR index if the kind of access >> 5373 is included in the ``struct kvm_msr_filter_range`` flags. If no range >> 5374 cover this particular access, the behavior is determined by the flags >> 5375 field in the kvm_msr_filter struct: ``KVM_MSR_FILTER_DEFAULT_ALLOW`` >> 5376 and ``KVM_MSR_FILTER_DEFAULT_DENY``. >> 5377 >> 5378 Each bitmap range specifies a range of MSRs to potentially allow access on. >> 5379 The range goes from MSR index [base .. base+nmsrs]. The flags field >> 5380 indicates whether reads, writes or both reads and writes are filtered >> 5381 by setting a 1 bit in the bitmap for the corresponding MSR index. >> 5382 >> 5383 If an MSR access is not permitted through the filtering, it generates a >> 5384 #GP inside the guest. When combined with KVM_CAP_X86_USER_SPACE_MSR, that >> 5385 allows user space to deflect and potentially handle various MSR accesses >> 5386 into user space. >> 5387 >> 5388 Note, invoking this ioctl with a vCPU is running is inherently racy. However, >> 5389 KVM does guarantee that vCPUs will see either the previous filter or the new >> 5390 filter, e.g. MSRs with identical settings in both the old and new filter will >> 5391 have deterministic behavior. >> 5392 >> 5393 4.127 KVM_XEN_HVM_SET_ATTR 5497 -------------------------- 5394 -------------------------- 5498 5395 5499 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5396 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO 5500 :Architectures: x86 5397 :Architectures: x86 5501 :Type: vm ioctl 5398 :Type: vm ioctl 5502 :Parameters: struct kvm_xen_hvm_attr 5399 :Parameters: struct kvm_xen_hvm_attr 5503 :Returns: 0 on success, < 0 on error 5400 :Returns: 0 on success, < 0 on error 5504 5401 5505 :: 5402 :: 5506 5403 5507 struct kvm_xen_hvm_attr { 5404 struct kvm_xen_hvm_attr { 5508 __u16 type; 5405 __u16 type; 5509 __u16 pad[3]; 5406 __u16 pad[3]; 5510 union { 5407 union { 5511 __u8 long_mode; 5408 __u8 long_mode; 5512 __u8 vector; 5409 __u8 vector; 5513 __u8 runstate_update_flag; !! 5410 struct { 5514 union { << 5515 __u64 gfn; 5411 __u64 gfn; 5516 __u64 hva; << 5517 } shared_info; 5412 } shared_info; 5518 struct { 5413 struct { 5519 __u32 send_port; 5414 __u32 send_port; 5520 __u32 type; /* EVTCHN 5415 __u32 type; /* EVTCHNSTAT_ipi / EVTCHNSTAT_interdomain */ 5521 __u32 flags; 5416 __u32 flags; 5522 union { 5417 union { 5523 struct { 5418 struct { 5524 __u32 5419 __u32 port; 5525 __u32 5420 __u32 vcpu; 5526 __u32 5421 __u32 priority; 5527 } port; 5422 } port; 5528 struct { 5423 struct { 5529 __u32 5424 __u32 port; /* Zero for eventfd */ 5530 __s32 5425 __s32 fd; 5531 } eventfd; 5426 } eventfd; 5532 __u32 padding 5427 __u32 padding[4]; 5533 } deliver; 5428 } deliver; 5534 } evtchn; 5429 } evtchn; 5535 __u32 xen_version; 5430 __u32 xen_version; 5536 __u64 pad[8]; 5431 __u64 pad[8]; 5537 } u; 5432 } u; 5538 }; 5433 }; 5539 5434 5540 type values: 5435 type values: 5541 5436 5542 KVM_XEN_ATTR_TYPE_LONG_MODE 5437 KVM_XEN_ATTR_TYPE_LONG_MODE 5543 Sets the ABI mode of the VM to 32-bit or 64 5438 Sets the ABI mode of the VM to 32-bit or 64-bit (long mode). This 5544 determines the layout of the shared_info pa !! 5439 determines the layout of the shared info pages exposed to the VM. 5545 5440 5546 KVM_XEN_ATTR_TYPE_SHARED_INFO 5441 KVM_XEN_ATTR_TYPE_SHARED_INFO 5547 Sets the guest physical frame number at whi !! 5442 Sets the guest physical frame number at which the Xen "shared info" 5548 page resides. Note that although Xen places 5443 page resides. Note that although Xen places vcpu_info for the first 5549 32 vCPUs in the shared_info page, KVM does 5444 32 vCPUs in the shared_info page, KVM does not automatically do so 5550 and instead requires that KVM_XEN_VCPU_ATTR !! 5445 and instead requires that KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO be used 5551 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA be use !! 5446 explicitly even when the vcpu_info for a given vCPU resides at the 5552 the vcpu_info for a given vCPU resides at t !! 5447 "default" location in the shared_info page. This is because KVM is 5553 in the shared_info page. This is because KV !! 5448 not aware of the Xen CPU id which is used as the index into the 5554 the Xen CPU id which is used as the index i !! 5449 vcpu_info[] array, so cannot know the correct default location. 5555 array, so may know the correct default loca << 5556 5450 5557 Note that the shared_info page may be const !! 5451 Note that the shared info page may be constantly written to by KVM; 5558 it contains the event channel bitmap used t 5452 it contains the event channel bitmap used to deliver interrupts to 5559 a Xen guest, amongst other things. It is ex 5453 a Xen guest, amongst other things. It is exempt from dirty tracking 5560 mechanisms — KVM will not explicitly mark 5454 mechanisms — KVM will not explicitly mark the page as dirty each 5561 time an event channel interrupt is delivere 5455 time an event channel interrupt is delivered to the guest! Thus, 5562 userspace should always assume that the des 5456 userspace should always assume that the designated GFN is dirty if 5563 any vCPU has been running or any event chan 5457 any vCPU has been running or any event channel interrupts can be 5564 routed to the guest. 5458 routed to the guest. 5565 5459 5566 Setting the gfn to KVM_XEN_INVALID_GFN will << 5567 page. << 5568 << 5569 KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA << 5570 If the KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA f << 5571 Xen capabilities, then this attribute may b << 5572 userspace address at which the shared_info << 5573 will always be fixed in the VMM regardless << 5574 in guest physical address space. This attri << 5575 preference to KVM_XEN_ATTR_TYPE_SHARED_INFO << 5576 unnecessary invalidation of an internal cac << 5577 re-mapped in guest physcial address space. << 5578 << 5579 Setting the hva to zero will disable the sh << 5580 << 5581 KVM_XEN_ATTR_TYPE_UPCALL_VECTOR 5460 KVM_XEN_ATTR_TYPE_UPCALL_VECTOR 5582 Sets the exception vector used to deliver X 5461 Sets the exception vector used to deliver Xen event channel upcalls. 5583 This is the HVM-wide vector injected direct 5462 This is the HVM-wide vector injected directly by the hypervisor 5584 (not through the local APIC), typically con 5463 (not through the local APIC), typically configured by a guest via 5585 HVM_PARAM_CALLBACK_IRQ. This can be disable !! 5464 HVM_PARAM_CALLBACK_IRQ. 5586 SHUTDOWN_soft_reset) by setting it to zero. << 5587 5465 5588 KVM_XEN_ATTR_TYPE_EVTCHN 5466 KVM_XEN_ATTR_TYPE_EVTCHN 5589 This attribute is available when the KVM_CA 5467 This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates 5590 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5468 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It configures 5591 an outbound port number for interception of 5469 an outbound port number for interception of EVTCHNOP_send requests 5592 from the guest. A given sending port number !! 5470 from the guest. A given sending port number may be directed back 5593 a specified vCPU (by APIC ID) / port / prio !! 5471 to a specified vCPU (by APIC ID) / port / priority on the guest, 5594 trigger events on an eventfd. The vCPU and !! 5472 or to trigger events on an eventfd. The vCPU and priority can be 5595 by setting KVM_XEN_EVTCHN_UPDATE in a subse !! 5473 changed by setting KVM_XEN_EVTCHN_UPDATE in a subsequent call, 5596 fields cannot change for a given sending po !! 5474 but other fields cannot change for a given sending port. A port 5597 removed by using KVM_XEN_EVTCHN_DEASSIGN in !! 5475 mapping is removed by using KVM_XEN_EVTCHN_DEASSIGN in the flags 5598 KVM_XEN_EVTCHN_RESET in the flags field rem !! 5476 field. 5599 outbound event channels. The values of the << 5600 exclusive and cannot be combined as a bitma << 5601 5477 5602 KVM_XEN_ATTR_TYPE_XEN_VERSION 5478 KVM_XEN_ATTR_TYPE_XEN_VERSION 5603 This attribute is available when the KVM_CA 5479 This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates 5604 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5480 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It configures 5605 the 32-bit version code returned to the gue 5481 the 32-bit version code returned to the guest when it invokes the 5606 XENVER_version call; typically (XEN_MAJOR < 5482 XENVER_version call; typically (XEN_MAJOR << 16 | XEN_MINOR). PV 5607 Xen guests will often use this to as a dumm 5483 Xen guests will often use this to as a dummy hypercall to trigger 5608 event channel delivery, so responding withi 5484 event channel delivery, so responding within the kernel without 5609 exiting to userspace is beneficial. 5485 exiting to userspace is beneficial. 5610 5486 5611 KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG << 5612 This attribute is available when the KVM_CA << 5613 support for KVM_XEN_HVM_CONFIG_RUNSTATE_UPD << 5614 XEN_RUNSTATE_UPDATE flag which allows guest << 5615 other vCPUs' vcpu_runstate_info. Xen guests << 5616 the VMASST_TYPE_runstate_update_flag of the << 5617 hypercall. << 5618 << 5619 4.127 KVM_XEN_HVM_GET_ATTR 5487 4.127 KVM_XEN_HVM_GET_ATTR 5620 -------------------------- 5488 -------------------------- 5621 5489 5622 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5490 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO 5623 :Architectures: x86 5491 :Architectures: x86 5624 :Type: vm ioctl 5492 :Type: vm ioctl 5625 :Parameters: struct kvm_xen_hvm_attr 5493 :Parameters: struct kvm_xen_hvm_attr 5626 :Returns: 0 on success, < 0 on error 5494 :Returns: 0 on success, < 0 on error 5627 5495 5628 Allows Xen VM attributes to be read. For the 5496 Allows Xen VM attributes to be read. For the structure and types, 5629 see KVM_XEN_HVM_SET_ATTR above. The KVM_XEN_A 5497 see KVM_XEN_HVM_SET_ATTR above. The KVM_XEN_ATTR_TYPE_EVTCHN 5630 attribute cannot be read. 5498 attribute cannot be read. 5631 5499 5632 4.128 KVM_XEN_VCPU_SET_ATTR 5500 4.128 KVM_XEN_VCPU_SET_ATTR 5633 --------------------------- 5501 --------------------------- 5634 5502 5635 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5503 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO 5636 :Architectures: x86 5504 :Architectures: x86 5637 :Type: vcpu ioctl 5505 :Type: vcpu ioctl 5638 :Parameters: struct kvm_xen_vcpu_attr 5506 :Parameters: struct kvm_xen_vcpu_attr 5639 :Returns: 0 on success, < 0 on error 5507 :Returns: 0 on success, < 0 on error 5640 5508 5641 :: 5509 :: 5642 5510 5643 struct kvm_xen_vcpu_attr { 5511 struct kvm_xen_vcpu_attr { 5644 __u16 type; 5512 __u16 type; 5645 __u16 pad[3]; 5513 __u16 pad[3]; 5646 union { 5514 union { 5647 __u64 gpa; 5515 __u64 gpa; 5648 __u64 pad[4]; 5516 __u64 pad[4]; 5649 struct { 5517 struct { 5650 __u64 state; 5518 __u64 state; 5651 __u64 state_entry_tim 5519 __u64 state_entry_time; 5652 __u64 time_running; 5520 __u64 time_running; 5653 __u64 time_runnable; 5521 __u64 time_runnable; 5654 __u64 time_blocked; 5522 __u64 time_blocked; 5655 __u64 time_offline; 5523 __u64 time_offline; 5656 } runstate; 5524 } runstate; 5657 __u32 vcpu_id; 5525 __u32 vcpu_id; 5658 struct { 5526 struct { 5659 __u32 port; 5527 __u32 port; 5660 __u32 priority; 5528 __u32 priority; 5661 __u64 expires_ns; 5529 __u64 expires_ns; 5662 } timer; 5530 } timer; 5663 __u8 vector; 5531 __u8 vector; 5664 } u; 5532 } u; 5665 }; 5533 }; 5666 5534 5667 type values: 5535 type values: 5668 5536 5669 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO 5537 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO 5670 Sets the guest physical address of the vcpu 5538 Sets the guest physical address of the vcpu_info for a given vCPU. 5671 As with the shared_info page for the VM, th 5539 As with the shared_info page for the VM, the corresponding page may be 5672 dirtied at any time if event channel interr 5540 dirtied at any time if event channel interrupt delivery is enabled, so 5673 userspace should always assume that the pag 5541 userspace should always assume that the page is dirty without relying 5674 on dirty logging. Setting the gpa to KVM_XE !! 5542 on dirty logging. 5675 the vcpu_info. << 5676 << 5677 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA << 5678 If the KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA f << 5679 Xen capabilities, then this attribute may b << 5680 userspace address of the vcpu_info for a gi << 5681 only be used when the vcpu_info resides at << 5682 in the shared_info page. In this case it is << 5683 userspace address will not change, because << 5684 an overlay on guest memory and remains at a << 5685 regardless of where it is mapped in guest p << 5686 and hence unnecessary invalidation of an in << 5687 avoided if the guest memory layout is modif << 5688 If the vcpu_info does not reside at the "de << 5689 it is not guaranteed to remain at the same << 5690 hence the aforementioned cache invalidation << 5691 5543 5692 KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO 5544 KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO 5693 Sets the guest physical address of an addit 5545 Sets the guest physical address of an additional pvclock structure 5694 for a given vCPU. This is typically used fo 5546 for a given vCPU. This is typically used for guest vsyscall support. 5695 Setting the gpa to KVM_XEN_INVALID_GPA will << 5696 5547 5697 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR 5548 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR 5698 Sets the guest physical address of the vcpu 5549 Sets the guest physical address of the vcpu_runstate_info for a given 5699 vCPU. This is how a Xen guest tracks CPU st 5550 vCPU. This is how a Xen guest tracks CPU state such as steal time. 5700 Setting the gpa to KVM_XEN_INVALID_GPA will << 5701 5551 5702 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT 5552 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT 5703 Sets the runstate (RUNSTATE_running/_runnab 5553 Sets the runstate (RUNSTATE_running/_runnable/_blocked/_offline) of 5704 the given vCPU from the .u.runstate.state m 5554 the given vCPU from the .u.runstate.state member of the structure. 5705 KVM automatically accounts running and runn 5555 KVM automatically accounts running and runnable time but blocked 5706 and offline states are only entered explici 5556 and offline states are only entered explicitly. 5707 5557 5708 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA 5558 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA 5709 Sets all fields of the vCPU runstate data f 5559 Sets all fields of the vCPU runstate data from the .u.runstate member 5710 of the structure, including the current run 5560 of the structure, including the current runstate. The state_entry_time 5711 must equal the sum of the other four times. 5561 must equal the sum of the other four times. 5712 5562 5713 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST 5563 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST 5714 This *adds* the contents of the .u.runstate 5564 This *adds* the contents of the .u.runstate members of the structure 5715 to the corresponding members of the given v 5565 to the corresponding members of the given vCPU's runstate data, thus 5716 permitting atomic adjustments to the runsta 5566 permitting atomic adjustments to the runstate times. The adjustment 5717 to the state_entry_time must equal the sum 5567 to the state_entry_time must equal the sum of the adjustments to the 5718 other four times. The state field must be s 5568 other four times. The state field must be set to -1, or to a valid 5719 runstate value (RUNSTATE_running, RUNSTATE_ 5569 runstate value (RUNSTATE_running, RUNSTATE_runnable, RUNSTATE_blocked 5720 or RUNSTATE_offline) to set the current acc 5570 or RUNSTATE_offline) to set the current accounted state as of the 5721 adjusted state_entry_time. 5571 adjusted state_entry_time. 5722 5572 5723 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID 5573 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID 5724 This attribute is available when the KVM_CA 5574 This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates 5725 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5575 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It sets the Xen 5726 vCPU ID of the given vCPU, to allow timer-r 5576 vCPU ID of the given vCPU, to allow timer-related VCPU operations to 5727 be intercepted by KVM. 5577 be intercepted by KVM. 5728 5578 5729 KVM_XEN_VCPU_ATTR_TYPE_TIMER 5579 KVM_XEN_VCPU_ATTR_TYPE_TIMER 5730 This attribute is available when the KVM_CA 5580 This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates 5731 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5581 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It sets the 5732 event channel port/priority for the VIRQ_TI 5582 event channel port/priority for the VIRQ_TIMER of the vCPU, as well 5733 as allowing a pending timer to be saved/res !! 5583 as allowing a pending timer to be saved/restored. 5734 port to zero disables kernel handling of th << 5735 5584 5736 KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR 5585 KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR 5737 This attribute is available when the KVM_CA 5586 This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates 5738 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5587 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It sets the 5739 per-vCPU local APIC upcall vector, configur 5588 per-vCPU local APIC upcall vector, configured by a Xen guest with 5740 the HVMOP_set_evtchn_upcall_vector hypercal 5589 the HVMOP_set_evtchn_upcall_vector hypercall. This is typically 5741 used by Windows guests, and is distinct fro 5590 used by Windows guests, and is distinct from the HVM-wide upcall 5742 vector configured with HVM_PARAM_CALLBACK_I !! 5591 vector configured with HVM_PARAM_CALLBACK_IRQ. 5743 setting the vector to zero. << 5744 5592 5745 5593 5746 4.129 KVM_XEN_VCPU_GET_ATTR 5594 4.129 KVM_XEN_VCPU_GET_ATTR 5747 --------------------------- 5595 --------------------------- 5748 5596 5749 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5597 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO 5750 :Architectures: x86 5598 :Architectures: x86 5751 :Type: vcpu ioctl 5599 :Type: vcpu ioctl 5752 :Parameters: struct kvm_xen_vcpu_attr 5600 :Parameters: struct kvm_xen_vcpu_attr 5753 :Returns: 0 on success, < 0 on error 5601 :Returns: 0 on success, < 0 on error 5754 5602 5755 Allows Xen vCPU attributes to be read. For th 5603 Allows Xen vCPU attributes to be read. For the structure and types, 5756 see KVM_XEN_VCPU_SET_ATTR above. 5604 see KVM_XEN_VCPU_SET_ATTR above. 5757 5605 5758 The KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST ty 5606 The KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST type may not be used 5759 with the KVM_XEN_VCPU_GET_ATTR ioctl. 5607 with the KVM_XEN_VCPU_GET_ATTR ioctl. 5760 5608 5761 4.130 KVM_ARM_MTE_COPY_TAGS 5609 4.130 KVM_ARM_MTE_COPY_TAGS 5762 --------------------------- 5610 --------------------------- 5763 5611 5764 :Capability: KVM_CAP_ARM_MTE 5612 :Capability: KVM_CAP_ARM_MTE 5765 :Architectures: arm64 5613 :Architectures: arm64 5766 :Type: vm ioctl 5614 :Type: vm ioctl 5767 :Parameters: struct kvm_arm_copy_mte_tags 5615 :Parameters: struct kvm_arm_copy_mte_tags 5768 :Returns: number of bytes copied, < 0 on erro 5616 :Returns: number of bytes copied, < 0 on error (-EINVAL for incorrect 5769 arguments, -EFAULT if memory cannot 5617 arguments, -EFAULT if memory cannot be accessed). 5770 5618 5771 :: 5619 :: 5772 5620 5773 struct kvm_arm_copy_mte_tags { 5621 struct kvm_arm_copy_mte_tags { 5774 __u64 guest_ipa; 5622 __u64 guest_ipa; 5775 __u64 length; 5623 __u64 length; 5776 void __user *addr; 5624 void __user *addr; 5777 __u64 flags; 5625 __u64 flags; 5778 __u64 reserved[2]; 5626 __u64 reserved[2]; 5779 }; 5627 }; 5780 5628 5781 Copies Memory Tagging Extension (MTE) tags to 5629 Copies Memory Tagging Extension (MTE) tags to/from guest tag memory. The 5782 ``guest_ipa`` and ``length`` fields must be ` !! 5630 ``guest_ipa`` and ``length`` fields must be ``PAGE_SIZE`` aligned. The ``addr`` 5783 ``length`` must not be bigger than 2^31 - PAG << 5784 field must point to a buffer which the tags w 5631 field must point to a buffer which the tags will be copied to or from. 5785 5632 5786 ``flags`` specifies the direction of copy, ei 5633 ``flags`` specifies the direction of copy, either ``KVM_ARM_TAGS_TO_GUEST`` or 5787 ``KVM_ARM_TAGS_FROM_GUEST``. 5634 ``KVM_ARM_TAGS_FROM_GUEST``. 5788 5635 5789 The size of the buffer to store the tags is ` 5636 The size of the buffer to store the tags is ``(length / 16)`` bytes 5790 (granules in MTE are 16 bytes long). Each byt 5637 (granules in MTE are 16 bytes long). Each byte contains a single tag 5791 value. This matches the format of ``PTRACE_PE 5638 value. This matches the format of ``PTRACE_PEEKMTETAGS`` and 5792 ``PTRACE_POKEMTETAGS``. 5639 ``PTRACE_POKEMTETAGS``. 5793 5640 5794 If an error occurs before any data is copied 5641 If an error occurs before any data is copied then a negative error code is 5795 returned. If some tags have been copied befor 5642 returned. If some tags have been copied before an error occurs then the number 5796 of bytes successfully copied is returned. If 5643 of bytes successfully copied is returned. If the call completes successfully 5797 then ``length`` is returned. 5644 then ``length`` is returned. 5798 5645 5799 4.131 KVM_GET_SREGS2 5646 4.131 KVM_GET_SREGS2 5800 -------------------- 5647 -------------------- 5801 5648 5802 :Capability: KVM_CAP_SREGS2 5649 :Capability: KVM_CAP_SREGS2 5803 :Architectures: x86 5650 :Architectures: x86 5804 :Type: vcpu ioctl 5651 :Type: vcpu ioctl 5805 :Parameters: struct kvm_sregs2 (out) 5652 :Parameters: struct kvm_sregs2 (out) 5806 :Returns: 0 on success, -1 on error 5653 :Returns: 0 on success, -1 on error 5807 5654 5808 Reads special registers from the vcpu. 5655 Reads special registers from the vcpu. 5809 This ioctl (when supported) replaces the KVM_ 5656 This ioctl (when supported) replaces the KVM_GET_SREGS. 5810 5657 5811 :: 5658 :: 5812 5659 5813 struct kvm_sregs2 { 5660 struct kvm_sregs2 { 5814 /* out (KVM_GET_SREGS2) / in 5661 /* out (KVM_GET_SREGS2) / in (KVM_SET_SREGS2) */ 5815 struct kvm_segment cs, ds, es 5662 struct kvm_segment cs, ds, es, fs, gs, ss; 5816 struct kvm_segment tr, ldt; 5663 struct kvm_segment tr, ldt; 5817 struct kvm_dtable gdt, idt; 5664 struct kvm_dtable gdt, idt; 5818 __u64 cr0, cr2, cr3, cr4, cr8 5665 __u64 cr0, cr2, cr3, cr4, cr8; 5819 __u64 efer; 5666 __u64 efer; 5820 __u64 apic_base; 5667 __u64 apic_base; 5821 __u64 flags; 5668 __u64 flags; 5822 __u64 pdptrs[4]; 5669 __u64 pdptrs[4]; 5823 }; 5670 }; 5824 5671 5825 flags values for ``kvm_sregs2``: 5672 flags values for ``kvm_sregs2``: 5826 5673 5827 ``KVM_SREGS2_FLAGS_PDPTRS_VALID`` 5674 ``KVM_SREGS2_FLAGS_PDPTRS_VALID`` 5828 5675 5829 Indicates that the struct contains valid PD !! 5676 Indicates thats the struct contain valid PDPTR values. 5830 5677 5831 5678 5832 4.132 KVM_SET_SREGS2 5679 4.132 KVM_SET_SREGS2 5833 -------------------- 5680 -------------------- 5834 5681 5835 :Capability: KVM_CAP_SREGS2 5682 :Capability: KVM_CAP_SREGS2 5836 :Architectures: x86 5683 :Architectures: x86 5837 :Type: vcpu ioctl 5684 :Type: vcpu ioctl 5838 :Parameters: struct kvm_sregs2 (in) 5685 :Parameters: struct kvm_sregs2 (in) 5839 :Returns: 0 on success, -1 on error 5686 :Returns: 0 on success, -1 on error 5840 5687 5841 Writes special registers into the vcpu. 5688 Writes special registers into the vcpu. 5842 See KVM_GET_SREGS2 for the data structures. 5689 See KVM_GET_SREGS2 for the data structures. 5843 This ioctl (when supported) replaces the KVM_ 5690 This ioctl (when supported) replaces the KVM_SET_SREGS. 5844 5691 5845 4.133 KVM_GET_STATS_FD 5692 4.133 KVM_GET_STATS_FD 5846 ---------------------- 5693 ---------------------- 5847 5694 5848 :Capability: KVM_CAP_STATS_BINARY_FD 5695 :Capability: KVM_CAP_STATS_BINARY_FD 5849 :Architectures: all 5696 :Architectures: all 5850 :Type: vm ioctl, vcpu ioctl 5697 :Type: vm ioctl, vcpu ioctl 5851 :Parameters: none 5698 :Parameters: none 5852 :Returns: statistics file descriptor on succe 5699 :Returns: statistics file descriptor on success, < 0 on error 5853 5700 5854 Errors: 5701 Errors: 5855 5702 5856 ====== ================================ 5703 ====== ====================================================== 5857 ENOMEM if the fd could not be created d 5704 ENOMEM if the fd could not be created due to lack of memory 5858 EMFILE if the number of opened files ex 5705 EMFILE if the number of opened files exceeds the limit 5859 ====== ================================ 5706 ====== ====================================================== 5860 5707 5861 The returned file descriptor can be used to r 5708 The returned file descriptor can be used to read VM/vCPU statistics data in 5862 binary format. The data in the file descripto 5709 binary format. The data in the file descriptor consists of four blocks 5863 organized as follows: 5710 organized as follows: 5864 5711 5865 +-------------+ 5712 +-------------+ 5866 | Header | 5713 | Header | 5867 +-------------+ 5714 +-------------+ 5868 | id string | 5715 | id string | 5869 +-------------+ 5716 +-------------+ 5870 | Descriptors | 5717 | Descriptors | 5871 +-------------+ 5718 +-------------+ 5872 | Stats Data | 5719 | Stats Data | 5873 +-------------+ 5720 +-------------+ 5874 5721 5875 Apart from the header starting at offset 0, p 5722 Apart from the header starting at offset 0, please be aware that it is 5876 not guaranteed that the four blocks are adjac 5723 not guaranteed that the four blocks are adjacent or in the above order; 5877 the offsets of the id, descriptors and data b 5724 the offsets of the id, descriptors and data blocks are found in the 5878 header. However, all four blocks are aligned 5725 header. However, all four blocks are aligned to 64 bit offsets in the 5879 file and they do not overlap. 5726 file and they do not overlap. 5880 5727 5881 All blocks except the data block are immutabl 5728 All blocks except the data block are immutable. Userspace can read them 5882 only one time after retrieving the file descr 5729 only one time after retrieving the file descriptor, and then use ``pread`` or 5883 ``lseek`` to read the statistics repeatedly. 5730 ``lseek`` to read the statistics repeatedly. 5884 5731 5885 All data is in system endianness. 5732 All data is in system endianness. 5886 5733 5887 The format of the header is as follows:: 5734 The format of the header is as follows:: 5888 5735 5889 struct kvm_stats_header { 5736 struct kvm_stats_header { 5890 __u32 flags; 5737 __u32 flags; 5891 __u32 name_size; 5738 __u32 name_size; 5892 __u32 num_desc; 5739 __u32 num_desc; 5893 __u32 id_offset; 5740 __u32 id_offset; 5894 __u32 desc_offset; 5741 __u32 desc_offset; 5895 __u32 data_offset; 5742 __u32 data_offset; 5896 }; 5743 }; 5897 5744 5898 The ``flags`` field is not used at the moment 5745 The ``flags`` field is not used at the moment. It is always read as 0. 5899 5746 5900 The ``name_size`` field is the size (in byte) 5747 The ``name_size`` field is the size (in byte) of the statistics name string 5901 (including trailing '\0') which is contained 5748 (including trailing '\0') which is contained in the "id string" block and 5902 appended at the end of every descriptor. 5749 appended at the end of every descriptor. 5903 5750 5904 The ``num_desc`` field is the number of descr 5751 The ``num_desc`` field is the number of descriptors that are included in the 5905 descriptor block. (The actual number of valu 5752 descriptor block. (The actual number of values in the data block may be 5906 larger, since each descriptor may comprise mo 5753 larger, since each descriptor may comprise more than one value). 5907 5754 5908 The ``id_offset`` field is the offset of the 5755 The ``id_offset`` field is the offset of the id string from the start of the 5909 file indicated by the file descriptor. It is 5756 file indicated by the file descriptor. It is a multiple of 8. 5910 5757 5911 The ``desc_offset`` field is the offset of th 5758 The ``desc_offset`` field is the offset of the Descriptors block from the start 5912 of the file indicated by the file descriptor. 5759 of the file indicated by the file descriptor. It is a multiple of 8. 5913 5760 5914 The ``data_offset`` field is the offset of th 5761 The ``data_offset`` field is the offset of the Stats Data block from the start 5915 of the file indicated by the file descriptor. 5762 of the file indicated by the file descriptor. It is a multiple of 8. 5916 5763 5917 The id string block contains a string which i 5764 The id string block contains a string which identifies the file descriptor on 5918 which KVM_GET_STATS_FD was invoked. The size 5765 which KVM_GET_STATS_FD was invoked. The size of the block, including the 5919 trailing ``'\0'``, is indicated by the ``name 5766 trailing ``'\0'``, is indicated by the ``name_size`` field in the header. 5920 5767 5921 The descriptors block is only needed to be re 5768 The descriptors block is only needed to be read once for the lifetime of the 5922 file descriptor contains a sequence of ``stru 5769 file descriptor contains a sequence of ``struct kvm_stats_desc``, each followed 5923 by a string of size ``name_size``. 5770 by a string of size ``name_size``. 5924 :: 5771 :: 5925 5772 5926 #define KVM_STATS_TYPE_SHIFT 5773 #define KVM_STATS_TYPE_SHIFT 0 5927 #define KVM_STATS_TYPE_MASK 5774 #define KVM_STATS_TYPE_MASK (0xF << KVM_STATS_TYPE_SHIFT) 5928 #define KVM_STATS_TYPE_CUMULATIVE 5775 #define KVM_STATS_TYPE_CUMULATIVE (0x0 << KVM_STATS_TYPE_SHIFT) 5929 #define KVM_STATS_TYPE_INSTANT 5776 #define KVM_STATS_TYPE_INSTANT (0x1 << KVM_STATS_TYPE_SHIFT) 5930 #define KVM_STATS_TYPE_PEAK 5777 #define KVM_STATS_TYPE_PEAK (0x2 << KVM_STATS_TYPE_SHIFT) 5931 #define KVM_STATS_TYPE_LINEAR_HIST 5778 #define KVM_STATS_TYPE_LINEAR_HIST (0x3 << KVM_STATS_TYPE_SHIFT) 5932 #define KVM_STATS_TYPE_LOG_HIST 5779 #define KVM_STATS_TYPE_LOG_HIST (0x4 << KVM_STATS_TYPE_SHIFT) 5933 #define KVM_STATS_TYPE_MAX 5780 #define KVM_STATS_TYPE_MAX KVM_STATS_TYPE_LOG_HIST 5934 5781 5935 #define KVM_STATS_UNIT_SHIFT 5782 #define KVM_STATS_UNIT_SHIFT 4 5936 #define KVM_STATS_UNIT_MASK 5783 #define KVM_STATS_UNIT_MASK (0xF << KVM_STATS_UNIT_SHIFT) 5937 #define KVM_STATS_UNIT_NONE 5784 #define KVM_STATS_UNIT_NONE (0x0 << KVM_STATS_UNIT_SHIFT) 5938 #define KVM_STATS_UNIT_BYTES 5785 #define KVM_STATS_UNIT_BYTES (0x1 << KVM_STATS_UNIT_SHIFT) 5939 #define KVM_STATS_UNIT_SECONDS 5786 #define KVM_STATS_UNIT_SECONDS (0x2 << KVM_STATS_UNIT_SHIFT) 5940 #define KVM_STATS_UNIT_CYCLES 5787 #define KVM_STATS_UNIT_CYCLES (0x3 << KVM_STATS_UNIT_SHIFT) 5941 #define KVM_STATS_UNIT_BOOLEAN 5788 #define KVM_STATS_UNIT_BOOLEAN (0x4 << KVM_STATS_UNIT_SHIFT) 5942 #define KVM_STATS_UNIT_MAX 5789 #define KVM_STATS_UNIT_MAX KVM_STATS_UNIT_BOOLEAN 5943 5790 5944 #define KVM_STATS_BASE_SHIFT 5791 #define KVM_STATS_BASE_SHIFT 8 5945 #define KVM_STATS_BASE_MASK 5792 #define KVM_STATS_BASE_MASK (0xF << KVM_STATS_BASE_SHIFT) 5946 #define KVM_STATS_BASE_POW10 5793 #define KVM_STATS_BASE_POW10 (0x0 << KVM_STATS_BASE_SHIFT) 5947 #define KVM_STATS_BASE_POW2 5794 #define KVM_STATS_BASE_POW2 (0x1 << KVM_STATS_BASE_SHIFT) 5948 #define KVM_STATS_BASE_MAX 5795 #define KVM_STATS_BASE_MAX KVM_STATS_BASE_POW2 5949 5796 5950 struct kvm_stats_desc { 5797 struct kvm_stats_desc { 5951 __u32 flags; 5798 __u32 flags; 5952 __s16 exponent; 5799 __s16 exponent; 5953 __u16 size; 5800 __u16 size; 5954 __u32 offset; 5801 __u32 offset; 5955 __u32 bucket_size; 5802 __u32 bucket_size; 5956 char name[]; 5803 char name[]; 5957 }; 5804 }; 5958 5805 5959 The ``flags`` field contains the type and uni 5806 The ``flags`` field contains the type and unit of the statistics data described 5960 by this descriptor. Its endianness is CPU nat 5807 by this descriptor. Its endianness is CPU native. 5961 The following flags are supported: 5808 The following flags are supported: 5962 5809 5963 Bits 0-3 of ``flags`` encode the type: 5810 Bits 0-3 of ``flags`` encode the type: 5964 5811 5965 * ``KVM_STATS_TYPE_CUMULATIVE`` 5812 * ``KVM_STATS_TYPE_CUMULATIVE`` 5966 The statistics reports a cumulative count 5813 The statistics reports a cumulative count. The value of data can only be increased. 5967 Most of the counters used in KVM are of t 5814 Most of the counters used in KVM are of this type. 5968 The corresponding ``size`` field for this 5815 The corresponding ``size`` field for this type is always 1. 5969 All cumulative statistics data are read/w 5816 All cumulative statistics data are read/write. 5970 * ``KVM_STATS_TYPE_INSTANT`` 5817 * ``KVM_STATS_TYPE_INSTANT`` 5971 The statistics reports an instantaneous v 5818 The statistics reports an instantaneous value. Its value can be increased or 5972 decreased. This type is usually used as a 5819 decreased. This type is usually used as a measurement of some resources, 5973 like the number of dirty pages, the numbe 5820 like the number of dirty pages, the number of large pages, etc. 5974 All instant statistics are read only. 5821 All instant statistics are read only. 5975 The corresponding ``size`` field for this 5822 The corresponding ``size`` field for this type is always 1. 5976 * ``KVM_STATS_TYPE_PEAK`` 5823 * ``KVM_STATS_TYPE_PEAK`` 5977 The statistics data reports a peak value, 5824 The statistics data reports a peak value, for example the maximum number 5978 of items in a hash table bucket, the long 5825 of items in a hash table bucket, the longest time waited and so on. 5979 The value of data can only be increased. 5826 The value of data can only be increased. 5980 The corresponding ``size`` field for this 5827 The corresponding ``size`` field for this type is always 1. 5981 * ``KVM_STATS_TYPE_LINEAR_HIST`` 5828 * ``KVM_STATS_TYPE_LINEAR_HIST`` 5982 The statistic is reported as a linear his 5829 The statistic is reported as a linear histogram. The number of 5983 buckets is specified by the ``size`` fiel 5830 buckets is specified by the ``size`` field. The size of buckets is specified 5984 by the ``hist_param`` field. The range of 5831 by the ``hist_param`` field. The range of the Nth bucket (1 <= N < ``size``) 5985 is [``hist_param``*(N-1), ``hist_param``* 5832 is [``hist_param``*(N-1), ``hist_param``*N), while the range of the last 5986 bucket is [``hist_param``*(``size``-1), + 5833 bucket is [``hist_param``*(``size``-1), +INF). (+INF means positive infinity 5987 value.) 5834 value.) 5988 * ``KVM_STATS_TYPE_LOG_HIST`` 5835 * ``KVM_STATS_TYPE_LOG_HIST`` 5989 The statistic is reported as a logarithmi 5836 The statistic is reported as a logarithmic histogram. The number of 5990 buckets is specified by the ``size`` fiel 5837 buckets is specified by the ``size`` field. The range of the first bucket is 5991 [0, 1), while the range of the last bucke 5838 [0, 1), while the range of the last bucket is [pow(2, ``size``-2), +INF). 5992 Otherwise, The Nth bucket (1 < N < ``size 5839 Otherwise, The Nth bucket (1 < N < ``size``) covers 5993 [pow(2, N-2), pow(2, N-1)). 5840 [pow(2, N-2), pow(2, N-1)). 5994 5841 5995 Bits 4-7 of ``flags`` encode the unit: 5842 Bits 4-7 of ``flags`` encode the unit: 5996 5843 5997 * ``KVM_STATS_UNIT_NONE`` 5844 * ``KVM_STATS_UNIT_NONE`` 5998 There is no unit for the value of statist 5845 There is no unit for the value of statistics data. This usually means that 5999 the value is a simple counter of an event 5846 the value is a simple counter of an event. 6000 * ``KVM_STATS_UNIT_BYTES`` 5847 * ``KVM_STATS_UNIT_BYTES`` 6001 It indicates that the statistics data is 5848 It indicates that the statistics data is used to measure memory size, in the 6002 unit of Byte, KiByte, MiByte, GiByte, etc 5849 unit of Byte, KiByte, MiByte, GiByte, etc. The unit of the data is 6003 determined by the ``exponent`` field in t 5850 determined by the ``exponent`` field in the descriptor. 6004 * ``KVM_STATS_UNIT_SECONDS`` 5851 * ``KVM_STATS_UNIT_SECONDS`` 6005 It indicates that the statistics data is 5852 It indicates that the statistics data is used to measure time or latency. 6006 * ``KVM_STATS_UNIT_CYCLES`` 5853 * ``KVM_STATS_UNIT_CYCLES`` 6007 It indicates that the statistics data is 5854 It indicates that the statistics data is used to measure CPU clock cycles. 6008 * ``KVM_STATS_UNIT_BOOLEAN`` 5855 * ``KVM_STATS_UNIT_BOOLEAN`` 6009 It indicates that the statistic will alwa 5856 It indicates that the statistic will always be either 0 or 1. Boolean 6010 statistics of "peak" type will never go b 5857 statistics of "peak" type will never go back from 1 to 0. Boolean 6011 statistics can be linear histograms (with 5858 statistics can be linear histograms (with two buckets) but not logarithmic 6012 histograms. 5859 histograms. 6013 5860 6014 Note that, in the case of histograms, the uni 5861 Note that, in the case of histograms, the unit applies to the bucket 6015 ranges, while the bucket value indicates how 5862 ranges, while the bucket value indicates how many samples fell in the 6016 bucket's range. 5863 bucket's range. 6017 5864 6018 Bits 8-11 of ``flags``, together with ``expon 5865 Bits 8-11 of ``flags``, together with ``exponent``, encode the scale of the 6019 unit: 5866 unit: 6020 5867 6021 * ``KVM_STATS_BASE_POW10`` 5868 * ``KVM_STATS_BASE_POW10`` 6022 The scale is based on power of 10. It is 5869 The scale is based on power of 10. It is used for measurement of time and 6023 CPU clock cycles. For example, an expone 5870 CPU clock cycles. For example, an exponent of -9 can be used with 6024 ``KVM_STATS_UNIT_SECONDS`` to express tha 5871 ``KVM_STATS_UNIT_SECONDS`` to express that the unit is nanoseconds. 6025 * ``KVM_STATS_BASE_POW2`` 5872 * ``KVM_STATS_BASE_POW2`` 6026 The scale is based on power of 2. It is u 5873 The scale is based on power of 2. It is used for measurement of memory size. 6027 For example, an exponent of 20 can be use 5874 For example, an exponent of 20 can be used with ``KVM_STATS_UNIT_BYTES`` to 6028 express that the unit is MiB. 5875 express that the unit is MiB. 6029 5876 6030 The ``size`` field is the number of values of 5877 The ``size`` field is the number of values of this statistics data. Its 6031 value is usually 1 for most of simple statist 5878 value is usually 1 for most of simple statistics. 1 means it contains an 6032 unsigned 64bit data. 5879 unsigned 64bit data. 6033 5880 6034 The ``offset`` field is the offset from the s 5881 The ``offset`` field is the offset from the start of Data Block to the start of 6035 the corresponding statistics data. 5882 the corresponding statistics data. 6036 5883 6037 The ``bucket_size`` field is used as a parame 5884 The ``bucket_size`` field is used as a parameter for histogram statistics data. 6038 It is only used by linear histogram statistic 5885 It is only used by linear histogram statistics data, specifying the size of a 6039 bucket in the unit expressed by bits 4-11 of 5886 bucket in the unit expressed by bits 4-11 of ``flags`` together with ``exponent``. 6040 5887 6041 The ``name`` field is the name string of the 5888 The ``name`` field is the name string of the statistics data. The name string 6042 starts at the end of ``struct kvm_stats_desc` 5889 starts at the end of ``struct kvm_stats_desc``. The maximum length including 6043 the trailing ``'\0'``, is indicated by ``name 5890 the trailing ``'\0'``, is indicated by ``name_size`` in the header. 6044 5891 6045 The Stats Data block contains an array of 64- 5892 The Stats Data block contains an array of 64-bit values in the same order 6046 as the descriptors in Descriptors block. 5893 as the descriptors in Descriptors block. 6047 5894 6048 4.134 KVM_GET_XSAVE2 5895 4.134 KVM_GET_XSAVE2 6049 -------------------- 5896 -------------------- 6050 5897 6051 :Capability: KVM_CAP_XSAVE2 5898 :Capability: KVM_CAP_XSAVE2 6052 :Architectures: x86 5899 :Architectures: x86 6053 :Type: vcpu ioctl 5900 :Type: vcpu ioctl 6054 :Parameters: struct kvm_xsave (out) 5901 :Parameters: struct kvm_xsave (out) 6055 :Returns: 0 on success, -1 on error 5902 :Returns: 0 on success, -1 on error 6056 5903 6057 5904 6058 :: 5905 :: 6059 5906 6060 struct kvm_xsave { 5907 struct kvm_xsave { 6061 __u32 region[1024]; 5908 __u32 region[1024]; 6062 __u32 extra[0]; 5909 __u32 extra[0]; 6063 }; 5910 }; 6064 5911 6065 This ioctl would copy current vcpu's xsave st 5912 This ioctl would copy current vcpu's xsave struct to the userspace. It 6066 copies as many bytes as are returned by KVM_C 5913 copies as many bytes as are returned by KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) 6067 when invoked on the vm file descriptor. The s 5914 when invoked on the vm file descriptor. The size value returned by 6068 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will alwa 5915 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will always be at least 4096. 6069 Currently, it is only greater than 4096 if a 5916 Currently, it is only greater than 4096 if a dynamic feature has been 6070 enabled with ``arch_prctl()``, but this may c 5917 enabled with ``arch_prctl()``, but this may change in the future. 6071 5918 6072 The offsets of the state save areas in struct 5919 The offsets of the state save areas in struct kvm_xsave follow the contents 6073 of CPUID leaf 0xD on the host. 5920 of CPUID leaf 0xD on the host. 6074 5921 6075 4.135 KVM_XEN_HVM_EVTCHN_SEND 5922 4.135 KVM_XEN_HVM_EVTCHN_SEND 6076 ----------------------------- 5923 ----------------------------- 6077 5924 6078 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5925 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_EVTCHN_SEND 6079 :Architectures: x86 5926 :Architectures: x86 6080 :Type: vm ioctl 5927 :Type: vm ioctl 6081 :Parameters: struct kvm_irq_routing_xen_evtch 5928 :Parameters: struct kvm_irq_routing_xen_evtchn 6082 :Returns: 0 on success, < 0 on error 5929 :Returns: 0 on success, < 0 on error 6083 5930 6084 5931 6085 :: 5932 :: 6086 5933 6087 struct kvm_irq_routing_xen_evtchn { 5934 struct kvm_irq_routing_xen_evtchn { 6088 __u32 port; 5935 __u32 port; 6089 __u32 vcpu; 5936 __u32 vcpu; 6090 __u32 priority; 5937 __u32 priority; 6091 }; 5938 }; 6092 5939 6093 This ioctl injects an event channel interrupt 5940 This ioctl injects an event channel interrupt directly to the guest vCPU. 6094 5941 6095 4.136 KVM_S390_PV_CPU_COMMAND 5942 4.136 KVM_S390_PV_CPU_COMMAND 6096 ----------------------------- 5943 ----------------------------- 6097 5944 6098 :Capability: KVM_CAP_S390_PROTECTED_DUMP 5945 :Capability: KVM_CAP_S390_PROTECTED_DUMP 6099 :Architectures: s390 5946 :Architectures: s390 6100 :Type: vcpu ioctl 5947 :Type: vcpu ioctl 6101 :Parameters: none 5948 :Parameters: none 6102 :Returns: 0 on success, < 0 on error 5949 :Returns: 0 on success, < 0 on error 6103 5950 6104 This ioctl closely mirrors `KVM_S390_PV_COMMA 5951 This ioctl closely mirrors `KVM_S390_PV_COMMAND` but handles requests 6105 for vcpus. It re-uses the kvm_s390_pv_dmp str 5952 for vcpus. It re-uses the kvm_s390_pv_dmp struct and hence also shares 6106 the command ids. 5953 the command ids. 6107 5954 6108 **command:** 5955 **command:** 6109 5956 6110 KVM_PV_DUMP 5957 KVM_PV_DUMP 6111 Presents an API that provides calls which f 5958 Presents an API that provides calls which facilitate dumping a vcpu 6112 of a protected VM. 5959 of a protected VM. 6113 5960 6114 **subcommand:** 5961 **subcommand:** 6115 5962 6116 KVM_PV_DUMP_CPU 5963 KVM_PV_DUMP_CPU 6117 Provides encrypted dump data like register 5964 Provides encrypted dump data like register values. 6118 The length of the returned data is provided 5965 The length of the returned data is provided by uv_info.guest_cpu_stor_len. 6119 5966 6120 4.137 KVM_S390_ZPCI_OP 5967 4.137 KVM_S390_ZPCI_OP 6121 ---------------------- 5968 ---------------------- 6122 5969 6123 :Capability: KVM_CAP_S390_ZPCI_OP 5970 :Capability: KVM_CAP_S390_ZPCI_OP 6124 :Architectures: s390 5971 :Architectures: s390 6125 :Type: vm ioctl 5972 :Type: vm ioctl 6126 :Parameters: struct kvm_s390_zpci_op (in) 5973 :Parameters: struct kvm_s390_zpci_op (in) 6127 :Returns: 0 on success, <0 on error 5974 :Returns: 0 on success, <0 on error 6128 5975 6129 Used to manage hardware-assisted virtualizati 5976 Used to manage hardware-assisted virtualization features for zPCI devices. 6130 5977 6131 Parameters are specified via the following st 5978 Parameters are specified via the following structure:: 6132 5979 6133 struct kvm_s390_zpci_op { 5980 struct kvm_s390_zpci_op { 6134 /* in */ 5981 /* in */ 6135 __u32 fh; /* target dev 5982 __u32 fh; /* target device */ 6136 __u8 op; /* operation 5983 __u8 op; /* operation to perform */ 6137 __u8 pad[3]; 5984 __u8 pad[3]; 6138 union { 5985 union { 6139 /* for KVM_S390_ZPCIOP_REG_AE 5986 /* for KVM_S390_ZPCIOP_REG_AEN */ 6140 struct { 5987 struct { 6141 __u64 ibv; /* Gu 5988 __u64 ibv; /* Guest addr of interrupt bit vector */ 6142 __u64 sb; /* Gu 5989 __u64 sb; /* Guest addr of summary bit */ 6143 __u32 flags; 5990 __u32 flags; 6144 __u32 noi; /* Nu 5991 __u32 noi; /* Number of interrupts */ 6145 __u8 isc; /* Gu 5992 __u8 isc; /* Guest interrupt subclass */ 6146 __u8 sbo; /* Of 5993 __u8 sbo; /* Offset of guest summary bit vector */ 6147 __u16 pad; 5994 __u16 pad; 6148 } reg_aen; 5995 } reg_aen; 6149 __u64 reserved[8]; 5996 __u64 reserved[8]; 6150 } u; 5997 } u; 6151 }; 5998 }; 6152 5999 6153 The type of operation is specified in the "op 6000 The type of operation is specified in the "op" field. 6154 KVM_S390_ZPCIOP_REG_AEN is used to register t 6001 KVM_S390_ZPCIOP_REG_AEN is used to register the VM for adapter event 6155 notification interpretation, which will allow 6002 notification interpretation, which will allow firmware delivery of adapter 6156 events directly to the vm, with KVM providing 6003 events directly to the vm, with KVM providing a backup delivery mechanism; 6157 KVM_S390_ZPCIOP_DEREG_AEN is used to subseque 6004 KVM_S390_ZPCIOP_DEREG_AEN is used to subsequently disable interpretation of 6158 adapter event notifications. 6005 adapter event notifications. 6159 6006 6160 The target zPCI function must also be specifi 6007 The target zPCI function must also be specified via the "fh" field. For the 6161 KVM_S390_ZPCIOP_REG_AEN operation, additional 6008 KVM_S390_ZPCIOP_REG_AEN operation, additional information to establish firmware 6162 delivery must be provided via the "reg_aen" s 6009 delivery must be provided via the "reg_aen" struct. 6163 6010 6164 The "pad" and "reserved" fields may be used f 6011 The "pad" and "reserved" fields may be used for future extensions and should be 6165 set to 0s by userspace. 6012 set to 0s by userspace. 6166 6013 6167 4.138 KVM_ARM_SET_COUNTER_OFFSET << 6168 -------------------------------- << 6169 << 6170 :Capability: KVM_CAP_COUNTER_OFFSET << 6171 :Architectures: arm64 << 6172 :Type: vm ioctl << 6173 :Parameters: struct kvm_arm_counter_offset (i << 6174 :Returns: 0 on success, < 0 on error << 6175 << 6176 This capability indicates that userspace is a << 6177 offset to both the virtual and physical count << 6178 using the KVM_ARM_SET_CNT_OFFSET ioctl and th << 6179 << 6180 :: << 6181 << 6182 struct kvm_arm_counter_offset { << 6183 __u64 counter_offset; << 6184 __u64 reserved; << 6185 }; << 6186 << 6187 The offset describes a number of counter cycl << 6188 both virtual and physical counter views (simi << 6189 CNTVOFF_EL2 and CNTPOFF_EL2 system registers, << 6190 always applies to all vcpus (already created << 6191 for this VM. << 6192 << 6193 It is userspace's responsibility to compute t << 6194 on previous values of the guest counters. << 6195 << 6196 Any value other than 0 for the "reserved" fie << 6197 (-EINVAL) being returned. This ioctl can also << 6198 ioctl is issued concurrently. << 6199 << 6200 Note that using this ioctl results in KVM ign << 6201 writes to the CNTVCT_EL0 and CNTPCT_EL0 regis << 6202 interface. No error will be returned, but the << 6203 applied. << 6204 << 6205 .. _KVM_ARM_GET_REG_WRITABLE_MASKS: << 6206 << 6207 4.139 KVM_ARM_GET_REG_WRITABLE_MASKS << 6208 ------------------------------------------- << 6209 << 6210 :Capability: KVM_CAP_ARM_SUPPORTED_REG_MASK_R << 6211 :Architectures: arm64 << 6212 :Type: vm ioctl << 6213 :Parameters: struct reg_mask_range (in/out) << 6214 :Returns: 0 on success, < 0 on error << 6215 << 6216 << 6217 :: << 6218 << 6219 #define KVM_ARM_FEATURE_ID_RANGE << 6220 #define KVM_ARM_FEATURE_ID_RANGE_SIZE << 6221 << 6222 struct reg_mask_range { << 6223 __u64 addr; /* Po << 6224 __u32 range; /* Re << 6225 __u32 reserved[13]; << 6226 }; << 6227 << 6228 This ioctl copies the writable masks for a se << 6229 userspace. << 6230 << 6231 The ``addr`` field is a pointer to the destin << 6232 the writable masks. << 6233 << 6234 The ``range`` field indicates the requested r << 6235 ``KVM_CHECK_EXTENSION`` for the ``KVM_CAP_ARM << 6236 capability returns the supported ranges, expr << 6237 flag's bit index represents a possible value << 6238 All other values are reserved for future use << 6239 << 6240 The ``reserved[13]`` array is reserved for fu << 6241 KVM may return an error. << 6242 << 6243 KVM_ARM_FEATURE_ID_RANGE (0) << 6244 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ << 6245 << 6246 The Feature ID range is defined as the AArch6 << 6247 op0==3, op1=={0, 1, 3}, CRn==0, CRm=={0-7}, o << 6248 << 6249 The mask returned array pointed to by ``addr` << 6250 ``ARM64_FEATURE_ID_RANGE_IDX(op0, op1, crn, c << 6251 to know what fields can be changed for the sy << 6252 ``op0, op1, crn, crm, op2``. KVM rejects ID r << 6253 superset of the features supported by the sys << 6254 << 6255 4.140 KVM_SET_USER_MEMORY_REGION2 << 6256 --------------------------------- << 6257 << 6258 :Capability: KVM_CAP_USER_MEMORY2 << 6259 :Architectures: all << 6260 :Type: vm ioctl << 6261 :Parameters: struct kvm_userspace_memory_regi << 6262 :Returns: 0 on success, -1 on error << 6263 << 6264 KVM_SET_USER_MEMORY_REGION2 is an extension t << 6265 allows mapping guest_memfd memory into a gues << 6266 KVM_SET_USER_MEMORY_REGION identically. User << 6267 in flags to have KVM bind the memory region t << 6268 [guest_memfd_offset, guest_memfd_offset + mem << 6269 must point at a file created via KVM_CREATE_G << 6270 the target range must not be bound to any oth << 6271 bounds checks apply (use common sense). << 6272 << 6273 :: << 6274 << 6275 struct kvm_userspace_memory_region2 { << 6276 __u32 slot; << 6277 __u32 flags; << 6278 __u64 guest_phys_addr; << 6279 __u64 memory_size; /* bytes */ << 6280 __u64 userspace_addr; /* start of the << 6281 __u64 guest_memfd_offset; << 6282 __u32 guest_memfd; << 6283 __u32 pad1; << 6284 __u64 pad2[14]; << 6285 }; << 6286 << 6287 A KVM_MEM_GUEST_MEMFD region _must_ have a va << 6288 userspace_addr (shared memory). However, "va << 6289 means that the address itself must be a legal << 6290 mapping for userspace_addr is not required to << 6291 KVM_SET_USER_MEMORY_REGION2, e.g. shared memo << 6292 on-demand. << 6293 << 6294 When mapping a gfn into the guest, KVM select << 6295 userspace_addr vs. guest_memfd, based on the << 6296 state. At VM creation time, all memory is sh << 6297 is '0' for all gfns. Userspace can control w << 6298 toggling KVM_MEMORY_ATTRIBUTE_PRIVATE via KVM << 6299 << 6300 S390: << 6301 ^^^^^ << 6302 << 6303 Returns -EINVAL if the VM has the KVM_VM_S390 << 6304 Returns -EINVAL if called on a protected VM. << 6305 << 6306 4.141 KVM_SET_MEMORY_ATTRIBUTES << 6307 ------------------------------- << 6308 << 6309 :Capability: KVM_CAP_MEMORY_ATTRIBUTES << 6310 :Architectures: x86 << 6311 :Type: vm ioctl << 6312 :Parameters: struct kvm_memory_attributes (in << 6313 :Returns: 0 on success, <0 on error << 6314 << 6315 KVM_SET_MEMORY_ATTRIBUTES allows userspace to << 6316 of guest physical memory. << 6317 << 6318 :: << 6319 << 6320 struct kvm_memory_attributes { << 6321 __u64 address; << 6322 __u64 size; << 6323 __u64 attributes; << 6324 __u64 flags; << 6325 }; << 6326 << 6327 #define KVM_MEMORY_ATTRIBUTE_PRIVATE << 6328 << 6329 The address and size must be page aligned. T << 6330 retrieved via ioctl(KVM_CHECK_EXTENSION) on K << 6331 executed on a VM, KVM_CAP_MEMORY_ATTRIBUTES p << 6332 supported by that VM. If executed at system << 6333 returns all attributes supported by KVM. The << 6334 time is KVM_MEMORY_ATTRIBUTE_PRIVATE, which m << 6335 guest private memory. << 6336 << 6337 Note, there is no "get" API. Userspace is re << 6338 the state of a gfn/page as needed. << 6339 << 6340 The "flags" field is reserved for future exte << 6341 << 6342 4.142 KVM_CREATE_GUEST_MEMFD << 6343 ---------------------------- << 6344 << 6345 :Capability: KVM_CAP_GUEST_MEMFD << 6346 :Architectures: none << 6347 :Type: vm ioctl << 6348 :Parameters: struct kvm_create_guest_memfd(in << 6349 :Returns: A file descriptor on success, <0 on << 6350 << 6351 KVM_CREATE_GUEST_MEMFD creates an anonymous f << 6352 that refers to it. guest_memfd files are rou << 6353 via memfd_create(), e.g. guest_memfd files li << 6354 and are automatically released when the last << 6355 "regular" memfd_create() files, guest_memfd f << 6356 virtual machine (see below), cannot be mapped << 6357 and cannot be resized (guest_memfd files do << 6358 << 6359 :: << 6360 << 6361 struct kvm_create_guest_memfd { << 6362 __u64 size; << 6363 __u64 flags; << 6364 __u64 reserved[6]; << 6365 }; << 6366 << 6367 Conceptually, the inode backing a guest_memfd << 6368 i.e. is coupled to the virtual machine as a t << 6369 file itself, which is bound to a "struct kvm" << 6370 underlying memory, e.g. effectively provides << 6371 to host memory. This allows for use cases wh << 6372 used to manage a single virtual machine, e.g. << 6373 migration of a virtual machine. << 6374 << 6375 KVM currently only supports mapping guest_mem << 6376 and more specifically via the guest_memfd and << 6377 "struct kvm_userspace_memory_region2", where << 6378 into the guest_memfd instance. For a given g << 6379 most one mapping per page, i.e. binding multi << 6380 guest_memfd range is not allowed (any number << 6381 a single guest_memfd file, but the bound rang << 6382 << 6383 See KVM_SET_USER_MEMORY_REGION2 for additiona << 6384 << 6385 4.143 KVM_PRE_FAULT_MEMORY << 6386 --------------------------- << 6387 << 6388 :Capability: KVM_CAP_PRE_FAULT_MEMORY << 6389 :Architectures: none << 6390 :Type: vcpu ioctl << 6391 :Parameters: struct kvm_pre_fault_memory (in/ << 6392 :Returns: 0 if at least one page is processed << 6393 << 6394 Errors: << 6395 << 6396 ========== ================================ << 6397 EINVAL The specified `gpa` and `size` w << 6398 page aligned, causes an overflow << 6399 ENOENT The specified `gpa` is outside d << 6400 EINTR An unmasked signal is pending an << 6401 EFAULT The parameter address was invali << 6402 EOPNOTSUPP Mapping memory for a GPA is unsu << 6403 hypervisor, and/or for the curre << 6404 EIO unexpected error conditions (als << 6405 ========== ================================ << 6406 << 6407 :: << 6408 << 6409 struct kvm_pre_fault_memory { << 6410 /* in/out */ << 6411 __u64 gpa; << 6412 __u64 size; << 6413 /* in */ << 6414 __u64 flags; << 6415 __u64 padding[5]; << 6416 }; << 6417 << 6418 KVM_PRE_FAULT_MEMORY populates KVM's stage-2 << 6419 for the current vCPU state. KVM maps memory << 6420 stage-2 read page fault, e.g. faults in memor << 6421 CoW. However, KVM does not mark any newly cr << 6422 << 6423 In the case of confidential VM types where th << 6424 private guest memory before the guest is 'fin << 6425 should only be issued after completing all th << 6426 guest into a 'finalized' state so that the ab << 6427 ensured. << 6428 << 6429 In some cases, multiple vCPUs might share the << 6430 case, the ioctl can be called in parallel. << 6431 << 6432 When the ioctl returns, the input values are << 6433 remaining range. If `size` > 0 on return, th << 6434 the ioctl again with the same `struct kvm_map << 6435 << 6436 Shadow page tables cannot support this ioctl << 6437 are indexed by virtual address or nested gues << 6438 Calling this ioctl when the guest is using sh << 6439 example because it is running a nested guest << 6440 will fail with `EOPNOTSUPP` even if `KVM_CHEC << 6441 the capability to be present. << 6442 << 6443 `flags` must currently be zero. << 6444 << 6445 << 6446 5. The kvm_run structure 6014 5. The kvm_run structure 6447 ======================== 6015 ======================== 6448 6016 6449 Application code obtains a pointer to the kvm 6017 Application code obtains a pointer to the kvm_run structure by 6450 mmap()ing a vcpu fd. From that point, applic 6018 mmap()ing a vcpu fd. From that point, application code can control 6451 execution by changing fields in kvm_run prior 6019 execution by changing fields in kvm_run prior to calling the KVM_RUN 6452 ioctl, and obtain information about the reaso 6020 ioctl, and obtain information about the reason KVM_RUN returned by 6453 looking up structure members. 6021 looking up structure members. 6454 6022 6455 :: 6023 :: 6456 6024 6457 struct kvm_run { 6025 struct kvm_run { 6458 /* in */ 6026 /* in */ 6459 __u8 request_interrupt_window; 6027 __u8 request_interrupt_window; 6460 6028 6461 Request that KVM_RUN return when it becomes p 6029 Request that KVM_RUN return when it becomes possible to inject external 6462 interrupts into the guest. Useful in conjunc 6030 interrupts into the guest. Useful in conjunction with KVM_INTERRUPT. 6463 6031 6464 :: 6032 :: 6465 6033 6466 __u8 immediate_exit; 6034 __u8 immediate_exit; 6467 6035 6468 This field is polled once when KVM_RUN starts 6036 This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN 6469 exits immediately, returning -EINTR. In the 6037 exits immediately, returning -EINTR. In the common scenario where a 6470 signal is used to "kick" a VCPU out of KVM_RU 6038 signal is used to "kick" a VCPU out of KVM_RUN, this field can be used 6471 to avoid usage of KVM_SET_SIGNAL_MASK, which 6039 to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability. 6472 Rather than blocking the signal outside KVM_R 6040 Rather than blocking the signal outside KVM_RUN, userspace can set up 6473 a signal handler that sets run->immediate_exi 6041 a signal handler that sets run->immediate_exit to a non-zero value. 6474 6042 6475 This field is ignored if KVM_CAP_IMMEDIATE_EX 6043 This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available. 6476 6044 6477 :: 6045 :: 6478 6046 6479 __u8 padding1[6]; 6047 __u8 padding1[6]; 6480 6048 6481 /* out */ 6049 /* out */ 6482 __u32 exit_reason; 6050 __u32 exit_reason; 6483 6051 6484 When KVM_RUN has returned successfully (retur 6052 When KVM_RUN has returned successfully (return value 0), this informs 6485 application code why KVM_RUN has returned. A 6053 application code why KVM_RUN has returned. Allowable values for this 6486 field are detailed below. 6054 field are detailed below. 6487 6055 6488 :: 6056 :: 6489 6057 6490 __u8 ready_for_interrupt_injection; 6058 __u8 ready_for_interrupt_injection; 6491 6059 6492 If request_interrupt_window has been specifie 6060 If request_interrupt_window has been specified, this field indicates 6493 an interrupt can be injected now with KVM_INT 6061 an interrupt can be injected now with KVM_INTERRUPT. 6494 6062 6495 :: 6063 :: 6496 6064 6497 __u8 if_flag; 6065 __u8 if_flag; 6498 6066 6499 The value of the current interrupt flag. Onl 6067 The value of the current interrupt flag. Only valid if in-kernel 6500 local APIC is not used. 6068 local APIC is not used. 6501 6069 6502 :: 6070 :: 6503 6071 6504 __u16 flags; 6072 __u16 flags; 6505 6073 6506 More architecture-specific flags detailing st 6074 More architecture-specific flags detailing state of the VCPU that may 6507 affect the device's behavior. Current defined 6075 affect the device's behavior. Current defined flags:: 6508 6076 6509 /* x86, set if the VCPU is in system manage 6077 /* x86, set if the VCPU is in system management mode */ 6510 #define KVM_RUN_X86_SMM (1 << 0) !! 6078 #define KVM_RUN_X86_SMM (1 << 0) 6511 /* x86, set if bus lock detected in VM */ 6079 /* x86, set if bus lock detected in VM */ 6512 #define KVM_RUN_X86_BUS_LOCK (1 << 1) !! 6080 #define KVM_RUN_BUS_LOCK (1 << 1) 6513 /* x86, set if the VCPU is executing a nest << 6514 #define KVM_RUN_X86_GUEST_MODE (1 << 2) << 6515 << 6516 /* arm64, set for KVM_EXIT_DEBUG */ 6081 /* arm64, set for KVM_EXIT_DEBUG */ 6517 #define KVM_DEBUG_ARCH_HSR_HIGH_VALID (1 < 6082 #define KVM_DEBUG_ARCH_HSR_HIGH_VALID (1 << 0) 6518 6083 6519 :: 6084 :: 6520 6085 6521 /* in (pre_kvm_run), out (post_kvm_ru 6086 /* in (pre_kvm_run), out (post_kvm_run) */ 6522 __u64 cr8; 6087 __u64 cr8; 6523 6088 6524 The value of the cr8 register. Only valid if 6089 The value of the cr8 register. Only valid if in-kernel local APIC is 6525 not used. Both input and output. 6090 not used. Both input and output. 6526 6091 6527 :: 6092 :: 6528 6093 6529 __u64 apic_base; 6094 __u64 apic_base; 6530 6095 6531 The value of the APIC BASE msr. Only valid i 6096 The value of the APIC BASE msr. Only valid if in-kernel local 6532 APIC is not used. Both input and output. 6097 APIC is not used. Both input and output. 6533 6098 6534 :: 6099 :: 6535 6100 6536 union { 6101 union { 6537 /* KVM_EXIT_UNKNOWN */ 6102 /* KVM_EXIT_UNKNOWN */ 6538 struct { 6103 struct { 6539 __u64 hardware_exit_r 6104 __u64 hardware_exit_reason; 6540 } hw; 6105 } hw; 6541 6106 6542 If exit_reason is KVM_EXIT_UNKNOWN, the vcpu 6107 If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown 6543 reasons. Further architecture-specific infor 6108 reasons. Further architecture-specific information is available in 6544 hardware_exit_reason. 6109 hardware_exit_reason. 6545 6110 6546 :: 6111 :: 6547 6112 6548 /* KVM_EXIT_FAIL_ENTRY */ 6113 /* KVM_EXIT_FAIL_ENTRY */ 6549 struct { 6114 struct { 6550 __u64 hardware_entry_ 6115 __u64 hardware_entry_failure_reason; 6551 __u32 cpu; /* if KVM_ 6116 __u32 cpu; /* if KVM_LAST_CPU */ 6552 } fail_entry; 6117 } fail_entry; 6553 6118 6554 If exit_reason is KVM_EXIT_FAIL_ENTRY, the vc 6119 If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due 6555 to unknown reasons. Further architecture-spe 6120 to unknown reasons. Further architecture-specific information is 6556 available in hardware_entry_failure_reason. 6121 available in hardware_entry_failure_reason. 6557 6122 6558 :: 6123 :: 6559 6124 6560 /* KVM_EXIT_EXCEPTION */ 6125 /* KVM_EXIT_EXCEPTION */ 6561 struct { 6126 struct { 6562 __u32 exception; 6127 __u32 exception; 6563 __u32 error_code; 6128 __u32 error_code; 6564 } ex; 6129 } ex; 6565 6130 6566 Unused. 6131 Unused. 6567 6132 6568 :: 6133 :: 6569 6134 6570 /* KVM_EXIT_IO */ 6135 /* KVM_EXIT_IO */ 6571 struct { 6136 struct { 6572 #define KVM_EXIT_IO_IN 0 6137 #define KVM_EXIT_IO_IN 0 6573 #define KVM_EXIT_IO_OUT 1 6138 #define KVM_EXIT_IO_OUT 1 6574 __u8 direction; 6139 __u8 direction; 6575 __u8 size; /* bytes * 6140 __u8 size; /* bytes */ 6576 __u16 port; 6141 __u16 port; 6577 __u32 count; 6142 __u32 count; 6578 __u64 data_offset; /* 6143 __u64 data_offset; /* relative to kvm_run start */ 6579 } io; 6144 } io; 6580 6145 6581 If exit_reason is KVM_EXIT_IO, then the vcpu 6146 If exit_reason is KVM_EXIT_IO, then the vcpu has 6582 executed a port I/O instruction which could n 6147 executed a port I/O instruction which could not be satisfied by kvm. 6583 data_offset describes where the data is locat 6148 data_offset describes where the data is located (KVM_EXIT_IO_OUT) or 6584 where kvm expects application code to place t 6149 where kvm expects application code to place the data for the next 6585 KVM_RUN invocation (KVM_EXIT_IO_IN). Data fo 6150 KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array. 6586 6151 6587 :: 6152 :: 6588 6153 6589 /* KVM_EXIT_DEBUG */ 6154 /* KVM_EXIT_DEBUG */ 6590 struct { 6155 struct { 6591 struct kvm_debug_exit 6156 struct kvm_debug_exit_arch arch; 6592 } debug; 6157 } debug; 6593 6158 6594 If the exit_reason is KVM_EXIT_DEBUG, then a 6159 If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event 6595 for which architecture specific information i 6160 for which architecture specific information is returned. 6596 6161 6597 :: 6162 :: 6598 6163 6599 /* KVM_EXIT_MMIO */ 6164 /* KVM_EXIT_MMIO */ 6600 struct { 6165 struct { 6601 __u64 phys_addr; 6166 __u64 phys_addr; 6602 __u8 data[8]; 6167 __u8 data[8]; 6603 __u32 len; 6168 __u32 len; 6604 __u8 is_write; 6169 __u8 is_write; 6605 } mmio; 6170 } mmio; 6606 6171 6607 If exit_reason is KVM_EXIT_MMIO, then the vcp 6172 If exit_reason is KVM_EXIT_MMIO, then the vcpu has 6608 executed a memory-mapped I/O instruction whic 6173 executed a memory-mapped I/O instruction which could not be satisfied 6609 by kvm. The 'data' member contains the writt 6174 by kvm. The 'data' member contains the written data if 'is_write' is 6610 true, and should be filled by application cod 6175 true, and should be filled by application code otherwise. 6611 6176 6612 The 'data' member contains, in its first 'len 6177 The 'data' member contains, in its first 'len' bytes, the value as it would 6613 appear if the VCPU performed a load or store 6178 appear if the VCPU performed a load or store of the appropriate width directly 6614 to the byte array. 6179 to the byte array. 6615 6180 6616 .. note:: 6181 .. note:: 6617 6182 6618 For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXI 6183 For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR, KVM_EXIT_XEN, 6619 KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KV 6184 KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR the corresponding 6620 operations are complete (and guest stat 6185 operations are complete (and guest state is consistent) only after userspace 6621 has re-entered the kernel with KVM_RUN. 6186 has re-entered the kernel with KVM_RUN. The kernel side will first finish 6622 incomplete operations and then check fo 6187 incomplete operations and then check for pending signals. 6623 6188 6624 The pending state of the operation is n 6189 The pending state of the operation is not preserved in state which is 6625 visible to userspace, thus userspace sh 6190 visible to userspace, thus userspace should ensure that the operation is 6626 completed before performing a live migr 6191 completed before performing a live migration. Userspace can re-enter the 6627 guest with an unmasked signal pending o 6192 guest with an unmasked signal pending or with the immediate_exit field set 6628 to complete pending operations without 6193 to complete pending operations without allowing any further instructions 6629 to be executed. 6194 to be executed. 6630 6195 6631 :: 6196 :: 6632 6197 6633 /* KVM_EXIT_HYPERCALL */ 6198 /* KVM_EXIT_HYPERCALL */ 6634 struct { 6199 struct { 6635 __u64 nr; 6200 __u64 nr; 6636 __u64 args[6]; 6201 __u64 args[6]; 6637 __u64 ret; 6202 __u64 ret; 6638 __u64 flags; !! 6203 __u32 longmode; >> 6204 __u32 pad; 6639 } hypercall; 6205 } hypercall; 6640 6206 6641 !! 6207 Unused. This was once used for 'hypercall to userspace'. To implement 6642 It is strongly recommended that userspace use !! 6208 such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390). 6643 ``KVM_EXIT_MMIO`` (all except s390) to implem << 6644 requires a guest to interact with host usersp << 6645 6209 6646 .. note:: KVM_EXIT_IO is significantly faster 6210 .. note:: KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO. 6647 6211 6648 For arm64: << 6649 ---------- << 6650 << 6651 SMCCC exits can be enabled depending on the c << 6652 filter. See the Documentation/virt/kvm/device << 6653 ``KVM_ARM_SMCCC_FILTER`` for more details. << 6654 << 6655 ``nr`` contains the function ID of the guest' << 6656 expected to use the ``KVM_GET_ONE_REG`` ioctl << 6657 parameters from the vCPU's GPRs. << 6658 << 6659 Definition of ``flags``: << 6660 - ``KVM_HYPERCALL_EXIT_SMC``: Indicates that << 6661 conduit to initiate the SMCCC call. If thi << 6662 used the HVC conduit for the SMCCC call. << 6663 << 6664 - ``KVM_HYPERCALL_EXIT_16BIT``: Indicates th << 6665 instruction to initiate the SMCCC call. If << 6666 guest used a 32bit instruction. An AArch64 << 6667 bit set to 0. << 6668 << 6669 At the point of exit, PC points to the instru << 6670 the trapping instruction. << 6671 << 6672 :: 6212 :: 6673 6213 6674 /* KVM_EXIT_TPR_ACCESS */ 6214 /* KVM_EXIT_TPR_ACCESS */ 6675 struct { 6215 struct { 6676 __u64 rip; 6216 __u64 rip; 6677 __u32 is_write; 6217 __u32 is_write; 6678 __u32 pad; 6218 __u32 pad; 6679 } tpr_access; 6219 } tpr_access; 6680 6220 6681 To be documented (KVM_TPR_ACCESS_REPORTING). 6221 To be documented (KVM_TPR_ACCESS_REPORTING). 6682 6222 6683 :: 6223 :: 6684 6224 6685 /* KVM_EXIT_S390_SIEIC */ 6225 /* KVM_EXIT_S390_SIEIC */ 6686 struct { 6226 struct { 6687 __u8 icptcode; 6227 __u8 icptcode; 6688 __u64 mask; /* psw up 6228 __u64 mask; /* psw upper half */ 6689 __u64 addr; /* psw lo 6229 __u64 addr; /* psw lower half */ 6690 __u16 ipa; 6230 __u16 ipa; 6691 __u32 ipb; 6231 __u32 ipb; 6692 } s390_sieic; 6232 } s390_sieic; 6693 6233 6694 s390 specific. 6234 s390 specific. 6695 6235 6696 :: 6236 :: 6697 6237 6698 /* KVM_EXIT_S390_RESET */ 6238 /* KVM_EXIT_S390_RESET */ 6699 #define KVM_S390_RESET_POR 1 6239 #define KVM_S390_RESET_POR 1 6700 #define KVM_S390_RESET_CLEAR 2 6240 #define KVM_S390_RESET_CLEAR 2 6701 #define KVM_S390_RESET_SUBSYSTEM 4 6241 #define KVM_S390_RESET_SUBSYSTEM 4 6702 #define KVM_S390_RESET_CPU_INIT 8 6242 #define KVM_S390_RESET_CPU_INIT 8 6703 #define KVM_S390_RESET_IPL 16 6243 #define KVM_S390_RESET_IPL 16 6704 __u64 s390_reset_flags; 6244 __u64 s390_reset_flags; 6705 6245 6706 s390 specific. 6246 s390 specific. 6707 6247 6708 :: 6248 :: 6709 6249 6710 /* KVM_EXIT_S390_UCONTROL */ 6250 /* KVM_EXIT_S390_UCONTROL */ 6711 struct { 6251 struct { 6712 __u64 trans_exc_code; 6252 __u64 trans_exc_code; 6713 __u32 pgm_code; 6253 __u32 pgm_code; 6714 } s390_ucontrol; 6254 } s390_ucontrol; 6715 6255 6716 s390 specific. A page fault has occurred for 6256 s390 specific. A page fault has occurred for a user controlled virtual 6717 machine (KVM_VM_S390_UNCONTROL) on its host p !! 6257 machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be 6718 resolved by the kernel. 6258 resolved by the kernel. 6719 The program code and the translation exceptio 6259 The program code and the translation exception code that were placed 6720 in the cpu's lowcore are presented here as de 6260 in the cpu's lowcore are presented here as defined by the z Architecture 6721 Principles of Operation Book in the Chapter f 6261 Principles of Operation Book in the Chapter for Dynamic Address Translation 6722 (DAT) 6262 (DAT) 6723 6263 6724 :: 6264 :: 6725 6265 6726 /* KVM_EXIT_DCR */ 6266 /* KVM_EXIT_DCR */ 6727 struct { 6267 struct { 6728 __u32 dcrn; 6268 __u32 dcrn; 6729 __u32 data; 6269 __u32 data; 6730 __u8 is_write; 6270 __u8 is_write; 6731 } dcr; 6271 } dcr; 6732 6272 6733 Deprecated - was used for 440 KVM. 6273 Deprecated - was used for 440 KVM. 6734 6274 6735 :: 6275 :: 6736 6276 6737 /* KVM_EXIT_OSI */ 6277 /* KVM_EXIT_OSI */ 6738 struct { 6278 struct { 6739 __u64 gprs[32]; 6279 __u64 gprs[32]; 6740 } osi; 6280 } osi; 6741 6281 6742 MOL uses a special hypercall interface it cal 6282 MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch 6743 hypercalls and exit with this exit struct tha 6283 hypercalls and exit with this exit struct that contains all the guest gprs. 6744 6284 6745 If exit_reason is KVM_EXIT_OSI, then the vcpu 6285 If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall. 6746 Userspace can now handle the hypercall and wh 6286 Userspace can now handle the hypercall and when it's done modify the gprs as 6747 necessary. Upon guest entry all guest GPRs wi 6287 necessary. Upon guest entry all guest GPRs will then be replaced by the values 6748 in this struct. 6288 in this struct. 6749 6289 6750 :: 6290 :: 6751 6291 6752 /* KVM_EXIT_PAPR_HCALL */ 6292 /* KVM_EXIT_PAPR_HCALL */ 6753 struct { 6293 struct { 6754 __u64 nr; 6294 __u64 nr; 6755 __u64 ret; 6295 __u64 ret; 6756 __u64 args[9]; 6296 __u64 args[9]; 6757 } papr_hcall; 6297 } papr_hcall; 6758 6298 6759 This is used on 64-bit PowerPC when emulating 6299 This is used on 64-bit PowerPC when emulating a pSeries partition, 6760 e.g. with the 'pseries' machine type in qemu. 6300 e.g. with the 'pseries' machine type in qemu. It occurs when the 6761 guest does a hypercall using the 'sc 1' instr 6301 guest does a hypercall using the 'sc 1' instruction. The 'nr' field 6762 contains the hypercall number (from the guest 6302 contains the hypercall number (from the guest R3), and 'args' contains 6763 the arguments (from the guest R4 - R12). Use 6303 the arguments (from the guest R4 - R12). Userspace should put the 6764 return code in 'ret' and any extra returned v 6304 return code in 'ret' and any extra returned values in args[]. 6765 The possible hypercalls are defined in the Po 6305 The possible hypercalls are defined in the Power Architecture Platform 6766 Requirements (PAPR) document available from w 6306 Requirements (PAPR) document available from www.power.org (free 6767 developer registration required to access it) 6307 developer registration required to access it). 6768 6308 6769 :: 6309 :: 6770 6310 6771 /* KVM_EXIT_S390_TSCH */ 6311 /* KVM_EXIT_S390_TSCH */ 6772 struct { 6312 struct { 6773 __u16 subchannel_id; 6313 __u16 subchannel_id; 6774 __u16 subchannel_nr; 6314 __u16 subchannel_nr; 6775 __u32 io_int_parm; 6315 __u32 io_int_parm; 6776 __u32 io_int_word; 6316 __u32 io_int_word; 6777 __u32 ipb; 6317 __u32 ipb; 6778 __u8 dequeued; 6318 __u8 dequeued; 6779 } s390_tsch; 6319 } s390_tsch; 6780 6320 6781 s390 specific. This exit occurs when KVM_CAP_ 6321 s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled 6782 and TEST SUBCHANNEL was intercepted. If deque 6322 and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O 6783 interrupt for the target subchannel has been 6323 interrupt for the target subchannel has been dequeued and subchannel_id, 6784 subchannel_nr, io_int_parm and io_int_word co 6324 subchannel_nr, io_int_parm and io_int_word contain the parameters for that 6785 interrupt. ipb is needed for instruction para 6325 interrupt. ipb is needed for instruction parameter decoding. 6786 6326 6787 :: 6327 :: 6788 6328 6789 /* KVM_EXIT_EPR */ 6329 /* KVM_EXIT_EPR */ 6790 struct { 6330 struct { 6791 __u32 epr; 6331 __u32 epr; 6792 } epr; 6332 } epr; 6793 6333 6794 On FSL BookE PowerPC chips, the interrupt con 6334 On FSL BookE PowerPC chips, the interrupt controller has a fast patch 6795 interrupt acknowledge path to the core. When 6335 interrupt acknowledge path to the core. When the core successfully 6796 delivers an interrupt, it automatically popul 6336 delivers an interrupt, it automatically populates the EPR register with 6797 the interrupt vector number and acknowledges 6337 the interrupt vector number and acknowledges the interrupt inside 6798 the interrupt controller. 6338 the interrupt controller. 6799 6339 6800 In case the interrupt controller lives in use 6340 In case the interrupt controller lives in user space, we need to do 6801 the interrupt acknowledge cycle through it to 6341 the interrupt acknowledge cycle through it to fetch the next to be 6802 delivered interrupt vector using this exit. 6342 delivered interrupt vector using this exit. 6803 6343 6804 It gets triggered whenever both KVM_CAP_PPC_E 6344 It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an 6805 external interrupt has just been delivered in 6345 external interrupt has just been delivered into the guest. User space 6806 should put the acknowledged interrupt vector 6346 should put the acknowledged interrupt vector into the 'epr' field. 6807 6347 6808 :: 6348 :: 6809 6349 6810 /* KVM_EXIT_SYSTEM_EVENT */ 6350 /* KVM_EXIT_SYSTEM_EVENT */ 6811 struct { 6351 struct { 6812 #define KVM_SYSTEM_EVENT_SHUTDOWN 1 6352 #define KVM_SYSTEM_EVENT_SHUTDOWN 1 6813 #define KVM_SYSTEM_EVENT_RESET 2 6353 #define KVM_SYSTEM_EVENT_RESET 2 6814 #define KVM_SYSTEM_EVENT_CRASH 3 6354 #define KVM_SYSTEM_EVENT_CRASH 3 6815 #define KVM_SYSTEM_EVENT_WAKEUP 4 6355 #define KVM_SYSTEM_EVENT_WAKEUP 4 6816 #define KVM_SYSTEM_EVENT_SUSPEND 5 6356 #define KVM_SYSTEM_EVENT_SUSPEND 5 6817 #define KVM_SYSTEM_EVENT_SEV_TERM 6 6357 #define KVM_SYSTEM_EVENT_SEV_TERM 6 6818 __u32 type; 6358 __u32 type; 6819 __u32 ndata; 6359 __u32 ndata; 6820 __u64 data[16]; 6360 __u64 data[16]; 6821 } system_event; 6361 } system_event; 6822 6362 6823 If exit_reason is KVM_EXIT_SYSTEM_EVENT then 6363 If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered 6824 a system-level event using some architecture 6364 a system-level event using some architecture specific mechanism (hypercall 6825 or some special instruction). In case of ARM6 6365 or some special instruction). In case of ARM64, this is triggered using 6826 HVC instruction based PSCI call from the vcpu 6366 HVC instruction based PSCI call from the vcpu. 6827 6367 6828 The 'type' field describes the system-level e 6368 The 'type' field describes the system-level event type. 6829 Valid values for 'type' are: 6369 Valid values for 'type' are: 6830 6370 6831 - KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has 6371 - KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the 6832 VM. Userspace is not obliged to honour thi 6372 VM. Userspace is not obliged to honour this, and if it does honour 6833 this does not need to destroy the VM synch 6373 this does not need to destroy the VM synchronously (ie it may call 6834 KVM_RUN again before shutdown finally occu 6374 KVM_RUN again before shutdown finally occurs). 6835 - KVM_SYSTEM_EVENT_RESET -- the guest has re 6375 - KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM. 6836 As with SHUTDOWN, userspace can choose to 6376 As with SHUTDOWN, userspace can choose to ignore the request, or 6837 to schedule the reset to occur in the futu 6377 to schedule the reset to occur in the future and may call KVM_RUN again. 6838 - KVM_SYSTEM_EVENT_CRASH -- the guest crash 6378 - KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest 6839 has requested a crash condition maintenanc 6379 has requested a crash condition maintenance. Userspace can choose 6840 to ignore the request, or to gather VM mem 6380 to ignore the request, or to gather VM memory core dump and/or 6841 reset/shutdown of the VM. 6381 reset/shutdown of the VM. 6842 - KVM_SYSTEM_EVENT_SEV_TERM -- an AMD SEV gu 6382 - KVM_SYSTEM_EVENT_SEV_TERM -- an AMD SEV guest requested termination. 6843 The guest physical address of the guest's 6383 The guest physical address of the guest's GHCB is stored in `data[0]`. 6844 - KVM_SYSTEM_EVENT_WAKEUP -- the exiting vCP 6384 - KVM_SYSTEM_EVENT_WAKEUP -- the exiting vCPU is in a suspended state and 6845 KVM has recognized a wakeup event. Userspa 6385 KVM has recognized a wakeup event. Userspace may honor this event by 6846 marking the exiting vCPU as runnable, or d 6386 marking the exiting vCPU as runnable, or deny it and call KVM_RUN again. 6847 - KVM_SYSTEM_EVENT_SUSPEND -- the guest has 6387 - KVM_SYSTEM_EVENT_SUSPEND -- the guest has requested a suspension of 6848 the VM. 6388 the VM. 6849 6389 6850 If KVM_CAP_SYSTEM_EVENT_DATA is present, the 6390 If KVM_CAP_SYSTEM_EVENT_DATA is present, the 'data' field can contain 6851 architecture specific information for the sys 6391 architecture specific information for the system-level event. Only 6852 the first `ndata` items (possibly zero) of th 6392 the first `ndata` items (possibly zero) of the data array are valid. 6853 6393 6854 - for arm64, data[0] is set to KVM_SYSTEM_EV 6394 - for arm64, data[0] is set to KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2 if 6855 the guest issued a SYSTEM_RESET2 call acco 6395 the guest issued a SYSTEM_RESET2 call according to v1.1 of the PSCI 6856 specification. 6396 specification. 6857 6397 6858 - for RISC-V, data[0] is set to the value of 6398 - for RISC-V, data[0] is set to the value of the second argument of the 6859 ``sbi_system_reset`` call. 6399 ``sbi_system_reset`` call. 6860 6400 6861 Previous versions of Linux defined a `flags` 6401 Previous versions of Linux defined a `flags` member in this struct. The 6862 field is now aliased to `data[0]`. Userspace 6402 field is now aliased to `data[0]`. Userspace can assume that it is only 6863 written if ndata is greater than 0. 6403 written if ndata is greater than 0. 6864 6404 6865 For arm/arm64: 6405 For arm/arm64: 6866 -------------- 6406 -------------- 6867 6407 6868 KVM_SYSTEM_EVENT_SUSPEND exits are enabled wi 6408 KVM_SYSTEM_EVENT_SUSPEND exits are enabled with the 6869 KVM_CAP_ARM_SYSTEM_SUSPEND VM capability. If 6409 KVM_CAP_ARM_SYSTEM_SUSPEND VM capability. If a guest invokes the PSCI 6870 SYSTEM_SUSPEND function, KVM will exit to use 6410 SYSTEM_SUSPEND function, KVM will exit to userspace with this event 6871 type. 6411 type. 6872 6412 6873 It is the sole responsibility of userspace to 6413 It is the sole responsibility of userspace to implement the PSCI 6874 SYSTEM_SUSPEND call according to ARM DEN0022D 6414 SYSTEM_SUSPEND call according to ARM DEN0022D.b 5.19 "SYSTEM_SUSPEND". 6875 KVM does not change the vCPU's state before e 6415 KVM does not change the vCPU's state before exiting to userspace, so 6876 the call parameters are left in-place in the 6416 the call parameters are left in-place in the vCPU registers. 6877 6417 6878 Userspace is _required_ to take action for su 6418 Userspace is _required_ to take action for such an exit. It must 6879 either: 6419 either: 6880 6420 6881 - Honor the guest request to suspend the VM. 6421 - Honor the guest request to suspend the VM. Userspace can request 6882 in-kernel emulation of suspension by setti 6422 in-kernel emulation of suspension by setting the calling vCPU's 6883 state to KVM_MP_STATE_SUSPENDED. Userspace 6423 state to KVM_MP_STATE_SUSPENDED. Userspace must configure the vCPU's 6884 state according to the parameters passed t 6424 state according to the parameters passed to the PSCI function when 6885 the calling vCPU is resumed. See ARM DEN00 6425 the calling vCPU is resumed. See ARM DEN0022D.b 5.19.1 "Intended use" 6886 for details on the function parameters. 6426 for details on the function parameters. 6887 6427 6888 - Deny the guest request to suspend the VM. 6428 - Deny the guest request to suspend the VM. See ARM DEN0022D.b 5.19.2 6889 "Caller responsibilities" for possible ret 6429 "Caller responsibilities" for possible return values. 6890 6430 6891 :: 6431 :: 6892 6432 6893 /* KVM_EXIT_IOAPIC_EOI */ 6433 /* KVM_EXIT_IOAPIC_EOI */ 6894 struct { 6434 struct { 6895 __u8 vector; 6435 __u8 vector; 6896 } eoi; 6436 } eoi; 6897 6437 6898 Indicates that the VCPU's in-kernel local API 6438 Indicates that the VCPU's in-kernel local APIC received an EOI for a 6899 level-triggered IOAPIC interrupt. This exit 6439 level-triggered IOAPIC interrupt. This exit only triggers when the 6900 IOAPIC is implemented in userspace (i.e. KVM_ 6440 IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled); 6901 the userspace IOAPIC should process the EOI a 6441 the userspace IOAPIC should process the EOI and retrigger the interrupt if 6902 it is still asserted. Vector is the LAPIC in 6442 it is still asserted. Vector is the LAPIC interrupt vector for which the 6903 EOI was received. 6443 EOI was received. 6904 6444 6905 :: 6445 :: 6906 6446 6907 struct kvm_hyperv_exit { 6447 struct kvm_hyperv_exit { 6908 #define KVM_EXIT_HYPERV_SYNIC 1 6448 #define KVM_EXIT_HYPERV_SYNIC 1 6909 #define KVM_EXIT_HYPERV_HCALL 2 6449 #define KVM_EXIT_HYPERV_HCALL 2 6910 #define KVM_EXIT_HYPERV_SYNDBG 3 6450 #define KVM_EXIT_HYPERV_SYNDBG 3 6911 __u32 type; 6451 __u32 type; 6912 __u32 pad1; 6452 __u32 pad1; 6913 union { 6453 union { 6914 struct { 6454 struct { 6915 __u32 6455 __u32 msr; 6916 __u32 6456 __u32 pad2; 6917 __u64 6457 __u64 control; 6918 __u64 6458 __u64 evt_page; 6919 __u64 6459 __u64 msg_page; 6920 } synic; 6460 } synic; 6921 struct { 6461 struct { 6922 __u64 6462 __u64 input; 6923 __u64 6463 __u64 result; 6924 __u64 6464 __u64 params[2]; 6925 } hcall; 6465 } hcall; 6926 struct { 6466 struct { 6927 __u32 6467 __u32 msr; 6928 __u32 6468 __u32 pad2; 6929 __u64 6469 __u64 control; 6930 __u64 6470 __u64 status; 6931 __u64 6471 __u64 send_page; 6932 __u64 6472 __u64 recv_page; 6933 __u64 6473 __u64 pending_page; 6934 } syndbg; 6474 } syndbg; 6935 } u; 6475 } u; 6936 }; 6476 }; 6937 /* KVM_EXIT_HYPERV */ 6477 /* KVM_EXIT_HYPERV */ 6938 struct kvm_hyperv_exit hyperv 6478 struct kvm_hyperv_exit hyperv; 6939 6479 6940 Indicates that the VCPU exits into userspace 6480 Indicates that the VCPU exits into userspace to process some tasks 6941 related to Hyper-V emulation. 6481 related to Hyper-V emulation. 6942 6482 6943 Valid values for 'type' are: 6483 Valid values for 'type' are: 6944 6484 6945 - KVM_EXIT_HYPERV_SYNIC -- synchronou 6485 - KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about 6946 6486 6947 Hyper-V SynIC state change. Notification is u 6487 Hyper-V SynIC state change. Notification is used to remap SynIC 6948 event/message pages and to enable/disable Syn 6488 event/message pages and to enable/disable SynIC messages/events processing 6949 in userspace. 6489 in userspace. 6950 6490 6951 - KVM_EXIT_HYPERV_SYNDBG -- synchrono 6491 - KVM_EXIT_HYPERV_SYNDBG -- synchronously notify user-space about 6952 6492 6953 Hyper-V Synthetic debugger state change. Noti 6493 Hyper-V Synthetic debugger state change. Notification is used to either update 6954 the pending_page location or to send a contro 6494 the pending_page location or to send a control command (send the buffer located 6955 in send_page or recv a buffer to recv_page). 6495 in send_page or recv a buffer to recv_page). 6956 6496 6957 :: 6497 :: 6958 6498 6959 /* KVM_EXIT_ARM_NISV */ 6499 /* KVM_EXIT_ARM_NISV */ 6960 struct { 6500 struct { 6961 __u64 esr_iss; 6501 __u64 esr_iss; 6962 __u64 fault_ipa; 6502 __u64 fault_ipa; 6963 } arm_nisv; 6503 } arm_nisv; 6964 6504 6965 Used on arm64 systems. If a guest accesses me 6505 Used on arm64 systems. If a guest accesses memory not in a memslot, 6966 KVM will typically return to userspace and as 6506 KVM will typically return to userspace and ask it to do MMIO emulation on its 6967 behalf. However, for certain classes of instr 6507 behalf. However, for certain classes of instructions, no instruction decode 6968 (direction, length of memory access) is provi 6508 (direction, length of memory access) is provided, and fetching and decoding 6969 the instruction from the VM is overly complic 6509 the instruction from the VM is overly complicated to live in the kernel. 6970 6510 6971 Historically, when this situation occurred, K 6511 Historically, when this situation occurred, KVM would print a warning and kill 6972 the VM. KVM assumed that if the guest accesse 6512 the VM. KVM assumed that if the guest accessed non-memslot memory, it was 6973 trying to do I/O, which just couldn't be emul 6513 trying to do I/O, which just couldn't be emulated, and the warning message was 6974 phrased accordingly. However, what happened m 6514 phrased accordingly. However, what happened more often was that a guest bug 6975 caused access outside the guest memory areas 6515 caused access outside the guest memory areas which should lead to a more 6976 meaningful warning message and an external ab 6516 meaningful warning message and an external abort in the guest, if the access 6977 did not fall within an I/O window. 6517 did not fall within an I/O window. 6978 6518 6979 Userspace implementations can query for KVM_C 6519 Userspace implementations can query for KVM_CAP_ARM_NISV_TO_USER, and enable 6980 this capability at VM creation. Once this is 6520 this capability at VM creation. Once this is done, these types of errors will 6981 instead return to userspace with KVM_EXIT_ARM 6521 instead return to userspace with KVM_EXIT_ARM_NISV, with the valid bits from 6982 the ESR_EL2 in the esr_iss field, and the fau 6522 the ESR_EL2 in the esr_iss field, and the faulting IPA in the fault_ipa field. 6983 Userspace can either fix up the access if it' 6523 Userspace can either fix up the access if it's actually an I/O access by 6984 decoding the instruction from guest memory (i 6524 decoding the instruction from guest memory (if it's very brave) and continue 6985 executing the guest, or it can decide to susp 6525 executing the guest, or it can decide to suspend, dump, or restart the guest. 6986 6526 6987 Note that KVM does not skip the faulting inst 6527 Note that KVM does not skip the faulting instruction as it does for 6988 KVM_EXIT_MMIO, but userspace has to emulate a 6528 KVM_EXIT_MMIO, but userspace has to emulate any change to the processing state 6989 if it decides to decode and emulate the instr 6529 if it decides to decode and emulate the instruction. 6990 6530 6991 This feature isn't available to protected VMs << 6992 have access to the state that is required to << 6993 Instead, a data abort exception is directly i << 6994 Note that although KVM_CAP_ARM_NISV_TO_USER w << 6995 queried outside of a protected VM context, th << 6996 exposed if queried on a protected VM file des << 6997 << 6998 :: 6531 :: 6999 6532 7000 /* KVM_EXIT_X86_RDMSR / KVM_E 6533 /* KVM_EXIT_X86_RDMSR / KVM_EXIT_X86_WRMSR */ 7001 struct { 6534 struct { 7002 __u8 error; /* user - 6535 __u8 error; /* user -> kernel */ 7003 __u8 pad[7]; 6536 __u8 pad[7]; 7004 __u32 reason; /* kern 6537 __u32 reason; /* kernel -> user */ 7005 __u32 index; /* kerne 6538 __u32 index; /* kernel -> user */ 7006 __u64 data; /* kernel 6539 __u64 data; /* kernel <-> user */ 7007 } msr; 6540 } msr; 7008 6541 7009 Used on x86 systems. When the VM capability K 6542 Used on x86 systems. When the VM capability KVM_CAP_X86_USER_SPACE_MSR is 7010 enabled, MSR accesses to registers that would 6543 enabled, MSR accesses to registers that would invoke a #GP by KVM kernel code 7011 may instead trigger a KVM_EXIT_X86_RDMSR exit !! 6544 will instead trigger a KVM_EXIT_X86_RDMSR exit for reads and KVM_EXIT_X86_WRMSR 7012 exit for writes. 6545 exit for writes. 7013 6546 7014 The "reason" field specifies why the MSR inte !! 6547 The "reason" field specifies why the MSR trap occurred. User space will only 7015 only receive MSR exits when a particular reas !! 6548 receive MSR exit traps when a particular reason was requested during through 7016 ENABLE_CAP. Currently valid exit reasons are: 6549 ENABLE_CAP. Currently valid exit reasons are: 7017 6550 7018 ============================ ================ !! 6551 KVM_MSR_EXIT_REASON_UNKNOWN - access to MSR that is unknown to KVM 7019 KVM_MSR_EXIT_REASON_UNKNOWN access to MSR th !! 6552 KVM_MSR_EXIT_REASON_INVAL - access to invalid MSRs or reserved bits 7020 KVM_MSR_EXIT_REASON_INVAL access to invali !! 6553 KVM_MSR_EXIT_REASON_FILTER - access blocked by KVM_X86_SET_MSR_FILTER 7021 KVM_MSR_EXIT_REASON_FILTER access blocked b << 7022 ============================ ================ << 7023 6554 7024 For KVM_EXIT_X86_RDMSR, the "index" field tel !! 6555 For KVM_EXIT_X86_RDMSR, the "index" field tells user space which MSR the guest 7025 wants to read. To respond to this request wit !! 6556 wants to read. To respond to this request with a successful read, user space 7026 writes the respective data into the "data" fi 6557 writes the respective data into the "data" field and must continue guest 7027 execution to ensure the read data is transfer 6558 execution to ensure the read data is transferred into guest register state. 7028 6559 7029 If the RDMSR request was unsuccessful, usersp !! 6560 If the RDMSR request was unsuccessful, user space indicates that with a "1" in 7030 the "error" field. This will inject a #GP int 6561 the "error" field. This will inject a #GP into the guest when the VCPU is 7031 executed again. 6562 executed again. 7032 6563 7033 For KVM_EXIT_X86_WRMSR, the "index" field tel !! 6564 For KVM_EXIT_X86_WRMSR, the "index" field tells user space which MSR the guest 7034 wants to write. Once finished processing the !! 6565 wants to write. Once finished processing the event, user space must continue 7035 vCPU execution. If the MSR write was unsucces !! 6566 vCPU execution. If the MSR write was unsuccessful, user space also sets the 7036 "error" field to "1". 6567 "error" field to "1". 7037 6568 7038 See KVM_X86_SET_MSR_FILTER for details on the << 7039 << 7040 :: 6569 :: 7041 6570 7042 6571 7043 struct kvm_xen_exit { 6572 struct kvm_xen_exit { 7044 #define KVM_EXIT_XEN_HCALL 1 6573 #define KVM_EXIT_XEN_HCALL 1 7045 __u32 type; 6574 __u32 type; 7046 union { 6575 union { 7047 struct { 6576 struct { 7048 __u32 6577 __u32 longmode; 7049 __u32 6578 __u32 cpl; 7050 __u64 6579 __u64 input; 7051 __u64 6580 __u64 result; 7052 __u64 6581 __u64 params[6]; 7053 } hcall; 6582 } hcall; 7054 } u; 6583 } u; 7055 }; 6584 }; 7056 /* KVM_EXIT_XEN */ 6585 /* KVM_EXIT_XEN */ 7057 struct kvm_hyperv_exit xen; 6586 struct kvm_hyperv_exit xen; 7058 6587 7059 Indicates that the VCPU exits into userspace 6588 Indicates that the VCPU exits into userspace to process some tasks 7060 related to Xen emulation. 6589 related to Xen emulation. 7061 6590 7062 Valid values for 'type' are: 6591 Valid values for 'type' are: 7063 6592 7064 - KVM_EXIT_XEN_HCALL -- synchronously notif 6593 - KVM_EXIT_XEN_HCALL -- synchronously notify user-space about Xen hypercall. 7065 Userspace is expected to place the hyperc 6594 Userspace is expected to place the hypercall result into the appropriate 7066 field before invoking KVM_RUN again. 6595 field before invoking KVM_RUN again. 7067 6596 7068 :: 6597 :: 7069 6598 7070 /* KVM_EXIT_RISCV_SBI */ 6599 /* KVM_EXIT_RISCV_SBI */ 7071 struct { 6600 struct { 7072 unsigned long extensi 6601 unsigned long extension_id; 7073 unsigned long functio 6602 unsigned long function_id; 7074 unsigned long args[6] 6603 unsigned long args[6]; 7075 unsigned long ret[2]; 6604 unsigned long ret[2]; 7076 } riscv_sbi; 6605 } riscv_sbi; 7077 6606 7078 If exit reason is KVM_EXIT_RISCV_SBI then it 6607 If exit reason is KVM_EXIT_RISCV_SBI then it indicates that the VCPU has 7079 done a SBI call which is not handled by KVM R 6608 done a SBI call which is not handled by KVM RISC-V kernel module. The details 7080 of the SBI call are available in 'riscv_sbi' 6609 of the SBI call are available in 'riscv_sbi' member of kvm_run structure. The 7081 'extension_id' field of 'riscv_sbi' represent 6610 'extension_id' field of 'riscv_sbi' represents SBI extension ID whereas the 7082 'function_id' field represents function ID of 6611 'function_id' field represents function ID of given SBI extension. The 'args' 7083 array field of 'riscv_sbi' represents paramet 6612 array field of 'riscv_sbi' represents parameters for the SBI call and 'ret' 7084 array field represents return values. The use 6613 array field represents return values. The userspace should update the return 7085 values of SBI call before resuming the VCPU. 6614 values of SBI call before resuming the VCPU. For more details on RISC-V SBI 7086 spec refer, https://github.com/riscv/riscv-sb 6615 spec refer, https://github.com/riscv/riscv-sbi-doc. 7087 6616 7088 :: 6617 :: 7089 6618 7090 /* KVM_EXIT_MEMORY_FAULT */ << 7091 struct { << 7092 #define KVM_MEMORY_EXIT_FLAG_PRIVATE (1ULL << 7093 __u64 flags; << 7094 __u64 gpa; << 7095 __u64 size; << 7096 } memory_fault; << 7097 << 7098 KVM_EXIT_MEMORY_FAULT indicates the vCPU has << 7099 could not be resolved by KVM. The 'gpa' and << 7100 guest physical address range [gpa, gpa + size << 7101 describes properties of the faulting access t << 7102 << 7103 - KVM_MEMORY_EXIT_FLAG_PRIVATE - When set, i << 7104 on a private memory access. When clear, i << 7105 shared access. << 7106 << 7107 Note! KVM_EXIT_MEMORY_FAULT is unique among << 7108 accompanies a return code of '-1', not '0'! << 7109 or EHWPOISON when KVM exits with KVM_EXIT_MEM << 7110 kvm_run.exit_reason is stale/undefined for al << 7111 << 7112 :: << 7113 << 7114 /* KVM_EXIT_NOTIFY */ 6619 /* KVM_EXIT_NOTIFY */ 7115 struct { 6620 struct { 7116 #define KVM_NOTIFY_CONTEXT_INVALID (1 << 6621 #define KVM_NOTIFY_CONTEXT_INVALID (1 << 0) 7117 __u32 flags; 6622 __u32 flags; 7118 } notify; 6623 } notify; 7119 6624 7120 Used on x86 systems. When the VM capability K 6625 Used on x86 systems. When the VM capability KVM_CAP_X86_NOTIFY_VMEXIT is 7121 enabled, a VM exit generated if no event wind 6626 enabled, a VM exit generated if no event window occurs in VM non-root mode 7122 for a specified amount of time. Once KVM_X86_ 6627 for a specified amount of time. Once KVM_X86_NOTIFY_VMEXIT_USER is set when 7123 enabling the cap, it would exit to userspace 6628 enabling the cap, it would exit to userspace with the exit reason 7124 KVM_EXIT_NOTIFY for further handling. The "fl 6629 KVM_EXIT_NOTIFY for further handling. The "flags" field contains more 7125 detailed info. 6630 detailed info. 7126 6631 7127 The valid value for 'flags' is: 6632 The valid value for 'flags' is: 7128 6633 7129 - KVM_NOTIFY_CONTEXT_INVALID -- the VM cont 6634 - KVM_NOTIFY_CONTEXT_INVALID -- the VM context is corrupted and not valid 7130 in VMCS. It would run into unknown result 6635 in VMCS. It would run into unknown result if resume the target VM. 7131 6636 7132 :: 6637 :: 7133 6638 7134 /* Fix the size of the union. 6639 /* Fix the size of the union. */ 7135 char padding[256]; 6640 char padding[256]; 7136 }; 6641 }; 7137 6642 7138 /* 6643 /* 7139 * shared registers between kvm and u 6644 * shared registers between kvm and userspace. 7140 * kvm_valid_regs specifies the regis 6645 * kvm_valid_regs specifies the register classes set by the host 7141 * kvm_dirty_regs specified the regis 6646 * kvm_dirty_regs specified the register classes dirtied by userspace 7142 * struct kvm_sync_regs is architectu 6647 * struct kvm_sync_regs is architecture specific, as well as the 7143 * bits for kvm_valid_regs and kvm_di 6648 * bits for kvm_valid_regs and kvm_dirty_regs 7144 */ 6649 */ 7145 __u64 kvm_valid_regs; 6650 __u64 kvm_valid_regs; 7146 __u64 kvm_dirty_regs; 6651 __u64 kvm_dirty_regs; 7147 union { 6652 union { 7148 struct kvm_sync_regs regs; 6653 struct kvm_sync_regs regs; 7149 char padding[SYNC_REGS_SIZE_B 6654 char padding[SYNC_REGS_SIZE_BYTES]; 7150 } s; 6655 } s; 7151 6656 7152 If KVM_CAP_SYNC_REGS is defined, these fields 6657 If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access 7153 certain guest registers without having to cal 6658 certain guest registers without having to call SET/GET_*REGS. Thus we can 7154 avoid some system call overhead if userspace 6659 avoid some system call overhead if userspace has to handle the exit. 7155 Userspace can query the validity of the struc 6660 Userspace can query the validity of the structure by checking 7156 kvm_valid_regs for specific bits. These bits 6661 kvm_valid_regs for specific bits. These bits are architecture specific 7157 and usually define the validity of a groups o 6662 and usually define the validity of a groups of registers. (e.g. one bit 7158 for general purpose registers) 6663 for general purpose registers) 7159 6664 7160 Please note that the kernel is allowed to use 6665 Please note that the kernel is allowed to use the kvm_run structure as the 7161 primary storage for certain register types. T 6666 primary storage for certain register types. Therefore, the kernel may use the 7162 values in kvm_run even if the corresponding b 6667 values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set. 7163 6668 >> 6669 :: >> 6670 >> 6671 }; >> 6672 >> 6673 7164 6674 7165 6. Capabilities that can be enabled on vCPUs 6675 6. Capabilities that can be enabled on vCPUs 7166 ============================================ 6676 ============================================ 7167 6677 7168 There are certain capabilities that change th 6678 There are certain capabilities that change the behavior of the virtual CPU or 7169 the virtual machine when enabled. To enable t 6679 the virtual machine when enabled. To enable them, please see section 4.37. 7170 Below you can find a list of capabilities and 6680 Below you can find a list of capabilities and what their effect on the vCPU or 7171 the virtual machine is when enabling them. 6681 the virtual machine is when enabling them. 7172 6682 7173 The following information is provided along w 6683 The following information is provided along with the description: 7174 6684 7175 Architectures: 6685 Architectures: 7176 which instruction set architectures pro 6686 which instruction set architectures provide this ioctl. 7177 x86 includes both i386 and x86_64. 6687 x86 includes both i386 and x86_64. 7178 6688 7179 Target: 6689 Target: 7180 whether this is a per-vcpu or per-vm ca 6690 whether this is a per-vcpu or per-vm capability. 7181 6691 7182 Parameters: 6692 Parameters: 7183 what parameters are accepted by the cap 6693 what parameters are accepted by the capability. 7184 6694 7185 Returns: 6695 Returns: 7186 the return value. General error number 6696 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 7187 are not detailed, but errors with speci 6697 are not detailed, but errors with specific meanings are. 7188 6698 7189 6699 7190 6.1 KVM_CAP_PPC_OSI 6700 6.1 KVM_CAP_PPC_OSI 7191 ------------------- 6701 ------------------- 7192 6702 7193 :Architectures: ppc 6703 :Architectures: ppc 7194 :Target: vcpu 6704 :Target: vcpu 7195 :Parameters: none 6705 :Parameters: none 7196 :Returns: 0 on success; -1 on error 6706 :Returns: 0 on success; -1 on error 7197 6707 7198 This capability enables interception of OSI h 6708 This capability enables interception of OSI hypercalls that otherwise would 7199 be treated as normal system calls to be injec 6709 be treated as normal system calls to be injected into the guest. OSI hypercalls 7200 were invented by Mac-on-Linux to have a stand 6710 were invented by Mac-on-Linux to have a standardized communication mechanism 7201 between the guest and the host. 6711 between the guest and the host. 7202 6712 7203 When this capability is enabled, KVM_EXIT_OSI 6713 When this capability is enabled, KVM_EXIT_OSI can occur. 7204 6714 7205 6715 7206 6.2 KVM_CAP_PPC_PAPR 6716 6.2 KVM_CAP_PPC_PAPR 7207 -------------------- 6717 -------------------- 7208 6718 7209 :Architectures: ppc 6719 :Architectures: ppc 7210 :Target: vcpu 6720 :Target: vcpu 7211 :Parameters: none 6721 :Parameters: none 7212 :Returns: 0 on success; -1 on error 6722 :Returns: 0 on success; -1 on error 7213 6723 7214 This capability enables interception of PAPR 6724 This capability enables interception of PAPR hypercalls. PAPR hypercalls are 7215 done using the hypercall instruction "sc 1". 6725 done using the hypercall instruction "sc 1". 7216 6726 7217 It also sets the guest privilege level to "su 6727 It also sets the guest privilege level to "supervisor" mode. Usually the guest 7218 runs in "hypervisor" privilege mode with a fe 6728 runs in "hypervisor" privilege mode with a few missing features. 7219 6729 7220 In addition to the above, it changes the sema 6730 In addition to the above, it changes the semantics of SDR1. In this mode, the 7221 HTAB address part of SDR1 contains an HVA ins 6731 HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the 7222 HTAB invisible to the guest. 6732 HTAB invisible to the guest. 7223 6733 7224 When this capability is enabled, KVM_EXIT_PAP 6734 When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur. 7225 6735 7226 6736 7227 6.3 KVM_CAP_SW_TLB 6737 6.3 KVM_CAP_SW_TLB 7228 ------------------ 6738 ------------------ 7229 6739 7230 :Architectures: ppc 6740 :Architectures: ppc 7231 :Target: vcpu 6741 :Target: vcpu 7232 :Parameters: args[0] is the address of a stru 6742 :Parameters: args[0] is the address of a struct kvm_config_tlb 7233 :Returns: 0 on success; -1 on error 6743 :Returns: 0 on success; -1 on error 7234 6744 7235 :: 6745 :: 7236 6746 7237 struct kvm_config_tlb { 6747 struct kvm_config_tlb { 7238 __u64 params; 6748 __u64 params; 7239 __u64 array; 6749 __u64 array; 7240 __u32 mmu_type; 6750 __u32 mmu_type; 7241 __u32 array_len; 6751 __u32 array_len; 7242 }; 6752 }; 7243 6753 7244 Configures the virtual CPU's TLB array, estab 6754 Configures the virtual CPU's TLB array, establishing a shared memory area 7245 between userspace and KVM. The "params" and 6755 between userspace and KVM. The "params" and "array" fields are userspace 7246 addresses of mmu-type-specific data structure 6756 addresses of mmu-type-specific data structures. The "array_len" field is an 7247 safety mechanism, and should be set to the si 6757 safety mechanism, and should be set to the size in bytes of the memory that 7248 userspace has reserved for the array. It mus 6758 userspace has reserved for the array. It must be at least the size dictated 7249 by "mmu_type" and "params". 6759 by "mmu_type" and "params". 7250 6760 7251 While KVM_RUN is active, the shared region is 6761 While KVM_RUN is active, the shared region is under control of KVM. Its 7252 contents are undefined, and any modification 6762 contents are undefined, and any modification by userspace results in 7253 boundedly undefined behavior. 6763 boundedly undefined behavior. 7254 6764 7255 On return from KVM_RUN, the shared region wil 6765 On return from KVM_RUN, the shared region will reflect the current state of 7256 the guest's TLB. If userspace makes any chan 6766 the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB 7257 to tell KVM which entries have been changed, 6767 to tell KVM which entries have been changed, prior to calling KVM_RUN again 7258 on this vcpu. 6768 on this vcpu. 7259 6769 7260 For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_ 6770 For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV: 7261 6771 7262 - The "params" field is of type "struct kvm_ 6772 - The "params" field is of type "struct kvm_book3e_206_tlb_params". 7263 - The "array" field points to an array of ty 6773 - The "array" field points to an array of type "struct 7264 kvm_book3e_206_tlb_entry". 6774 kvm_book3e_206_tlb_entry". 7265 - The array consists of all entries in the f 6775 - The array consists of all entries in the first TLB, followed by all 7266 entries in the second TLB. 6776 entries in the second TLB. 7267 - Within a TLB, entries are ordered first by 6777 - Within a TLB, entries are ordered first by increasing set number. Within a 7268 set, entries are ordered by way (increasin 6778 set, entries are ordered by way (increasing ESEL). 7269 - The hash for determining set number in TLB 6779 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1) 7270 where "num_sets" is the tlb_sizes[] value 6780 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value. 7271 - The tsize field of mas1 shall be set to 4K 6781 - The tsize field of mas1 shall be set to 4K on TLB0, even though the 7272 hardware ignores this value for TLB0. 6782 hardware ignores this value for TLB0. 7273 6783 7274 6.4 KVM_CAP_S390_CSS_SUPPORT 6784 6.4 KVM_CAP_S390_CSS_SUPPORT 7275 ---------------------------- 6785 ---------------------------- 7276 6786 7277 :Architectures: s390 6787 :Architectures: s390 7278 :Target: vcpu 6788 :Target: vcpu 7279 :Parameters: none 6789 :Parameters: none 7280 :Returns: 0 on success; -1 on error 6790 :Returns: 0 on success; -1 on error 7281 6791 7282 This capability enables support for handling 6792 This capability enables support for handling of channel I/O instructions. 7283 6793 7284 TEST PENDING INTERRUPTION and the interrupt p 6794 TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are 7285 handled in-kernel, while the other I/O instru 6795 handled in-kernel, while the other I/O instructions are passed to userspace. 7286 6796 7287 When this capability is enabled, KVM_EXIT_S39 6797 When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST 7288 SUBCHANNEL intercepts. 6798 SUBCHANNEL intercepts. 7289 6799 7290 Note that even though this capability is enab 6800 Note that even though this capability is enabled per-vcpu, the complete 7291 virtual machine is affected. 6801 virtual machine is affected. 7292 6802 7293 6.5 KVM_CAP_PPC_EPR 6803 6.5 KVM_CAP_PPC_EPR 7294 ------------------- 6804 ------------------- 7295 6805 7296 :Architectures: ppc 6806 :Architectures: ppc 7297 :Target: vcpu 6807 :Target: vcpu 7298 :Parameters: args[0] defines whether the prox 6808 :Parameters: args[0] defines whether the proxy facility is active 7299 :Returns: 0 on success; -1 on error 6809 :Returns: 0 on success; -1 on error 7300 6810 7301 This capability enables or disables the deliv 6811 This capability enables or disables the delivery of interrupts through the 7302 external proxy facility. 6812 external proxy facility. 7303 6813 7304 When enabled (args[0] != 0), every time the g 6814 When enabled (args[0] != 0), every time the guest gets an external interrupt 7305 delivered, it automatically exits into user s 6815 delivered, it automatically exits into user space with a KVM_EXIT_EPR exit 7306 to receive the topmost interrupt vector. 6816 to receive the topmost interrupt vector. 7307 6817 7308 When disabled (args[0] == 0), behavior is as 6818 When disabled (args[0] == 0), behavior is as if this facility is unsupported. 7309 6819 7310 When this capability is enabled, KVM_EXIT_EPR 6820 When this capability is enabled, KVM_EXIT_EPR can occur. 7311 6821 7312 6.6 KVM_CAP_IRQ_MPIC 6822 6.6 KVM_CAP_IRQ_MPIC 7313 -------------------- 6823 -------------------- 7314 6824 7315 :Architectures: ppc 6825 :Architectures: ppc 7316 :Parameters: args[0] is the MPIC device fd; 6826 :Parameters: args[0] is the MPIC device fd; 7317 args[1] is the MPIC CPU number f 6827 args[1] is the MPIC CPU number for this vcpu 7318 6828 7319 This capability connects the vcpu to an in-ke 6829 This capability connects the vcpu to an in-kernel MPIC device. 7320 6830 7321 6.7 KVM_CAP_IRQ_XICS 6831 6.7 KVM_CAP_IRQ_XICS 7322 -------------------- 6832 -------------------- 7323 6833 7324 :Architectures: ppc 6834 :Architectures: ppc 7325 :Target: vcpu 6835 :Target: vcpu 7326 :Parameters: args[0] is the XICS device fd; 6836 :Parameters: args[0] is the XICS device fd; 7327 args[1] is the XICS CPU number ( 6837 args[1] is the XICS CPU number (server ID) for this vcpu 7328 6838 7329 This capability connects the vcpu to an in-ke 6839 This capability connects the vcpu to an in-kernel XICS device. 7330 6840 7331 6.8 KVM_CAP_S390_IRQCHIP 6841 6.8 KVM_CAP_S390_IRQCHIP 7332 ------------------------ 6842 ------------------------ 7333 6843 7334 :Architectures: s390 6844 :Architectures: s390 7335 :Target: vm 6845 :Target: vm 7336 :Parameters: none 6846 :Parameters: none 7337 6847 7338 This capability enables the in-kernel irqchip 6848 This capability enables the in-kernel irqchip for s390. Please refer to 7339 "4.24 KVM_CREATE_IRQCHIP" for details. 6849 "4.24 KVM_CREATE_IRQCHIP" for details. 7340 6850 7341 6.9 KVM_CAP_MIPS_FPU 6851 6.9 KVM_CAP_MIPS_FPU 7342 -------------------- 6852 -------------------- 7343 6853 7344 :Architectures: mips 6854 :Architectures: mips 7345 :Target: vcpu 6855 :Target: vcpu 7346 :Parameters: args[0] is reserved for future u 6856 :Parameters: args[0] is reserved for future use (should be 0). 7347 6857 7348 This capability allows the use of the host Fl 6858 This capability allows the use of the host Floating Point Unit by the guest. It 7349 allows the Config1.FP bit to be set to enable 6859 allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is 7350 done the ``KVM_REG_MIPS_FPR_*`` and ``KVM_REG 6860 done the ``KVM_REG_MIPS_FPR_*`` and ``KVM_REG_MIPS_FCR_*`` registers can be 7351 accessed (depending on the current guest FPU 6861 accessed (depending on the current guest FPU register mode), and the Status.FR, 7352 Config5.FRE bits are accessible via the KVM A 6862 Config5.FRE bits are accessible via the KVM API and also from the guest, 7353 depending on them being supported by the FPU. 6863 depending on them being supported by the FPU. 7354 6864 7355 6.10 KVM_CAP_MIPS_MSA 6865 6.10 KVM_CAP_MIPS_MSA 7356 --------------------- 6866 --------------------- 7357 6867 7358 :Architectures: mips 6868 :Architectures: mips 7359 :Target: vcpu 6869 :Target: vcpu 7360 :Parameters: args[0] is reserved for future u 6870 :Parameters: args[0] is reserved for future use (should be 0). 7361 6871 7362 This capability allows the use of the MIPS SI 6872 This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest. 7363 It allows the Config3.MSAP bit to be set to e 6873 It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest. 7364 Once this is done the ``KVM_REG_MIPS_VEC_*`` 6874 Once this is done the ``KVM_REG_MIPS_VEC_*`` and ``KVM_REG_MIPS_MSA_*`` 7365 registers can be accessed, and the Config5.MS 6875 registers can be accessed, and the Config5.MSAEn bit is accessible via the 7366 KVM API and also from the guest. 6876 KVM API and also from the guest. 7367 6877 7368 6.74 KVM_CAP_SYNC_REGS 6878 6.74 KVM_CAP_SYNC_REGS 7369 ---------------------- 6879 ---------------------- 7370 6880 7371 :Architectures: s390, x86 6881 :Architectures: s390, x86 7372 :Target: s390: always enabled, x86: vcpu 6882 :Target: s390: always enabled, x86: vcpu 7373 :Parameters: none 6883 :Parameters: none 7374 :Returns: x86: KVM_CHECK_EXTENSION returns a 6884 :Returns: x86: KVM_CHECK_EXTENSION returns a bit-array indicating which register 7375 sets are supported 6885 sets are supported 7376 (bitfields defined in arch/x86/incl 6886 (bitfields defined in arch/x86/include/uapi/asm/kvm.h). 7377 6887 7378 As described above in the kvm_sync_regs struc 6888 As described above in the kvm_sync_regs struct info in section 5 (kvm_run): 7379 KVM_CAP_SYNC_REGS "allow[s] userspace to acce 6889 KVM_CAP_SYNC_REGS "allow[s] userspace to access certain guest registers 7380 without having to call SET/GET_*REGS". This r 6890 without having to call SET/GET_*REGS". This reduces overhead by eliminating 7381 repeated ioctl calls for setting and/or getti 6891 repeated ioctl calls for setting and/or getting register values. This is 7382 particularly important when userspace is maki 6892 particularly important when userspace is making synchronous guest state 7383 modifications, e.g. when emulating and/or int 6893 modifications, e.g. when emulating and/or intercepting instructions in 7384 userspace. 6894 userspace. 7385 6895 7386 For s390 specifics, please refer to the sourc 6896 For s390 specifics, please refer to the source code. 7387 6897 7388 For x86: 6898 For x86: 7389 6899 7390 - the register sets to be copied out to kvm_r 6900 - the register sets to be copied out to kvm_run are selectable 7391 by userspace (rather that all sets being co 6901 by userspace (rather that all sets being copied out for every exit). 7392 - vcpu_events are available in addition to re 6902 - vcpu_events are available in addition to regs and sregs. 7393 6903 7394 For x86, the 'kvm_valid_regs' field of struct 6904 For x86, the 'kvm_valid_regs' field of struct kvm_run is overloaded to 7395 function as an input bit-array field set by u 6905 function as an input bit-array field set by userspace to indicate the 7396 specific register sets to be copied out on th 6906 specific register sets to be copied out on the next exit. 7397 6907 7398 To indicate when userspace has modified value 6908 To indicate when userspace has modified values that should be copied into 7399 the vCPU, the all architecture bitarray field 6909 the vCPU, the all architecture bitarray field, 'kvm_dirty_regs' must be set. 7400 This is done using the same bitflags as for t 6910 This is done using the same bitflags as for the 'kvm_valid_regs' field. 7401 If the dirty bit is not set, then the registe 6911 If the dirty bit is not set, then the register set values will not be copied 7402 into the vCPU even if they've been modified. 6912 into the vCPU even if they've been modified. 7403 6913 7404 Unused bitfields in the bitarrays must be set 6914 Unused bitfields in the bitarrays must be set to zero. 7405 6915 7406 :: 6916 :: 7407 6917 7408 struct kvm_sync_regs { 6918 struct kvm_sync_regs { 7409 struct kvm_regs regs; 6919 struct kvm_regs regs; 7410 struct kvm_sregs sregs; 6920 struct kvm_sregs sregs; 7411 struct kvm_vcpu_events events; 6921 struct kvm_vcpu_events events; 7412 }; 6922 }; 7413 6923 7414 6.75 KVM_CAP_PPC_IRQ_XIVE 6924 6.75 KVM_CAP_PPC_IRQ_XIVE 7415 ------------------------- 6925 ------------------------- 7416 6926 7417 :Architectures: ppc 6927 :Architectures: ppc 7418 :Target: vcpu 6928 :Target: vcpu 7419 :Parameters: args[0] is the XIVE device fd; 6929 :Parameters: args[0] is the XIVE device fd; 7420 args[1] is the XIVE CPU number ( 6930 args[1] is the XIVE CPU number (server ID) for this vcpu 7421 6931 7422 This capability connects the vcpu to an in-ke 6932 This capability connects the vcpu to an in-kernel XIVE device. 7423 6933 7424 7. Capabilities that can be enabled on VMs 6934 7. Capabilities that can be enabled on VMs 7425 ========================================== 6935 ========================================== 7426 6936 7427 There are certain capabilities that change th 6937 There are certain capabilities that change the behavior of the virtual 7428 machine when enabled. To enable them, please 6938 machine when enabled. To enable them, please see section 4.37. Below 7429 you can find a list of capabilities and what 6939 you can find a list of capabilities and what their effect on the VM 7430 is when enabling them. 6940 is when enabling them. 7431 6941 7432 The following information is provided along w 6942 The following information is provided along with the description: 7433 6943 7434 Architectures: 6944 Architectures: 7435 which instruction set architectures pro 6945 which instruction set architectures provide this ioctl. 7436 x86 includes both i386 and x86_64. 6946 x86 includes both i386 and x86_64. 7437 6947 7438 Parameters: 6948 Parameters: 7439 what parameters are accepted by the cap 6949 what parameters are accepted by the capability. 7440 6950 7441 Returns: 6951 Returns: 7442 the return value. General error number 6952 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 7443 are not detailed, but errors with speci 6953 are not detailed, but errors with specific meanings are. 7444 6954 7445 6955 7446 7.1 KVM_CAP_PPC_ENABLE_HCALL 6956 7.1 KVM_CAP_PPC_ENABLE_HCALL 7447 ---------------------------- 6957 ---------------------------- 7448 6958 7449 :Architectures: ppc 6959 :Architectures: ppc 7450 :Parameters: args[0] is the sPAPR hcall numbe 6960 :Parameters: args[0] is the sPAPR hcall number; 7451 args[1] is 0 to disable, 1 to en 6961 args[1] is 0 to disable, 1 to enable in-kernel handling 7452 6962 7453 This capability controls whether individual s 6963 This capability controls whether individual sPAPR hypercalls (hcalls) 7454 get handled by the kernel or not. Enabling o 6964 get handled by the kernel or not. Enabling or disabling in-kernel 7455 handling of an hcall is effective across the 6965 handling of an hcall is effective across the VM. On creation, an 7456 initial set of hcalls are enabled for in-kern 6966 initial set of hcalls are enabled for in-kernel handling, which 7457 consists of those hcalls for which in-kernel 6967 consists of those hcalls for which in-kernel handlers were implemented 7458 before this capability was implemented. If d 6968 before this capability was implemented. If disabled, the kernel will 7459 not to attempt to handle the hcall, but will 6969 not to attempt to handle the hcall, but will always exit to userspace 7460 to handle it. Note that it may not make sens 6970 to handle it. Note that it may not make sense to enable some and 7461 disable others of a group of related hcalls, 6971 disable others of a group of related hcalls, but KVM does not prevent 7462 userspace from doing that. 6972 userspace from doing that. 7463 6973 7464 If the hcall number specified is not one that 6974 If the hcall number specified is not one that has an in-kernel 7465 implementation, the KVM_ENABLE_CAP ioctl will 6975 implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL 7466 error. 6976 error. 7467 6977 7468 7.2 KVM_CAP_S390_USER_SIGP 6978 7.2 KVM_CAP_S390_USER_SIGP 7469 -------------------------- 6979 -------------------------- 7470 6980 7471 :Architectures: s390 6981 :Architectures: s390 7472 :Parameters: none 6982 :Parameters: none 7473 6983 7474 This capability controls which SIGP orders wi 6984 This capability controls which SIGP orders will be handled completely in user 7475 space. With this capability enabled, all fast 6985 space. With this capability enabled, all fast orders will be handled completely 7476 in the kernel: 6986 in the kernel: 7477 6987 7478 - SENSE 6988 - SENSE 7479 - SENSE RUNNING 6989 - SENSE RUNNING 7480 - EXTERNAL CALL 6990 - EXTERNAL CALL 7481 - EMERGENCY SIGNAL 6991 - EMERGENCY SIGNAL 7482 - CONDITIONAL EMERGENCY SIGNAL 6992 - CONDITIONAL EMERGENCY SIGNAL 7483 6993 7484 All other orders will be handled completely i 6994 All other orders will be handled completely in user space. 7485 6995 7486 Only privileged operation exceptions will be 6996 Only privileged operation exceptions will be checked for in the kernel (or even 7487 in the hardware prior to interception). If th 6997 in the hardware prior to interception). If this capability is not enabled, the 7488 old way of handling SIGP orders is used (part 6998 old way of handling SIGP orders is used (partially in kernel and user space). 7489 6999 7490 7.3 KVM_CAP_S390_VECTOR_REGISTERS 7000 7.3 KVM_CAP_S390_VECTOR_REGISTERS 7491 --------------------------------- 7001 --------------------------------- 7492 7002 7493 :Architectures: s390 7003 :Architectures: s390 7494 :Parameters: none 7004 :Parameters: none 7495 :Returns: 0 on success, negative value on err 7005 :Returns: 0 on success, negative value on error 7496 7006 7497 Allows use of the vector registers introduced 7007 Allows use of the vector registers introduced with z13 processor, and 7498 provides for the synchronization between host 7008 provides for the synchronization between host and user space. Will 7499 return -EINVAL if the machine does not suppor 7009 return -EINVAL if the machine does not support vectors. 7500 7010 7501 7.4 KVM_CAP_S390_USER_STSI 7011 7.4 KVM_CAP_S390_USER_STSI 7502 -------------------------- 7012 -------------------------- 7503 7013 7504 :Architectures: s390 7014 :Architectures: s390 7505 :Parameters: none 7015 :Parameters: none 7506 7016 7507 This capability allows post-handlers for the 7017 This capability allows post-handlers for the STSI instruction. After 7508 initial handling in the kernel, KVM exits to 7018 initial handling in the kernel, KVM exits to user space with 7509 KVM_EXIT_S390_STSI to allow user space to ins 7019 KVM_EXIT_S390_STSI to allow user space to insert further data. 7510 7020 7511 Before exiting to userspace, kvm handlers sho 7021 Before exiting to userspace, kvm handlers should fill in s390_stsi field of 7512 vcpu->run:: 7022 vcpu->run:: 7513 7023 7514 struct { 7024 struct { 7515 __u64 addr; 7025 __u64 addr; 7516 __u8 ar; 7026 __u8 ar; 7517 __u8 reserved; 7027 __u8 reserved; 7518 __u8 fc; 7028 __u8 fc; 7519 __u8 sel1; 7029 __u8 sel1; 7520 __u16 sel2; 7030 __u16 sel2; 7521 } s390_stsi; 7031 } s390_stsi; 7522 7032 7523 @addr - guest address of STSI SYSIB 7033 @addr - guest address of STSI SYSIB 7524 @fc - function code 7034 @fc - function code 7525 @sel1 - selector 1 7035 @sel1 - selector 1 7526 @sel2 - selector 2 7036 @sel2 - selector 2 7527 @ar - access register number 7037 @ar - access register number 7528 7038 7529 KVM handlers should exit to userspace with rc 7039 KVM handlers should exit to userspace with rc = -EREMOTE. 7530 7040 7531 7.5 KVM_CAP_SPLIT_IRQCHIP 7041 7.5 KVM_CAP_SPLIT_IRQCHIP 7532 ------------------------- 7042 ------------------------- 7533 7043 7534 :Architectures: x86 7044 :Architectures: x86 7535 :Parameters: args[0] - number of routes reser 7045 :Parameters: args[0] - number of routes reserved for userspace IOAPICs 7536 :Returns: 0 on success, -1 on error 7046 :Returns: 0 on success, -1 on error 7537 7047 7538 Create a local apic for each processor in the 7048 Create a local apic for each processor in the kernel. This can be used 7539 instead of KVM_CREATE_IRQCHIP if the userspac 7049 instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the 7540 IOAPIC and PIC (and also the PIT, even though 7050 IOAPIC and PIC (and also the PIT, even though this has to be enabled 7541 separately). 7051 separately). 7542 7052 7543 This capability also enables in kernel routin 7053 This capability also enables in kernel routing of interrupt requests; 7544 when KVM_CAP_SPLIT_IRQCHIP only routes of KVM 7054 when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are 7545 used in the IRQ routing table. The first arg 7055 used in the IRQ routing table. The first args[0] MSI routes are reserved 7546 for the IOAPIC pins. Whenever the LAPIC rece 7056 for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes, 7547 a KVM_EXIT_IOAPIC_EOI vmexit will be reported 7057 a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace. 7548 7058 7549 Fails if VCPU has already been created, or if 7059 Fails if VCPU has already been created, or if the irqchip is already in the 7550 kernel (i.e. KVM_CREATE_IRQCHIP has already b 7060 kernel (i.e. KVM_CREATE_IRQCHIP has already been called). 7551 7061 7552 7.6 KVM_CAP_S390_RI 7062 7.6 KVM_CAP_S390_RI 7553 ------------------- 7063 ------------------- 7554 7064 7555 :Architectures: s390 7065 :Architectures: s390 7556 :Parameters: none 7066 :Parameters: none 7557 7067 7558 Allows use of runtime-instrumentation introdu 7068 Allows use of runtime-instrumentation introduced with zEC12 processor. 7559 Will return -EINVAL if the machine does not s 7069 Will return -EINVAL if the machine does not support runtime-instrumentation. 7560 Will return -EBUSY if a VCPU has already been 7070 Will return -EBUSY if a VCPU has already been created. 7561 7071 7562 7.7 KVM_CAP_X2APIC_API 7072 7.7 KVM_CAP_X2APIC_API 7563 ---------------------- 7073 ---------------------- 7564 7074 7565 :Architectures: x86 7075 :Architectures: x86 7566 :Parameters: args[0] - features that should b 7076 :Parameters: args[0] - features that should be enabled 7567 :Returns: 0 on success, -EINVAL when args[0] 7077 :Returns: 0 on success, -EINVAL when args[0] contains invalid features 7568 7078 7569 Valid feature flags in args[0] are:: 7079 Valid feature flags in args[0] are:: 7570 7080 7571 #define KVM_X2APIC_API_USE_32BIT_IDS 7081 #define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0) 7572 #define KVM_X2APIC_API_DISABLE_BROADCAST_QU 7082 #define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1) 7573 7083 7574 Enabling KVM_X2APIC_API_USE_32BIT_IDS changes 7084 Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of 7575 KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_ 7085 KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC, 7576 allowing the use of 32-bit APIC IDs. See KVM 7086 allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their 7577 respective sections. 7087 respective sections. 7578 7088 7579 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must b 7089 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work 7580 in logical mode or with more than 255 VCPUs. 7090 in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff 7581 as a broadcast even in x2APIC mode in order t 7091 as a broadcast even in x2APIC mode in order to support physical x2APIC 7582 without interrupt remapping. This is undesir 7092 without interrupt remapping. This is undesirable in logical mode, 7583 where 0xff represents CPUs 0-7 in cluster 0. 7093 where 0xff represents CPUs 0-7 in cluster 0. 7584 7094 7585 7.8 KVM_CAP_S390_USER_INSTR0 7095 7.8 KVM_CAP_S390_USER_INSTR0 7586 ---------------------------- 7096 ---------------------------- 7587 7097 7588 :Architectures: s390 7098 :Architectures: s390 7589 :Parameters: none 7099 :Parameters: none 7590 7100 7591 With this capability enabled, all illegal ins 7101 With this capability enabled, all illegal instructions 0x0000 (2 bytes) will 7592 be intercepted and forwarded to user space. U 7102 be intercepted and forwarded to user space. User space can use this 7593 mechanism e.g. to realize 2-byte software bre 7103 mechanism e.g. to realize 2-byte software breakpoints. The kernel will 7594 not inject an operating exception for these i 7104 not inject an operating exception for these instructions, user space has 7595 to take care of that. 7105 to take care of that. 7596 7106 7597 This capability can be enabled dynamically ev 7107 This capability can be enabled dynamically even if VCPUs were already 7598 created and are running. 7108 created and are running. 7599 7109 7600 7.9 KVM_CAP_S390_GS 7110 7.9 KVM_CAP_S390_GS 7601 ------------------- 7111 ------------------- 7602 7112 7603 :Architectures: s390 7113 :Architectures: s390 7604 :Parameters: none 7114 :Parameters: none 7605 :Returns: 0 on success; -EINVAL if the machin 7115 :Returns: 0 on success; -EINVAL if the machine does not support 7606 guarded storage; -EBUSY if a VCPU h 7116 guarded storage; -EBUSY if a VCPU has already been created. 7607 7117 7608 Allows use of guarded storage for the KVM gue 7118 Allows use of guarded storage for the KVM guest. 7609 7119 7610 7.10 KVM_CAP_S390_AIS 7120 7.10 KVM_CAP_S390_AIS 7611 --------------------- 7121 --------------------- 7612 7122 7613 :Architectures: s390 7123 :Architectures: s390 7614 :Parameters: none 7124 :Parameters: none 7615 7125 7616 Allow use of adapter-interruption suppression 7126 Allow use of adapter-interruption suppression. 7617 :Returns: 0 on success; -EBUSY if a VCPU has 7127 :Returns: 0 on success; -EBUSY if a VCPU has already been created. 7618 7128 7619 7.11 KVM_CAP_PPC_SMT 7129 7.11 KVM_CAP_PPC_SMT 7620 -------------------- 7130 -------------------- 7621 7131 7622 :Architectures: ppc 7132 :Architectures: ppc 7623 :Parameters: vsmt_mode, flags 7133 :Parameters: vsmt_mode, flags 7624 7134 7625 Enabling this capability on a VM provides use 7135 Enabling this capability on a VM provides userspace with a way to set 7626 the desired virtual SMT mode (i.e. the number 7136 the desired virtual SMT mode (i.e. the number of virtual CPUs per 7627 virtual core). The virtual SMT mode, vsmt_mo 7137 virtual core). The virtual SMT mode, vsmt_mode, must be a power of 2 7628 between 1 and 8. On POWER8, vsmt_mode must a 7138 between 1 and 8. On POWER8, vsmt_mode must also be no greater than 7629 the number of threads per subcore for the hos 7139 the number of threads per subcore for the host. Currently flags must 7630 be 0. A successful call to enable this capab 7140 be 0. A successful call to enable this capability will result in 7631 vsmt_mode being returned when the KVM_CAP_PPC 7141 vsmt_mode being returned when the KVM_CAP_PPC_SMT capability is 7632 subsequently queried for the VM. This capabi 7142 subsequently queried for the VM. This capability is only supported by 7633 HV KVM, and can only be set before any VCPUs 7143 HV KVM, and can only be set before any VCPUs have been created. 7634 The KVM_CAP_PPC_SMT_POSSIBLE capability indic 7144 The KVM_CAP_PPC_SMT_POSSIBLE capability indicates which virtual SMT 7635 modes are available. 7145 modes are available. 7636 7146 7637 7.12 KVM_CAP_PPC_FWNMI 7147 7.12 KVM_CAP_PPC_FWNMI 7638 ---------------------- 7148 ---------------------- 7639 7149 7640 :Architectures: ppc 7150 :Architectures: ppc 7641 :Parameters: none 7151 :Parameters: none 7642 7152 7643 With this capability a machine check exceptio 7153 With this capability a machine check exception in the guest address 7644 space will cause KVM to exit the guest with N 7154 space will cause KVM to exit the guest with NMI exit reason. This 7645 enables QEMU to build error log and branch to 7155 enables QEMU to build error log and branch to guest kernel registered 7646 machine check handling routine. Without this 7156 machine check handling routine. Without this capability KVM will 7647 branch to guests' 0x200 interrupt vector. 7157 branch to guests' 0x200 interrupt vector. 7648 7158 7649 7.13 KVM_CAP_X86_DISABLE_EXITS 7159 7.13 KVM_CAP_X86_DISABLE_EXITS 7650 ------------------------------ 7160 ------------------------------ 7651 7161 7652 :Architectures: x86 7162 :Architectures: x86 7653 :Parameters: args[0] defines which exits are 7163 :Parameters: args[0] defines which exits are disabled 7654 :Returns: 0 on success, -EINVAL when args[0] 7164 :Returns: 0 on success, -EINVAL when args[0] contains invalid exits 7655 7165 7656 Valid bits in args[0] are:: 7166 Valid bits in args[0] are:: 7657 7167 7658 #define KVM_X86_DISABLE_EXITS_MWAIT 7168 #define KVM_X86_DISABLE_EXITS_MWAIT (1 << 0) 7659 #define KVM_X86_DISABLE_EXITS_HLT 7169 #define KVM_X86_DISABLE_EXITS_HLT (1 << 1) 7660 #define KVM_X86_DISABLE_EXITS_PAUSE 7170 #define KVM_X86_DISABLE_EXITS_PAUSE (1 << 2) 7661 #define KVM_X86_DISABLE_EXITS_CSTATE 7171 #define KVM_X86_DISABLE_EXITS_CSTATE (1 << 3) 7662 7172 7663 Enabling this capability on a VM provides use 7173 Enabling this capability on a VM provides userspace with a way to no 7664 longer intercept some instructions for improv 7174 longer intercept some instructions for improved latency in some 7665 workloads, and is suggested when vCPUs are as 7175 workloads, and is suggested when vCPUs are associated to dedicated 7666 physical CPUs. More bits can be added in the 7176 physical CPUs. More bits can be added in the future; userspace can 7667 just pass the KVM_CHECK_EXTENSION result to K 7177 just pass the KVM_CHECK_EXTENSION result to KVM_ENABLE_CAP to disable 7668 all such vmexits. 7178 all such vmexits. 7669 7179 7670 Do not enable KVM_FEATURE_PV_UNHALT if you di 7180 Do not enable KVM_FEATURE_PV_UNHALT if you disable HLT exits. 7671 7181 7672 7.14 KVM_CAP_S390_HPAGE_1M 7182 7.14 KVM_CAP_S390_HPAGE_1M 7673 -------------------------- 7183 -------------------------- 7674 7184 7675 :Architectures: s390 7185 :Architectures: s390 7676 :Parameters: none 7186 :Parameters: none 7677 :Returns: 0 on success, -EINVAL if hpage modu 7187 :Returns: 0 on success, -EINVAL if hpage module parameter was not set 7678 or cmma is enabled, or the VM has t 7188 or cmma is enabled, or the VM has the KVM_VM_S390_UCONTROL 7679 flag set 7189 flag set 7680 7190 7681 With this capability the KVM support for memo 7191 With this capability the KVM support for memory backing with 1m pages 7682 through hugetlbfs can be enabled for a VM. Af 7192 through hugetlbfs can be enabled for a VM. After the capability is 7683 enabled, cmma can't be enabled anymore and pf 7193 enabled, cmma can't be enabled anymore and pfmfi and the storage key 7684 interpretation are disabled. If cmma has alre 7194 interpretation are disabled. If cmma has already been enabled or the 7685 hpage module parameter is not set to 1, -EINV 7195 hpage module parameter is not set to 1, -EINVAL is returned. 7686 7196 7687 While it is generally possible to create a hu 7197 While it is generally possible to create a huge page backed VM without 7688 this capability, the VM will not be able to r 7198 this capability, the VM will not be able to run. 7689 7199 7690 7.15 KVM_CAP_MSR_PLATFORM_INFO 7200 7.15 KVM_CAP_MSR_PLATFORM_INFO 7691 ------------------------------ 7201 ------------------------------ 7692 7202 7693 :Architectures: x86 7203 :Architectures: x86 7694 :Parameters: args[0] whether feature should b 7204 :Parameters: args[0] whether feature should be enabled or not 7695 7205 7696 With this capability, a guest may read the MS 7206 With this capability, a guest may read the MSR_PLATFORM_INFO MSR. Otherwise, 7697 a #GP would be raised when the guest tries to 7207 a #GP would be raised when the guest tries to access. Currently, this 7698 capability does not enable write permissions 7208 capability does not enable write permissions of this MSR for the guest. 7699 7209 7700 7.16 KVM_CAP_PPC_NESTED_HV 7210 7.16 KVM_CAP_PPC_NESTED_HV 7701 -------------------------- 7211 -------------------------- 7702 7212 7703 :Architectures: ppc 7213 :Architectures: ppc 7704 :Parameters: none 7214 :Parameters: none 7705 :Returns: 0 on success, -EINVAL when the impl 7215 :Returns: 0 on success, -EINVAL when the implementation doesn't support 7706 nested-HV virtualization. 7216 nested-HV virtualization. 7707 7217 7708 HV-KVM on POWER9 and later systems allows for 7218 HV-KVM on POWER9 and later systems allows for "nested-HV" 7709 virtualization, which provides a way for a gu 7219 virtualization, which provides a way for a guest VM to run guests that 7710 can run using the CPU's supervisor mode (priv 7220 can run using the CPU's supervisor mode (privileged non-hypervisor 7711 state). Enabling this capability on a VM dep 7221 state). Enabling this capability on a VM depends on the CPU having 7712 the necessary functionality and on the facili 7222 the necessary functionality and on the facility being enabled with a 7713 kvm-hv module parameter. 7223 kvm-hv module parameter. 7714 7224 7715 7.17 KVM_CAP_EXCEPTION_PAYLOAD 7225 7.17 KVM_CAP_EXCEPTION_PAYLOAD 7716 ------------------------------ 7226 ------------------------------ 7717 7227 7718 :Architectures: x86 7228 :Architectures: x86 7719 :Parameters: args[0] whether feature should b 7229 :Parameters: args[0] whether feature should be enabled or not 7720 7230 7721 With this capability enabled, CR2 will not be 7231 With this capability enabled, CR2 will not be modified prior to the 7722 emulated VM-exit when L1 intercepts a #PF exc 7232 emulated VM-exit when L1 intercepts a #PF exception that occurs in 7723 L2. Similarly, for kvm-intel only, DR6 will n 7233 L2. Similarly, for kvm-intel only, DR6 will not be modified prior to 7724 the emulated VM-exit when L1 intercepts a #DB 7234 the emulated VM-exit when L1 intercepts a #DB exception that occurs in 7725 L2. As a result, when KVM_GET_VCPU_EVENTS rep 7235 L2. As a result, when KVM_GET_VCPU_EVENTS reports a pending #PF (or 7726 #DB) exception for L2, exception.has_payload 7236 #DB) exception for L2, exception.has_payload will be set and the 7727 faulting address (or the new DR6 bits*) will 7237 faulting address (or the new DR6 bits*) will be reported in the 7728 exception_payload field. Similarly, when user 7238 exception_payload field. Similarly, when userspace injects a #PF (or 7729 #DB) into L2 using KVM_SET_VCPU_EVENTS, it is 7239 #DB) into L2 using KVM_SET_VCPU_EVENTS, it is expected to set 7730 exception.has_payload and to put the faulting 7240 exception.has_payload and to put the faulting address - or the new DR6 7731 bits\ [#]_ - in the exception_payload field. 7241 bits\ [#]_ - in the exception_payload field. 7732 7242 7733 This capability also enables exception.pendin 7243 This capability also enables exception.pending in struct 7734 kvm_vcpu_events, which allows userspace to di 7244 kvm_vcpu_events, which allows userspace to distinguish between pending 7735 and injected exceptions. 7245 and injected exceptions. 7736 7246 7737 7247 7738 .. [#] For the new DR6 bits, note that bit 16 7248 .. [#] For the new DR6 bits, note that bit 16 is set iff the #DB exception 7739 will clear DR6.RTM. 7249 will clear DR6.RTM. 7740 7250 7741 7.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 7251 7.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 7742 -------------------------------------- << 7743 7252 7744 :Architectures: x86, arm64, mips 7253 :Architectures: x86, arm64, mips 7745 :Parameters: args[0] whether feature should b 7254 :Parameters: args[0] whether feature should be enabled or not 7746 7255 7747 Valid flags are:: 7256 Valid flags are:: 7748 7257 7749 #define KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 7258 #define KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (1 << 0) 7750 #define KVM_DIRTY_LOG_INITIALLY_SET 7259 #define KVM_DIRTY_LOG_INITIALLY_SET (1 << 1) 7751 7260 7752 With KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE is s 7261 With KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE is set, KVM_GET_DIRTY_LOG will not 7753 automatically clear and write-protect all pag 7262 automatically clear and write-protect all pages that are returned as dirty. 7754 Rather, userspace will have to do this operat 7263 Rather, userspace will have to do this operation separately using 7755 KVM_CLEAR_DIRTY_LOG. 7264 KVM_CLEAR_DIRTY_LOG. 7756 7265 7757 At the cost of a slightly more complicated op 7266 At the cost of a slightly more complicated operation, this provides better 7758 scalability and responsiveness for two reason 7267 scalability and responsiveness for two reasons. First, 7759 KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64 7268 KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64-page granularity rather 7760 than requiring to sync a full memslot; this e 7269 than requiring to sync a full memslot; this ensures that KVM does not 7761 take spinlocks for an extended period of time 7270 take spinlocks for an extended period of time. Second, in some cases a 7762 large amount of time can pass between a call 7271 large amount of time can pass between a call to KVM_GET_DIRTY_LOG and 7763 userspace actually using the data in the page 7272 userspace actually using the data in the page. Pages can be modified 7764 during this time, which is inefficient for bo 7273 during this time, which is inefficient for both the guest and userspace: 7765 the guest will incur a higher penalty due to 7274 the guest will incur a higher penalty due to write protection faults, 7766 while userspace can see false reports of dirt 7275 while userspace can see false reports of dirty pages. Manual reprotection 7767 helps reducing this time, improving guest per 7276 helps reducing this time, improving guest performance and reducing the 7768 number of dirty log false positives. 7277 number of dirty log false positives. 7769 7278 7770 With KVM_DIRTY_LOG_INITIALLY_SET set, all the 7279 With KVM_DIRTY_LOG_INITIALLY_SET set, all the bits of the dirty bitmap 7771 will be initialized to 1 when created. This 7280 will be initialized to 1 when created. This also improves performance because 7772 dirty logging can be enabled gradually in sma 7281 dirty logging can be enabled gradually in small chunks on the first call 7773 to KVM_CLEAR_DIRTY_LOG. KVM_DIRTY_LOG_INITIA 7282 to KVM_CLEAR_DIRTY_LOG. KVM_DIRTY_LOG_INITIALLY_SET depends on 7774 KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (it is al 7283 KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (it is also only available on 7775 x86 and arm64 for now). 7284 x86 and arm64 for now). 7776 7285 7777 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previou 7286 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previously available under the name 7778 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the imp 7287 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the implementation had bugs that make 7779 it hard or impossible to use it correctly. T 7288 it hard or impossible to use it correctly. The availability of 7780 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 signals tha 7289 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 signals that those bugs are fixed. 7781 Userspace should not try to use KVM_CAP_MANUA 7290 Userspace should not try to use KVM_CAP_MANUAL_DIRTY_LOG_PROTECT. 7782 7291 7783 7.19 KVM_CAP_PPC_SECURE_GUEST 7292 7.19 KVM_CAP_PPC_SECURE_GUEST 7784 ------------------------------ 7293 ------------------------------ 7785 7294 7786 :Architectures: ppc 7295 :Architectures: ppc 7787 7296 7788 This capability indicates that KVM is running 7297 This capability indicates that KVM is running on a host that has 7789 ultravisor firmware and thus can support a se 7298 ultravisor firmware and thus can support a secure guest. On such a 7790 system, a guest can ask the ultravisor to mak 7299 system, a guest can ask the ultravisor to make it a secure guest, 7791 one whose memory is inaccessible to the host 7300 one whose memory is inaccessible to the host except for pages which 7792 are explicitly requested to be shared with th 7301 are explicitly requested to be shared with the host. The ultravisor 7793 notifies KVM when a guest requests to become 7302 notifies KVM when a guest requests to become a secure guest, and KVM 7794 has the opportunity to veto the transition. 7303 has the opportunity to veto the transition. 7795 7304 7796 If present, this capability can be enabled fo 7305 If present, this capability can be enabled for a VM, meaning that KVM 7797 will allow the transition to secure guest mod 7306 will allow the transition to secure guest mode. Otherwise KVM will 7798 veto the transition. 7307 veto the transition. 7799 7308 7800 7.20 KVM_CAP_HALT_POLL 7309 7.20 KVM_CAP_HALT_POLL 7801 ---------------------- 7310 ---------------------- 7802 7311 7803 :Architectures: all 7312 :Architectures: all 7804 :Target: VM 7313 :Target: VM 7805 :Parameters: args[0] is the maximum poll time 7314 :Parameters: args[0] is the maximum poll time in nanoseconds 7806 :Returns: 0 on success; -1 on error 7315 :Returns: 0 on success; -1 on error 7807 7316 7808 KVM_CAP_HALT_POLL overrides the kvm.halt_poll !! 7317 This capability overrides the kvm module parameter halt_poll_ns for the 7809 maximum halt-polling time for all vCPUs in th !! 7318 target VM. 7810 be invoked at any time and any number of time << 7811 maximum halt-polling time. << 7812 7319 7813 See Documentation/virt/kvm/halt-polling.rst f !! 7320 VCPU polling allows a VCPU to poll for wakeup events instead of immediately 7814 polling. !! 7321 scheduling during guest halts. The maximum time a VCPU can spend polling is >> 7322 controlled by the kvm module parameter halt_poll_ns. This capability allows >> 7323 the maximum halt time to specified on a per-VM basis, effectively overriding >> 7324 the module parameter for the target VM. 7815 7325 7816 7.21 KVM_CAP_X86_USER_SPACE_MSR 7326 7.21 KVM_CAP_X86_USER_SPACE_MSR 7817 ------------------------------- 7327 ------------------------------- 7818 7328 7819 :Architectures: x86 7329 :Architectures: x86 7820 :Target: VM 7330 :Target: VM 7821 :Parameters: args[0] contains the mask of KVM 7331 :Parameters: args[0] contains the mask of KVM_MSR_EXIT_REASON_* events to report 7822 :Returns: 0 on success; -1 on error 7332 :Returns: 0 on success; -1 on error 7823 7333 7824 This capability allows userspace to intercept !! 7334 This capability enables trapping of #GP invoking RDMSR and WRMSR instructions 7825 access to an MSR is denied. By default, KVM !! 7335 into user space. 7826 7336 7827 When a guest requests to read or write an MSR 7337 When a guest requests to read or write an MSR, KVM may not implement all MSRs 7828 that are relevant to a respective system. It 7338 that are relevant to a respective system. It also does not differentiate by 7829 CPU type. 7339 CPU type. 7830 7340 7831 To allow more fine grained control over MSR h !! 7341 To allow more fine grained control over MSR handling, user space may enable 7832 this capability. With it enabled, MSR accesse 7342 this capability. With it enabled, MSR accesses that match the mask specified in 7833 args[0] and would trigger a #GP inside the gu !! 7343 args[0] and trigger a #GP event inside the guest by KVM will instead trigger 7834 KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exi !! 7344 KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exit notifications which user space 7835 can then implement model specific MSR handlin !! 7345 can then handle to implement model specific MSR handling and/or user notifications 7836 to inform a user that an MSR was not emulated !! 7346 to inform a user that an MSR was not handled. 7837 << 7838 The valid mask flags are: << 7839 << 7840 ============================ ================ << 7841 KVM_MSR_EXIT_REASON_UNKNOWN intercept access << 7842 KVM_MSR_EXIT_REASON_INVAL intercept access << 7843 invalid accordin << 7844 KVM_MSR_EXIT_REASON_FILTER intercept access << 7845 via KVM_X86_SET_ << 7846 ============================ ================ << 7847 7347 7848 7.22 KVM_CAP_X86_BUS_LOCK_EXIT 7348 7.22 KVM_CAP_X86_BUS_LOCK_EXIT 7849 ------------------------------- 7349 ------------------------------- 7850 7350 7851 :Architectures: x86 7351 :Architectures: x86 7852 :Target: VM 7352 :Target: VM 7853 :Parameters: args[0] defines the policy used 7353 :Parameters: args[0] defines the policy used when bus locks detected in guest 7854 :Returns: 0 on success, -EINVAL when args[0] 7354 :Returns: 0 on success, -EINVAL when args[0] contains invalid bits 7855 7355 7856 Valid bits in args[0] are:: 7356 Valid bits in args[0] are:: 7857 7357 7858 #define KVM_BUS_LOCK_DETECTION_OFF (1 7358 #define KVM_BUS_LOCK_DETECTION_OFF (1 << 0) 7859 #define KVM_BUS_LOCK_DETECTION_EXIT (1 7359 #define KVM_BUS_LOCK_DETECTION_EXIT (1 << 1) 7860 7360 7861 Enabling this capability on a VM provides use !! 7361 Enabling this capability on a VM provides userspace with a way to select 7862 policy to handle the bus locks detected in gu !! 7362 a policy to handle the bus locks detected in guest. Userspace can obtain 7863 supported modes from the result of KVM_CHECK_ !! 7363 the supported modes from the result of KVM_CHECK_EXTENSION and define it 7864 the KVM_ENABLE_CAP. The supported modes are m !! 7364 through the KVM_ENABLE_CAP. 7865 !! 7365 7866 This capability allows userspace to force VM !! 7366 KVM_BUS_LOCK_DETECTION_OFF and KVM_BUS_LOCK_DETECTION_EXIT are supported 7867 guest, irrespective whether or not the host h !! 7367 currently and mutually exclusive with each other. More bits can be added in 7868 (which triggers an #AC exception that KVM int !! 7368 the future. 7869 intended to mitigate attacks where a maliciou !! 7369 7870 locks to degrade the performance of the whole !! 7370 With KVM_BUS_LOCK_DETECTION_OFF set, bus locks in guest will not cause vm exits 7871 !! 7371 so that no additional actions are needed. This is the default mode. 7872 If KVM_BUS_LOCK_DETECTION_OFF is set, KVM doe !! 7372 7873 exit, although the host kernel's split-lock # !! 7373 With KVM_BUS_LOCK_DETECTION_EXIT set, vm exits happen when bus lock detected 7874 enabled. !! 7374 in VM. KVM just exits to userspace when handling them. Userspace can enforce 7875 !! 7375 its own throttling or other policy based mitigations. 7876 If KVM_BUS_LOCK_DETECTION_EXIT is set, KVM en !! 7376 7877 bus locks in the guest trigger a VM exit, and !! 7377 This capability is aimed to address the thread that VM can exploit bus locks to 7878 such VM exits, e.g. to allow userspace to thr !! 7378 degree the performance of the whole system. Once the userspace enable this 7879 apply some other policy-based mitigation. Whe !! 7379 capability and select the KVM_BUS_LOCK_DETECTION_EXIT mode, KVM will set the 7880 KVM_RUN_X86_BUS_LOCK in vcpu-run->flags, and !! 7380 KVM_RUN_BUS_LOCK flag in vcpu-run->flags field and exit to userspace. Concerning 7881 to KVM_EXIT_X86_BUS_LOCK. !! 7381 the bus lock vm exit can be preempted by a higher priority VM exit, the exit 7882 !! 7382 notifications to userspace can be KVM_EXIT_BUS_LOCK or other reasons. 7883 Note! Detected bus locks may be coincident wi !! 7383 KVM_RUN_BUS_LOCK flag is used to distinguish between them. 7884 KVM_RUN_X86_BUS_LOCK should be checked regard << 7885 userspace wants to take action on all detecte << 7886 7384 7887 7.23 KVM_CAP_PPC_DAWR1 7385 7.23 KVM_CAP_PPC_DAWR1 7888 ---------------------- 7386 ---------------------- 7889 7387 7890 :Architectures: ppc 7388 :Architectures: ppc 7891 :Parameters: none 7389 :Parameters: none 7892 :Returns: 0 on success, -EINVAL when CPU does 7390 :Returns: 0 on success, -EINVAL when CPU doesn't support 2nd DAWR 7893 7391 7894 This capability can be used to check / enable 7392 This capability can be used to check / enable 2nd DAWR feature provided 7895 by POWER10 processor. 7393 by POWER10 processor. 7896 7394 7897 7395 7898 7.24 KVM_CAP_VM_COPY_ENC_CONTEXT_FROM 7396 7.24 KVM_CAP_VM_COPY_ENC_CONTEXT_FROM 7899 ------------------------------------- 7397 ------------------------------------- 7900 7398 7901 Architectures: x86 SEV enabled 7399 Architectures: x86 SEV enabled 7902 Type: vm 7400 Type: vm 7903 Parameters: args[0] is the fd of the source v 7401 Parameters: args[0] is the fd of the source vm 7904 Returns: 0 on success; ENOTTY on error 7402 Returns: 0 on success; ENOTTY on error 7905 7403 7906 This capability enables userspace to copy enc 7404 This capability enables userspace to copy encryption context from the vm 7907 indicated by the fd to the vm this is called 7405 indicated by the fd to the vm this is called on. 7908 7406 7909 This is intended to support in-guest workload 7407 This is intended to support in-guest workloads scheduled by the host. This 7910 allows the in-guest workload to maintain its 7408 allows the in-guest workload to maintain its own NPTs and keeps the two vms 7911 from accidentally clobbering each other with 7409 from accidentally clobbering each other with interrupts and the like (separate 7912 APIC/MSRs/etc). 7410 APIC/MSRs/etc). 7913 7411 7914 7.25 KVM_CAP_SGX_ATTRIBUTE 7412 7.25 KVM_CAP_SGX_ATTRIBUTE 7915 -------------------------- 7413 -------------------------- 7916 7414 7917 :Architectures: x86 7415 :Architectures: x86 7918 :Target: VM 7416 :Target: VM 7919 :Parameters: args[0] is a file handle of a SG 7417 :Parameters: args[0] is a file handle of a SGX attribute file in securityfs 7920 :Returns: 0 on success, -EINVAL if the file h 7418 :Returns: 0 on success, -EINVAL if the file handle is invalid or if a requested 7921 attribute is not supported by KVM. 7419 attribute is not supported by KVM. 7922 7420 7923 KVM_CAP_SGX_ATTRIBUTE enables a userspace VMM 7421 KVM_CAP_SGX_ATTRIBUTE enables a userspace VMM to grant a VM access to one or 7924 more privileged enclave attributes. args[0] !! 7422 more priveleged enclave attributes. args[0] must hold a file handle to a valid 7925 SGX attribute file corresponding to an attrib 7423 SGX attribute file corresponding to an attribute that is supported/restricted 7926 by KVM (currently only PROVISIONKEY). 7424 by KVM (currently only PROVISIONKEY). 7927 7425 7928 The SGX subsystem restricts access to a subse 7426 The SGX subsystem restricts access to a subset of enclave attributes to provide 7929 additional security for an uncompromised kern 7427 additional security for an uncompromised kernel, e.g. use of the PROVISIONKEY 7930 is restricted to deter malware from using the 7428 is restricted to deter malware from using the PROVISIONKEY to obtain a stable 7931 system fingerprint. To prevent userspace fro 7429 system fingerprint. To prevent userspace from circumventing such restrictions 7932 by running an enclave in a VM, KVM prevents a 7430 by running an enclave in a VM, KVM prevents access to privileged attributes by 7933 default. 7431 default. 7934 7432 7935 See Documentation/arch/x86/sgx.rst for more d !! 7433 See Documentation/x86/sgx.rst for more details. 7936 7434 7937 7.26 KVM_CAP_PPC_RPT_INVALIDATE 7435 7.26 KVM_CAP_PPC_RPT_INVALIDATE 7938 ------------------------------- 7436 ------------------------------- 7939 7437 7940 :Capability: KVM_CAP_PPC_RPT_INVALIDATE 7438 :Capability: KVM_CAP_PPC_RPT_INVALIDATE 7941 :Architectures: ppc 7439 :Architectures: ppc 7942 :Type: vm 7440 :Type: vm 7943 7441 7944 This capability indicates that the kernel is 7442 This capability indicates that the kernel is capable of handling 7945 H_RPT_INVALIDATE hcall. 7443 H_RPT_INVALIDATE hcall. 7946 7444 7947 In order to enable the use of H_RPT_INVALIDAT 7445 In order to enable the use of H_RPT_INVALIDATE in the guest, 7948 user space might have to advertise it for the 7446 user space might have to advertise it for the guest. For example, 7949 IBM pSeries (sPAPR) guest starts using it if 7447 IBM pSeries (sPAPR) guest starts using it if "hcall-rpt-invalidate" is 7950 present in the "ibm,hypertas-functions" devic 7448 present in the "ibm,hypertas-functions" device-tree property. 7951 7449 7952 This capability is enabled for hypervisors on 7450 This capability is enabled for hypervisors on platforms like POWER9 7953 that support radix MMU. 7451 that support radix MMU. 7954 7452 7955 7.27 KVM_CAP_EXIT_ON_EMULATION_FAILURE 7453 7.27 KVM_CAP_EXIT_ON_EMULATION_FAILURE 7956 -------------------------------------- 7454 -------------------------------------- 7957 7455 7958 :Architectures: x86 7456 :Architectures: x86 7959 :Parameters: args[0] whether the feature shou 7457 :Parameters: args[0] whether the feature should be enabled or not 7960 7458 7961 When this capability is enabled, an emulation 7459 When this capability is enabled, an emulation failure will result in an exit 7962 to userspace with KVM_INTERNAL_ERROR (except 7460 to userspace with KVM_INTERNAL_ERROR (except when the emulator was invoked 7963 to handle a VMware backdoor instruction). Fur 7461 to handle a VMware backdoor instruction). Furthermore, KVM will now provide up 7964 to 15 instruction bytes for any exit to users 7462 to 15 instruction bytes for any exit to userspace resulting from an emulation 7965 failure. When these exits to userspace occur 7463 failure. When these exits to userspace occur use the emulation_failure struct 7966 instead of the internal struct. They both ha 7464 instead of the internal struct. They both have the same layout, but the 7967 emulation_failure struct matches the content 7465 emulation_failure struct matches the content better. It also explicitly 7968 defines the 'flags' field which is used to de 7466 defines the 'flags' field which is used to describe the fields in the struct 7969 that are valid (ie: if KVM_INTERNAL_ERROR_EMU 7467 that are valid (ie: if KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES is 7970 set in the 'flags' field then both 'insn_size 7468 set in the 'flags' field then both 'insn_size' and 'insn_bytes' have valid data 7971 in them.) 7469 in them.) 7972 7470 7973 7.28 KVM_CAP_ARM_MTE 7471 7.28 KVM_CAP_ARM_MTE 7974 -------------------- 7472 -------------------- 7975 7473 7976 :Architectures: arm64 7474 :Architectures: arm64 7977 :Parameters: none 7475 :Parameters: none 7978 7476 7979 This capability indicates that KVM (and the h 7477 This capability indicates that KVM (and the hardware) supports exposing the 7980 Memory Tagging Extensions (MTE) to the guest. 7478 Memory Tagging Extensions (MTE) to the guest. It must also be enabled by the 7981 VMM before creating any VCPUs to allow the gu 7479 VMM before creating any VCPUs to allow the guest access. Note that MTE is only 7982 available to a guest running in AArch64 mode 7480 available to a guest running in AArch64 mode and enabling this capability will 7983 cause attempts to create AArch32 VCPUs to fai 7481 cause attempts to create AArch32 VCPUs to fail. 7984 7482 7985 When enabled the guest is able to access tags 7483 When enabled the guest is able to access tags associated with any memory given 7986 to the guest. KVM will ensure that the tags a 7484 to the guest. KVM will ensure that the tags are maintained during swap or 7987 hibernation of the host; however the VMM need 7485 hibernation of the host; however the VMM needs to manually save/restore the 7988 tags as appropriate if the VM is migrated. 7486 tags as appropriate if the VM is migrated. 7989 7487 7990 When this capability is enabled all memory in 7488 When this capability is enabled all memory in memslots must be mapped as 7991 ``MAP_ANONYMOUS`` or with a RAM-based file ma !! 7489 not-shareable (no MAP_SHARED), attempts to create a memslot with a 7992 attempts to create a memslot with an invalid !! 7490 MAP_SHARED mmap will result in an -EINVAL return. 7993 -EINVAL return. << 7994 7491 7995 When enabled the VMM may make use of the ``KV 7492 When enabled the VMM may make use of the ``KVM_ARM_MTE_COPY_TAGS`` ioctl to 7996 perform a bulk copy of tags to/from the guest 7493 perform a bulk copy of tags to/from the guest. 7997 7494 7998 7.29 KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM 7495 7.29 KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM 7999 ------------------------------------- 7496 ------------------------------------- 8000 7497 8001 :Architectures: x86 SEV enabled !! 7498 Architectures: x86 SEV enabled 8002 :Type: vm !! 7499 Type: vm 8003 :Parameters: args[0] is the fd of the source !! 7500 Parameters: args[0] is the fd of the source vm 8004 :Returns: 0 on success !! 7501 Returns: 0 on success 8005 7502 8006 This capability enables userspace to migrate 7503 This capability enables userspace to migrate the encryption context from the VM 8007 indicated by the fd to the VM this is called 7504 indicated by the fd to the VM this is called on. 8008 7505 8009 This is intended to support intra-host migrat 7506 This is intended to support intra-host migration of VMs between userspace VMMs, 8010 upgrading the VMM process without interruptin 7507 upgrading the VMM process without interrupting the guest. 8011 7508 8012 7.30 KVM_CAP_PPC_AIL_MODE_3 7509 7.30 KVM_CAP_PPC_AIL_MODE_3 8013 ------------------------------- 7510 ------------------------------- 8014 7511 8015 :Capability: KVM_CAP_PPC_AIL_MODE_3 7512 :Capability: KVM_CAP_PPC_AIL_MODE_3 8016 :Architectures: ppc 7513 :Architectures: ppc 8017 :Type: vm 7514 :Type: vm 8018 7515 8019 This capability indicates that the kernel sup 7516 This capability indicates that the kernel supports the mode 3 setting for the 8020 "Address Translation Mode on Interrupt" aka " 7517 "Address Translation Mode on Interrupt" aka "Alternate Interrupt Location" 8021 resource that is controlled with the H_SET_MO 7518 resource that is controlled with the H_SET_MODE hypercall. 8022 7519 8023 This capability allows a guest kernel to use 7520 This capability allows a guest kernel to use a better-performance mode for 8024 handling interrupts and system calls. 7521 handling interrupts and system calls. 8025 7522 8026 7.31 KVM_CAP_DISABLE_QUIRKS2 7523 7.31 KVM_CAP_DISABLE_QUIRKS2 8027 ---------------------------- 7524 ---------------------------- 8028 7525 8029 :Capability: KVM_CAP_DISABLE_QUIRKS2 7526 :Capability: KVM_CAP_DISABLE_QUIRKS2 8030 :Parameters: args[0] - set of KVM quirks to d 7527 :Parameters: args[0] - set of KVM quirks to disable 8031 :Architectures: x86 7528 :Architectures: x86 8032 :Type: vm 7529 :Type: vm 8033 7530 8034 This capability, if enabled, will cause KVM t 7531 This capability, if enabled, will cause KVM to disable some behavior 8035 quirks. 7532 quirks. 8036 7533 8037 Calling KVM_CHECK_EXTENSION for this capabili 7534 Calling KVM_CHECK_EXTENSION for this capability returns a bitmask of 8038 quirks that can be disabled in KVM. 7535 quirks that can be disabled in KVM. 8039 7536 8040 The argument to KVM_ENABLE_CAP for this capab 7537 The argument to KVM_ENABLE_CAP for this capability is a bitmask of 8041 quirks to disable, and must be a subset of th 7538 quirks to disable, and must be a subset of the bitmask returned by 8042 KVM_CHECK_EXTENSION. 7539 KVM_CHECK_EXTENSION. 8043 7540 8044 The valid bits in cap.args[0] are: 7541 The valid bits in cap.args[0] are: 8045 7542 8046 =================================== ========= 7543 =================================== ============================================ 8047 KVM_X86_QUIRK_LINT0_REENABLED By defaul 7544 KVM_X86_QUIRK_LINT0_REENABLED By default, the reset value for the LVT 8048 LINT0 reg 7545 LINT0 register is 0x700 (APIC_MODE_EXTINT). 8049 When this 7546 When this quirk is disabled, the reset value 8050 is 0x1000 7547 is 0x10000 (APIC_LVT_MASKED). 8051 7548 8052 KVM_X86_QUIRK_CD_NW_CLEARED By defaul !! 7549 KVM_X86_QUIRK_CD_NW_CLEARED By default, KVM clears CR0.CD and CR0.NW. 8053 AMD CPUs << 8054 that runs << 8055 with cach << 8056 << 8057 When this 7550 When this quirk is disabled, KVM does not 8058 change th 7551 change the value of CR0.CD and CR0.NW. 8059 7552 8060 KVM_X86_QUIRK_LAPIC_MMIO_HOLE By defaul 7553 KVM_X86_QUIRK_LAPIC_MMIO_HOLE By default, the MMIO LAPIC interface is 8061 available 7554 available even when configured for x2APIC 8062 mode. Whe 7555 mode. When this quirk is disabled, KVM 8063 disables 7556 disables the MMIO LAPIC interface if the 8064 LAPIC is 7557 LAPIC is in x2APIC mode. 8065 7558 8066 KVM_X86_QUIRK_OUT_7E_INC_RIP By defaul 7559 KVM_X86_QUIRK_OUT_7E_INC_RIP By default, KVM pre-increments %rip before 8067 exiting t 7560 exiting to userspace for an OUT instruction 8068 to port 0 7561 to port 0x7e. When this quirk is disabled, 8069 KVM does 7562 KVM does not pre-increment %rip before 8070 exiting t 7563 exiting to userspace. 8071 7564 8072 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT When this 7565 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT When this quirk is disabled, KVM sets 8073 CPUID.01H 7566 CPUID.01H:ECX[bit 3] (MONITOR/MWAIT) if 8074 IA32_MISC 7567 IA32_MISC_ENABLE[bit 18] (MWAIT) is set. 8075 Additiona 7568 Additionally, when this quirk is disabled, 8076 KVM clear 7569 KVM clears CPUID.01H:ECX[bit 3] if 8077 IA32_MISC 7570 IA32_MISC_ENABLE[bit 18] is cleared. 8078 7571 8079 KVM_X86_QUIRK_FIX_HYPERCALL_INSN By defaul 7572 KVM_X86_QUIRK_FIX_HYPERCALL_INSN By default, KVM rewrites guest 8080 VMMCALL/V 7573 VMMCALL/VMCALL instructions to match the 8081 vendor's 7574 vendor's hypercall instruction for the 8082 system. W 7575 system. When this quirk is disabled, KVM 8083 will no l 7576 will no longer rewrite invalid guest 8084 hypercall 7577 hypercall instructions. Executing the 8085 incorrect 7578 incorrect hypercall instruction will 8086 generate 7579 generate a #UD within the guest. 8087 7580 8088 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS By defaul 7581 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS By default, KVM emulates MONITOR/MWAIT (if 8089 they are 7582 they are intercepted) as NOPs regardless of 8090 whether o 7583 whether or not MONITOR/MWAIT are supported 8091 according 7584 according to guest CPUID. When this quirk 8092 is disabl 7585 is disabled and KVM_X86_DISABLE_EXITS_MWAIT 8093 is not se 7586 is not set (MONITOR/MWAIT are intercepted), 8094 KVM will 7587 KVM will inject a #UD on MONITOR/MWAIT if 8095 they're u 7588 they're unsupported per guest CPUID. Note, 8096 KVM will 7589 KVM will modify MONITOR/MWAIT support in 8097 guest CPU 7590 guest CPUID on writes to MISC_ENABLE if 8098 KVM_X86_Q 7591 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT is 8099 disabled. 7592 disabled. 8100 << 8101 KVM_X86_QUIRK_SLOT_ZAP_ALL By defaul << 8102 invalidat << 8103 address s << 8104 moved. W << 8105 VM type i << 8106 ensures t << 8107 or moved << 8108 _may_ inv << 8109 memslot. << 8110 =================================== ========= 7593 =================================== ============================================ 8111 7594 8112 7.32 KVM_CAP_MAX_VCPU_ID 7595 7.32 KVM_CAP_MAX_VCPU_ID 8113 ------------------------ 7596 ------------------------ 8114 7597 8115 :Architectures: x86 7598 :Architectures: x86 8116 :Target: VM 7599 :Target: VM 8117 :Parameters: args[0] - maximum APIC ID value 7600 :Parameters: args[0] - maximum APIC ID value set for current VM 8118 :Returns: 0 on success, -EINVAL if args[0] is 7601 :Returns: 0 on success, -EINVAL if args[0] is beyond KVM_MAX_VCPU_IDS 8119 supported in KVM or if it has been 7602 supported in KVM or if it has been set. 8120 7603 8121 This capability allows userspace to specify m 7604 This capability allows userspace to specify maximum possible APIC ID 8122 assigned for current VM session prior to the 7605 assigned for current VM session prior to the creation of vCPUs, saving 8123 memory for data structures indexed by the API 7606 memory for data structures indexed by the APIC ID. Userspace is able 8124 to calculate the limit to APIC ID values from 7607 to calculate the limit to APIC ID values from designated 8125 CPU topology. 7608 CPU topology. 8126 7609 8127 The value can be changed only until KVM_ENABL 7610 The value can be changed only until KVM_ENABLE_CAP is set to a nonzero 8128 value or until a vCPU is created. Upon creat 7611 value or until a vCPU is created. Upon creation of the first vCPU, 8129 if the value was set to zero or KVM_ENABLE_CA 7612 if the value was set to zero or KVM_ENABLE_CAP was not invoked, KVM 8130 uses the return value of KVM_CHECK_EXTENSION( 7613 uses the return value of KVM_CHECK_EXTENSION(KVM_CAP_MAX_VCPU_ID) as 8131 the maximum APIC ID. 7614 the maximum APIC ID. 8132 7615 8133 7.33 KVM_CAP_X86_NOTIFY_VMEXIT 7616 7.33 KVM_CAP_X86_NOTIFY_VMEXIT 8134 ------------------------------ 7617 ------------------------------ 8135 7618 8136 :Architectures: x86 7619 :Architectures: x86 8137 :Target: VM 7620 :Target: VM 8138 :Parameters: args[0] is the value of notify w 7621 :Parameters: args[0] is the value of notify window as well as some flags 8139 :Returns: 0 on success, -EINVAL if args[0] co 7622 :Returns: 0 on success, -EINVAL if args[0] contains invalid flags or notify 8140 VM exit is unsupported. 7623 VM exit is unsupported. 8141 7624 8142 Bits 63:32 of args[0] are used for notify win 7625 Bits 63:32 of args[0] are used for notify window. 8143 Bits 31:0 of args[0] are for some flags. Vali 7626 Bits 31:0 of args[0] are for some flags. Valid bits are:: 8144 7627 8145 #define KVM_X86_NOTIFY_VMEXIT_ENABLED (1 7628 #define KVM_X86_NOTIFY_VMEXIT_ENABLED (1 << 0) 8146 #define KVM_X86_NOTIFY_VMEXIT_USER (1 7629 #define KVM_X86_NOTIFY_VMEXIT_USER (1 << 1) 8147 7630 8148 This capability allows userspace to configure 7631 This capability allows userspace to configure the notify VM exit on/off 8149 in per-VM scope during VM creation. Notify VM 7632 in per-VM scope during VM creation. Notify VM exit is disabled by default. 8150 When userspace sets KVM_X86_NOTIFY_VMEXIT_ENA 7633 When userspace sets KVM_X86_NOTIFY_VMEXIT_ENABLED bit in args[0], VMM will 8151 enable this feature with the notify window pr 7634 enable this feature with the notify window provided, which will generate 8152 a VM exit if no event window occurs in VM non 7635 a VM exit if no event window occurs in VM non-root mode for a specified of 8153 time (notify window). 7636 time (notify window). 8154 7637 8155 If KVM_X86_NOTIFY_VMEXIT_USER is set in args[ 7638 If KVM_X86_NOTIFY_VMEXIT_USER is set in args[0], upon notify VM exits happen, 8156 KVM would exit to userspace for handling. 7639 KVM would exit to userspace for handling. 8157 7640 8158 This capability is aimed to mitigate the thre 7641 This capability is aimed to mitigate the threat that malicious VMs can 8159 cause CPU stuck (due to event windows don't o 7642 cause CPU stuck (due to event windows don't open up) and make the CPU 8160 unavailable to host or other VMs. 7643 unavailable to host or other VMs. 8161 7644 8162 7.34 KVM_CAP_MEMORY_FAULT_INFO << 8163 ------------------------------ << 8164 << 8165 :Architectures: x86 << 8166 :Returns: Informational only, -EINVAL on dire << 8167 << 8168 The presence of this capability indicates tha << 8169 kvm_run.memory_fault if KVM cannot resolve a << 8170 there is a valid memslot but no backing VMA f << 8171 address. << 8172 << 8173 The information in kvm_run.memory_fault is va << 8174 an error with errno=EFAULT or errno=EHWPOISON << 8175 to KVM_EXIT_MEMORY_FAULT. << 8176 << 8177 Note: Userspaces which attempt to resolve mem << 8178 KVM_RUN are encouraged to guard against repea << 8179 error/annotated fault. << 8180 << 8181 See KVM_EXIT_MEMORY_FAULT for more informatio << 8182 << 8183 7.35 KVM_CAP_X86_APIC_BUS_CYCLES_NS << 8184 ----------------------------------- << 8185 << 8186 :Architectures: x86 << 8187 :Target: VM << 8188 :Parameters: args[0] is the desired APIC bus << 8189 :Returns: 0 on success, -EINVAL if args[0] co << 8190 frequency or if any vCPUs have been << 8191 local APIC has not been created usi << 8192 << 8193 This capability sets the VM's APIC bus clock << 8194 virtual APIC when emulating APIC timers. KVM << 8195 by KVM_CHECK_EXTENSION. << 8196 << 8197 Note: Userspace is responsible for correctly << 8198 core crystal clock frequency, if a non-zero C << 8199 << 8200 7.36 KVM_CAP_X86_GUEST_MODE << 8201 ------------------------------ << 8202 << 8203 :Architectures: x86 << 8204 :Returns: Informational only, -EINVAL on dire << 8205 << 8206 The presence of this capability indicates tha << 8207 KVM_RUN_X86_GUEST_MODE bit in kvm_run.flags t << 8208 vCPU was executing nested guest code when it << 8209 << 8210 KVM exits with the register state of either t << 8211 depending on which executed at the time of an << 8212 take care to differentiate between these case << 8213 << 8214 8. Other capabilities. 7645 8. Other capabilities. 8215 ====================== 7646 ====================== 8216 7647 8217 This section lists capabilities that give inf 7648 This section lists capabilities that give information about other 8218 features of the KVM implementation. 7649 features of the KVM implementation. 8219 7650 8220 8.1 KVM_CAP_PPC_HWRNG 7651 8.1 KVM_CAP_PPC_HWRNG 8221 --------------------- 7652 --------------------- 8222 7653 8223 :Architectures: ppc 7654 :Architectures: ppc 8224 7655 8225 This capability, if KVM_CHECK_EXTENSION indic 7656 This capability, if KVM_CHECK_EXTENSION indicates that it is 8226 available, means that the kernel has an imple 7657 available, means that the kernel has an implementation of the 8227 H_RANDOM hypercall backed by a hardware rando 7658 H_RANDOM hypercall backed by a hardware random-number generator. 8228 If present, the kernel H_RANDOM handler can b 7659 If present, the kernel H_RANDOM handler can be enabled for guest use 8229 with the KVM_CAP_PPC_ENABLE_HCALL capability. 7660 with the KVM_CAP_PPC_ENABLE_HCALL capability. 8230 7661 8231 8.2 KVM_CAP_HYPERV_SYNIC 7662 8.2 KVM_CAP_HYPERV_SYNIC 8232 ------------------------ 7663 ------------------------ 8233 7664 8234 :Architectures: x86 7665 :Architectures: x86 8235 7666 8236 This capability, if KVM_CHECK_EXTENSION indic 7667 This capability, if KVM_CHECK_EXTENSION indicates that it is 8237 available, means that the kernel has an imple 7668 available, means that the kernel has an implementation of the 8238 Hyper-V Synthetic interrupt controller(SynIC) 7669 Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is 8239 used to support Windows Hyper-V based guest p 7670 used to support Windows Hyper-V based guest paravirt drivers(VMBus). 8240 7671 8241 In order to use SynIC, it has to be activated 7672 In order to use SynIC, it has to be activated by setting this 8242 capability via KVM_ENABLE_CAP ioctl on the vc 7673 capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this 8243 will disable the use of APIC hardware virtual 7674 will disable the use of APIC hardware virtualization even if supported 8244 by the CPU, as it's incompatible with SynIC a 7675 by the CPU, as it's incompatible with SynIC auto-EOI behavior. 8245 7676 8246 8.3 KVM_CAP_PPC_MMU_RADIX !! 7677 8.3 KVM_CAP_PPC_RADIX_MMU 8247 ------------------------- 7678 ------------------------- 8248 7679 8249 :Architectures: ppc 7680 :Architectures: ppc 8250 7681 8251 This capability, if KVM_CHECK_EXTENSION indic 7682 This capability, if KVM_CHECK_EXTENSION indicates that it is 8252 available, means that the kernel can support 7683 available, means that the kernel can support guests using the 8253 radix MMU defined in Power ISA V3.00 (as impl 7684 radix MMU defined in Power ISA V3.00 (as implemented in the POWER9 8254 processor). 7685 processor). 8255 7686 8256 8.4 KVM_CAP_PPC_MMU_HASH_V3 !! 7687 8.4 KVM_CAP_PPC_HASH_MMU_V3 8257 --------------------------- 7688 --------------------------- 8258 7689 8259 :Architectures: ppc 7690 :Architectures: ppc 8260 7691 8261 This capability, if KVM_CHECK_EXTENSION indic 7692 This capability, if KVM_CHECK_EXTENSION indicates that it is 8262 available, means that the kernel can support 7693 available, means that the kernel can support guests using the 8263 hashed page table MMU defined in Power ISA V3 7694 hashed page table MMU defined in Power ISA V3.00 (as implemented in 8264 the POWER9 processor), including in-memory se 7695 the POWER9 processor), including in-memory segment tables. 8265 7696 8266 8.5 KVM_CAP_MIPS_VZ 7697 8.5 KVM_CAP_MIPS_VZ 8267 ------------------- 7698 ------------------- 8268 7699 8269 :Architectures: mips 7700 :Architectures: mips 8270 7701 8271 This capability, if KVM_CHECK_EXTENSION on th 7702 This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that 8272 it is available, means that full hardware ass 7703 it is available, means that full hardware assisted virtualization capabilities 8273 of the hardware are available for use through 7704 of the hardware are available for use through KVM. An appropriate 8274 KVM_VM_MIPS_* type must be passed to KVM_CREA 7705 KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which 8275 utilises it. 7706 utilises it. 8276 7707 8277 If KVM_CHECK_EXTENSION on a kvm VM handle ind 7708 If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is 8278 available, it means that the VM is using full 7709 available, it means that the VM is using full hardware assisted virtualization 8279 capabilities of the hardware. This is useful 7710 capabilities of the hardware. This is useful to check after creating a VM with 8280 KVM_VM_MIPS_DEFAULT. 7711 KVM_VM_MIPS_DEFAULT. 8281 7712 8282 The value returned by KVM_CHECK_EXTENSION sho 7713 The value returned by KVM_CHECK_EXTENSION should be compared against known 8283 values (see below). All other values are rese 7714 values (see below). All other values are reserved. This is to allow for the 8284 possibility of other hardware assisted virtua 7715 possibility of other hardware assisted virtualization implementations which 8285 may be incompatible with the MIPS VZ ASE. 7716 may be incompatible with the MIPS VZ ASE. 8286 7717 8287 == ========================================= 7718 == ========================================================================== 8288 0 The trap & emulate implementation is in u 7719 0 The trap & emulate implementation is in use to run guest code in user 8289 mode. Guest virtual memory segments are r 7720 mode. Guest virtual memory segments are rearranged to fit the guest in the 8290 user mode address space. 7721 user mode address space. 8291 7722 8292 1 The MIPS VZ ASE is in use, providing full 7723 1 The MIPS VZ ASE is in use, providing full hardware assisted 8293 virtualization, including standard guest 7724 virtualization, including standard guest virtual memory segments. 8294 == ========================================= 7725 == ========================================================================== 8295 7726 8296 8.6 KVM_CAP_MIPS_TE 7727 8.6 KVM_CAP_MIPS_TE 8297 ------------------- 7728 ------------------- 8298 7729 8299 :Architectures: mips 7730 :Architectures: mips 8300 7731 8301 This capability, if KVM_CHECK_EXTENSION on th 7732 This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that 8302 it is available, means that the trap & emulat 7733 it is available, means that the trap & emulate implementation is available to 8303 run guest code in user mode, even if KVM_CAP_ 7734 run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware 8304 assisted virtualisation is also available. KV 7735 assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed 8305 to KVM_CREATE_VM to create a VM which utilise 7736 to KVM_CREATE_VM to create a VM which utilises it. 8306 7737 8307 If KVM_CHECK_EXTENSION on a kvm VM handle ind 7738 If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is 8308 available, it means that the VM is using trap 7739 available, it means that the VM is using trap & emulate. 8309 7740 8310 8.7 KVM_CAP_MIPS_64BIT 7741 8.7 KVM_CAP_MIPS_64BIT 8311 ---------------------- 7742 ---------------------- 8312 7743 8313 :Architectures: mips 7744 :Architectures: mips 8314 7745 8315 This capability indicates the supported archi 7746 This capability indicates the supported architecture type of the guest, i.e. the 8316 supported register and address width. 7747 supported register and address width. 8317 7748 8318 The values returned when this capability is c 7749 The values returned when this capability is checked by KVM_CHECK_EXTENSION on a 8319 kvm VM handle correspond roughly to the CP0_C 7750 kvm VM handle correspond roughly to the CP0_Config.AT register field, and should 8320 be checked specifically against known values 7751 be checked specifically against known values (see below). All other values are 8321 reserved. 7752 reserved. 8322 7753 8323 == ========================================= 7754 == ======================================================================== 8324 0 MIPS32 or microMIPS32. 7755 0 MIPS32 or microMIPS32. 8325 Both registers and addresses are 32-bits 7756 Both registers and addresses are 32-bits wide. 8326 It will only be possible to run 32-bit gu 7757 It will only be possible to run 32-bit guest code. 8327 7758 8328 1 MIPS64 or microMIPS64 with access only to 7759 1 MIPS64 or microMIPS64 with access only to 32-bit compatibility segments. 8329 Registers are 64-bits wide, but addresses 7760 Registers are 64-bits wide, but addresses are 32-bits wide. 8330 64-bit guest code may run but cannot acce 7761 64-bit guest code may run but cannot access MIPS64 memory segments. 8331 It will also be possible to run 32-bit gu 7762 It will also be possible to run 32-bit guest code. 8332 7763 8333 2 MIPS64 or microMIPS64 with access to all 7764 2 MIPS64 or microMIPS64 with access to all address segments. 8334 Both registers and addresses are 64-bits 7765 Both registers and addresses are 64-bits wide. 8335 It will be possible to run 64-bit or 32-b 7766 It will be possible to run 64-bit or 32-bit guest code. 8336 == ========================================= 7767 == ======================================================================== 8337 7768 8338 8.9 KVM_CAP_ARM_USER_IRQ 7769 8.9 KVM_CAP_ARM_USER_IRQ 8339 ------------------------ 7770 ------------------------ 8340 7771 8341 :Architectures: arm64 7772 :Architectures: arm64 8342 7773 8343 This capability, if KVM_CHECK_EXTENSION indic 7774 This capability, if KVM_CHECK_EXTENSION indicates that it is available, means 8344 that if userspace creates a VM without an in- 7775 that if userspace creates a VM without an in-kernel interrupt controller, it 8345 will be notified of changes to the output lev 7776 will be notified of changes to the output level of in-kernel emulated devices, 8346 which can generate virtual interrupts, presen 7777 which can generate virtual interrupts, presented to the VM. 8347 For such VMs, on every return to userspace, t 7778 For such VMs, on every return to userspace, the kernel 8348 updates the vcpu's run->s.regs.device_irq_lev 7779 updates the vcpu's run->s.regs.device_irq_level field to represent the actual 8349 output level of the device. 7780 output level of the device. 8350 7781 8351 Whenever kvm detects a change in the device o 7782 Whenever kvm detects a change in the device output level, kvm guarantees at 8352 least one return to userspace before running 7783 least one return to userspace before running the VM. This exit could either 8353 be a KVM_EXIT_INTR or any other exit event, l 7784 be a KVM_EXIT_INTR or any other exit event, like KVM_EXIT_MMIO. This way, 8354 userspace can always sample the device output 7785 userspace can always sample the device output level and re-compute the state of 8355 the userspace interrupt controller. Userspac 7786 the userspace interrupt controller. Userspace should always check the state 8356 of run->s.regs.device_irq_level on every kvm 7787 of run->s.regs.device_irq_level on every kvm exit. 8357 The value in run->s.regs.device_irq_level can 7788 The value in run->s.regs.device_irq_level can represent both level and edge 8358 triggered interrupt signals, depending on the 7789 triggered interrupt signals, depending on the device. Edge triggered interrupt 8359 signals will exit to userspace with the bit i 7790 signals will exit to userspace with the bit in run->s.regs.device_irq_level 8360 set exactly once per edge signal. 7791 set exactly once per edge signal. 8361 7792 8362 The field run->s.regs.device_irq_level is ava 7793 The field run->s.regs.device_irq_level is available independent of 8363 run->kvm_valid_regs or run->kvm_dirty_regs bi 7794 run->kvm_valid_regs or run->kvm_dirty_regs bits. 8364 7795 8365 If KVM_CAP_ARM_USER_IRQ is supported, the KVM 7796 If KVM_CAP_ARM_USER_IRQ is supported, the KVM_CHECK_EXTENSION ioctl returns a 8366 number larger than 0 indicating the version o 7797 number larger than 0 indicating the version of this capability is implemented 8367 and thereby which bits in run->s.regs.device_ 7798 and thereby which bits in run->s.regs.device_irq_level can signal values. 8368 7799 8369 Currently the following bits are defined for 7800 Currently the following bits are defined for the device_irq_level bitmap:: 8370 7801 8371 KVM_CAP_ARM_USER_IRQ >= 1: 7802 KVM_CAP_ARM_USER_IRQ >= 1: 8372 7803 8373 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual tim 7804 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual timer 8374 KVM_ARM_DEV_EL1_PTIMER - EL1 physical ti 7805 KVM_ARM_DEV_EL1_PTIMER - EL1 physical timer 8375 KVM_ARM_DEV_PMU - ARM PMU overflo 7806 KVM_ARM_DEV_PMU - ARM PMU overflow interrupt signal 8376 7807 8377 Future versions of kvm may implement addition 7808 Future versions of kvm may implement additional events. These will get 8378 indicated by returning a higher number from K 7809 indicated by returning a higher number from KVM_CHECK_EXTENSION and will be 8379 listed above. 7810 listed above. 8380 7811 8381 8.10 KVM_CAP_PPC_SMT_POSSIBLE 7812 8.10 KVM_CAP_PPC_SMT_POSSIBLE 8382 ----------------------------- 7813 ----------------------------- 8383 7814 8384 :Architectures: ppc 7815 :Architectures: ppc 8385 7816 8386 Querying this capability returns a bitmap ind 7817 Querying this capability returns a bitmap indicating the possible 8387 virtual SMT modes that can be set using KVM_C 7818 virtual SMT modes that can be set using KVM_CAP_PPC_SMT. If bit N 8388 (counting from the right) is set, then a virt 7819 (counting from the right) is set, then a virtual SMT mode of 2^N is 8389 available. 7820 available. 8390 7821 8391 8.11 KVM_CAP_HYPERV_SYNIC2 7822 8.11 KVM_CAP_HYPERV_SYNIC2 8392 -------------------------- 7823 -------------------------- 8393 7824 8394 :Architectures: x86 7825 :Architectures: x86 8395 7826 8396 This capability enables a newer version of Hy 7827 This capability enables a newer version of Hyper-V Synthetic interrupt 8397 controller (SynIC). The only difference with 7828 controller (SynIC). The only difference with KVM_CAP_HYPERV_SYNIC is that KVM 8398 doesn't clear SynIC message and event flags p 7829 doesn't clear SynIC message and event flags pages when they are enabled by 8399 writing to the respective MSRs. 7830 writing to the respective MSRs. 8400 7831 8401 8.12 KVM_CAP_HYPERV_VP_INDEX 7832 8.12 KVM_CAP_HYPERV_VP_INDEX 8402 ---------------------------- 7833 ---------------------------- 8403 7834 8404 :Architectures: x86 7835 :Architectures: x86 8405 7836 8406 This capability indicates that userspace can 7837 This capability indicates that userspace can load HV_X64_MSR_VP_INDEX msr. Its 8407 value is used to denote the target vcpu for a 7838 value is used to denote the target vcpu for a SynIC interrupt. For 8408 compatibility, KVM initializes this msr to KV !! 7839 compatibilty, KVM initializes this msr to KVM's internal vcpu index. When this 8409 capability is absent, userspace can still que 7840 capability is absent, userspace can still query this msr's value. 8410 7841 8411 8.13 KVM_CAP_S390_AIS_MIGRATION 7842 8.13 KVM_CAP_S390_AIS_MIGRATION 8412 ------------------------------- 7843 ------------------------------- 8413 7844 8414 :Architectures: s390 7845 :Architectures: s390 8415 :Parameters: none 7846 :Parameters: none 8416 7847 8417 This capability indicates if the flic device 7848 This capability indicates if the flic device will be able to get/set the 8418 AIS states for migration via the KVM_DEV_FLIC 7849 AIS states for migration via the KVM_DEV_FLIC_AISM_ALL attribute and allows 8419 to discover this without having to create a f 7850 to discover this without having to create a flic device. 8420 7851 8421 8.14 KVM_CAP_S390_PSW 7852 8.14 KVM_CAP_S390_PSW 8422 --------------------- 7853 --------------------- 8423 7854 8424 :Architectures: s390 7855 :Architectures: s390 8425 7856 8426 This capability indicates that the PSW is exp 7857 This capability indicates that the PSW is exposed via the kvm_run structure. 8427 7858 8428 8.15 KVM_CAP_S390_GMAP 7859 8.15 KVM_CAP_S390_GMAP 8429 ---------------------- 7860 ---------------------- 8430 7861 8431 :Architectures: s390 7862 :Architectures: s390 8432 7863 8433 This capability indicates that the user space 7864 This capability indicates that the user space memory used as guest mapping can 8434 be anywhere in the user memory address space, 7865 be anywhere in the user memory address space, as long as the memory slots are 8435 aligned and sized to a segment (1MB) boundary 7866 aligned and sized to a segment (1MB) boundary. 8436 7867 8437 8.16 KVM_CAP_S390_COW 7868 8.16 KVM_CAP_S390_COW 8438 --------------------- 7869 --------------------- 8439 7870 8440 :Architectures: s390 7871 :Architectures: s390 8441 7872 8442 This capability indicates that the user space 7873 This capability indicates that the user space memory used as guest mapping can 8443 use copy-on-write semantics as well as dirty 7874 use copy-on-write semantics as well as dirty pages tracking via read-only page 8444 tables. 7875 tables. 8445 7876 8446 8.17 KVM_CAP_S390_BPB 7877 8.17 KVM_CAP_S390_BPB 8447 --------------------- 7878 --------------------- 8448 7879 8449 :Architectures: s390 7880 :Architectures: s390 8450 7881 8451 This capability indicates that kvm will imple 7882 This capability indicates that kvm will implement the interfaces to handle 8452 reset, migration and nested KVM for branch pr 7883 reset, migration and nested KVM for branch prediction blocking. The stfle 8453 facility 82 should not be provided to the gue 7884 facility 82 should not be provided to the guest without this capability. 8454 7885 8455 8.18 KVM_CAP_HYPERV_TLBFLUSH 7886 8.18 KVM_CAP_HYPERV_TLBFLUSH 8456 ---------------------------- 7887 ---------------------------- 8457 7888 8458 :Architectures: x86 7889 :Architectures: x86 8459 7890 8460 This capability indicates that KVM supports p 7891 This capability indicates that KVM supports paravirtualized Hyper-V TLB Flush 8461 hypercalls: 7892 hypercalls: 8462 HvFlushVirtualAddressSpace, HvFlushVirtualAdd 7893 HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx, 8463 HvFlushVirtualAddressList, HvFlushVirtualAddr 7894 HvFlushVirtualAddressList, HvFlushVirtualAddressListEx. 8464 7895 8465 8.19 KVM_CAP_ARM_INJECT_SERROR_ESR 7896 8.19 KVM_CAP_ARM_INJECT_SERROR_ESR 8466 ---------------------------------- 7897 ---------------------------------- 8467 7898 8468 :Architectures: arm64 7899 :Architectures: arm64 8469 7900 8470 This capability indicates that userspace can 7901 This capability indicates that userspace can specify (via the 8471 KVM_SET_VCPU_EVENTS ioctl) the syndrome value 7902 KVM_SET_VCPU_EVENTS ioctl) the syndrome value reported to the guest when it 8472 takes a virtual SError interrupt exception. 7903 takes a virtual SError interrupt exception. 8473 If KVM advertises this capability, userspace 7904 If KVM advertises this capability, userspace can only specify the ISS field for 8474 the ESR syndrome. Other parts of the ESR, suc 7905 the ESR syndrome. Other parts of the ESR, such as the EC are generated by the 8475 CPU when the exception is taken. If this virt 7906 CPU when the exception is taken. If this virtual SError is taken to EL1 using 8476 AArch64, this value will be reported in the I 7907 AArch64, this value will be reported in the ISS field of ESR_ELx. 8477 7908 8478 See KVM_CAP_VCPU_EVENTS for more details. 7909 See KVM_CAP_VCPU_EVENTS for more details. 8479 7910 8480 8.20 KVM_CAP_HYPERV_SEND_IPI 7911 8.20 KVM_CAP_HYPERV_SEND_IPI 8481 ---------------------------- 7912 ---------------------------- 8482 7913 8483 :Architectures: x86 7914 :Architectures: x86 8484 7915 8485 This capability indicates that KVM supports p 7916 This capability indicates that KVM supports paravirtualized Hyper-V IPI send 8486 hypercalls: 7917 hypercalls: 8487 HvCallSendSyntheticClusterIpi, HvCallSendSynt 7918 HvCallSendSyntheticClusterIpi, HvCallSendSyntheticClusterIpiEx. 8488 7919 8489 8.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH 7920 8.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH 8490 ----------------------------------- 7921 ----------------------------------- 8491 7922 8492 :Architectures: x86 7923 :Architectures: x86 8493 7924 8494 This capability indicates that KVM running on 7925 This capability indicates that KVM running on top of Hyper-V hypervisor 8495 enables Direct TLB flush for its guests meani 7926 enables Direct TLB flush for its guests meaning that TLB flush 8496 hypercalls are handled by Level 0 hypervisor 7927 hypercalls are handled by Level 0 hypervisor (Hyper-V) bypassing KVM. 8497 Due to the different ABI for hypercall parame 7928 Due to the different ABI for hypercall parameters between Hyper-V and 8498 KVM, enabling this capability effectively dis 7929 KVM, enabling this capability effectively disables all hypercall 8499 handling by KVM (as some KVM hypercall may be 7930 handling by KVM (as some KVM hypercall may be mistakenly treated as TLB 8500 flush hypercalls by Hyper-V) so userspace sho 7931 flush hypercalls by Hyper-V) so userspace should disable KVM identification 8501 in CPUID and only exposes Hyper-V identificat 7932 in CPUID and only exposes Hyper-V identification. In this case, guest 8502 thinks it's running on Hyper-V and only use H 7933 thinks it's running on Hyper-V and only use Hyper-V hypercalls. 8503 7934 8504 8.22 KVM_CAP_S390_VCPU_RESETS 7935 8.22 KVM_CAP_S390_VCPU_RESETS 8505 ----------------------------- 7936 ----------------------------- 8506 7937 8507 :Architectures: s390 7938 :Architectures: s390 8508 7939 8509 This capability indicates that the KVM_S390_N 7940 This capability indicates that the KVM_S390_NORMAL_RESET and 8510 KVM_S390_CLEAR_RESET ioctls are available. 7941 KVM_S390_CLEAR_RESET ioctls are available. 8511 7942 8512 8.23 KVM_CAP_S390_PROTECTED 7943 8.23 KVM_CAP_S390_PROTECTED 8513 --------------------------- 7944 --------------------------- 8514 7945 8515 :Architectures: s390 7946 :Architectures: s390 8516 7947 8517 This capability indicates that the Ultravisor 7948 This capability indicates that the Ultravisor has been initialized and 8518 KVM can therefore start protected VMs. 7949 KVM can therefore start protected VMs. 8519 This capability governs the KVM_S390_PV_COMMA 7950 This capability governs the KVM_S390_PV_COMMAND ioctl and the 8520 KVM_MP_STATE_LOAD MP_STATE. KVM_SET_MP_STATE 7951 KVM_MP_STATE_LOAD MP_STATE. KVM_SET_MP_STATE can fail for protected 8521 guests when the state change is invalid. 7952 guests when the state change is invalid. 8522 7953 8523 8.24 KVM_CAP_STEAL_TIME 7954 8.24 KVM_CAP_STEAL_TIME 8524 ----------------------- 7955 ----------------------- 8525 7956 8526 :Architectures: arm64, x86 7957 :Architectures: arm64, x86 8527 7958 8528 This capability indicates that KVM supports s 7959 This capability indicates that KVM supports steal time accounting. 8529 When steal time accounting is supported it ma 7960 When steal time accounting is supported it may be enabled with 8530 architecture-specific interfaces. This capab 7961 architecture-specific interfaces. This capability and the architecture- 8531 specific interfaces must be consistent, i.e. 7962 specific interfaces must be consistent, i.e. if one says the feature 8532 is supported, than the other should as well a 7963 is supported, than the other should as well and vice versa. For arm64 8533 see Documentation/virt/kvm/devices/vcpu.rst " 7964 see Documentation/virt/kvm/devices/vcpu.rst "KVM_ARM_VCPU_PVTIME_CTRL". 8534 For x86 see Documentation/virt/kvm/x86/msr.rs 7965 For x86 see Documentation/virt/kvm/x86/msr.rst "MSR_KVM_STEAL_TIME". 8535 7966 8536 8.25 KVM_CAP_S390_DIAG318 7967 8.25 KVM_CAP_S390_DIAG318 8537 ------------------------- 7968 ------------------------- 8538 7969 8539 :Architectures: s390 7970 :Architectures: s390 8540 7971 8541 This capability enables a guest to set inform 7972 This capability enables a guest to set information about its control program 8542 (i.e. guest kernel type and version). The inf 7973 (i.e. guest kernel type and version). The information is helpful during 8543 system/firmware service events, providing add 7974 system/firmware service events, providing additional data about the guest 8544 environments running on the machine. 7975 environments running on the machine. 8545 7976 8546 The information is associated with the DIAGNO 7977 The information is associated with the DIAGNOSE 0x318 instruction, which sets 8547 an 8-byte value consisting of a one-byte Cont 7978 an 8-byte value consisting of a one-byte Control Program Name Code (CPNC) and 8548 a 7-byte Control Program Version Code (CPVC). 7979 a 7-byte Control Program Version Code (CPVC). The CPNC determines what 8549 environment the control program is running in 7980 environment the control program is running in (e.g. Linux, z/VM...), and the 8550 CPVC is used for information specific to OS ( 7981 CPVC is used for information specific to OS (e.g. Linux version, Linux 8551 distribution...) 7982 distribution...) 8552 7983 8553 If this capability is available, then the CPN 7984 If this capability is available, then the CPNC and CPVC can be synchronized 8554 between KVM and userspace via the sync regs m 7985 between KVM and userspace via the sync regs mechanism (KVM_SYNC_DIAG318). 8555 7986 8556 8.26 KVM_CAP_X86_USER_SPACE_MSR 7987 8.26 KVM_CAP_X86_USER_SPACE_MSR 8557 ------------------------------- 7988 ------------------------------- 8558 7989 8559 :Architectures: x86 7990 :Architectures: x86 8560 7991 8561 This capability indicates that KVM supports d 7992 This capability indicates that KVM supports deflection of MSR reads and 8562 writes to user space. It can be enabled on a 7993 writes to user space. It can be enabled on a VM level. If enabled, MSR 8563 accesses that would usually trigger a #GP by 7994 accesses that would usually trigger a #GP by KVM into the guest will 8564 instead get bounced to user space through the 7995 instead get bounced to user space through the KVM_EXIT_X86_RDMSR and 8565 KVM_EXIT_X86_WRMSR exit notifications. 7996 KVM_EXIT_X86_WRMSR exit notifications. 8566 7997 8567 8.27 KVM_CAP_X86_MSR_FILTER 7998 8.27 KVM_CAP_X86_MSR_FILTER 8568 --------------------------- 7999 --------------------------- 8569 8000 8570 :Architectures: x86 8001 :Architectures: x86 8571 8002 8572 This capability indicates that KVM supports t 8003 This capability indicates that KVM supports that accesses to user defined MSRs 8573 may be rejected. With this capability exposed 8004 may be rejected. With this capability exposed, KVM exports new VM ioctl 8574 KVM_X86_SET_MSR_FILTER which user space can c 8005 KVM_X86_SET_MSR_FILTER which user space can call to specify bitmaps of MSR 8575 ranges that KVM should deny access to. !! 8006 ranges that KVM should reject access to. 8576 8007 8577 In combination with KVM_CAP_X86_USER_SPACE_MS 8008 In combination with KVM_CAP_X86_USER_SPACE_MSR, this allows user space to 8578 trap and emulate MSRs that are outside of the 8009 trap and emulate MSRs that are outside of the scope of KVM as well as 8579 limit the attack surface on KVM's MSR emulati 8010 limit the attack surface on KVM's MSR emulation code. 8580 8011 8581 8.28 KVM_CAP_ENFORCE_PV_FEATURE_CPUID 8012 8.28 KVM_CAP_ENFORCE_PV_FEATURE_CPUID 8582 ------------------------------------- 8013 ------------------------------------- 8583 8014 8584 Architectures: x86 8015 Architectures: x86 8585 8016 8586 When enabled, KVM will disable paravirtual fe 8017 When enabled, KVM will disable paravirtual features provided to the 8587 guest according to the bits in the KVM_CPUID_ 8018 guest according to the bits in the KVM_CPUID_FEATURES CPUID leaf 8588 (0x40000001). Otherwise, a guest may use the 8019 (0x40000001). Otherwise, a guest may use the paravirtual features 8589 regardless of what has actually been exposed 8020 regardless of what has actually been exposed through the CPUID leaf. 8590 8021 8591 8.29 KVM_CAP_DIRTY_LOG_RING/KVM_CAP_DIRTY_LOG !! 8022 8.29 KVM_CAP_DIRTY_LOG_RING 8592 --------------------------------------------- !! 8023 --------------------------- 8593 8024 8594 :Architectures: x86, arm64 !! 8025 :Architectures: x86 8595 :Parameters: args[0] - size of the dirty log 8026 :Parameters: args[0] - size of the dirty log ring 8596 8027 8597 KVM is capable of tracking dirty memory using 8028 KVM is capable of tracking dirty memory using ring buffers that are 8598 mmapped into userspace; there is one dirty ri !! 8029 mmaped into userspace; there is one dirty ring per vcpu. 8599 8030 8600 The dirty ring is available to userspace as a 8031 The dirty ring is available to userspace as an array of 8601 ``struct kvm_dirty_gfn``. Each dirty entry i !! 8032 ``struct kvm_dirty_gfn``. Each dirty entry it's defined as:: 8602 8033 8603 struct kvm_dirty_gfn { 8034 struct kvm_dirty_gfn { 8604 __u32 flags; 8035 __u32 flags; 8605 __u32 slot; /* as_id | slot_id */ 8036 __u32 slot; /* as_id | slot_id */ 8606 __u64 offset; 8037 __u64 offset; 8607 }; 8038 }; 8608 8039 8609 The following values are defined for the flag 8040 The following values are defined for the flags field to define the 8610 current state of the entry:: 8041 current state of the entry:: 8611 8042 8612 #define KVM_DIRTY_GFN_F_DIRTY BIT 8043 #define KVM_DIRTY_GFN_F_DIRTY BIT(0) 8613 #define KVM_DIRTY_GFN_F_RESET BIT 8044 #define KVM_DIRTY_GFN_F_RESET BIT(1) 8614 #define KVM_DIRTY_GFN_F_MASK 0x3 8045 #define KVM_DIRTY_GFN_F_MASK 0x3 8615 8046 8616 Userspace should call KVM_ENABLE_CAP ioctl ri 8047 Userspace should call KVM_ENABLE_CAP ioctl right after KVM_CREATE_VM 8617 ioctl to enable this capability for the new g 8048 ioctl to enable this capability for the new guest and set the size of 8618 the rings. Enabling the capability is only a 8049 the rings. Enabling the capability is only allowed before creating any 8619 vCPU, and the size of the ring must be a powe 8050 vCPU, and the size of the ring must be a power of two. The larger the 8620 ring buffer, the less likely the ring is full 8051 ring buffer, the less likely the ring is full and the VM is forced to 8621 exit to userspace. The optimal size depends o 8052 exit to userspace. The optimal size depends on the workload, but it is 8622 recommended that it be at least 64 KiB (4096 8053 recommended that it be at least 64 KiB (4096 entries). 8623 8054 8624 Just like for dirty page bitmaps, the buffer 8055 Just like for dirty page bitmaps, the buffer tracks writes to 8625 all user memory regions for which the KVM_MEM 8056 all user memory regions for which the KVM_MEM_LOG_DIRTY_PAGES flag was 8626 set in KVM_SET_USER_MEMORY_REGION. Once a me 8057 set in KVM_SET_USER_MEMORY_REGION. Once a memory region is registered 8627 with the flag set, userspace can start harves 8058 with the flag set, userspace can start harvesting dirty pages from the 8628 ring buffer. 8059 ring buffer. 8629 8060 8630 An entry in the ring buffer can be unused (fl 8061 An entry in the ring buffer can be unused (flag bits ``00``), 8631 dirty (flag bits ``01``) or harvested (flag b 8062 dirty (flag bits ``01``) or harvested (flag bits ``1X``). The 8632 state machine for the entry is as follows:: 8063 state machine for the entry is as follows:: 8633 8064 8634 dirtied harvested re 8065 dirtied harvested reset 8635 00 -----------> 01 -------------> 1X --- 8066 00 -----------> 01 -------------> 1X -------+ 8636 ^ 8067 ^ | 8637 | 8068 | | 8638 +-------------------------------------- 8069 +------------------------------------------+ 8639 8070 8640 To harvest the dirty pages, userspace accesse !! 8071 To harvest the dirty pages, userspace accesses the mmaped ring buffer 8641 to read the dirty GFNs. If the flags has the 8072 to read the dirty GFNs. If the flags has the DIRTY bit set (at this stage 8642 the RESET bit must be cleared), then it means 8073 the RESET bit must be cleared), then it means this GFN is a dirty GFN. 8643 The userspace should harvest this GFN and mar 8074 The userspace should harvest this GFN and mark the flags from state 8644 ``01b`` to ``1Xb`` (bit 0 will be ignored by 8075 ``01b`` to ``1Xb`` (bit 0 will be ignored by KVM, but bit 1 must be set 8645 to show that this GFN is harvested and waitin 8076 to show that this GFN is harvested and waiting for a reset), and move 8646 on to the next GFN. The userspace should con 8077 on to the next GFN. The userspace should continue to do this until the 8647 flags of a GFN have the DIRTY bit cleared, me 8078 flags of a GFN have the DIRTY bit cleared, meaning that it has harvested 8648 all the dirty GFNs that were available. 8079 all the dirty GFNs that were available. 8649 8080 8650 Note that on weakly ordered architectures, us << 8651 ring buffer (and more specifically the 'flags << 8652 using load-acquire/store-release accessors wh << 8653 other memory barrier that will ensure this or << 8654 << 8655 It's not necessary for userspace to harvest t 8081 It's not necessary for userspace to harvest the all dirty GFNs at once. 8656 However it must collect the dirty GFNs in seq 8082 However it must collect the dirty GFNs in sequence, i.e., the userspace 8657 program cannot skip one dirty GFN to collect 8083 program cannot skip one dirty GFN to collect the one next to it. 8658 8084 8659 After processing one or more entries in the r 8085 After processing one or more entries in the ring buffer, userspace 8660 calls the VM ioctl KVM_RESET_DIRTY_RINGS to n 8086 calls the VM ioctl KVM_RESET_DIRTY_RINGS to notify the kernel about 8661 it, so that the kernel will reprotect those c 8087 it, so that the kernel will reprotect those collected GFNs. 8662 Therefore, the ioctl must be called *before* 8088 Therefore, the ioctl must be called *before* reading the content of 8663 the dirty pages. 8089 the dirty pages. 8664 8090 8665 The dirty ring can get full. When it happens 8091 The dirty ring can get full. When it happens, the KVM_RUN of the 8666 vcpu will return with exit reason KVM_EXIT_DI 8092 vcpu will return with exit reason KVM_EXIT_DIRTY_LOG_FULL. 8667 8093 8668 The dirty ring interface has a major differen 8094 The dirty ring interface has a major difference comparing to the 8669 KVM_GET_DIRTY_LOG interface in that, when rea 8095 KVM_GET_DIRTY_LOG interface in that, when reading the dirty ring from 8670 userspace, it's still possible that the kerne 8096 userspace, it's still possible that the kernel has not yet flushed the 8671 processor's dirty page buffers into the kerne 8097 processor's dirty page buffers into the kernel buffer (with dirty bitmaps, the 8672 flushing is done by the KVM_GET_DIRTY_LOG ioc 8098 flushing is done by the KVM_GET_DIRTY_LOG ioctl). To achieve that, one 8673 needs to kick the vcpu out of KVM_RUN using a 8099 needs to kick the vcpu out of KVM_RUN using a signal. The resulting 8674 vmexit ensures that all dirty GFNs are flushe 8100 vmexit ensures that all dirty GFNs are flushed to the dirty rings. 8675 8101 8676 NOTE: KVM_CAP_DIRTY_LOG_RING_ACQ_REL is the o !! 8102 NOTE: the capability KVM_CAP_DIRTY_LOG_RING and the corresponding 8677 should be exposed by weakly ordered architect !! 8103 ioctl KVM_RESET_DIRTY_RINGS are mutual exclusive to the existing ioctls 8678 the additional memory ordering requirements i !! 8104 KVM_GET_DIRTY_LOG and KVM_CLEAR_DIRTY_LOG. After enabling 8679 reading the state of an entry and mutating it !! 8105 KVM_CAP_DIRTY_LOG_RING with an acceptable dirty ring size, the virtual 8680 Architecture with TSO-like ordering (such as !! 8106 machine will switch to ring-buffer dirty page tracking and further 8681 expose both KVM_CAP_DIRTY_LOG_RING and KVM_CA !! 8107 KVM_GET_DIRTY_LOG or KVM_CLEAR_DIRTY_LOG ioctls will fail. 8682 to userspace. << 8683 << 8684 After enabling the dirty rings, the userspace << 8685 capability of KVM_CAP_DIRTY_LOG_RING_WITH_BIT << 8686 ring structures can be backed by per-slot bit << 8687 advertised, it means the architecture can dir << 8688 vcpu/ring context, so that some of the dirty << 8689 maintained in the bitmap structure. KVM_CAP_D << 8690 can't be enabled if the capability of KVM_CAP << 8691 hasn't been enabled, or any memslot has been << 8692 << 8693 Note that the bitmap here is only a backup of << 8694 use of the ring and bitmap combination is onl << 8695 only a very small amount of memory that is di << 8696 context. Otherwise, the stand-alone per-slot << 8697 be considered. << 8698 << 8699 To collect dirty bits in the backup bitmap, u << 8700 KVM_GET_DIRTY_LOG ioctl. KVM_CLEAR_DIRTY_LOG << 8701 the generation of the dirty bits is done in a << 8702 the dirty bitmap should be the very last thin << 8703 considering the state as complete. VMM needs << 8704 state is final and avoid missing dirty pages << 8705 after the bitmap collection. << 8706 << 8707 NOTE: Multiple examples of using the backup b << 8708 tables through command KVM_DEV_ARM_{VGIC_GRP_ << 8709 KVM device "kvm-arm-vgic-its". (2) restore vg << 8710 command KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_RESTO << 8711 "kvm-arm-vgic-its". VGICv3 LPI pending status << 8712 vgic3 pending table through KVM_DEV_ARM_VGIC_ << 8713 command on KVM device "kvm-arm-vgic-v3". << 8714 8108 8715 8.30 KVM_CAP_XEN_HVM 8109 8.30 KVM_CAP_XEN_HVM 8716 -------------------- 8110 -------------------- 8717 8111 8718 :Architectures: x86 8112 :Architectures: x86 8719 8113 8720 This capability indicates the features that X 8114 This capability indicates the features that Xen supports for hosting Xen 8721 PVHVM guests. Valid flags are:: 8115 PVHVM guests. Valid flags are:: 8722 8116 8723 #define KVM_XEN_HVM_CONFIG_HYPERCALL_MSR !! 8117 #define KVM_XEN_HVM_CONFIG_HYPERCALL_MSR (1 << 0) 8724 #define KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL !! 8118 #define KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL (1 << 1) 8725 #define KVM_XEN_HVM_CONFIG_SHARED_INFO !! 8119 #define KVM_XEN_HVM_CONFIG_SHARED_INFO (1 << 2) 8726 #define KVM_XEN_HVM_CONFIG_RUNSTATE !! 8120 #define KVM_XEN_HVM_CONFIG_RUNSTATE (1 << 3) 8727 #define KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL !! 8121 #define KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL (1 << 4) 8728 #define KVM_XEN_HVM_CONFIG_EVTCHN_SEND !! 8122 #define KVM_XEN_HVM_CONFIG_EVTCHN_SEND (1 << 5) 8729 #define KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_ << 8730 #define KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNST << 8731 8123 8732 The KVM_XEN_HVM_CONFIG_HYPERCALL_MSR flag ind 8124 The KVM_XEN_HVM_CONFIG_HYPERCALL_MSR flag indicates that the KVM_XEN_HVM_CONFIG 8733 ioctl is available, for the guest to set its 8125 ioctl is available, for the guest to set its hypercall page. 8734 8126 8735 If KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL is also 8127 If KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL is also set, the same flag may also be 8736 provided in the flags to KVM_XEN_HVM_CONFIG, 8128 provided in the flags to KVM_XEN_HVM_CONFIG, without providing hypercall page 8737 contents, to request that KVM generate hyperc 8129 contents, to request that KVM generate hypercall page content automatically 8738 and also enable interception of guest hyperca 8130 and also enable interception of guest hypercalls with KVM_EXIT_XEN. 8739 8131 8740 The KVM_XEN_HVM_CONFIG_SHARED_INFO flag indic 8132 The KVM_XEN_HVM_CONFIG_SHARED_INFO flag indicates the availability of the 8741 KVM_XEN_HVM_SET_ATTR, KVM_XEN_HVM_GET_ATTR, K 8133 KVM_XEN_HVM_SET_ATTR, KVM_XEN_HVM_GET_ATTR, KVM_XEN_VCPU_SET_ATTR and 8742 KVM_XEN_VCPU_GET_ATTR ioctls, as well as the 8134 KVM_XEN_VCPU_GET_ATTR ioctls, as well as the delivery of exception vectors 8743 for event channel upcalls when the evtchn_upc 8135 for event channel upcalls when the evtchn_upcall_pending field of a vcpu's 8744 vcpu_info is set. 8136 vcpu_info is set. 8745 8137 8746 The KVM_XEN_HVM_CONFIG_RUNSTATE flag indicate 8138 The KVM_XEN_HVM_CONFIG_RUNSTATE flag indicates that the runstate-related 8747 features KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR 8139 features KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR/_CURRENT/_DATA/_ADJUST are 8748 supported by the KVM_XEN_VCPU_SET_ATTR/KVM_XE 8140 supported by the KVM_XEN_VCPU_SET_ATTR/KVM_XEN_VCPU_GET_ATTR ioctls. 8749 8141 8750 The KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL flag ind 8142 The KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL flag indicates that IRQ routing entries 8751 of the type KVM_IRQ_ROUTING_XEN_EVTCHN are su 8143 of the type KVM_IRQ_ROUTING_XEN_EVTCHN are supported, with the priority 8752 field set to indicate 2 level event channel d 8144 field set to indicate 2 level event channel delivery. 8753 8145 8754 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indic 8146 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indicates that KVM supports 8755 injecting event channel events directly into 8147 injecting event channel events directly into the guest with the 8756 KVM_XEN_HVM_EVTCHN_SEND ioctl. It also indica 8148 KVM_XEN_HVM_EVTCHN_SEND ioctl. It also indicates support for the 8757 KVM_XEN_ATTR_TYPE_EVTCHN/XEN_VERSION HVM attr 8149 KVM_XEN_ATTR_TYPE_EVTCHN/XEN_VERSION HVM attributes and the 8758 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID/TIMER/UPCALL_V 8150 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID/TIMER/UPCALL_VECTOR vCPU attributes. 8759 related to event channel delivery, timers, an 8151 related to event channel delivery, timers, and the XENVER_version 8760 interception. 8152 interception. 8761 8153 8762 The KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG f << 8763 the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG at << 8764 and KVM_XEN_GET_ATTR ioctls. This controls wh << 8765 XEN_RUNSTATE_UPDATE flag in guest memory mapp << 8766 updates of the runstate information. Note tha << 8767 the RUNSTATE feature above, but not the RUNST << 8768 always set the XEN_RUNSTATE_UPDATE flag when << 8769 which is perhaps counterintuitive. When this << 8770 behave more correctly, not using the XEN_RUNS << 8771 specifically enabled (by the guest making the << 8772 to enable the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDA << 8773 << 8774 The KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE f << 8775 clearing the PVCLOCK_TSC_STABLE_BIT flag in X << 8776 done when the KVM_CAP_XEN_HVM ioctl sets the << 8777 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE flag. << 8778 << 8779 8.31 KVM_CAP_PPC_MULTITCE 8154 8.31 KVM_CAP_PPC_MULTITCE 8780 ------------------------- 8155 ------------------------- 8781 8156 8782 :Capability: KVM_CAP_PPC_MULTITCE 8157 :Capability: KVM_CAP_PPC_MULTITCE 8783 :Architectures: ppc 8158 :Architectures: ppc 8784 :Type: vm 8159 :Type: vm 8785 8160 8786 This capability means the kernel is capable o 8161 This capability means the kernel is capable of handling hypercalls 8787 H_PUT_TCE_INDIRECT and H_STUFF_TCE without pa 8162 H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user 8788 space. This significantly accelerates DMA ope 8163 space. This significantly accelerates DMA operations for PPC KVM guests. 8789 User space should expect that its handlers fo 8164 User space should expect that its handlers for these hypercalls 8790 are not going to be called if user space prev 8165 are not going to be called if user space previously registered LIOBN 8791 in KVM (via KVM_CREATE_SPAPR_TCE or similar c 8166 in KVM (via KVM_CREATE_SPAPR_TCE or similar calls). 8792 8167 8793 In order to enable H_PUT_TCE_INDIRECT and H_S 8168 In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest, 8794 user space might have to advertise it for the 8169 user space might have to advertise it for the guest. For example, 8795 IBM pSeries (sPAPR) guest starts using them i 8170 IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is 8796 present in the "ibm,hypertas-functions" devic 8171 present in the "ibm,hypertas-functions" device-tree property. 8797 8172 8798 The hypercalls mentioned above may or may not 8173 The hypercalls mentioned above may or may not be processed successfully 8799 in the kernel based fast path. If they can no 8174 in the kernel based fast path. If they can not be handled by the kernel, 8800 they will get passed on to user space. So use 8175 they will get passed on to user space. So user space still has to have 8801 an implementation for these despite the in ke 8176 an implementation for these despite the in kernel acceleration. 8802 8177 8803 This capability is always enabled. 8178 This capability is always enabled. 8804 8179 8805 8.32 KVM_CAP_PTP_KVM 8180 8.32 KVM_CAP_PTP_KVM 8806 -------------------- 8181 -------------------- 8807 8182 8808 :Architectures: arm64 8183 :Architectures: arm64 8809 8184 8810 This capability indicates that the KVM virtua 8185 This capability indicates that the KVM virtual PTP service is 8811 supported in the host. A VMM can check whethe 8186 supported in the host. A VMM can check whether the service is 8812 available to the guest on migration. 8187 available to the guest on migration. 8813 8188 8814 8.33 KVM_CAP_HYPERV_ENFORCE_CPUID 8189 8.33 KVM_CAP_HYPERV_ENFORCE_CPUID 8815 --------------------------------- 8190 --------------------------------- 8816 8191 8817 Architectures: x86 8192 Architectures: x86 8818 8193 8819 When enabled, KVM will disable emulated Hyper 8194 When enabled, KVM will disable emulated Hyper-V features provided to the 8820 guest according to the bits Hyper-V CPUID fea 8195 guest according to the bits Hyper-V CPUID feature leaves. Otherwise, all 8821 currently implemented Hyper-V features are pr !! 8196 currently implmented Hyper-V features are provided unconditionally when 8822 Hyper-V identification is set in the HYPERV_C 8197 Hyper-V identification is set in the HYPERV_CPUID_INTERFACE (0x40000001) 8823 leaf. 8198 leaf. 8824 8199 8825 8.34 KVM_CAP_EXIT_HYPERCALL 8200 8.34 KVM_CAP_EXIT_HYPERCALL 8826 --------------------------- 8201 --------------------------- 8827 8202 8828 :Capability: KVM_CAP_EXIT_HYPERCALL 8203 :Capability: KVM_CAP_EXIT_HYPERCALL 8829 :Architectures: x86 8204 :Architectures: x86 8830 :Type: vm 8205 :Type: vm 8831 8206 8832 This capability, if enabled, will cause KVM t 8207 This capability, if enabled, will cause KVM to exit to userspace 8833 with KVM_EXIT_HYPERCALL exit reason to proces 8208 with KVM_EXIT_HYPERCALL exit reason to process some hypercalls. 8834 8209 8835 Calling KVM_CHECK_EXTENSION for this capabili 8210 Calling KVM_CHECK_EXTENSION for this capability will return a bitmask 8836 of hypercalls that can be configured to exit 8211 of hypercalls that can be configured to exit to userspace. 8837 Right now, the only such hypercall is KVM_HC_ 8212 Right now, the only such hypercall is KVM_HC_MAP_GPA_RANGE. 8838 8213 8839 The argument to KVM_ENABLE_CAP is also a bitm 8214 The argument to KVM_ENABLE_CAP is also a bitmask, and must be a subset 8840 of the result of KVM_CHECK_EXTENSION. KVM wi 8215 of the result of KVM_CHECK_EXTENSION. KVM will forward to userspace 8841 the hypercalls whose corresponding bit is in 8216 the hypercalls whose corresponding bit is in the argument, and return 8842 ENOSYS for the others. 8217 ENOSYS for the others. 8843 8218 8844 8.35 KVM_CAP_PMU_CAPABILITY 8219 8.35 KVM_CAP_PMU_CAPABILITY 8845 --------------------------- 8220 --------------------------- 8846 8221 8847 :Capability: KVM_CAP_PMU_CAPABILITY !! 8222 :Capability KVM_CAP_PMU_CAPABILITY 8848 :Architectures: x86 8223 :Architectures: x86 8849 :Type: vm 8224 :Type: vm 8850 :Parameters: arg[0] is bitmask of PMU virtual 8225 :Parameters: arg[0] is bitmask of PMU virtualization capabilities. 8851 :Returns: 0 on success, -EINVAL when arg[0] c !! 8226 :Returns 0 on success, -EINVAL when arg[0] contains invalid bits 8852 8227 8853 This capability alters PMU virtualization in 8228 This capability alters PMU virtualization in KVM. 8854 8229 8855 Calling KVM_CHECK_EXTENSION for this capabili 8230 Calling KVM_CHECK_EXTENSION for this capability returns a bitmask of 8856 PMU virtualization capabilities that can be a 8231 PMU virtualization capabilities that can be adjusted on a VM. 8857 8232 8858 The argument to KVM_ENABLE_CAP is also a bitm 8233 The argument to KVM_ENABLE_CAP is also a bitmask and selects specific 8859 PMU virtualization capabilities to be applied 8234 PMU virtualization capabilities to be applied to the VM. This can 8860 only be invoked on a VM prior to the creation 8235 only be invoked on a VM prior to the creation of VCPUs. 8861 8236 8862 At this time, KVM_PMU_CAP_DISABLE is the only 8237 At this time, KVM_PMU_CAP_DISABLE is the only capability. Setting 8863 this capability will disable PMU virtualizati 8238 this capability will disable PMU virtualization for that VM. Usermode 8864 should adjust CPUID leaf 0xA to reflect that 8239 should adjust CPUID leaf 0xA to reflect that the PMU is disabled. 8865 8240 8866 8.36 KVM_CAP_ARM_SYSTEM_SUSPEND 8241 8.36 KVM_CAP_ARM_SYSTEM_SUSPEND 8867 ------------------------------- 8242 ------------------------------- 8868 8243 8869 :Capability: KVM_CAP_ARM_SYSTEM_SUSPEND 8244 :Capability: KVM_CAP_ARM_SYSTEM_SUSPEND 8870 :Architectures: arm64 8245 :Architectures: arm64 8871 :Type: vm 8246 :Type: vm 8872 8247 8873 When enabled, KVM will exit to userspace with 8248 When enabled, KVM will exit to userspace with KVM_EXIT_SYSTEM_EVENT of 8874 type KVM_SYSTEM_EVENT_SUSPEND to process the 8249 type KVM_SYSTEM_EVENT_SUSPEND to process the guest suspend request. 8875 8250 8876 8.37 KVM_CAP_S390_PROTECTED_DUMP 8251 8.37 KVM_CAP_S390_PROTECTED_DUMP 8877 -------------------------------- 8252 -------------------------------- 8878 8253 8879 :Capability: KVM_CAP_S390_PROTECTED_DUMP 8254 :Capability: KVM_CAP_S390_PROTECTED_DUMP 8880 :Architectures: s390 8255 :Architectures: s390 8881 :Type: vm 8256 :Type: vm 8882 8257 8883 This capability indicates that KVM and the Ul 8258 This capability indicates that KVM and the Ultravisor support dumping 8884 PV guests. The `KVM_PV_DUMP` command is avail 8259 PV guests. The `KVM_PV_DUMP` command is available for the 8885 `KVM_S390_PV_COMMAND` ioctl and the `KVM_PV_I 8260 `KVM_S390_PV_COMMAND` ioctl and the `KVM_PV_INFO` command provides 8886 dump related UV data. Also the vcpu ioctl `KV 8261 dump related UV data. Also the vcpu ioctl `KVM_S390_PV_CPU_COMMAND` is 8887 available and supports the `KVM_PV_DUMP_CPU` 8262 available and supports the `KVM_PV_DUMP_CPU` subcommand. 8888 8263 8889 8.38 KVM_CAP_VM_DISABLE_NX_HUGE_PAGES 8264 8.38 KVM_CAP_VM_DISABLE_NX_HUGE_PAGES 8890 ------------------------------------- 8265 ------------------------------------- 8891 8266 8892 :Capability: KVM_CAP_VM_DISABLE_NX_HUGE_PAGES 8267 :Capability: KVM_CAP_VM_DISABLE_NX_HUGE_PAGES 8893 :Architectures: x86 8268 :Architectures: x86 8894 :Type: vm 8269 :Type: vm 8895 :Parameters: arg[0] must be 0. 8270 :Parameters: arg[0] must be 0. 8896 :Returns: 0 on success, -EPERM if the userspa 8271 :Returns: 0 on success, -EPERM if the userspace process does not 8897 have CAP_SYS_BOOT, -EINVAL if args[ 8272 have CAP_SYS_BOOT, -EINVAL if args[0] is not 0 or any vCPUs have been 8898 created. 8273 created. 8899 8274 8900 This capability disables the NX huge pages mi 8275 This capability disables the NX huge pages mitigation for iTLB MULTIHIT. 8901 8276 8902 The capability has no effect if the nx_huge_p 8277 The capability has no effect if the nx_huge_pages module parameter is not set. 8903 8278 8904 This capability may only be set before any vC 8279 This capability may only be set before any vCPUs are created. 8905 8280 8906 8.39 KVM_CAP_S390_CPU_TOPOLOGY 8281 8.39 KVM_CAP_S390_CPU_TOPOLOGY 8907 ------------------------------ 8282 ------------------------------ 8908 8283 8909 :Capability: KVM_CAP_S390_CPU_TOPOLOGY 8284 :Capability: KVM_CAP_S390_CPU_TOPOLOGY 8910 :Architectures: s390 8285 :Architectures: s390 8911 :Type: vm 8286 :Type: vm 8912 8287 8913 This capability indicates that KVM will provi 8288 This capability indicates that KVM will provide the S390 CPU Topology 8914 facility which consist of the interpretation 8289 facility which consist of the interpretation of the PTF instruction for 8915 the function code 2 along with interception a 8290 the function code 2 along with interception and forwarding of both the 8916 PTF instruction with function codes 0 or 1 an 8291 PTF instruction with function codes 0 or 1 and the STSI(15,1,x) 8917 instruction to the userland hypervisor. 8292 instruction to the userland hypervisor. 8918 8293 8919 The stfle facility 11, CPU Topology facility, 8294 The stfle facility 11, CPU Topology facility, should not be indicated 8920 to the guest without this capability. 8295 to the guest without this capability. 8921 8296 8922 When this capability is present, KVM provides 8297 When this capability is present, KVM provides a new attribute group 8923 on vm fd, KVM_S390_VM_CPU_TOPOLOGY. 8298 on vm fd, KVM_S390_VM_CPU_TOPOLOGY. 8924 This new attribute allows to get, set or clea 8299 This new attribute allows to get, set or clear the Modified Change 8925 Topology Report (MTCR) bit of the SCA through 8300 Topology Report (MTCR) bit of the SCA through the kvm_device_attr 8926 structure. 8301 structure. 8927 8302 8928 When getting the Modified Change Topology Rep 8303 When getting the Modified Change Topology Report value, the attr->addr 8929 must point to a byte where the value will be 8304 must point to a byte where the value will be stored or retrieved from. 8930 8305 8931 8.40 KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE << 8932 --------------------------------------- << 8933 << 8934 :Capability: KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SI << 8935 :Architectures: arm64 << 8936 :Type: vm << 8937 :Parameters: arg[0] is the new split chunk si << 8938 :Returns: 0 on success, -EINVAL if any memslo << 8939 << 8940 This capability sets the chunk size used in E << 8941 << 8942 Eager Page Splitting improves the performance << 8943 in live migrations) when guest memory is back << 8944 avoids splitting huge-pages (into PAGE_SIZE p << 8945 it eagerly when enabling dirty logging (with << 8946 KVM_MEM_LOG_DIRTY_PAGES flag for a memory reg << 8947 KVM_CLEAR_DIRTY_LOG. << 8948 << 8949 The chunk size specifies how many pages to br << 8950 single allocation for each chunk. Bigger the << 8951 need to be allocated ahead of time. << 8952 << 8953 The chunk size needs to be a valid block size << 8954 block sizes is exposed in KVM_CAP_ARM_SUPPORT << 8955 64-bit bitmap (each bit describing a block si << 8956 0, to disable the eager page splitting. << 8957 << 8958 8.41 KVM_CAP_VM_TYPES << 8959 --------------------- << 8960 << 8961 :Capability: KVM_CAP_MEMORY_ATTRIBUTES << 8962 :Architectures: x86 << 8963 :Type: system ioctl << 8964 << 8965 This capability returns a bitmap of support V << 8966 means the VM type with value @n is supported. << 8967 << 8968 #define KVM_X86_DEFAULT_VM 0 << 8969 #define KVM_X86_SW_PROTECTED_VM 1 << 8970 #define KVM_X86_SEV_VM 2 << 8971 #define KVM_X86_SEV_ES_VM 3 << 8972 << 8973 Note, KVM_X86_SW_PROTECTED_VM is currently on << 8974 Do not use KVM_X86_SW_PROTECTED_VM for "real" << 8975 production. The behavior and effective ABI f << 8976 unstable. << 8977 << 8978 9. Known KVM API problems 8306 9. Known KVM API problems 8979 ========================= 8307 ========================= 8980 8308 8981 In some cases, KVM's API has some inconsisten 8309 In some cases, KVM's API has some inconsistencies or common pitfalls 8982 that userspace need to be aware of. This sec 8310 that userspace need to be aware of. This section details some of 8983 these issues. 8311 these issues. 8984 8312 8985 Most of them are architecture specific, so th 8313 Most of them are architecture specific, so the section is split by 8986 architecture. 8314 architecture. 8987 8315 8988 9.1. x86 8316 9.1. x86 8989 -------- 8317 -------- 8990 8318 8991 ``KVM_GET_SUPPORTED_CPUID`` issues 8319 ``KVM_GET_SUPPORTED_CPUID`` issues 8992 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8320 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8993 8321 8994 In general, ``KVM_GET_SUPPORTED_CPUID`` is de 8322 In general, ``KVM_GET_SUPPORTED_CPUID`` is designed so that it is possible 8995 to take its result and pass it directly to `` 8323 to take its result and pass it directly to ``KVM_SET_CPUID2``. This section 8996 documents some cases in which that requires s 8324 documents some cases in which that requires some care. 8997 8325 8998 Local APIC features 8326 Local APIC features 8999 ~~~~~~~~~~~~~~~~~~~ 8327 ~~~~~~~~~~~~~~~~~~~ 9000 8328 9001 CPU[EAX=1]:ECX[21] (X2APIC) is reported by `` 8329 CPU[EAX=1]:ECX[21] (X2APIC) is reported by ``KVM_GET_SUPPORTED_CPUID``, 9002 but it can only be enabled if ``KVM_CREATE_IR 8330 but it can only be enabled if ``KVM_CREATE_IRQCHIP`` or 9003 ``KVM_ENABLE_CAP(KVM_CAP_IRQCHIP_SPLIT)`` are 8331 ``KVM_ENABLE_CAP(KVM_CAP_IRQCHIP_SPLIT)`` are used to enable in-kernel emulation of 9004 the local APIC. 8332 the local APIC. 9005 8333 9006 The same is true for the ``KVM_FEATURE_PV_UNH 8334 The same is true for the ``KVM_FEATURE_PV_UNHALT`` paravirtualized feature. 9007 8335 9008 CPU[EAX=1]:ECX[24] (TSC_DEADLINE) is not repo 8336 CPU[EAX=1]:ECX[24] (TSC_DEADLINE) is not reported by ``KVM_GET_SUPPORTED_CPUID``. 9009 It can be enabled if ``KVM_CAP_TSC_DEADLINE_T 8337 It can be enabled if ``KVM_CAP_TSC_DEADLINE_TIMER`` is present and the kernel 9010 has enabled in-kernel emulation of the local 8338 has enabled in-kernel emulation of the local APIC. 9011 << 9012 CPU topology << 9013 ~~~~~~~~~~~~ << 9014 << 9015 Several CPUID values include topology informa << 9016 0x0b and 0x1f for Intel systems, 0x8000001e f << 9017 versions of KVM return different values for t << 9018 should not rely on it. Currently they return << 9019 << 9020 If userspace wishes to set up a guest topolog << 9021 the values of these three leaves differ for e << 9022 the APIC ID is found in EDX for all subleaves << 9023 for 0x8000001e; the latter also encodes the c << 9024 7:0 of EBX and ECX respectively. << 9025 8339 9026 Obsolete ioctls and capabilities 8340 Obsolete ioctls and capabilities 9027 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8341 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9028 8342 9029 KVM_CAP_DISABLE_QUIRKS does not let userspace 8343 KVM_CAP_DISABLE_QUIRKS does not let userspace know which quirks are actually 9030 available. Use ``KVM_CHECK_EXTENSION(KVM_CAP 8344 available. Use ``KVM_CHECK_EXTENSION(KVM_CAP_DISABLE_QUIRKS2)`` instead if 9031 available. 8345 available. 9032 8346 9033 Ordering of KVM_GET_*/KVM_SET_* ioctls 8347 Ordering of KVM_GET_*/KVM_SET_* ioctls 9034 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8348 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9035 8349 9036 TBD 8350 TBD
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.