1 .. SPDX-License-Identifier: GPL-2.0 1 .. SPDX-License-Identifier: GPL-2.0 2 2 3 ============================================== 3 =================================================================== 4 The Definitive KVM (Kernel-based Virtual Machi 4 The Definitive KVM (Kernel-based Virtual Machine) API Documentation 5 ============================================== 5 =================================================================== 6 6 7 1. General description 7 1. General description 8 ====================== 8 ====================== 9 9 10 The kvm API is a set of ioctls that are issued 10 The kvm API is a set of ioctls that are issued to control various aspects 11 of a virtual machine. The ioctls belong to th 11 of a virtual machine. The ioctls belong to the following classes: 12 12 13 - System ioctls: These query and set global a 13 - System ioctls: These query and set global attributes which affect the 14 whole kvm subsystem. In addition a system 14 whole kvm subsystem. In addition a system ioctl is used to create 15 virtual machines. 15 virtual machines. 16 16 17 - VM ioctls: These query and set attributes t 17 - VM ioctls: These query and set attributes that affect an entire virtual 18 machine, for example memory layout. In add 18 machine, for example memory layout. In addition a VM ioctl is used to 19 create virtual cpus (vcpus) and devices. 19 create virtual cpus (vcpus) and devices. 20 20 21 VM ioctls must be issued from the same proc 21 VM ioctls must be issued from the same process (address space) that was 22 used to create the VM. 22 used to create the VM. 23 23 24 - vcpu ioctls: These query and set attributes 24 - vcpu ioctls: These query and set attributes that control the operation 25 of a single virtual cpu. 25 of a single virtual cpu. 26 26 27 vcpu ioctls should be issued from the same 27 vcpu ioctls should be issued from the same thread that was used to create 28 the vcpu, except for asynchronous vcpu ioct 28 the vcpu, except for asynchronous vcpu ioctl that are marked as such in 29 the documentation. Otherwise, the first io 29 the documentation. Otherwise, the first ioctl after switching threads 30 could see a performance impact. 30 could see a performance impact. 31 31 32 - device ioctls: These query and set attribut 32 - device ioctls: These query and set attributes that control the operation 33 of a single device. 33 of a single device. 34 34 35 device ioctls must be issued from the same 35 device ioctls must be issued from the same process (address space) that 36 was used to create the VM. 36 was used to create the VM. 37 37 38 2. File descriptors 38 2. File descriptors 39 =================== 39 =================== 40 40 41 The kvm API is centered around file descriptor 41 The kvm API is centered around file descriptors. An initial 42 open("/dev/kvm") obtains a handle to the kvm s 42 open("/dev/kvm") obtains a handle to the kvm subsystem; this handle 43 can be used to issue system ioctls. A KVM_CRE 43 can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this 44 handle will create a VM file descriptor which 44 handle will create a VM file descriptor which can be used to issue VM 45 ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVIC 45 ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVICE ioctl on a VM fd will 46 create a virtual cpu or device and return a fi 46 create a virtual cpu or device and return a file descriptor pointing to 47 the new resource. Finally, ioctls on a vcpu o 47 the new resource. Finally, ioctls on a vcpu or device fd can be used 48 to control the vcpu or device. For vcpus, thi 48 to control the vcpu or device. For vcpus, this includes the important 49 task of actually running guest code. 49 task of actually running guest code. 50 50 51 In general file descriptors can be migrated am 51 In general file descriptors can be migrated among processes by means 52 of fork() and the SCM_RIGHTS facility of unix 52 of fork() and the SCM_RIGHTS facility of unix domain socket. These 53 kinds of tricks are explicitly not supported b 53 kinds of tricks are explicitly not supported by kvm. While they will 54 not cause harm to the host, their actual behav 54 not cause harm to the host, their actual behavior is not guaranteed by 55 the API. See "General description" for detail 55 the API. See "General description" for details on the ioctl usage 56 model that is supported by KVM. 56 model that is supported by KVM. 57 57 58 It is important to note that although VM ioctl 58 It is important to note that although VM ioctls may only be issued from 59 the process that created the VM, a VM's lifecy 59 the process that created the VM, a VM's lifecycle is associated with its 60 file descriptor, not its creator (process). I 60 file descriptor, not its creator (process). In other words, the VM and 61 its resources, *including the associated addre 61 its resources, *including the associated address space*, are not freed 62 until the last reference to the VM's file desc 62 until the last reference to the VM's file descriptor has been released. 63 For example, if fork() is issued after ioctl(K 63 For example, if fork() is issued after ioctl(KVM_CREATE_VM), the VM will 64 not be freed until both the parent (original) 64 not be freed until both the parent (original) process and its child have 65 put their references to the VM's file descript 65 put their references to the VM's file descriptor. 66 66 67 Because a VM's resources are not freed until t 67 Because a VM's resources are not freed until the last reference to its 68 file descriptor is released, creating addition 68 file descriptor is released, creating additional references to a VM 69 via fork(), dup(), etc... without careful cons 69 via fork(), dup(), etc... without careful consideration is strongly 70 discouraged and may have unwanted side effects 70 discouraged and may have unwanted side effects, e.g. memory allocated 71 by and on behalf of the VM's process may not b 71 by and on behalf of the VM's process may not be freed/unaccounted when 72 the VM is shut down. 72 the VM is shut down. 73 73 74 74 75 3. Extensions 75 3. Extensions 76 ============= 76 ============= 77 77 78 As of Linux 2.6.22, the KVM ABI has been stabi 78 As of Linux 2.6.22, the KVM ABI has been stabilized: no backward 79 incompatible change are allowed. However, the 79 incompatible change are allowed. However, there is an extension 80 facility that allows backward-compatible exten 80 facility that allows backward-compatible extensions to the API to be 81 queried and used. 81 queried and used. 82 82 83 The extension mechanism is not based on the Li 83 The extension mechanism is not based on the Linux version number. 84 Instead, kvm defines extension identifiers and 84 Instead, kvm defines extension identifiers and a facility to query 85 whether a particular extension identifier is a 85 whether a particular extension identifier is available. If it is, a 86 set of ioctls is available for application use 86 set of ioctls is available for application use. 87 87 88 88 89 4. API description 89 4. API description 90 ================== 90 ================== 91 91 92 This section describes ioctls that can be used 92 This section describes ioctls that can be used to control kvm guests. 93 For each ioctl, the following information is p 93 For each ioctl, the following information is provided along with a 94 description: 94 description: 95 95 96 Capability: 96 Capability: 97 which KVM extension provides this ioctl. 97 which KVM extension provides this ioctl. Can be 'basic', 98 which means that is will be provided by 98 which means that is will be provided by any kernel that supports 99 API version 12 (see section 4.1), a KVM_ 99 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which 100 means availability needs to be checked w 100 means availability needs to be checked with KVM_CHECK_EXTENSION 101 (see section 4.4), or 'none' which means 101 (see section 4.4), or 'none' which means that while not all kernels 102 support this ioctl, there's no capabilit 102 support this ioctl, there's no capability bit to check its 103 availability: for kernels that don't sup 103 availability: for kernels that don't support the ioctl, 104 the ioctl returns -ENOTTY. 104 the ioctl returns -ENOTTY. 105 105 106 Architectures: 106 Architectures: 107 which instruction set architectures prov 107 which instruction set architectures provide this ioctl. 108 x86 includes both i386 and x86_64. 108 x86 includes both i386 and x86_64. 109 109 110 Type: 110 Type: 111 system, vm, or vcpu. 111 system, vm, or vcpu. 112 112 113 Parameters: 113 Parameters: 114 what parameters are accepted by the ioct 114 what parameters are accepted by the ioctl. 115 115 116 Returns: 116 Returns: 117 the return value. General error numbers 117 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 118 are not detailed, but errors with specif 118 are not detailed, but errors with specific meanings are. 119 119 120 120 121 4.1 KVM_GET_API_VERSION 121 4.1 KVM_GET_API_VERSION 122 ----------------------- 122 ----------------------- 123 123 124 :Capability: basic 124 :Capability: basic 125 :Architectures: all 125 :Architectures: all 126 :Type: system ioctl 126 :Type: system ioctl 127 :Parameters: none 127 :Parameters: none 128 :Returns: the constant KVM_API_VERSION (=12) 128 :Returns: the constant KVM_API_VERSION (=12) 129 129 130 This identifies the API version as the stable 130 This identifies the API version as the stable kvm API. It is not 131 expected that this number will change. Howeve 131 expected that this number will change. However, Linux 2.6.20 and 132 2.6.21 report earlier versions; these are not 132 2.6.21 report earlier versions; these are not documented and not 133 supported. Applications should refuse to run 133 supported. Applications should refuse to run if KVM_GET_API_VERSION 134 returns a value other than 12. If this check 134 returns a value other than 12. If this check passes, all ioctls 135 described as 'basic' will be available. 135 described as 'basic' will be available. 136 136 137 137 138 4.2 KVM_CREATE_VM 138 4.2 KVM_CREATE_VM 139 ----------------- 139 ----------------- 140 140 141 :Capability: basic 141 :Capability: basic 142 :Architectures: all 142 :Architectures: all 143 :Type: system ioctl 143 :Type: system ioctl 144 :Parameters: machine type identifier (KVM_VM_* 144 :Parameters: machine type identifier (KVM_VM_*) 145 :Returns: a VM fd that can be used to control 145 :Returns: a VM fd that can be used to control the new virtual machine. 146 146 147 The new VM has no virtual cpus and no memory. 147 The new VM has no virtual cpus and no memory. 148 You probably want to use 0 as machine type. 148 You probably want to use 0 as machine type. 149 149 150 X86: << 151 ^^^^ << 152 << 153 Supported X86 VM types can be queried via KVM_ << 154 << 155 S390: << 156 ^^^^^ << 157 << 158 In order to create user controlled virtual mac 150 In order to create user controlled virtual machines on S390, check 159 KVM_CAP_S390_UCONTROL and use the flag KVM_VM_ 151 KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as 160 privileged user (CAP_SYS_ADMIN). 152 privileged user (CAP_SYS_ADMIN). 161 153 162 MIPS: << 163 ^^^^^ << 164 << 165 To use hardware assisted virtualization on MIP << 166 the default trap & emulate implementation (whi << 167 memory layout to fit in user mode), check KVM_ << 168 flag KVM_VM_MIPS_VZ. << 169 << 170 ARM64: << 171 ^^^^^^ << 172 << 173 On arm64, the physical address size for a VM ( 154 On arm64, the physical address size for a VM (IPA Size limit) is limited 174 to 40bits by default. The limit can be configu 155 to 40bits by default. The limit can be configured if the host supports the 175 extension KVM_CAP_ARM_VM_IPA_SIZE. When suppor 156 extension KVM_CAP_ARM_VM_IPA_SIZE. When supported, use 176 KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the 157 KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the size in the machine type 177 identifier, where IPA_Bits is the maximum widt 158 identifier, where IPA_Bits is the maximum width of any physical 178 address used by the VM. The IPA_Bits is encode 159 address used by the VM. The IPA_Bits is encoded in bits[7-0] of the 179 machine type identifier. 160 machine type identifier. 180 161 181 e.g, to configure a guest to use 48bit physica 162 e.g, to configure a guest to use 48bit physical address size:: 182 163 183 vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_V 164 vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_VM_TYPE_ARM_IPA_SIZE(48)); 184 165 185 The requested size (IPA_Bits) must be: 166 The requested size (IPA_Bits) must be: 186 167 187 == ======================================== 168 == ========================================================= 188 0 Implies default size, 40bits (for backwa 169 0 Implies default size, 40bits (for backward compatibility) 189 N Implies N bits, where N is a positive in 170 N Implies N bits, where N is a positive integer such that, 190 32 <= N <= Host_IPA_Limit 171 32 <= N <= Host_IPA_Limit 191 == ======================================== 172 == ========================================================= 192 173 193 Host_IPA_Limit is the maximum possible value f 174 Host_IPA_Limit is the maximum possible value for IPA_Bits on the host and 194 is dependent on the CPU capability and the ker 175 is dependent on the CPU capability and the kernel configuration. The limit can 195 be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of 176 be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of the KVM_CHECK_EXTENSION 196 ioctl() at run-time. 177 ioctl() at run-time. 197 178 198 Creation of the VM will fail if the requested 179 Creation of the VM will fail if the requested IPA size (whether it is 199 implicit or explicit) is unsupported on the ho 180 implicit or explicit) is unsupported on the host. 200 181 201 Please note that configuring the IPA size does 182 Please note that configuring the IPA size does not affect the capability 202 exposed by the guest CPUs in ID_AA64MMFR0_EL1[ 183 exposed by the guest CPUs in ID_AA64MMFR0_EL1[PARange]. It only affects 203 size of the address translated by the stage2 l 184 size of the address translated by the stage2 level (guest physical to 204 host physical address translations). 185 host physical address translations). 205 186 206 187 207 4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATUR 188 4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST 208 ---------------------------------------------- 189 ---------------------------------------------------------- 209 190 210 :Capability: basic, KVM_CAP_GET_MSR_FEATURES f 191 :Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST 211 :Architectures: x86 192 :Architectures: x86 212 :Type: system ioctl 193 :Type: system ioctl 213 :Parameters: struct kvm_msr_list (in/out) 194 :Parameters: struct kvm_msr_list (in/out) 214 :Returns: 0 on success; -1 on error 195 :Returns: 0 on success; -1 on error 215 196 216 Errors: 197 Errors: 217 198 218 ====== ================================= 199 ====== ============================================================ 219 EFAULT the msr index list cannot be read 200 EFAULT the msr index list cannot be read from or written to 220 E2BIG the msr index list is too big to 201 E2BIG the msr index list is too big to fit in the array specified by 221 the user. 202 the user. 222 ====== ================================= 203 ====== ============================================================ 223 204 224 :: 205 :: 225 206 226 struct kvm_msr_list { 207 struct kvm_msr_list { 227 __u32 nmsrs; /* number of msrs in entr 208 __u32 nmsrs; /* number of msrs in entries */ 228 __u32 indices[0]; 209 __u32 indices[0]; 229 }; 210 }; 230 211 231 The user fills in the size of the indices arra 212 The user fills in the size of the indices array in nmsrs, and in return 232 kvm adjusts nmsrs to reflect the actual number 213 kvm adjusts nmsrs to reflect the actual number of msrs and fills in the 233 indices array with their numbers. 214 indices array with their numbers. 234 215 235 KVM_GET_MSR_INDEX_LIST returns the guest msrs 216 KVM_GET_MSR_INDEX_LIST returns the guest msrs that are supported. The list 236 varies by kvm version and host processor, but 217 varies by kvm version and host processor, but does not change otherwise. 237 218 238 Note: if kvm indicates supports MCE (KVM_CAP_M 219 Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are 239 not returned in the MSR list, as different vcp 220 not returned in the MSR list, as different vcpus can have a different number 240 of banks, as set via the KVM_X86_SETUP_MCE ioc 221 of banks, as set via the KVM_X86_SETUP_MCE ioctl. 241 222 242 KVM_GET_MSR_FEATURE_INDEX_LIST returns the lis 223 KVM_GET_MSR_FEATURE_INDEX_LIST returns the list of MSRs that can be passed 243 to the KVM_GET_MSRS system ioctl. This lets u 224 to the KVM_GET_MSRS system ioctl. This lets userspace probe host capabilities 244 and processor features that are exposed via MS 225 and processor features that are exposed via MSRs (e.g., VMX capabilities). 245 This list also varies by kvm version and host 226 This list also varies by kvm version and host processor, but does not change 246 otherwise. 227 otherwise. 247 228 248 229 249 4.4 KVM_CHECK_EXTENSION 230 4.4 KVM_CHECK_EXTENSION 250 ----------------------- 231 ----------------------- 251 232 252 :Capability: basic, KVM_CAP_CHECK_EXTENSION_VM 233 :Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl 253 :Architectures: all 234 :Architectures: all 254 :Type: system ioctl, vm ioctl 235 :Type: system ioctl, vm ioctl 255 :Parameters: extension identifier (KVM_CAP_*) 236 :Parameters: extension identifier (KVM_CAP_*) 256 :Returns: 0 if unsupported; 1 (or some other p 237 :Returns: 0 if unsupported; 1 (or some other positive integer) if supported 257 238 258 The API allows the application to query about 239 The API allows the application to query about extensions to the core 259 kvm API. Userspace passes an extension identi 240 kvm API. Userspace passes an extension identifier (an integer) and 260 receives an integer that describes the extensi 241 receives an integer that describes the extension availability. 261 Generally 0 means no and 1 means yes, but some 242 Generally 0 means no and 1 means yes, but some extensions may report 262 additional information in the integer return v 243 additional information in the integer return value. 263 244 264 Based on their initialization different VMs ma 245 Based on their initialization different VMs may have different capabilities. 265 It is thus encouraged to use the vm ioctl to q 246 It is thus encouraged to use the vm ioctl to query for capabilities (available 266 with KVM_CAP_CHECK_EXTENSION_VM on the vm fd) 247 with KVM_CAP_CHECK_EXTENSION_VM on the vm fd) 267 248 268 4.5 KVM_GET_VCPU_MMAP_SIZE 249 4.5 KVM_GET_VCPU_MMAP_SIZE 269 -------------------------- 250 -------------------------- 270 251 271 :Capability: basic 252 :Capability: basic 272 :Architectures: all 253 :Architectures: all 273 :Type: system ioctl 254 :Type: system ioctl 274 :Parameters: none 255 :Parameters: none 275 :Returns: size of vcpu mmap area, in bytes 256 :Returns: size of vcpu mmap area, in bytes 276 257 277 The KVM_RUN ioctl (cf.) communicates with user 258 The KVM_RUN ioctl (cf.) communicates with userspace via a shared 278 memory region. This ioctl returns the size of 259 memory region. This ioctl returns the size of that region. See the 279 KVM_RUN documentation for details. 260 KVM_RUN documentation for details. 280 261 281 Besides the size of the KVM_RUN communication 262 Besides the size of the KVM_RUN communication region, other areas of 282 the VCPU file descriptor can be mmap-ed, inclu 263 the VCPU file descriptor can be mmap-ed, including: 283 264 284 - if KVM_CAP_COALESCED_MMIO is available, a pa 265 - if KVM_CAP_COALESCED_MMIO is available, a page at 285 KVM_COALESCED_MMIO_PAGE_OFFSET * PAGE_SIZE; 266 KVM_COALESCED_MMIO_PAGE_OFFSET * PAGE_SIZE; for historical reasons, 286 this page is included in the result of KVM_G 267 this page is included in the result of KVM_GET_VCPU_MMAP_SIZE. 287 KVM_CAP_COALESCED_MMIO is not documented yet 268 KVM_CAP_COALESCED_MMIO is not documented yet. 288 269 289 - if KVM_CAP_DIRTY_LOG_RING is available, a nu 270 - if KVM_CAP_DIRTY_LOG_RING is available, a number of pages at 290 KVM_DIRTY_LOG_PAGE_OFFSET * PAGE_SIZE. For 271 KVM_DIRTY_LOG_PAGE_OFFSET * PAGE_SIZE. For more information on 291 KVM_CAP_DIRTY_LOG_RING, see section 8.3. 272 KVM_CAP_DIRTY_LOG_RING, see section 8.3. 292 273 293 274 294 4.7 KVM_CREATE_VCPU 275 4.7 KVM_CREATE_VCPU 295 ------------------- 276 ------------------- 296 277 297 :Capability: basic 278 :Capability: basic 298 :Architectures: all 279 :Architectures: all 299 :Type: vm ioctl 280 :Type: vm ioctl 300 :Parameters: vcpu id (apic id on x86) 281 :Parameters: vcpu id (apic id on x86) 301 :Returns: vcpu fd on success, -1 on error 282 :Returns: vcpu fd on success, -1 on error 302 283 303 This API adds a vcpu to a virtual machine. No 284 This API adds a vcpu to a virtual machine. No more than max_vcpus may be added. 304 The vcpu id is an integer in the range [0, max 285 The vcpu id is an integer in the range [0, max_vcpu_id). 305 286 306 The recommended max_vcpus value can be retriev 287 The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of 307 the KVM_CHECK_EXTENSION ioctl() at run-time. 288 the KVM_CHECK_EXTENSION ioctl() at run-time. 308 The maximum possible value for max_vcpus can b 289 The maximum possible value for max_vcpus can be retrieved using the 309 KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION i 290 KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time. 310 291 311 If the KVM_CAP_NR_VCPUS does not exist, you sh 292 If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4 312 cpus max. 293 cpus max. 313 If the KVM_CAP_MAX_VCPUS does not exist, you s 294 If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is 314 same as the value returned from KVM_CAP_NR_VCP 295 same as the value returned from KVM_CAP_NR_VCPUS. 315 296 316 The maximum possible value for max_vcpu_id can 297 The maximum possible value for max_vcpu_id can be retrieved using the 317 KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION 298 KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time. 318 299 319 If the KVM_CAP_MAX_VCPU_ID does not exist, you 300 If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id 320 is the same as the value returned from KVM_CAP 301 is the same as the value returned from KVM_CAP_MAX_VCPUS. 321 302 322 On powerpc using book3s_hv mode, the vcpus are 303 On powerpc using book3s_hv mode, the vcpus are mapped onto virtual 323 threads in one or more virtual CPU cores. (Th 304 threads in one or more virtual CPU cores. (This is because the 324 hardware requires all the hardware threads in 305 hardware requires all the hardware threads in a CPU core to be in the 325 same partition.) The KVM_CAP_PPC_SMT capabili 306 same partition.) The KVM_CAP_PPC_SMT capability indicates the number 326 of vcpus per virtual core (vcore). The vcore 307 of vcpus per virtual core (vcore). The vcore id is obtained by 327 dividing the vcpu id by the number of vcpus pe 308 dividing the vcpu id by the number of vcpus per vcore. The vcpus in a 328 given vcore will always be in the same physica 309 given vcore will always be in the same physical core as each other 329 (though that might be a different physical cor 310 (though that might be a different physical core from time to time). 330 Userspace can control the threading (SMT) mode 311 Userspace can control the threading (SMT) mode of the guest by its 331 allocation of vcpu ids. For example, if users 312 allocation of vcpu ids. For example, if userspace wants 332 single-threaded guest vcpus, it should make al 313 single-threaded guest vcpus, it should make all vcpu ids be a multiple 333 of the number of vcpus per vcore. 314 of the number of vcpus per vcore. 334 315 335 For virtual cpus that have been created with S 316 For virtual cpus that have been created with S390 user controlled virtual 336 machines, the resulting vcpu fd can be memory 317 machines, the resulting vcpu fd can be memory mapped at page offset 337 KVM_S390_SIE_PAGE_OFFSET in order to obtain a 318 KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual 338 cpu's hardware control block. 319 cpu's hardware control block. 339 320 340 321 341 4.8 KVM_GET_DIRTY_LOG (vm ioctl) 322 4.8 KVM_GET_DIRTY_LOG (vm ioctl) 342 -------------------------------- 323 -------------------------------- 343 324 344 :Capability: basic 325 :Capability: basic 345 :Architectures: all 326 :Architectures: all 346 :Type: vm ioctl 327 :Type: vm ioctl 347 :Parameters: struct kvm_dirty_log (in/out) 328 :Parameters: struct kvm_dirty_log (in/out) 348 :Returns: 0 on success, -1 on error 329 :Returns: 0 on success, -1 on error 349 330 350 :: 331 :: 351 332 352 /* for KVM_GET_DIRTY_LOG */ 333 /* for KVM_GET_DIRTY_LOG */ 353 struct kvm_dirty_log { 334 struct kvm_dirty_log { 354 __u32 slot; 335 __u32 slot; 355 __u32 padding; 336 __u32 padding; 356 union { 337 union { 357 void __user *dirty_bitmap; /* 338 void __user *dirty_bitmap; /* one bit per page */ 358 __u64 padding; 339 __u64 padding; 359 }; 340 }; 360 }; 341 }; 361 342 362 Given a memory slot, return a bitmap containin 343 Given a memory slot, return a bitmap containing any pages dirtied 363 since the last call to this ioctl. Bit 0 is t 344 since the last call to this ioctl. Bit 0 is the first page in the 364 memory slot. Ensure the entire structure is c 345 memory slot. Ensure the entire structure is cleared to avoid padding 365 issues. 346 issues. 366 347 367 If KVM_CAP_MULTI_ADDRESS_SPACE is available, b 348 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of slot field specifies 368 the address space for which you want to return 349 the address space for which you want to return the dirty bitmap. See 369 KVM_SET_USER_MEMORY_REGION for details on the 350 KVM_SET_USER_MEMORY_REGION for details on the usage of slot field. 370 351 371 The bits in the dirty bitmap are cleared befor 352 The bits in the dirty bitmap are cleared before the ioctl returns, unless 372 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. 353 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. For more information, 373 see the description of the capability. 354 see the description of the capability. 374 355 375 Note that the Xen shared_info page, if configu !! 356 Note that the Xen shared info page, if configured, shall always be assumed 376 to be dirty. KVM will not explicitly mark it s 357 to be dirty. KVM will not explicitly mark it such. 377 358 378 359 379 4.10 KVM_RUN 360 4.10 KVM_RUN 380 ------------ 361 ------------ 381 362 382 :Capability: basic 363 :Capability: basic 383 :Architectures: all 364 :Architectures: all 384 :Type: vcpu ioctl 365 :Type: vcpu ioctl 385 :Parameters: none 366 :Parameters: none 386 :Returns: 0 on success, -1 on error 367 :Returns: 0 on success, -1 on error 387 368 388 Errors: 369 Errors: 389 370 390 ======= ================================= 371 ======= ============================================================== 391 EINTR an unmasked signal is pending 372 EINTR an unmasked signal is pending 392 ENOEXEC the vcpu hasn't been initialized 373 ENOEXEC the vcpu hasn't been initialized or the guest tried to execute 393 instructions from device memory ( 374 instructions from device memory (arm64) 394 ENOSYS data abort outside memslots with 375 ENOSYS data abort outside memslots with no syndrome info and 395 KVM_CAP_ARM_NISV_TO_USER not enab 376 KVM_CAP_ARM_NISV_TO_USER not enabled (arm64) 396 EPERM SVE feature set but not finalized 377 EPERM SVE feature set but not finalized (arm64) 397 ======= ================================= 378 ======= ============================================================== 398 379 399 This ioctl is used to run a guest virtual cpu. 380 This ioctl is used to run a guest virtual cpu. While there are no 400 explicit parameters, there is an implicit para 381 explicit parameters, there is an implicit parameter block that can be 401 obtained by mmap()ing the vcpu fd at offset 0, 382 obtained by mmap()ing the vcpu fd at offset 0, with the size given by 402 KVM_GET_VCPU_MMAP_SIZE. The parameter block i 383 KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct 403 kvm_run' (see below). 384 kvm_run' (see below). 404 385 405 386 406 4.11 KVM_GET_REGS 387 4.11 KVM_GET_REGS 407 ----------------- 388 ----------------- 408 389 409 :Capability: basic 390 :Capability: basic 410 :Architectures: all except arm64 391 :Architectures: all except arm64 411 :Type: vcpu ioctl 392 :Type: vcpu ioctl 412 :Parameters: struct kvm_regs (out) 393 :Parameters: struct kvm_regs (out) 413 :Returns: 0 on success, -1 on error 394 :Returns: 0 on success, -1 on error 414 395 415 Reads the general purpose registers from the v 396 Reads the general purpose registers from the vcpu. 416 397 417 :: 398 :: 418 399 419 /* x86 */ 400 /* x86 */ 420 struct kvm_regs { 401 struct kvm_regs { 421 /* out (KVM_GET_REGS) / in (KVM_SET_RE 402 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ 422 __u64 rax, rbx, rcx, rdx; 403 __u64 rax, rbx, rcx, rdx; 423 __u64 rsi, rdi, rsp, rbp; 404 __u64 rsi, rdi, rsp, rbp; 424 __u64 r8, r9, r10, r11; 405 __u64 r8, r9, r10, r11; 425 __u64 r12, r13, r14, r15; 406 __u64 r12, r13, r14, r15; 426 __u64 rip, rflags; 407 __u64 rip, rflags; 427 }; 408 }; 428 409 429 /* mips */ 410 /* mips */ 430 struct kvm_regs { 411 struct kvm_regs { 431 /* out (KVM_GET_REGS) / in (KVM_SET_RE 412 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ 432 __u64 gpr[32]; 413 __u64 gpr[32]; 433 __u64 hi; 414 __u64 hi; 434 __u64 lo; 415 __u64 lo; 435 __u64 pc; 416 __u64 pc; 436 }; 417 }; 437 418 438 /* LoongArch */ << 439 struct kvm_regs { << 440 /* out (KVM_GET_REGS) / in (KVM_SET_RE << 441 unsigned long gpr[32]; << 442 unsigned long pc; << 443 }; << 444 << 445 419 446 4.12 KVM_SET_REGS 420 4.12 KVM_SET_REGS 447 ----------------- 421 ----------------- 448 422 449 :Capability: basic 423 :Capability: basic 450 :Architectures: all except arm64 424 :Architectures: all except arm64 451 :Type: vcpu ioctl 425 :Type: vcpu ioctl 452 :Parameters: struct kvm_regs (in) 426 :Parameters: struct kvm_regs (in) 453 :Returns: 0 on success, -1 on error 427 :Returns: 0 on success, -1 on error 454 428 455 Writes the general purpose registers into the 429 Writes the general purpose registers into the vcpu. 456 430 457 See KVM_GET_REGS for the data structure. 431 See KVM_GET_REGS for the data structure. 458 432 459 433 460 4.13 KVM_GET_SREGS 434 4.13 KVM_GET_SREGS 461 ------------------ 435 ------------------ 462 436 463 :Capability: basic 437 :Capability: basic 464 :Architectures: x86, ppc 438 :Architectures: x86, ppc 465 :Type: vcpu ioctl 439 :Type: vcpu ioctl 466 :Parameters: struct kvm_sregs (out) 440 :Parameters: struct kvm_sregs (out) 467 :Returns: 0 on success, -1 on error 441 :Returns: 0 on success, -1 on error 468 442 469 Reads special registers from the vcpu. 443 Reads special registers from the vcpu. 470 444 471 :: 445 :: 472 446 473 /* x86 */ 447 /* x86 */ 474 struct kvm_sregs { 448 struct kvm_sregs { 475 struct kvm_segment cs, ds, es, fs, gs, 449 struct kvm_segment cs, ds, es, fs, gs, ss; 476 struct kvm_segment tr, ldt; 450 struct kvm_segment tr, ldt; 477 struct kvm_dtable gdt, idt; 451 struct kvm_dtable gdt, idt; 478 __u64 cr0, cr2, cr3, cr4, cr8; 452 __u64 cr0, cr2, cr3, cr4, cr8; 479 __u64 efer; 453 __u64 efer; 480 __u64 apic_base; 454 __u64 apic_base; 481 __u64 interrupt_bitmap[(KVM_NR_INTERRU 455 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64]; 482 }; 456 }; 483 457 484 /* ppc -- see arch/powerpc/include/uapi/asm/ 458 /* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */ 485 459 486 interrupt_bitmap is a bitmap of pending extern 460 interrupt_bitmap is a bitmap of pending external interrupts. At most 487 one bit may be set. This interrupt has been a 461 one bit may be set. This interrupt has been acknowledged by the APIC 488 but not yet injected into the cpu core. 462 but not yet injected into the cpu core. 489 463 490 464 491 4.14 KVM_SET_SREGS 465 4.14 KVM_SET_SREGS 492 ------------------ 466 ------------------ 493 467 494 :Capability: basic 468 :Capability: basic 495 :Architectures: x86, ppc 469 :Architectures: x86, ppc 496 :Type: vcpu ioctl 470 :Type: vcpu ioctl 497 :Parameters: struct kvm_sregs (in) 471 :Parameters: struct kvm_sregs (in) 498 :Returns: 0 on success, -1 on error 472 :Returns: 0 on success, -1 on error 499 473 500 Writes special registers into the vcpu. See K 474 Writes special registers into the vcpu. See KVM_GET_SREGS for the 501 data structures. 475 data structures. 502 476 503 477 504 4.15 KVM_TRANSLATE 478 4.15 KVM_TRANSLATE 505 ------------------ 479 ------------------ 506 480 507 :Capability: basic 481 :Capability: basic 508 :Architectures: x86 482 :Architectures: x86 509 :Type: vcpu ioctl 483 :Type: vcpu ioctl 510 :Parameters: struct kvm_translation (in/out) 484 :Parameters: struct kvm_translation (in/out) 511 :Returns: 0 on success, -1 on error 485 :Returns: 0 on success, -1 on error 512 486 513 Translates a virtual address according to the 487 Translates a virtual address according to the vcpu's current address 514 translation mode. 488 translation mode. 515 489 516 :: 490 :: 517 491 518 struct kvm_translation { 492 struct kvm_translation { 519 /* in */ 493 /* in */ 520 __u64 linear_address; 494 __u64 linear_address; 521 495 522 /* out */ 496 /* out */ 523 __u64 physical_address; 497 __u64 physical_address; 524 __u8 valid; 498 __u8 valid; 525 __u8 writeable; 499 __u8 writeable; 526 __u8 usermode; 500 __u8 usermode; 527 __u8 pad[5]; 501 __u8 pad[5]; 528 }; 502 }; 529 503 530 504 531 4.16 KVM_INTERRUPT 505 4.16 KVM_INTERRUPT 532 ------------------ 506 ------------------ 533 507 534 :Capability: basic 508 :Capability: basic 535 :Architectures: x86, ppc, mips, riscv, loongar !! 509 :Architectures: x86, ppc, mips, riscv 536 :Type: vcpu ioctl 510 :Type: vcpu ioctl 537 :Parameters: struct kvm_interrupt (in) 511 :Parameters: struct kvm_interrupt (in) 538 :Returns: 0 on success, negative on failure. 512 :Returns: 0 on success, negative on failure. 539 513 540 Queues a hardware interrupt vector to be injec 514 Queues a hardware interrupt vector to be injected. 541 515 542 :: 516 :: 543 517 544 /* for KVM_INTERRUPT */ 518 /* for KVM_INTERRUPT */ 545 struct kvm_interrupt { 519 struct kvm_interrupt { 546 /* in */ 520 /* in */ 547 __u32 irq; 521 __u32 irq; 548 }; 522 }; 549 523 550 X86: 524 X86: 551 ^^^^ 525 ^^^^ 552 526 553 :Returns: 527 :Returns: 554 528 555 ========= ============================ 529 ========= =================================== 556 0 on success, 530 0 on success, 557 -EEXIST if an interrupt is already e 531 -EEXIST if an interrupt is already enqueued 558 -EINVAL the irq number is invalid 532 -EINVAL the irq number is invalid 559 -ENXIO if the PIC is in the kernel 533 -ENXIO if the PIC is in the kernel 560 -EFAULT if the pointer is invalid 534 -EFAULT if the pointer is invalid 561 ========= ============================ 535 ========= =================================== 562 536 563 Note 'irq' is an interrupt vector, not an inte 537 Note 'irq' is an interrupt vector, not an interrupt pin or line. This 564 ioctl is useful if the in-kernel PIC is not us 538 ioctl is useful if the in-kernel PIC is not used. 565 539 566 PPC: 540 PPC: 567 ^^^^ 541 ^^^^ 568 542 569 Queues an external interrupt to be injected. T !! 543 Queues an external interrupt to be injected. This ioctl is overleaded 570 with 3 different irq values: 544 with 3 different irq values: 571 545 572 a) KVM_INTERRUPT_SET 546 a) KVM_INTERRUPT_SET 573 547 574 This injects an edge type external interrup 548 This injects an edge type external interrupt into the guest once it's ready 575 to receive interrupts. When injected, the i 549 to receive interrupts. When injected, the interrupt is done. 576 550 577 b) KVM_INTERRUPT_UNSET 551 b) KVM_INTERRUPT_UNSET 578 552 579 This unsets any pending interrupt. 553 This unsets any pending interrupt. 580 554 581 Only available with KVM_CAP_PPC_UNSET_IRQ. 555 Only available with KVM_CAP_PPC_UNSET_IRQ. 582 556 583 c) KVM_INTERRUPT_SET_LEVEL 557 c) KVM_INTERRUPT_SET_LEVEL 584 558 585 This injects a level type external interrup 559 This injects a level type external interrupt into the guest context. The 586 interrupt stays pending until a specific io 560 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET 587 is triggered. 561 is triggered. 588 562 589 Only available with KVM_CAP_PPC_IRQ_LEVEL. 563 Only available with KVM_CAP_PPC_IRQ_LEVEL. 590 564 591 Note that any value for 'irq' other than the o 565 Note that any value for 'irq' other than the ones stated above is invalid 592 and incurs unexpected behavior. 566 and incurs unexpected behavior. 593 567 594 This is an asynchronous vcpu ioctl and can be 568 This is an asynchronous vcpu ioctl and can be invoked from any thread. 595 569 596 MIPS: 570 MIPS: 597 ^^^^^ 571 ^^^^^ 598 572 599 Queues an external interrupt to be injected in 573 Queues an external interrupt to be injected into the virtual CPU. A negative 600 interrupt number dequeues the interrupt. 574 interrupt number dequeues the interrupt. 601 575 602 This is an asynchronous vcpu ioctl and can be 576 This is an asynchronous vcpu ioctl and can be invoked from any thread. 603 577 604 RISC-V: 578 RISC-V: 605 ^^^^^^^ 579 ^^^^^^^ 606 580 607 Queues an external interrupt to be injected in !! 581 Queues an external interrupt to be injected into the virutal CPU. This ioctl 608 is overloaded with 2 different irq values: 582 is overloaded with 2 different irq values: 609 583 610 a) KVM_INTERRUPT_SET 584 a) KVM_INTERRUPT_SET 611 585 612 This sets external interrupt for a virtual 586 This sets external interrupt for a virtual CPU and it will receive 613 once it is ready. 587 once it is ready. 614 588 615 b) KVM_INTERRUPT_UNSET 589 b) KVM_INTERRUPT_UNSET 616 590 617 This clears pending external interrupt for 591 This clears pending external interrupt for a virtual CPU. 618 592 619 This is an asynchronous vcpu ioctl and can be 593 This is an asynchronous vcpu ioctl and can be invoked from any thread. 620 594 621 LOONGARCH: << 622 ^^^^^^^^^^ << 623 595 624 Queues an external interrupt to be injected in !! 596 4.17 KVM_DEBUG_GUEST 625 interrupt number dequeues the interrupt. !! 597 -------------------- 626 598 627 This is an asynchronous vcpu ioctl and can be !! 599 :Capability: basic >> 600 :Architectures: none >> 601 :Type: vcpu ioctl >> 602 :Parameters: none) >> 603 :Returns: -1 on error >> 604 >> 605 Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead. 628 606 629 607 630 4.18 KVM_GET_MSRS 608 4.18 KVM_GET_MSRS 631 ----------------- 609 ----------------- 632 610 633 :Capability: basic (vcpu), KVM_CAP_GET_MSR_FEA 611 :Capability: basic (vcpu), KVM_CAP_GET_MSR_FEATURES (system) 634 :Architectures: x86 612 :Architectures: x86 635 :Type: system ioctl, vcpu ioctl 613 :Type: system ioctl, vcpu ioctl 636 :Parameters: struct kvm_msrs (in/out) 614 :Parameters: struct kvm_msrs (in/out) 637 :Returns: number of msrs successfully returned 615 :Returns: number of msrs successfully returned; 638 -1 on error 616 -1 on error 639 617 640 When used as a system ioctl: 618 When used as a system ioctl: 641 Reads the values of MSR-based features that ar 619 Reads the values of MSR-based features that are available for the VM. This 642 is similar to KVM_GET_SUPPORTED_CPUID, but it 620 is similar to KVM_GET_SUPPORTED_CPUID, but it returns MSR indices and values. 643 The list of msr-based features can be obtained 621 The list of msr-based features can be obtained using KVM_GET_MSR_FEATURE_INDEX_LIST 644 in a system ioctl. 622 in a system ioctl. 645 623 646 When used as a vcpu ioctl: 624 When used as a vcpu ioctl: 647 Reads model-specific registers from the vcpu. 625 Reads model-specific registers from the vcpu. Supported msr indices can 648 be obtained using KVM_GET_MSR_INDEX_LIST in a 626 be obtained using KVM_GET_MSR_INDEX_LIST in a system ioctl. 649 627 650 :: 628 :: 651 629 652 struct kvm_msrs { 630 struct kvm_msrs { 653 __u32 nmsrs; /* number of msrs in entr 631 __u32 nmsrs; /* number of msrs in entries */ 654 __u32 pad; 632 __u32 pad; 655 633 656 struct kvm_msr_entry entries[0]; 634 struct kvm_msr_entry entries[0]; 657 }; 635 }; 658 636 659 struct kvm_msr_entry { 637 struct kvm_msr_entry { 660 __u32 index; 638 __u32 index; 661 __u32 reserved; 639 __u32 reserved; 662 __u64 data; 640 __u64 data; 663 }; 641 }; 664 642 665 Application code should set the 'nmsrs' member 643 Application code should set the 'nmsrs' member (which indicates the 666 size of the entries array) and the 'index' mem 644 size of the entries array) and the 'index' member of each array entry. 667 kvm will fill in the 'data' member. 645 kvm will fill in the 'data' member. 668 646 669 647 670 4.19 KVM_SET_MSRS 648 4.19 KVM_SET_MSRS 671 ----------------- 649 ----------------- 672 650 673 :Capability: basic 651 :Capability: basic 674 :Architectures: x86 652 :Architectures: x86 675 :Type: vcpu ioctl 653 :Type: vcpu ioctl 676 :Parameters: struct kvm_msrs (in) 654 :Parameters: struct kvm_msrs (in) 677 :Returns: number of msrs successfully set (see 655 :Returns: number of msrs successfully set (see below), -1 on error 678 656 679 Writes model-specific registers to the vcpu. 657 Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the 680 data structures. 658 data structures. 681 659 682 Application code should set the 'nmsrs' member 660 Application code should set the 'nmsrs' member (which indicates the 683 size of the entries array), and the 'index' an 661 size of the entries array), and the 'index' and 'data' members of each 684 array entry. 662 array entry. 685 663 686 It tries to set the MSRs in array entries[] on 664 It tries to set the MSRs in array entries[] one by one. If setting an MSR 687 fails, e.g., due to setting reserved bits, the 665 fails, e.g., due to setting reserved bits, the MSR isn't supported/emulated 688 by KVM, etc..., it stops processing the MSR li 666 by KVM, etc..., it stops processing the MSR list and returns the number of 689 MSRs that have been set successfully. 667 MSRs that have been set successfully. 690 668 691 669 692 4.20 KVM_SET_CPUID 670 4.20 KVM_SET_CPUID 693 ------------------ 671 ------------------ 694 672 695 :Capability: basic 673 :Capability: basic 696 :Architectures: x86 674 :Architectures: x86 697 :Type: vcpu ioctl 675 :Type: vcpu ioctl 698 :Parameters: struct kvm_cpuid (in) 676 :Parameters: struct kvm_cpuid (in) 699 :Returns: 0 on success, -1 on error 677 :Returns: 0 on success, -1 on error 700 678 701 Defines the vcpu responses to the cpuid instru 679 Defines the vcpu responses to the cpuid instruction. Applications 702 should use the KVM_SET_CPUID2 ioctl if availab 680 should use the KVM_SET_CPUID2 ioctl if available. 703 681 704 Caveat emptor: 682 Caveat emptor: 705 - If this IOCTL fails, KVM gives no guarante 683 - If this IOCTL fails, KVM gives no guarantees that previous valid CPUID 706 configuration (if there is) is not corrupt 684 configuration (if there is) is not corrupted. Userspace can get a copy 707 of the resulting CPUID configuration throu 685 of the resulting CPUID configuration through KVM_GET_CPUID2 in case. 708 - Using KVM_SET_CPUID{,2} after KVM_RUN, i.e 686 - Using KVM_SET_CPUID{,2} after KVM_RUN, i.e. changing the guest vCPU model 709 after running the guest, may cause guest i 687 after running the guest, may cause guest instability. 710 - Using heterogeneous CPUID configurations, 688 - Using heterogeneous CPUID configurations, modulo APIC IDs, topology, etc... 711 may cause guest instability. 689 may cause guest instability. 712 690 713 :: 691 :: 714 692 715 struct kvm_cpuid_entry { 693 struct kvm_cpuid_entry { 716 __u32 function; 694 __u32 function; 717 __u32 eax; 695 __u32 eax; 718 __u32 ebx; 696 __u32 ebx; 719 __u32 ecx; 697 __u32 ecx; 720 __u32 edx; 698 __u32 edx; 721 __u32 padding; 699 __u32 padding; 722 }; 700 }; 723 701 724 /* for KVM_SET_CPUID */ 702 /* for KVM_SET_CPUID */ 725 struct kvm_cpuid { 703 struct kvm_cpuid { 726 __u32 nent; 704 __u32 nent; 727 __u32 padding; 705 __u32 padding; 728 struct kvm_cpuid_entry entries[0]; 706 struct kvm_cpuid_entry entries[0]; 729 }; 707 }; 730 708 731 709 732 4.21 KVM_SET_SIGNAL_MASK 710 4.21 KVM_SET_SIGNAL_MASK 733 ------------------------ 711 ------------------------ 734 712 735 :Capability: basic 713 :Capability: basic 736 :Architectures: all 714 :Architectures: all 737 :Type: vcpu ioctl 715 :Type: vcpu ioctl 738 :Parameters: struct kvm_signal_mask (in) 716 :Parameters: struct kvm_signal_mask (in) 739 :Returns: 0 on success, -1 on error 717 :Returns: 0 on success, -1 on error 740 718 741 Defines which signals are blocked during execu 719 Defines which signals are blocked during execution of KVM_RUN. This 742 signal mask temporarily overrides the threads 720 signal mask temporarily overrides the threads signal mask. Any 743 unblocked signal received (except SIGKILL and 721 unblocked signal received (except SIGKILL and SIGSTOP, which retain 744 their traditional behaviour) will cause KVM_RU 722 their traditional behaviour) will cause KVM_RUN to return with -EINTR. 745 723 746 Note the signal will only be delivered if not 724 Note the signal will only be delivered if not blocked by the original 747 signal mask. 725 signal mask. 748 726 749 :: 727 :: 750 728 751 /* for KVM_SET_SIGNAL_MASK */ 729 /* for KVM_SET_SIGNAL_MASK */ 752 struct kvm_signal_mask { 730 struct kvm_signal_mask { 753 __u32 len; 731 __u32 len; 754 __u8 sigset[0]; 732 __u8 sigset[0]; 755 }; 733 }; 756 734 757 735 758 4.22 KVM_GET_FPU 736 4.22 KVM_GET_FPU 759 ---------------- 737 ---------------- 760 738 761 :Capability: basic 739 :Capability: basic 762 :Architectures: x86, loongarch !! 740 :Architectures: x86 763 :Type: vcpu ioctl 741 :Type: vcpu ioctl 764 :Parameters: struct kvm_fpu (out) 742 :Parameters: struct kvm_fpu (out) 765 :Returns: 0 on success, -1 on error 743 :Returns: 0 on success, -1 on error 766 744 767 Reads the floating point state from the vcpu. 745 Reads the floating point state from the vcpu. 768 746 769 :: 747 :: 770 748 771 /* x86: for KVM_GET_FPU and KVM_SET_FPU */ !! 749 /* for KVM_GET_FPU and KVM_SET_FPU */ 772 struct kvm_fpu { 750 struct kvm_fpu { 773 __u8 fpr[8][16]; 751 __u8 fpr[8][16]; 774 __u16 fcw; 752 __u16 fcw; 775 __u16 fsw; 753 __u16 fsw; 776 __u8 ftwx; /* in fxsave format */ 754 __u8 ftwx; /* in fxsave format */ 777 __u8 pad1; 755 __u8 pad1; 778 __u16 last_opcode; 756 __u16 last_opcode; 779 __u64 last_ip; 757 __u64 last_ip; 780 __u64 last_dp; 758 __u64 last_dp; 781 __u8 xmm[16][16]; 759 __u8 xmm[16][16]; 782 __u32 mxcsr; 760 __u32 mxcsr; 783 __u32 pad2; 761 __u32 pad2; 784 }; 762 }; 785 763 786 /* LoongArch: for KVM_GET_FPU and KVM_SET_FP << 787 struct kvm_fpu { << 788 __u32 fcsr; << 789 __u64 fcc; << 790 struct kvm_fpureg { << 791 __u64 val64[4]; << 792 }fpr[32]; << 793 }; << 794 << 795 764 796 4.23 KVM_SET_FPU 765 4.23 KVM_SET_FPU 797 ---------------- 766 ---------------- 798 767 799 :Capability: basic 768 :Capability: basic 800 :Architectures: x86, loongarch !! 769 :Architectures: x86 801 :Type: vcpu ioctl 770 :Type: vcpu ioctl 802 :Parameters: struct kvm_fpu (in) 771 :Parameters: struct kvm_fpu (in) 803 :Returns: 0 on success, -1 on error 772 :Returns: 0 on success, -1 on error 804 773 805 Writes the floating point state to the vcpu. 774 Writes the floating point state to the vcpu. 806 775 807 :: 776 :: 808 777 809 /* x86: for KVM_GET_FPU and KVM_SET_FPU */ !! 778 /* for KVM_GET_FPU and KVM_SET_FPU */ 810 struct kvm_fpu { 779 struct kvm_fpu { 811 __u8 fpr[8][16]; 780 __u8 fpr[8][16]; 812 __u16 fcw; 781 __u16 fcw; 813 __u16 fsw; 782 __u16 fsw; 814 __u8 ftwx; /* in fxsave format */ 783 __u8 ftwx; /* in fxsave format */ 815 __u8 pad1; 784 __u8 pad1; 816 __u16 last_opcode; 785 __u16 last_opcode; 817 __u64 last_ip; 786 __u64 last_ip; 818 __u64 last_dp; 787 __u64 last_dp; 819 __u8 xmm[16][16]; 788 __u8 xmm[16][16]; 820 __u32 mxcsr; 789 __u32 mxcsr; 821 __u32 pad2; 790 __u32 pad2; 822 }; 791 }; 823 792 824 /* LoongArch: for KVM_GET_FPU and KVM_SET_FP << 825 struct kvm_fpu { << 826 __u32 fcsr; << 827 __u64 fcc; << 828 struct kvm_fpureg { << 829 __u64 val64[4]; << 830 }fpr[32]; << 831 }; << 832 << 833 793 834 4.24 KVM_CREATE_IRQCHIP 794 4.24 KVM_CREATE_IRQCHIP 835 ----------------------- 795 ----------------------- 836 796 837 :Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQ 797 :Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390) 838 :Architectures: x86, arm64, s390 798 :Architectures: x86, arm64, s390 839 :Type: vm ioctl 799 :Type: vm ioctl 840 :Parameters: none 800 :Parameters: none 841 :Returns: 0 on success, -1 on error 801 :Returns: 0 on success, -1 on error 842 802 843 Creates an interrupt controller model in the k 803 Creates an interrupt controller model in the kernel. 844 On x86, creates a virtual ioapic, a virtual PI 804 On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up 845 future vcpus to have a local APIC. IRQ routin 805 future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both 846 PIC and IOAPIC; GSI 16-23 only go to the IOAPI 806 PIC and IOAPIC; GSI 16-23 only go to the IOAPIC. 847 On arm64, a GICv2 is created. Any other GIC ve 807 On arm64, a GICv2 is created. Any other GIC versions require the usage of 848 KVM_CREATE_DEVICE, which also supports creatin 808 KVM_CREATE_DEVICE, which also supports creating a GICv2. Using 849 KVM_CREATE_DEVICE is preferred over KVM_CREATE 809 KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2. 850 On s390, a dummy irq routing table is created. 810 On s390, a dummy irq routing table is created. 851 811 852 Note that on s390 the KVM_CAP_S390_IRQCHIP vm 812 Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled 853 before KVM_CREATE_IRQCHIP can be used. 813 before KVM_CREATE_IRQCHIP can be used. 854 814 855 815 856 4.25 KVM_IRQ_LINE 816 4.25 KVM_IRQ_LINE 857 ----------------- 817 ----------------- 858 818 859 :Capability: KVM_CAP_IRQCHIP 819 :Capability: KVM_CAP_IRQCHIP 860 :Architectures: x86, arm64 820 :Architectures: x86, arm64 861 :Type: vm ioctl 821 :Type: vm ioctl 862 :Parameters: struct kvm_irq_level 822 :Parameters: struct kvm_irq_level 863 :Returns: 0 on success, -1 on error 823 :Returns: 0 on success, -1 on error 864 824 865 Sets the level of a GSI input to the interrupt 825 Sets the level of a GSI input to the interrupt controller model in the kernel. 866 On some architectures it is required that an i 826 On some architectures it is required that an interrupt controller model has 867 been previously created with KVM_CREATE_IRQCHI 827 been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered 868 interrupts require the level to be set to 1 an 828 interrupts require the level to be set to 1 and then back to 0. 869 829 870 On real hardware, interrupt pins can be active 830 On real hardware, interrupt pins can be active-low or active-high. This 871 does not matter for the level field of struct 831 does not matter for the level field of struct kvm_irq_level: 1 always 872 means active (asserted), 0 means inactive (dea 832 means active (asserted), 0 means inactive (deasserted). 873 833 874 x86 allows the operating system to program the 834 x86 allows the operating system to program the interrupt polarity 875 (active-low/active-high) for level-triggered i 835 (active-low/active-high) for level-triggered interrupts, and KVM used 876 to consider the polarity. However, due to bit 836 to consider the polarity. However, due to bitrot in the handling of 877 active-low interrupts, the above convention is 837 active-low interrupts, the above convention is now valid on x86 too. 878 This is signaled by KVM_CAP_X86_IOAPIC_POLARIT 838 This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace 879 should not present interrupts to the guest as 839 should not present interrupts to the guest as active-low unless this 880 capability is present (or unless it is not usi 840 capability is present (or unless it is not using the in-kernel irqchip, 881 of course). 841 of course). 882 842 883 843 884 arm64 can signal an interrupt either at the CP 844 arm64 can signal an interrupt either at the CPU level, or at the 885 in-kernel irqchip (GIC), and for in-kernel irq 845 in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to 886 use PPIs designated for specific cpus. The ir 846 use PPIs designated for specific cpus. The irq field is interpreted 887 like this:: 847 like this:: 888 848 889 bits: | 31 ... 28 | 27 ... 24 | 23 ... 1 849 bits: | 31 ... 28 | 27 ... 24 | 23 ... 16 | 15 ... 0 | 890 field: | vcpu2_index | irq_type | vcpu_inde 850 field: | vcpu2_index | irq_type | vcpu_index | irq_id | 891 851 892 The irq_type field has the following values: 852 The irq_type field has the following values: 893 853 894 - KVM_ARM_IRQ_TYPE_CPU: !! 854 - irq_type[0]: 895 out-of-kernel GIC: irq_id 0 is 855 out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ 896 - KVM_ARM_IRQ_TYPE_SPI: !! 856 - irq_type[1]: 897 in-kernel GIC: SPI, irq_id betw 857 in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.) 898 (the vcpu_index field is ignore 858 (the vcpu_index field is ignored) 899 - KVM_ARM_IRQ_TYPE_PPI: !! 859 - irq_type[2]: 900 in-kernel GIC: PPI, irq_id betw 860 in-kernel GIC: PPI, irq_id between 16 and 31 (incl.) 901 861 902 (The irq_id field thus corresponds nicely to t 862 (The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs) 903 863 904 In both cases, level is used to assert/deasser 864 In both cases, level is used to assert/deassert the line. 905 865 906 When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supporte 866 When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supported, the target vcpu is 907 identified as (256 * vcpu2_index + vcpu_index) 867 identified as (256 * vcpu2_index + vcpu_index). Otherwise, vcpu2_index 908 must be zero. 868 must be zero. 909 869 910 Note that on arm64, the KVM_CAP_IRQCHIP capabi 870 Note that on arm64, the KVM_CAP_IRQCHIP capability only conditions 911 injection of interrupts for the in-kernel irqc 871 injection of interrupts for the in-kernel irqchip. KVM_IRQ_LINE can always 912 be used for a userspace interrupt controller. 872 be used for a userspace interrupt controller. 913 873 914 :: 874 :: 915 875 916 struct kvm_irq_level { 876 struct kvm_irq_level { 917 union { 877 union { 918 __u32 irq; /* GSI */ 878 __u32 irq; /* GSI */ 919 __s32 status; /* not used for 879 __s32 status; /* not used for KVM_IRQ_LEVEL */ 920 }; 880 }; 921 __u32 level; /* 0 or 1 */ 881 __u32 level; /* 0 or 1 */ 922 }; 882 }; 923 883 924 884 925 4.26 KVM_GET_IRQCHIP 885 4.26 KVM_GET_IRQCHIP 926 -------------------- 886 -------------------- 927 887 928 :Capability: KVM_CAP_IRQCHIP 888 :Capability: KVM_CAP_IRQCHIP 929 :Architectures: x86 889 :Architectures: x86 930 :Type: vm ioctl 890 :Type: vm ioctl 931 :Parameters: struct kvm_irqchip (in/out) 891 :Parameters: struct kvm_irqchip (in/out) 932 :Returns: 0 on success, -1 on error 892 :Returns: 0 on success, -1 on error 933 893 934 Reads the state of a kernel interrupt controll 894 Reads the state of a kernel interrupt controller created with 935 KVM_CREATE_IRQCHIP into a buffer provided by t 895 KVM_CREATE_IRQCHIP into a buffer provided by the caller. 936 896 937 :: 897 :: 938 898 939 struct kvm_irqchip { 899 struct kvm_irqchip { 940 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 900 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ 941 __u32 pad; 901 __u32 pad; 942 union { 902 union { 943 char dummy[512]; /* reserving 903 char dummy[512]; /* reserving space */ 944 struct kvm_pic_state pic; 904 struct kvm_pic_state pic; 945 struct kvm_ioapic_state ioapic 905 struct kvm_ioapic_state ioapic; 946 } chip; 906 } chip; 947 }; 907 }; 948 908 949 909 950 4.27 KVM_SET_IRQCHIP 910 4.27 KVM_SET_IRQCHIP 951 -------------------- 911 -------------------- 952 912 953 :Capability: KVM_CAP_IRQCHIP 913 :Capability: KVM_CAP_IRQCHIP 954 :Architectures: x86 914 :Architectures: x86 955 :Type: vm ioctl 915 :Type: vm ioctl 956 :Parameters: struct kvm_irqchip (in) 916 :Parameters: struct kvm_irqchip (in) 957 :Returns: 0 on success, -1 on error 917 :Returns: 0 on success, -1 on error 958 918 959 Sets the state of a kernel interrupt controlle 919 Sets the state of a kernel interrupt controller created with 960 KVM_CREATE_IRQCHIP from a buffer provided by t 920 KVM_CREATE_IRQCHIP from a buffer provided by the caller. 961 921 962 :: 922 :: 963 923 964 struct kvm_irqchip { 924 struct kvm_irqchip { 965 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 925 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ 966 __u32 pad; 926 __u32 pad; 967 union { 927 union { 968 char dummy[512]; /* reserving 928 char dummy[512]; /* reserving space */ 969 struct kvm_pic_state pic; 929 struct kvm_pic_state pic; 970 struct kvm_ioapic_state ioapic 930 struct kvm_ioapic_state ioapic; 971 } chip; 931 } chip; 972 }; 932 }; 973 933 974 934 975 4.28 KVM_XEN_HVM_CONFIG 935 4.28 KVM_XEN_HVM_CONFIG 976 ----------------------- 936 ----------------------- 977 937 978 :Capability: KVM_CAP_XEN_HVM 938 :Capability: KVM_CAP_XEN_HVM 979 :Architectures: x86 939 :Architectures: x86 980 :Type: vm ioctl 940 :Type: vm ioctl 981 :Parameters: struct kvm_xen_hvm_config (in) 941 :Parameters: struct kvm_xen_hvm_config (in) 982 :Returns: 0 on success, -1 on error 942 :Returns: 0 on success, -1 on error 983 943 984 Sets the MSR that the Xen HVM guest uses to in 944 Sets the MSR that the Xen HVM guest uses to initialize its hypercall 985 page, and provides the starting address and si 945 page, and provides the starting address and size of the hypercall 986 blobs in userspace. When the guest writes the 946 blobs in userspace. When the guest writes the MSR, kvm copies one 987 page of a blob (32- or 64-bit, depending on th 947 page of a blob (32- or 64-bit, depending on the vcpu mode) to guest 988 memory. 948 memory. 989 949 990 :: 950 :: 991 951 992 struct kvm_xen_hvm_config { 952 struct kvm_xen_hvm_config { 993 __u32 flags; 953 __u32 flags; 994 __u32 msr; 954 __u32 msr; 995 __u64 blob_addr_32; 955 __u64 blob_addr_32; 996 __u64 blob_addr_64; 956 __u64 blob_addr_64; 997 __u8 blob_size_32; 957 __u8 blob_size_32; 998 __u8 blob_size_64; 958 __u8 blob_size_64; 999 __u8 pad2[30]; 959 __u8 pad2[30]; 1000 }; 960 }; 1001 961 1002 If certain flags are returned from the KVM_CA 962 If certain flags are returned from the KVM_CAP_XEN_HVM check, they may 1003 be set in the flags field of this ioctl: 963 be set in the flags field of this ioctl: 1004 964 1005 The KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL flag r 965 The KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL flag requests KVM to generate 1006 the contents of the hypercall page automatica 966 the contents of the hypercall page automatically; hypercalls will be 1007 intercepted and passed to userspace through K 967 intercepted and passed to userspace through KVM_EXIT_XEN. In this 1008 case, all of the blob size and address fields !! 968 ase, all of the blob size and address fields must be zero. 1009 969 1010 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indic 970 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indicates to KVM that userspace 1011 will always use the KVM_XEN_HVM_EVTCHN_SEND i 971 will always use the KVM_XEN_HVM_EVTCHN_SEND ioctl to deliver event 1012 channel interrupts rather than manipulating t 972 channel interrupts rather than manipulating the guest's shared_info 1013 structures directly. This, in turn, may allow 973 structures directly. This, in turn, may allow KVM to enable features 1014 such as intercepting the SCHEDOP_poll hyperca 974 such as intercepting the SCHEDOP_poll hypercall to accelerate PV 1015 spinlock operation for the guest. Userspace m 975 spinlock operation for the guest. Userspace may still use the ioctl 1016 to deliver events if it was advertised, even 976 to deliver events if it was advertised, even if userspace does not 1017 send this indication that it will always do s 977 send this indication that it will always do so 1018 978 1019 No other flags are currently valid in the str 979 No other flags are currently valid in the struct kvm_xen_hvm_config. 1020 980 1021 4.29 KVM_GET_CLOCK 981 4.29 KVM_GET_CLOCK 1022 ------------------ 982 ------------------ 1023 983 1024 :Capability: KVM_CAP_ADJUST_CLOCK 984 :Capability: KVM_CAP_ADJUST_CLOCK 1025 :Architectures: x86 985 :Architectures: x86 1026 :Type: vm ioctl 986 :Type: vm ioctl 1027 :Parameters: struct kvm_clock_data (out) 987 :Parameters: struct kvm_clock_data (out) 1028 :Returns: 0 on success, -1 on error 988 :Returns: 0 on success, -1 on error 1029 989 1030 Gets the current timestamp of kvmclock as see 990 Gets the current timestamp of kvmclock as seen by the current guest. In 1031 conjunction with KVM_SET_CLOCK, it is used to 991 conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios 1032 such as migration. 992 such as migration. 1033 993 1034 When KVM_CAP_ADJUST_CLOCK is passed to KVM_CH 994 When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the 1035 set of bits that KVM can return in struct kvm 995 set of bits that KVM can return in struct kvm_clock_data's flag member. 1036 996 1037 The following flags are defined: 997 The following flags are defined: 1038 998 1039 KVM_CLOCK_TSC_STABLE 999 KVM_CLOCK_TSC_STABLE 1040 If set, the returned value is the exact kvm 1000 If set, the returned value is the exact kvmclock 1041 value seen by all VCPUs at the instant when 1001 value seen by all VCPUs at the instant when KVM_GET_CLOCK was called. 1042 If clear, the returned value is simply CLOC 1002 If clear, the returned value is simply CLOCK_MONOTONIC plus a constant 1043 offset; the offset can be modified with KVM 1003 offset; the offset can be modified with KVM_SET_CLOCK. KVM will try 1044 to make all VCPUs follow this clock, but th 1004 to make all VCPUs follow this clock, but the exact value read by each 1045 VCPU could differ, because the host TSC is 1005 VCPU could differ, because the host TSC is not stable. 1046 1006 1047 KVM_CLOCK_REALTIME 1007 KVM_CLOCK_REALTIME 1048 If set, the `realtime` field in the kvm_clo 1008 If set, the `realtime` field in the kvm_clock_data 1049 structure is populated with the value of th 1009 structure is populated with the value of the host's real time 1050 clocksource at the instant when KVM_GET_CLO 1010 clocksource at the instant when KVM_GET_CLOCK was called. If clear, 1051 the `realtime` field does not contain a val 1011 the `realtime` field does not contain a value. 1052 1012 1053 KVM_CLOCK_HOST_TSC 1013 KVM_CLOCK_HOST_TSC 1054 If set, the `host_tsc` field in the kvm_clo 1014 If set, the `host_tsc` field in the kvm_clock_data 1055 structure is populated with the value of th 1015 structure is populated with the value of the host's timestamp counter (TSC) 1056 at the instant when KVM_GET_CLOCK was calle 1016 at the instant when KVM_GET_CLOCK was called. If clear, the `host_tsc` field 1057 does not contain a value. 1017 does not contain a value. 1058 1018 1059 :: 1019 :: 1060 1020 1061 struct kvm_clock_data { 1021 struct kvm_clock_data { 1062 __u64 clock; /* kvmclock current val 1022 __u64 clock; /* kvmclock current value */ 1063 __u32 flags; 1023 __u32 flags; 1064 __u32 pad0; 1024 __u32 pad0; 1065 __u64 realtime; 1025 __u64 realtime; 1066 __u64 host_tsc; 1026 __u64 host_tsc; 1067 __u32 pad[4]; 1027 __u32 pad[4]; 1068 }; 1028 }; 1069 1029 1070 1030 1071 4.30 KVM_SET_CLOCK 1031 4.30 KVM_SET_CLOCK 1072 ------------------ 1032 ------------------ 1073 1033 1074 :Capability: KVM_CAP_ADJUST_CLOCK 1034 :Capability: KVM_CAP_ADJUST_CLOCK 1075 :Architectures: x86 1035 :Architectures: x86 1076 :Type: vm ioctl 1036 :Type: vm ioctl 1077 :Parameters: struct kvm_clock_data (in) 1037 :Parameters: struct kvm_clock_data (in) 1078 :Returns: 0 on success, -1 on error 1038 :Returns: 0 on success, -1 on error 1079 1039 1080 Sets the current timestamp of kvmclock to the 1040 Sets the current timestamp of kvmclock to the value specified in its parameter. 1081 In conjunction with KVM_GET_CLOCK, it is used 1041 In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios 1082 such as migration. 1042 such as migration. 1083 1043 1084 The following flags can be passed: 1044 The following flags can be passed: 1085 1045 1086 KVM_CLOCK_REALTIME 1046 KVM_CLOCK_REALTIME 1087 If set, KVM will compare the value of the ` 1047 If set, KVM will compare the value of the `realtime` field 1088 with the value of the host's real time cloc 1048 with the value of the host's real time clocksource at the instant when 1089 KVM_SET_CLOCK was called. The difference in 1049 KVM_SET_CLOCK was called. The difference in elapsed time is added to the final 1090 kvmclock value that will be provided to gue 1050 kvmclock value that will be provided to guests. 1091 1051 1092 Other flags returned by ``KVM_GET_CLOCK`` are 1052 Other flags returned by ``KVM_GET_CLOCK`` are accepted but ignored. 1093 1053 1094 :: 1054 :: 1095 1055 1096 struct kvm_clock_data { 1056 struct kvm_clock_data { 1097 __u64 clock; /* kvmclock current val 1057 __u64 clock; /* kvmclock current value */ 1098 __u32 flags; 1058 __u32 flags; 1099 __u32 pad0; 1059 __u32 pad0; 1100 __u64 realtime; 1060 __u64 realtime; 1101 __u64 host_tsc; 1061 __u64 host_tsc; 1102 __u32 pad[4]; 1062 __u32 pad[4]; 1103 }; 1063 }; 1104 1064 1105 1065 1106 4.31 KVM_GET_VCPU_EVENTS 1066 4.31 KVM_GET_VCPU_EVENTS 1107 ------------------------ 1067 ------------------------ 1108 1068 1109 :Capability: KVM_CAP_VCPU_EVENTS 1069 :Capability: KVM_CAP_VCPU_EVENTS 1110 :Extended by: KVM_CAP_INTR_SHADOW 1070 :Extended by: KVM_CAP_INTR_SHADOW 1111 :Architectures: x86, arm64 1071 :Architectures: x86, arm64 1112 :Type: vcpu ioctl 1072 :Type: vcpu ioctl 1113 :Parameters: struct kvm_vcpu_events (out) !! 1073 :Parameters: struct kvm_vcpu_event (out) 1114 :Returns: 0 on success, -1 on error 1074 :Returns: 0 on success, -1 on error 1115 1075 1116 X86: 1076 X86: 1117 ^^^^ 1077 ^^^^ 1118 1078 1119 Gets currently pending exceptions, interrupts 1079 Gets currently pending exceptions, interrupts, and NMIs as well as related 1120 states of the vcpu. 1080 states of the vcpu. 1121 1081 1122 :: 1082 :: 1123 1083 1124 struct kvm_vcpu_events { 1084 struct kvm_vcpu_events { 1125 struct { 1085 struct { 1126 __u8 injected; 1086 __u8 injected; 1127 __u8 nr; 1087 __u8 nr; 1128 __u8 has_error_code; 1088 __u8 has_error_code; 1129 __u8 pending; 1089 __u8 pending; 1130 __u32 error_code; 1090 __u32 error_code; 1131 } exception; 1091 } exception; 1132 struct { 1092 struct { 1133 __u8 injected; 1093 __u8 injected; 1134 __u8 nr; 1094 __u8 nr; 1135 __u8 soft; 1095 __u8 soft; 1136 __u8 shadow; 1096 __u8 shadow; 1137 } interrupt; 1097 } interrupt; 1138 struct { 1098 struct { 1139 __u8 injected; 1099 __u8 injected; 1140 __u8 pending; 1100 __u8 pending; 1141 __u8 masked; 1101 __u8 masked; 1142 __u8 pad; 1102 __u8 pad; 1143 } nmi; 1103 } nmi; 1144 __u32 sipi_vector; 1104 __u32 sipi_vector; 1145 __u32 flags; 1105 __u32 flags; 1146 struct { 1106 struct { 1147 __u8 smm; 1107 __u8 smm; 1148 __u8 pending; 1108 __u8 pending; 1149 __u8 smm_inside_nmi; 1109 __u8 smm_inside_nmi; 1150 __u8 latched_init; 1110 __u8 latched_init; 1151 } smi; 1111 } smi; 1152 __u8 reserved[27]; 1112 __u8 reserved[27]; 1153 __u8 exception_has_payload; 1113 __u8 exception_has_payload; 1154 __u64 exception_payload; 1114 __u64 exception_payload; 1155 }; 1115 }; 1156 1116 1157 The following bits are defined in the flags f 1117 The following bits are defined in the flags field: 1158 1118 1159 - KVM_VCPUEVENT_VALID_SHADOW may be set to si 1119 - KVM_VCPUEVENT_VALID_SHADOW may be set to signal that 1160 interrupt.shadow contains a valid state. 1120 interrupt.shadow contains a valid state. 1161 1121 1162 - KVM_VCPUEVENT_VALID_SMM may be set to signa 1122 - KVM_VCPUEVENT_VALID_SMM may be set to signal that smi contains a 1163 valid state. 1123 valid state. 1164 1124 1165 - KVM_VCPUEVENT_VALID_PAYLOAD may be set to s 1125 - KVM_VCPUEVENT_VALID_PAYLOAD may be set to signal that the 1166 exception_has_payload, exception_payload, a 1126 exception_has_payload, exception_payload, and exception.pending 1167 fields contain a valid state. This bit will 1127 fields contain a valid state. This bit will be set whenever 1168 KVM_CAP_EXCEPTION_PAYLOAD is enabled. 1128 KVM_CAP_EXCEPTION_PAYLOAD is enabled. 1169 1129 1170 - KVM_VCPUEVENT_VALID_TRIPLE_FAULT may be set 1130 - KVM_VCPUEVENT_VALID_TRIPLE_FAULT may be set to signal that the 1171 triple_fault_pending field contains a valid 1131 triple_fault_pending field contains a valid state. This bit will 1172 be set whenever KVM_CAP_X86_TRIPLE_FAULT_EV 1132 be set whenever KVM_CAP_X86_TRIPLE_FAULT_EVENT is enabled. 1173 1133 1174 ARM64: 1134 ARM64: 1175 ^^^^^^ 1135 ^^^^^^ 1176 1136 1177 If the guest accesses a device that is being 1137 If the guest accesses a device that is being emulated by the host kernel in 1178 such a way that a real device would generate 1138 such a way that a real device would generate a physical SError, KVM may make 1179 a virtual SError pending for that VCPU. This 1139 a virtual SError pending for that VCPU. This system error interrupt remains 1180 pending until the guest takes the exception b 1140 pending until the guest takes the exception by unmasking PSTATE.A. 1181 1141 1182 Running the VCPU may cause it to take a pendi 1142 Running the VCPU may cause it to take a pending SError, or make an access that 1183 causes an SError to become pending. The event 1143 causes an SError to become pending. The event's description is only valid while 1184 the VPCU is not running. 1144 the VPCU is not running. 1185 1145 1186 This API provides a way to read and write the 1146 This API provides a way to read and write the pending 'event' state that is not 1187 visible to the guest. To save, restore or mig 1147 visible to the guest. To save, restore or migrate a VCPU the struct representing 1188 the state can be read then written using this 1148 the state can be read then written using this GET/SET API, along with the other 1189 guest-visible registers. It is not possible t 1149 guest-visible registers. It is not possible to 'cancel' an SError that has been 1190 made pending. 1150 made pending. 1191 1151 1192 A device being emulated in user-space may als 1152 A device being emulated in user-space may also wish to generate an SError. To do 1193 this the events structure can be populated by 1153 this the events structure can be populated by user-space. The current state 1194 should be read first, to ensure no existing S 1154 should be read first, to ensure no existing SError is pending. If an existing 1195 SError is pending, the architecture's 'Multip 1155 SError is pending, the architecture's 'Multiple SError interrupts' rules should 1196 be followed. (2.5.3 of DDI0587.a "ARM Reliabi 1156 be followed. (2.5.3 of DDI0587.a "ARM Reliability, Availability, and 1197 Serviceability (RAS) Specification"). 1157 Serviceability (RAS) Specification"). 1198 1158 1199 SError exceptions always have an ESR value. S 1159 SError exceptions always have an ESR value. Some CPUs have the ability to 1200 specify what the virtual SError's ESR value s 1160 specify what the virtual SError's ESR value should be. These systems will 1201 advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In t 1161 advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In this case exception.has_esr will 1202 always have a non-zero value when read, and t 1162 always have a non-zero value when read, and the agent making an SError pending 1203 should specify the ISS field in the lower 24 1163 should specify the ISS field in the lower 24 bits of exception.serror_esr. If 1204 the system supports KVM_CAP_ARM_INJECT_SERROR 1164 the system supports KVM_CAP_ARM_INJECT_SERROR_ESR, but user-space sets the events 1205 with exception.has_esr as zero, KVM will choo 1165 with exception.has_esr as zero, KVM will choose an ESR. 1206 1166 1207 Specifying exception.has_esr on a system that 1167 Specifying exception.has_esr on a system that does not support it will return 1208 -EINVAL. Setting anything other than the lowe 1168 -EINVAL. Setting anything other than the lower 24bits of exception.serror_esr 1209 will return -EINVAL. 1169 will return -EINVAL. 1210 1170 1211 It is not possible to read back a pending ext 1171 It is not possible to read back a pending external abort (injected via 1212 KVM_SET_VCPU_EVENTS or otherwise) because suc 1172 KVM_SET_VCPU_EVENTS or otherwise) because such an exception is always delivered 1213 directly to the virtual CPU). 1173 directly to the virtual CPU). 1214 1174 1215 :: 1175 :: 1216 1176 1217 struct kvm_vcpu_events { 1177 struct kvm_vcpu_events { 1218 struct { 1178 struct { 1219 __u8 serror_pending; 1179 __u8 serror_pending; 1220 __u8 serror_has_esr; 1180 __u8 serror_has_esr; 1221 __u8 ext_dabt_pending; 1181 __u8 ext_dabt_pending; 1222 /* Align it to 8 bytes */ 1182 /* Align it to 8 bytes */ 1223 __u8 pad[5]; 1183 __u8 pad[5]; 1224 __u64 serror_esr; 1184 __u64 serror_esr; 1225 } exception; 1185 } exception; 1226 __u32 reserved[12]; 1186 __u32 reserved[12]; 1227 }; 1187 }; 1228 1188 1229 4.32 KVM_SET_VCPU_EVENTS 1189 4.32 KVM_SET_VCPU_EVENTS 1230 ------------------------ 1190 ------------------------ 1231 1191 1232 :Capability: KVM_CAP_VCPU_EVENTS 1192 :Capability: KVM_CAP_VCPU_EVENTS 1233 :Extended by: KVM_CAP_INTR_SHADOW 1193 :Extended by: KVM_CAP_INTR_SHADOW 1234 :Architectures: x86, arm64 1194 :Architectures: x86, arm64 1235 :Type: vcpu ioctl 1195 :Type: vcpu ioctl 1236 :Parameters: struct kvm_vcpu_events (in) !! 1196 :Parameters: struct kvm_vcpu_event (in) 1237 :Returns: 0 on success, -1 on error 1197 :Returns: 0 on success, -1 on error 1238 1198 1239 X86: 1199 X86: 1240 ^^^^ 1200 ^^^^ 1241 1201 1242 Set pending exceptions, interrupts, and NMIs 1202 Set pending exceptions, interrupts, and NMIs as well as related states of the 1243 vcpu. 1203 vcpu. 1244 1204 1245 See KVM_GET_VCPU_EVENTS for the data structur 1205 See KVM_GET_VCPU_EVENTS for the data structure. 1246 1206 1247 Fields that may be modified asynchronously by 1207 Fields that may be modified asynchronously by running VCPUs can be excluded 1248 from the update. These fields are nmi.pending 1208 from the update. These fields are nmi.pending, sipi_vector, smi.smm, 1249 smi.pending. Keep the corresponding bits in t 1209 smi.pending. Keep the corresponding bits in the flags field cleared to 1250 suppress overwriting the current in-kernel st 1210 suppress overwriting the current in-kernel state. The bits are: 1251 1211 1252 =============================== ============ 1212 =============================== ================================== 1253 KVM_VCPUEVENT_VALID_NMI_PENDING transfer nmi 1213 KVM_VCPUEVENT_VALID_NMI_PENDING transfer nmi.pending to the kernel 1254 KVM_VCPUEVENT_VALID_SIPI_VECTOR transfer sip 1214 KVM_VCPUEVENT_VALID_SIPI_VECTOR transfer sipi_vector 1255 KVM_VCPUEVENT_VALID_SMM transfer the 1215 KVM_VCPUEVENT_VALID_SMM transfer the smi sub-struct. 1256 =============================== ============ 1216 =============================== ================================== 1257 1217 1258 If KVM_CAP_INTR_SHADOW is available, KVM_VCPU 1218 If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in 1259 the flags field to signal that interrupt.shad 1219 the flags field to signal that interrupt.shadow contains a valid state and 1260 shall be written into the VCPU. 1220 shall be written into the VCPU. 1261 1221 1262 KVM_VCPUEVENT_VALID_SMM can only be set if KV 1222 KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available. 1263 1223 1264 If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_ 1224 If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_VCPUEVENT_VALID_PAYLOAD 1265 can be set in the flags field to signal that 1225 can be set in the flags field to signal that the 1266 exception_has_payload, exception_payload, and 1226 exception_has_payload, exception_payload, and exception.pending fields 1267 contain a valid state and shall be written in 1227 contain a valid state and shall be written into the VCPU. 1268 1228 1269 If KVM_CAP_X86_TRIPLE_FAULT_EVENT is enabled, 1229 If KVM_CAP_X86_TRIPLE_FAULT_EVENT is enabled, KVM_VCPUEVENT_VALID_TRIPLE_FAULT 1270 can be set in flags field to signal that the 1230 can be set in flags field to signal that the triple_fault field contains 1271 a valid state and shall be written into the V 1231 a valid state and shall be written into the VCPU. 1272 1232 1273 ARM64: 1233 ARM64: 1274 ^^^^^^ 1234 ^^^^^^ 1275 1235 1276 User space may need to inject several types o 1236 User space may need to inject several types of events to the guest. 1277 1237 1278 Set the pending SError exception state for th 1238 Set the pending SError exception state for this VCPU. It is not possible to 1279 'cancel' an Serror that has been made pending 1239 'cancel' an Serror that has been made pending. 1280 1240 1281 If the guest performed an access to I/O memor 1241 If the guest performed an access to I/O memory which could not be handled by 1282 userspace, for example because of missing ins 1242 userspace, for example because of missing instruction syndrome decode 1283 information or because there is no device map 1243 information or because there is no device mapped at the accessed IPA, then 1284 userspace can ask the kernel to inject an ext 1244 userspace can ask the kernel to inject an external abort using the address 1285 from the exiting fault on the VCPU. It is a p 1245 from the exiting fault on the VCPU. It is a programming error to set 1286 ext_dabt_pending after an exit which was not 1246 ext_dabt_pending after an exit which was not either KVM_EXIT_MMIO or 1287 KVM_EXIT_ARM_NISV. This feature is only avail 1247 KVM_EXIT_ARM_NISV. This feature is only available if the system supports 1288 KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper 1248 KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper which provides commonality in 1289 how userspace reports accesses for the above 1249 how userspace reports accesses for the above cases to guests, across different 1290 userspace implementations. Nevertheless, user 1250 userspace implementations. Nevertheless, userspace can still emulate all Arm 1291 exceptions by manipulating individual registe 1251 exceptions by manipulating individual registers using the KVM_SET_ONE_REG API. 1292 1252 1293 See KVM_GET_VCPU_EVENTS for the data structur 1253 See KVM_GET_VCPU_EVENTS for the data structure. 1294 1254 1295 1255 1296 4.33 KVM_GET_DEBUGREGS 1256 4.33 KVM_GET_DEBUGREGS 1297 ---------------------- 1257 ---------------------- 1298 1258 1299 :Capability: KVM_CAP_DEBUGREGS 1259 :Capability: KVM_CAP_DEBUGREGS 1300 :Architectures: x86 1260 :Architectures: x86 1301 :Type: vm ioctl 1261 :Type: vm ioctl 1302 :Parameters: struct kvm_debugregs (out) 1262 :Parameters: struct kvm_debugregs (out) 1303 :Returns: 0 on success, -1 on error 1263 :Returns: 0 on success, -1 on error 1304 1264 1305 Reads debug registers from the vcpu. 1265 Reads debug registers from the vcpu. 1306 1266 1307 :: 1267 :: 1308 1268 1309 struct kvm_debugregs { 1269 struct kvm_debugregs { 1310 __u64 db[4]; 1270 __u64 db[4]; 1311 __u64 dr6; 1271 __u64 dr6; 1312 __u64 dr7; 1272 __u64 dr7; 1313 __u64 flags; 1273 __u64 flags; 1314 __u64 reserved[9]; 1274 __u64 reserved[9]; 1315 }; 1275 }; 1316 1276 1317 1277 1318 4.34 KVM_SET_DEBUGREGS 1278 4.34 KVM_SET_DEBUGREGS 1319 ---------------------- 1279 ---------------------- 1320 1280 1321 :Capability: KVM_CAP_DEBUGREGS 1281 :Capability: KVM_CAP_DEBUGREGS 1322 :Architectures: x86 1282 :Architectures: x86 1323 :Type: vm ioctl 1283 :Type: vm ioctl 1324 :Parameters: struct kvm_debugregs (in) 1284 :Parameters: struct kvm_debugregs (in) 1325 :Returns: 0 on success, -1 on error 1285 :Returns: 0 on success, -1 on error 1326 1286 1327 Writes debug registers into the vcpu. 1287 Writes debug registers into the vcpu. 1328 1288 1329 See KVM_GET_DEBUGREGS for the data structure. 1289 See KVM_GET_DEBUGREGS for the data structure. The flags field is unused 1330 yet and must be cleared on entry. 1290 yet and must be cleared on entry. 1331 1291 1332 1292 1333 4.35 KVM_SET_USER_MEMORY_REGION 1293 4.35 KVM_SET_USER_MEMORY_REGION 1334 ------------------------------- 1294 ------------------------------- 1335 1295 1336 :Capability: KVM_CAP_USER_MEMORY 1296 :Capability: KVM_CAP_USER_MEMORY 1337 :Architectures: all 1297 :Architectures: all 1338 :Type: vm ioctl 1298 :Type: vm ioctl 1339 :Parameters: struct kvm_userspace_memory_regi 1299 :Parameters: struct kvm_userspace_memory_region (in) 1340 :Returns: 0 on success, -1 on error 1300 :Returns: 0 on success, -1 on error 1341 1301 1342 :: 1302 :: 1343 1303 1344 struct kvm_userspace_memory_region { 1304 struct kvm_userspace_memory_region { 1345 __u32 slot; 1305 __u32 slot; 1346 __u32 flags; 1306 __u32 flags; 1347 __u64 guest_phys_addr; 1307 __u64 guest_phys_addr; 1348 __u64 memory_size; /* bytes */ 1308 __u64 memory_size; /* bytes */ 1349 __u64 userspace_addr; /* start of the 1309 __u64 userspace_addr; /* start of the userspace allocated memory */ 1350 }; 1310 }; 1351 1311 1352 /* for kvm_userspace_memory_region::flags * 1312 /* for kvm_userspace_memory_region::flags */ 1353 #define KVM_MEM_LOG_DIRTY_PAGES (1UL 1313 #define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0) 1354 #define KVM_MEM_READONLY (1UL << 1) 1314 #define KVM_MEM_READONLY (1UL << 1) 1355 1315 1356 This ioctl allows the user to create, modify 1316 This ioctl allows the user to create, modify or delete a guest physical 1357 memory slot. Bits 0-15 of "slot" specify the 1317 memory slot. Bits 0-15 of "slot" specify the slot id and this value 1358 should be less than the maximum number of use 1318 should be less than the maximum number of user memory slots supported per 1359 VM. The maximum allowed slots can be queried 1319 VM. The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS. 1360 Slots may not overlap in guest physical addre 1320 Slots may not overlap in guest physical address space. 1361 1321 1362 If KVM_CAP_MULTI_ADDRESS_SPACE is available, 1322 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot" 1363 specifies the address space which is being mo 1323 specifies the address space which is being modified. They must be 1364 less than the value that KVM_CHECK_EXTENSION 1324 less than the value that KVM_CHECK_EXTENSION returns for the 1365 KVM_CAP_MULTI_ADDRESS_SPACE capability. Slot 1325 KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces 1366 are unrelated; the restriction on overlapping 1326 are unrelated; the restriction on overlapping slots only applies within 1367 each address space. 1327 each address space. 1368 1328 1369 Deleting a slot is done by passing zero for m 1329 Deleting a slot is done by passing zero for memory_size. When changing 1370 an existing slot, it may be moved in the gues 1330 an existing slot, it may be moved in the guest physical memory space, 1371 or its flags may be modified, but it may not 1331 or its flags may be modified, but it may not be resized. 1372 1332 1373 Memory for the region is taken starting at th 1333 Memory for the region is taken starting at the address denoted by the 1374 field userspace_addr, which must point at use 1334 field userspace_addr, which must point at user addressable memory for 1375 the entire memory slot size. Any object may 1335 the entire memory slot size. Any object may back this memory, including 1376 anonymous memory, ordinary files, and hugetlb 1336 anonymous memory, ordinary files, and hugetlbfs. 1377 1337 1378 On architectures that support a form of addre 1338 On architectures that support a form of address tagging, userspace_addr must 1379 be an untagged address. 1339 be an untagged address. 1380 1340 1381 It is recommended that the lower 21 bits of g 1341 It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr 1382 be identical. This allows large pages in the 1342 be identical. This allows large pages in the guest to be backed by large 1383 pages in the host. 1343 pages in the host. 1384 1344 1385 The flags field supports two flags: KVM_MEM_L 1345 The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and 1386 KVM_MEM_READONLY. The former can be set to i 1346 KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of 1387 writes to memory within the slot. See KVM_GE 1347 writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to 1388 use it. The latter can be set, if KVM_CAP_RE 1348 use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it, 1389 to make a new slot read-only. In this case, 1349 to make a new slot read-only. In this case, writes to this memory will be 1390 posted to userspace as KVM_EXIT_MMIO exits. 1350 posted to userspace as KVM_EXIT_MMIO exits. 1391 1351 1392 When the KVM_CAP_SYNC_MMU capability is avail 1352 When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of 1393 the memory region are automatically reflected 1353 the memory region are automatically reflected into the guest. For example, an 1394 mmap() that affects the region will be made v 1354 mmap() that affects the region will be made visible immediately. Another 1395 example is madvise(MADV_DROP). 1355 example is madvise(MADV_DROP). 1396 1356 1397 Note: On arm64, a write generated by the page 1357 Note: On arm64, a write generated by the page-table walker (to update 1398 the Access and Dirty flags, for example) neve 1358 the Access and Dirty flags, for example) never results in a 1399 KVM_EXIT_MMIO exit when the slot has the KVM_ 1359 KVM_EXIT_MMIO exit when the slot has the KVM_MEM_READONLY flag. This 1400 is because KVM cannot provide the data that w 1360 is because KVM cannot provide the data that would be written by the 1401 page-table walker, making it impossible to em 1361 page-table walker, making it impossible to emulate the access. 1402 Instead, an abort (data abort if the cause of 1362 Instead, an abort (data abort if the cause of the page-table update 1403 was a load or a store, instruction abort if i 1363 was a load or a store, instruction abort if it was an instruction 1404 fetch) is injected in the guest. 1364 fetch) is injected in the guest. 1405 1365 1406 S390: << 1407 ^^^^^ << 1408 << 1409 Returns -EINVAL if the VM has the KVM_VM_S390 << 1410 Returns -EINVAL if called on a protected VM. << 1411 << 1412 4.36 KVM_SET_TSS_ADDR 1366 4.36 KVM_SET_TSS_ADDR 1413 --------------------- 1367 --------------------- 1414 1368 1415 :Capability: KVM_CAP_SET_TSS_ADDR 1369 :Capability: KVM_CAP_SET_TSS_ADDR 1416 :Architectures: x86 1370 :Architectures: x86 1417 :Type: vm ioctl 1371 :Type: vm ioctl 1418 :Parameters: unsigned long tss_address (in) 1372 :Parameters: unsigned long tss_address (in) 1419 :Returns: 0 on success, -1 on error 1373 :Returns: 0 on success, -1 on error 1420 1374 1421 This ioctl defines the physical address of a 1375 This ioctl defines the physical address of a three-page region in the guest 1422 physical address space. The region must be w 1376 physical address space. The region must be within the first 4GB of the 1423 guest physical address space and must not con 1377 guest physical address space and must not conflict with any memory slot 1424 or any mmio address. The guest may malfuncti 1378 or any mmio address. The guest may malfunction if it accesses this memory 1425 region. 1379 region. 1426 1380 1427 This ioctl is required on Intel-based hosts. 1381 This ioctl is required on Intel-based hosts. This is needed on Intel hardware 1428 because of a quirk in the virtualization impl 1382 because of a quirk in the virtualization implementation (see the internals 1429 documentation when it pops into existence). 1383 documentation when it pops into existence). 1430 1384 1431 1385 1432 4.37 KVM_ENABLE_CAP 1386 4.37 KVM_ENABLE_CAP 1433 ------------------- 1387 ------------------- 1434 1388 1435 :Capability: KVM_CAP_ENABLE_CAP 1389 :Capability: KVM_CAP_ENABLE_CAP 1436 :Architectures: mips, ppc, s390, x86, loongar !! 1390 :Architectures: mips, ppc, s390, x86 1437 :Type: vcpu ioctl 1391 :Type: vcpu ioctl 1438 :Parameters: struct kvm_enable_cap (in) 1392 :Parameters: struct kvm_enable_cap (in) 1439 :Returns: 0 on success; -1 on error 1393 :Returns: 0 on success; -1 on error 1440 1394 1441 :Capability: KVM_CAP_ENABLE_CAP_VM 1395 :Capability: KVM_CAP_ENABLE_CAP_VM 1442 :Architectures: all 1396 :Architectures: all 1443 :Type: vm ioctl 1397 :Type: vm ioctl 1444 :Parameters: struct kvm_enable_cap (in) 1398 :Parameters: struct kvm_enable_cap (in) 1445 :Returns: 0 on success; -1 on error 1399 :Returns: 0 on success; -1 on error 1446 1400 1447 .. note:: 1401 .. note:: 1448 1402 1449 Not all extensions are enabled by default. 1403 Not all extensions are enabled by default. Using this ioctl the application 1450 can enable an extension, making it availab 1404 can enable an extension, making it available to the guest. 1451 1405 1452 On systems that do not support this ioctl, it 1406 On systems that do not support this ioctl, it always fails. On systems that 1453 do support it, it only works for extensions t 1407 do support it, it only works for extensions that are supported for enablement. 1454 1408 1455 To check if a capability can be enabled, the 1409 To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should 1456 be used. 1410 be used. 1457 1411 1458 :: 1412 :: 1459 1413 1460 struct kvm_enable_cap { 1414 struct kvm_enable_cap { 1461 /* in */ 1415 /* in */ 1462 __u32 cap; 1416 __u32 cap; 1463 1417 1464 The capability that is supposed to get enable 1418 The capability that is supposed to get enabled. 1465 1419 1466 :: 1420 :: 1467 1421 1468 __u32 flags; 1422 __u32 flags; 1469 1423 1470 A bitfield indicating future enhancements. Ha 1424 A bitfield indicating future enhancements. Has to be 0 for now. 1471 1425 1472 :: 1426 :: 1473 1427 1474 __u64 args[4]; 1428 __u64 args[4]; 1475 1429 1476 Arguments for enabling a feature. If a featur 1430 Arguments for enabling a feature. If a feature needs initial values to 1477 function properly, this is the place to put t 1431 function properly, this is the place to put them. 1478 1432 1479 :: 1433 :: 1480 1434 1481 __u8 pad[64]; 1435 __u8 pad[64]; 1482 }; 1436 }; 1483 1437 1484 The vcpu ioctl should be used for vcpu-specif 1438 The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl 1485 for vm-wide capabilities. 1439 for vm-wide capabilities. 1486 1440 1487 4.38 KVM_GET_MP_STATE 1441 4.38 KVM_GET_MP_STATE 1488 --------------------- 1442 --------------------- 1489 1443 1490 :Capability: KVM_CAP_MP_STATE 1444 :Capability: KVM_CAP_MP_STATE 1491 :Architectures: x86, s390, arm64, riscv, loon !! 1445 :Architectures: x86, s390, arm64, riscv 1492 :Type: vcpu ioctl 1446 :Type: vcpu ioctl 1493 :Parameters: struct kvm_mp_state (out) 1447 :Parameters: struct kvm_mp_state (out) 1494 :Returns: 0 on success; -1 on error 1448 :Returns: 0 on success; -1 on error 1495 1449 1496 :: 1450 :: 1497 1451 1498 struct kvm_mp_state { 1452 struct kvm_mp_state { 1499 __u32 mp_state; 1453 __u32 mp_state; 1500 }; 1454 }; 1501 1455 1502 Returns the vcpu's current "multiprocessing s 1456 Returns the vcpu's current "multiprocessing state" (though also valid on 1503 uniprocessor guests). 1457 uniprocessor guests). 1504 1458 1505 Possible values are: 1459 Possible values are: 1506 1460 1507 ========================== ============ 1461 ========================== =============================================== 1508 KVM_MP_STATE_RUNNABLE the vcpu is 1462 KVM_MP_STATE_RUNNABLE the vcpu is currently running 1509 [x86,arm64,r !! 1463 [x86,arm64,riscv] 1510 KVM_MP_STATE_UNINITIALIZED the vcpu is 1464 KVM_MP_STATE_UNINITIALIZED the vcpu is an application processor (AP) 1511 which has no 1465 which has not yet received an INIT signal [x86] 1512 KVM_MP_STATE_INIT_RECEIVED the vcpu has 1466 KVM_MP_STATE_INIT_RECEIVED the vcpu has received an INIT signal, and is 1513 now ready fo 1467 now ready for a SIPI [x86] 1514 KVM_MP_STATE_HALTED the vcpu has 1468 KVM_MP_STATE_HALTED the vcpu has executed a HLT instruction and 1515 is waiting f 1469 is waiting for an interrupt [x86] 1516 KVM_MP_STATE_SIPI_RECEIVED the vcpu has 1470 KVM_MP_STATE_SIPI_RECEIVED the vcpu has just received a SIPI (vector 1517 accessible v 1471 accessible via KVM_GET_VCPU_EVENTS) [x86] 1518 KVM_MP_STATE_STOPPED the vcpu is 1472 KVM_MP_STATE_STOPPED the vcpu is stopped [s390,arm64,riscv] 1519 KVM_MP_STATE_CHECK_STOP the vcpu is 1473 KVM_MP_STATE_CHECK_STOP the vcpu is in a special error state [s390] 1520 KVM_MP_STATE_OPERATING the vcpu is 1474 KVM_MP_STATE_OPERATING the vcpu is operating (running or halted) 1521 [s390] 1475 [s390] 1522 KVM_MP_STATE_LOAD the vcpu is 1476 KVM_MP_STATE_LOAD the vcpu is in a special load/startup state 1523 [s390] 1477 [s390] 1524 KVM_MP_STATE_SUSPENDED the vcpu is 1478 KVM_MP_STATE_SUSPENDED the vcpu is in a suspend state and is waiting 1525 for a wakeup 1479 for a wakeup event [arm64] 1526 ========================== ============ 1480 ========================== =============================================== 1527 1481 1528 On x86, this ioctl is only useful after KVM_C 1482 On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an 1529 in-kernel irqchip, the multiprocessing state 1483 in-kernel irqchip, the multiprocessing state must be maintained by userspace on 1530 these architectures. 1484 these architectures. 1531 1485 1532 For arm64: 1486 For arm64: 1533 ^^^^^^^^^^ 1487 ^^^^^^^^^^ 1534 1488 1535 If a vCPU is in the KVM_MP_STATE_SUSPENDED st 1489 If a vCPU is in the KVM_MP_STATE_SUSPENDED state, KVM will emulate the 1536 architectural execution of a WFI instruction. 1490 architectural execution of a WFI instruction. 1537 1491 1538 If a wakeup event is recognized, KVM will exi 1492 If a wakeup event is recognized, KVM will exit to userspace with a 1539 KVM_SYSTEM_EVENT exit, where the event type i 1493 KVM_SYSTEM_EVENT exit, where the event type is KVM_SYSTEM_EVENT_WAKEUP. If 1540 userspace wants to honor the wakeup, it must 1494 userspace wants to honor the wakeup, it must set the vCPU's MP state to 1541 KVM_MP_STATE_RUNNABLE. If it does not, KVM wi 1495 KVM_MP_STATE_RUNNABLE. If it does not, KVM will continue to await a wakeup 1542 event in subsequent calls to KVM_RUN. 1496 event in subsequent calls to KVM_RUN. 1543 1497 1544 .. warning:: 1498 .. warning:: 1545 1499 1546 If userspace intends to keep the vCPU in 1500 If userspace intends to keep the vCPU in a SUSPENDED state, it is 1547 strongly recommended that userspace take 1501 strongly recommended that userspace take action to suppress the 1548 wakeup event (such as masking an interru 1502 wakeup event (such as masking an interrupt). Otherwise, subsequent 1549 calls to KVM_RUN will immediately exit w 1503 calls to KVM_RUN will immediately exit with a KVM_SYSTEM_EVENT_WAKEUP 1550 event and inadvertently waste CPU cycles 1504 event and inadvertently waste CPU cycles. 1551 1505 1552 Additionally, if userspace takes action 1506 Additionally, if userspace takes action to suppress a wakeup event, 1553 it is strongly recommended that it also 1507 it is strongly recommended that it also restores the vCPU to its 1554 original state when the vCPU is made RUN 1508 original state when the vCPU is made RUNNABLE again. For example, 1555 if userspace masked a pending interrupt 1509 if userspace masked a pending interrupt to suppress the wakeup, 1556 the interrupt should be unmasked before 1510 the interrupt should be unmasked before returning control to the 1557 guest. 1511 guest. 1558 1512 1559 For riscv: 1513 For riscv: 1560 ^^^^^^^^^^ 1514 ^^^^^^^^^^ 1561 1515 1562 The only states that are valid are KVM_MP_STA 1516 The only states that are valid are KVM_MP_STATE_STOPPED and 1563 KVM_MP_STATE_RUNNABLE which reflect if the vc 1517 KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not. 1564 1518 1565 On LoongArch, only the KVM_MP_STATE_RUNNABLE << 1566 whether the vcpu is runnable. << 1567 << 1568 4.39 KVM_SET_MP_STATE 1519 4.39 KVM_SET_MP_STATE 1569 --------------------- 1520 --------------------- 1570 1521 1571 :Capability: KVM_CAP_MP_STATE 1522 :Capability: KVM_CAP_MP_STATE 1572 :Architectures: x86, s390, arm64, riscv, loon !! 1523 :Architectures: x86, s390, arm64, riscv 1573 :Type: vcpu ioctl 1524 :Type: vcpu ioctl 1574 :Parameters: struct kvm_mp_state (in) 1525 :Parameters: struct kvm_mp_state (in) 1575 :Returns: 0 on success; -1 on error 1526 :Returns: 0 on success; -1 on error 1576 1527 1577 Sets the vcpu's current "multiprocessing stat 1528 Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for 1578 arguments. 1529 arguments. 1579 1530 1580 On x86, this ioctl is only useful after KVM_C 1531 On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an 1581 in-kernel irqchip, the multiprocessing state 1532 in-kernel irqchip, the multiprocessing state must be maintained by userspace on 1582 these architectures. 1533 these architectures. 1583 1534 1584 For arm64/riscv: 1535 For arm64/riscv: 1585 ^^^^^^^^^^^^^^^^ 1536 ^^^^^^^^^^^^^^^^ 1586 1537 1587 The only states that are valid are KVM_MP_STA 1538 The only states that are valid are KVM_MP_STATE_STOPPED and 1588 KVM_MP_STATE_RUNNABLE which reflect if the vc 1539 KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not. 1589 1540 1590 On LoongArch, only the KVM_MP_STATE_RUNNABLE << 1591 whether the vcpu is runnable. << 1592 << 1593 4.40 KVM_SET_IDENTITY_MAP_ADDR 1541 4.40 KVM_SET_IDENTITY_MAP_ADDR 1594 ------------------------------ 1542 ------------------------------ 1595 1543 1596 :Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR 1544 :Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR 1597 :Architectures: x86 1545 :Architectures: x86 1598 :Type: vm ioctl 1546 :Type: vm ioctl 1599 :Parameters: unsigned long identity (in) 1547 :Parameters: unsigned long identity (in) 1600 :Returns: 0 on success, -1 on error 1548 :Returns: 0 on success, -1 on error 1601 1549 1602 This ioctl defines the physical address of a 1550 This ioctl defines the physical address of a one-page region in the guest 1603 physical address space. The region must be w 1551 physical address space. The region must be within the first 4GB of the 1604 guest physical address space and must not con 1552 guest physical address space and must not conflict with any memory slot 1605 or any mmio address. The guest may malfuncti 1553 or any mmio address. The guest may malfunction if it accesses this memory 1606 region. 1554 region. 1607 1555 1608 Setting the address to 0 will result in reset 1556 Setting the address to 0 will result in resetting the address to its default 1609 (0xfffbc000). 1557 (0xfffbc000). 1610 1558 1611 This ioctl is required on Intel-based hosts. 1559 This ioctl is required on Intel-based hosts. This is needed on Intel hardware 1612 because of a quirk in the virtualization impl 1560 because of a quirk in the virtualization implementation (see the internals 1613 documentation when it pops into existence). 1561 documentation when it pops into existence). 1614 1562 1615 Fails if any VCPU has already been created. 1563 Fails if any VCPU has already been created. 1616 1564 1617 4.41 KVM_SET_BOOT_CPU_ID 1565 4.41 KVM_SET_BOOT_CPU_ID 1618 ------------------------ 1566 ------------------------ 1619 1567 1620 :Capability: KVM_CAP_SET_BOOT_CPU_ID 1568 :Capability: KVM_CAP_SET_BOOT_CPU_ID 1621 :Architectures: x86 1569 :Architectures: x86 1622 :Type: vm ioctl 1570 :Type: vm ioctl 1623 :Parameters: unsigned long vcpu_id 1571 :Parameters: unsigned long vcpu_id 1624 :Returns: 0 on success, -1 on error 1572 :Returns: 0 on success, -1 on error 1625 1573 1626 Define which vcpu is the Bootstrap Processor 1574 Define which vcpu is the Bootstrap Processor (BSP). Values are the same 1627 as the vcpu id in KVM_CREATE_VCPU. If this i 1575 as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default 1628 is vcpu 0. This ioctl has to be called before 1576 is vcpu 0. This ioctl has to be called before vcpu creation, 1629 otherwise it will return EBUSY error. 1577 otherwise it will return EBUSY error. 1630 1578 1631 1579 1632 4.42 KVM_GET_XSAVE 1580 4.42 KVM_GET_XSAVE 1633 ------------------ 1581 ------------------ 1634 1582 1635 :Capability: KVM_CAP_XSAVE 1583 :Capability: KVM_CAP_XSAVE 1636 :Architectures: x86 1584 :Architectures: x86 1637 :Type: vcpu ioctl 1585 :Type: vcpu ioctl 1638 :Parameters: struct kvm_xsave (out) 1586 :Parameters: struct kvm_xsave (out) 1639 :Returns: 0 on success, -1 on error 1587 :Returns: 0 on success, -1 on error 1640 1588 1641 1589 1642 :: 1590 :: 1643 1591 1644 struct kvm_xsave { 1592 struct kvm_xsave { 1645 __u32 region[1024]; 1593 __u32 region[1024]; 1646 __u32 extra[0]; 1594 __u32 extra[0]; 1647 }; 1595 }; 1648 1596 1649 This ioctl would copy current vcpu's xsave st 1597 This ioctl would copy current vcpu's xsave struct to the userspace. 1650 1598 1651 1599 1652 4.43 KVM_SET_XSAVE 1600 4.43 KVM_SET_XSAVE 1653 ------------------ 1601 ------------------ 1654 1602 1655 :Capability: KVM_CAP_XSAVE and KVM_CAP_XSAVE2 1603 :Capability: KVM_CAP_XSAVE and KVM_CAP_XSAVE2 1656 :Architectures: x86 1604 :Architectures: x86 1657 :Type: vcpu ioctl 1605 :Type: vcpu ioctl 1658 :Parameters: struct kvm_xsave (in) 1606 :Parameters: struct kvm_xsave (in) 1659 :Returns: 0 on success, -1 on error 1607 :Returns: 0 on success, -1 on error 1660 1608 1661 :: 1609 :: 1662 1610 1663 1611 1664 struct kvm_xsave { 1612 struct kvm_xsave { 1665 __u32 region[1024]; 1613 __u32 region[1024]; 1666 __u32 extra[0]; 1614 __u32 extra[0]; 1667 }; 1615 }; 1668 1616 1669 This ioctl would copy userspace's xsave struc 1617 This ioctl would copy userspace's xsave struct to the kernel. It copies 1670 as many bytes as are returned by KVM_CHECK_EX 1618 as many bytes as are returned by KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2), 1671 when invoked on the vm file descriptor. The s 1619 when invoked on the vm file descriptor. The size value returned by 1672 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will alwa 1620 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will always be at least 4096. 1673 Currently, it is only greater than 4096 if a 1621 Currently, it is only greater than 4096 if a dynamic feature has been 1674 enabled with ``arch_prctl()``, but this may c 1622 enabled with ``arch_prctl()``, but this may change in the future. 1675 1623 1676 The offsets of the state save areas in struct 1624 The offsets of the state save areas in struct kvm_xsave follow the 1677 contents of CPUID leaf 0xD on the host. 1625 contents of CPUID leaf 0xD on the host. 1678 1626 1679 1627 1680 4.44 KVM_GET_XCRS 1628 4.44 KVM_GET_XCRS 1681 ----------------- 1629 ----------------- 1682 1630 1683 :Capability: KVM_CAP_XCRS 1631 :Capability: KVM_CAP_XCRS 1684 :Architectures: x86 1632 :Architectures: x86 1685 :Type: vcpu ioctl 1633 :Type: vcpu ioctl 1686 :Parameters: struct kvm_xcrs (out) 1634 :Parameters: struct kvm_xcrs (out) 1687 :Returns: 0 on success, -1 on error 1635 :Returns: 0 on success, -1 on error 1688 1636 1689 :: 1637 :: 1690 1638 1691 struct kvm_xcr { 1639 struct kvm_xcr { 1692 __u32 xcr; 1640 __u32 xcr; 1693 __u32 reserved; 1641 __u32 reserved; 1694 __u64 value; 1642 __u64 value; 1695 }; 1643 }; 1696 1644 1697 struct kvm_xcrs { 1645 struct kvm_xcrs { 1698 __u32 nr_xcrs; 1646 __u32 nr_xcrs; 1699 __u32 flags; 1647 __u32 flags; 1700 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1648 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1701 __u64 padding[16]; 1649 __u64 padding[16]; 1702 }; 1650 }; 1703 1651 1704 This ioctl would copy current vcpu's xcrs to 1652 This ioctl would copy current vcpu's xcrs to the userspace. 1705 1653 1706 1654 1707 4.45 KVM_SET_XCRS 1655 4.45 KVM_SET_XCRS 1708 ----------------- 1656 ----------------- 1709 1657 1710 :Capability: KVM_CAP_XCRS 1658 :Capability: KVM_CAP_XCRS 1711 :Architectures: x86 1659 :Architectures: x86 1712 :Type: vcpu ioctl 1660 :Type: vcpu ioctl 1713 :Parameters: struct kvm_xcrs (in) 1661 :Parameters: struct kvm_xcrs (in) 1714 :Returns: 0 on success, -1 on error 1662 :Returns: 0 on success, -1 on error 1715 1663 1716 :: 1664 :: 1717 1665 1718 struct kvm_xcr { 1666 struct kvm_xcr { 1719 __u32 xcr; 1667 __u32 xcr; 1720 __u32 reserved; 1668 __u32 reserved; 1721 __u64 value; 1669 __u64 value; 1722 }; 1670 }; 1723 1671 1724 struct kvm_xcrs { 1672 struct kvm_xcrs { 1725 __u32 nr_xcrs; 1673 __u32 nr_xcrs; 1726 __u32 flags; 1674 __u32 flags; 1727 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1675 struct kvm_xcr xcrs[KVM_MAX_XCRS]; 1728 __u64 padding[16]; 1676 __u64 padding[16]; 1729 }; 1677 }; 1730 1678 1731 This ioctl would set vcpu's xcr to the value 1679 This ioctl would set vcpu's xcr to the value userspace specified. 1732 1680 1733 1681 1734 4.46 KVM_GET_SUPPORTED_CPUID 1682 4.46 KVM_GET_SUPPORTED_CPUID 1735 ---------------------------- 1683 ---------------------------- 1736 1684 1737 :Capability: KVM_CAP_EXT_CPUID 1685 :Capability: KVM_CAP_EXT_CPUID 1738 :Architectures: x86 1686 :Architectures: x86 1739 :Type: system ioctl 1687 :Type: system ioctl 1740 :Parameters: struct kvm_cpuid2 (in/out) 1688 :Parameters: struct kvm_cpuid2 (in/out) 1741 :Returns: 0 on success, -1 on error 1689 :Returns: 0 on success, -1 on error 1742 1690 1743 :: 1691 :: 1744 1692 1745 struct kvm_cpuid2 { 1693 struct kvm_cpuid2 { 1746 __u32 nent; 1694 __u32 nent; 1747 __u32 padding; 1695 __u32 padding; 1748 struct kvm_cpuid_entry2 entries[0]; 1696 struct kvm_cpuid_entry2 entries[0]; 1749 }; 1697 }; 1750 1698 1751 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1699 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) 1752 #define KVM_CPUID_FLAG_STATEFUL_FUNC 1700 #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) /* deprecated */ 1753 #define KVM_CPUID_FLAG_STATE_READ_NEXT 1701 #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) /* deprecated */ 1754 1702 1755 struct kvm_cpuid_entry2 { 1703 struct kvm_cpuid_entry2 { 1756 __u32 function; 1704 __u32 function; 1757 __u32 index; 1705 __u32 index; 1758 __u32 flags; 1706 __u32 flags; 1759 __u32 eax; 1707 __u32 eax; 1760 __u32 ebx; 1708 __u32 ebx; 1761 __u32 ecx; 1709 __u32 ecx; 1762 __u32 edx; 1710 __u32 edx; 1763 __u32 padding[3]; 1711 __u32 padding[3]; 1764 }; 1712 }; 1765 1713 1766 This ioctl returns x86 cpuid features which a 1714 This ioctl returns x86 cpuid features which are supported by both the 1767 hardware and kvm in its default configuration 1715 hardware and kvm in its default configuration. Userspace can use the 1768 information returned by this ioctl to constru 1716 information returned by this ioctl to construct cpuid information (for 1769 KVM_SET_CPUID2) that is consistent with hardw 1717 KVM_SET_CPUID2) that is consistent with hardware, kernel, and 1770 userspace capabilities, and with user require 1718 userspace capabilities, and with user requirements (for example, the 1771 user may wish to constrain cpuid to emulate o 1719 user may wish to constrain cpuid to emulate older hardware, or for 1772 feature consistency across a cluster). 1720 feature consistency across a cluster). 1773 1721 1774 Dynamically-enabled feature bits need to be r 1722 Dynamically-enabled feature bits need to be requested with 1775 ``arch_prctl()`` before calling this ioctl. F 1723 ``arch_prctl()`` before calling this ioctl. Feature bits that have not 1776 been requested are excluded from the result. 1724 been requested are excluded from the result. 1777 1725 1778 Note that certain capabilities, such as KVM_C 1726 Note that certain capabilities, such as KVM_CAP_X86_DISABLE_EXITS, may 1779 expose cpuid features (e.g. MONITOR) which ar 1727 expose cpuid features (e.g. MONITOR) which are not supported by kvm in 1780 its default configuration. If userspace enabl 1728 its default configuration. If userspace enables such capabilities, it 1781 is responsible for modifying the results of t 1729 is responsible for modifying the results of this ioctl appropriately. 1782 1730 1783 Userspace invokes KVM_GET_SUPPORTED_CPUID by 1731 Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure 1784 with the 'nent' field indicating the number o 1732 with the 'nent' field indicating the number of entries in the variable-size 1785 array 'entries'. If the number of entries is 1733 array 'entries'. If the number of entries is too low to describe the cpu 1786 capabilities, an error (E2BIG) is returned. 1734 capabilities, an error (E2BIG) is returned. If the number is too high, 1787 the 'nent' field is adjusted and an error (EN 1735 the 'nent' field is adjusted and an error (ENOMEM) is returned. If the 1788 number is just right, the 'nent' field is adj 1736 number is just right, the 'nent' field is adjusted to the number of valid 1789 entries in the 'entries' array, which is then 1737 entries in the 'entries' array, which is then filled. 1790 1738 1791 The entries returned are the host cpuid as re 1739 The entries returned are the host cpuid as returned by the cpuid instruction, 1792 with unknown or unsupported features masked o 1740 with unknown or unsupported features masked out. Some features (for example, 1793 x2apic), may not be present in the host cpu, 1741 x2apic), may not be present in the host cpu, but are exposed by kvm if it can 1794 emulate them efficiently. The fields in each 1742 emulate them efficiently. The fields in each entry are defined as follows: 1795 1743 1796 function: 1744 function: 1797 the eax value used to obtain the ent 1745 the eax value used to obtain the entry 1798 1746 1799 index: 1747 index: 1800 the ecx value used to obtain the ent 1748 the ecx value used to obtain the entry (for entries that are 1801 affected by ecx) 1749 affected by ecx) 1802 1750 1803 flags: 1751 flags: 1804 an OR of zero or more of the following: 1752 an OR of zero or more of the following: 1805 1753 1806 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 1754 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 1807 if the index field is valid 1755 if the index field is valid 1808 1756 1809 eax, ebx, ecx, edx: 1757 eax, ebx, ecx, edx: 1810 the values returned by the cpuid ins 1758 the values returned by the cpuid instruction for 1811 this function/index combination 1759 this function/index combination 1812 1760 1813 The TSC deadline timer feature (CPUID leaf 1, 1761 The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned 1814 as false, since the feature depends on KVM_CR 1762 as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC 1815 support. Instead it is reported via:: 1763 support. Instead it is reported via:: 1816 1764 1817 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEAD 1765 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER) 1818 1766 1819 if that returns true and you use KVM_CREATE_I 1767 if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the 1820 feature in userspace, then you can enable the 1768 feature in userspace, then you can enable the feature for KVM_SET_CPUID2. 1821 1769 1822 1770 1823 4.47 KVM_PPC_GET_PVINFO 1771 4.47 KVM_PPC_GET_PVINFO 1824 ----------------------- 1772 ----------------------- 1825 1773 1826 :Capability: KVM_CAP_PPC_GET_PVINFO 1774 :Capability: KVM_CAP_PPC_GET_PVINFO 1827 :Architectures: ppc 1775 :Architectures: ppc 1828 :Type: vm ioctl 1776 :Type: vm ioctl 1829 :Parameters: struct kvm_ppc_pvinfo (out) 1777 :Parameters: struct kvm_ppc_pvinfo (out) 1830 :Returns: 0 on success, !0 on error 1778 :Returns: 0 on success, !0 on error 1831 1779 1832 :: 1780 :: 1833 1781 1834 struct kvm_ppc_pvinfo { 1782 struct kvm_ppc_pvinfo { 1835 __u32 flags; 1783 __u32 flags; 1836 __u32 hcall[4]; 1784 __u32 hcall[4]; 1837 __u8 pad[108]; 1785 __u8 pad[108]; 1838 }; 1786 }; 1839 1787 1840 This ioctl fetches PV specific information th 1788 This ioctl fetches PV specific information that need to be passed to the guest 1841 using the device tree or other means from vm 1789 using the device tree or other means from vm context. 1842 1790 1843 The hcall array defines 4 instructions that m 1791 The hcall array defines 4 instructions that make up a hypercall. 1844 1792 1845 If any additional field gets added to this st 1793 If any additional field gets added to this structure later on, a bit for that 1846 additional piece of information will be set i 1794 additional piece of information will be set in the flags bitmap. 1847 1795 1848 The flags bitmap is defined as:: 1796 The flags bitmap is defined as:: 1849 1797 1850 /* the host supports the ePAPR idle hcall 1798 /* the host supports the ePAPR idle hcall 1851 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1< 1799 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0) 1852 1800 1853 4.52 KVM_SET_GSI_ROUTING 1801 4.52 KVM_SET_GSI_ROUTING 1854 ------------------------ 1802 ------------------------ 1855 1803 1856 :Capability: KVM_CAP_IRQ_ROUTING 1804 :Capability: KVM_CAP_IRQ_ROUTING 1857 :Architectures: x86 s390 arm64 1805 :Architectures: x86 s390 arm64 1858 :Type: vm ioctl 1806 :Type: vm ioctl 1859 :Parameters: struct kvm_irq_routing (in) 1807 :Parameters: struct kvm_irq_routing (in) 1860 :Returns: 0 on success, -1 on error 1808 :Returns: 0 on success, -1 on error 1861 1809 1862 Sets the GSI routing table entries, overwriti 1810 Sets the GSI routing table entries, overwriting any previously set entries. 1863 1811 1864 On arm64, GSI routing has the following limit 1812 On arm64, GSI routing has the following limitation: 1865 1813 1866 - GSI routing does not apply to KVM_IRQ_LINE 1814 - GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD. 1867 1815 1868 :: 1816 :: 1869 1817 1870 struct kvm_irq_routing { 1818 struct kvm_irq_routing { 1871 __u32 nr; 1819 __u32 nr; 1872 __u32 flags; 1820 __u32 flags; 1873 struct kvm_irq_routing_entry entries[ 1821 struct kvm_irq_routing_entry entries[0]; 1874 }; 1822 }; 1875 1823 1876 No flags are specified so far, the correspond 1824 No flags are specified so far, the corresponding field must be set to zero. 1877 1825 1878 :: 1826 :: 1879 1827 1880 struct kvm_irq_routing_entry { 1828 struct kvm_irq_routing_entry { 1881 __u32 gsi; 1829 __u32 gsi; 1882 __u32 type; 1830 __u32 type; 1883 __u32 flags; 1831 __u32 flags; 1884 __u32 pad; 1832 __u32 pad; 1885 union { 1833 union { 1886 struct kvm_irq_routing_irqchi 1834 struct kvm_irq_routing_irqchip irqchip; 1887 struct kvm_irq_routing_msi ms 1835 struct kvm_irq_routing_msi msi; 1888 struct kvm_irq_routing_s390_a 1836 struct kvm_irq_routing_s390_adapter adapter; 1889 struct kvm_irq_routing_hv_sin 1837 struct kvm_irq_routing_hv_sint hv_sint; 1890 struct kvm_irq_routing_xen_ev 1838 struct kvm_irq_routing_xen_evtchn xen_evtchn; 1891 __u32 pad[8]; 1839 __u32 pad[8]; 1892 } u; 1840 } u; 1893 }; 1841 }; 1894 1842 1895 /* gsi routing entry types */ 1843 /* gsi routing entry types */ 1896 #define KVM_IRQ_ROUTING_IRQCHIP 1 1844 #define KVM_IRQ_ROUTING_IRQCHIP 1 1897 #define KVM_IRQ_ROUTING_MSI 2 1845 #define KVM_IRQ_ROUTING_MSI 2 1898 #define KVM_IRQ_ROUTING_S390_ADAPTER 3 1846 #define KVM_IRQ_ROUTING_S390_ADAPTER 3 1899 #define KVM_IRQ_ROUTING_HV_SINT 4 1847 #define KVM_IRQ_ROUTING_HV_SINT 4 1900 #define KVM_IRQ_ROUTING_XEN_EVTCHN 5 1848 #define KVM_IRQ_ROUTING_XEN_EVTCHN 5 1901 1849 1902 flags: 1850 flags: 1903 1851 1904 - KVM_MSI_VALID_DEVID: used along with KVM_IR 1852 - KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry 1905 type, specifies that the devid field contai 1853 type, specifies that the devid field contains a valid value. The per-VM 1906 KVM_CAP_MSI_DEVID capability advertises the 1854 KVM_CAP_MSI_DEVID capability advertises the requirement to provide 1907 the device ID. If this capability is not a 1855 the device ID. If this capability is not available, userspace should 1908 never set the KVM_MSI_VALID_DEVID flag as t 1856 never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. 1909 - zero otherwise 1857 - zero otherwise 1910 1858 1911 :: 1859 :: 1912 1860 1913 struct kvm_irq_routing_irqchip { 1861 struct kvm_irq_routing_irqchip { 1914 __u32 irqchip; 1862 __u32 irqchip; 1915 __u32 pin; 1863 __u32 pin; 1916 }; 1864 }; 1917 1865 1918 struct kvm_irq_routing_msi { 1866 struct kvm_irq_routing_msi { 1919 __u32 address_lo; 1867 __u32 address_lo; 1920 __u32 address_hi; 1868 __u32 address_hi; 1921 __u32 data; 1869 __u32 data; 1922 union { 1870 union { 1923 __u32 pad; 1871 __u32 pad; 1924 __u32 devid; 1872 __u32 devid; 1925 }; 1873 }; 1926 }; 1874 }; 1927 1875 1928 If KVM_MSI_VALID_DEVID is set, devid contains 1876 If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier 1929 for the device that wrote the MSI message. F 1877 for the device that wrote the MSI message. For PCI, this is usually a 1930 BDF identifier in the lower 16 bits. !! 1878 BFD identifier in the lower 16 bits. 1931 1879 1932 On x86, address_hi is ignored unless the KVM_ 1880 On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS 1933 feature of KVM_CAP_X2APIC_API capability is e 1881 feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, 1934 address_hi bits 31-8 provide bits 31-8 of the 1882 address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of 1935 address_hi must be zero. 1883 address_hi must be zero. 1936 1884 1937 :: 1885 :: 1938 1886 1939 struct kvm_irq_routing_s390_adapter { 1887 struct kvm_irq_routing_s390_adapter { 1940 __u64 ind_addr; 1888 __u64 ind_addr; 1941 __u64 summary_addr; 1889 __u64 summary_addr; 1942 __u64 ind_offset; 1890 __u64 ind_offset; 1943 __u32 summary_offset; 1891 __u32 summary_offset; 1944 __u32 adapter_id; 1892 __u32 adapter_id; 1945 }; 1893 }; 1946 1894 1947 struct kvm_irq_routing_hv_sint { 1895 struct kvm_irq_routing_hv_sint { 1948 __u32 vcpu; 1896 __u32 vcpu; 1949 __u32 sint; 1897 __u32 sint; 1950 }; 1898 }; 1951 1899 1952 struct kvm_irq_routing_xen_evtchn { 1900 struct kvm_irq_routing_xen_evtchn { 1953 __u32 port; 1901 __u32 port; 1954 __u32 vcpu; 1902 __u32 vcpu; 1955 __u32 priority; 1903 __u32 priority; 1956 }; 1904 }; 1957 1905 1958 1906 1959 When KVM_CAP_XEN_HVM includes the KVM_XEN_HVM 1907 When KVM_CAP_XEN_HVM includes the KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL bit 1960 in its indication of supported features, rout 1908 in its indication of supported features, routing to Xen event channels 1961 is supported. Although the priority field is 1909 is supported. Although the priority field is present, only the value 1962 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL is supported 1910 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL is supported, which means delivery by 1963 2 level event channels. FIFO event channel su 1911 2 level event channels. FIFO event channel support may be added in 1964 the future. 1912 the future. 1965 1913 1966 1914 1967 4.55 KVM_SET_TSC_KHZ 1915 4.55 KVM_SET_TSC_KHZ 1968 -------------------- 1916 -------------------- 1969 1917 1970 :Capability: KVM_CAP_TSC_CONTROL / KVM_CAP_VM 1918 :Capability: KVM_CAP_TSC_CONTROL / KVM_CAP_VM_TSC_CONTROL 1971 :Architectures: x86 1919 :Architectures: x86 1972 :Type: vcpu ioctl / vm ioctl 1920 :Type: vcpu ioctl / vm ioctl 1973 :Parameters: virtual tsc_khz 1921 :Parameters: virtual tsc_khz 1974 :Returns: 0 on success, -1 on error 1922 :Returns: 0 on success, -1 on error 1975 1923 1976 Specifies the tsc frequency for the virtual m 1924 Specifies the tsc frequency for the virtual machine. The unit of the 1977 frequency is KHz. 1925 frequency is KHz. 1978 1926 1979 If the KVM_CAP_VM_TSC_CONTROL capability is a 1927 If the KVM_CAP_VM_TSC_CONTROL capability is advertised, this can also 1980 be used as a vm ioctl to set the initial tsc 1928 be used as a vm ioctl to set the initial tsc frequency of subsequently 1981 created vCPUs. 1929 created vCPUs. 1982 1930 1983 4.56 KVM_GET_TSC_KHZ 1931 4.56 KVM_GET_TSC_KHZ 1984 -------------------- 1932 -------------------- 1985 1933 1986 :Capability: KVM_CAP_GET_TSC_KHZ / KVM_CAP_VM 1934 :Capability: KVM_CAP_GET_TSC_KHZ / KVM_CAP_VM_TSC_CONTROL 1987 :Architectures: x86 1935 :Architectures: x86 1988 :Type: vcpu ioctl / vm ioctl 1936 :Type: vcpu ioctl / vm ioctl 1989 :Parameters: none 1937 :Parameters: none 1990 :Returns: virtual tsc-khz on success, negativ 1938 :Returns: virtual tsc-khz on success, negative value on error 1991 1939 1992 Returns the tsc frequency of the guest. The u 1940 Returns the tsc frequency of the guest. The unit of the return value is 1993 KHz. If the host has unstable tsc this ioctl 1941 KHz. If the host has unstable tsc this ioctl returns -EIO instead as an 1994 error. 1942 error. 1995 1943 1996 1944 1997 4.57 KVM_GET_LAPIC 1945 4.57 KVM_GET_LAPIC 1998 ------------------ 1946 ------------------ 1999 1947 2000 :Capability: KVM_CAP_IRQCHIP 1948 :Capability: KVM_CAP_IRQCHIP 2001 :Architectures: x86 1949 :Architectures: x86 2002 :Type: vcpu ioctl 1950 :Type: vcpu ioctl 2003 :Parameters: struct kvm_lapic_state (out) 1951 :Parameters: struct kvm_lapic_state (out) 2004 :Returns: 0 on success, -1 on error 1952 :Returns: 0 on success, -1 on error 2005 1953 2006 :: 1954 :: 2007 1955 2008 #define KVM_APIC_REG_SIZE 0x400 1956 #define KVM_APIC_REG_SIZE 0x400 2009 struct kvm_lapic_state { 1957 struct kvm_lapic_state { 2010 char regs[KVM_APIC_REG_SIZE]; 1958 char regs[KVM_APIC_REG_SIZE]; 2011 }; 1959 }; 2012 1960 2013 Reads the Local APIC registers and copies the 1961 Reads the Local APIC registers and copies them into the input argument. The 2014 data format and layout are the same as docume 1962 data format and layout are the same as documented in the architecture manual. 2015 1963 2016 If KVM_X2APIC_API_USE_32BIT_IDS feature of KV 1964 If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is 2017 enabled, then the format of APIC_ID register 1965 enabled, then the format of APIC_ID register depends on the APIC mode 2018 (reported by MSR_IA32_APICBASE) of its VCPU. 1966 (reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in 2019 the APIC_ID register (bytes 32-35). xAPIC on 1967 the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID 2020 which is stored in bits 31-24 of the APIC reg 1968 which is stored in bits 31-24 of the APIC register, or equivalently in 2021 byte 35 of struct kvm_lapic_state's regs fiel 1969 byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then 2022 be called after MSR_IA32_APICBASE has been se 1970 be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR. 2023 1971 2024 If KVM_X2APIC_API_USE_32BIT_IDS feature is di 1972 If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state 2025 always uses xAPIC format. 1973 always uses xAPIC format. 2026 1974 2027 1975 2028 4.58 KVM_SET_LAPIC 1976 4.58 KVM_SET_LAPIC 2029 ------------------ 1977 ------------------ 2030 1978 2031 :Capability: KVM_CAP_IRQCHIP 1979 :Capability: KVM_CAP_IRQCHIP 2032 :Architectures: x86 1980 :Architectures: x86 2033 :Type: vcpu ioctl 1981 :Type: vcpu ioctl 2034 :Parameters: struct kvm_lapic_state (in) 1982 :Parameters: struct kvm_lapic_state (in) 2035 :Returns: 0 on success, -1 on error 1983 :Returns: 0 on success, -1 on error 2036 1984 2037 :: 1985 :: 2038 1986 2039 #define KVM_APIC_REG_SIZE 0x400 1987 #define KVM_APIC_REG_SIZE 0x400 2040 struct kvm_lapic_state { 1988 struct kvm_lapic_state { 2041 char regs[KVM_APIC_REG_SIZE]; 1989 char regs[KVM_APIC_REG_SIZE]; 2042 }; 1990 }; 2043 1991 2044 Copies the input argument into the Local APIC 1992 Copies the input argument into the Local APIC registers. The data format 2045 and layout are the same as documented in the 1993 and layout are the same as documented in the architecture manual. 2046 1994 2047 The format of the APIC ID register (bytes 32- 1995 The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's 2048 regs field) depends on the state of the KVM_C 1996 regs field) depends on the state of the KVM_CAP_X2APIC_API capability. 2049 See the note in KVM_GET_LAPIC. 1997 See the note in KVM_GET_LAPIC. 2050 1998 2051 1999 2052 4.59 KVM_IOEVENTFD 2000 4.59 KVM_IOEVENTFD 2053 ------------------ 2001 ------------------ 2054 2002 2055 :Capability: KVM_CAP_IOEVENTFD 2003 :Capability: KVM_CAP_IOEVENTFD 2056 :Architectures: all 2004 :Architectures: all 2057 :Type: vm ioctl 2005 :Type: vm ioctl 2058 :Parameters: struct kvm_ioeventfd (in) 2006 :Parameters: struct kvm_ioeventfd (in) 2059 :Returns: 0 on success, !0 on error 2007 :Returns: 0 on success, !0 on error 2060 2008 2061 This ioctl attaches or detaches an ioeventfd 2009 This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address 2062 within the guest. A guest write in the regis 2010 within the guest. A guest write in the registered address will signal the 2063 provided event instead of triggering an exit. 2011 provided event instead of triggering an exit. 2064 2012 2065 :: 2013 :: 2066 2014 2067 struct kvm_ioeventfd { 2015 struct kvm_ioeventfd { 2068 __u64 datamatch; 2016 __u64 datamatch; 2069 __u64 addr; /* legal pio/mmio 2017 __u64 addr; /* legal pio/mmio address */ 2070 __u32 len; /* 0, 1, 2, 4, or 2018 __u32 len; /* 0, 1, 2, 4, or 8 bytes */ 2071 __s32 fd; 2019 __s32 fd; 2072 __u32 flags; 2020 __u32 flags; 2073 __u8 pad[36]; 2021 __u8 pad[36]; 2074 }; 2022 }; 2075 2023 2076 For the special case of virtio-ccw devices on 2024 For the special case of virtio-ccw devices on s390, the ioevent is matched 2077 to a subchannel/virtqueue tuple instead. 2025 to a subchannel/virtqueue tuple instead. 2078 2026 2079 The following flags are defined:: 2027 The following flags are defined:: 2080 2028 2081 #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << 2029 #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch) 2082 #define KVM_IOEVENTFD_FLAG_PIO (1 << 2030 #define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio) 2083 #define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << 2031 #define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign) 2084 #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIF 2032 #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \ 2085 (1 << kvm_ioeventfd_flag_nr_virtio_cc 2033 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify) 2086 2034 2087 If datamatch flag is set, the event will be s 2035 If datamatch flag is set, the event will be signaled only if the written value 2088 to the registered address is equal to datamat 2036 to the registered address is equal to datamatch in struct kvm_ioeventfd. 2089 2037 2090 For virtio-ccw devices, addr contains the sub 2038 For virtio-ccw devices, addr contains the subchannel id and datamatch the 2091 virtqueue index. 2039 virtqueue index. 2092 2040 2093 With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero len 2041 With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and 2094 the kernel will ignore the length of guest wr 2042 the kernel will ignore the length of guest write and may get a faster vmexit. 2095 The speedup may only apply to specific archit 2043 The speedup may only apply to specific architectures, but the ioeventfd will 2096 work anyway. 2044 work anyway. 2097 2045 2098 4.60 KVM_DIRTY_TLB 2046 4.60 KVM_DIRTY_TLB 2099 ------------------ 2047 ------------------ 2100 2048 2101 :Capability: KVM_CAP_SW_TLB 2049 :Capability: KVM_CAP_SW_TLB 2102 :Architectures: ppc 2050 :Architectures: ppc 2103 :Type: vcpu ioctl 2051 :Type: vcpu ioctl 2104 :Parameters: struct kvm_dirty_tlb (in) 2052 :Parameters: struct kvm_dirty_tlb (in) 2105 :Returns: 0 on success, -1 on error 2053 :Returns: 0 on success, -1 on error 2106 2054 2107 :: 2055 :: 2108 2056 2109 struct kvm_dirty_tlb { 2057 struct kvm_dirty_tlb { 2110 __u64 bitmap; 2058 __u64 bitmap; 2111 __u32 num_dirty; 2059 __u32 num_dirty; 2112 }; 2060 }; 2113 2061 2114 This must be called whenever userspace has ch 2062 This must be called whenever userspace has changed an entry in the shared 2115 TLB, prior to calling KVM_RUN on the associat 2063 TLB, prior to calling KVM_RUN on the associated vcpu. 2116 2064 2117 The "bitmap" field is the userspace address o 2065 The "bitmap" field is the userspace address of an array. This array 2118 consists of a number of bits, equal to the to 2066 consists of a number of bits, equal to the total number of TLB entries as 2119 determined by the last successful call to KVM 2067 determined by the last successful call to KVM_CONFIG_TLB, rounded up to the 2120 nearest multiple of 64. 2068 nearest multiple of 64. 2121 2069 2122 Each bit corresponds to one TLB entry, ordere 2070 Each bit corresponds to one TLB entry, ordered the same as in the shared TLB 2123 array. 2071 array. 2124 2072 2125 The array is little-endian: the bit 0 is the 2073 The array is little-endian: the bit 0 is the least significant bit of the 2126 first byte, bit 8 is the least significant bi 2074 first byte, bit 8 is the least significant bit of the second byte, etc. 2127 This avoids any complications with differing 2075 This avoids any complications with differing word sizes. 2128 2076 2129 The "num_dirty" field is a performance hint f 2077 The "num_dirty" field is a performance hint for KVM to determine whether it 2130 should skip processing the bitmap and just in 2078 should skip processing the bitmap and just invalidate everything. It must 2131 be set to the number of set bits in the bitma 2079 be set to the number of set bits in the bitmap. 2132 2080 2133 2081 2134 4.62 KVM_CREATE_SPAPR_TCE 2082 4.62 KVM_CREATE_SPAPR_TCE 2135 ------------------------- 2083 ------------------------- 2136 2084 2137 :Capability: KVM_CAP_SPAPR_TCE 2085 :Capability: KVM_CAP_SPAPR_TCE 2138 :Architectures: powerpc 2086 :Architectures: powerpc 2139 :Type: vm ioctl 2087 :Type: vm ioctl 2140 :Parameters: struct kvm_create_spapr_tce (in) 2088 :Parameters: struct kvm_create_spapr_tce (in) 2141 :Returns: file descriptor for manipulating th 2089 :Returns: file descriptor for manipulating the created TCE table 2142 2090 2143 This creates a virtual TCE (translation contr 2091 This creates a virtual TCE (translation control entry) table, which 2144 is an IOMMU for PAPR-style virtual I/O. It i 2092 is an IOMMU for PAPR-style virtual I/O. It is used to translate 2145 logical addresses used in virtual I/O into gu 2093 logical addresses used in virtual I/O into guest physical addresses, 2146 and provides a scatter/gather capability for 2094 and provides a scatter/gather capability for PAPR virtual I/O. 2147 2095 2148 :: 2096 :: 2149 2097 2150 /* for KVM_CAP_SPAPR_TCE */ 2098 /* for KVM_CAP_SPAPR_TCE */ 2151 struct kvm_create_spapr_tce { 2099 struct kvm_create_spapr_tce { 2152 __u64 liobn; 2100 __u64 liobn; 2153 __u32 window_size; 2101 __u32 window_size; 2154 }; 2102 }; 2155 2103 2156 The liobn field gives the logical IO bus numb 2104 The liobn field gives the logical IO bus number for which to create a 2157 TCE table. The window_size field specifies t 2105 TCE table. The window_size field specifies the size of the DMA window 2158 which this TCE table will translate - the tab 2106 which this TCE table will translate - the table will contain one 64 2159 bit TCE entry for every 4kiB of the DMA windo 2107 bit TCE entry for every 4kiB of the DMA window. 2160 2108 2161 When the guest issues an H_PUT_TCE hcall on a 2109 When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE 2162 table has been created using this ioctl(), th 2110 table has been created using this ioctl(), the kernel will handle it 2163 in real mode, updating the TCE table. H_PUT_ 2111 in real mode, updating the TCE table. H_PUT_TCE calls for other 2164 liobns will cause a vm exit and must be handl 2112 liobns will cause a vm exit and must be handled by userspace. 2165 2113 2166 The return value is a file descriptor which c 2114 The return value is a file descriptor which can be passed to mmap(2) 2167 to map the created TCE table into userspace. 2115 to map the created TCE table into userspace. This lets userspace read 2168 the entries written by kernel-handled H_PUT_T 2116 the entries written by kernel-handled H_PUT_TCE calls, and also lets 2169 userspace update the TCE table directly which 2117 userspace update the TCE table directly which is useful in some 2170 circumstances. 2118 circumstances. 2171 2119 2172 2120 2173 4.63 KVM_ALLOCATE_RMA 2121 4.63 KVM_ALLOCATE_RMA 2174 --------------------- 2122 --------------------- 2175 2123 2176 :Capability: KVM_CAP_PPC_RMA 2124 :Capability: KVM_CAP_PPC_RMA 2177 :Architectures: powerpc 2125 :Architectures: powerpc 2178 :Type: vm ioctl 2126 :Type: vm ioctl 2179 :Parameters: struct kvm_allocate_rma (out) 2127 :Parameters: struct kvm_allocate_rma (out) 2180 :Returns: file descriptor for mapping the all 2128 :Returns: file descriptor for mapping the allocated RMA 2181 2129 2182 This allocates a Real Mode Area (RMA) from th 2130 This allocates a Real Mode Area (RMA) from the pool allocated at boot 2183 time by the kernel. An RMA is a physically-c 2131 time by the kernel. An RMA is a physically-contiguous, aligned region 2184 of memory used on older POWER processors to p 2132 of memory used on older POWER processors to provide the memory which 2185 will be accessed by real-mode (MMU off) acces 2133 will be accessed by real-mode (MMU off) accesses in a KVM guest. 2186 POWER processors support a set of sizes for t 2134 POWER processors support a set of sizes for the RMA that usually 2187 includes 64MB, 128MB, 256MB and some larger p 2135 includes 64MB, 128MB, 256MB and some larger powers of two. 2188 2136 2189 :: 2137 :: 2190 2138 2191 /* for KVM_ALLOCATE_RMA */ 2139 /* for KVM_ALLOCATE_RMA */ 2192 struct kvm_allocate_rma { 2140 struct kvm_allocate_rma { 2193 __u64 rma_size; 2141 __u64 rma_size; 2194 }; 2142 }; 2195 2143 2196 The return value is a file descriptor which c 2144 The return value is a file descriptor which can be passed to mmap(2) 2197 to map the allocated RMA into userspace. The 2145 to map the allocated RMA into userspace. The mapped area can then be 2198 passed to the KVM_SET_USER_MEMORY_REGION ioct 2146 passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the 2199 RMA for a virtual machine. The size of the R 2147 RMA for a virtual machine. The size of the RMA in bytes (which is 2200 fixed at host kernel boot time) is returned i 2148 fixed at host kernel boot time) is returned in the rma_size field of 2201 the argument structure. 2149 the argument structure. 2202 2150 2203 The KVM_CAP_PPC_RMA capability is 1 or 2 if t 2151 The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl 2204 is supported; 2 if the processor requires all 2152 is supported; 2 if the processor requires all virtual machines to have 2205 an RMA, or 1 if the processor can use an RMA 2153 an RMA, or 1 if the processor can use an RMA but doesn't require it, 2206 because it supports the Virtual RMA (VRMA) fa 2154 because it supports the Virtual RMA (VRMA) facility. 2207 2155 2208 2156 2209 4.64 KVM_NMI 2157 4.64 KVM_NMI 2210 ------------ 2158 ------------ 2211 2159 2212 :Capability: KVM_CAP_USER_NMI 2160 :Capability: KVM_CAP_USER_NMI 2213 :Architectures: x86 2161 :Architectures: x86 2214 :Type: vcpu ioctl 2162 :Type: vcpu ioctl 2215 :Parameters: none 2163 :Parameters: none 2216 :Returns: 0 on success, -1 on error 2164 :Returns: 0 on success, -1 on error 2217 2165 2218 Queues an NMI on the thread's vcpu. Note thi 2166 Queues an NMI on the thread's vcpu. Note this is well defined only 2219 when KVM_CREATE_IRQCHIP has not been called, 2167 when KVM_CREATE_IRQCHIP has not been called, since this is an interface 2220 between the virtual cpu core and virtual loca 2168 between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP 2221 has been called, this interface is completely 2169 has been called, this interface is completely emulated within the kernel. 2222 2170 2223 To use this to emulate the LINT1 input with K 2171 To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the 2224 following algorithm: 2172 following algorithm: 2225 2173 2226 - pause the vcpu 2174 - pause the vcpu 2227 - read the local APIC's state (KVM_GET_LAPI 2175 - read the local APIC's state (KVM_GET_LAPIC) 2228 - check whether changing LINT1 will queue a 2176 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1) 2229 - if so, issue KVM_NMI 2177 - if so, issue KVM_NMI 2230 - resume the vcpu 2178 - resume the vcpu 2231 2179 2232 Some guests configure the LINT1 NMI input to 2180 Some guests configure the LINT1 NMI input to cause a panic, aiding in 2233 debugging. 2181 debugging. 2234 2182 2235 2183 2236 4.65 KVM_S390_UCAS_MAP 2184 4.65 KVM_S390_UCAS_MAP 2237 ---------------------- 2185 ---------------------- 2238 2186 2239 :Capability: KVM_CAP_S390_UCONTROL 2187 :Capability: KVM_CAP_S390_UCONTROL 2240 :Architectures: s390 2188 :Architectures: s390 2241 :Type: vcpu ioctl 2189 :Type: vcpu ioctl 2242 :Parameters: struct kvm_s390_ucas_mapping (in 2190 :Parameters: struct kvm_s390_ucas_mapping (in) 2243 :Returns: 0 in case of success 2191 :Returns: 0 in case of success 2244 2192 2245 The parameter is defined like this:: 2193 The parameter is defined like this:: 2246 2194 2247 struct kvm_s390_ucas_mapping { 2195 struct kvm_s390_ucas_mapping { 2248 __u64 user_addr; 2196 __u64 user_addr; 2249 __u64 vcpu_addr; 2197 __u64 vcpu_addr; 2250 __u64 length; 2198 __u64 length; 2251 }; 2199 }; 2252 2200 2253 This ioctl maps the memory at "user_addr" wit 2201 This ioctl maps the memory at "user_addr" with the length "length" to 2254 the vcpu's address space starting at "vcpu_ad 2202 the vcpu's address space starting at "vcpu_addr". All parameters need to 2255 be aligned by 1 megabyte. 2203 be aligned by 1 megabyte. 2256 2204 2257 2205 2258 4.66 KVM_S390_UCAS_UNMAP 2206 4.66 KVM_S390_UCAS_UNMAP 2259 ------------------------ 2207 ------------------------ 2260 2208 2261 :Capability: KVM_CAP_S390_UCONTROL 2209 :Capability: KVM_CAP_S390_UCONTROL 2262 :Architectures: s390 2210 :Architectures: s390 2263 :Type: vcpu ioctl 2211 :Type: vcpu ioctl 2264 :Parameters: struct kvm_s390_ucas_mapping (in 2212 :Parameters: struct kvm_s390_ucas_mapping (in) 2265 :Returns: 0 in case of success 2213 :Returns: 0 in case of success 2266 2214 2267 The parameter is defined like this:: 2215 The parameter is defined like this:: 2268 2216 2269 struct kvm_s390_ucas_mapping { 2217 struct kvm_s390_ucas_mapping { 2270 __u64 user_addr; 2218 __u64 user_addr; 2271 __u64 vcpu_addr; 2219 __u64 vcpu_addr; 2272 __u64 length; 2220 __u64 length; 2273 }; 2221 }; 2274 2222 2275 This ioctl unmaps the memory in the vcpu's ad 2223 This ioctl unmaps the memory in the vcpu's address space starting at 2276 "vcpu_addr" with the length "length". The fie 2224 "vcpu_addr" with the length "length". The field "user_addr" is ignored. 2277 All parameters need to be aligned by 1 megaby 2225 All parameters need to be aligned by 1 megabyte. 2278 2226 2279 2227 2280 4.67 KVM_S390_VCPU_FAULT 2228 4.67 KVM_S390_VCPU_FAULT 2281 ------------------------ 2229 ------------------------ 2282 2230 2283 :Capability: KVM_CAP_S390_UCONTROL 2231 :Capability: KVM_CAP_S390_UCONTROL 2284 :Architectures: s390 2232 :Architectures: s390 2285 :Type: vcpu ioctl 2233 :Type: vcpu ioctl 2286 :Parameters: vcpu absolute address (in) 2234 :Parameters: vcpu absolute address (in) 2287 :Returns: 0 in case of success 2235 :Returns: 0 in case of success 2288 2236 2289 This call creates a page table entry on the v 2237 This call creates a page table entry on the virtual cpu's address space 2290 (for user controlled virtual machines) or the 2238 (for user controlled virtual machines) or the virtual machine's address 2291 space (for regular virtual machines). This on 2239 space (for regular virtual machines). This only works for minor faults, 2292 thus it's recommended to access subject memor 2240 thus it's recommended to access subject memory page via the user page 2293 table upfront. This is useful to handle valid 2241 table upfront. This is useful to handle validity intercepts for user 2294 controlled virtual machines to fault in the v 2242 controlled virtual machines to fault in the virtual cpu's lowcore pages 2295 prior to calling the KVM_RUN ioctl. 2243 prior to calling the KVM_RUN ioctl. 2296 2244 2297 2245 2298 4.68 KVM_SET_ONE_REG 2246 4.68 KVM_SET_ONE_REG 2299 -------------------- 2247 -------------------- 2300 2248 2301 :Capability: KVM_CAP_ONE_REG 2249 :Capability: KVM_CAP_ONE_REG 2302 :Architectures: all 2250 :Architectures: all 2303 :Type: vcpu ioctl 2251 :Type: vcpu ioctl 2304 :Parameters: struct kvm_one_reg (in) 2252 :Parameters: struct kvm_one_reg (in) 2305 :Returns: 0 on success, negative value on fai 2253 :Returns: 0 on success, negative value on failure 2306 2254 2307 Errors: 2255 Errors: 2308 2256 2309 ====== ================================== 2257 ====== ============================================================ 2310 ENOENT no such register 2258 ENOENT no such register 2311 EINVAL invalid register ID, or no such re 2259 EINVAL invalid register ID, or no such register or used with VMs in 2312 protected virtualization mode on s 2260 protected virtualization mode on s390 2313 EPERM (arm64) register access not allowe 2261 EPERM (arm64) register access not allowed before vcpu finalization 2314 EBUSY (riscv) changing register value no << 2315 has run at least once << 2316 ====== ================================== 2262 ====== ============================================================ 2317 2263 2318 (These error codes are indicative only: do no 2264 (These error codes are indicative only: do not rely on a specific error 2319 code being returned in a specific situation.) 2265 code being returned in a specific situation.) 2320 2266 2321 :: 2267 :: 2322 2268 2323 struct kvm_one_reg { 2269 struct kvm_one_reg { 2324 __u64 id; 2270 __u64 id; 2325 __u64 addr; 2271 __u64 addr; 2326 }; 2272 }; 2327 2273 2328 Using this ioctl, a single vcpu register can 2274 Using this ioctl, a single vcpu register can be set to a specific value 2329 defined by user space with the passed in stru 2275 defined by user space with the passed in struct kvm_one_reg, where id 2330 refers to the register identifier as describe 2276 refers to the register identifier as described below and addr is a pointer 2331 to a variable with the respective size. There 2277 to a variable with the respective size. There can be architecture agnostic 2332 and architecture specific registers. Each hav 2278 and architecture specific registers. Each have their own range of operation 2333 and their own constants and width. To keep tr 2279 and their own constants and width. To keep track of the implemented 2334 registers, find a list below: 2280 registers, find a list below: 2335 2281 2336 ======= =============================== === 2282 ======= =============================== ============ 2337 Arch Register Wid 2283 Arch Register Width (bits) 2338 ======= =============================== === 2284 ======= =============================== ============ 2339 PPC KVM_REG_PPC_HIOR 64 2285 PPC KVM_REG_PPC_HIOR 64 2340 PPC KVM_REG_PPC_IAC1 64 2286 PPC KVM_REG_PPC_IAC1 64 2341 PPC KVM_REG_PPC_IAC2 64 2287 PPC KVM_REG_PPC_IAC2 64 2342 PPC KVM_REG_PPC_IAC3 64 2288 PPC KVM_REG_PPC_IAC3 64 2343 PPC KVM_REG_PPC_IAC4 64 2289 PPC KVM_REG_PPC_IAC4 64 2344 PPC KVM_REG_PPC_DAC1 64 2290 PPC KVM_REG_PPC_DAC1 64 2345 PPC KVM_REG_PPC_DAC2 64 2291 PPC KVM_REG_PPC_DAC2 64 2346 PPC KVM_REG_PPC_DABR 64 2292 PPC KVM_REG_PPC_DABR 64 2347 PPC KVM_REG_PPC_DSCR 64 2293 PPC KVM_REG_PPC_DSCR 64 2348 PPC KVM_REG_PPC_PURR 64 2294 PPC KVM_REG_PPC_PURR 64 2349 PPC KVM_REG_PPC_SPURR 64 2295 PPC KVM_REG_PPC_SPURR 64 2350 PPC KVM_REG_PPC_DAR 64 2296 PPC KVM_REG_PPC_DAR 64 2351 PPC KVM_REG_PPC_DSISR 32 2297 PPC KVM_REG_PPC_DSISR 32 2352 PPC KVM_REG_PPC_AMR 64 2298 PPC KVM_REG_PPC_AMR 64 2353 PPC KVM_REG_PPC_UAMOR 64 2299 PPC KVM_REG_PPC_UAMOR 64 2354 PPC KVM_REG_PPC_MMCR0 64 2300 PPC KVM_REG_PPC_MMCR0 64 2355 PPC KVM_REG_PPC_MMCR1 64 2301 PPC KVM_REG_PPC_MMCR1 64 2356 PPC KVM_REG_PPC_MMCRA 64 2302 PPC KVM_REG_PPC_MMCRA 64 2357 PPC KVM_REG_PPC_MMCR2 64 2303 PPC KVM_REG_PPC_MMCR2 64 2358 PPC KVM_REG_PPC_MMCRS 64 2304 PPC KVM_REG_PPC_MMCRS 64 2359 PPC KVM_REG_PPC_MMCR3 64 2305 PPC KVM_REG_PPC_MMCR3 64 2360 PPC KVM_REG_PPC_SIAR 64 2306 PPC KVM_REG_PPC_SIAR 64 2361 PPC KVM_REG_PPC_SDAR 64 2307 PPC KVM_REG_PPC_SDAR 64 2362 PPC KVM_REG_PPC_SIER 64 2308 PPC KVM_REG_PPC_SIER 64 2363 PPC KVM_REG_PPC_SIER2 64 2309 PPC KVM_REG_PPC_SIER2 64 2364 PPC KVM_REG_PPC_SIER3 64 2310 PPC KVM_REG_PPC_SIER3 64 2365 PPC KVM_REG_PPC_PMC1 32 2311 PPC KVM_REG_PPC_PMC1 32 2366 PPC KVM_REG_PPC_PMC2 32 2312 PPC KVM_REG_PPC_PMC2 32 2367 PPC KVM_REG_PPC_PMC3 32 2313 PPC KVM_REG_PPC_PMC3 32 2368 PPC KVM_REG_PPC_PMC4 32 2314 PPC KVM_REG_PPC_PMC4 32 2369 PPC KVM_REG_PPC_PMC5 32 2315 PPC KVM_REG_PPC_PMC5 32 2370 PPC KVM_REG_PPC_PMC6 32 2316 PPC KVM_REG_PPC_PMC6 32 2371 PPC KVM_REG_PPC_PMC7 32 2317 PPC KVM_REG_PPC_PMC7 32 2372 PPC KVM_REG_PPC_PMC8 32 2318 PPC KVM_REG_PPC_PMC8 32 2373 PPC KVM_REG_PPC_FPR0 64 2319 PPC KVM_REG_PPC_FPR0 64 2374 ... 2320 ... 2375 PPC KVM_REG_PPC_FPR31 64 2321 PPC KVM_REG_PPC_FPR31 64 2376 PPC KVM_REG_PPC_VR0 128 2322 PPC KVM_REG_PPC_VR0 128 2377 ... 2323 ... 2378 PPC KVM_REG_PPC_VR31 128 2324 PPC KVM_REG_PPC_VR31 128 2379 PPC KVM_REG_PPC_VSR0 128 2325 PPC KVM_REG_PPC_VSR0 128 2380 ... 2326 ... 2381 PPC KVM_REG_PPC_VSR31 128 2327 PPC KVM_REG_PPC_VSR31 128 2382 PPC KVM_REG_PPC_FPSCR 64 2328 PPC KVM_REG_PPC_FPSCR 64 2383 PPC KVM_REG_PPC_VSCR 32 2329 PPC KVM_REG_PPC_VSCR 32 2384 PPC KVM_REG_PPC_VPA_ADDR 64 2330 PPC KVM_REG_PPC_VPA_ADDR 64 2385 PPC KVM_REG_PPC_VPA_SLB 128 2331 PPC KVM_REG_PPC_VPA_SLB 128 2386 PPC KVM_REG_PPC_VPA_DTL 128 2332 PPC KVM_REG_PPC_VPA_DTL 128 2387 PPC KVM_REG_PPC_EPCR 32 2333 PPC KVM_REG_PPC_EPCR 32 2388 PPC KVM_REG_PPC_EPR 32 2334 PPC KVM_REG_PPC_EPR 32 2389 PPC KVM_REG_PPC_TCR 32 2335 PPC KVM_REG_PPC_TCR 32 2390 PPC KVM_REG_PPC_TSR 32 2336 PPC KVM_REG_PPC_TSR 32 2391 PPC KVM_REG_PPC_OR_TSR 32 2337 PPC KVM_REG_PPC_OR_TSR 32 2392 PPC KVM_REG_PPC_CLEAR_TSR 32 2338 PPC KVM_REG_PPC_CLEAR_TSR 32 2393 PPC KVM_REG_PPC_MAS0 32 2339 PPC KVM_REG_PPC_MAS0 32 2394 PPC KVM_REG_PPC_MAS1 32 2340 PPC KVM_REG_PPC_MAS1 32 2395 PPC KVM_REG_PPC_MAS2 64 2341 PPC KVM_REG_PPC_MAS2 64 2396 PPC KVM_REG_PPC_MAS7_3 64 2342 PPC KVM_REG_PPC_MAS7_3 64 2397 PPC KVM_REG_PPC_MAS4 32 2343 PPC KVM_REG_PPC_MAS4 32 2398 PPC KVM_REG_PPC_MAS6 32 2344 PPC KVM_REG_PPC_MAS6 32 2399 PPC KVM_REG_PPC_MMUCFG 32 2345 PPC KVM_REG_PPC_MMUCFG 32 2400 PPC KVM_REG_PPC_TLB0CFG 32 2346 PPC KVM_REG_PPC_TLB0CFG 32 2401 PPC KVM_REG_PPC_TLB1CFG 32 2347 PPC KVM_REG_PPC_TLB1CFG 32 2402 PPC KVM_REG_PPC_TLB2CFG 32 2348 PPC KVM_REG_PPC_TLB2CFG 32 2403 PPC KVM_REG_PPC_TLB3CFG 32 2349 PPC KVM_REG_PPC_TLB3CFG 32 2404 PPC KVM_REG_PPC_TLB0PS 32 2350 PPC KVM_REG_PPC_TLB0PS 32 2405 PPC KVM_REG_PPC_TLB1PS 32 2351 PPC KVM_REG_PPC_TLB1PS 32 2406 PPC KVM_REG_PPC_TLB2PS 32 2352 PPC KVM_REG_PPC_TLB2PS 32 2407 PPC KVM_REG_PPC_TLB3PS 32 2353 PPC KVM_REG_PPC_TLB3PS 32 2408 PPC KVM_REG_PPC_EPTCFG 32 2354 PPC KVM_REG_PPC_EPTCFG 32 2409 PPC KVM_REG_PPC_ICP_STATE 64 2355 PPC KVM_REG_PPC_ICP_STATE 64 2410 PPC KVM_REG_PPC_VP_STATE 128 2356 PPC KVM_REG_PPC_VP_STATE 128 2411 PPC KVM_REG_PPC_TB_OFFSET 64 2357 PPC KVM_REG_PPC_TB_OFFSET 64 2412 PPC KVM_REG_PPC_SPMC1 32 2358 PPC KVM_REG_PPC_SPMC1 32 2413 PPC KVM_REG_PPC_SPMC2 32 2359 PPC KVM_REG_PPC_SPMC2 32 2414 PPC KVM_REG_PPC_IAMR 64 2360 PPC KVM_REG_PPC_IAMR 64 2415 PPC KVM_REG_PPC_TFHAR 64 2361 PPC KVM_REG_PPC_TFHAR 64 2416 PPC KVM_REG_PPC_TFIAR 64 2362 PPC KVM_REG_PPC_TFIAR 64 2417 PPC KVM_REG_PPC_TEXASR 64 2363 PPC KVM_REG_PPC_TEXASR 64 2418 PPC KVM_REG_PPC_FSCR 64 2364 PPC KVM_REG_PPC_FSCR 64 2419 PPC KVM_REG_PPC_PSPB 32 2365 PPC KVM_REG_PPC_PSPB 32 2420 PPC KVM_REG_PPC_EBBHR 64 2366 PPC KVM_REG_PPC_EBBHR 64 2421 PPC KVM_REG_PPC_EBBRR 64 2367 PPC KVM_REG_PPC_EBBRR 64 2422 PPC KVM_REG_PPC_BESCR 64 2368 PPC KVM_REG_PPC_BESCR 64 2423 PPC KVM_REG_PPC_TAR 64 2369 PPC KVM_REG_PPC_TAR 64 2424 PPC KVM_REG_PPC_DPDES 64 2370 PPC KVM_REG_PPC_DPDES 64 2425 PPC KVM_REG_PPC_DAWR 64 2371 PPC KVM_REG_PPC_DAWR 64 2426 PPC KVM_REG_PPC_DAWRX 64 2372 PPC KVM_REG_PPC_DAWRX 64 2427 PPC KVM_REG_PPC_CIABR 64 2373 PPC KVM_REG_PPC_CIABR 64 2428 PPC KVM_REG_PPC_IC 64 2374 PPC KVM_REG_PPC_IC 64 2429 PPC KVM_REG_PPC_VTB 64 2375 PPC KVM_REG_PPC_VTB 64 2430 PPC KVM_REG_PPC_CSIGR 64 2376 PPC KVM_REG_PPC_CSIGR 64 2431 PPC KVM_REG_PPC_TACR 64 2377 PPC KVM_REG_PPC_TACR 64 2432 PPC KVM_REG_PPC_TCSCR 64 2378 PPC KVM_REG_PPC_TCSCR 64 2433 PPC KVM_REG_PPC_PID 64 2379 PPC KVM_REG_PPC_PID 64 2434 PPC KVM_REG_PPC_ACOP 64 2380 PPC KVM_REG_PPC_ACOP 64 2435 PPC KVM_REG_PPC_VRSAVE 32 2381 PPC KVM_REG_PPC_VRSAVE 32 2436 PPC KVM_REG_PPC_LPCR 32 2382 PPC KVM_REG_PPC_LPCR 32 2437 PPC KVM_REG_PPC_LPCR_64 64 2383 PPC KVM_REG_PPC_LPCR_64 64 2438 PPC KVM_REG_PPC_PPR 64 2384 PPC KVM_REG_PPC_PPR 64 2439 PPC KVM_REG_PPC_ARCH_COMPAT 32 2385 PPC KVM_REG_PPC_ARCH_COMPAT 32 2440 PPC KVM_REG_PPC_DABRX 32 2386 PPC KVM_REG_PPC_DABRX 32 2441 PPC KVM_REG_PPC_WORT 64 2387 PPC KVM_REG_PPC_WORT 64 2442 PPC KVM_REG_PPC_SPRG9 64 2388 PPC KVM_REG_PPC_SPRG9 64 2443 PPC KVM_REG_PPC_DBSR 32 2389 PPC KVM_REG_PPC_DBSR 32 2444 PPC KVM_REG_PPC_TIDR 64 2390 PPC KVM_REG_PPC_TIDR 64 2445 PPC KVM_REG_PPC_PSSCR 64 2391 PPC KVM_REG_PPC_PSSCR 64 2446 PPC KVM_REG_PPC_DEC_EXPIRY 64 2392 PPC KVM_REG_PPC_DEC_EXPIRY 64 2447 PPC KVM_REG_PPC_PTCR 64 2393 PPC KVM_REG_PPC_PTCR 64 2448 PPC KVM_REG_PPC_HASHKEYR 64 << 2449 PPC KVM_REG_PPC_HASHPKEYR 64 << 2450 PPC KVM_REG_PPC_DAWR1 64 2394 PPC KVM_REG_PPC_DAWR1 64 2451 PPC KVM_REG_PPC_DAWRX1 64 2395 PPC KVM_REG_PPC_DAWRX1 64 2452 PPC KVM_REG_PPC_DEXCR 64 << 2453 PPC KVM_REG_PPC_TM_GPR0 64 2396 PPC KVM_REG_PPC_TM_GPR0 64 2454 ... 2397 ... 2455 PPC KVM_REG_PPC_TM_GPR31 64 2398 PPC KVM_REG_PPC_TM_GPR31 64 2456 PPC KVM_REG_PPC_TM_VSR0 128 2399 PPC KVM_REG_PPC_TM_VSR0 128 2457 ... 2400 ... 2458 PPC KVM_REG_PPC_TM_VSR63 128 2401 PPC KVM_REG_PPC_TM_VSR63 128 2459 PPC KVM_REG_PPC_TM_CR 64 2402 PPC KVM_REG_PPC_TM_CR 64 2460 PPC KVM_REG_PPC_TM_LR 64 2403 PPC KVM_REG_PPC_TM_LR 64 2461 PPC KVM_REG_PPC_TM_CTR 64 2404 PPC KVM_REG_PPC_TM_CTR 64 2462 PPC KVM_REG_PPC_TM_FPSCR 64 2405 PPC KVM_REG_PPC_TM_FPSCR 64 2463 PPC KVM_REG_PPC_TM_AMR 64 2406 PPC KVM_REG_PPC_TM_AMR 64 2464 PPC KVM_REG_PPC_TM_PPR 64 2407 PPC KVM_REG_PPC_TM_PPR 64 2465 PPC KVM_REG_PPC_TM_VRSAVE 64 2408 PPC KVM_REG_PPC_TM_VRSAVE 64 2466 PPC KVM_REG_PPC_TM_VSCR 32 2409 PPC KVM_REG_PPC_TM_VSCR 32 2467 PPC KVM_REG_PPC_TM_DSCR 64 2410 PPC KVM_REG_PPC_TM_DSCR 64 2468 PPC KVM_REG_PPC_TM_TAR 64 2411 PPC KVM_REG_PPC_TM_TAR 64 2469 PPC KVM_REG_PPC_TM_XER 64 2412 PPC KVM_REG_PPC_TM_XER 64 2470 2413 2471 MIPS KVM_REG_MIPS_R0 64 2414 MIPS KVM_REG_MIPS_R0 64 2472 ... 2415 ... 2473 MIPS KVM_REG_MIPS_R31 64 2416 MIPS KVM_REG_MIPS_R31 64 2474 MIPS KVM_REG_MIPS_HI 64 2417 MIPS KVM_REG_MIPS_HI 64 2475 MIPS KVM_REG_MIPS_LO 64 2418 MIPS KVM_REG_MIPS_LO 64 2476 MIPS KVM_REG_MIPS_PC 64 2419 MIPS KVM_REG_MIPS_PC 64 2477 MIPS KVM_REG_MIPS_CP0_INDEX 32 2420 MIPS KVM_REG_MIPS_CP0_INDEX 32 2478 MIPS KVM_REG_MIPS_CP0_ENTRYLO0 64 2421 MIPS KVM_REG_MIPS_CP0_ENTRYLO0 64 2479 MIPS KVM_REG_MIPS_CP0_ENTRYLO1 64 2422 MIPS KVM_REG_MIPS_CP0_ENTRYLO1 64 2480 MIPS KVM_REG_MIPS_CP0_CONTEXT 64 2423 MIPS KVM_REG_MIPS_CP0_CONTEXT 64 2481 MIPS KVM_REG_MIPS_CP0_CONTEXTCONFIG 32 2424 MIPS KVM_REG_MIPS_CP0_CONTEXTCONFIG 32 2482 MIPS KVM_REG_MIPS_CP0_USERLOCAL 64 2425 MIPS KVM_REG_MIPS_CP0_USERLOCAL 64 2483 MIPS KVM_REG_MIPS_CP0_XCONTEXTCONFIG 64 2426 MIPS KVM_REG_MIPS_CP0_XCONTEXTCONFIG 64 2484 MIPS KVM_REG_MIPS_CP0_PAGEMASK 32 2427 MIPS KVM_REG_MIPS_CP0_PAGEMASK 32 2485 MIPS KVM_REG_MIPS_CP0_PAGEGRAIN 32 2428 MIPS KVM_REG_MIPS_CP0_PAGEGRAIN 32 2486 MIPS KVM_REG_MIPS_CP0_SEGCTL0 64 2429 MIPS KVM_REG_MIPS_CP0_SEGCTL0 64 2487 MIPS KVM_REG_MIPS_CP0_SEGCTL1 64 2430 MIPS KVM_REG_MIPS_CP0_SEGCTL1 64 2488 MIPS KVM_REG_MIPS_CP0_SEGCTL2 64 2431 MIPS KVM_REG_MIPS_CP0_SEGCTL2 64 2489 MIPS KVM_REG_MIPS_CP0_PWBASE 64 2432 MIPS KVM_REG_MIPS_CP0_PWBASE 64 2490 MIPS KVM_REG_MIPS_CP0_PWFIELD 64 2433 MIPS KVM_REG_MIPS_CP0_PWFIELD 64 2491 MIPS KVM_REG_MIPS_CP0_PWSIZE 64 2434 MIPS KVM_REG_MIPS_CP0_PWSIZE 64 2492 MIPS KVM_REG_MIPS_CP0_WIRED 32 2435 MIPS KVM_REG_MIPS_CP0_WIRED 32 2493 MIPS KVM_REG_MIPS_CP0_PWCTL 32 2436 MIPS KVM_REG_MIPS_CP0_PWCTL 32 2494 MIPS KVM_REG_MIPS_CP0_HWRENA 32 2437 MIPS KVM_REG_MIPS_CP0_HWRENA 32 2495 MIPS KVM_REG_MIPS_CP0_BADVADDR 64 2438 MIPS KVM_REG_MIPS_CP0_BADVADDR 64 2496 MIPS KVM_REG_MIPS_CP0_BADINSTR 32 2439 MIPS KVM_REG_MIPS_CP0_BADINSTR 32 2497 MIPS KVM_REG_MIPS_CP0_BADINSTRP 32 2440 MIPS KVM_REG_MIPS_CP0_BADINSTRP 32 2498 MIPS KVM_REG_MIPS_CP0_COUNT 32 2441 MIPS KVM_REG_MIPS_CP0_COUNT 32 2499 MIPS KVM_REG_MIPS_CP0_ENTRYHI 64 2442 MIPS KVM_REG_MIPS_CP0_ENTRYHI 64 2500 MIPS KVM_REG_MIPS_CP0_COMPARE 32 2443 MIPS KVM_REG_MIPS_CP0_COMPARE 32 2501 MIPS KVM_REG_MIPS_CP0_STATUS 32 2444 MIPS KVM_REG_MIPS_CP0_STATUS 32 2502 MIPS KVM_REG_MIPS_CP0_INTCTL 32 2445 MIPS KVM_REG_MIPS_CP0_INTCTL 32 2503 MIPS KVM_REG_MIPS_CP0_CAUSE 32 2446 MIPS KVM_REG_MIPS_CP0_CAUSE 32 2504 MIPS KVM_REG_MIPS_CP0_EPC 64 2447 MIPS KVM_REG_MIPS_CP0_EPC 64 2505 MIPS KVM_REG_MIPS_CP0_PRID 32 2448 MIPS KVM_REG_MIPS_CP0_PRID 32 2506 MIPS KVM_REG_MIPS_CP0_EBASE 64 2449 MIPS KVM_REG_MIPS_CP0_EBASE 64 2507 MIPS KVM_REG_MIPS_CP0_CONFIG 32 2450 MIPS KVM_REG_MIPS_CP0_CONFIG 32 2508 MIPS KVM_REG_MIPS_CP0_CONFIG1 32 2451 MIPS KVM_REG_MIPS_CP0_CONFIG1 32 2509 MIPS KVM_REG_MIPS_CP0_CONFIG2 32 2452 MIPS KVM_REG_MIPS_CP0_CONFIG2 32 2510 MIPS KVM_REG_MIPS_CP0_CONFIG3 32 2453 MIPS KVM_REG_MIPS_CP0_CONFIG3 32 2511 MIPS KVM_REG_MIPS_CP0_CONFIG4 32 2454 MIPS KVM_REG_MIPS_CP0_CONFIG4 32 2512 MIPS KVM_REG_MIPS_CP0_CONFIG5 32 2455 MIPS KVM_REG_MIPS_CP0_CONFIG5 32 2513 MIPS KVM_REG_MIPS_CP0_CONFIG7 32 2456 MIPS KVM_REG_MIPS_CP0_CONFIG7 32 2514 MIPS KVM_REG_MIPS_CP0_XCONTEXT 64 2457 MIPS KVM_REG_MIPS_CP0_XCONTEXT 64 2515 MIPS KVM_REG_MIPS_CP0_ERROREPC 64 2458 MIPS KVM_REG_MIPS_CP0_ERROREPC 64 2516 MIPS KVM_REG_MIPS_CP0_KSCRATCH1 64 2459 MIPS KVM_REG_MIPS_CP0_KSCRATCH1 64 2517 MIPS KVM_REG_MIPS_CP0_KSCRATCH2 64 2460 MIPS KVM_REG_MIPS_CP0_KSCRATCH2 64 2518 MIPS KVM_REG_MIPS_CP0_KSCRATCH3 64 2461 MIPS KVM_REG_MIPS_CP0_KSCRATCH3 64 2519 MIPS KVM_REG_MIPS_CP0_KSCRATCH4 64 2462 MIPS KVM_REG_MIPS_CP0_KSCRATCH4 64 2520 MIPS KVM_REG_MIPS_CP0_KSCRATCH5 64 2463 MIPS KVM_REG_MIPS_CP0_KSCRATCH5 64 2521 MIPS KVM_REG_MIPS_CP0_KSCRATCH6 64 2464 MIPS KVM_REG_MIPS_CP0_KSCRATCH6 64 2522 MIPS KVM_REG_MIPS_CP0_MAAR(0..63) 64 2465 MIPS KVM_REG_MIPS_CP0_MAAR(0..63) 64 2523 MIPS KVM_REG_MIPS_COUNT_CTL 64 2466 MIPS KVM_REG_MIPS_COUNT_CTL 64 2524 MIPS KVM_REG_MIPS_COUNT_RESUME 64 2467 MIPS KVM_REG_MIPS_COUNT_RESUME 64 2525 MIPS KVM_REG_MIPS_COUNT_HZ 64 2468 MIPS KVM_REG_MIPS_COUNT_HZ 64 2526 MIPS KVM_REG_MIPS_FPR_32(0..31) 32 2469 MIPS KVM_REG_MIPS_FPR_32(0..31) 32 2527 MIPS KVM_REG_MIPS_FPR_64(0..31) 64 2470 MIPS KVM_REG_MIPS_FPR_64(0..31) 64 2528 MIPS KVM_REG_MIPS_VEC_128(0..31) 128 2471 MIPS KVM_REG_MIPS_VEC_128(0..31) 128 2529 MIPS KVM_REG_MIPS_FCR_IR 32 2472 MIPS KVM_REG_MIPS_FCR_IR 32 2530 MIPS KVM_REG_MIPS_FCR_CSR 32 2473 MIPS KVM_REG_MIPS_FCR_CSR 32 2531 MIPS KVM_REG_MIPS_MSA_IR 32 2474 MIPS KVM_REG_MIPS_MSA_IR 32 2532 MIPS KVM_REG_MIPS_MSA_CSR 32 2475 MIPS KVM_REG_MIPS_MSA_CSR 32 2533 ======= =============================== === 2476 ======= =============================== ============ 2534 2477 2535 ARM registers are mapped using the lower 32 b 2478 ARM registers are mapped using the lower 32 bits. The upper 16 of that 2536 is the register group type, or coprocessor nu 2479 is the register group type, or coprocessor number: 2537 2480 2538 ARM core registers have the following id bit 2481 ARM core registers have the following id bit patterns:: 2539 2482 2540 0x4020 0000 0010 <index into the kvm_regs s 2483 0x4020 0000 0010 <index into the kvm_regs struct:16> 2541 2484 2542 ARM 32-bit CP15 registers have the following 2485 ARM 32-bit CP15 registers have the following id bit patterns:: 2543 2486 2544 0x4020 0000 000F <zero:1> <crn:4> <crm:4> < 2487 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3> 2545 2488 2546 ARM 64-bit CP15 registers have the following 2489 ARM 64-bit CP15 registers have the following id bit patterns:: 2547 2490 2548 0x4030 0000 000F <zero:1> <zero:4> <crm:4> 2491 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3> 2549 2492 2550 ARM CCSIDR registers are demultiplexed by CSS 2493 ARM CCSIDR registers are demultiplexed by CSSELR value:: 2551 2494 2552 0x4020 0000 0011 00 <csselr:8> 2495 0x4020 0000 0011 00 <csselr:8> 2553 2496 2554 ARM 32-bit VFP control registers have the fol 2497 ARM 32-bit VFP control registers have the following id bit patterns:: 2555 2498 2556 0x4020 0000 0012 1 <regno:12> 2499 0x4020 0000 0012 1 <regno:12> 2557 2500 2558 ARM 64-bit FP registers have the following id 2501 ARM 64-bit FP registers have the following id bit patterns:: 2559 2502 2560 0x4030 0000 0012 0 <regno:12> 2503 0x4030 0000 0012 0 <regno:12> 2561 2504 2562 ARM firmware pseudo-registers have the follow 2505 ARM firmware pseudo-registers have the following bit pattern:: 2563 2506 2564 0x4030 0000 0014 <regno:16> 2507 0x4030 0000 0014 <regno:16> 2565 2508 2566 2509 2567 arm64 registers are mapped using the lower 32 2510 arm64 registers are mapped using the lower 32 bits. The upper 16 of 2568 that is the register group type, or coprocess 2511 that is the register group type, or coprocessor number: 2569 2512 2570 arm64 core/FP-SIMD registers have the followi 2513 arm64 core/FP-SIMD registers have the following id bit patterns. Note 2571 that the size of the access is variable, as t 2514 that the size of the access is variable, as the kvm_regs structure 2572 contains elements ranging from 32 to 128 bits 2515 contains elements ranging from 32 to 128 bits. The index is a 32bit 2573 value in the kvm_regs structure seen as a 32b 2516 value in the kvm_regs structure seen as a 32bit array:: 2574 2517 2575 0x60x0 0000 0010 <index into the kvm_regs s 2518 0x60x0 0000 0010 <index into the kvm_regs struct:16> 2576 2519 2577 Specifically: 2520 Specifically: 2578 2521 2579 ======================= ========= ===== ===== 2522 ======================= ========= ===== ======================================= 2580 Encoding Register Bits kvm_r 2523 Encoding Register Bits kvm_regs member 2581 ======================= ========= ===== ===== 2524 ======================= ========= ===== ======================================= 2582 0x6030 0000 0010 0000 X0 64 regs. 2525 0x6030 0000 0010 0000 X0 64 regs.regs[0] 2583 0x6030 0000 0010 0002 X1 64 regs. 2526 0x6030 0000 0010 0002 X1 64 regs.regs[1] 2584 ... 2527 ... 2585 0x6030 0000 0010 003c X30 64 regs. 2528 0x6030 0000 0010 003c X30 64 regs.regs[30] 2586 0x6030 0000 0010 003e SP 64 regs. 2529 0x6030 0000 0010 003e SP 64 regs.sp 2587 0x6030 0000 0010 0040 PC 64 regs. 2530 0x6030 0000 0010 0040 PC 64 regs.pc 2588 0x6030 0000 0010 0042 PSTATE 64 regs. 2531 0x6030 0000 0010 0042 PSTATE 64 regs.pstate 2589 0x6030 0000 0010 0044 SP_EL1 64 sp_el 2532 0x6030 0000 0010 0044 SP_EL1 64 sp_el1 2590 0x6030 0000 0010 0046 ELR_EL1 64 elr_e 2533 0x6030 0000 0010 0046 ELR_EL1 64 elr_el1 2591 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[ 2534 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[KVM_SPSR_EL1] (alias SPSR_SVC) 2592 0x6030 0000 0010 004a SPSR_ABT 64 spsr[ 2535 0x6030 0000 0010 004a SPSR_ABT 64 spsr[KVM_SPSR_ABT] 2593 0x6030 0000 0010 004c SPSR_UND 64 spsr[ 2536 0x6030 0000 0010 004c SPSR_UND 64 spsr[KVM_SPSR_UND] 2594 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[ 2537 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[KVM_SPSR_IRQ] 2595 0x6030 0000 0010 0050 SPSR_FIQ 64 spsr[ !! 2538 0x6060 0000 0010 0050 SPSR_FIQ 64 spsr[KVM_SPSR_FIQ] 2596 0x6040 0000 0010 0054 V0 128 fp_re 2539 0x6040 0000 0010 0054 V0 128 fp_regs.vregs[0] [1]_ 2597 0x6040 0000 0010 0058 V1 128 fp_re 2540 0x6040 0000 0010 0058 V1 128 fp_regs.vregs[1] [1]_ 2598 ... 2541 ... 2599 0x6040 0000 0010 00d0 V31 128 fp_re 2542 0x6040 0000 0010 00d0 V31 128 fp_regs.vregs[31] [1]_ 2600 0x6020 0000 0010 00d4 FPSR 32 fp_re 2543 0x6020 0000 0010 00d4 FPSR 32 fp_regs.fpsr 2601 0x6020 0000 0010 00d5 FPCR 32 fp_re 2544 0x6020 0000 0010 00d5 FPCR 32 fp_regs.fpcr 2602 ======================= ========= ===== ===== 2545 ======================= ========= ===== ======================================= 2603 2546 2604 .. [1] These encodings are not accepted for S 2547 .. [1] These encodings are not accepted for SVE-enabled vcpus. See 2605 KVM_ARM_VCPU_INIT. 2548 KVM_ARM_VCPU_INIT. 2606 2549 2607 The equivalent register content can be 2550 The equivalent register content can be accessed via bits [127:0] of 2608 the corresponding SVE Zn registers ins 2551 the corresponding SVE Zn registers instead for vcpus that have SVE 2609 enabled (see below). 2552 enabled (see below). 2610 2553 2611 arm64 CCSIDR registers are demultiplexed by C 2554 arm64 CCSIDR registers are demultiplexed by CSSELR value:: 2612 2555 2613 0x6020 0000 0011 00 <csselr:8> 2556 0x6020 0000 0011 00 <csselr:8> 2614 2557 2615 arm64 system registers have the following id 2558 arm64 system registers have the following id bit patterns:: 2616 2559 2617 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <c 2560 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3> 2618 2561 2619 .. warning:: 2562 .. warning:: 2620 2563 2621 Two system register IDs do not follow th 2564 Two system register IDs do not follow the specified pattern. These 2622 are KVM_REG_ARM_TIMER_CVAL and KVM_REG_A 2565 are KVM_REG_ARM_TIMER_CVAL and KVM_REG_ARM_TIMER_CNT, which map to 2623 system registers CNTV_CVAL_EL0 and CNTVC 2566 system registers CNTV_CVAL_EL0 and CNTVCT_EL0 respectively. These 2624 two had their values accidentally swappe 2567 two had their values accidentally swapped, which means TIMER_CVAL is 2625 derived from the register encoding for C 2568 derived from the register encoding for CNTVCT_EL0 and TIMER_CNT is 2626 derived from the register encoding for C 2569 derived from the register encoding for CNTV_CVAL_EL0. As this is 2627 API, it must remain this way. 2570 API, it must remain this way. 2628 2571 2629 arm64 firmware pseudo-registers have the foll 2572 arm64 firmware pseudo-registers have the following bit pattern:: 2630 2573 2631 0x6030 0000 0014 <regno:16> 2574 0x6030 0000 0014 <regno:16> 2632 2575 2633 arm64 SVE registers have the following bit pa 2576 arm64 SVE registers have the following bit patterns:: 2634 2577 2635 0x6080 0000 0015 00 <n:5> <slice:5> Zn bi 2578 0x6080 0000 0015 00 <n:5> <slice:5> Zn bits[2048*slice + 2047 : 2048*slice] 2636 0x6050 0000 0015 04 <n:4> <slice:5> Pn bi 2579 0x6050 0000 0015 04 <n:4> <slice:5> Pn bits[256*slice + 255 : 256*slice] 2637 0x6050 0000 0015 060 <slice:5> FFR b 2580 0x6050 0000 0015 060 <slice:5> FFR bits[256*slice + 255 : 256*slice] 2638 0x6060 0000 0015 ffff KVM_R 2581 0x6060 0000 0015 ffff KVM_REG_ARM64_SVE_VLS pseudo-register 2639 2582 2640 Access to register IDs where 2048 * slice >= 2583 Access to register IDs where 2048 * slice >= 128 * max_vq will fail with 2641 ENOENT. max_vq is the vcpu's maximum support 2584 ENOENT. max_vq is the vcpu's maximum supported vector length in 128-bit 2642 quadwords: see [2]_ below. 2585 quadwords: see [2]_ below. 2643 2586 2644 These registers are only accessible on vcpus 2587 These registers are only accessible on vcpus for which SVE is enabled. 2645 See KVM_ARM_VCPU_INIT for details. 2588 See KVM_ARM_VCPU_INIT for details. 2646 2589 2647 In addition, except for KVM_REG_ARM64_SVE_VLS 2590 In addition, except for KVM_REG_ARM64_SVE_VLS, these registers are not 2648 accessible until the vcpu's SVE configuration 2591 accessible until the vcpu's SVE configuration has been finalized 2649 using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE) 2592 using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). See KVM_ARM_VCPU_INIT 2650 and KVM_ARM_VCPU_FINALIZE for more informatio 2593 and KVM_ARM_VCPU_FINALIZE for more information about this procedure. 2651 2594 2652 KVM_REG_ARM64_SVE_VLS is a pseudo-register th 2595 KVM_REG_ARM64_SVE_VLS is a pseudo-register that allows the set of vector 2653 lengths supported by the vcpu to be discovere 2596 lengths supported by the vcpu to be discovered and configured by 2654 userspace. When transferred to or from user 2597 userspace. When transferred to or from user memory via KVM_GET_ONE_REG 2655 or KVM_SET_ONE_REG, the value of this registe 2598 or KVM_SET_ONE_REG, the value of this register is of type 2656 __u64[KVM_ARM64_SVE_VLS_WORDS], and encodes t 2599 __u64[KVM_ARM64_SVE_VLS_WORDS], and encodes the set of vector lengths as 2657 follows:: 2600 follows:: 2658 2601 2659 __u64 vector_lengths[KVM_ARM64_SVE_VLS_WORD 2602 __u64 vector_lengths[KVM_ARM64_SVE_VLS_WORDS]; 2660 2603 2661 if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX && 2604 if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX && 2662 ((vector_lengths[(vq - KVM_ARM64_SVE_VQ 2605 ((vector_lengths[(vq - KVM_ARM64_SVE_VQ_MIN) / 64] >> 2663 ((vq - KVM_ARM64_SVE_VQ_MIN) 2606 ((vq - KVM_ARM64_SVE_VQ_MIN) % 64)) & 1)) 2664 /* Vector length vq * 16 bytes suppor 2607 /* Vector length vq * 16 bytes supported */ 2665 else 2608 else 2666 /* Vector length vq * 16 bytes not su 2609 /* Vector length vq * 16 bytes not supported */ 2667 2610 2668 .. [2] The maximum value vq for which the abo 2611 .. [2] The maximum value vq for which the above condition is true is 2669 max_vq. This is the maximum vector le 2612 max_vq. This is the maximum vector length available to the guest on 2670 this vcpu, and determines which regist 2613 this vcpu, and determines which register slices are visible through 2671 this ioctl interface. 2614 this ioctl interface. 2672 2615 2673 (See Documentation/arch/arm64/sve.rst for an !! 2616 (See Documentation/arm64/sve.rst for an explanation of the "vq" 2674 nomenclature.) 2617 nomenclature.) 2675 2618 2676 KVM_REG_ARM64_SVE_VLS is only accessible afte 2619 KVM_REG_ARM64_SVE_VLS is only accessible after KVM_ARM_VCPU_INIT. 2677 KVM_ARM_VCPU_INIT initialises it to the best 2620 KVM_ARM_VCPU_INIT initialises it to the best set of vector lengths that 2678 the host supports. 2621 the host supports. 2679 2622 2680 Userspace may subsequently modify it if desir 2623 Userspace may subsequently modify it if desired until the vcpu's SVE 2681 configuration is finalized using KVM_ARM_VCPU 2624 configuration is finalized using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). 2682 2625 2683 Apart from simply removing all vector lengths 2626 Apart from simply removing all vector lengths from the host set that 2684 exceed some value, support for arbitrarily ch 2627 exceed some value, support for arbitrarily chosen sets of vector lengths 2685 is hardware-dependent and may not be availabl 2628 is hardware-dependent and may not be available. Attempting to configure 2686 an invalid set of vector lengths via KVM_SET_ 2629 an invalid set of vector lengths via KVM_SET_ONE_REG will fail with 2687 EINVAL. 2630 EINVAL. 2688 2631 2689 After the vcpu's SVE configuration is finaliz 2632 After the vcpu's SVE configuration is finalized, further attempts to 2690 write this register will fail with EPERM. 2633 write this register will fail with EPERM. 2691 2634 2692 arm64 bitmap feature firmware pseudo-register 2635 arm64 bitmap feature firmware pseudo-registers have the following bit pattern:: 2693 2636 2694 0x6030 0000 0016 <regno:16> 2637 0x6030 0000 0016 <regno:16> 2695 2638 2696 The bitmap feature firmware registers exposes 2639 The bitmap feature firmware registers exposes the hypercall services that 2697 are available for userspace to configure. The 2640 are available for userspace to configure. The set bits corresponds to the 2698 services that are available for the guests to 2641 services that are available for the guests to access. By default, KVM 2699 sets all the supported bits during VM initial 2642 sets all the supported bits during VM initialization. The userspace can 2700 discover the available services via KVM_GET_O 2643 discover the available services via KVM_GET_ONE_REG, and write back the 2701 bitmap corresponding to the features that it 2644 bitmap corresponding to the features that it wishes guests to see via 2702 KVM_SET_ONE_REG. 2645 KVM_SET_ONE_REG. 2703 2646 2704 Note: These registers are immutable once any 2647 Note: These registers are immutable once any of the vCPUs of the VM has 2705 run at least once. A KVM_SET_ONE_REG in such 2648 run at least once. A KVM_SET_ONE_REG in such a scenario will return 2706 a -EBUSY to userspace. 2649 a -EBUSY to userspace. 2707 2650 2708 (See Documentation/virt/kvm/arm/hypercalls.rs 2651 (See Documentation/virt/kvm/arm/hypercalls.rst for more details.) 2709 2652 2710 2653 2711 MIPS registers are mapped using the lower 32 2654 MIPS registers are mapped using the lower 32 bits. The upper 16 of that is 2712 the register group type: 2655 the register group type: 2713 2656 2714 MIPS core registers (see above) have the foll 2657 MIPS core registers (see above) have the following id bit patterns:: 2715 2658 2716 0x7030 0000 0000 <reg:16> 2659 0x7030 0000 0000 <reg:16> 2717 2660 2718 MIPS CP0 registers (see KVM_REG_MIPS_CP0_* ab 2661 MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit 2719 patterns depending on whether they're 32-bit 2662 patterns depending on whether they're 32-bit or 64-bit registers:: 2720 2663 2721 0x7020 0000 0001 00 <reg:5> <sel:3> (32-b 2664 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit) 2722 0x7030 0000 0001 00 <reg:5> <sel:3> (64-b 2665 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit) 2723 2666 2724 Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_M 2667 Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64 2725 versions of the EntryLo registers regardless 2668 versions of the EntryLo registers regardless of the word size of the host 2726 hardware, host kernel, guest, and whether XPA 2669 hardware, host kernel, guest, and whether XPA is present in the guest, i.e. 2727 with the RI and XI bits (if they exist) in bi 2670 with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and 2728 the PFNX field starting at bit 30. 2671 the PFNX field starting at bit 30. 2729 2672 2730 MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) abov 2673 MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit 2731 patterns:: 2674 patterns:: 2732 2675 2733 0x7030 0000 0001 01 <reg:8> 2676 0x7030 0000 0001 01 <reg:8> 2734 2677 2735 MIPS KVM control registers (see above) have t 2678 MIPS KVM control registers (see above) have the following id bit patterns:: 2736 2679 2737 0x7030 0000 0002 <reg:16> 2680 0x7030 0000 0002 <reg:16> 2738 2681 2739 MIPS FPU registers (see KVM_REG_MIPS_FPR_{32, 2682 MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following 2740 id bit patterns depending on the size of the 2683 id bit patterns depending on the size of the register being accessed. They are 2741 always accessed according to the current gues 2684 always accessed according to the current guest FPU mode (Status.FR and 2742 Config5.FRE), i.e. as the guest would see the 2685 Config5.FRE), i.e. as the guest would see them, and they become unpredictable 2743 if the guest FPU mode is changed. MIPS SIMD A 2686 if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector 2744 registers (see KVM_REG_MIPS_VEC_128() above) 2687 registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they 2745 overlap the FPU registers:: 2688 overlap the FPU registers:: 2746 2689 2747 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit F 2690 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers) 2748 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit F 2691 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers) 2749 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit 2692 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers) 2750 2693 2751 MIPS FPU control registers (see KVM_REG_MIPS_ 2694 MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the 2752 following id bit patterns:: 2695 following id bit patterns:: 2753 2696 2754 0x7020 0000 0003 01 <0:3> <reg:5> 2697 0x7020 0000 0003 01 <0:3> <reg:5> 2755 2698 2756 MIPS MSA control registers (see KVM_REG_MIPS_ 2699 MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the 2757 following id bit patterns:: 2700 following id bit patterns:: 2758 2701 2759 0x7020 0000 0003 02 <0:3> <reg:5> 2702 0x7020 0000 0003 02 <0:3> <reg:5> 2760 2703 2761 RISC-V registers are mapped using the lower 3 2704 RISC-V registers are mapped using the lower 32 bits. The upper 8 bits of 2762 that is the register group type. 2705 that is the register group type. 2763 2706 2764 RISC-V config registers are meant for configu 2707 RISC-V config registers are meant for configuring a Guest VCPU and it has 2765 the following id bit patterns:: 2708 the following id bit patterns:: 2766 2709 2767 0x8020 0000 01 <index into the kvm_riscv_co 2710 0x8020 0000 01 <index into the kvm_riscv_config struct:24> (32bit Host) 2768 0x8030 0000 01 <index into the kvm_riscv_co 2711 0x8030 0000 01 <index into the kvm_riscv_config struct:24> (64bit Host) 2769 2712 2770 Following are the RISC-V config registers: 2713 Following are the RISC-V config registers: 2771 2714 2772 ======================= ========= =========== 2715 ======================= ========= ============================================= 2773 Encoding Register Description 2716 Encoding Register Description 2774 ======================= ========= =========== 2717 ======================= ========= ============================================= 2775 0x80x0 0000 0100 0000 isa ISA feature 2718 0x80x0 0000 0100 0000 isa ISA feature bitmap of Guest VCPU 2776 ======================= ========= =========== 2719 ======================= ========= ============================================= 2777 2720 2778 The isa config register can be read anytime b 2721 The isa config register can be read anytime but can only be written before 2779 a Guest VCPU runs. It will have ISA feature b 2722 a Guest VCPU runs. It will have ISA feature bits matching underlying host 2780 set by default. 2723 set by default. 2781 2724 2782 RISC-V core registers represent the general e !! 2725 RISC-V core registers represent the general excution state of a Guest VCPU 2783 and it has the following id bit patterns:: 2726 and it has the following id bit patterns:: 2784 2727 2785 0x8020 0000 02 <index into the kvm_riscv_co 2728 0x8020 0000 02 <index into the kvm_riscv_core struct:24> (32bit Host) 2786 0x8030 0000 02 <index into the kvm_riscv_co 2729 0x8030 0000 02 <index into the kvm_riscv_core struct:24> (64bit Host) 2787 2730 2788 Following are the RISC-V core registers: 2731 Following are the RISC-V core registers: 2789 2732 2790 ======================= ========= =========== 2733 ======================= ========= ============================================= 2791 Encoding Register Description 2734 Encoding Register Description 2792 ======================= ========= =========== 2735 ======================= ========= ============================================= 2793 0x80x0 0000 0200 0000 regs.pc Program cou 2736 0x80x0 0000 0200 0000 regs.pc Program counter 2794 0x80x0 0000 0200 0001 regs.ra Return addr 2737 0x80x0 0000 0200 0001 regs.ra Return address 2795 0x80x0 0000 0200 0002 regs.sp Stack point 2738 0x80x0 0000 0200 0002 regs.sp Stack pointer 2796 0x80x0 0000 0200 0003 regs.gp Global poin 2739 0x80x0 0000 0200 0003 regs.gp Global pointer 2797 0x80x0 0000 0200 0004 regs.tp Task pointe 2740 0x80x0 0000 0200 0004 regs.tp Task pointer 2798 0x80x0 0000 0200 0005 regs.t0 Caller save 2741 0x80x0 0000 0200 0005 regs.t0 Caller saved register 0 2799 0x80x0 0000 0200 0006 regs.t1 Caller save 2742 0x80x0 0000 0200 0006 regs.t1 Caller saved register 1 2800 0x80x0 0000 0200 0007 regs.t2 Caller save 2743 0x80x0 0000 0200 0007 regs.t2 Caller saved register 2 2801 0x80x0 0000 0200 0008 regs.s0 Callee save 2744 0x80x0 0000 0200 0008 regs.s0 Callee saved register 0 2802 0x80x0 0000 0200 0009 regs.s1 Callee save 2745 0x80x0 0000 0200 0009 regs.s1 Callee saved register 1 2803 0x80x0 0000 0200 000a regs.a0 Function ar 2746 0x80x0 0000 0200 000a regs.a0 Function argument (or return value) 0 2804 0x80x0 0000 0200 000b regs.a1 Function ar 2747 0x80x0 0000 0200 000b regs.a1 Function argument (or return value) 1 2805 0x80x0 0000 0200 000c regs.a2 Function ar 2748 0x80x0 0000 0200 000c regs.a2 Function argument 2 2806 0x80x0 0000 0200 000d regs.a3 Function ar 2749 0x80x0 0000 0200 000d regs.a3 Function argument 3 2807 0x80x0 0000 0200 000e regs.a4 Function ar 2750 0x80x0 0000 0200 000e regs.a4 Function argument 4 2808 0x80x0 0000 0200 000f regs.a5 Function ar 2751 0x80x0 0000 0200 000f regs.a5 Function argument 5 2809 0x80x0 0000 0200 0010 regs.a6 Function ar 2752 0x80x0 0000 0200 0010 regs.a6 Function argument 6 2810 0x80x0 0000 0200 0011 regs.a7 Function ar 2753 0x80x0 0000 0200 0011 regs.a7 Function argument 7 2811 0x80x0 0000 0200 0012 regs.s2 Callee save 2754 0x80x0 0000 0200 0012 regs.s2 Callee saved register 2 2812 0x80x0 0000 0200 0013 regs.s3 Callee save 2755 0x80x0 0000 0200 0013 regs.s3 Callee saved register 3 2813 0x80x0 0000 0200 0014 regs.s4 Callee save 2756 0x80x0 0000 0200 0014 regs.s4 Callee saved register 4 2814 0x80x0 0000 0200 0015 regs.s5 Callee save 2757 0x80x0 0000 0200 0015 regs.s5 Callee saved register 5 2815 0x80x0 0000 0200 0016 regs.s6 Callee save 2758 0x80x0 0000 0200 0016 regs.s6 Callee saved register 6 2816 0x80x0 0000 0200 0017 regs.s7 Callee save 2759 0x80x0 0000 0200 0017 regs.s7 Callee saved register 7 2817 0x80x0 0000 0200 0018 regs.s8 Callee save 2760 0x80x0 0000 0200 0018 regs.s8 Callee saved register 8 2818 0x80x0 0000 0200 0019 regs.s9 Callee save 2761 0x80x0 0000 0200 0019 regs.s9 Callee saved register 9 2819 0x80x0 0000 0200 001a regs.s10 Callee save 2762 0x80x0 0000 0200 001a regs.s10 Callee saved register 10 2820 0x80x0 0000 0200 001b regs.s11 Callee save 2763 0x80x0 0000 0200 001b regs.s11 Callee saved register 11 2821 0x80x0 0000 0200 001c regs.t3 Caller save 2764 0x80x0 0000 0200 001c regs.t3 Caller saved register 3 2822 0x80x0 0000 0200 001d regs.t4 Caller save 2765 0x80x0 0000 0200 001d regs.t4 Caller saved register 4 2823 0x80x0 0000 0200 001e regs.t5 Caller save 2766 0x80x0 0000 0200 001e regs.t5 Caller saved register 5 2824 0x80x0 0000 0200 001f regs.t6 Caller save 2767 0x80x0 0000 0200 001f regs.t6 Caller saved register 6 2825 0x80x0 0000 0200 0020 mode Privilege m 2768 0x80x0 0000 0200 0020 mode Privilege mode (1 = S-mode or 0 = U-mode) 2826 ======================= ========= =========== 2769 ======================= ========= ============================================= 2827 2770 2828 RISC-V csr registers represent the supervisor 2771 RISC-V csr registers represent the supervisor mode control/status registers 2829 of a Guest VCPU and it has the following id b 2772 of a Guest VCPU and it has the following id bit patterns:: 2830 2773 2831 0x8020 0000 03 <index into the kvm_riscv_cs 2774 0x8020 0000 03 <index into the kvm_riscv_csr struct:24> (32bit Host) 2832 0x8030 0000 03 <index into the kvm_riscv_cs 2775 0x8030 0000 03 <index into the kvm_riscv_csr struct:24> (64bit Host) 2833 2776 2834 Following are the RISC-V csr registers: 2777 Following are the RISC-V csr registers: 2835 2778 2836 ======================= ========= =========== 2779 ======================= ========= ============================================= 2837 Encoding Register Description 2780 Encoding Register Description 2838 ======================= ========= =========== 2781 ======================= ========= ============================================= 2839 0x80x0 0000 0300 0000 sstatus Supervisor 2782 0x80x0 0000 0300 0000 sstatus Supervisor status 2840 0x80x0 0000 0300 0001 sie Supervisor 2783 0x80x0 0000 0300 0001 sie Supervisor interrupt enable 2841 0x80x0 0000 0300 0002 stvec Supervisor 2784 0x80x0 0000 0300 0002 stvec Supervisor trap vector base 2842 0x80x0 0000 0300 0003 sscratch Supervisor 2785 0x80x0 0000 0300 0003 sscratch Supervisor scratch register 2843 0x80x0 0000 0300 0004 sepc Supervisor 2786 0x80x0 0000 0300 0004 sepc Supervisor exception program counter 2844 0x80x0 0000 0300 0005 scause Supervisor 2787 0x80x0 0000 0300 0005 scause Supervisor trap cause 2845 0x80x0 0000 0300 0006 stval Supervisor 2788 0x80x0 0000 0300 0006 stval Supervisor bad address or instruction 2846 0x80x0 0000 0300 0007 sip Supervisor 2789 0x80x0 0000 0300 0007 sip Supervisor interrupt pending 2847 0x80x0 0000 0300 0008 satp Supervisor 2790 0x80x0 0000 0300 0008 satp Supervisor address translation and protection 2848 ======================= ========= =========== 2791 ======================= ========= ============================================= 2849 2792 2850 RISC-V timer registers represent the timer st 2793 RISC-V timer registers represent the timer state of a Guest VCPU and it has 2851 the following id bit patterns:: 2794 the following id bit patterns:: 2852 2795 2853 0x8030 0000 04 <index into the kvm_riscv_ti 2796 0x8030 0000 04 <index into the kvm_riscv_timer struct:24> 2854 2797 2855 Following are the RISC-V timer registers: 2798 Following are the RISC-V timer registers: 2856 2799 2857 ======================= ========= =========== 2800 ======================= ========= ============================================= 2858 Encoding Register Description 2801 Encoding Register Description 2859 ======================= ========= =========== 2802 ======================= ========= ============================================= 2860 0x8030 0000 0400 0000 frequency Time base f 2803 0x8030 0000 0400 0000 frequency Time base frequency (read-only) 2861 0x8030 0000 0400 0001 time Time value 2804 0x8030 0000 0400 0001 time Time value visible to Guest 2862 0x8030 0000 0400 0002 compare Time compar 2805 0x8030 0000 0400 0002 compare Time compare programmed by Guest 2863 0x8030 0000 0400 0003 state Time compar 2806 0x8030 0000 0400 0003 state Time compare state (1 = ON or 0 = OFF) 2864 ======================= ========= =========== 2807 ======================= ========= ============================================= 2865 2808 2866 RISC-V F-extension registers represent the si 2809 RISC-V F-extension registers represent the single precision floating point 2867 state of a Guest VCPU and it has the followin 2810 state of a Guest VCPU and it has the following id bit patterns:: 2868 2811 2869 0x8020 0000 05 <index into the __riscv_f_ex 2812 0x8020 0000 05 <index into the __riscv_f_ext_state struct:24> 2870 2813 2871 Following are the RISC-V F-extension register 2814 Following are the RISC-V F-extension registers: 2872 2815 2873 ======================= ========= =========== 2816 ======================= ========= ============================================= 2874 Encoding Register Description 2817 Encoding Register Description 2875 ======================= ========= =========== 2818 ======================= ========= ============================================= 2876 0x8020 0000 0500 0000 f[0] Floating po 2819 0x8020 0000 0500 0000 f[0] Floating point register 0 2877 ... 2820 ... 2878 0x8020 0000 0500 001f f[31] Floating po 2821 0x8020 0000 0500 001f f[31] Floating point register 31 2879 0x8020 0000 0500 0020 fcsr Floating po 2822 0x8020 0000 0500 0020 fcsr Floating point control and status register 2880 ======================= ========= =========== 2823 ======================= ========= ============================================= 2881 2824 2882 RISC-V D-extension registers represent the do 2825 RISC-V D-extension registers represent the double precision floating point 2883 state of a Guest VCPU and it has the followin 2826 state of a Guest VCPU and it has the following id bit patterns:: 2884 2827 2885 0x8020 0000 06 <index into the __riscv_d_ex 2828 0x8020 0000 06 <index into the __riscv_d_ext_state struct:24> (fcsr) 2886 0x8030 0000 06 <index into the __riscv_d_ex 2829 0x8030 0000 06 <index into the __riscv_d_ext_state struct:24> (non-fcsr) 2887 2830 2888 Following are the RISC-V D-extension register 2831 Following are the RISC-V D-extension registers: 2889 2832 2890 ======================= ========= =========== 2833 ======================= ========= ============================================= 2891 Encoding Register Description 2834 Encoding Register Description 2892 ======================= ========= =========== 2835 ======================= ========= ============================================= 2893 0x8030 0000 0600 0000 f[0] Floating po 2836 0x8030 0000 0600 0000 f[0] Floating point register 0 2894 ... 2837 ... 2895 0x8030 0000 0600 001f f[31] Floating po 2838 0x8030 0000 0600 001f f[31] Floating point register 31 2896 0x8020 0000 0600 0020 fcsr Floating po 2839 0x8020 0000 0600 0020 fcsr Floating point control and status register 2897 ======================= ========= =========== 2840 ======================= ========= ============================================= 2898 2841 2899 LoongArch registers are mapped using the lowe << 2900 that is the register group type. << 2901 << 2902 LoongArch csr registers are used to control g << 2903 cpu, and they have the following id bit patte << 2904 << 2905 0x9030 0000 0001 00 <reg:5> <sel:3> (64-b << 2906 << 2907 LoongArch KVM control registers are used to i << 2908 such as set vcpu counter or reset vcpu, and t << 2909 << 2910 0x9030 0000 0002 <reg:16> << 2911 << 2912 2842 2913 4.69 KVM_GET_ONE_REG 2843 4.69 KVM_GET_ONE_REG 2914 -------------------- 2844 -------------------- 2915 2845 2916 :Capability: KVM_CAP_ONE_REG 2846 :Capability: KVM_CAP_ONE_REG 2917 :Architectures: all 2847 :Architectures: all 2918 :Type: vcpu ioctl 2848 :Type: vcpu ioctl 2919 :Parameters: struct kvm_one_reg (in and out) 2849 :Parameters: struct kvm_one_reg (in and out) 2920 :Returns: 0 on success, negative value on fai 2850 :Returns: 0 on success, negative value on failure 2921 2851 2922 Errors include: 2852 Errors include: 2923 2853 2924 ======== ================================== 2854 ======== ============================================================ 2925 ENOENT no such register 2855 ENOENT no such register 2926 EINVAL invalid register ID, or no such re 2856 EINVAL invalid register ID, or no such register or used with VMs in 2927 protected virtualization mode on s 2857 protected virtualization mode on s390 2928 EPERM (arm64) register access not allowe 2858 EPERM (arm64) register access not allowed before vcpu finalization 2929 ======== ================================== 2859 ======== ============================================================ 2930 2860 2931 (These error codes are indicative only: do no 2861 (These error codes are indicative only: do not rely on a specific error 2932 code being returned in a specific situation.) 2862 code being returned in a specific situation.) 2933 2863 2934 This ioctl allows to receive the value of a s 2864 This ioctl allows to receive the value of a single register implemented 2935 in a vcpu. The register to read is indicated 2865 in a vcpu. The register to read is indicated by the "id" field of the 2936 kvm_one_reg struct passed in. On success, the 2866 kvm_one_reg struct passed in. On success, the register value can be found 2937 at the memory location pointed to by "addr". 2867 at the memory location pointed to by "addr". 2938 2868 2939 The list of registers accessible using this i 2869 The list of registers accessible using this interface is identical to the 2940 list in 4.68. 2870 list in 4.68. 2941 2871 2942 2872 2943 4.70 KVM_KVMCLOCK_CTRL 2873 4.70 KVM_KVMCLOCK_CTRL 2944 ---------------------- 2874 ---------------------- 2945 2875 2946 :Capability: KVM_CAP_KVMCLOCK_CTRL 2876 :Capability: KVM_CAP_KVMCLOCK_CTRL 2947 :Architectures: Any that implement pvclocks ( 2877 :Architectures: Any that implement pvclocks (currently x86 only) 2948 :Type: vcpu ioctl 2878 :Type: vcpu ioctl 2949 :Parameters: None 2879 :Parameters: None 2950 :Returns: 0 on success, -1 on error 2880 :Returns: 0 on success, -1 on error 2951 2881 2952 This ioctl sets a flag accessible to the gues 2882 This ioctl sets a flag accessible to the guest indicating that the specified 2953 vCPU has been paused by the host userspace. 2883 vCPU has been paused by the host userspace. 2954 2884 2955 The host will set a flag in the pvclock struc 2885 The host will set a flag in the pvclock structure that is checked from the 2956 soft lockup watchdog. The flag is part of th 2886 soft lockup watchdog. The flag is part of the pvclock structure that is 2957 shared between guest and host, specifically t 2887 shared between guest and host, specifically the second bit of the flags 2958 field of the pvclock_vcpu_time_info structure 2888 field of the pvclock_vcpu_time_info structure. It will be set exclusively by 2959 the host and read/cleared exclusively by the 2889 the host and read/cleared exclusively by the guest. The guest operation of 2960 checking and clearing the flag must be an ato 2890 checking and clearing the flag must be an atomic operation so 2961 load-link/store-conditional, or equivalent mu 2891 load-link/store-conditional, or equivalent must be used. There are two cases 2962 where the guest will clear the flag: when the 2892 where the guest will clear the flag: when the soft lockup watchdog timer resets 2963 itself or when a soft lockup is detected. Th 2893 itself or when a soft lockup is detected. This ioctl can be called any time 2964 after pausing the vcpu, but before it is resu 2894 after pausing the vcpu, but before it is resumed. 2965 2895 2966 2896 2967 4.71 KVM_SIGNAL_MSI 2897 4.71 KVM_SIGNAL_MSI 2968 ------------------- 2898 ------------------- 2969 2899 2970 :Capability: KVM_CAP_SIGNAL_MSI 2900 :Capability: KVM_CAP_SIGNAL_MSI 2971 :Architectures: x86 arm64 2901 :Architectures: x86 arm64 2972 :Type: vm ioctl 2902 :Type: vm ioctl 2973 :Parameters: struct kvm_msi (in) 2903 :Parameters: struct kvm_msi (in) 2974 :Returns: >0 on delivery, 0 if guest blocked 2904 :Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error 2975 2905 2976 Directly inject a MSI message. Only valid wit 2906 Directly inject a MSI message. Only valid with in-kernel irqchip that handles 2977 MSI messages. 2907 MSI messages. 2978 2908 2979 :: 2909 :: 2980 2910 2981 struct kvm_msi { 2911 struct kvm_msi { 2982 __u32 address_lo; 2912 __u32 address_lo; 2983 __u32 address_hi; 2913 __u32 address_hi; 2984 __u32 data; 2914 __u32 data; 2985 __u32 flags; 2915 __u32 flags; 2986 __u32 devid; 2916 __u32 devid; 2987 __u8 pad[12]; 2917 __u8 pad[12]; 2988 }; 2918 }; 2989 2919 2990 flags: 2920 flags: 2991 KVM_MSI_VALID_DEVID: devid contains a valid 2921 KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM 2992 KVM_CAP_MSI_DEVID capability advertises the 2922 KVM_CAP_MSI_DEVID capability advertises the requirement to provide 2993 the device ID. If this capability is not a 2923 the device ID. If this capability is not available, userspace 2994 should never set the KVM_MSI_VALID_DEVID fl 2924 should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. 2995 2925 2996 If KVM_MSI_VALID_DEVID is set, devid contains 2926 If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier 2997 for the device that wrote the MSI message. F 2927 for the device that wrote the MSI message. For PCI, this is usually a 2998 BDF identifier in the lower 16 bits. !! 2928 BFD identifier in the lower 16 bits. 2999 2929 3000 On x86, address_hi is ignored unless the KVM_ 2930 On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS 3001 feature of KVM_CAP_X2APIC_API capability is e 2931 feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, 3002 address_hi bits 31-8 provide bits 31-8 of the 2932 address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of 3003 address_hi must be zero. 2933 address_hi must be zero. 3004 2934 3005 2935 3006 4.71 KVM_CREATE_PIT2 2936 4.71 KVM_CREATE_PIT2 3007 -------------------- 2937 -------------------- 3008 2938 3009 :Capability: KVM_CAP_PIT2 2939 :Capability: KVM_CAP_PIT2 3010 :Architectures: x86 2940 :Architectures: x86 3011 :Type: vm ioctl 2941 :Type: vm ioctl 3012 :Parameters: struct kvm_pit_config (in) 2942 :Parameters: struct kvm_pit_config (in) 3013 :Returns: 0 on success, -1 on error 2943 :Returns: 0 on success, -1 on error 3014 2944 3015 Creates an in-kernel device model for the i82 2945 Creates an in-kernel device model for the i8254 PIT. This call is only valid 3016 after enabling in-kernel irqchip support via 2946 after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following 3017 parameters have to be passed:: 2947 parameters have to be passed:: 3018 2948 3019 struct kvm_pit_config { 2949 struct kvm_pit_config { 3020 __u32 flags; 2950 __u32 flags; 3021 __u32 pad[15]; 2951 __u32 pad[15]; 3022 }; 2952 }; 3023 2953 3024 Valid flags are:: 2954 Valid flags are:: 3025 2955 3026 #define KVM_PIT_SPEAKER_DUMMY 1 /* emul 2956 #define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */ 3027 2957 3028 PIT timer interrupts may use a per-VM kernel 2958 PIT timer interrupts may use a per-VM kernel thread for injection. If it 3029 exists, this thread will have a name of the f 2959 exists, this thread will have a name of the following pattern:: 3030 2960 3031 kvm-pit/<owner-process-pid> 2961 kvm-pit/<owner-process-pid> 3032 2962 3033 When running a guest with elevated priorities 2963 When running a guest with elevated priorities, the scheduling parameters of 3034 this thread may have to be adjusted according 2964 this thread may have to be adjusted accordingly. 3035 2965 3036 This IOCTL replaces the obsolete KVM_CREATE_P 2966 This IOCTL replaces the obsolete KVM_CREATE_PIT. 3037 2967 3038 2968 3039 4.72 KVM_GET_PIT2 2969 4.72 KVM_GET_PIT2 3040 ----------------- 2970 ----------------- 3041 2971 3042 :Capability: KVM_CAP_PIT_STATE2 2972 :Capability: KVM_CAP_PIT_STATE2 3043 :Architectures: x86 2973 :Architectures: x86 3044 :Type: vm ioctl 2974 :Type: vm ioctl 3045 :Parameters: struct kvm_pit_state2 (out) 2975 :Parameters: struct kvm_pit_state2 (out) 3046 :Returns: 0 on success, -1 on error 2976 :Returns: 0 on success, -1 on error 3047 2977 3048 Retrieves the state of the in-kernel PIT mode 2978 Retrieves the state of the in-kernel PIT model. Only valid after 3049 KVM_CREATE_PIT2. The state is returned in the 2979 KVM_CREATE_PIT2. The state is returned in the following structure:: 3050 2980 3051 struct kvm_pit_state2 { 2981 struct kvm_pit_state2 { 3052 struct kvm_pit_channel_state channels 2982 struct kvm_pit_channel_state channels[3]; 3053 __u32 flags; 2983 __u32 flags; 3054 __u32 reserved[9]; 2984 __u32 reserved[9]; 3055 }; 2985 }; 3056 2986 3057 Valid flags are:: 2987 Valid flags are:: 3058 2988 3059 /* disable PIT in HPET legacy mode */ 2989 /* disable PIT in HPET legacy mode */ 3060 #define KVM_PIT_FLAGS_HPET_LEGACY 0x000 2990 #define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001 3061 /* speaker port data bit enabled */ 2991 /* speaker port data bit enabled */ 3062 #define KVM_PIT_FLAGS_SPEAKER_DATA_ON 0x000 2992 #define KVM_PIT_FLAGS_SPEAKER_DATA_ON 0x00000002 3063 2993 3064 This IOCTL replaces the obsolete KVM_GET_PIT. 2994 This IOCTL replaces the obsolete KVM_GET_PIT. 3065 2995 3066 2996 3067 4.73 KVM_SET_PIT2 2997 4.73 KVM_SET_PIT2 3068 ----------------- 2998 ----------------- 3069 2999 3070 :Capability: KVM_CAP_PIT_STATE2 3000 :Capability: KVM_CAP_PIT_STATE2 3071 :Architectures: x86 3001 :Architectures: x86 3072 :Type: vm ioctl 3002 :Type: vm ioctl 3073 :Parameters: struct kvm_pit_state2 (in) 3003 :Parameters: struct kvm_pit_state2 (in) 3074 :Returns: 0 on success, -1 on error 3004 :Returns: 0 on success, -1 on error 3075 3005 3076 Sets the state of the in-kernel PIT model. On 3006 Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2. 3077 See KVM_GET_PIT2 for details on struct kvm_pi 3007 See KVM_GET_PIT2 for details on struct kvm_pit_state2. 3078 3008 3079 This IOCTL replaces the obsolete KVM_SET_PIT. 3009 This IOCTL replaces the obsolete KVM_SET_PIT. 3080 3010 3081 3011 3082 4.74 KVM_PPC_GET_SMMU_INFO 3012 4.74 KVM_PPC_GET_SMMU_INFO 3083 -------------------------- 3013 -------------------------- 3084 3014 3085 :Capability: KVM_CAP_PPC_GET_SMMU_INFO 3015 :Capability: KVM_CAP_PPC_GET_SMMU_INFO 3086 :Architectures: powerpc 3016 :Architectures: powerpc 3087 :Type: vm ioctl 3017 :Type: vm ioctl 3088 :Parameters: None 3018 :Parameters: None 3089 :Returns: 0 on success, -1 on error 3019 :Returns: 0 on success, -1 on error 3090 3020 3091 This populates and returns a structure descri 3021 This populates and returns a structure describing the features of 3092 the "Server" class MMU emulation supported by 3022 the "Server" class MMU emulation supported by KVM. 3093 This can in turn be used by userspace to gene 3023 This can in turn be used by userspace to generate the appropriate 3094 device-tree properties for the guest operatin 3024 device-tree properties for the guest operating system. 3095 3025 3096 The structure contains some global informatio 3026 The structure contains some global information, followed by an 3097 array of supported segment page sizes:: 3027 array of supported segment page sizes:: 3098 3028 3099 struct kvm_ppc_smmu_info { 3029 struct kvm_ppc_smmu_info { 3100 __u64 flags; 3030 __u64 flags; 3101 __u32 slb_size; 3031 __u32 slb_size; 3102 __u32 pad; 3032 __u32 pad; 3103 struct kvm_ppc_one_seg_page_size 3033 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ]; 3104 }; 3034 }; 3105 3035 3106 The supported flags are: 3036 The supported flags are: 3107 3037 3108 - KVM_PPC_PAGE_SIZES_REAL: 3038 - KVM_PPC_PAGE_SIZES_REAL: 3109 When that flag is set, guest page siz 3039 When that flag is set, guest page sizes must "fit" the backing 3110 store page sizes. When not set, any p 3040 store page sizes. When not set, any page size in the list can 3111 be used regardless of how they are ba 3041 be used regardless of how they are backed by userspace. 3112 3042 3113 - KVM_PPC_1T_SEGMENTS 3043 - KVM_PPC_1T_SEGMENTS 3114 The emulated MMU supports 1T segments 3044 The emulated MMU supports 1T segments in addition to the 3115 standard 256M ones. 3045 standard 256M ones. 3116 3046 3117 - KVM_PPC_NO_HASH 3047 - KVM_PPC_NO_HASH 3118 This flag indicates that HPT guests a 3048 This flag indicates that HPT guests are not supported by KVM, 3119 thus all guests must use radix MMU mo 3049 thus all guests must use radix MMU mode. 3120 3050 3121 The "slb_size" field indicates how many SLB e 3051 The "slb_size" field indicates how many SLB entries are supported 3122 3052 3123 The "sps" array contains 8 entries indicating 3053 The "sps" array contains 8 entries indicating the supported base 3124 page sizes for a segment in increasing order. 3054 page sizes for a segment in increasing order. Each entry is defined 3125 as follow:: 3055 as follow:: 3126 3056 3127 struct kvm_ppc_one_seg_page_size { 3057 struct kvm_ppc_one_seg_page_size { 3128 __u32 page_shift; /* Base page 3058 __u32 page_shift; /* Base page shift of segment (or 0) */ 3129 __u32 slb_enc; /* SLB encodi 3059 __u32 slb_enc; /* SLB encoding for BookS */ 3130 struct kvm_ppc_one_page_size enc[KVM_ 3060 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ]; 3131 }; 3061 }; 3132 3062 3133 An entry with a "page_shift" of 0 is unused. 3063 An entry with a "page_shift" of 0 is unused. Because the array is 3134 organized in increasing order, a lookup can s !! 3064 organized in increasing order, a lookup can stop when encoutering 3135 such an entry. 3065 such an entry. 3136 3066 3137 The "slb_enc" field provides the encoding to 3067 The "slb_enc" field provides the encoding to use in the SLB for the 3138 page size. The bits are in positions such as 3068 page size. The bits are in positions such as the value can directly 3139 be OR'ed into the "vsid" argument of the slbm 3069 be OR'ed into the "vsid" argument of the slbmte instruction. 3140 3070 3141 The "enc" array is a list which for each of t 3071 The "enc" array is a list which for each of those segment base page 3142 size provides the list of supported actual pa 3072 size provides the list of supported actual page sizes (which can be 3143 only larger or equal to the base page size), 3073 only larger or equal to the base page size), along with the 3144 corresponding encoding in the hash PTE. Simil 3074 corresponding encoding in the hash PTE. Similarly, the array is 3145 8 entries sorted by increasing sizes and an e 3075 8 entries sorted by increasing sizes and an entry with a "0" shift 3146 is an empty entry and a terminator:: 3076 is an empty entry and a terminator:: 3147 3077 3148 struct kvm_ppc_one_page_size { 3078 struct kvm_ppc_one_page_size { 3149 __u32 page_shift; /* Page shift 3079 __u32 page_shift; /* Page shift (or 0) */ 3150 __u32 pte_enc; /* Encoding i 3080 __u32 pte_enc; /* Encoding in the HPTE (>>12) */ 3151 }; 3081 }; 3152 3082 3153 The "pte_enc" field provides a value that can 3083 The "pte_enc" field provides a value that can OR'ed into the hash 3154 PTE's RPN field (ie, it needs to be shifted l 3084 PTE's RPN field (ie, it needs to be shifted left by 12 to OR it 3155 into the hash PTE second double word). 3085 into the hash PTE second double word). 3156 3086 3157 4.75 KVM_IRQFD 3087 4.75 KVM_IRQFD 3158 -------------- 3088 -------------- 3159 3089 3160 :Capability: KVM_CAP_IRQFD 3090 :Capability: KVM_CAP_IRQFD 3161 :Architectures: x86 s390 arm64 3091 :Architectures: x86 s390 arm64 3162 :Type: vm ioctl 3092 :Type: vm ioctl 3163 :Parameters: struct kvm_irqfd (in) 3093 :Parameters: struct kvm_irqfd (in) 3164 :Returns: 0 on success, -1 on error 3094 :Returns: 0 on success, -1 on error 3165 3095 3166 Allows setting an eventfd to directly trigger 3096 Allows setting an eventfd to directly trigger a guest interrupt. 3167 kvm_irqfd.fd specifies the file descriptor to 3097 kvm_irqfd.fd specifies the file descriptor to use as the eventfd and 3168 kvm_irqfd.gsi specifies the irqchip pin toggl 3098 kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When 3169 an event is triggered on the eventfd, an inte 3099 an event is triggered on the eventfd, an interrupt is injected into 3170 the guest using the specified gsi pin. The i 3100 the guest using the specified gsi pin. The irqfd is removed using 3171 the KVM_IRQFD_FLAG_DEASSIGN flag, specifying 3101 the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd 3172 and kvm_irqfd.gsi. 3102 and kvm_irqfd.gsi. 3173 3103 3174 With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD suppor 3104 With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify 3175 mechanism allowing emulation of level-trigger 3105 mechanism allowing emulation of level-triggered, irqfd-based 3176 interrupts. When KVM_IRQFD_FLAG_RESAMPLE is 3106 interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an 3177 additional eventfd in the kvm_irqfd.resamplef 3107 additional eventfd in the kvm_irqfd.resamplefd field. When operating 3178 in resample mode, posting of an interrupt thr 3108 in resample mode, posting of an interrupt through kvm_irq.fd asserts 3179 the specified gsi in the irqchip. When the i 3109 the specified gsi in the irqchip. When the irqchip is resampled, such 3180 as from an EOI, the gsi is de-asserted and th 3110 as from an EOI, the gsi is de-asserted and the user is notified via 3181 kvm_irqfd.resamplefd. It is the user's respo 3111 kvm_irqfd.resamplefd. It is the user's responsibility to re-queue 3182 the interrupt if the device making use of it 3112 the interrupt if the device making use of it still requires service. 3183 Note that closing the resamplefd is not suffi 3113 Note that closing the resamplefd is not sufficient to disable the 3184 irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only n 3114 irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment 3185 and need not be specified with KVM_IRQFD_FLAG 3115 and need not be specified with KVM_IRQFD_FLAG_DEASSIGN. 3186 3116 3187 On arm64, gsi routing being supported, the fo 3117 On arm64, gsi routing being supported, the following can happen: 3188 3118 3189 - in case no routing entry is associated to t 3119 - in case no routing entry is associated to this gsi, injection fails 3190 - in case the gsi is associated to an irqchip 3120 - in case the gsi is associated to an irqchip routing entry, 3191 irqchip.pin + 32 corresponds to the injecte 3121 irqchip.pin + 32 corresponds to the injected SPI ID. 3192 - in case the gsi is associated to an MSI rou 3122 - in case the gsi is associated to an MSI routing entry, the MSI 3193 message and device ID are translated into a 3123 message and device ID are translated into an LPI (support restricted 3194 to GICv3 ITS in-kernel emulation). 3124 to GICv3 ITS in-kernel emulation). 3195 3125 3196 4.76 KVM_PPC_ALLOCATE_HTAB 3126 4.76 KVM_PPC_ALLOCATE_HTAB 3197 -------------------------- 3127 -------------------------- 3198 3128 3199 :Capability: KVM_CAP_PPC_ALLOC_HTAB 3129 :Capability: KVM_CAP_PPC_ALLOC_HTAB 3200 :Architectures: powerpc 3130 :Architectures: powerpc 3201 :Type: vm ioctl 3131 :Type: vm ioctl 3202 :Parameters: Pointer to u32 containing hash t 3132 :Parameters: Pointer to u32 containing hash table order (in/out) 3203 :Returns: 0 on success, -1 on error 3133 :Returns: 0 on success, -1 on error 3204 3134 3205 This requests the host kernel to allocate an 3135 This requests the host kernel to allocate an MMU hash table for a 3206 guest using the PAPR paravirtualization inter 3136 guest using the PAPR paravirtualization interface. This only does 3207 anything if the kernel is configured to use t 3137 anything if the kernel is configured to use the Book 3S HV style of 3208 virtualization. Otherwise the capability doe 3138 virtualization. Otherwise the capability doesn't exist and the ioctl 3209 returns an ENOTTY error. The rest of this de 3139 returns an ENOTTY error. The rest of this description assumes Book 3S 3210 HV. 3140 HV. 3211 3141 3212 There must be no vcpus running when this ioct 3142 There must be no vcpus running when this ioctl is called; if there 3213 are, it will do nothing and return an EBUSY e 3143 are, it will do nothing and return an EBUSY error. 3214 3144 3215 The parameter is a pointer to a 32-bit unsign 3145 The parameter is a pointer to a 32-bit unsigned integer variable 3216 containing the order (log base 2) of the desi 3146 containing the order (log base 2) of the desired size of the hash 3217 table, which must be between 18 and 46. On s 3147 table, which must be between 18 and 46. On successful return from the 3218 ioctl, the value will not be changed by the k 3148 ioctl, the value will not be changed by the kernel. 3219 3149 3220 If no hash table has been allocated when any 3150 If no hash table has been allocated when any vcpu is asked to run 3221 (with the KVM_RUN ioctl), the host kernel wil 3151 (with the KVM_RUN ioctl), the host kernel will allocate a 3222 default-sized hash table (16 MB). 3152 default-sized hash table (16 MB). 3223 3153 3224 If this ioctl is called when a hash table has 3154 If this ioctl is called when a hash table has already been allocated, 3225 with a different order from the existing hash 3155 with a different order from the existing hash table, the existing hash 3226 table will be freed and a new one allocated. 3156 table will be freed and a new one allocated. If this is ioctl is 3227 called when a hash table has already been all 3157 called when a hash table has already been allocated of the same order 3228 as specified, the kernel will clear out the e 3158 as specified, the kernel will clear out the existing hash table (zero 3229 all HPTEs). In either case, if the guest is 3159 all HPTEs). In either case, if the guest is using the virtualized 3230 real-mode area (VRMA) facility, the kernel wi 3160 real-mode area (VRMA) facility, the kernel will re-create the VMRA 3231 HPTEs on the next KVM_RUN of any vcpu. 3161 HPTEs on the next KVM_RUN of any vcpu. 3232 3162 3233 4.77 KVM_S390_INTERRUPT 3163 4.77 KVM_S390_INTERRUPT 3234 ----------------------- 3164 ----------------------- 3235 3165 3236 :Capability: basic 3166 :Capability: basic 3237 :Architectures: s390 3167 :Architectures: s390 3238 :Type: vm ioctl, vcpu ioctl 3168 :Type: vm ioctl, vcpu ioctl 3239 :Parameters: struct kvm_s390_interrupt (in) 3169 :Parameters: struct kvm_s390_interrupt (in) 3240 :Returns: 0 on success, -1 on error 3170 :Returns: 0 on success, -1 on error 3241 3171 3242 Allows to inject an interrupt to the guest. I 3172 Allows to inject an interrupt to the guest. Interrupts can be floating 3243 (vm ioctl) or per cpu (vcpu ioctl), depending 3173 (vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type. 3244 3174 3245 Interrupt parameters are passed via kvm_s390_ 3175 Interrupt parameters are passed via kvm_s390_interrupt:: 3246 3176 3247 struct kvm_s390_interrupt { 3177 struct kvm_s390_interrupt { 3248 __u32 type; 3178 __u32 type; 3249 __u32 parm; 3179 __u32 parm; 3250 __u64 parm64; 3180 __u64 parm64; 3251 }; 3181 }; 3252 3182 3253 type can be one of the following: 3183 type can be one of the following: 3254 3184 3255 KVM_S390_SIGP_STOP (vcpu) 3185 KVM_S390_SIGP_STOP (vcpu) 3256 - sigp stop; optional flags in parm 3186 - sigp stop; optional flags in parm 3257 KVM_S390_PROGRAM_INT (vcpu) 3187 KVM_S390_PROGRAM_INT (vcpu) 3258 - program check; code in parm 3188 - program check; code in parm 3259 KVM_S390_SIGP_SET_PREFIX (vcpu) 3189 KVM_S390_SIGP_SET_PREFIX (vcpu) 3260 - sigp set prefix; prefix address in parm 3190 - sigp set prefix; prefix address in parm 3261 KVM_S390_RESTART (vcpu) 3191 KVM_S390_RESTART (vcpu) 3262 - restart 3192 - restart 3263 KVM_S390_INT_CLOCK_COMP (vcpu) 3193 KVM_S390_INT_CLOCK_COMP (vcpu) 3264 - clock comparator interrupt 3194 - clock comparator interrupt 3265 KVM_S390_INT_CPU_TIMER (vcpu) 3195 KVM_S390_INT_CPU_TIMER (vcpu) 3266 - CPU timer interrupt 3196 - CPU timer interrupt 3267 KVM_S390_INT_VIRTIO (vm) 3197 KVM_S390_INT_VIRTIO (vm) 3268 - virtio external interrupt; external int 3198 - virtio external interrupt; external interrupt 3269 parameters in parm and parm64 3199 parameters in parm and parm64 3270 KVM_S390_INT_SERVICE (vm) 3200 KVM_S390_INT_SERVICE (vm) 3271 - sclp external interrupt; sclp parameter 3201 - sclp external interrupt; sclp parameter in parm 3272 KVM_S390_INT_EMERGENCY (vcpu) 3202 KVM_S390_INT_EMERGENCY (vcpu) 3273 - sigp emergency; source cpu in parm 3203 - sigp emergency; source cpu in parm 3274 KVM_S390_INT_EXTERNAL_CALL (vcpu) 3204 KVM_S390_INT_EXTERNAL_CALL (vcpu) 3275 - sigp external call; source cpu in parm 3205 - sigp external call; source cpu in parm 3276 KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) 3206 KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) 3277 - compound value to indicate an 3207 - compound value to indicate an 3278 I/O interrupt (ai - adapter interrupt; 3208 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel); 3279 I/O interruption parameters in parm (su 3209 I/O interruption parameters in parm (subchannel) and parm64 (intparm, 3280 interruption subclass) 3210 interruption subclass) 3281 KVM_S390_MCHK (vm, vcpu) 3211 KVM_S390_MCHK (vm, vcpu) 3282 - machine check interrupt; cr 14 bits in 3212 - machine check interrupt; cr 14 bits in parm, machine check interrupt 3283 code in parm64 (note that machine check 3213 code in parm64 (note that machine checks needing further payload are not 3284 supported by this ioctl) 3214 supported by this ioctl) 3285 3215 3286 This is an asynchronous vcpu ioctl and can be 3216 This is an asynchronous vcpu ioctl and can be invoked from any thread. 3287 3217 3288 4.78 KVM_PPC_GET_HTAB_FD 3218 4.78 KVM_PPC_GET_HTAB_FD 3289 ------------------------ 3219 ------------------------ 3290 3220 3291 :Capability: KVM_CAP_PPC_HTAB_FD 3221 :Capability: KVM_CAP_PPC_HTAB_FD 3292 :Architectures: powerpc 3222 :Architectures: powerpc 3293 :Type: vm ioctl 3223 :Type: vm ioctl 3294 :Parameters: Pointer to struct kvm_get_htab_f 3224 :Parameters: Pointer to struct kvm_get_htab_fd (in) 3295 :Returns: file descriptor number (>= 0) on su 3225 :Returns: file descriptor number (>= 0) on success, -1 on error 3296 3226 3297 This returns a file descriptor that can be us 3227 This returns a file descriptor that can be used either to read out the 3298 entries in the guest's hashed page table (HPT 3228 entries in the guest's hashed page table (HPT), or to write entries to 3299 initialize the HPT. The returned fd can only 3229 initialize the HPT. The returned fd can only be written to if the 3300 KVM_GET_HTAB_WRITE bit is set in the flags fi 3230 KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and 3301 can only be read if that bit is clear. The a 3231 can only be read if that bit is clear. The argument struct looks like 3302 this:: 3232 this:: 3303 3233 3304 /* For KVM_PPC_GET_HTAB_FD */ 3234 /* For KVM_PPC_GET_HTAB_FD */ 3305 struct kvm_get_htab_fd { 3235 struct kvm_get_htab_fd { 3306 __u64 flags; 3236 __u64 flags; 3307 __u64 start_index; 3237 __u64 start_index; 3308 __u64 reserved[2]; 3238 __u64 reserved[2]; 3309 }; 3239 }; 3310 3240 3311 /* Values for kvm_get_htab_fd.flags */ 3241 /* Values for kvm_get_htab_fd.flags */ 3312 #define KVM_GET_HTAB_BOLTED_ONLY ((__u 3242 #define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1) 3313 #define KVM_GET_HTAB_WRITE ((__u 3243 #define KVM_GET_HTAB_WRITE ((__u64)0x2) 3314 3244 3315 The 'start_index' field gives the index in th 3245 The 'start_index' field gives the index in the HPT of the entry at 3316 which to start reading. It is ignored when w 3246 which to start reading. It is ignored when writing. 3317 3247 3318 Reads on the fd will initially supply informa 3248 Reads on the fd will initially supply information about all 3319 "interesting" HPT entries. Interesting entri 3249 "interesting" HPT entries. Interesting entries are those with the 3320 bolted bit set, if the KVM_GET_HTAB_BOLTED_ON 3250 bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise 3321 all entries. When the end of the HPT is reac 3251 all entries. When the end of the HPT is reached, the read() will 3322 return. If read() is called again on the fd, 3252 return. If read() is called again on the fd, it will start again from 3323 the beginning of the HPT, but will only retur 3253 the beginning of the HPT, but will only return HPT entries that have 3324 changed since they were last read. 3254 changed since they were last read. 3325 3255 3326 Data read or written is structured as a heade 3256 Data read or written is structured as a header (8 bytes) followed by a 3327 series of valid HPT entries (16 bytes) each. 3257 series of valid HPT entries (16 bytes) each. The header indicates how 3328 many valid HPT entries there are and how many 3258 many valid HPT entries there are and how many invalid entries follow 3329 the valid entries. The invalid entries are n 3259 the valid entries. The invalid entries are not represented explicitly 3330 in the stream. The header format is:: 3260 in the stream. The header format is:: 3331 3261 3332 struct kvm_get_htab_header { 3262 struct kvm_get_htab_header { 3333 __u32 index; 3263 __u32 index; 3334 __u16 n_valid; 3264 __u16 n_valid; 3335 __u16 n_invalid; 3265 __u16 n_invalid; 3336 }; 3266 }; 3337 3267 3338 Writes to the fd create HPT entries starting 3268 Writes to the fd create HPT entries starting at the index given in the 3339 header; first 'n_valid' valid entries with co 3269 header; first 'n_valid' valid entries with contents from the data 3340 written, then 'n_invalid' invalid entries, in 3270 written, then 'n_invalid' invalid entries, invalidating any previously 3341 valid entries found. 3271 valid entries found. 3342 3272 3343 4.79 KVM_CREATE_DEVICE 3273 4.79 KVM_CREATE_DEVICE 3344 ---------------------- 3274 ---------------------- 3345 3275 3346 :Capability: KVM_CAP_DEVICE_CTRL 3276 :Capability: KVM_CAP_DEVICE_CTRL 3347 :Architectures: all 3277 :Architectures: all 3348 :Type: vm ioctl 3278 :Type: vm ioctl 3349 :Parameters: struct kvm_create_device (in/out 3279 :Parameters: struct kvm_create_device (in/out) 3350 :Returns: 0 on success, -1 on error 3280 :Returns: 0 on success, -1 on error 3351 3281 3352 Errors: 3282 Errors: 3353 3283 3354 ====== =================================== 3284 ====== ======================================================= 3355 ENODEV The device type is unknown or unsup 3285 ENODEV The device type is unknown or unsupported 3356 EEXIST Device already created, and this ty 3286 EEXIST Device already created, and this type of device may not 3357 be instantiated multiple times 3287 be instantiated multiple times 3358 ====== =================================== 3288 ====== ======================================================= 3359 3289 3360 Other error conditions may be defined by in 3290 Other error conditions may be defined by individual device types or 3361 have their standard meanings. 3291 have their standard meanings. 3362 3292 3363 Creates an emulated device in the kernel. Th 3293 Creates an emulated device in the kernel. The file descriptor returned 3364 in fd can be used with KVM_SET/GET/HAS_DEVICE 3294 in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR. 3365 3295 3366 If the KVM_CREATE_DEVICE_TEST flag is set, on 3296 If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the 3367 device type is supported (not necessarily whe 3297 device type is supported (not necessarily whether it can be created 3368 in the current vm). 3298 in the current vm). 3369 3299 3370 Individual devices should not define flags. 3300 Individual devices should not define flags. Attributes should be used 3371 for specifying any behavior that is not impli 3301 for specifying any behavior that is not implied by the device type 3372 number. 3302 number. 3373 3303 3374 :: 3304 :: 3375 3305 3376 struct kvm_create_device { 3306 struct kvm_create_device { 3377 __u32 type; /* in: KVM_DEV_TYPE_x 3307 __u32 type; /* in: KVM_DEV_TYPE_xxx */ 3378 __u32 fd; /* out: device handle 3308 __u32 fd; /* out: device handle */ 3379 __u32 flags; /* in: KVM_CREATE_DEV 3309 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */ 3380 }; 3310 }; 3381 3311 3382 4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR 3312 4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR 3383 -------------------------------------------- 3313 -------------------------------------------- 3384 3314 3385 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ 3315 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, 3386 KVM_CAP_VCPU_ATTRIBUTES for vcpu 3316 KVM_CAP_VCPU_ATTRIBUTES for vcpu device 3387 KVM_CAP_SYS_ATTRIBUTES for syste 3317 KVM_CAP_SYS_ATTRIBUTES for system (/dev/kvm) device (no set) 3388 :Architectures: x86, arm64, s390 3318 :Architectures: x86, arm64, s390 3389 :Type: device ioctl, vm ioctl, vcpu ioctl 3319 :Type: device ioctl, vm ioctl, vcpu ioctl 3390 :Parameters: struct kvm_device_attr 3320 :Parameters: struct kvm_device_attr 3391 :Returns: 0 on success, -1 on error 3321 :Returns: 0 on success, -1 on error 3392 3322 3393 Errors: 3323 Errors: 3394 3324 3395 ===== =================================== 3325 ===== ============================================================= 3396 ENXIO The group or attribute is unknown/u 3326 ENXIO The group or attribute is unknown/unsupported for this device 3397 or hardware support is missing. 3327 or hardware support is missing. 3398 EPERM The attribute cannot (currently) be 3328 EPERM The attribute cannot (currently) be accessed this way 3399 (e.g. read-only attribute, or attri 3329 (e.g. read-only attribute, or attribute that only makes 3400 sense when the device is in a diffe 3330 sense when the device is in a different state) 3401 ===== =================================== 3331 ===== ============================================================= 3402 3332 3403 Other error conditions may be defined by in 3333 Other error conditions may be defined by individual device types. 3404 3334 3405 Gets/sets a specified piece of device configu 3335 Gets/sets a specified piece of device configuration and/or state. The 3406 semantics are device-specific. See individua 3336 semantics are device-specific. See individual device documentation in 3407 the "devices" directory. As with ONE_REG, th 3337 the "devices" directory. As with ONE_REG, the size of the data 3408 transferred is defined by the particular attr 3338 transferred is defined by the particular attribute. 3409 3339 3410 :: 3340 :: 3411 3341 3412 struct kvm_device_attr { 3342 struct kvm_device_attr { 3413 __u32 flags; /* no flags c 3343 __u32 flags; /* no flags currently defined */ 3414 __u32 group; /* device-def 3344 __u32 group; /* device-defined */ 3415 __u64 attr; /* group-defi 3345 __u64 attr; /* group-defined */ 3416 __u64 addr; /* userspace 3346 __u64 addr; /* userspace address of attr data */ 3417 }; 3347 }; 3418 3348 3419 4.81 KVM_HAS_DEVICE_ATTR 3349 4.81 KVM_HAS_DEVICE_ATTR 3420 ------------------------ 3350 ------------------------ 3421 3351 3422 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ 3352 :Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, 3423 KVM_CAP_VCPU_ATTRIBUTES for vcpu 3353 KVM_CAP_VCPU_ATTRIBUTES for vcpu device 3424 KVM_CAP_SYS_ATTRIBUTES for syste 3354 KVM_CAP_SYS_ATTRIBUTES for system (/dev/kvm) device 3425 :Type: device ioctl, vm ioctl, vcpu ioctl 3355 :Type: device ioctl, vm ioctl, vcpu ioctl 3426 :Parameters: struct kvm_device_attr 3356 :Parameters: struct kvm_device_attr 3427 :Returns: 0 on success, -1 on error 3357 :Returns: 0 on success, -1 on error 3428 3358 3429 Errors: 3359 Errors: 3430 3360 3431 ===== =================================== 3361 ===== ============================================================= 3432 ENXIO The group or attribute is unknown/u 3362 ENXIO The group or attribute is unknown/unsupported for this device 3433 or hardware support is missing. 3363 or hardware support is missing. 3434 ===== =================================== 3364 ===== ============================================================= 3435 3365 3436 Tests whether a device supports a particular 3366 Tests whether a device supports a particular attribute. A successful 3437 return indicates the attribute is implemented 3367 return indicates the attribute is implemented. It does not necessarily 3438 indicate that the attribute can be read or wr 3368 indicate that the attribute can be read or written in the device's 3439 current state. "addr" is ignored. 3369 current state. "addr" is ignored. 3440 3370 3441 .. _KVM_ARM_VCPU_INIT: << 3442 << 3443 4.82 KVM_ARM_VCPU_INIT 3371 4.82 KVM_ARM_VCPU_INIT 3444 ---------------------- 3372 ---------------------- 3445 3373 3446 :Capability: basic 3374 :Capability: basic 3447 :Architectures: arm64 3375 :Architectures: arm64 3448 :Type: vcpu ioctl 3376 :Type: vcpu ioctl 3449 :Parameters: struct kvm_vcpu_init (in) 3377 :Parameters: struct kvm_vcpu_init (in) 3450 :Returns: 0 on success; -1 on error 3378 :Returns: 0 on success; -1 on error 3451 3379 3452 Errors: 3380 Errors: 3453 3381 3454 ====== ================================ 3382 ====== ================================================================= 3455 EINVAL the target is unknown, or the co 3383 EINVAL the target is unknown, or the combination of features is invalid. 3456 ENOENT a features bit specified is unkn 3384 ENOENT a features bit specified is unknown. 3457 ====== ================================ 3385 ====== ================================================================= 3458 3386 3459 This tells KVM what type of CPU to present to 3387 This tells KVM what type of CPU to present to the guest, and what 3460 optional features it should have. This will 3388 optional features it should have. This will cause a reset of the cpu 3461 registers to their initial values. If this i 3389 registers to their initial values. If this is not called, KVM_RUN will 3462 return ENOEXEC for that vcpu. 3390 return ENOEXEC for that vcpu. 3463 3391 3464 The initial values are defined as: 3392 The initial values are defined as: 3465 - Processor state: 3393 - Processor state: 3466 * AArch64: EL1h, D, A, I and 3394 * AArch64: EL1h, D, A, I and F bits set. All other bits 3467 are cleared. 3395 are cleared. 3468 * AArch32: SVC, A, I and F bi 3396 * AArch32: SVC, A, I and F bits set. All other bits are 3469 cleared. 3397 cleared. 3470 - General Purpose registers, includin 3398 - General Purpose registers, including PC and SP: set to 0 3471 - FPSIMD/NEON registers: set to 0 3399 - FPSIMD/NEON registers: set to 0 3472 - SVE registers: set to 0 3400 - SVE registers: set to 0 3473 - System registers: Reset to their ar 3401 - System registers: Reset to their architecturally defined 3474 values as for a warm reset to EL1 ( 3402 values as for a warm reset to EL1 (resp. SVC) 3475 3403 3476 Note that because some registers reflect mach 3404 Note that because some registers reflect machine topology, all vcpus 3477 should be created before this ioctl is invoke 3405 should be created before this ioctl is invoked. 3478 3406 3479 Userspace can call this function multiple tim 3407 Userspace can call this function multiple times for a given vcpu, including 3480 after the vcpu has been run. This will reset 3408 after the vcpu has been run. This will reset the vcpu to its initial 3481 state. All calls to this function after the i 3409 state. All calls to this function after the initial call must use the same 3482 target and same set of feature flags, otherwi 3410 target and same set of feature flags, otherwise EINVAL will be returned. 3483 3411 3484 Possible features: 3412 Possible features: 3485 3413 3486 - KVM_ARM_VCPU_POWER_OFF: Starts the 3414 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state. 3487 Depends on KVM_CAP_ARM_PSCI. If no 3415 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on 3488 and execute guest code when KVM_RUN 3416 and execute guest code when KVM_RUN is called. 3489 - KVM_ARM_VCPU_EL1_32BIT: Starts the 3417 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode. 3490 Depends on KVM_CAP_ARM_EL1_32BIT (a 3418 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only). 3491 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI 3419 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 (or a future revision 3492 backward compatible with v0.2) for 3420 backward compatible with v0.2) for the CPU. 3493 Depends on KVM_CAP_ARM_PSCI_0_2. 3421 Depends on KVM_CAP_ARM_PSCI_0_2. 3494 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 3422 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU. 3495 Depends on KVM_CAP_ARM_PMU_V3. 3423 Depends on KVM_CAP_ARM_PMU_V3. 3496 3424 3497 - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enabl 3425 - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enables Address Pointer authentication 3498 for arm64 only. 3426 for arm64 only. 3499 Depends on KVM_CAP_ARM_PTRAUTH_ADDR 3427 Depends on KVM_CAP_ARM_PTRAUTH_ADDRESS. 3500 If KVM_CAP_ARM_PTRAUTH_ADDRESS and 3428 If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are 3501 both present, then both KVM_ARM_VCP 3429 both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and 3502 KVM_ARM_VCPU_PTRAUTH_GENERIC must b 3430 KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be 3503 requested. 3431 requested. 3504 3432 3505 - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enabl 3433 - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enables Generic Pointer authentication 3506 for arm64 only. 3434 for arm64 only. 3507 Depends on KVM_CAP_ARM_PTRAUTH_GENE 3435 Depends on KVM_CAP_ARM_PTRAUTH_GENERIC. 3508 If KVM_CAP_ARM_PTRAUTH_ADDRESS and 3436 If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are 3509 both present, then both KVM_ARM_VCP 3437 both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and 3510 KVM_ARM_VCPU_PTRAUTH_GENERIC must b 3438 KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be 3511 requested. 3439 requested. 3512 3440 3513 - KVM_ARM_VCPU_SVE: Enables SVE for t 3441 - KVM_ARM_VCPU_SVE: Enables SVE for the CPU (arm64 only). 3514 Depends on KVM_CAP_ARM_SVE. 3442 Depends on KVM_CAP_ARM_SVE. 3515 Requires KVM_ARM_VCPU_FINALIZE(KVM_ 3443 Requires KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3516 3444 3517 * After KVM_ARM_VCPU_INIT: 3445 * After KVM_ARM_VCPU_INIT: 3518 3446 3519 - KVM_REG_ARM64_SVE_VLS may be 3447 - KVM_REG_ARM64_SVE_VLS may be read using KVM_GET_ONE_REG: the 3520 initial value of this pseudo- 3448 initial value of this pseudo-register indicates the best set of 3521 vector lengths possible for a 3449 vector lengths possible for a vcpu on this host. 3522 3450 3523 * Before KVM_ARM_VCPU_FINALIZE(KVM 3451 * Before KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3524 3452 3525 - KVM_RUN and KVM_GET_REG_LIST 3453 - KVM_RUN and KVM_GET_REG_LIST are not available; 3526 3454 3527 - KVM_GET_ONE_REG and KVM_SET_O 3455 - KVM_GET_ONE_REG and KVM_SET_ONE_REG cannot be used to access 3528 the scalable architectural SV !! 3456 the scalable archietctural SVE registers 3529 KVM_REG_ARM64_SVE_ZREG(), KVM 3457 KVM_REG_ARM64_SVE_ZREG(), KVM_REG_ARM64_SVE_PREG() or 3530 KVM_REG_ARM64_SVE_FFR; 3458 KVM_REG_ARM64_SVE_FFR; 3531 3459 3532 - KVM_REG_ARM64_SVE_VLS may opt 3460 - KVM_REG_ARM64_SVE_VLS may optionally be written using 3533 KVM_SET_ONE_REG, to modify th 3461 KVM_SET_ONE_REG, to modify the set of vector lengths available 3534 for the vcpu. 3462 for the vcpu. 3535 3463 3536 * After KVM_ARM_VCPU_FINALIZE(KVM_ 3464 * After KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): 3537 3465 3538 - the KVM_REG_ARM64_SVE_VLS pse 3466 - the KVM_REG_ARM64_SVE_VLS pseudo-register is immutable, and can 3539 no longer be written using KV 3467 no longer be written using KVM_SET_ONE_REG. 3540 3468 3541 4.83 KVM_ARM_PREFERRED_TARGET 3469 4.83 KVM_ARM_PREFERRED_TARGET 3542 ----------------------------- 3470 ----------------------------- 3543 3471 3544 :Capability: basic 3472 :Capability: basic 3545 :Architectures: arm64 3473 :Architectures: arm64 3546 :Type: vm ioctl 3474 :Type: vm ioctl 3547 :Parameters: struct kvm_vcpu_init (out) 3475 :Parameters: struct kvm_vcpu_init (out) 3548 :Returns: 0 on success; -1 on error 3476 :Returns: 0 on success; -1 on error 3549 3477 3550 Errors: 3478 Errors: 3551 3479 3552 ====== ================================ 3480 ====== ========================================== 3553 ENODEV no preferred target available fo 3481 ENODEV no preferred target available for the host 3554 ====== ================================ 3482 ====== ========================================== 3555 3483 3556 This queries KVM for preferred CPU target typ 3484 This queries KVM for preferred CPU target type which can be emulated 3557 by KVM on underlying host. 3485 by KVM on underlying host. 3558 3486 3559 The ioctl returns struct kvm_vcpu_init instan 3487 The ioctl returns struct kvm_vcpu_init instance containing information 3560 about preferred CPU target type and recommend 3488 about preferred CPU target type and recommended features for it. The 3561 kvm_vcpu_init->features bitmap returned will 3489 kvm_vcpu_init->features bitmap returned will have feature bits set if 3562 the preferred target recommends setting these 3490 the preferred target recommends setting these features, but this is 3563 not mandatory. 3491 not mandatory. 3564 3492 3565 The information returned by this ioctl can be 3493 The information returned by this ioctl can be used to prepare an instance 3566 of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT 3494 of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in 3567 VCPU matching underlying host. 3495 VCPU matching underlying host. 3568 3496 3569 3497 3570 4.84 KVM_GET_REG_LIST 3498 4.84 KVM_GET_REG_LIST 3571 --------------------- 3499 --------------------- 3572 3500 3573 :Capability: basic 3501 :Capability: basic 3574 :Architectures: arm64, mips, riscv !! 3502 :Architectures: arm64, mips 3575 :Type: vcpu ioctl 3503 :Type: vcpu ioctl 3576 :Parameters: struct kvm_reg_list (in/out) 3504 :Parameters: struct kvm_reg_list (in/out) 3577 :Returns: 0 on success; -1 on error 3505 :Returns: 0 on success; -1 on error 3578 3506 3579 Errors: 3507 Errors: 3580 3508 3581 ===== ================================ 3509 ===== ============================================================== 3582 E2BIG the reg index list is too big to 3510 E2BIG the reg index list is too big to fit in the array specified by 3583 the user (the number required wi 3511 the user (the number required will be written into n). 3584 ===== ================================ 3512 ===== ============================================================== 3585 3513 3586 :: 3514 :: 3587 3515 3588 struct kvm_reg_list { 3516 struct kvm_reg_list { 3589 __u64 n; /* number of registers in re 3517 __u64 n; /* number of registers in reg[] */ 3590 __u64 reg[0]; 3518 __u64 reg[0]; 3591 }; 3519 }; 3592 3520 3593 This ioctl returns the guest registers that a 3521 This ioctl returns the guest registers that are supported for the 3594 KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. 3522 KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. 3595 3523 3596 3524 3597 4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated) 3525 4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated) 3598 ----------------------------------------- 3526 ----------------------------------------- 3599 3527 3600 :Capability: KVM_CAP_ARM_SET_DEVICE_ADDR 3528 :Capability: KVM_CAP_ARM_SET_DEVICE_ADDR 3601 :Architectures: arm64 3529 :Architectures: arm64 3602 :Type: vm ioctl 3530 :Type: vm ioctl 3603 :Parameters: struct kvm_arm_device_address (i 3531 :Parameters: struct kvm_arm_device_address (in) 3604 :Returns: 0 on success, -1 on error 3532 :Returns: 0 on success, -1 on error 3605 3533 3606 Errors: 3534 Errors: 3607 3535 3608 ====== =================================== 3536 ====== ============================================ 3609 ENODEV The device id is unknown 3537 ENODEV The device id is unknown 3610 ENXIO Device not supported on current sys 3538 ENXIO Device not supported on current system 3611 EEXIST Address already set 3539 EEXIST Address already set 3612 E2BIG Address outside guest physical addr 3540 E2BIG Address outside guest physical address space 3613 EBUSY Address overlaps with other device 3541 EBUSY Address overlaps with other device range 3614 ====== =================================== 3542 ====== ============================================ 3615 3543 3616 :: 3544 :: 3617 3545 3618 struct kvm_arm_device_addr { 3546 struct kvm_arm_device_addr { 3619 __u64 id; 3547 __u64 id; 3620 __u64 addr; 3548 __u64 addr; 3621 }; 3549 }; 3622 3550 3623 Specify a device address in the guest's physi 3551 Specify a device address in the guest's physical address space where guests 3624 can access emulated or directly exposed devic 3552 can access emulated or directly exposed devices, which the host kernel needs 3625 to know about. The id field is an architectur 3553 to know about. The id field is an architecture specific identifier for a 3626 specific device. 3554 specific device. 3627 3555 3628 arm64 divides the id field into two parts, a 3556 arm64 divides the id field into two parts, a device id and an 3629 address type id specific to the individual de 3557 address type id specific to the individual device:: 3630 3558 3631 bits: | 63 ... 32 | 31 ... 3559 bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 | 3632 field: | 0x00000000 | devic 3560 field: | 0x00000000 | device id | addr type id | 3633 3561 3634 arm64 currently only require this when using 3562 arm64 currently only require this when using the in-kernel GIC 3635 support for the hardware VGIC features, using 3563 support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2 3636 as the device id. When setting the base addr 3564 as the device id. When setting the base address for the guest's 3637 mapping of the VGIC virtual CPU and distribut 3565 mapping of the VGIC virtual CPU and distributor interface, the ioctl 3638 must be called after calling KVM_CREATE_IRQCH 3566 must be called after calling KVM_CREATE_IRQCHIP, but before calling 3639 KVM_RUN on any of the VCPUs. Calling this io 3567 KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the 3640 base addresses will return -EEXIST. 3568 base addresses will return -EEXIST. 3641 3569 3642 Note, this IOCTL is deprecated and the more f 3570 Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API 3643 should be used instead. 3571 should be used instead. 3644 3572 3645 3573 3646 4.86 KVM_PPC_RTAS_DEFINE_TOKEN 3574 4.86 KVM_PPC_RTAS_DEFINE_TOKEN 3647 ------------------------------ 3575 ------------------------------ 3648 3576 3649 :Capability: KVM_CAP_PPC_RTAS 3577 :Capability: KVM_CAP_PPC_RTAS 3650 :Architectures: ppc 3578 :Architectures: ppc 3651 :Type: vm ioctl 3579 :Type: vm ioctl 3652 :Parameters: struct kvm_rtas_token_args 3580 :Parameters: struct kvm_rtas_token_args 3653 :Returns: 0 on success, -1 on error 3581 :Returns: 0 on success, -1 on error 3654 3582 3655 Defines a token value for a RTAS (Run Time Ab 3583 Defines a token value for a RTAS (Run Time Abstraction Services) 3656 service in order to allow it to be handled in 3584 service in order to allow it to be handled in the kernel. The 3657 argument struct gives the name of the service 3585 argument struct gives the name of the service, which must be the name 3658 of a service that has a kernel-side implement 3586 of a service that has a kernel-side implementation. If the token 3659 value is non-zero, it will be associated with 3587 value is non-zero, it will be associated with that service, and 3660 subsequent RTAS calls by the guest specifying 3588 subsequent RTAS calls by the guest specifying that token will be 3661 handled by the kernel. If the token value is 3589 handled by the kernel. If the token value is 0, then any token 3662 associated with the service will be forgotten 3590 associated with the service will be forgotten, and subsequent RTAS 3663 calls by the guest for that service will be p 3591 calls by the guest for that service will be passed to userspace to be 3664 handled. 3592 handled. 3665 3593 3666 4.87 KVM_SET_GUEST_DEBUG 3594 4.87 KVM_SET_GUEST_DEBUG 3667 ------------------------ 3595 ------------------------ 3668 3596 3669 :Capability: KVM_CAP_SET_GUEST_DEBUG 3597 :Capability: KVM_CAP_SET_GUEST_DEBUG 3670 :Architectures: x86, s390, ppc, arm64 3598 :Architectures: x86, s390, ppc, arm64 3671 :Type: vcpu ioctl 3599 :Type: vcpu ioctl 3672 :Parameters: struct kvm_guest_debug (in) 3600 :Parameters: struct kvm_guest_debug (in) 3673 :Returns: 0 on success; -1 on error 3601 :Returns: 0 on success; -1 on error 3674 3602 3675 :: 3603 :: 3676 3604 3677 struct kvm_guest_debug { 3605 struct kvm_guest_debug { 3678 __u32 control; 3606 __u32 control; 3679 __u32 pad; 3607 __u32 pad; 3680 struct kvm_guest_debug_arch arch; 3608 struct kvm_guest_debug_arch arch; 3681 }; 3609 }; 3682 3610 3683 Set up the processor specific debug registers 3611 Set up the processor specific debug registers and configure vcpu for 3684 handling guest debug events. There are two pa 3612 handling guest debug events. There are two parts to the structure, the 3685 first a control bitfield indicates the type o 3613 first a control bitfield indicates the type of debug events to handle 3686 when running. Common control bits are: 3614 when running. Common control bits are: 3687 3615 3688 - KVM_GUESTDBG_ENABLE: guest debuggi 3616 - KVM_GUESTDBG_ENABLE: guest debugging is enabled 3689 - KVM_GUESTDBG_SINGLESTEP: the next run 3617 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step 3690 3618 3691 The top 16 bits of the control field are arch 3619 The top 16 bits of the control field are architecture specific control 3692 flags which can include the following: 3620 flags which can include the following: 3693 3621 3694 - KVM_GUESTDBG_USE_SW_BP: using softwar 3622 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64] 3695 - KVM_GUESTDBG_USE_HW_BP: using hardwar 3623 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390] 3696 - KVM_GUESTDBG_USE_HW: using hardwar 3624 - KVM_GUESTDBG_USE_HW: using hardware debug events [arm64] 3697 - KVM_GUESTDBG_INJECT_DB: inject DB typ 3625 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86] 3698 - KVM_GUESTDBG_INJECT_BP: inject BP typ 3626 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86] 3699 - KVM_GUESTDBG_EXIT_PENDING: trigger an im 3627 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390] 3700 - KVM_GUESTDBG_BLOCKIRQ: avoid injecti 3628 - KVM_GUESTDBG_BLOCKIRQ: avoid injecting interrupts/NMI/SMI [x86] 3701 3629 3702 For example KVM_GUESTDBG_USE_SW_BP indicates 3630 For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints 3703 are enabled in memory so we need to ensure br 3631 are enabled in memory so we need to ensure breakpoint exceptions are 3704 correctly trapped and the KVM run loop exits 3632 correctly trapped and the KVM run loop exits at the breakpoint and not 3705 running off into the normal guest vector. For 3633 running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP 3706 we need to ensure the guest vCPUs architectur 3634 we need to ensure the guest vCPUs architecture specific registers are 3707 updated to the correct (supplied) values. 3635 updated to the correct (supplied) values. 3708 3636 3709 The second part of the structure is architect 3637 The second part of the structure is architecture specific and 3710 typically contains a set of debug registers. 3638 typically contains a set of debug registers. 3711 3639 3712 For arm64 the number of debug registers is im 3640 For arm64 the number of debug registers is implementation defined and 3713 can be determined by querying the KVM_CAP_GUE 3641 can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and 3714 KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which 3642 KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number 3715 indicating the number of supported registers. 3643 indicating the number of supported registers. 3716 3644 3717 For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP ca 3645 For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP capability indicates whether 3718 the single-step debug event (KVM_GUESTDBG_SIN 3646 the single-step debug event (KVM_GUESTDBG_SINGLESTEP) is supported. 3719 3647 3720 Also when supported, KVM_CAP_SET_GUEST_DEBUG2 3648 Also when supported, KVM_CAP_SET_GUEST_DEBUG2 capability indicates the 3721 supported KVM_GUESTDBG_* bits in the control 3649 supported KVM_GUESTDBG_* bits in the control field. 3722 3650 3723 When debug events exit the main run loop with 3651 When debug events exit the main run loop with the reason 3724 KVM_EXIT_DEBUG with the kvm_debug_exit_arch p 3652 KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run 3725 structure containing architecture specific de 3653 structure containing architecture specific debug information. 3726 3654 3727 4.88 KVM_GET_EMULATED_CPUID 3655 4.88 KVM_GET_EMULATED_CPUID 3728 --------------------------- 3656 --------------------------- 3729 3657 3730 :Capability: KVM_CAP_EXT_EMUL_CPUID 3658 :Capability: KVM_CAP_EXT_EMUL_CPUID 3731 :Architectures: x86 3659 :Architectures: x86 3732 :Type: system ioctl 3660 :Type: system ioctl 3733 :Parameters: struct kvm_cpuid2 (in/out) 3661 :Parameters: struct kvm_cpuid2 (in/out) 3734 :Returns: 0 on success, -1 on error 3662 :Returns: 0 on success, -1 on error 3735 3663 3736 :: 3664 :: 3737 3665 3738 struct kvm_cpuid2 { 3666 struct kvm_cpuid2 { 3739 __u32 nent; 3667 __u32 nent; 3740 __u32 flags; 3668 __u32 flags; 3741 struct kvm_cpuid_entry2 entries[0]; 3669 struct kvm_cpuid_entry2 entries[0]; 3742 }; 3670 }; 3743 3671 3744 The member 'flags' is used for passing flags 3672 The member 'flags' is used for passing flags from userspace. 3745 3673 3746 :: 3674 :: 3747 3675 3748 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 3676 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) 3749 #define KVM_CPUID_FLAG_STATEFUL_FUNC 3677 #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) /* deprecated */ 3750 #define KVM_CPUID_FLAG_STATE_READ_NEXT 3678 #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) /* deprecated */ 3751 3679 3752 struct kvm_cpuid_entry2 { 3680 struct kvm_cpuid_entry2 { 3753 __u32 function; 3681 __u32 function; 3754 __u32 index; 3682 __u32 index; 3755 __u32 flags; 3683 __u32 flags; 3756 __u32 eax; 3684 __u32 eax; 3757 __u32 ebx; 3685 __u32 ebx; 3758 __u32 ecx; 3686 __u32 ecx; 3759 __u32 edx; 3687 __u32 edx; 3760 __u32 padding[3]; 3688 __u32 padding[3]; 3761 }; 3689 }; 3762 3690 3763 This ioctl returns x86 cpuid features which a 3691 This ioctl returns x86 cpuid features which are emulated by 3764 kvm.Userspace can use the information returne 3692 kvm.Userspace can use the information returned by this ioctl to query 3765 which features are emulated by kvm instead of 3693 which features are emulated by kvm instead of being present natively. 3766 3694 3767 Userspace invokes KVM_GET_EMULATED_CPUID by p 3695 Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2 3768 structure with the 'nent' field indicating th 3696 structure with the 'nent' field indicating the number of entries in 3769 the variable-size array 'entries'. If the num 3697 the variable-size array 'entries'. If the number of entries is too low 3770 to describe the cpu capabilities, an error (E 3698 to describe the cpu capabilities, an error (E2BIG) is returned. If the 3771 number is too high, the 'nent' field is adjus 3699 number is too high, the 'nent' field is adjusted and an error (ENOMEM) 3772 is returned. If the number is just right, the 3700 is returned. If the number is just right, the 'nent' field is adjusted 3773 to the number of valid entries in the 'entrie 3701 to the number of valid entries in the 'entries' array, which is then 3774 filled. 3702 filled. 3775 3703 3776 The entries returned are the set CPUID bits o 3704 The entries returned are the set CPUID bits of the respective features 3777 which kvm emulates, as returned by the CPUID 3705 which kvm emulates, as returned by the CPUID instruction, with unknown 3778 or unsupported feature bits cleared. 3706 or unsupported feature bits cleared. 3779 3707 3780 Features like x2apic, for example, may not be 3708 Features like x2apic, for example, may not be present in the host cpu 3781 but are exposed by kvm in KVM_GET_SUPPORTED_C 3709 but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be 3782 emulated efficiently and thus not included he 3710 emulated efficiently and thus not included here. 3783 3711 3784 The fields in each entry are defined as follo 3712 The fields in each entry are defined as follows: 3785 3713 3786 function: 3714 function: 3787 the eax value used to obtain the ent 3715 the eax value used to obtain the entry 3788 index: 3716 index: 3789 the ecx value used to obtain the ent 3717 the ecx value used to obtain the entry (for entries that are 3790 affected by ecx) 3718 affected by ecx) 3791 flags: 3719 flags: 3792 an OR of zero or more of the following: 3720 an OR of zero or more of the following: 3793 3721 3794 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 3722 KVM_CPUID_FLAG_SIGNIFCANT_INDEX: 3795 if the index field is valid 3723 if the index field is valid 3796 3724 3797 eax, ebx, ecx, edx: 3725 eax, ebx, ecx, edx: 3798 3726 3799 the values returned by the cpuid ins 3727 the values returned by the cpuid instruction for 3800 this function/index combination 3728 this function/index combination 3801 3729 3802 4.89 KVM_S390_MEM_OP 3730 4.89 KVM_S390_MEM_OP 3803 -------------------- 3731 -------------------- 3804 3732 3805 :Capability: KVM_CAP_S390_MEM_OP, KVM_CAP_S39 3733 :Capability: KVM_CAP_S390_MEM_OP, KVM_CAP_S390_PROTECTED, KVM_CAP_S390_MEM_OP_EXTENSION 3806 :Architectures: s390 3734 :Architectures: s390 3807 :Type: vm ioctl, vcpu ioctl 3735 :Type: vm ioctl, vcpu ioctl 3808 :Parameters: struct kvm_s390_mem_op (in) 3736 :Parameters: struct kvm_s390_mem_op (in) 3809 :Returns: = 0 on success, 3737 :Returns: = 0 on success, 3810 < 0 on generic error (e.g. -EFAULT 3738 < 0 on generic error (e.g. -EFAULT or -ENOMEM), 3811 16 bit program exception code if th !! 3739 > 0 if an exception occurred while walking the page tables 3812 3740 3813 Read or write data from/to the VM's memory. 3741 Read or write data from/to the VM's memory. 3814 The KVM_CAP_S390_MEM_OP_EXTENSION capability 3742 The KVM_CAP_S390_MEM_OP_EXTENSION capability specifies what functionality is 3815 supported. 3743 supported. 3816 3744 3817 Parameters are specified via the following st 3745 Parameters are specified via the following structure:: 3818 3746 3819 struct kvm_s390_mem_op { 3747 struct kvm_s390_mem_op { 3820 __u64 gaddr; /* the guest 3748 __u64 gaddr; /* the guest address */ 3821 __u64 flags; /* flags */ 3749 __u64 flags; /* flags */ 3822 __u32 size; /* amount of 3750 __u32 size; /* amount of bytes */ 3823 __u32 op; /* type of op 3751 __u32 op; /* type of operation */ 3824 __u64 buf; /* buffer in 3752 __u64 buf; /* buffer in userspace */ 3825 union { 3753 union { 3826 struct { 3754 struct { 3827 __u8 ar; /* th 3755 __u8 ar; /* the access register number */ 3828 __u8 key; /* ac 3756 __u8 key; /* access key, ignored if flag unset */ 3829 __u8 pad1[6]; /* ig << 3830 __u64 old_addr; /* ig << 3831 }; 3757 }; 3832 __u32 sida_offset; /* offset 3758 __u32 sida_offset; /* offset into the sida */ 3833 __u8 reserved[32]; /* ignored 3759 __u8 reserved[32]; /* ignored */ 3834 }; 3760 }; 3835 }; 3761 }; 3836 3762 3837 The start address of the memory region has to 3763 The start address of the memory region has to be specified in the "gaddr" 3838 field, and the length of the region in the "s 3764 field, and the length of the region in the "size" field (which must not 3839 be 0). The maximum value for "size" can be ob 3765 be 0). The maximum value for "size" can be obtained by checking the 3840 KVM_CAP_S390_MEM_OP capability. "buf" is the 3766 KVM_CAP_S390_MEM_OP capability. "buf" is the buffer supplied by the 3841 userspace application where the read data sho 3767 userspace application where the read data should be written to for 3842 a read access, or where the data that should 3768 a read access, or where the data that should be written is stored for 3843 a write access. The "reserved" field is mean 3769 a write access. The "reserved" field is meant for future extensions. 3844 Reserved and unused values are ignored. Futur 3770 Reserved and unused values are ignored. Future extension that add members must 3845 introduce new flags. 3771 introduce new flags. 3846 3772 3847 The type of operation is specified in the "op 3773 The type of operation is specified in the "op" field. Flags modifying 3848 their behavior can be set in the "flags" fiel 3774 their behavior can be set in the "flags" field. Undefined flag bits must 3849 be set to 0. 3775 be set to 0. 3850 3776 3851 Possible operations are: 3777 Possible operations are: 3852 * ``KVM_S390_MEMOP_LOGICAL_READ`` 3778 * ``KVM_S390_MEMOP_LOGICAL_READ`` 3853 * ``KVM_S390_MEMOP_LOGICAL_WRITE`` 3779 * ``KVM_S390_MEMOP_LOGICAL_WRITE`` 3854 * ``KVM_S390_MEMOP_ABSOLUTE_READ`` 3780 * ``KVM_S390_MEMOP_ABSOLUTE_READ`` 3855 * ``KVM_S390_MEMOP_ABSOLUTE_WRITE`` 3781 * ``KVM_S390_MEMOP_ABSOLUTE_WRITE`` 3856 * ``KVM_S390_MEMOP_SIDA_READ`` 3782 * ``KVM_S390_MEMOP_SIDA_READ`` 3857 * ``KVM_S390_MEMOP_SIDA_WRITE`` 3783 * ``KVM_S390_MEMOP_SIDA_WRITE`` 3858 * ``KVM_S390_MEMOP_ABSOLUTE_CMPXCHG`` << 3859 3784 3860 Logical read/write: 3785 Logical read/write: 3861 ^^^^^^^^^^^^^^^^^^^ 3786 ^^^^^^^^^^^^^^^^^^^ 3862 3787 3863 Access logical memory, i.e. translate the giv 3788 Access logical memory, i.e. translate the given guest address to an absolute 3864 address given the state of the VCPU and use t 3789 address given the state of the VCPU and use the absolute address as target of 3865 the access. "ar" designates the access regist 3790 the access. "ar" designates the access register number to be used; the valid 3866 range is 0..15. 3791 range is 0..15. 3867 Logical accesses are permitted for the VCPU i 3792 Logical accesses are permitted for the VCPU ioctl only. 3868 Logical accesses are permitted for non-protec 3793 Logical accesses are permitted for non-protected guests only. 3869 3794 3870 Supported flags: 3795 Supported flags: 3871 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` 3796 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` 3872 * ``KVM_S390_MEMOP_F_INJECT_EXCEPTION`` 3797 * ``KVM_S390_MEMOP_F_INJECT_EXCEPTION`` 3873 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3798 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3874 3799 3875 The KVM_S390_MEMOP_F_CHECK_ONLY flag can be s 3800 The KVM_S390_MEMOP_F_CHECK_ONLY flag can be set to check whether the 3876 corresponding memory access would cause an ac 3801 corresponding memory access would cause an access exception; however, 3877 no actual access to the data in memory at the 3802 no actual access to the data in memory at the destination is performed. 3878 In this case, "buf" is unused and can be NULL 3803 In this case, "buf" is unused and can be NULL. 3879 3804 3880 In case an access exception occurred during t 3805 In case an access exception occurred during the access (or would occur 3881 in case of KVM_S390_MEMOP_F_CHECK_ONLY), the 3806 in case of KVM_S390_MEMOP_F_CHECK_ONLY), the ioctl returns a positive 3882 error number indicating the type of exception 3807 error number indicating the type of exception. This exception is also 3883 raised directly at the corresponding VCPU if 3808 raised directly at the corresponding VCPU if the flag 3884 KVM_S390_MEMOP_F_INJECT_EXCEPTION is set. 3809 KVM_S390_MEMOP_F_INJECT_EXCEPTION is set. 3885 On protection exceptions, unless specified ot 3810 On protection exceptions, unless specified otherwise, the injected 3886 translation-exception identifier (TEID) indic 3811 translation-exception identifier (TEID) indicates suppression. 3887 3812 3888 If the KVM_S390_MEMOP_F_SKEY_PROTECTION flag 3813 If the KVM_S390_MEMOP_F_SKEY_PROTECTION flag is set, storage key 3889 protection is also in effect and may cause ex 3814 protection is also in effect and may cause exceptions if accesses are 3890 prohibited given the access key designated by 3815 prohibited given the access key designated by "key"; the valid range is 0..15. 3891 KVM_S390_MEMOP_F_SKEY_PROTECTION is available 3816 KVM_S390_MEMOP_F_SKEY_PROTECTION is available if KVM_CAP_S390_MEM_OP_EXTENSION 3892 is > 0. 3817 is > 0. 3893 Since the accessed memory may span multiple p 3818 Since the accessed memory may span multiple pages and those pages might have 3894 different storage keys, it is possible that a 3819 different storage keys, it is possible that a protection exception occurs 3895 after memory has been modified. In this case, 3820 after memory has been modified. In this case, if the exception is injected, 3896 the TEID does not indicate suppression. 3821 the TEID does not indicate suppression. 3897 3822 3898 Absolute read/write: 3823 Absolute read/write: 3899 ^^^^^^^^^^^^^^^^^^^^ 3824 ^^^^^^^^^^^^^^^^^^^^ 3900 3825 3901 Access absolute memory. This operation is int 3826 Access absolute memory. This operation is intended to be used with the 3902 KVM_S390_MEMOP_F_SKEY_PROTECTION flag, to all 3827 KVM_S390_MEMOP_F_SKEY_PROTECTION flag, to allow accessing memory and performing 3903 the checks required for storage key protectio 3828 the checks required for storage key protection as one operation (as opposed to 3904 user space getting the storage keys, performi 3829 user space getting the storage keys, performing the checks, and accessing 3905 memory thereafter, which could lead to a dela 3830 memory thereafter, which could lead to a delay between check and access). 3906 Absolute accesses are permitted for the VM io 3831 Absolute accesses are permitted for the VM ioctl if KVM_CAP_S390_MEM_OP_EXTENSION 3907 has the KVM_S390_MEMOP_EXTENSION_CAP_BASE bit !! 3832 is > 0. 3908 Currently absolute accesses are not permitted 3833 Currently absolute accesses are not permitted for VCPU ioctls. 3909 Absolute accesses are permitted for non-prote 3834 Absolute accesses are permitted for non-protected guests only. 3910 3835 3911 Supported flags: 3836 Supported flags: 3912 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` 3837 * ``KVM_S390_MEMOP_F_CHECK_ONLY`` 3913 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3838 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` 3914 3839 3915 The semantics of the flags common with logica !! 3840 The semantics of the flags are as for logical accesses. 3916 accesses. << 3917 << 3918 Absolute cmpxchg: << 3919 ^^^^^^^^^^^^^^^^^ << 3920 << 3921 Perform cmpxchg on absolute guest memory. Int << 3922 KVM_S390_MEMOP_F_SKEY_PROTECTION flag. << 3923 Instead of doing an unconditional write, the << 3924 location contains the value pointed to by "ol << 3925 This is performed as an atomic cmpxchg with t << 3926 parameter. "size" must be a power of two up t << 3927 If the exchange did not take place because th << 3928 old value, the value "old_addr" points to is << 3929 User space can tell if an exchange took place << 3930 occurred. The cmpxchg op is permitted for the << 3931 KVM_CAP_S390_MEM_OP_EXTENSION has flag KVM_S3 << 3932 << 3933 Supported flags: << 3934 * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` << 3935 3841 3936 SIDA read/write: 3842 SIDA read/write: 3937 ^^^^^^^^^^^^^^^^ 3843 ^^^^^^^^^^^^^^^^ 3938 3844 3939 Access the secure instruction data area which 3845 Access the secure instruction data area which contains memory operands necessary 3940 for instruction emulation for protected guest 3846 for instruction emulation for protected guests. 3941 SIDA accesses are available if the KVM_CAP_S3 3847 SIDA accesses are available if the KVM_CAP_S390_PROTECTED capability is available. 3942 SIDA accesses are permitted for the VCPU ioct 3848 SIDA accesses are permitted for the VCPU ioctl only. 3943 SIDA accesses are permitted for protected gue 3849 SIDA accesses are permitted for protected guests only. 3944 3850 3945 No flags are supported. 3851 No flags are supported. 3946 3852 3947 4.90 KVM_S390_GET_SKEYS 3853 4.90 KVM_S390_GET_SKEYS 3948 ----------------------- 3854 ----------------------- 3949 3855 3950 :Capability: KVM_CAP_S390_SKEYS 3856 :Capability: KVM_CAP_S390_SKEYS 3951 :Architectures: s390 3857 :Architectures: s390 3952 :Type: vm ioctl 3858 :Type: vm ioctl 3953 :Parameters: struct kvm_s390_skeys 3859 :Parameters: struct kvm_s390_skeys 3954 :Returns: 0 on success, KVM_S390_GET_SKEYS_NO 3860 :Returns: 0 on success, KVM_S390_GET_SKEYS_NONE if guest is not using storage 3955 keys, negative value on error 3861 keys, negative value on error 3956 3862 3957 This ioctl is used to get guest storage key v 3863 This ioctl is used to get guest storage key values on the s390 3958 architecture. The ioctl takes parameters via 3864 architecture. The ioctl takes parameters via the kvm_s390_skeys struct:: 3959 3865 3960 struct kvm_s390_skeys { 3866 struct kvm_s390_skeys { 3961 __u64 start_gfn; 3867 __u64 start_gfn; 3962 __u64 count; 3868 __u64 count; 3963 __u64 skeydata_addr; 3869 __u64 skeydata_addr; 3964 __u32 flags; 3870 __u32 flags; 3965 __u32 reserved[9]; 3871 __u32 reserved[9]; 3966 }; 3872 }; 3967 3873 3968 The start_gfn field is the number of the firs 3874 The start_gfn field is the number of the first guest frame whose storage keys 3969 you want to get. 3875 you want to get. 3970 3876 3971 The count field is the number of consecutive 3877 The count field is the number of consecutive frames (starting from start_gfn) 3972 whose storage keys to get. The count field mu 3878 whose storage keys to get. The count field must be at least 1 and the maximum 3973 allowed value is defined as KVM_S390_SKEYS_MA 3879 allowed value is defined as KVM_S390_SKEYS_MAX. Values outside this range 3974 will cause the ioctl to return -EINVAL. 3880 will cause the ioctl to return -EINVAL. 3975 3881 3976 The skeydata_addr field is the address to a b 3882 The skeydata_addr field is the address to a buffer large enough to hold count 3977 bytes. This buffer will be filled with storag 3883 bytes. This buffer will be filled with storage key data by the ioctl. 3978 3884 3979 4.91 KVM_S390_SET_SKEYS 3885 4.91 KVM_S390_SET_SKEYS 3980 ----------------------- 3886 ----------------------- 3981 3887 3982 :Capability: KVM_CAP_S390_SKEYS 3888 :Capability: KVM_CAP_S390_SKEYS 3983 :Architectures: s390 3889 :Architectures: s390 3984 :Type: vm ioctl 3890 :Type: vm ioctl 3985 :Parameters: struct kvm_s390_skeys 3891 :Parameters: struct kvm_s390_skeys 3986 :Returns: 0 on success, negative value on err 3892 :Returns: 0 on success, negative value on error 3987 3893 3988 This ioctl is used to set guest storage key v 3894 This ioctl is used to set guest storage key values on the s390 3989 architecture. The ioctl takes parameters via 3895 architecture. The ioctl takes parameters via the kvm_s390_skeys struct. 3990 See section on KVM_S390_GET_SKEYS for struct 3896 See section on KVM_S390_GET_SKEYS for struct definition. 3991 3897 3992 The start_gfn field is the number of the firs 3898 The start_gfn field is the number of the first guest frame whose storage keys 3993 you want to set. 3899 you want to set. 3994 3900 3995 The count field is the number of consecutive 3901 The count field is the number of consecutive frames (starting from start_gfn) 3996 whose storage keys to get. The count field mu 3902 whose storage keys to get. The count field must be at least 1 and the maximum 3997 allowed value is defined as KVM_S390_SKEYS_MA 3903 allowed value is defined as KVM_S390_SKEYS_MAX. Values outside this range 3998 will cause the ioctl to return -EINVAL. 3904 will cause the ioctl to return -EINVAL. 3999 3905 4000 The skeydata_addr field is the address to a b 3906 The skeydata_addr field is the address to a buffer containing count bytes of 4001 storage keys. Each byte in the buffer will be 3907 storage keys. Each byte in the buffer will be set as the storage key for a 4002 single frame starting at start_gfn for count 3908 single frame starting at start_gfn for count frames. 4003 3909 4004 Note: If any architecturally invalid key valu 3910 Note: If any architecturally invalid key value is found in the given data then 4005 the ioctl will return -EINVAL. 3911 the ioctl will return -EINVAL. 4006 3912 4007 4.92 KVM_S390_IRQ 3913 4.92 KVM_S390_IRQ 4008 ----------------- 3914 ----------------- 4009 3915 4010 :Capability: KVM_CAP_S390_INJECT_IRQ 3916 :Capability: KVM_CAP_S390_INJECT_IRQ 4011 :Architectures: s390 3917 :Architectures: s390 4012 :Type: vcpu ioctl 3918 :Type: vcpu ioctl 4013 :Parameters: struct kvm_s390_irq (in) 3919 :Parameters: struct kvm_s390_irq (in) 4014 :Returns: 0 on success, -1 on error 3920 :Returns: 0 on success, -1 on error 4015 3921 4016 Errors: 3922 Errors: 4017 3923 4018 3924 4019 ====== =================================== 3925 ====== ================================================================= 4020 EINVAL interrupt type is invalid 3926 EINVAL interrupt type is invalid 4021 type is KVM_S390_SIGP_STOP and flag 3927 type is KVM_S390_SIGP_STOP and flag parameter is invalid value, 4022 type is KVM_S390_INT_EXTERNAL_CALL 3928 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger 4023 than the maximum of VCPUs 3929 than the maximum of VCPUs 4024 EBUSY type is KVM_S390_SIGP_SET_PREFIX an 3930 EBUSY type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped, 4025 type is KVM_S390_SIGP_STOP and a st 3931 type is KVM_S390_SIGP_STOP and a stop irq is already pending, 4026 type is KVM_S390_INT_EXTERNAL_CALL 3932 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt 4027 is already pending 3933 is already pending 4028 ====== =================================== 3934 ====== ================================================================= 4029 3935 4030 Allows to inject an interrupt to the guest. 3936 Allows to inject an interrupt to the guest. 4031 3937 4032 Using struct kvm_s390_irq as a parameter allo 3938 Using struct kvm_s390_irq as a parameter allows 4033 to inject additional payload which is not 3939 to inject additional payload which is not 4034 possible via KVM_S390_INTERRUPT. 3940 possible via KVM_S390_INTERRUPT. 4035 3941 4036 Interrupt parameters are passed via kvm_s390_ 3942 Interrupt parameters are passed via kvm_s390_irq:: 4037 3943 4038 struct kvm_s390_irq { 3944 struct kvm_s390_irq { 4039 __u64 type; 3945 __u64 type; 4040 union { 3946 union { 4041 struct kvm_s390_io_info io; 3947 struct kvm_s390_io_info io; 4042 struct kvm_s390_ext_info ext; 3948 struct kvm_s390_ext_info ext; 4043 struct kvm_s390_pgm_info pgm; 3949 struct kvm_s390_pgm_info pgm; 4044 struct kvm_s390_emerg_info em 3950 struct kvm_s390_emerg_info emerg; 4045 struct kvm_s390_extcall_info 3951 struct kvm_s390_extcall_info extcall; 4046 struct kvm_s390_prefix_info p 3952 struct kvm_s390_prefix_info prefix; 4047 struct kvm_s390_stop_info sto 3953 struct kvm_s390_stop_info stop; 4048 struct kvm_s390_mchk_info mch 3954 struct kvm_s390_mchk_info mchk; 4049 char reserved[64]; 3955 char reserved[64]; 4050 } u; 3956 } u; 4051 }; 3957 }; 4052 3958 4053 type can be one of the following: 3959 type can be one of the following: 4054 3960 4055 - KVM_S390_SIGP_STOP - sigp stop; parameter i 3961 - KVM_S390_SIGP_STOP - sigp stop; parameter in .stop 4056 - KVM_S390_PROGRAM_INT - program check; param 3962 - KVM_S390_PROGRAM_INT - program check; parameters in .pgm 4057 - KVM_S390_SIGP_SET_PREFIX - sigp set prefix; 3963 - KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix 4058 - KVM_S390_RESTART - restart; no parameters 3964 - KVM_S390_RESTART - restart; no parameters 4059 - KVM_S390_INT_CLOCK_COMP - clock comparator 3965 - KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters 4060 - KVM_S390_INT_CPU_TIMER - CPU timer interrup 3966 - KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters 4061 - KVM_S390_INT_EMERGENCY - sigp emergency; pa 3967 - KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg 4062 - KVM_S390_INT_EXTERNAL_CALL - sigp external 3968 - KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall 4063 - KVM_S390_MCHK - machine check interrupt; pa 3969 - KVM_S390_MCHK - machine check interrupt; parameters in .mchk 4064 3970 4065 This is an asynchronous vcpu ioctl and can be 3971 This is an asynchronous vcpu ioctl and can be invoked from any thread. 4066 3972 4067 4.94 KVM_S390_GET_IRQ_STATE 3973 4.94 KVM_S390_GET_IRQ_STATE 4068 --------------------------- 3974 --------------------------- 4069 3975 4070 :Capability: KVM_CAP_S390_IRQ_STATE 3976 :Capability: KVM_CAP_S390_IRQ_STATE 4071 :Architectures: s390 3977 :Architectures: s390 4072 :Type: vcpu ioctl 3978 :Type: vcpu ioctl 4073 :Parameters: struct kvm_s390_irq_state (out) 3979 :Parameters: struct kvm_s390_irq_state (out) 4074 :Returns: >= number of bytes copied into buff 3980 :Returns: >= number of bytes copied into buffer, 4075 -EINVAL if buffer size is 0, 3981 -EINVAL if buffer size is 0, 4076 -ENOBUFS if buffer size is too smal 3982 -ENOBUFS if buffer size is too small to fit all pending interrupts, 4077 -EFAULT if the buffer address was i 3983 -EFAULT if the buffer address was invalid 4078 3984 4079 This ioctl allows userspace to retrieve the c 3985 This ioctl allows userspace to retrieve the complete state of all currently 4080 pending interrupts in a single buffer. Use ca 3986 pending interrupts in a single buffer. Use cases include migration 4081 and introspection. The parameter structure co 3987 and introspection. The parameter structure contains the address of a 4082 userspace buffer and its length:: 3988 userspace buffer and its length:: 4083 3989 4084 struct kvm_s390_irq_state { 3990 struct kvm_s390_irq_state { 4085 __u64 buf; 3991 __u64 buf; 4086 __u32 flags; /* will stay unus 3992 __u32 flags; /* will stay unused for compatibility reasons */ 4087 __u32 len; 3993 __u32 len; 4088 __u32 reserved[4]; /* will stay unus 3994 __u32 reserved[4]; /* will stay unused for compatibility reasons */ 4089 }; 3995 }; 4090 3996 4091 Userspace passes in the above struct and for 3997 Userspace passes in the above struct and for each pending interrupt a 4092 struct kvm_s390_irq is copied to the provided 3998 struct kvm_s390_irq is copied to the provided buffer. 4093 3999 4094 The structure contains a flags and a reserved 4000 The structure contains a flags and a reserved field for future extensions. As 4095 the kernel never checked for flags == 0 and Q 4001 the kernel never checked for flags == 0 and QEMU never pre-zeroed flags and 4096 reserved, these fields can not be used in the 4002 reserved, these fields can not be used in the future without breaking 4097 compatibility. 4003 compatibility. 4098 4004 4099 If -ENOBUFS is returned the buffer provided w 4005 If -ENOBUFS is returned the buffer provided was too small and userspace 4100 may retry with a bigger buffer. 4006 may retry with a bigger buffer. 4101 4007 4102 4.95 KVM_S390_SET_IRQ_STATE 4008 4.95 KVM_S390_SET_IRQ_STATE 4103 --------------------------- 4009 --------------------------- 4104 4010 4105 :Capability: KVM_CAP_S390_IRQ_STATE 4011 :Capability: KVM_CAP_S390_IRQ_STATE 4106 :Architectures: s390 4012 :Architectures: s390 4107 :Type: vcpu ioctl 4013 :Type: vcpu ioctl 4108 :Parameters: struct kvm_s390_irq_state (in) 4014 :Parameters: struct kvm_s390_irq_state (in) 4109 :Returns: 0 on success, 4015 :Returns: 0 on success, 4110 -EFAULT if the buffer address was i 4016 -EFAULT if the buffer address was invalid, 4111 -EINVAL for an invalid buffer lengt 4017 -EINVAL for an invalid buffer length (see below), 4112 -EBUSY if there were already interr 4018 -EBUSY if there were already interrupts pending, 4113 errors occurring when actually inje 4019 errors occurring when actually injecting the 4114 interrupt. See KVM_S390_IRQ. 4020 interrupt. See KVM_S390_IRQ. 4115 4021 4116 This ioctl allows userspace to set the comple 4022 This ioctl allows userspace to set the complete state of all cpu-local 4117 interrupts currently pending for the vcpu. It 4023 interrupts currently pending for the vcpu. It is intended for restoring 4118 interrupt state after a migration. The input 4024 interrupt state after a migration. The input parameter is a userspace buffer 4119 containing a struct kvm_s390_irq_state:: 4025 containing a struct kvm_s390_irq_state:: 4120 4026 4121 struct kvm_s390_irq_state { 4027 struct kvm_s390_irq_state { 4122 __u64 buf; 4028 __u64 buf; 4123 __u32 flags; /* will stay unus 4029 __u32 flags; /* will stay unused for compatibility reasons */ 4124 __u32 len; 4030 __u32 len; 4125 __u32 reserved[4]; /* will stay unus 4031 __u32 reserved[4]; /* will stay unused for compatibility reasons */ 4126 }; 4032 }; 4127 4033 4128 The restrictions for flags and reserved apply 4034 The restrictions for flags and reserved apply as well. 4129 (see KVM_S390_GET_IRQ_STATE) 4035 (see KVM_S390_GET_IRQ_STATE) 4130 4036 4131 The userspace memory referenced by buf contai 4037 The userspace memory referenced by buf contains a struct kvm_s390_irq 4132 for each interrupt to be injected into the gu 4038 for each interrupt to be injected into the guest. 4133 If one of the interrupts could not be injecte 4039 If one of the interrupts could not be injected for some reason the 4134 ioctl aborts. 4040 ioctl aborts. 4135 4041 4136 len must be a multiple of sizeof(struct kvm_s 4042 len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0 4137 and it must not exceed (max_vcpus + 32) * siz 4043 and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq), 4138 which is the maximum number of possibly pendi 4044 which is the maximum number of possibly pending cpu-local interrupts. 4139 4045 4140 4.96 KVM_SMI 4046 4.96 KVM_SMI 4141 ------------ 4047 ------------ 4142 4048 4143 :Capability: KVM_CAP_X86_SMM 4049 :Capability: KVM_CAP_X86_SMM 4144 :Architectures: x86 4050 :Architectures: x86 4145 :Type: vcpu ioctl 4051 :Type: vcpu ioctl 4146 :Parameters: none 4052 :Parameters: none 4147 :Returns: 0 on success, -1 on error 4053 :Returns: 0 on success, -1 on error 4148 4054 4149 Queues an SMI on the thread's vcpu. 4055 Queues an SMI on the thread's vcpu. 4150 4056 4151 4.97 KVM_X86_SET_MSR_FILTER 4057 4.97 KVM_X86_SET_MSR_FILTER 4152 ---------------------------- 4058 ---------------------------- 4153 4059 4154 :Capability: KVM_CAP_X86_MSR_FILTER 4060 :Capability: KVM_CAP_X86_MSR_FILTER 4155 :Architectures: x86 4061 :Architectures: x86 4156 :Type: vm ioctl 4062 :Type: vm ioctl 4157 :Parameters: struct kvm_msr_filter 4063 :Parameters: struct kvm_msr_filter 4158 :Returns: 0 on success, < 0 on error 4064 :Returns: 0 on success, < 0 on error 4159 4065 4160 :: 4066 :: 4161 4067 4162 struct kvm_msr_filter_range { 4068 struct kvm_msr_filter_range { 4163 #define KVM_MSR_FILTER_READ (1 << 0) 4069 #define KVM_MSR_FILTER_READ (1 << 0) 4164 #define KVM_MSR_FILTER_WRITE (1 << 1) 4070 #define KVM_MSR_FILTER_WRITE (1 << 1) 4165 __u32 flags; 4071 __u32 flags; 4166 __u32 nmsrs; /* number of msrs in bit 4072 __u32 nmsrs; /* number of msrs in bitmap */ 4167 __u32 base; /* MSR index the bitmap 4073 __u32 base; /* MSR index the bitmap starts at */ 4168 __u8 *bitmap; /* a 1 bit allows the o 4074 __u8 *bitmap; /* a 1 bit allows the operations in flags, 0 denies */ 4169 }; 4075 }; 4170 4076 4171 #define KVM_MSR_FILTER_MAX_RANGES 16 4077 #define KVM_MSR_FILTER_MAX_RANGES 16 4172 struct kvm_msr_filter { 4078 struct kvm_msr_filter { 4173 #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 4079 #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 0) 4174 #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 4080 #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 0) 4175 __u32 flags; 4081 __u32 flags; 4176 struct kvm_msr_filter_range ranges[KV 4082 struct kvm_msr_filter_range ranges[KVM_MSR_FILTER_MAX_RANGES]; 4177 }; 4083 }; 4178 4084 4179 flags values for ``struct kvm_msr_filter_rang 4085 flags values for ``struct kvm_msr_filter_range``: 4180 4086 4181 ``KVM_MSR_FILTER_READ`` 4087 ``KVM_MSR_FILTER_READ`` 4182 4088 4183 Filter read accesses to MSRs using the give 4089 Filter read accesses to MSRs using the given bitmap. A 0 in the bitmap 4184 indicates that read accesses should be deni 4090 indicates that read accesses should be denied, while a 1 indicates that 4185 a read for a particular MSR should be allow 4091 a read for a particular MSR should be allowed regardless of the default 4186 filter action. 4092 filter action. 4187 4093 4188 ``KVM_MSR_FILTER_WRITE`` 4094 ``KVM_MSR_FILTER_WRITE`` 4189 4095 4190 Filter write accesses to MSRs using the giv 4096 Filter write accesses to MSRs using the given bitmap. A 0 in the bitmap 4191 indicates that write accesses should be den 4097 indicates that write accesses should be denied, while a 1 indicates that 4192 a write for a particular MSR should be allo 4098 a write for a particular MSR should be allowed regardless of the default 4193 filter action. 4099 filter action. 4194 4100 4195 flags values for ``struct kvm_msr_filter``: 4101 flags values for ``struct kvm_msr_filter``: 4196 4102 4197 ``KVM_MSR_FILTER_DEFAULT_ALLOW`` 4103 ``KVM_MSR_FILTER_DEFAULT_ALLOW`` 4198 4104 4199 If no filter range matches an MSR index tha 4105 If no filter range matches an MSR index that is getting accessed, KVM will 4200 allow accesses to all MSRs by default. 4106 allow accesses to all MSRs by default. 4201 4107 4202 ``KVM_MSR_FILTER_DEFAULT_DENY`` 4108 ``KVM_MSR_FILTER_DEFAULT_DENY`` 4203 4109 4204 If no filter range matches an MSR index tha 4110 If no filter range matches an MSR index that is getting accessed, KVM will 4205 deny accesses to all MSRs by default. 4111 deny accesses to all MSRs by default. 4206 4112 4207 This ioctl allows userspace to define up to 1 4113 This ioctl allows userspace to define up to 16 bitmaps of MSR ranges to deny 4208 guest MSR accesses that would normally be all 4114 guest MSR accesses that would normally be allowed by KVM. If an MSR is not 4209 covered by a specific range, the "default" fi 4115 covered by a specific range, the "default" filtering behavior applies. Each 4210 bitmap range covers MSRs from [base .. base+n 4116 bitmap range covers MSRs from [base .. base+nmsrs). 4211 4117 4212 If an MSR access is denied by userspace, the 4118 If an MSR access is denied by userspace, the resulting KVM behavior depends on 4213 whether or not KVM_CAP_X86_USER_SPACE_MSR's K 4119 whether or not KVM_CAP_X86_USER_SPACE_MSR's KVM_MSR_EXIT_REASON_FILTER is 4214 enabled. If KVM_MSR_EXIT_REASON_FILTER is en 4120 enabled. If KVM_MSR_EXIT_REASON_FILTER is enabled, KVM will exit to userspace 4215 on denied accesses, i.e. userspace effectivel 4121 on denied accesses, i.e. userspace effectively intercepts the MSR access. If 4216 KVM_MSR_EXIT_REASON_FILTER is not enabled, KV 4122 KVM_MSR_EXIT_REASON_FILTER is not enabled, KVM will inject a #GP into the guest 4217 on denied accesses. Note, if an MSR access i !! 4123 on denied accesses. 4218 load/stores during VMX transitions, KVM ignor << 4219 See the below warning for full details. << 4220 4124 4221 If an MSR access is allowed by userspace, KVM 4125 If an MSR access is allowed by userspace, KVM will emulate and/or virtualize 4222 the access in accordance with the vCPU model. 4126 the access in accordance with the vCPU model. Note, KVM may still ultimately 4223 inject a #GP if an access is allowed by users 4127 inject a #GP if an access is allowed by userspace, e.g. if KVM doesn't support 4224 the MSR, or to follow architectural behavior 4128 the MSR, or to follow architectural behavior for the MSR. 4225 4129 4226 By default, KVM operates in KVM_MSR_FILTER_DE 4130 By default, KVM operates in KVM_MSR_FILTER_DEFAULT_ALLOW mode with no MSR range 4227 filters. 4131 filters. 4228 4132 4229 Calling this ioctl with an empty set of range 4133 Calling this ioctl with an empty set of ranges (all nmsrs == 0) disables MSR 4230 filtering. In that mode, ``KVM_MSR_FILTER_DEF 4134 filtering. In that mode, ``KVM_MSR_FILTER_DEFAULT_DENY`` is invalid and causes 4231 an error. 4135 an error. 4232 4136 4233 .. warning:: 4137 .. warning:: 4234 MSR accesses that are side effects of inst !! 4138 MSR accesses as part of nested VM-Enter/VM-Exit are not filtered. 4235 native) are not filtered as hardware does !! 4139 This includes both writes to individual VMCS fields and reads/writes 4236 RDMSR and WRMSR, and KVM mimics that behav !! 4140 through the MSR lists pointed to by the VMCS. 4237 to avoid pointless divergence from hardwar << 4238 SYSENTER reads the SYSENTER MSRs, etc. << 4239 << 4240 MSRs that are loaded/stored via dedicated << 4241 part of VM-Enter/VM-Exit emulation. << 4242 << 4243 MSRs that are loaded/store via VMX's load/ << 4244 of VM-Enter/VM-Exit emulation. If an MSR << 4245 synthesizes a consistency check VM-Exit(EX << 4246 MSR access is denied on VM-Exit, KVM synth << 4247 extends Intel's architectural list of MSRs << 4248 the VM-Enter/VM-Exit MSR list. It is plat << 4249 to communicate any such restrictions to th << 4250 4141 4251 x2APIC MSR accesses cannot be filtered (KV 4142 x2APIC MSR accesses cannot be filtered (KVM silently ignores filters that 4252 cover any x2APIC MSRs). 4143 cover any x2APIC MSRs). 4253 4144 4254 Note, invoking this ioctl while a vCPU is run 4145 Note, invoking this ioctl while a vCPU is running is inherently racy. However, 4255 KVM does guarantee that vCPUs will see either 4146 KVM does guarantee that vCPUs will see either the previous filter or the new 4256 filter, e.g. MSRs with identical settings in 4147 filter, e.g. MSRs with identical settings in both the old and new filter will 4257 have deterministic behavior. 4148 have deterministic behavior. 4258 4149 4259 Similarly, if userspace wishes to intercept o 4150 Similarly, if userspace wishes to intercept on denied accesses, 4260 KVM_MSR_EXIT_REASON_FILTER must be enabled be 4151 KVM_MSR_EXIT_REASON_FILTER must be enabled before activating any filters, and 4261 left enabled until after all filters are deac 4152 left enabled until after all filters are deactivated. Failure to do so may 4262 result in KVM injecting a #GP instead of exit 4153 result in KVM injecting a #GP instead of exiting to userspace. 4263 4154 4264 4.98 KVM_CREATE_SPAPR_TCE_64 4155 4.98 KVM_CREATE_SPAPR_TCE_64 4265 ---------------------------- 4156 ---------------------------- 4266 4157 4267 :Capability: KVM_CAP_SPAPR_TCE_64 4158 :Capability: KVM_CAP_SPAPR_TCE_64 4268 :Architectures: powerpc 4159 :Architectures: powerpc 4269 :Type: vm ioctl 4160 :Type: vm ioctl 4270 :Parameters: struct kvm_create_spapr_tce_64 ( 4161 :Parameters: struct kvm_create_spapr_tce_64 (in) 4271 :Returns: file descriptor for manipulating th 4162 :Returns: file descriptor for manipulating the created TCE table 4272 4163 4273 This is an extension for KVM_CAP_SPAPR_TCE wh 4164 This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit 4274 windows, described in 4.62 KVM_CREATE_SPAPR_T 4165 windows, described in 4.62 KVM_CREATE_SPAPR_TCE 4275 4166 4276 This capability uses extended struct in ioctl 4167 This capability uses extended struct in ioctl interface:: 4277 4168 4278 /* for KVM_CAP_SPAPR_TCE_64 */ 4169 /* for KVM_CAP_SPAPR_TCE_64 */ 4279 struct kvm_create_spapr_tce_64 { 4170 struct kvm_create_spapr_tce_64 { 4280 __u64 liobn; 4171 __u64 liobn; 4281 __u32 page_shift; 4172 __u32 page_shift; 4282 __u32 flags; 4173 __u32 flags; 4283 __u64 offset; /* in pages */ 4174 __u64 offset; /* in pages */ 4284 __u64 size; /* in pages */ 4175 __u64 size; /* in pages */ 4285 }; 4176 }; 4286 4177 4287 The aim of extension is to support an additio 4178 The aim of extension is to support an additional bigger DMA window with 4288 a variable page size. 4179 a variable page size. 4289 KVM_CREATE_SPAPR_TCE_64 receives a 64bit wind 4180 KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and 4290 a bus offset of the corresponding DMA window, 4181 a bus offset of the corresponding DMA window, @size and @offset are numbers 4291 of IOMMU pages. 4182 of IOMMU pages. 4292 4183 4293 @flags are not used at the moment. 4184 @flags are not used at the moment. 4294 4185 4295 The rest of functionality is identical to KVM 4186 The rest of functionality is identical to KVM_CREATE_SPAPR_TCE. 4296 4187 4297 4.99 KVM_REINJECT_CONTROL 4188 4.99 KVM_REINJECT_CONTROL 4298 ------------------------- 4189 ------------------------- 4299 4190 4300 :Capability: KVM_CAP_REINJECT_CONTROL 4191 :Capability: KVM_CAP_REINJECT_CONTROL 4301 :Architectures: x86 4192 :Architectures: x86 4302 :Type: vm ioctl 4193 :Type: vm ioctl 4303 :Parameters: struct kvm_reinject_control (in) 4194 :Parameters: struct kvm_reinject_control (in) 4304 :Returns: 0 on success, 4195 :Returns: 0 on success, 4305 -EFAULT if struct kvm_reinject_contr 4196 -EFAULT if struct kvm_reinject_control cannot be read, 4306 -ENXIO if KVM_CREATE_PIT or KVM_CREA 4197 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier. 4307 4198 4308 i8254 (PIT) has two modes, reinject and !rein 4199 i8254 (PIT) has two modes, reinject and !reinject. The default is reinject, 4309 where KVM queues elapsed i8254 ticks and moni 4200 where KVM queues elapsed i8254 ticks and monitors completion of interrupt from 4310 vector(s) that i8254 injects. Reinject mode 4201 vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its 4311 interrupt whenever there isn't a pending inte 4202 interrupt whenever there isn't a pending interrupt from i8254. 4312 !reinject mode injects an interrupt as soon a 4203 !reinject mode injects an interrupt as soon as a tick arrives. 4313 4204 4314 :: 4205 :: 4315 4206 4316 struct kvm_reinject_control { 4207 struct kvm_reinject_control { 4317 __u8 pit_reinject; 4208 __u8 pit_reinject; 4318 __u8 reserved[31]; 4209 __u8 reserved[31]; 4319 }; 4210 }; 4320 4211 4321 pit_reinject = 0 (!reinject mode) is recommen 4212 pit_reinject = 0 (!reinject mode) is recommended, unless running an old 4322 operating system that uses the PIT for timing 4213 operating system that uses the PIT for timing (e.g. Linux 2.4.x). 4323 4214 4324 4.100 KVM_PPC_CONFIGURE_V3_MMU 4215 4.100 KVM_PPC_CONFIGURE_V3_MMU 4325 ------------------------------ 4216 ------------------------------ 4326 4217 4327 :Capability: KVM_CAP_PPC_MMU_RADIX or KVM_CAP !! 4218 :Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3 4328 :Architectures: ppc 4219 :Architectures: ppc 4329 :Type: vm ioctl 4220 :Type: vm ioctl 4330 :Parameters: struct kvm_ppc_mmuv3_cfg (in) 4221 :Parameters: struct kvm_ppc_mmuv3_cfg (in) 4331 :Returns: 0 on success, 4222 :Returns: 0 on success, 4332 -EFAULT if struct kvm_ppc_mmuv3_cfg 4223 -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read, 4333 -EINVAL if the configuration is inva 4224 -EINVAL if the configuration is invalid 4334 4225 4335 This ioctl controls whether the guest will us 4226 This ioctl controls whether the guest will use radix or HPT (hashed 4336 page table) translation, and sets the pointer 4227 page table) translation, and sets the pointer to the process table for 4337 the guest. 4228 the guest. 4338 4229 4339 :: 4230 :: 4340 4231 4341 struct kvm_ppc_mmuv3_cfg { 4232 struct kvm_ppc_mmuv3_cfg { 4342 __u64 flags; 4233 __u64 flags; 4343 __u64 process_table; 4234 __u64 process_table; 4344 }; 4235 }; 4345 4236 4346 There are two bits that can be set in flags; 4237 There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and 4347 KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if 4238 KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest 4348 to use radix tree translation, and if clear, 4239 to use radix tree translation, and if clear, to use HPT translation. 4349 KVM_PPC_MMUV3_GTSE, if set and if KVM permits 4240 KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest 4350 to be able to use the global TLB and SLB inva 4241 to be able to use the global TLB and SLB invalidation instructions; 4351 if clear, the guest may not use these instruc 4242 if clear, the guest may not use these instructions. 4352 4243 4353 The process_table field specifies the address 4244 The process_table field specifies the address and size of the guest 4354 process table, which is in the guest's space. 4245 process table, which is in the guest's space. This field is formatted 4355 as the second doubleword of the partition tab 4246 as the second doubleword of the partition table entry, as defined in 4356 the Power ISA V3.00, Book III section 5.7.6.1 4247 the Power ISA V3.00, Book III section 5.7.6.1. 4357 4248 4358 4.101 KVM_PPC_GET_RMMU_INFO 4249 4.101 KVM_PPC_GET_RMMU_INFO 4359 --------------------------- 4250 --------------------------- 4360 4251 4361 :Capability: KVM_CAP_PPC_MMU_RADIX !! 4252 :Capability: KVM_CAP_PPC_RADIX_MMU 4362 :Architectures: ppc 4253 :Architectures: ppc 4363 :Type: vm ioctl 4254 :Type: vm ioctl 4364 :Parameters: struct kvm_ppc_rmmu_info (out) 4255 :Parameters: struct kvm_ppc_rmmu_info (out) 4365 :Returns: 0 on success, 4256 :Returns: 0 on success, 4366 -EFAULT if struct kvm_ppc_rmmu_info 4257 -EFAULT if struct kvm_ppc_rmmu_info cannot be written, 4367 -EINVAL if no useful information can 4258 -EINVAL if no useful information can be returned 4368 4259 4369 This ioctl returns a structure containing two 4260 This ioctl returns a structure containing two things: (a) a list 4370 containing supported radix tree geometries, a 4261 containing supported radix tree geometries, and (b) a list that maps 4371 page sizes to put in the "AP" (actual page si 4262 page sizes to put in the "AP" (actual page size) field for the tlbie 4372 (TLB invalidate entry) instruction. 4263 (TLB invalidate entry) instruction. 4373 4264 4374 :: 4265 :: 4375 4266 4376 struct kvm_ppc_rmmu_info { 4267 struct kvm_ppc_rmmu_info { 4377 struct kvm_ppc_radix_geom { 4268 struct kvm_ppc_radix_geom { 4378 __u8 page_shift; 4269 __u8 page_shift; 4379 __u8 level_bits[4]; 4270 __u8 level_bits[4]; 4380 __u8 pad[3]; 4271 __u8 pad[3]; 4381 } geometries[8]; 4272 } geometries[8]; 4382 __u32 ap_encodings[8]; 4273 __u32 ap_encodings[8]; 4383 }; 4274 }; 4384 4275 4385 The geometries[] field gives up to 8 supporte 4276 The geometries[] field gives up to 8 supported geometries for the 4386 radix page table, in terms of the log base 2 4277 radix page table, in terms of the log base 2 of the smallest page 4387 size, and the number of bits indexed at each 4278 size, and the number of bits indexed at each level of the tree, from 4388 the PTE level up to the PGD level in that ord 4279 the PTE level up to the PGD level in that order. Any unused entries 4389 will have 0 in the page_shift field. 4280 will have 0 in the page_shift field. 4390 4281 4391 The ap_encodings gives the supported page siz 4282 The ap_encodings gives the supported page sizes and their AP field 4392 encodings, encoded with the AP value in the t 4283 encodings, encoded with the AP value in the top 3 bits and the log 4393 base 2 of the page size in the bottom 6 bits. 4284 base 2 of the page size in the bottom 6 bits. 4394 4285 4395 4.102 KVM_PPC_RESIZE_HPT_PREPARE 4286 4.102 KVM_PPC_RESIZE_HPT_PREPARE 4396 -------------------------------- 4287 -------------------------------- 4397 4288 4398 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4289 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4399 :Architectures: powerpc 4290 :Architectures: powerpc 4400 :Type: vm ioctl 4291 :Type: vm ioctl 4401 :Parameters: struct kvm_ppc_resize_hpt (in) 4292 :Parameters: struct kvm_ppc_resize_hpt (in) 4402 :Returns: 0 on successful completion, 4293 :Returns: 0 on successful completion, 4403 >0 if a new HPT is being prepared, t 4294 >0 if a new HPT is being prepared, the value is an estimated 4404 number of milliseconds until prepara 4295 number of milliseconds until preparation is complete, 4405 -EFAULT if struct kvm_reinject_contr 4296 -EFAULT if struct kvm_reinject_control cannot be read, 4406 -EINVAL if the supplied shift or fla 4297 -EINVAL if the supplied shift or flags are invalid, 4407 -ENOMEM if unable to allocate the ne 4298 -ENOMEM if unable to allocate the new HPT, 4408 4299 4409 Used to implement the PAPR extension for runt 4300 Used to implement the PAPR extension for runtime resizing of a guest's 4410 Hashed Page Table (HPT). Specifically this s 4301 Hashed Page Table (HPT). Specifically this starts, stops or monitors 4411 the preparation of a new potential HPT for th 4302 the preparation of a new potential HPT for the guest, essentially 4412 implementing the H_RESIZE_HPT_PREPARE hyperca 4303 implementing the H_RESIZE_HPT_PREPARE hypercall. 4413 4304 4414 :: 4305 :: 4415 4306 4416 struct kvm_ppc_resize_hpt { 4307 struct kvm_ppc_resize_hpt { 4417 __u64 flags; 4308 __u64 flags; 4418 __u32 shift; 4309 __u32 shift; 4419 __u32 pad; 4310 __u32 pad; 4420 }; 4311 }; 4421 4312 4422 If called with shift > 0 when there is no pen 4313 If called with shift > 0 when there is no pending HPT for the guest, 4423 this begins preparation of a new pending HPT 4314 this begins preparation of a new pending HPT of size 2^(shift) bytes. 4424 It then returns a positive integer with the e 4315 It then returns a positive integer with the estimated number of 4425 milliseconds until preparation is complete. 4316 milliseconds until preparation is complete. 4426 4317 4427 If called when there is a pending HPT whose s 4318 If called when there is a pending HPT whose size does not match that 4428 requested in the parameters, discards the exi 4319 requested in the parameters, discards the existing pending HPT and 4429 creates a new one as above. 4320 creates a new one as above. 4430 4321 4431 If called when there is a pending HPT of the 4322 If called when there is a pending HPT of the size requested, will: 4432 4323 4433 * If preparation of the pending HPT is alre 4324 * If preparation of the pending HPT is already complete, return 0 4434 * If preparation of the pending HPT has fai 4325 * If preparation of the pending HPT has failed, return an error 4435 code, then discard the pending HPT. 4326 code, then discard the pending HPT. 4436 * If preparation of the pending HPT is stil 4327 * If preparation of the pending HPT is still in progress, return an 4437 estimated number of milliseconds until pr 4328 estimated number of milliseconds until preparation is complete. 4438 4329 4439 If called with shift == 0, discards any curre 4330 If called with shift == 0, discards any currently pending HPT and 4440 returns 0 (i.e. cancels any in-progress prepa 4331 returns 0 (i.e. cancels any in-progress preparation). 4441 4332 4442 flags is reserved for future expansion, curre 4333 flags is reserved for future expansion, currently setting any bits in 4443 flags will result in an -EINVAL. 4334 flags will result in an -EINVAL. 4444 4335 4445 Normally this will be called repeatedly with 4336 Normally this will be called repeatedly with the same parameters until 4446 it returns <= 0. The first call will initiat 4337 it returns <= 0. The first call will initiate preparation, subsequent 4447 ones will monitor preparation until it comple 4338 ones will monitor preparation until it completes or fails. 4448 4339 4449 4.103 KVM_PPC_RESIZE_HPT_COMMIT 4340 4.103 KVM_PPC_RESIZE_HPT_COMMIT 4450 ------------------------------- 4341 ------------------------------- 4451 4342 4452 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4343 :Capability: KVM_CAP_SPAPR_RESIZE_HPT 4453 :Architectures: powerpc 4344 :Architectures: powerpc 4454 :Type: vm ioctl 4345 :Type: vm ioctl 4455 :Parameters: struct kvm_ppc_resize_hpt (in) 4346 :Parameters: struct kvm_ppc_resize_hpt (in) 4456 :Returns: 0 on successful completion, 4347 :Returns: 0 on successful completion, 4457 -EFAULT if struct kvm_reinject_contr 4348 -EFAULT if struct kvm_reinject_control cannot be read, 4458 -EINVAL if the supplied shift or fla 4349 -EINVAL if the supplied shift or flags are invalid, 4459 -ENXIO is there is no pending HPT, o 4350 -ENXIO is there is no pending HPT, or the pending HPT doesn't 4460 have the requested size, 4351 have the requested size, 4461 -EBUSY if the pending HPT is not ful 4352 -EBUSY if the pending HPT is not fully prepared, 4462 -ENOSPC if there was a hash collisio 4353 -ENOSPC if there was a hash collision when moving existing 4463 HPT entries to the new HPT, 4354 HPT entries to the new HPT, 4464 -EIO on other error conditions 4355 -EIO on other error conditions 4465 4356 4466 Used to implement the PAPR extension for runt 4357 Used to implement the PAPR extension for runtime resizing of a guest's 4467 Hashed Page Table (HPT). Specifically this r 4358 Hashed Page Table (HPT). Specifically this requests that the guest be 4468 transferred to working with the new HPT, esse 4359 transferred to working with the new HPT, essentially implementing the 4469 H_RESIZE_HPT_COMMIT hypercall. 4360 H_RESIZE_HPT_COMMIT hypercall. 4470 4361 4471 :: 4362 :: 4472 4363 4473 struct kvm_ppc_resize_hpt { 4364 struct kvm_ppc_resize_hpt { 4474 __u64 flags; 4365 __u64 flags; 4475 __u32 shift; 4366 __u32 shift; 4476 __u32 pad; 4367 __u32 pad; 4477 }; 4368 }; 4478 4369 4479 This should only be called after KVM_PPC_RESI 4370 This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has 4480 returned 0 with the same parameters. In othe 4371 returned 0 with the same parameters. In other cases 4481 KVM_PPC_RESIZE_HPT_COMMIT will return an erro 4372 KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or 4482 -EBUSY, though others may be possible if the 4373 -EBUSY, though others may be possible if the preparation was started, 4483 but failed). 4374 but failed). 4484 4375 4485 This will have undefined effects on the guest 4376 This will have undefined effects on the guest if it has not already 4486 placed itself in a quiescent state where no v 4377 placed itself in a quiescent state where no vcpu will make MMU enabled 4487 memory accesses. 4378 memory accesses. 4488 4379 4489 On successful completion, the pending HPT wil !! 4380 On succsful completion, the pending HPT will become the guest's active 4490 HPT and the previous HPT will be discarded. 4381 HPT and the previous HPT will be discarded. 4491 4382 4492 On failure, the guest will still be operating 4383 On failure, the guest will still be operating on its previous HPT. 4493 4384 4494 4.104 KVM_X86_GET_MCE_CAP_SUPPORTED 4385 4.104 KVM_X86_GET_MCE_CAP_SUPPORTED 4495 ----------------------------------- 4386 ----------------------------------- 4496 4387 4497 :Capability: KVM_CAP_MCE 4388 :Capability: KVM_CAP_MCE 4498 :Architectures: x86 4389 :Architectures: x86 4499 :Type: system ioctl 4390 :Type: system ioctl 4500 :Parameters: u64 mce_cap (out) 4391 :Parameters: u64 mce_cap (out) 4501 :Returns: 0 on success, -1 on error 4392 :Returns: 0 on success, -1 on error 4502 4393 4503 Returns supported MCE capabilities. The u64 m 4394 Returns supported MCE capabilities. The u64 mce_cap parameter 4504 has the same format as the MSR_IA32_MCG_CAP r 4395 has the same format as the MSR_IA32_MCG_CAP register. Supported 4505 capabilities will have the corresponding bits 4396 capabilities will have the corresponding bits set. 4506 4397 4507 4.105 KVM_X86_SETUP_MCE 4398 4.105 KVM_X86_SETUP_MCE 4508 ----------------------- 4399 ----------------------- 4509 4400 4510 :Capability: KVM_CAP_MCE 4401 :Capability: KVM_CAP_MCE 4511 :Architectures: x86 4402 :Architectures: x86 4512 :Type: vcpu ioctl 4403 :Type: vcpu ioctl 4513 :Parameters: u64 mcg_cap (in) 4404 :Parameters: u64 mcg_cap (in) 4514 :Returns: 0 on success, 4405 :Returns: 0 on success, 4515 -EFAULT if u64 mcg_cap cannot be rea 4406 -EFAULT if u64 mcg_cap cannot be read, 4516 -EINVAL if the requested number of b 4407 -EINVAL if the requested number of banks is invalid, 4517 -EINVAL if requested MCE capability 4408 -EINVAL if requested MCE capability is not supported. 4518 4409 4519 Initializes MCE support for use. The u64 mcg_ 4410 Initializes MCE support for use. The u64 mcg_cap parameter 4520 has the same format as the MSR_IA32_MCG_CAP r 4411 has the same format as the MSR_IA32_MCG_CAP register and 4521 specifies which capabilities should be enable 4412 specifies which capabilities should be enabled. The maximum 4522 supported number of error-reporting banks can 4413 supported number of error-reporting banks can be retrieved when 4523 checking for KVM_CAP_MCE. The supported capab 4414 checking for KVM_CAP_MCE. The supported capabilities can be 4524 retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. 4415 retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. 4525 4416 4526 4.106 KVM_X86_SET_MCE 4417 4.106 KVM_X86_SET_MCE 4527 --------------------- 4418 --------------------- 4528 4419 4529 :Capability: KVM_CAP_MCE 4420 :Capability: KVM_CAP_MCE 4530 :Architectures: x86 4421 :Architectures: x86 4531 :Type: vcpu ioctl 4422 :Type: vcpu ioctl 4532 :Parameters: struct kvm_x86_mce (in) 4423 :Parameters: struct kvm_x86_mce (in) 4533 :Returns: 0 on success, 4424 :Returns: 0 on success, 4534 -EFAULT if struct kvm_x86_mce cannot 4425 -EFAULT if struct kvm_x86_mce cannot be read, 4535 -EINVAL if the bank number is invali 4426 -EINVAL if the bank number is invalid, 4536 -EINVAL if VAL bit is not set in sta 4427 -EINVAL if VAL bit is not set in status field. 4537 4428 4538 Inject a machine check error (MCE) into the g 4429 Inject a machine check error (MCE) into the guest. The input 4539 parameter is:: 4430 parameter is:: 4540 4431 4541 struct kvm_x86_mce { 4432 struct kvm_x86_mce { 4542 __u64 status; 4433 __u64 status; 4543 __u64 addr; 4434 __u64 addr; 4544 __u64 misc; 4435 __u64 misc; 4545 __u64 mcg_status; 4436 __u64 mcg_status; 4546 __u8 bank; 4437 __u8 bank; 4547 __u8 pad1[7]; 4438 __u8 pad1[7]; 4548 __u64 pad2[3]; 4439 __u64 pad2[3]; 4549 }; 4440 }; 4550 4441 4551 If the MCE being reported is an uncorrected e 4442 If the MCE being reported is an uncorrected error, KVM will 4552 inject it as an MCE exception into the guest. 4443 inject it as an MCE exception into the guest. If the guest 4553 MCG_STATUS register reports that an MCE is in 4444 MCG_STATUS register reports that an MCE is in progress, KVM 4554 causes an KVM_EXIT_SHUTDOWN vmexit. 4445 causes an KVM_EXIT_SHUTDOWN vmexit. 4555 4446 4556 Otherwise, if the MCE is a corrected error, K 4447 Otherwise, if the MCE is a corrected error, KVM will just 4557 store it in the corresponding bank (provided 4448 store it in the corresponding bank (provided this bank is 4558 not holding a previously reported uncorrected 4449 not holding a previously reported uncorrected error). 4559 4450 4560 4.107 KVM_S390_GET_CMMA_BITS 4451 4.107 KVM_S390_GET_CMMA_BITS 4561 ---------------------------- 4452 ---------------------------- 4562 4453 4563 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4454 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4564 :Architectures: s390 4455 :Architectures: s390 4565 :Type: vm ioctl 4456 :Type: vm ioctl 4566 :Parameters: struct kvm_s390_cmma_log (in, ou 4457 :Parameters: struct kvm_s390_cmma_log (in, out) 4567 :Returns: 0 on success, a negative value on e 4458 :Returns: 0 on success, a negative value on error 4568 4459 4569 Errors: 4460 Errors: 4570 4461 4571 ====== ================================ 4462 ====== ============================================================= 4572 ENOMEM not enough memory can be allocat 4463 ENOMEM not enough memory can be allocated to complete the task 4573 ENXIO if CMMA is not enabled 4464 ENXIO if CMMA is not enabled 4574 EINVAL if KVM_S390_CMMA_PEEK is not set 4465 EINVAL if KVM_S390_CMMA_PEEK is not set but migration mode was not enabled 4575 EINVAL if KVM_S390_CMMA_PEEK is not set 4466 EINVAL if KVM_S390_CMMA_PEEK is not set but dirty tracking has been 4576 disabled (and thus migration mod 4467 disabled (and thus migration mode was automatically disabled) 4577 EFAULT if the userspace address is inva 4468 EFAULT if the userspace address is invalid or if no page table is 4578 present for the addresses (e.g. 4469 present for the addresses (e.g. when using hugepages). 4579 ====== ================================ 4470 ====== ============================================================= 4580 4471 4581 This ioctl is used to get the values of the C 4472 This ioctl is used to get the values of the CMMA bits on the s390 4582 architecture. It is meant to be used in two s 4473 architecture. It is meant to be used in two scenarios: 4583 4474 4584 - During live migration to save the CMMA valu 4475 - During live migration to save the CMMA values. Live migration needs 4585 to be enabled via the KVM_REQ_START_MIGRATI 4476 to be enabled via the KVM_REQ_START_MIGRATION VM property. 4586 - To non-destructively peek at the CMMA value 4477 - To non-destructively peek at the CMMA values, with the flag 4587 KVM_S390_CMMA_PEEK set. 4478 KVM_S390_CMMA_PEEK set. 4588 4479 4589 The ioctl takes parameters via the kvm_s390_c 4480 The ioctl takes parameters via the kvm_s390_cmma_log struct. The desired 4590 values are written to a buffer whose location 4481 values are written to a buffer whose location is indicated via the "values" 4591 member in the kvm_s390_cmma_log struct. The 4482 member in the kvm_s390_cmma_log struct. The values in the input struct are 4592 also updated as needed. 4483 also updated as needed. 4593 4484 4594 Each CMMA value takes up one byte. 4485 Each CMMA value takes up one byte. 4595 4486 4596 :: 4487 :: 4597 4488 4598 struct kvm_s390_cmma_log { 4489 struct kvm_s390_cmma_log { 4599 __u64 start_gfn; 4490 __u64 start_gfn; 4600 __u32 count; 4491 __u32 count; 4601 __u32 flags; 4492 __u32 flags; 4602 union { 4493 union { 4603 __u64 remaining; 4494 __u64 remaining; 4604 __u64 mask; 4495 __u64 mask; 4605 }; 4496 }; 4606 __u64 values; 4497 __u64 values; 4607 }; 4498 }; 4608 4499 4609 start_gfn is the number of the first guest fr 4500 start_gfn is the number of the first guest frame whose CMMA values are 4610 to be retrieved, 4501 to be retrieved, 4611 4502 4612 count is the length of the buffer in bytes, 4503 count is the length of the buffer in bytes, 4613 4504 4614 values points to the buffer where the result 4505 values points to the buffer where the result will be written to. 4615 4506 4616 If count is greater than KVM_S390_SKEYS_MAX, 4507 If count is greater than KVM_S390_SKEYS_MAX, then it is considered to be 4617 KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re- 4508 KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re-used for consistency with 4618 other ioctls. 4509 other ioctls. 4619 4510 4620 The result is written in the buffer pointed t 4511 The result is written in the buffer pointed to by the field values, and 4621 the values of the input parameter are updated 4512 the values of the input parameter are updated as follows. 4622 4513 4623 Depending on the flags, different actions are 4514 Depending on the flags, different actions are performed. The only 4624 supported flag so far is KVM_S390_CMMA_PEEK. 4515 supported flag so far is KVM_S390_CMMA_PEEK. 4625 4516 4626 The default behaviour if KVM_S390_CMMA_PEEK i 4517 The default behaviour if KVM_S390_CMMA_PEEK is not set is: 4627 start_gfn will indicate the first page frame 4518 start_gfn will indicate the first page frame whose CMMA bits were dirty. 4628 It is not necessarily the same as the one pas 4519 It is not necessarily the same as the one passed as input, as clean pages 4629 are skipped. 4520 are skipped. 4630 4521 4631 count will indicate the number of bytes actua 4522 count will indicate the number of bytes actually written in the buffer. 4632 It can (and very often will) be smaller than 4523 It can (and very often will) be smaller than the input value, since the 4633 buffer is only filled until 16 bytes of clean 4524 buffer is only filled until 16 bytes of clean values are found (which 4634 are then not copied in the buffer). Since a C 4525 are then not copied in the buffer). Since a CMMA migration block needs 4635 the base address and the length, for a total 4526 the base address and the length, for a total of 16 bytes, we will send 4636 back some clean data if there is some dirty d 4527 back some clean data if there is some dirty data afterwards, as long as 4637 the size of the clean data does not exceed th 4528 the size of the clean data does not exceed the size of the header. This 4638 allows to minimize the amount of data to be s 4529 allows to minimize the amount of data to be saved or transferred over 4639 the network at the expense of more roundtrips 4530 the network at the expense of more roundtrips to userspace. The next 4640 invocation of the ioctl will skip over all th 4531 invocation of the ioctl will skip over all the clean values, saving 4641 potentially more than just the 16 bytes we fo 4532 potentially more than just the 16 bytes we found. 4642 4533 4643 If KVM_S390_CMMA_PEEK is set: 4534 If KVM_S390_CMMA_PEEK is set: 4644 the existing storage attributes are read even 4535 the existing storage attributes are read even when not in migration 4645 mode, and no other action is performed; 4536 mode, and no other action is performed; 4646 4537 4647 the output start_gfn will be equal to the inp 4538 the output start_gfn will be equal to the input start_gfn, 4648 4539 4649 the output count will be equal to the input c 4540 the output count will be equal to the input count, except if the end of 4650 memory has been reached. 4541 memory has been reached. 4651 4542 4652 In both cases: 4543 In both cases: 4653 the field "remaining" will indicate the total 4544 the field "remaining" will indicate the total number of dirty CMMA values 4654 still remaining, or 0 if KVM_S390_CMMA_PEEK i 4545 still remaining, or 0 if KVM_S390_CMMA_PEEK is set and migration mode is 4655 not enabled. 4546 not enabled. 4656 4547 4657 mask is unused. 4548 mask is unused. 4658 4549 4659 values points to the userspace buffer where t 4550 values points to the userspace buffer where the result will be stored. 4660 4551 4661 4.108 KVM_S390_SET_CMMA_BITS 4552 4.108 KVM_S390_SET_CMMA_BITS 4662 ---------------------------- 4553 ---------------------------- 4663 4554 4664 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4555 :Capability: KVM_CAP_S390_CMMA_MIGRATION 4665 :Architectures: s390 4556 :Architectures: s390 4666 :Type: vm ioctl 4557 :Type: vm ioctl 4667 :Parameters: struct kvm_s390_cmma_log (in) 4558 :Parameters: struct kvm_s390_cmma_log (in) 4668 :Returns: 0 on success, a negative value on e 4559 :Returns: 0 on success, a negative value on error 4669 4560 4670 This ioctl is used to set the values of the C 4561 This ioctl is used to set the values of the CMMA bits on the s390 4671 architecture. It is meant to be used during l 4562 architecture. It is meant to be used during live migration to restore 4672 the CMMA values, but there are no restriction 4563 the CMMA values, but there are no restrictions on its use. 4673 The ioctl takes parameters via the kvm_s390_c 4564 The ioctl takes parameters via the kvm_s390_cmma_values struct. 4674 Each CMMA value takes up one byte. 4565 Each CMMA value takes up one byte. 4675 4566 4676 :: 4567 :: 4677 4568 4678 struct kvm_s390_cmma_log { 4569 struct kvm_s390_cmma_log { 4679 __u64 start_gfn; 4570 __u64 start_gfn; 4680 __u32 count; 4571 __u32 count; 4681 __u32 flags; 4572 __u32 flags; 4682 union { 4573 union { 4683 __u64 remaining; 4574 __u64 remaining; 4684 __u64 mask; 4575 __u64 mask; 4685 }; 4576 }; 4686 __u64 values; 4577 __u64 values; 4687 }; 4578 }; 4688 4579 4689 start_gfn indicates the starting guest frame 4580 start_gfn indicates the starting guest frame number, 4690 4581 4691 count indicates how many values are to be con 4582 count indicates how many values are to be considered in the buffer, 4692 4583 4693 flags is not used and must be 0. 4584 flags is not used and must be 0. 4694 4585 4695 mask indicates which PGSTE bits are to be con 4586 mask indicates which PGSTE bits are to be considered. 4696 4587 4697 remaining is not used. 4588 remaining is not used. 4698 4589 4699 values points to the buffer in userspace wher 4590 values points to the buffer in userspace where to store the values. 4700 4591 4701 This ioctl can fail with -ENOMEM if not enoug 4592 This ioctl can fail with -ENOMEM if not enough memory can be allocated to 4702 complete the task, with -ENXIO if CMMA is not 4593 complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if 4703 the count field is too large (e.g. more than 4594 the count field is too large (e.g. more than KVM_S390_CMMA_SIZE_MAX) or 4704 if the flags field was not 0, with -EFAULT if 4595 if the flags field was not 0, with -EFAULT if the userspace address is 4705 invalid, if invalid pages are written to (e.g 4596 invalid, if invalid pages are written to (e.g. after the end of memory) 4706 or if no page table is present for the addres 4597 or if no page table is present for the addresses (e.g. when using 4707 hugepages). 4598 hugepages). 4708 4599 4709 4.109 KVM_PPC_GET_CPU_CHAR 4600 4.109 KVM_PPC_GET_CPU_CHAR 4710 -------------------------- 4601 -------------------------- 4711 4602 4712 :Capability: KVM_CAP_PPC_GET_CPU_CHAR 4603 :Capability: KVM_CAP_PPC_GET_CPU_CHAR 4713 :Architectures: powerpc 4604 :Architectures: powerpc 4714 :Type: vm ioctl 4605 :Type: vm ioctl 4715 :Parameters: struct kvm_ppc_cpu_char (out) 4606 :Parameters: struct kvm_ppc_cpu_char (out) 4716 :Returns: 0 on successful completion, 4607 :Returns: 0 on successful completion, 4717 -EFAULT if struct kvm_ppc_cpu_char c 4608 -EFAULT if struct kvm_ppc_cpu_char cannot be written 4718 4609 4719 This ioctl gives userspace information about 4610 This ioctl gives userspace information about certain characteristics 4720 of the CPU relating to speculative execution 4611 of the CPU relating to speculative execution of instructions and 4721 possible information leakage resulting from s 4612 possible information leakage resulting from speculative execution (see 4722 CVE-2017-5715, CVE-2017-5753 and CVE-2017-575 4613 CVE-2017-5715, CVE-2017-5753 and CVE-2017-5754). The information is 4723 returned in struct kvm_ppc_cpu_char, which lo 4614 returned in struct kvm_ppc_cpu_char, which looks like this:: 4724 4615 4725 struct kvm_ppc_cpu_char { 4616 struct kvm_ppc_cpu_char { 4726 __u64 character; /* ch 4617 __u64 character; /* characteristics of the CPU */ 4727 __u64 behaviour; /* re 4618 __u64 behaviour; /* recommended software behaviour */ 4728 __u64 character_mask; /* va 4619 __u64 character_mask; /* valid bits in character */ 4729 __u64 behaviour_mask; /* va 4620 __u64 behaviour_mask; /* valid bits in behaviour */ 4730 }; 4621 }; 4731 4622 4732 For extensibility, the character_mask and beh 4623 For extensibility, the character_mask and behaviour_mask fields 4733 indicate which bits of character and behaviou 4624 indicate which bits of character and behaviour have been filled in by 4734 the kernel. If the set of defined bits is ex 4625 the kernel. If the set of defined bits is extended in future then 4735 userspace will be able to tell whether it is 4626 userspace will be able to tell whether it is running on a kernel that 4736 knows about the new bits. 4627 knows about the new bits. 4737 4628 4738 The character field describes attributes of t 4629 The character field describes attributes of the CPU which can help 4739 with preventing inadvertent information discl 4630 with preventing inadvertent information disclosure - specifically, 4740 whether there is an instruction to flash-inva 4631 whether there is an instruction to flash-invalidate the L1 data cache 4741 (ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether 4632 (ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether the L1 data cache is set 4742 to a mode where entries can only be used by t 4633 to a mode where entries can only be used by the thread that created 4743 them, whether the bcctr[l] instruction preven 4634 them, whether the bcctr[l] instruction prevents speculation, and 4744 whether a speculation barrier instruction (or 4635 whether a speculation barrier instruction (ori 31,31,0) is provided. 4745 4636 4746 The behaviour field describes actions that so 4637 The behaviour field describes actions that software should take to 4747 prevent inadvertent information disclosure, a 4638 prevent inadvertent information disclosure, and thus describes which 4748 vulnerabilities the hardware is subject to; s 4639 vulnerabilities the hardware is subject to; specifically whether the 4749 L1 data cache should be flushed when returnin 4640 L1 data cache should be flushed when returning to user mode from the 4750 kernel, and whether a speculation barrier sho 4641 kernel, and whether a speculation barrier should be placed between an 4751 array bounds check and the array access. 4642 array bounds check and the array access. 4752 4643 4753 These fields use the same bit definitions as 4644 These fields use the same bit definitions as the new 4754 H_GET_CPU_CHARACTERISTICS hypercall. 4645 H_GET_CPU_CHARACTERISTICS hypercall. 4755 4646 4756 4.110 KVM_MEMORY_ENCRYPT_OP 4647 4.110 KVM_MEMORY_ENCRYPT_OP 4757 --------------------------- 4648 --------------------------- 4758 4649 4759 :Capability: basic 4650 :Capability: basic 4760 :Architectures: x86 4651 :Architectures: x86 4761 :Type: vm 4652 :Type: vm 4762 :Parameters: an opaque platform specific stru 4653 :Parameters: an opaque platform specific structure (in/out) 4763 :Returns: 0 on success; -1 on error 4654 :Returns: 0 on success; -1 on error 4764 4655 4765 If the platform supports creating encrypted V 4656 If the platform supports creating encrypted VMs then this ioctl can be used 4766 for issuing platform-specific memory encrypti 4657 for issuing platform-specific memory encryption commands to manage those 4767 encrypted VMs. 4658 encrypted VMs. 4768 4659 4769 Currently, this ioctl is used for issuing Sec 4660 Currently, this ioctl is used for issuing Secure Encrypted Virtualization 4770 (SEV) commands on AMD Processors. The SEV com 4661 (SEV) commands on AMD Processors. The SEV commands are defined in 4771 Documentation/virt/kvm/x86/amd-memory-encrypt 4662 Documentation/virt/kvm/x86/amd-memory-encryption.rst. 4772 4663 4773 4.111 KVM_MEMORY_ENCRYPT_REG_REGION 4664 4.111 KVM_MEMORY_ENCRYPT_REG_REGION 4774 ----------------------------------- 4665 ----------------------------------- 4775 4666 4776 :Capability: basic 4667 :Capability: basic 4777 :Architectures: x86 4668 :Architectures: x86 4778 :Type: system 4669 :Type: system 4779 :Parameters: struct kvm_enc_region (in) 4670 :Parameters: struct kvm_enc_region (in) 4780 :Returns: 0 on success; -1 on error 4671 :Returns: 0 on success; -1 on error 4781 4672 4782 This ioctl can be used to register a guest me 4673 This ioctl can be used to register a guest memory region which may 4783 contain encrypted data (e.g. guest RAM, SMRAM 4674 contain encrypted data (e.g. guest RAM, SMRAM etc). 4784 4675 4785 It is used in the SEV-enabled guest. When enc 4676 It is used in the SEV-enabled guest. When encryption is enabled, a guest 4786 memory region may contain encrypted data. The 4677 memory region may contain encrypted data. The SEV memory encryption 4787 engine uses a tweak such that two identical p 4678 engine uses a tweak such that two identical plaintext pages, each at 4788 different locations will have differing ciphe 4679 different locations will have differing ciphertexts. So swapping or 4789 moving ciphertext of those pages will not res 4680 moving ciphertext of those pages will not result in plaintext being 4790 swapped. So relocating (or migrating) physica 4681 swapped. So relocating (or migrating) physical backing pages for the SEV 4791 guest will require some additional steps. 4682 guest will require some additional steps. 4792 4683 4793 Note: The current SEV key management spec doe 4684 Note: The current SEV key management spec does not provide commands to 4794 swap or migrate (move) ciphertext pages. Henc 4685 swap or migrate (move) ciphertext pages. Hence, for now we pin the guest 4795 memory region registered with the ioctl. 4686 memory region registered with the ioctl. 4796 4687 4797 4.112 KVM_MEMORY_ENCRYPT_UNREG_REGION 4688 4.112 KVM_MEMORY_ENCRYPT_UNREG_REGION 4798 ------------------------------------- 4689 ------------------------------------- 4799 4690 4800 :Capability: basic 4691 :Capability: basic 4801 :Architectures: x86 4692 :Architectures: x86 4802 :Type: system 4693 :Type: system 4803 :Parameters: struct kvm_enc_region (in) 4694 :Parameters: struct kvm_enc_region (in) 4804 :Returns: 0 on success; -1 on error 4695 :Returns: 0 on success; -1 on error 4805 4696 4806 This ioctl can be used to unregister the gues 4697 This ioctl can be used to unregister the guest memory region registered 4807 with KVM_MEMORY_ENCRYPT_REG_REGION ioctl abov 4698 with KVM_MEMORY_ENCRYPT_REG_REGION ioctl above. 4808 4699 4809 4.113 KVM_HYPERV_EVENTFD 4700 4.113 KVM_HYPERV_EVENTFD 4810 ------------------------ 4701 ------------------------ 4811 4702 4812 :Capability: KVM_CAP_HYPERV_EVENTFD 4703 :Capability: KVM_CAP_HYPERV_EVENTFD 4813 :Architectures: x86 4704 :Architectures: x86 4814 :Type: vm ioctl 4705 :Type: vm ioctl 4815 :Parameters: struct kvm_hyperv_eventfd (in) 4706 :Parameters: struct kvm_hyperv_eventfd (in) 4816 4707 4817 This ioctl (un)registers an eventfd to receiv 4708 This ioctl (un)registers an eventfd to receive notifications from the guest on 4818 the specified Hyper-V connection id through t 4709 the specified Hyper-V connection id through the SIGNAL_EVENT hypercall, without 4819 causing a user exit. SIGNAL_EVENT hypercall 4710 causing a user exit. SIGNAL_EVENT hypercall with non-zero event flag number 4820 (bits 24-31) still triggers a KVM_EXIT_HYPERV 4711 (bits 24-31) still triggers a KVM_EXIT_HYPERV_HCALL user exit. 4821 4712 4822 :: 4713 :: 4823 4714 4824 struct kvm_hyperv_eventfd { 4715 struct kvm_hyperv_eventfd { 4825 __u32 conn_id; 4716 __u32 conn_id; 4826 __s32 fd; 4717 __s32 fd; 4827 __u32 flags; 4718 __u32 flags; 4828 __u32 padding[3]; 4719 __u32 padding[3]; 4829 }; 4720 }; 4830 4721 4831 The conn_id field should fit within 24 bits:: 4722 The conn_id field should fit within 24 bits:: 4832 4723 4833 #define KVM_HYPERV_CONN_ID_MASK 4724 #define KVM_HYPERV_CONN_ID_MASK 0x00ffffff 4834 4725 4835 The acceptable values for the flags field are 4726 The acceptable values for the flags field are:: 4836 4727 4837 #define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 4728 #define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 0) 4838 4729 4839 :Returns: 0 on success, 4730 :Returns: 0 on success, 4840 -EINVAL if conn_id or flags is outs 4731 -EINVAL if conn_id or flags is outside the allowed range, 4841 -ENOENT on deassign if the conn_id 4732 -ENOENT on deassign if the conn_id isn't registered, 4842 -EEXIST on assign if the conn_id is 4733 -EEXIST on assign if the conn_id is already registered 4843 4734 4844 4.114 KVM_GET_NESTED_STATE 4735 4.114 KVM_GET_NESTED_STATE 4845 -------------------------- 4736 -------------------------- 4846 4737 4847 :Capability: KVM_CAP_NESTED_STATE 4738 :Capability: KVM_CAP_NESTED_STATE 4848 :Architectures: x86 4739 :Architectures: x86 4849 :Type: vcpu ioctl 4740 :Type: vcpu ioctl 4850 :Parameters: struct kvm_nested_state (in/out) 4741 :Parameters: struct kvm_nested_state (in/out) 4851 :Returns: 0 on success, -1 on error 4742 :Returns: 0 on success, -1 on error 4852 4743 4853 Errors: 4744 Errors: 4854 4745 4855 ===== ================================ 4746 ===== ============================================================= 4856 E2BIG the total state size exceeds the 4747 E2BIG the total state size exceeds the value of 'size' specified by 4857 the user; the size required will 4748 the user; the size required will be written into size. 4858 ===== ================================ 4749 ===== ============================================================= 4859 4750 4860 :: 4751 :: 4861 4752 4862 struct kvm_nested_state { 4753 struct kvm_nested_state { 4863 __u16 flags; 4754 __u16 flags; 4864 __u16 format; 4755 __u16 format; 4865 __u32 size; 4756 __u32 size; 4866 4757 4867 union { 4758 union { 4868 struct kvm_vmx_nested_state_h 4759 struct kvm_vmx_nested_state_hdr vmx; 4869 struct kvm_svm_nested_state_h 4760 struct kvm_svm_nested_state_hdr svm; 4870 4761 4871 /* Pad the header to 128 byte 4762 /* Pad the header to 128 bytes. */ 4872 __u8 pad[120]; 4763 __u8 pad[120]; 4873 } hdr; 4764 } hdr; 4874 4765 4875 union { 4766 union { 4876 struct kvm_vmx_nested_state_d 4767 struct kvm_vmx_nested_state_data vmx[0]; 4877 struct kvm_svm_nested_state_d 4768 struct kvm_svm_nested_state_data svm[0]; 4878 } data; 4769 } data; 4879 }; 4770 }; 4880 4771 4881 #define KVM_STATE_NESTED_GUEST_MODE 4772 #define KVM_STATE_NESTED_GUEST_MODE 0x00000001 4882 #define KVM_STATE_NESTED_RUN_PENDING 4773 #define KVM_STATE_NESTED_RUN_PENDING 0x00000002 4883 #define KVM_STATE_NESTED_EVMCS 4774 #define KVM_STATE_NESTED_EVMCS 0x00000004 4884 4775 4885 #define KVM_STATE_NESTED_FORMAT_VMX 4776 #define KVM_STATE_NESTED_FORMAT_VMX 0 4886 #define KVM_STATE_NESTED_FORMAT_SVM 4777 #define KVM_STATE_NESTED_FORMAT_SVM 1 4887 4778 4888 #define KVM_STATE_NESTED_VMX_VMCS_SIZE 4779 #define KVM_STATE_NESTED_VMX_VMCS_SIZE 0x1000 4889 4780 4890 #define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 4781 #define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 0x00000001 4891 #define KVM_STATE_NESTED_VMX_SMM_VMXON 4782 #define KVM_STATE_NESTED_VMX_SMM_VMXON 0x00000002 4892 4783 4893 #define KVM_STATE_VMX_PREEMPTION_TIMER_DEAD 4784 #define KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE 0x00000001 4894 4785 4895 struct kvm_vmx_nested_state_hdr { 4786 struct kvm_vmx_nested_state_hdr { 4896 __u64 vmxon_pa; 4787 __u64 vmxon_pa; 4897 __u64 vmcs12_pa; 4788 __u64 vmcs12_pa; 4898 4789 4899 struct { 4790 struct { 4900 __u16 flags; 4791 __u16 flags; 4901 } smm; 4792 } smm; 4902 4793 4903 __u32 flags; 4794 __u32 flags; 4904 __u64 preemption_timer_deadline; 4795 __u64 preemption_timer_deadline; 4905 }; 4796 }; 4906 4797 4907 struct kvm_vmx_nested_state_data { 4798 struct kvm_vmx_nested_state_data { 4908 __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS 4799 __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE]; 4909 __u8 shadow_vmcs12[KVM_STATE_NESTED_V 4800 __u8 shadow_vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE]; 4910 }; 4801 }; 4911 4802 4912 This ioctl copies the vcpu's nested virtualiz 4803 This ioctl copies the vcpu's nested virtualization state from the kernel to 4913 userspace. 4804 userspace. 4914 4805 4915 The maximum size of the state can be retrieve 4806 The maximum size of the state can be retrieved by passing KVM_CAP_NESTED_STATE 4916 to the KVM_CHECK_EXTENSION ioctl(). 4807 to the KVM_CHECK_EXTENSION ioctl(). 4917 4808 4918 4.115 KVM_SET_NESTED_STATE 4809 4.115 KVM_SET_NESTED_STATE 4919 -------------------------- 4810 -------------------------- 4920 4811 4921 :Capability: KVM_CAP_NESTED_STATE 4812 :Capability: KVM_CAP_NESTED_STATE 4922 :Architectures: x86 4813 :Architectures: x86 4923 :Type: vcpu ioctl 4814 :Type: vcpu ioctl 4924 :Parameters: struct kvm_nested_state (in) 4815 :Parameters: struct kvm_nested_state (in) 4925 :Returns: 0 on success, -1 on error 4816 :Returns: 0 on success, -1 on error 4926 4817 4927 This copies the vcpu's kvm_nested_state struc 4818 This copies the vcpu's kvm_nested_state struct from userspace to the kernel. 4928 For the definition of struct kvm_nested_state 4819 For the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE. 4929 4820 4930 4.116 KVM_(UN)REGISTER_COALESCED_MMIO 4821 4.116 KVM_(UN)REGISTER_COALESCED_MMIO 4931 ------------------------------------- 4822 ------------------------------------- 4932 4823 4933 :Capability: KVM_CAP_COALESCED_MMIO (for coal 4824 :Capability: KVM_CAP_COALESCED_MMIO (for coalesced mmio) 4934 KVM_CAP_COALESCED_PIO (for coale 4825 KVM_CAP_COALESCED_PIO (for coalesced pio) 4935 :Architectures: all 4826 :Architectures: all 4936 :Type: vm ioctl 4827 :Type: vm ioctl 4937 :Parameters: struct kvm_coalesced_mmio_zone 4828 :Parameters: struct kvm_coalesced_mmio_zone 4938 :Returns: 0 on success, < 0 on error 4829 :Returns: 0 on success, < 0 on error 4939 4830 4940 Coalesced I/O is a performance optimization t 4831 Coalesced I/O is a performance optimization that defers hardware 4941 register write emulation so that userspace ex 4832 register write emulation so that userspace exits are avoided. It is 4942 typically used to reduce the overhead of emul 4833 typically used to reduce the overhead of emulating frequently accessed 4943 hardware registers. 4834 hardware registers. 4944 4835 4945 When a hardware register is configured for co 4836 When a hardware register is configured for coalesced I/O, write accesses 4946 do not exit to userspace and their value is r 4837 do not exit to userspace and their value is recorded in a ring buffer 4947 that is shared between kernel and userspace. 4838 that is shared between kernel and userspace. 4948 4839 4949 Coalesced I/O is used if one or more write ac 4840 Coalesced I/O is used if one or more write accesses to a hardware 4950 register can be deferred until a read or a wr 4841 register can be deferred until a read or a write to another hardware 4951 register on the same device. This last acces 4842 register on the same device. This last access will cause a vmexit and 4952 userspace will process accesses from the ring 4843 userspace will process accesses from the ring buffer before emulating 4953 it. That will avoid exiting to userspace on r 4844 it. That will avoid exiting to userspace on repeated writes. 4954 4845 4955 Coalesced pio is based on coalesced mmio. The 4846 Coalesced pio is based on coalesced mmio. There is little difference 4956 between coalesced mmio and pio except that co 4847 between coalesced mmio and pio except that coalesced pio records accesses 4957 to I/O ports. 4848 to I/O ports. 4958 4849 4959 4.117 KVM_CLEAR_DIRTY_LOG (vm ioctl) 4850 4.117 KVM_CLEAR_DIRTY_LOG (vm ioctl) 4960 ------------------------------------ 4851 ------------------------------------ 4961 4852 4962 :Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT 4853 :Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 4963 :Architectures: x86, arm64, mips 4854 :Architectures: x86, arm64, mips 4964 :Type: vm ioctl 4855 :Type: vm ioctl 4965 :Parameters: struct kvm_clear_dirty_log (in) 4856 :Parameters: struct kvm_clear_dirty_log (in) 4966 :Returns: 0 on success, -1 on error 4857 :Returns: 0 on success, -1 on error 4967 4858 4968 :: 4859 :: 4969 4860 4970 /* for KVM_CLEAR_DIRTY_LOG */ 4861 /* for KVM_CLEAR_DIRTY_LOG */ 4971 struct kvm_clear_dirty_log { 4862 struct kvm_clear_dirty_log { 4972 __u32 slot; 4863 __u32 slot; 4973 __u32 num_pages; 4864 __u32 num_pages; 4974 __u64 first_page; 4865 __u64 first_page; 4975 union { 4866 union { 4976 void __user *dirty_bitmap; /* 4867 void __user *dirty_bitmap; /* one bit per page */ 4977 __u64 padding; 4868 __u64 padding; 4978 }; 4869 }; 4979 }; 4870 }; 4980 4871 4981 The ioctl clears the dirty status of pages in 4872 The ioctl clears the dirty status of pages in a memory slot, according to 4982 the bitmap that is passed in struct kvm_clear 4873 the bitmap that is passed in struct kvm_clear_dirty_log's dirty_bitmap 4983 field. Bit 0 of the bitmap corresponds to pa 4874 field. Bit 0 of the bitmap corresponds to page "first_page" in the 4984 memory slot, and num_pages is the size in bit 4875 memory slot, and num_pages is the size in bits of the input bitmap. 4985 first_page must be a multiple of 64; num_page 4876 first_page must be a multiple of 64; num_pages must also be a multiple of 4986 64 unless first_page + num_pages is the size 4877 64 unless first_page + num_pages is the size of the memory slot. For each 4987 bit that is set in the input bitmap, the corr 4878 bit that is set in the input bitmap, the corresponding page is marked "clean" 4988 in KVM's dirty bitmap, and dirty tracking is 4879 in KVM's dirty bitmap, and dirty tracking is re-enabled for that page 4989 (for example via write-protection, or by clea 4880 (for example via write-protection, or by clearing the dirty bit in 4990 a page table entry). 4881 a page table entry). 4991 4882 4992 If KVM_CAP_MULTI_ADDRESS_SPACE is available, 4883 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of slot field specifies 4993 the address space for which you want to clear 4884 the address space for which you want to clear the dirty status. See 4994 KVM_SET_USER_MEMORY_REGION for details on the 4885 KVM_SET_USER_MEMORY_REGION for details on the usage of slot field. 4995 4886 4996 This ioctl is mostly useful when KVM_CAP_MANU 4887 This ioctl is mostly useful when KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 4997 is enabled; for more information, see the des 4888 is enabled; for more information, see the description of the capability. 4998 However, it can always be used as long as KVM 4889 However, it can always be used as long as KVM_CHECK_EXTENSION confirms 4999 that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is pre 4890 that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is present. 5000 4891 5001 4.118 KVM_GET_SUPPORTED_HV_CPUID 4892 4.118 KVM_GET_SUPPORTED_HV_CPUID 5002 -------------------------------- 4893 -------------------------------- 5003 4894 5004 :Capability: KVM_CAP_HYPERV_CPUID (vcpu), KVM 4895 :Capability: KVM_CAP_HYPERV_CPUID (vcpu), KVM_CAP_SYS_HYPERV_CPUID (system) 5005 :Architectures: x86 4896 :Architectures: x86 5006 :Type: system ioctl, vcpu ioctl 4897 :Type: system ioctl, vcpu ioctl 5007 :Parameters: struct kvm_cpuid2 (in/out) 4898 :Parameters: struct kvm_cpuid2 (in/out) 5008 :Returns: 0 on success, -1 on error 4899 :Returns: 0 on success, -1 on error 5009 4900 5010 :: 4901 :: 5011 4902 5012 struct kvm_cpuid2 { 4903 struct kvm_cpuid2 { 5013 __u32 nent; 4904 __u32 nent; 5014 __u32 padding; 4905 __u32 padding; 5015 struct kvm_cpuid_entry2 entries[0]; 4906 struct kvm_cpuid_entry2 entries[0]; 5016 }; 4907 }; 5017 4908 5018 struct kvm_cpuid_entry2 { 4909 struct kvm_cpuid_entry2 { 5019 __u32 function; 4910 __u32 function; 5020 __u32 index; 4911 __u32 index; 5021 __u32 flags; 4912 __u32 flags; 5022 __u32 eax; 4913 __u32 eax; 5023 __u32 ebx; 4914 __u32 ebx; 5024 __u32 ecx; 4915 __u32 ecx; 5025 __u32 edx; 4916 __u32 edx; 5026 __u32 padding[3]; 4917 __u32 padding[3]; 5027 }; 4918 }; 5028 4919 5029 This ioctl returns x86 cpuid features leaves 4920 This ioctl returns x86 cpuid features leaves related to Hyper-V emulation in 5030 KVM. Userspace can use the information retur 4921 KVM. Userspace can use the information returned by this ioctl to construct 5031 cpuid information presented to guests consumi 4922 cpuid information presented to guests consuming Hyper-V enlightenments (e.g. 5032 Windows or Hyper-V guests). 4923 Windows or Hyper-V guests). 5033 4924 5034 CPUID feature leaves returned by this ioctl a 4925 CPUID feature leaves returned by this ioctl are defined by Hyper-V Top Level 5035 Functional Specification (TLFS). These leaves 4926 Functional Specification (TLFS). These leaves can't be obtained with 5036 KVM_GET_SUPPORTED_CPUID ioctl because some of 4927 KVM_GET_SUPPORTED_CPUID ioctl because some of them intersect with KVM feature 5037 leaves (0x40000000, 0x40000001). 4928 leaves (0x40000000, 0x40000001). 5038 4929 5039 Currently, the following list of CPUID leaves 4930 Currently, the following list of CPUID leaves are returned: 5040 4931 5041 - HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS 4932 - HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS 5042 - HYPERV_CPUID_INTERFACE 4933 - HYPERV_CPUID_INTERFACE 5043 - HYPERV_CPUID_VERSION 4934 - HYPERV_CPUID_VERSION 5044 - HYPERV_CPUID_FEATURES 4935 - HYPERV_CPUID_FEATURES 5045 - HYPERV_CPUID_ENLIGHTMENT_INFO 4936 - HYPERV_CPUID_ENLIGHTMENT_INFO 5046 - HYPERV_CPUID_IMPLEMENT_LIMITS 4937 - HYPERV_CPUID_IMPLEMENT_LIMITS 5047 - HYPERV_CPUID_NESTED_FEATURES 4938 - HYPERV_CPUID_NESTED_FEATURES 5048 - HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIO 4939 - HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS 5049 - HYPERV_CPUID_SYNDBG_INTERFACE 4940 - HYPERV_CPUID_SYNDBG_INTERFACE 5050 - HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES 4941 - HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES 5051 4942 5052 Userspace invokes KVM_GET_SUPPORTED_HV_CPUID 4943 Userspace invokes KVM_GET_SUPPORTED_HV_CPUID by passing a kvm_cpuid2 structure 5053 with the 'nent' field indicating the number o 4944 with the 'nent' field indicating the number of entries in the variable-size 5054 array 'entries'. If the number of entries is 4945 array 'entries'. If the number of entries is too low to describe all Hyper-V 5055 feature leaves, an error (E2BIG) is returned. 4946 feature leaves, an error (E2BIG) is returned. If the number is more or equal 5056 to the number of Hyper-V feature leaves, the 4947 to the number of Hyper-V feature leaves, the 'nent' field is adjusted to the 5057 number of valid entries in the 'entries' arra 4948 number of valid entries in the 'entries' array, which is then filled. 5058 4949 5059 'index' and 'flags' fields in 'struct kvm_cpu 4950 'index' and 'flags' fields in 'struct kvm_cpuid_entry2' are currently reserved, 5060 userspace should not expect to get any partic 4951 userspace should not expect to get any particular value there. 5061 4952 5062 Note, vcpu version of KVM_GET_SUPPORTED_HV_CP 4953 Note, vcpu version of KVM_GET_SUPPORTED_HV_CPUID is currently deprecated. Unlike 5063 system ioctl which exposes all supported feat 4954 system ioctl which exposes all supported feature bits unconditionally, vcpu 5064 version has the following quirks: 4955 version has the following quirks: 5065 4956 5066 - HYPERV_CPUID_NESTED_FEATURES leaf and HV_X6 4957 - HYPERV_CPUID_NESTED_FEATURES leaf and HV_X64_ENLIGHTENED_VMCS_RECOMMENDED 5067 feature bit are only exposed when Enlighten 4958 feature bit are only exposed when Enlightened VMCS was previously enabled 5068 on the corresponding vCPU (KVM_CAP_HYPERV_E 4959 on the corresponding vCPU (KVM_CAP_HYPERV_ENLIGHTENED_VMCS). 5069 - HV_STIMER_DIRECT_MODE_AVAILABLE bit is only 4960 - HV_STIMER_DIRECT_MODE_AVAILABLE bit is only exposed with in-kernel LAPIC. 5070 (presumes KVM_CREATE_IRQCHIP has already be 4961 (presumes KVM_CREATE_IRQCHIP has already been called). 5071 4962 5072 4.119 KVM_ARM_VCPU_FINALIZE 4963 4.119 KVM_ARM_VCPU_FINALIZE 5073 --------------------------- 4964 --------------------------- 5074 4965 5075 :Architectures: arm64 4966 :Architectures: arm64 5076 :Type: vcpu ioctl 4967 :Type: vcpu ioctl 5077 :Parameters: int feature (in) 4968 :Parameters: int feature (in) 5078 :Returns: 0 on success, -1 on error 4969 :Returns: 0 on success, -1 on error 5079 4970 5080 Errors: 4971 Errors: 5081 4972 5082 ====== ================================ 4973 ====== ============================================================== 5083 EPERM feature not enabled, needs confi 4974 EPERM feature not enabled, needs configuration, or already finalized 5084 EINVAL feature unknown or not present 4975 EINVAL feature unknown or not present 5085 ====== ================================ 4976 ====== ============================================================== 5086 4977 5087 Recognised values for feature: 4978 Recognised values for feature: 5088 4979 5089 ===== ================================ 4980 ===== =========================================== 5090 arm64 KVM_ARM_VCPU_SVE (requires KVM_C 4981 arm64 KVM_ARM_VCPU_SVE (requires KVM_CAP_ARM_SVE) 5091 ===== ================================ 4982 ===== =========================================== 5092 4983 5093 Finalizes the configuration of the specified 4984 Finalizes the configuration of the specified vcpu feature. 5094 4985 5095 The vcpu must already have been initialised, 4986 The vcpu must already have been initialised, enabling the affected feature, by 5096 means of a successful KVM_ARM_VCPU_INIT call 4987 means of a successful KVM_ARM_VCPU_INIT call with the appropriate flag set in 5097 features[]. 4988 features[]. 5098 4989 5099 For affected vcpu features, this is a mandato 4990 For affected vcpu features, this is a mandatory step that must be performed 5100 before the vcpu is fully usable. 4991 before the vcpu is fully usable. 5101 4992 5102 Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FI 4993 Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FINALIZE, the feature may be 5103 configured by use of ioctls such as KVM_SET_O 4994 configured by use of ioctls such as KVM_SET_ONE_REG. The exact configuration 5104 that should be performed and how to do it are !! 4995 that should be performaned and how to do it are feature-dependent. 5105 4996 5106 Other calls that depend on a particular featu 4997 Other calls that depend on a particular feature being finalized, such as 5107 KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG an 4998 KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG and KVM_SET_ONE_REG, will fail with 5108 -EPERM unless the feature has already been fi 4999 -EPERM unless the feature has already been finalized by means of a 5109 KVM_ARM_VCPU_FINALIZE call. 5000 KVM_ARM_VCPU_FINALIZE call. 5110 5001 5111 See KVM_ARM_VCPU_INIT for details of vcpu fea 5002 See KVM_ARM_VCPU_INIT for details of vcpu features that require finalization 5112 using this ioctl. 5003 using this ioctl. 5113 5004 5114 4.120 KVM_SET_PMU_EVENT_FILTER 5005 4.120 KVM_SET_PMU_EVENT_FILTER 5115 ------------------------------ 5006 ------------------------------ 5116 5007 5117 :Capability: KVM_CAP_PMU_EVENT_FILTER 5008 :Capability: KVM_CAP_PMU_EVENT_FILTER 5118 :Architectures: x86 5009 :Architectures: x86 5119 :Type: vm ioctl 5010 :Type: vm ioctl 5120 :Parameters: struct kvm_pmu_event_filter (in) 5011 :Parameters: struct kvm_pmu_event_filter (in) 5121 :Returns: 0 on success, -1 on error 5012 :Returns: 0 on success, -1 on error 5122 5013 5123 Errors: << 5124 << 5125 ====== ================================ << 5126 EFAULT args[0] cannot be accessed << 5127 EINVAL args[0] contains invalid data in << 5128 E2BIG nevents is too large << 5129 EBUSY not enough memory to allocate th << 5130 ====== ================================ << 5131 << 5132 :: 5014 :: 5133 5015 5134 struct kvm_pmu_event_filter { 5016 struct kvm_pmu_event_filter { 5135 __u32 action; 5017 __u32 action; 5136 __u32 nevents; 5018 __u32 nevents; 5137 __u32 fixed_counter_bitmap; 5019 __u32 fixed_counter_bitmap; 5138 __u32 flags; 5020 __u32 flags; 5139 __u32 pad[4]; 5021 __u32 pad[4]; 5140 __u64 events[0]; 5022 __u64 events[0]; 5141 }; 5023 }; 5142 5024 5143 This ioctl restricts the set of PMU events th !! 5025 This ioctl restricts the set of PMU events that the guest can program. 5144 which event select and unit mask combinations !! 5026 The argument holds a list of events which will be allowed or denied. 5145 !! 5027 The eventsel+umask of each event the guest attempts to program is compared 5146 The argument holds a list of filter events wh !! 5028 against the events field to determine whether the guest should have access. >> 5029 The events field only controls general purpose counters; fixed purpose >> 5030 counters are controlled by the fixed_counter_bitmap. 5147 5031 5148 Filter events only control general purpose co !! 5032 No flags are defined yet, the field must be zero. 5149 are controlled by the fixed_counter_bitmap. << 5150 << 5151 Valid values for 'flags':: << 5152 << 5153 ``0`` << 5154 << 5155 To use this mode, clear the 'flags' field. << 5156 << 5157 In this mode each event will contain an event << 5158 << 5159 When the guest attempts to program the PMU th << 5160 unit mask is compared against the filter even << 5161 guest should have access. << 5162 << 5163 ``KVM_PMU_EVENT_FLAG_MASKED_EVENTS`` << 5164 :Capability: KVM_CAP_PMU_EVENT_MASKED_EVENTS << 5165 << 5166 In this mode each filter event will contain a << 5167 exclude value. To encode a masked event use: << 5168 << 5169 KVM_PMU_ENCODE_MASKED_ENTRY() << 5170 << 5171 An encoded event will follow this layout:: << 5172 << 5173 Bits Description << 5174 ---- ----------- << 5175 7:0 event select (low bits) << 5176 15:8 umask match << 5177 31:16 unused << 5178 35:32 event select (high bits) << 5179 36:54 unused << 5180 55 exclude bit << 5181 63:56 umask mask << 5182 << 5183 When the guest attempts to program the PMU, t << 5184 determining if the guest should have access: << 5185 << 5186 1. Match the event select from the guest aga << 5187 2. If a match is found, match the guest's un << 5188 values of the included filter events. << 5189 I.e. (unit mask & mask) == match && !excl << 5190 3. If a match is found, match the guest's un << 5191 values of the excluded filter events. << 5192 I.e. (unit mask & mask) == match && exclu << 5193 4. << 5194 a. If an included match is found and an ex << 5195 the event. << 5196 b. For everything else, do not filter the << 5197 5. << 5198 a. If the event is filtered and it's an al << 5199 program the event. << 5200 b. If the event is filtered and it's a den << 5201 program the event. << 5202 << 5203 When setting a new pmu event filter, -EINVAL << 5204 unused fields are set or if any of the high b << 5205 select are set when called on Intel. << 5206 5033 5207 Valid values for 'action':: 5034 Valid values for 'action':: 5208 5035 5209 #define KVM_PMU_EVENT_ALLOW 0 5036 #define KVM_PMU_EVENT_ALLOW 0 5210 #define KVM_PMU_EVENT_DENY 1 5037 #define KVM_PMU_EVENT_DENY 1 5211 5038 5212 Via this API, KVM userspace can also control << 5213 counters (if any) by configuring the "action" << 5214 << 5215 Specifically, KVM follows the following pseud << 5216 allow the guest FixCtr[i] to count its pre-de << 5217 << 5218 FixCtr[i]_is_allowed = (action == ALLOW) && << 5219 (action == DENY) && !(bitmap & BIT(i)); << 5220 FixCtr[i]_is_denied = !FixCtr[i]_is_allowed << 5221 << 5222 KVM always consumes fixed_counter_bitmap, it' << 5223 ensure fixed_counter_bitmap is set correctly, << 5224 a filter that only affects general purpose co << 5225 << 5226 Note, the "events" field also applies to fixe << 5227 and unit_mask values. "fixed_counter_bitmap" << 5228 if there is a contradiction between the two. << 5229 << 5230 4.121 KVM_PPC_SVM_OFF 5039 4.121 KVM_PPC_SVM_OFF 5231 --------------------- 5040 --------------------- 5232 5041 5233 :Capability: basic 5042 :Capability: basic 5234 :Architectures: powerpc 5043 :Architectures: powerpc 5235 :Type: vm ioctl 5044 :Type: vm ioctl 5236 :Parameters: none 5045 :Parameters: none 5237 :Returns: 0 on successful completion, 5046 :Returns: 0 on successful completion, 5238 5047 5239 Errors: 5048 Errors: 5240 5049 5241 ====== ================================ 5050 ====== ================================================================ 5242 EINVAL if ultravisor failed to terminat 5051 EINVAL if ultravisor failed to terminate the secure guest 5243 ENOMEM if hypervisor failed to allocate 5052 ENOMEM if hypervisor failed to allocate new radix page tables for guest 5244 ====== ================================ 5053 ====== ================================================================ 5245 5054 5246 This ioctl is used to turn off the secure mod 5055 This ioctl is used to turn off the secure mode of the guest or transition 5247 the guest from secure mode to normal mode. Th 5056 the guest from secure mode to normal mode. This is invoked when the guest 5248 is reset. This has no effect if called for a 5057 is reset. This has no effect if called for a normal guest. 5249 5058 5250 This ioctl issues an ultravisor call to termi 5059 This ioctl issues an ultravisor call to terminate the secure guest, 5251 unpins the VPA pages and releases all the dev 5060 unpins the VPA pages and releases all the device pages that are used to 5252 track the secure pages by hypervisor. 5061 track the secure pages by hypervisor. 5253 5062 5254 4.122 KVM_S390_NORMAL_RESET 5063 4.122 KVM_S390_NORMAL_RESET 5255 --------------------------- 5064 --------------------------- 5256 5065 5257 :Capability: KVM_CAP_S390_VCPU_RESETS 5066 :Capability: KVM_CAP_S390_VCPU_RESETS 5258 :Architectures: s390 5067 :Architectures: s390 5259 :Type: vcpu ioctl 5068 :Type: vcpu ioctl 5260 :Parameters: none 5069 :Parameters: none 5261 :Returns: 0 5070 :Returns: 0 5262 5071 5263 This ioctl resets VCPU registers and control 5072 This ioctl resets VCPU registers and control structures according to 5264 the cpu reset definition in the POP (Principl 5073 the cpu reset definition in the POP (Principles Of Operation). 5265 5074 5266 4.123 KVM_S390_INITIAL_RESET 5075 4.123 KVM_S390_INITIAL_RESET 5267 ---------------------------- 5076 ---------------------------- 5268 5077 5269 :Capability: none 5078 :Capability: none 5270 :Architectures: s390 5079 :Architectures: s390 5271 :Type: vcpu ioctl 5080 :Type: vcpu ioctl 5272 :Parameters: none 5081 :Parameters: none 5273 :Returns: 0 5082 :Returns: 0 5274 5083 5275 This ioctl resets VCPU registers and control 5084 This ioctl resets VCPU registers and control structures according to 5276 the initial cpu reset definition in the POP. 5085 the initial cpu reset definition in the POP. However, the cpu is not 5277 put into ESA mode. This reset is a superset o 5086 put into ESA mode. This reset is a superset of the normal reset. 5278 5087 5279 4.124 KVM_S390_CLEAR_RESET 5088 4.124 KVM_S390_CLEAR_RESET 5280 -------------------------- 5089 -------------------------- 5281 5090 5282 :Capability: KVM_CAP_S390_VCPU_RESETS 5091 :Capability: KVM_CAP_S390_VCPU_RESETS 5283 :Architectures: s390 5092 :Architectures: s390 5284 :Type: vcpu ioctl 5093 :Type: vcpu ioctl 5285 :Parameters: none 5094 :Parameters: none 5286 :Returns: 0 5095 :Returns: 0 5287 5096 5288 This ioctl resets VCPU registers and control 5097 This ioctl resets VCPU registers and control structures according to 5289 the clear cpu reset definition in the POP. Ho 5098 the clear cpu reset definition in the POP. However, the cpu is not put 5290 into ESA mode. This reset is a superset of th 5099 into ESA mode. This reset is a superset of the initial reset. 5291 5100 5292 5101 5293 4.125 KVM_S390_PV_COMMAND 5102 4.125 KVM_S390_PV_COMMAND 5294 ------------------------- 5103 ------------------------- 5295 5104 5296 :Capability: KVM_CAP_S390_PROTECTED 5105 :Capability: KVM_CAP_S390_PROTECTED 5297 :Architectures: s390 5106 :Architectures: s390 5298 :Type: vm ioctl 5107 :Type: vm ioctl 5299 :Parameters: struct kvm_pv_cmd 5108 :Parameters: struct kvm_pv_cmd 5300 :Returns: 0 on success, < 0 on error 5109 :Returns: 0 on success, < 0 on error 5301 5110 5302 :: 5111 :: 5303 5112 5304 struct kvm_pv_cmd { 5113 struct kvm_pv_cmd { 5305 __u32 cmd; /* Command to be exec 5114 __u32 cmd; /* Command to be executed */ 5306 __u16 rc; /* Ultravisor return 5115 __u16 rc; /* Ultravisor return code */ 5307 __u16 rrc; /* Ultravisor return 5116 __u16 rrc; /* Ultravisor return reason code */ 5308 __u64 data; /* Data or address */ 5117 __u64 data; /* Data or address */ 5309 __u32 flags; /* flags for future e 5118 __u32 flags; /* flags for future extensions. Must be 0 for now */ 5310 __u32 reserved[3]; 5119 __u32 reserved[3]; 5311 }; 5120 }; 5312 5121 5313 **Ultravisor return codes** 5122 **Ultravisor return codes** 5314 The Ultravisor return (reason) codes are prov 5123 The Ultravisor return (reason) codes are provided by the kernel if a 5315 Ultravisor call has been executed to achieve 5124 Ultravisor call has been executed to achieve the results expected by 5316 the command. Therefore they are independent o 5125 the command. Therefore they are independent of the IOCTL return 5317 code. If KVM changes `rc`, its value will alw 5126 code. If KVM changes `rc`, its value will always be greater than 0 5318 hence setting it to 0 before issuing a PV com 5127 hence setting it to 0 before issuing a PV command is advised to be 5319 able to detect a change of `rc`. 5128 able to detect a change of `rc`. 5320 5129 5321 **cmd values:** 5130 **cmd values:** 5322 5131 5323 KVM_PV_ENABLE 5132 KVM_PV_ENABLE 5324 Allocate memory and register the VM with th 5133 Allocate memory and register the VM with the Ultravisor, thereby 5325 donating memory to the Ultravisor that will 5134 donating memory to the Ultravisor that will become inaccessible to 5326 KVM. All existing CPUs are converted to pro 5135 KVM. All existing CPUs are converted to protected ones. After this 5327 command has succeeded, any CPU added via ho 5136 command has succeeded, any CPU added via hotplug will become 5328 protected during its creation as well. 5137 protected during its creation as well. 5329 5138 5330 Errors: 5139 Errors: 5331 5140 5332 ===== ============================= 5141 ===== ============================= 5333 EINTR an unmasked signal is pending 5142 EINTR an unmasked signal is pending 5334 ===== ============================= 5143 ===== ============================= 5335 5144 5336 KVM_PV_DISABLE 5145 KVM_PV_DISABLE 5337 Deregister the VM from the Ultravisor and r 5146 Deregister the VM from the Ultravisor and reclaim the memory that had 5338 been donated to the Ultravisor, making it u 5147 been donated to the Ultravisor, making it usable by the kernel again. 5339 All registered VCPUs are converted back to 5148 All registered VCPUs are converted back to non-protected ones. If a 5340 previous protected VM had been prepared for !! 5149 previous protected VM had been prepared for asynchonous teardown with 5341 KVM_PV_ASYNC_CLEANUP_PREPARE and not subseq 5150 KVM_PV_ASYNC_CLEANUP_PREPARE and not subsequently torn down with 5342 KVM_PV_ASYNC_CLEANUP_PERFORM, it will be to 5151 KVM_PV_ASYNC_CLEANUP_PERFORM, it will be torn down in this call 5343 together with the current protected VM. 5152 together with the current protected VM. 5344 5153 5345 KVM_PV_VM_SET_SEC_PARMS 5154 KVM_PV_VM_SET_SEC_PARMS 5346 Pass the image header from VM memory to the 5155 Pass the image header from VM memory to the Ultravisor in 5347 preparation of image unpacking and verifica 5156 preparation of image unpacking and verification. 5348 5157 5349 KVM_PV_VM_UNPACK 5158 KVM_PV_VM_UNPACK 5350 Unpack (protect and decrypt) a page of the 5159 Unpack (protect and decrypt) a page of the encrypted boot image. 5351 5160 5352 KVM_PV_VM_VERIFY 5161 KVM_PV_VM_VERIFY 5353 Verify the integrity of the unpacked image. 5162 Verify the integrity of the unpacked image. Only if this succeeds, 5354 KVM is allowed to start protected VCPUs. 5163 KVM is allowed to start protected VCPUs. 5355 5164 5356 KVM_PV_INFO 5165 KVM_PV_INFO 5357 :Capability: KVM_CAP_S390_PROTECTED_DUMP 5166 :Capability: KVM_CAP_S390_PROTECTED_DUMP 5358 5167 5359 Presents an API that provides Ultravisor re 5168 Presents an API that provides Ultravisor related data to userspace 5360 via subcommands. len_max is the size of the 5169 via subcommands. len_max is the size of the user space buffer, 5361 len_written is KVM's indication of how much 5170 len_written is KVM's indication of how much bytes of that buffer 5362 were actually written to. len_written can b 5171 were actually written to. len_written can be used to determine the 5363 valid fields if more response fields are ad 5172 valid fields if more response fields are added in the future. 5364 5173 5365 :: 5174 :: 5366 5175 5367 enum pv_cmd_info_id { 5176 enum pv_cmd_info_id { 5368 KVM_PV_INFO_VM, 5177 KVM_PV_INFO_VM, 5369 KVM_PV_INFO_DUMP, 5178 KVM_PV_INFO_DUMP, 5370 }; 5179 }; 5371 5180 5372 struct kvm_s390_pv_info_header { 5181 struct kvm_s390_pv_info_header { 5373 __u32 id; 5182 __u32 id; 5374 __u32 len_max; 5183 __u32 len_max; 5375 __u32 len_written; 5184 __u32 len_written; 5376 __u32 reserved; 5185 __u32 reserved; 5377 }; 5186 }; 5378 5187 5379 struct kvm_s390_pv_info { 5188 struct kvm_s390_pv_info { 5380 struct kvm_s390_pv_info_header header 5189 struct kvm_s390_pv_info_header header; 5381 struct kvm_s390_pv_info_dump dump; 5190 struct kvm_s390_pv_info_dump dump; 5382 struct kvm_s390_pv_info_vm vm; 5191 struct kvm_s390_pv_info_vm vm; 5383 }; 5192 }; 5384 5193 5385 **subcommands:** 5194 **subcommands:** 5386 5195 5387 KVM_PV_INFO_VM 5196 KVM_PV_INFO_VM 5388 This subcommand provides basic Ultravisor 5197 This subcommand provides basic Ultravisor information for PV 5389 hosts. These values are likely also expor 5198 hosts. These values are likely also exported as files in the sysfs 5390 firmware UV query interface but they are 5199 firmware UV query interface but they are more easily available to 5391 programs in this API. 5200 programs in this API. 5392 5201 5393 The installed calls and feature_indicatio 5202 The installed calls and feature_indication members provide the 5394 installed UV calls and the UV's other fea 5203 installed UV calls and the UV's other feature indications. 5395 5204 5396 The max_* members provide information abo 5205 The max_* members provide information about the maximum number of PV 5397 vcpus, PV guests and PV guest memory size 5206 vcpus, PV guests and PV guest memory size. 5398 5207 5399 :: 5208 :: 5400 5209 5401 struct kvm_s390_pv_info_vm { 5210 struct kvm_s390_pv_info_vm { 5402 __u64 inst_calls_list[4]; 5211 __u64 inst_calls_list[4]; 5403 __u64 max_cpus; 5212 __u64 max_cpus; 5404 __u64 max_guests; 5213 __u64 max_guests; 5405 __u64 max_guest_addr; 5214 __u64 max_guest_addr; 5406 __u64 feature_indication; 5215 __u64 feature_indication; 5407 }; 5216 }; 5408 5217 5409 5218 5410 KVM_PV_INFO_DUMP 5219 KVM_PV_INFO_DUMP 5411 This subcommand provides information rela 5220 This subcommand provides information related to dumping PV guests. 5412 5221 5413 :: 5222 :: 5414 5223 5415 struct kvm_s390_pv_info_dump { 5224 struct kvm_s390_pv_info_dump { 5416 __u64 dump_cpu_buffer_len; 5225 __u64 dump_cpu_buffer_len; 5417 __u64 dump_config_mem_buffer_per_1m; 5226 __u64 dump_config_mem_buffer_per_1m; 5418 __u64 dump_config_finalize_len; 5227 __u64 dump_config_finalize_len; 5419 }; 5228 }; 5420 5229 5421 KVM_PV_DUMP 5230 KVM_PV_DUMP 5422 :Capability: KVM_CAP_S390_PROTECTED_DUMP 5231 :Capability: KVM_CAP_S390_PROTECTED_DUMP 5423 5232 5424 Presents an API that provides calls which f 5233 Presents an API that provides calls which facilitate dumping a 5425 protected VM. 5234 protected VM. 5426 5235 5427 :: 5236 :: 5428 5237 5429 struct kvm_s390_pv_dmp { 5238 struct kvm_s390_pv_dmp { 5430 __u64 subcmd; 5239 __u64 subcmd; 5431 __u64 buff_addr; 5240 __u64 buff_addr; 5432 __u64 buff_len; 5241 __u64 buff_len; 5433 __u64 gaddr; /* For dump s 5242 __u64 gaddr; /* For dump storage state */ 5434 }; 5243 }; 5435 5244 5436 **subcommands:** 5245 **subcommands:** 5437 5246 5438 KVM_PV_DUMP_INIT 5247 KVM_PV_DUMP_INIT 5439 Initializes the dump process of a protect 5248 Initializes the dump process of a protected VM. If this call does 5440 not succeed all other subcommands will fa 5249 not succeed all other subcommands will fail with -EINVAL. This 5441 subcommand will return -EINVAL if a dump 5250 subcommand will return -EINVAL if a dump process has not yet been 5442 completed. 5251 completed. 5443 5252 5444 Not all PV vms can be dumped, the owner n 5253 Not all PV vms can be dumped, the owner needs to set `dump 5445 allowed` PCF bit 34 in the SE header to a 5254 allowed` PCF bit 34 in the SE header to allow dumping. 5446 5255 5447 KVM_PV_DUMP_CONFIG_STOR_STATE 5256 KVM_PV_DUMP_CONFIG_STOR_STATE 5448 Stores `buff_len` bytes of tweak compone 5257 Stores `buff_len` bytes of tweak component values starting with 5449 the 1MB block specified by the absolute 5258 the 1MB block specified by the absolute guest address 5450 (`gaddr`). `buff_len` needs to be `conf_ 5259 (`gaddr`). `buff_len` needs to be `conf_dump_storage_state_len` 5451 aligned and at least >= the `conf_dump_s 5260 aligned and at least >= the `conf_dump_storage_state_len` value 5452 provided by the dump uv_info data. buff_ 5261 provided by the dump uv_info data. buff_user might be written to 5453 even if an error rc is returned. For ins 5262 even if an error rc is returned. For instance if we encounter a 5454 fault after writing the first page of da 5263 fault after writing the first page of data. 5455 5264 5456 KVM_PV_DUMP_COMPLETE 5265 KVM_PV_DUMP_COMPLETE 5457 If the subcommand succeeds it completes t 5266 If the subcommand succeeds it completes the dump process and lets 5458 KVM_PV_DUMP_INIT be called again. 5267 KVM_PV_DUMP_INIT be called again. 5459 5268 5460 On success `conf_dump_finalize_len` bytes 5269 On success `conf_dump_finalize_len` bytes of completion data will be 5461 stored to the `buff_addr`. The completion 5270 stored to the `buff_addr`. The completion data contains a key 5462 derivation seed, IV, tweak nonce and encr 5271 derivation seed, IV, tweak nonce and encryption keys as well as an 5463 authentication tag all of which are neede 5272 authentication tag all of which are needed to decrypt the dump at a 5464 later time. 5273 later time. 5465 5274 5466 KVM_PV_ASYNC_CLEANUP_PREPARE 5275 KVM_PV_ASYNC_CLEANUP_PREPARE 5467 :Capability: KVM_CAP_S390_PROTECTED_ASYNC_D 5276 :Capability: KVM_CAP_S390_PROTECTED_ASYNC_DISABLE 5468 5277 5469 Prepare the current protected VM for asynch 5278 Prepare the current protected VM for asynchronous teardown. Most 5470 resources used by the current protected VM 5279 resources used by the current protected VM will be set aside for a 5471 subsequent asynchronous teardown. The curre 5280 subsequent asynchronous teardown. The current protected VM will then 5472 resume execution immediately as non-protect 5281 resume execution immediately as non-protected. There can be at most 5473 one protected VM prepared for asynchronous 5282 one protected VM prepared for asynchronous teardown at any time. If 5474 a protected VM had already been prepared fo 5283 a protected VM had already been prepared for teardown without 5475 subsequently calling KVM_PV_ASYNC_CLEANUP_P 5284 subsequently calling KVM_PV_ASYNC_CLEANUP_PERFORM, this call will 5476 fail. In that case, the userspace process s 5285 fail. In that case, the userspace process should issue a normal 5477 KVM_PV_DISABLE. The resources set aside wit 5286 KVM_PV_DISABLE. The resources set aside with this call will need to 5478 be cleaned up with a subsequent call to KVM 5287 be cleaned up with a subsequent call to KVM_PV_ASYNC_CLEANUP_PERFORM 5479 or KVM_PV_DISABLE, otherwise they will be c 5288 or KVM_PV_DISABLE, otherwise they will be cleaned up when KVM 5480 terminates. KVM_PV_ASYNC_CLEANUP_PREPARE ca 5289 terminates. KVM_PV_ASYNC_CLEANUP_PREPARE can be called again as soon 5481 as cleanup starts, i.e. before KVM_PV_ASYNC 5290 as cleanup starts, i.e. before KVM_PV_ASYNC_CLEANUP_PERFORM finishes. 5482 5291 5483 KVM_PV_ASYNC_CLEANUP_PERFORM 5292 KVM_PV_ASYNC_CLEANUP_PERFORM 5484 :Capability: KVM_CAP_S390_PROTECTED_ASYNC_D 5293 :Capability: KVM_CAP_S390_PROTECTED_ASYNC_DISABLE 5485 5294 5486 Tear down the protected VM previously prepa 5295 Tear down the protected VM previously prepared for teardown with 5487 KVM_PV_ASYNC_CLEANUP_PREPARE. The resources 5296 KVM_PV_ASYNC_CLEANUP_PREPARE. The resources that had been set aside 5488 will be freed during the execution of this 5297 will be freed during the execution of this command. This PV command 5489 should ideally be issued by userspace from 5298 should ideally be issued by userspace from a separate thread. If a 5490 fatal signal is received (or the process te 5299 fatal signal is received (or the process terminates naturally), the 5491 command will terminate immediately without 5300 command will terminate immediately without completing, and the normal 5492 KVM shutdown procedure will take care of cl 5301 KVM shutdown procedure will take care of cleaning up all remaining 5493 protected VMs, including the ones whose tea 5302 protected VMs, including the ones whose teardown was interrupted by 5494 process termination. 5303 process termination. 5495 5304 5496 4.126 KVM_XEN_HVM_SET_ATTR 5305 4.126 KVM_XEN_HVM_SET_ATTR 5497 -------------------------- 5306 -------------------------- 5498 5307 5499 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5308 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO 5500 :Architectures: x86 5309 :Architectures: x86 5501 :Type: vm ioctl 5310 :Type: vm ioctl 5502 :Parameters: struct kvm_xen_hvm_attr 5311 :Parameters: struct kvm_xen_hvm_attr 5503 :Returns: 0 on success, < 0 on error 5312 :Returns: 0 on success, < 0 on error 5504 5313 5505 :: 5314 :: 5506 5315 5507 struct kvm_xen_hvm_attr { 5316 struct kvm_xen_hvm_attr { 5508 __u16 type; 5317 __u16 type; 5509 __u16 pad[3]; 5318 __u16 pad[3]; 5510 union { 5319 union { 5511 __u8 long_mode; 5320 __u8 long_mode; 5512 __u8 vector; 5321 __u8 vector; 5513 __u8 runstate_update_flag; 5322 __u8 runstate_update_flag; 5514 union { !! 5323 struct { 5515 __u64 gfn; 5324 __u64 gfn; 5516 __u64 hva; << 5517 } shared_info; 5325 } shared_info; 5518 struct { 5326 struct { 5519 __u32 send_port; 5327 __u32 send_port; 5520 __u32 type; /* EVTCHN 5328 __u32 type; /* EVTCHNSTAT_ipi / EVTCHNSTAT_interdomain */ 5521 __u32 flags; 5329 __u32 flags; 5522 union { 5330 union { 5523 struct { 5331 struct { 5524 __u32 5332 __u32 port; 5525 __u32 5333 __u32 vcpu; 5526 __u32 5334 __u32 priority; 5527 } port; 5335 } port; 5528 struct { 5336 struct { 5529 __u32 5337 __u32 port; /* Zero for eventfd */ 5530 __s32 5338 __s32 fd; 5531 } eventfd; 5339 } eventfd; 5532 __u32 padding 5340 __u32 padding[4]; 5533 } deliver; 5341 } deliver; 5534 } evtchn; 5342 } evtchn; 5535 __u32 xen_version; 5343 __u32 xen_version; 5536 __u64 pad[8]; 5344 __u64 pad[8]; 5537 } u; 5345 } u; 5538 }; 5346 }; 5539 5347 5540 type values: 5348 type values: 5541 5349 5542 KVM_XEN_ATTR_TYPE_LONG_MODE 5350 KVM_XEN_ATTR_TYPE_LONG_MODE 5543 Sets the ABI mode of the VM to 32-bit or 64 5351 Sets the ABI mode of the VM to 32-bit or 64-bit (long mode). This 5544 determines the layout of the shared_info pa !! 5352 determines the layout of the shared info pages exposed to the VM. 5545 5353 5546 KVM_XEN_ATTR_TYPE_SHARED_INFO 5354 KVM_XEN_ATTR_TYPE_SHARED_INFO 5547 Sets the guest physical frame number at whi !! 5355 Sets the guest physical frame number at which the Xen "shared info" 5548 page resides. Note that although Xen places 5356 page resides. Note that although Xen places vcpu_info for the first 5549 32 vCPUs in the shared_info page, KVM does 5357 32 vCPUs in the shared_info page, KVM does not automatically do so 5550 and instead requires that KVM_XEN_VCPU_ATTR !! 5358 and instead requires that KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO be used 5551 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA be use !! 5359 explicitly even when the vcpu_info for a given vCPU resides at the 5552 the vcpu_info for a given vCPU resides at t !! 5360 "default" location in the shared_info page. This is because KVM may 5553 in the shared_info page. This is because KV !! 5361 not be aware of the Xen CPU id which is used as the index into the 5554 the Xen CPU id which is used as the index i !! 5362 vcpu_info[] array, so may know the correct default location. 5555 array, so may know the correct default loca << 5556 5363 5557 Note that the shared_info page may be const !! 5364 Note that the shared info page may be constantly written to by KVM; 5558 it contains the event channel bitmap used t 5365 it contains the event channel bitmap used to deliver interrupts to 5559 a Xen guest, amongst other things. It is ex 5366 a Xen guest, amongst other things. It is exempt from dirty tracking 5560 mechanisms — KVM will not explicitly mark 5367 mechanisms — KVM will not explicitly mark the page as dirty each 5561 time an event channel interrupt is delivere 5368 time an event channel interrupt is delivered to the guest! Thus, 5562 userspace should always assume that the des 5369 userspace should always assume that the designated GFN is dirty if 5563 any vCPU has been running or any event chan 5370 any vCPU has been running or any event channel interrupts can be 5564 routed to the guest. 5371 routed to the guest. 5565 5372 5566 Setting the gfn to KVM_XEN_INVALID_GFN will !! 5373 Setting the gfn to KVM_XEN_INVALID_GFN will disable the shared info 5567 page. 5374 page. 5568 5375 5569 KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA << 5570 If the KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA f << 5571 Xen capabilities, then this attribute may b << 5572 userspace address at which the shared_info << 5573 will always be fixed in the VMM regardless << 5574 in guest physical address space. This attri << 5575 preference to KVM_XEN_ATTR_TYPE_SHARED_INFO << 5576 unnecessary invalidation of an internal cac << 5577 re-mapped in guest physcial address space. << 5578 << 5579 Setting the hva to zero will disable the sh << 5580 << 5581 KVM_XEN_ATTR_TYPE_UPCALL_VECTOR 5376 KVM_XEN_ATTR_TYPE_UPCALL_VECTOR 5582 Sets the exception vector used to deliver X 5377 Sets the exception vector used to deliver Xen event channel upcalls. 5583 This is the HVM-wide vector injected direct 5378 This is the HVM-wide vector injected directly by the hypervisor 5584 (not through the local APIC), typically con 5379 (not through the local APIC), typically configured by a guest via 5585 HVM_PARAM_CALLBACK_IRQ. This can be disable 5380 HVM_PARAM_CALLBACK_IRQ. This can be disabled again (e.g. for guest 5586 SHUTDOWN_soft_reset) by setting it to zero. 5381 SHUTDOWN_soft_reset) by setting it to zero. 5587 5382 5588 KVM_XEN_ATTR_TYPE_EVTCHN 5383 KVM_XEN_ATTR_TYPE_EVTCHN 5589 This attribute is available when the KVM_CA 5384 This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates 5590 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5385 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It configures 5591 an outbound port number for interception of 5386 an outbound port number for interception of EVTCHNOP_send requests 5592 from the guest. A given sending port number 5387 from the guest. A given sending port number may be directed back to 5593 a specified vCPU (by APIC ID) / port / prio 5388 a specified vCPU (by APIC ID) / port / priority on the guest, or to 5594 trigger events on an eventfd. The vCPU and 5389 trigger events on an eventfd. The vCPU and priority can be changed 5595 by setting KVM_XEN_EVTCHN_UPDATE in a subse !! 5390 by setting KVM_XEN_EVTCHN_UPDATE in a subsequent call, but but other 5596 fields cannot change for a given sending po 5391 fields cannot change for a given sending port. A port mapping is 5597 removed by using KVM_XEN_EVTCHN_DEASSIGN in 5392 removed by using KVM_XEN_EVTCHN_DEASSIGN in the flags field. Passing 5598 KVM_XEN_EVTCHN_RESET in the flags field rem 5393 KVM_XEN_EVTCHN_RESET in the flags field removes all interception of 5599 outbound event channels. The values of the 5394 outbound event channels. The values of the flags field are mutually 5600 exclusive and cannot be combined as a bitma 5395 exclusive and cannot be combined as a bitmask. 5601 5396 5602 KVM_XEN_ATTR_TYPE_XEN_VERSION 5397 KVM_XEN_ATTR_TYPE_XEN_VERSION 5603 This attribute is available when the KVM_CA 5398 This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates 5604 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5399 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It configures 5605 the 32-bit version code returned to the gue 5400 the 32-bit version code returned to the guest when it invokes the 5606 XENVER_version call; typically (XEN_MAJOR < 5401 XENVER_version call; typically (XEN_MAJOR << 16 | XEN_MINOR). PV 5607 Xen guests will often use this to as a dumm 5402 Xen guests will often use this to as a dummy hypercall to trigger 5608 event channel delivery, so responding withi 5403 event channel delivery, so responding within the kernel without 5609 exiting to userspace is beneficial. 5404 exiting to userspace is beneficial. 5610 5405 5611 KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG 5406 KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG 5612 This attribute is available when the KVM_CA 5407 This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates 5613 support for KVM_XEN_HVM_CONFIG_RUNSTATE_UPD 5408 support for KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG. It enables the 5614 XEN_RUNSTATE_UPDATE flag which allows guest 5409 XEN_RUNSTATE_UPDATE flag which allows guest vCPUs to safely read 5615 other vCPUs' vcpu_runstate_info. Xen guests 5410 other vCPUs' vcpu_runstate_info. Xen guests enable this feature via 5616 the VMASST_TYPE_runstate_update_flag of the 5411 the VMASST_TYPE_runstate_update_flag of the HYPERVISOR_vm_assist 5617 hypercall. 5412 hypercall. 5618 5413 5619 4.127 KVM_XEN_HVM_GET_ATTR 5414 4.127 KVM_XEN_HVM_GET_ATTR 5620 -------------------------- 5415 -------------------------- 5621 5416 5622 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5417 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO 5623 :Architectures: x86 5418 :Architectures: x86 5624 :Type: vm ioctl 5419 :Type: vm ioctl 5625 :Parameters: struct kvm_xen_hvm_attr 5420 :Parameters: struct kvm_xen_hvm_attr 5626 :Returns: 0 on success, < 0 on error 5421 :Returns: 0 on success, < 0 on error 5627 5422 5628 Allows Xen VM attributes to be read. For the 5423 Allows Xen VM attributes to be read. For the structure and types, 5629 see KVM_XEN_HVM_SET_ATTR above. The KVM_XEN_A 5424 see KVM_XEN_HVM_SET_ATTR above. The KVM_XEN_ATTR_TYPE_EVTCHN 5630 attribute cannot be read. 5425 attribute cannot be read. 5631 5426 5632 4.128 KVM_XEN_VCPU_SET_ATTR 5427 4.128 KVM_XEN_VCPU_SET_ATTR 5633 --------------------------- 5428 --------------------------- 5634 5429 5635 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5430 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO 5636 :Architectures: x86 5431 :Architectures: x86 5637 :Type: vcpu ioctl 5432 :Type: vcpu ioctl 5638 :Parameters: struct kvm_xen_vcpu_attr 5433 :Parameters: struct kvm_xen_vcpu_attr 5639 :Returns: 0 on success, < 0 on error 5434 :Returns: 0 on success, < 0 on error 5640 5435 5641 :: 5436 :: 5642 5437 5643 struct kvm_xen_vcpu_attr { 5438 struct kvm_xen_vcpu_attr { 5644 __u16 type; 5439 __u16 type; 5645 __u16 pad[3]; 5440 __u16 pad[3]; 5646 union { 5441 union { 5647 __u64 gpa; 5442 __u64 gpa; 5648 __u64 pad[4]; 5443 __u64 pad[4]; 5649 struct { 5444 struct { 5650 __u64 state; 5445 __u64 state; 5651 __u64 state_entry_tim 5446 __u64 state_entry_time; 5652 __u64 time_running; 5447 __u64 time_running; 5653 __u64 time_runnable; 5448 __u64 time_runnable; 5654 __u64 time_blocked; 5449 __u64 time_blocked; 5655 __u64 time_offline; 5450 __u64 time_offline; 5656 } runstate; 5451 } runstate; 5657 __u32 vcpu_id; 5452 __u32 vcpu_id; 5658 struct { 5453 struct { 5659 __u32 port; 5454 __u32 port; 5660 __u32 priority; 5455 __u32 priority; 5661 __u64 expires_ns; 5456 __u64 expires_ns; 5662 } timer; 5457 } timer; 5663 __u8 vector; 5458 __u8 vector; 5664 } u; 5459 } u; 5665 }; 5460 }; 5666 5461 5667 type values: 5462 type values: 5668 5463 5669 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO 5464 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO 5670 Sets the guest physical address of the vcpu 5465 Sets the guest physical address of the vcpu_info for a given vCPU. 5671 As with the shared_info page for the VM, th 5466 As with the shared_info page for the VM, the corresponding page may be 5672 dirtied at any time if event channel interr 5467 dirtied at any time if event channel interrupt delivery is enabled, so 5673 userspace should always assume that the pag 5468 userspace should always assume that the page is dirty without relying 5674 on dirty logging. Setting the gpa to KVM_XE 5469 on dirty logging. Setting the gpa to KVM_XEN_INVALID_GPA will disable 5675 the vcpu_info. 5470 the vcpu_info. 5676 5471 5677 KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA << 5678 If the KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA f << 5679 Xen capabilities, then this attribute may b << 5680 userspace address of the vcpu_info for a gi << 5681 only be used when the vcpu_info resides at << 5682 in the shared_info page. In this case it is << 5683 userspace address will not change, because << 5684 an overlay on guest memory and remains at a << 5685 regardless of where it is mapped in guest p << 5686 and hence unnecessary invalidation of an in << 5687 avoided if the guest memory layout is modif << 5688 If the vcpu_info does not reside at the "de << 5689 it is not guaranteed to remain at the same << 5690 hence the aforementioned cache invalidation << 5691 << 5692 KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO 5472 KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO 5693 Sets the guest physical address of an addit 5473 Sets the guest physical address of an additional pvclock structure 5694 for a given vCPU. This is typically used fo 5474 for a given vCPU. This is typically used for guest vsyscall support. 5695 Setting the gpa to KVM_XEN_INVALID_GPA will 5475 Setting the gpa to KVM_XEN_INVALID_GPA will disable the structure. 5696 5476 5697 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR 5477 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR 5698 Sets the guest physical address of the vcpu 5478 Sets the guest physical address of the vcpu_runstate_info for a given 5699 vCPU. This is how a Xen guest tracks CPU st 5479 vCPU. This is how a Xen guest tracks CPU state such as steal time. 5700 Setting the gpa to KVM_XEN_INVALID_GPA will 5480 Setting the gpa to KVM_XEN_INVALID_GPA will disable the runstate area. 5701 5481 5702 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT 5482 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT 5703 Sets the runstate (RUNSTATE_running/_runnab 5483 Sets the runstate (RUNSTATE_running/_runnable/_blocked/_offline) of 5704 the given vCPU from the .u.runstate.state m 5484 the given vCPU from the .u.runstate.state member of the structure. 5705 KVM automatically accounts running and runn 5485 KVM automatically accounts running and runnable time but blocked 5706 and offline states are only entered explici 5486 and offline states are only entered explicitly. 5707 5487 5708 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA 5488 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA 5709 Sets all fields of the vCPU runstate data f 5489 Sets all fields of the vCPU runstate data from the .u.runstate member 5710 of the structure, including the current run 5490 of the structure, including the current runstate. The state_entry_time 5711 must equal the sum of the other four times. 5491 must equal the sum of the other four times. 5712 5492 5713 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST 5493 KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST 5714 This *adds* the contents of the .u.runstate 5494 This *adds* the contents of the .u.runstate members of the structure 5715 to the corresponding members of the given v 5495 to the corresponding members of the given vCPU's runstate data, thus 5716 permitting atomic adjustments to the runsta 5496 permitting atomic adjustments to the runstate times. The adjustment 5717 to the state_entry_time must equal the sum 5497 to the state_entry_time must equal the sum of the adjustments to the 5718 other four times. The state field must be s 5498 other four times. The state field must be set to -1, or to a valid 5719 runstate value (RUNSTATE_running, RUNSTATE_ 5499 runstate value (RUNSTATE_running, RUNSTATE_runnable, RUNSTATE_blocked 5720 or RUNSTATE_offline) to set the current acc 5500 or RUNSTATE_offline) to set the current accounted state as of the 5721 adjusted state_entry_time. 5501 adjusted state_entry_time. 5722 5502 5723 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID 5503 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID 5724 This attribute is available when the KVM_CA 5504 This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates 5725 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5505 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It sets the Xen 5726 vCPU ID of the given vCPU, to allow timer-r 5506 vCPU ID of the given vCPU, to allow timer-related VCPU operations to 5727 be intercepted by KVM. 5507 be intercepted by KVM. 5728 5508 5729 KVM_XEN_VCPU_ATTR_TYPE_TIMER 5509 KVM_XEN_VCPU_ATTR_TYPE_TIMER 5730 This attribute is available when the KVM_CA 5510 This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates 5731 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5511 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It sets the 5732 event channel port/priority for the VIRQ_TI 5512 event channel port/priority for the VIRQ_TIMER of the vCPU, as well 5733 as allowing a pending timer to be saved/res 5513 as allowing a pending timer to be saved/restored. Setting the timer 5734 port to zero disables kernel handling of th 5514 port to zero disables kernel handling of the singleshot timer. 5735 5515 5736 KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR 5516 KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR 5737 This attribute is available when the KVM_CA 5517 This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates 5738 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND 5518 support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It sets the 5739 per-vCPU local APIC upcall vector, configur 5519 per-vCPU local APIC upcall vector, configured by a Xen guest with 5740 the HVMOP_set_evtchn_upcall_vector hypercal 5520 the HVMOP_set_evtchn_upcall_vector hypercall. This is typically 5741 used by Windows guests, and is distinct fro 5521 used by Windows guests, and is distinct from the HVM-wide upcall 5742 vector configured with HVM_PARAM_CALLBACK_I 5522 vector configured with HVM_PARAM_CALLBACK_IRQ. It is disabled by 5743 setting the vector to zero. 5523 setting the vector to zero. 5744 5524 5745 5525 5746 4.129 KVM_XEN_VCPU_GET_ATTR 5526 4.129 KVM_XEN_VCPU_GET_ATTR 5747 --------------------------- 5527 --------------------------- 5748 5528 5749 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5529 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO 5750 :Architectures: x86 5530 :Architectures: x86 5751 :Type: vcpu ioctl 5531 :Type: vcpu ioctl 5752 :Parameters: struct kvm_xen_vcpu_attr 5532 :Parameters: struct kvm_xen_vcpu_attr 5753 :Returns: 0 on success, < 0 on error 5533 :Returns: 0 on success, < 0 on error 5754 5534 5755 Allows Xen vCPU attributes to be read. For th 5535 Allows Xen vCPU attributes to be read. For the structure and types, 5756 see KVM_XEN_VCPU_SET_ATTR above. 5536 see KVM_XEN_VCPU_SET_ATTR above. 5757 5537 5758 The KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST ty 5538 The KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST type may not be used 5759 with the KVM_XEN_VCPU_GET_ATTR ioctl. 5539 with the KVM_XEN_VCPU_GET_ATTR ioctl. 5760 5540 5761 4.130 KVM_ARM_MTE_COPY_TAGS 5541 4.130 KVM_ARM_MTE_COPY_TAGS 5762 --------------------------- 5542 --------------------------- 5763 5543 5764 :Capability: KVM_CAP_ARM_MTE 5544 :Capability: KVM_CAP_ARM_MTE 5765 :Architectures: arm64 5545 :Architectures: arm64 5766 :Type: vm ioctl 5546 :Type: vm ioctl 5767 :Parameters: struct kvm_arm_copy_mte_tags 5547 :Parameters: struct kvm_arm_copy_mte_tags 5768 :Returns: number of bytes copied, < 0 on erro 5548 :Returns: number of bytes copied, < 0 on error (-EINVAL for incorrect 5769 arguments, -EFAULT if memory cannot 5549 arguments, -EFAULT if memory cannot be accessed). 5770 5550 5771 :: 5551 :: 5772 5552 5773 struct kvm_arm_copy_mte_tags { 5553 struct kvm_arm_copy_mte_tags { 5774 __u64 guest_ipa; 5554 __u64 guest_ipa; 5775 __u64 length; 5555 __u64 length; 5776 void __user *addr; 5556 void __user *addr; 5777 __u64 flags; 5557 __u64 flags; 5778 __u64 reserved[2]; 5558 __u64 reserved[2]; 5779 }; 5559 }; 5780 5560 5781 Copies Memory Tagging Extension (MTE) tags to 5561 Copies Memory Tagging Extension (MTE) tags to/from guest tag memory. The 5782 ``guest_ipa`` and ``length`` fields must be ` !! 5562 ``guest_ipa`` and ``length`` fields must be ``PAGE_SIZE`` aligned. The ``addr`` 5783 ``length`` must not be bigger than 2^31 - PAG << 5784 field must point to a buffer which the tags w 5563 field must point to a buffer which the tags will be copied to or from. 5785 5564 5786 ``flags`` specifies the direction of copy, ei 5565 ``flags`` specifies the direction of copy, either ``KVM_ARM_TAGS_TO_GUEST`` or 5787 ``KVM_ARM_TAGS_FROM_GUEST``. 5566 ``KVM_ARM_TAGS_FROM_GUEST``. 5788 5567 5789 The size of the buffer to store the tags is ` 5568 The size of the buffer to store the tags is ``(length / 16)`` bytes 5790 (granules in MTE are 16 bytes long). Each byt 5569 (granules in MTE are 16 bytes long). Each byte contains a single tag 5791 value. This matches the format of ``PTRACE_PE 5570 value. This matches the format of ``PTRACE_PEEKMTETAGS`` and 5792 ``PTRACE_POKEMTETAGS``. 5571 ``PTRACE_POKEMTETAGS``. 5793 5572 5794 If an error occurs before any data is copied 5573 If an error occurs before any data is copied then a negative error code is 5795 returned. If some tags have been copied befor 5574 returned. If some tags have been copied before an error occurs then the number 5796 of bytes successfully copied is returned. If 5575 of bytes successfully copied is returned. If the call completes successfully 5797 then ``length`` is returned. 5576 then ``length`` is returned. 5798 5577 5799 4.131 KVM_GET_SREGS2 5578 4.131 KVM_GET_SREGS2 5800 -------------------- 5579 -------------------- 5801 5580 5802 :Capability: KVM_CAP_SREGS2 5581 :Capability: KVM_CAP_SREGS2 5803 :Architectures: x86 5582 :Architectures: x86 5804 :Type: vcpu ioctl 5583 :Type: vcpu ioctl 5805 :Parameters: struct kvm_sregs2 (out) 5584 :Parameters: struct kvm_sregs2 (out) 5806 :Returns: 0 on success, -1 on error 5585 :Returns: 0 on success, -1 on error 5807 5586 5808 Reads special registers from the vcpu. 5587 Reads special registers from the vcpu. 5809 This ioctl (when supported) replaces the KVM_ 5588 This ioctl (when supported) replaces the KVM_GET_SREGS. 5810 5589 5811 :: 5590 :: 5812 5591 5813 struct kvm_sregs2 { 5592 struct kvm_sregs2 { 5814 /* out (KVM_GET_SREGS2) / in 5593 /* out (KVM_GET_SREGS2) / in (KVM_SET_SREGS2) */ 5815 struct kvm_segment cs, ds, es 5594 struct kvm_segment cs, ds, es, fs, gs, ss; 5816 struct kvm_segment tr, ldt; 5595 struct kvm_segment tr, ldt; 5817 struct kvm_dtable gdt, idt; 5596 struct kvm_dtable gdt, idt; 5818 __u64 cr0, cr2, cr3, cr4, cr8 5597 __u64 cr0, cr2, cr3, cr4, cr8; 5819 __u64 efer; 5598 __u64 efer; 5820 __u64 apic_base; 5599 __u64 apic_base; 5821 __u64 flags; 5600 __u64 flags; 5822 __u64 pdptrs[4]; 5601 __u64 pdptrs[4]; 5823 }; 5602 }; 5824 5603 5825 flags values for ``kvm_sregs2``: 5604 flags values for ``kvm_sregs2``: 5826 5605 5827 ``KVM_SREGS2_FLAGS_PDPTRS_VALID`` 5606 ``KVM_SREGS2_FLAGS_PDPTRS_VALID`` 5828 5607 5829 Indicates that the struct contains valid PD !! 5608 Indicates thats the struct contain valid PDPTR values. 5830 5609 5831 5610 5832 4.132 KVM_SET_SREGS2 5611 4.132 KVM_SET_SREGS2 5833 -------------------- 5612 -------------------- 5834 5613 5835 :Capability: KVM_CAP_SREGS2 5614 :Capability: KVM_CAP_SREGS2 5836 :Architectures: x86 5615 :Architectures: x86 5837 :Type: vcpu ioctl 5616 :Type: vcpu ioctl 5838 :Parameters: struct kvm_sregs2 (in) 5617 :Parameters: struct kvm_sregs2 (in) 5839 :Returns: 0 on success, -1 on error 5618 :Returns: 0 on success, -1 on error 5840 5619 5841 Writes special registers into the vcpu. 5620 Writes special registers into the vcpu. 5842 See KVM_GET_SREGS2 for the data structures. 5621 See KVM_GET_SREGS2 for the data structures. 5843 This ioctl (when supported) replaces the KVM_ 5622 This ioctl (when supported) replaces the KVM_SET_SREGS. 5844 5623 5845 4.133 KVM_GET_STATS_FD 5624 4.133 KVM_GET_STATS_FD 5846 ---------------------- 5625 ---------------------- 5847 5626 5848 :Capability: KVM_CAP_STATS_BINARY_FD 5627 :Capability: KVM_CAP_STATS_BINARY_FD 5849 :Architectures: all 5628 :Architectures: all 5850 :Type: vm ioctl, vcpu ioctl 5629 :Type: vm ioctl, vcpu ioctl 5851 :Parameters: none 5630 :Parameters: none 5852 :Returns: statistics file descriptor on succe 5631 :Returns: statistics file descriptor on success, < 0 on error 5853 5632 5854 Errors: 5633 Errors: 5855 5634 5856 ====== ================================ 5635 ====== ====================================================== 5857 ENOMEM if the fd could not be created d 5636 ENOMEM if the fd could not be created due to lack of memory 5858 EMFILE if the number of opened files ex 5637 EMFILE if the number of opened files exceeds the limit 5859 ====== ================================ 5638 ====== ====================================================== 5860 5639 5861 The returned file descriptor can be used to r 5640 The returned file descriptor can be used to read VM/vCPU statistics data in 5862 binary format. The data in the file descripto 5641 binary format. The data in the file descriptor consists of four blocks 5863 organized as follows: 5642 organized as follows: 5864 5643 5865 +-------------+ 5644 +-------------+ 5866 | Header | 5645 | Header | 5867 +-------------+ 5646 +-------------+ 5868 | id string | 5647 | id string | 5869 +-------------+ 5648 +-------------+ 5870 | Descriptors | 5649 | Descriptors | 5871 +-------------+ 5650 +-------------+ 5872 | Stats Data | 5651 | Stats Data | 5873 +-------------+ 5652 +-------------+ 5874 5653 5875 Apart from the header starting at offset 0, p 5654 Apart from the header starting at offset 0, please be aware that it is 5876 not guaranteed that the four blocks are adjac 5655 not guaranteed that the four blocks are adjacent or in the above order; 5877 the offsets of the id, descriptors and data b 5656 the offsets of the id, descriptors and data blocks are found in the 5878 header. However, all four blocks are aligned 5657 header. However, all four blocks are aligned to 64 bit offsets in the 5879 file and they do not overlap. 5658 file and they do not overlap. 5880 5659 5881 All blocks except the data block are immutabl 5660 All blocks except the data block are immutable. Userspace can read them 5882 only one time after retrieving the file descr 5661 only one time after retrieving the file descriptor, and then use ``pread`` or 5883 ``lseek`` to read the statistics repeatedly. 5662 ``lseek`` to read the statistics repeatedly. 5884 5663 5885 All data is in system endianness. 5664 All data is in system endianness. 5886 5665 5887 The format of the header is as follows:: 5666 The format of the header is as follows:: 5888 5667 5889 struct kvm_stats_header { 5668 struct kvm_stats_header { 5890 __u32 flags; 5669 __u32 flags; 5891 __u32 name_size; 5670 __u32 name_size; 5892 __u32 num_desc; 5671 __u32 num_desc; 5893 __u32 id_offset; 5672 __u32 id_offset; 5894 __u32 desc_offset; 5673 __u32 desc_offset; 5895 __u32 data_offset; 5674 __u32 data_offset; 5896 }; 5675 }; 5897 5676 5898 The ``flags`` field is not used at the moment 5677 The ``flags`` field is not used at the moment. It is always read as 0. 5899 5678 5900 The ``name_size`` field is the size (in byte) 5679 The ``name_size`` field is the size (in byte) of the statistics name string 5901 (including trailing '\0') which is contained 5680 (including trailing '\0') which is contained in the "id string" block and 5902 appended at the end of every descriptor. 5681 appended at the end of every descriptor. 5903 5682 5904 The ``num_desc`` field is the number of descr 5683 The ``num_desc`` field is the number of descriptors that are included in the 5905 descriptor block. (The actual number of valu 5684 descriptor block. (The actual number of values in the data block may be 5906 larger, since each descriptor may comprise mo 5685 larger, since each descriptor may comprise more than one value). 5907 5686 5908 The ``id_offset`` field is the offset of the 5687 The ``id_offset`` field is the offset of the id string from the start of the 5909 file indicated by the file descriptor. It is 5688 file indicated by the file descriptor. It is a multiple of 8. 5910 5689 5911 The ``desc_offset`` field is the offset of th 5690 The ``desc_offset`` field is the offset of the Descriptors block from the start 5912 of the file indicated by the file descriptor. 5691 of the file indicated by the file descriptor. It is a multiple of 8. 5913 5692 5914 The ``data_offset`` field is the offset of th 5693 The ``data_offset`` field is the offset of the Stats Data block from the start 5915 of the file indicated by the file descriptor. 5694 of the file indicated by the file descriptor. It is a multiple of 8. 5916 5695 5917 The id string block contains a string which i 5696 The id string block contains a string which identifies the file descriptor on 5918 which KVM_GET_STATS_FD was invoked. The size 5697 which KVM_GET_STATS_FD was invoked. The size of the block, including the 5919 trailing ``'\0'``, is indicated by the ``name 5698 trailing ``'\0'``, is indicated by the ``name_size`` field in the header. 5920 5699 5921 The descriptors block is only needed to be re 5700 The descriptors block is only needed to be read once for the lifetime of the 5922 file descriptor contains a sequence of ``stru 5701 file descriptor contains a sequence of ``struct kvm_stats_desc``, each followed 5923 by a string of size ``name_size``. 5702 by a string of size ``name_size``. 5924 :: 5703 :: 5925 5704 5926 #define KVM_STATS_TYPE_SHIFT 5705 #define KVM_STATS_TYPE_SHIFT 0 5927 #define KVM_STATS_TYPE_MASK 5706 #define KVM_STATS_TYPE_MASK (0xF << KVM_STATS_TYPE_SHIFT) 5928 #define KVM_STATS_TYPE_CUMULATIVE 5707 #define KVM_STATS_TYPE_CUMULATIVE (0x0 << KVM_STATS_TYPE_SHIFT) 5929 #define KVM_STATS_TYPE_INSTANT 5708 #define KVM_STATS_TYPE_INSTANT (0x1 << KVM_STATS_TYPE_SHIFT) 5930 #define KVM_STATS_TYPE_PEAK 5709 #define KVM_STATS_TYPE_PEAK (0x2 << KVM_STATS_TYPE_SHIFT) 5931 #define KVM_STATS_TYPE_LINEAR_HIST 5710 #define KVM_STATS_TYPE_LINEAR_HIST (0x3 << KVM_STATS_TYPE_SHIFT) 5932 #define KVM_STATS_TYPE_LOG_HIST 5711 #define KVM_STATS_TYPE_LOG_HIST (0x4 << KVM_STATS_TYPE_SHIFT) 5933 #define KVM_STATS_TYPE_MAX 5712 #define KVM_STATS_TYPE_MAX KVM_STATS_TYPE_LOG_HIST 5934 5713 5935 #define KVM_STATS_UNIT_SHIFT 5714 #define KVM_STATS_UNIT_SHIFT 4 5936 #define KVM_STATS_UNIT_MASK 5715 #define KVM_STATS_UNIT_MASK (0xF << KVM_STATS_UNIT_SHIFT) 5937 #define KVM_STATS_UNIT_NONE 5716 #define KVM_STATS_UNIT_NONE (0x0 << KVM_STATS_UNIT_SHIFT) 5938 #define KVM_STATS_UNIT_BYTES 5717 #define KVM_STATS_UNIT_BYTES (0x1 << KVM_STATS_UNIT_SHIFT) 5939 #define KVM_STATS_UNIT_SECONDS 5718 #define KVM_STATS_UNIT_SECONDS (0x2 << KVM_STATS_UNIT_SHIFT) 5940 #define KVM_STATS_UNIT_CYCLES 5719 #define KVM_STATS_UNIT_CYCLES (0x3 << KVM_STATS_UNIT_SHIFT) 5941 #define KVM_STATS_UNIT_BOOLEAN 5720 #define KVM_STATS_UNIT_BOOLEAN (0x4 << KVM_STATS_UNIT_SHIFT) 5942 #define KVM_STATS_UNIT_MAX 5721 #define KVM_STATS_UNIT_MAX KVM_STATS_UNIT_BOOLEAN 5943 5722 5944 #define KVM_STATS_BASE_SHIFT 5723 #define KVM_STATS_BASE_SHIFT 8 5945 #define KVM_STATS_BASE_MASK 5724 #define KVM_STATS_BASE_MASK (0xF << KVM_STATS_BASE_SHIFT) 5946 #define KVM_STATS_BASE_POW10 5725 #define KVM_STATS_BASE_POW10 (0x0 << KVM_STATS_BASE_SHIFT) 5947 #define KVM_STATS_BASE_POW2 5726 #define KVM_STATS_BASE_POW2 (0x1 << KVM_STATS_BASE_SHIFT) 5948 #define KVM_STATS_BASE_MAX 5727 #define KVM_STATS_BASE_MAX KVM_STATS_BASE_POW2 5949 5728 5950 struct kvm_stats_desc { 5729 struct kvm_stats_desc { 5951 __u32 flags; 5730 __u32 flags; 5952 __s16 exponent; 5731 __s16 exponent; 5953 __u16 size; 5732 __u16 size; 5954 __u32 offset; 5733 __u32 offset; 5955 __u32 bucket_size; 5734 __u32 bucket_size; 5956 char name[]; 5735 char name[]; 5957 }; 5736 }; 5958 5737 5959 The ``flags`` field contains the type and uni 5738 The ``flags`` field contains the type and unit of the statistics data described 5960 by this descriptor. Its endianness is CPU nat 5739 by this descriptor. Its endianness is CPU native. 5961 The following flags are supported: 5740 The following flags are supported: 5962 5741 5963 Bits 0-3 of ``flags`` encode the type: 5742 Bits 0-3 of ``flags`` encode the type: 5964 5743 5965 * ``KVM_STATS_TYPE_CUMULATIVE`` 5744 * ``KVM_STATS_TYPE_CUMULATIVE`` 5966 The statistics reports a cumulative count 5745 The statistics reports a cumulative count. The value of data can only be increased. 5967 Most of the counters used in KVM are of t 5746 Most of the counters used in KVM are of this type. 5968 The corresponding ``size`` field for this 5747 The corresponding ``size`` field for this type is always 1. 5969 All cumulative statistics data are read/w 5748 All cumulative statistics data are read/write. 5970 * ``KVM_STATS_TYPE_INSTANT`` 5749 * ``KVM_STATS_TYPE_INSTANT`` 5971 The statistics reports an instantaneous v 5750 The statistics reports an instantaneous value. Its value can be increased or 5972 decreased. This type is usually used as a 5751 decreased. This type is usually used as a measurement of some resources, 5973 like the number of dirty pages, the numbe 5752 like the number of dirty pages, the number of large pages, etc. 5974 All instant statistics are read only. 5753 All instant statistics are read only. 5975 The corresponding ``size`` field for this 5754 The corresponding ``size`` field for this type is always 1. 5976 * ``KVM_STATS_TYPE_PEAK`` 5755 * ``KVM_STATS_TYPE_PEAK`` 5977 The statistics data reports a peak value, 5756 The statistics data reports a peak value, for example the maximum number 5978 of items in a hash table bucket, the long 5757 of items in a hash table bucket, the longest time waited and so on. 5979 The value of data can only be increased. 5758 The value of data can only be increased. 5980 The corresponding ``size`` field for this 5759 The corresponding ``size`` field for this type is always 1. 5981 * ``KVM_STATS_TYPE_LINEAR_HIST`` 5760 * ``KVM_STATS_TYPE_LINEAR_HIST`` 5982 The statistic is reported as a linear his 5761 The statistic is reported as a linear histogram. The number of 5983 buckets is specified by the ``size`` fiel 5762 buckets is specified by the ``size`` field. The size of buckets is specified 5984 by the ``hist_param`` field. The range of 5763 by the ``hist_param`` field. The range of the Nth bucket (1 <= N < ``size``) 5985 is [``hist_param``*(N-1), ``hist_param``* 5764 is [``hist_param``*(N-1), ``hist_param``*N), while the range of the last 5986 bucket is [``hist_param``*(``size``-1), + 5765 bucket is [``hist_param``*(``size``-1), +INF). (+INF means positive infinity 5987 value.) 5766 value.) 5988 * ``KVM_STATS_TYPE_LOG_HIST`` 5767 * ``KVM_STATS_TYPE_LOG_HIST`` 5989 The statistic is reported as a logarithmi 5768 The statistic is reported as a logarithmic histogram. The number of 5990 buckets is specified by the ``size`` fiel 5769 buckets is specified by the ``size`` field. The range of the first bucket is 5991 [0, 1), while the range of the last bucke 5770 [0, 1), while the range of the last bucket is [pow(2, ``size``-2), +INF). 5992 Otherwise, The Nth bucket (1 < N < ``size 5771 Otherwise, The Nth bucket (1 < N < ``size``) covers 5993 [pow(2, N-2), pow(2, N-1)). 5772 [pow(2, N-2), pow(2, N-1)). 5994 5773 5995 Bits 4-7 of ``flags`` encode the unit: 5774 Bits 4-7 of ``flags`` encode the unit: 5996 5775 5997 * ``KVM_STATS_UNIT_NONE`` 5776 * ``KVM_STATS_UNIT_NONE`` 5998 There is no unit for the value of statist 5777 There is no unit for the value of statistics data. This usually means that 5999 the value is a simple counter of an event 5778 the value is a simple counter of an event. 6000 * ``KVM_STATS_UNIT_BYTES`` 5779 * ``KVM_STATS_UNIT_BYTES`` 6001 It indicates that the statistics data is 5780 It indicates that the statistics data is used to measure memory size, in the 6002 unit of Byte, KiByte, MiByte, GiByte, etc 5781 unit of Byte, KiByte, MiByte, GiByte, etc. The unit of the data is 6003 determined by the ``exponent`` field in t 5782 determined by the ``exponent`` field in the descriptor. 6004 * ``KVM_STATS_UNIT_SECONDS`` 5783 * ``KVM_STATS_UNIT_SECONDS`` 6005 It indicates that the statistics data is 5784 It indicates that the statistics data is used to measure time or latency. 6006 * ``KVM_STATS_UNIT_CYCLES`` 5785 * ``KVM_STATS_UNIT_CYCLES`` 6007 It indicates that the statistics data is 5786 It indicates that the statistics data is used to measure CPU clock cycles. 6008 * ``KVM_STATS_UNIT_BOOLEAN`` 5787 * ``KVM_STATS_UNIT_BOOLEAN`` 6009 It indicates that the statistic will alwa 5788 It indicates that the statistic will always be either 0 or 1. Boolean 6010 statistics of "peak" type will never go b 5789 statistics of "peak" type will never go back from 1 to 0. Boolean 6011 statistics can be linear histograms (with 5790 statistics can be linear histograms (with two buckets) but not logarithmic 6012 histograms. 5791 histograms. 6013 5792 6014 Note that, in the case of histograms, the uni 5793 Note that, in the case of histograms, the unit applies to the bucket 6015 ranges, while the bucket value indicates how 5794 ranges, while the bucket value indicates how many samples fell in the 6016 bucket's range. 5795 bucket's range. 6017 5796 6018 Bits 8-11 of ``flags``, together with ``expon 5797 Bits 8-11 of ``flags``, together with ``exponent``, encode the scale of the 6019 unit: 5798 unit: 6020 5799 6021 * ``KVM_STATS_BASE_POW10`` 5800 * ``KVM_STATS_BASE_POW10`` 6022 The scale is based on power of 10. It is 5801 The scale is based on power of 10. It is used for measurement of time and 6023 CPU clock cycles. For example, an expone 5802 CPU clock cycles. For example, an exponent of -9 can be used with 6024 ``KVM_STATS_UNIT_SECONDS`` to express tha 5803 ``KVM_STATS_UNIT_SECONDS`` to express that the unit is nanoseconds. 6025 * ``KVM_STATS_BASE_POW2`` 5804 * ``KVM_STATS_BASE_POW2`` 6026 The scale is based on power of 2. It is u 5805 The scale is based on power of 2. It is used for measurement of memory size. 6027 For example, an exponent of 20 can be use 5806 For example, an exponent of 20 can be used with ``KVM_STATS_UNIT_BYTES`` to 6028 express that the unit is MiB. 5807 express that the unit is MiB. 6029 5808 6030 The ``size`` field is the number of values of 5809 The ``size`` field is the number of values of this statistics data. Its 6031 value is usually 1 for most of simple statist 5810 value is usually 1 for most of simple statistics. 1 means it contains an 6032 unsigned 64bit data. 5811 unsigned 64bit data. 6033 5812 6034 The ``offset`` field is the offset from the s 5813 The ``offset`` field is the offset from the start of Data Block to the start of 6035 the corresponding statistics data. 5814 the corresponding statistics data. 6036 5815 6037 The ``bucket_size`` field is used as a parame 5816 The ``bucket_size`` field is used as a parameter for histogram statistics data. 6038 It is only used by linear histogram statistic 5817 It is only used by linear histogram statistics data, specifying the size of a 6039 bucket in the unit expressed by bits 4-11 of 5818 bucket in the unit expressed by bits 4-11 of ``flags`` together with ``exponent``. 6040 5819 6041 The ``name`` field is the name string of the 5820 The ``name`` field is the name string of the statistics data. The name string 6042 starts at the end of ``struct kvm_stats_desc` 5821 starts at the end of ``struct kvm_stats_desc``. The maximum length including 6043 the trailing ``'\0'``, is indicated by ``name 5822 the trailing ``'\0'``, is indicated by ``name_size`` in the header. 6044 5823 6045 The Stats Data block contains an array of 64- 5824 The Stats Data block contains an array of 64-bit values in the same order 6046 as the descriptors in Descriptors block. 5825 as the descriptors in Descriptors block. 6047 5826 6048 4.134 KVM_GET_XSAVE2 5827 4.134 KVM_GET_XSAVE2 6049 -------------------- 5828 -------------------- 6050 5829 6051 :Capability: KVM_CAP_XSAVE2 5830 :Capability: KVM_CAP_XSAVE2 6052 :Architectures: x86 5831 :Architectures: x86 6053 :Type: vcpu ioctl 5832 :Type: vcpu ioctl 6054 :Parameters: struct kvm_xsave (out) 5833 :Parameters: struct kvm_xsave (out) 6055 :Returns: 0 on success, -1 on error 5834 :Returns: 0 on success, -1 on error 6056 5835 6057 5836 6058 :: 5837 :: 6059 5838 6060 struct kvm_xsave { 5839 struct kvm_xsave { 6061 __u32 region[1024]; 5840 __u32 region[1024]; 6062 __u32 extra[0]; 5841 __u32 extra[0]; 6063 }; 5842 }; 6064 5843 6065 This ioctl would copy current vcpu's xsave st 5844 This ioctl would copy current vcpu's xsave struct to the userspace. It 6066 copies as many bytes as are returned by KVM_C 5845 copies as many bytes as are returned by KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) 6067 when invoked on the vm file descriptor. The s 5846 when invoked on the vm file descriptor. The size value returned by 6068 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will alwa 5847 KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will always be at least 4096. 6069 Currently, it is only greater than 4096 if a 5848 Currently, it is only greater than 4096 if a dynamic feature has been 6070 enabled with ``arch_prctl()``, but this may c 5849 enabled with ``arch_prctl()``, but this may change in the future. 6071 5850 6072 The offsets of the state save areas in struct 5851 The offsets of the state save areas in struct kvm_xsave follow the contents 6073 of CPUID leaf 0xD on the host. 5852 of CPUID leaf 0xD on the host. 6074 5853 6075 4.135 KVM_XEN_HVM_EVTCHN_SEND 5854 4.135 KVM_XEN_HVM_EVTCHN_SEND 6076 ----------------------------- 5855 ----------------------------- 6077 5856 6078 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CO 5857 :Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_EVTCHN_SEND 6079 :Architectures: x86 5858 :Architectures: x86 6080 :Type: vm ioctl 5859 :Type: vm ioctl 6081 :Parameters: struct kvm_irq_routing_xen_evtch 5860 :Parameters: struct kvm_irq_routing_xen_evtchn 6082 :Returns: 0 on success, < 0 on error 5861 :Returns: 0 on success, < 0 on error 6083 5862 6084 5863 6085 :: 5864 :: 6086 5865 6087 struct kvm_irq_routing_xen_evtchn { 5866 struct kvm_irq_routing_xen_evtchn { 6088 __u32 port; 5867 __u32 port; 6089 __u32 vcpu; 5868 __u32 vcpu; 6090 __u32 priority; 5869 __u32 priority; 6091 }; 5870 }; 6092 5871 6093 This ioctl injects an event channel interrupt 5872 This ioctl injects an event channel interrupt directly to the guest vCPU. 6094 5873 6095 4.136 KVM_S390_PV_CPU_COMMAND 5874 4.136 KVM_S390_PV_CPU_COMMAND 6096 ----------------------------- 5875 ----------------------------- 6097 5876 6098 :Capability: KVM_CAP_S390_PROTECTED_DUMP 5877 :Capability: KVM_CAP_S390_PROTECTED_DUMP 6099 :Architectures: s390 5878 :Architectures: s390 6100 :Type: vcpu ioctl 5879 :Type: vcpu ioctl 6101 :Parameters: none 5880 :Parameters: none 6102 :Returns: 0 on success, < 0 on error 5881 :Returns: 0 on success, < 0 on error 6103 5882 6104 This ioctl closely mirrors `KVM_S390_PV_COMMA 5883 This ioctl closely mirrors `KVM_S390_PV_COMMAND` but handles requests 6105 for vcpus. It re-uses the kvm_s390_pv_dmp str 5884 for vcpus. It re-uses the kvm_s390_pv_dmp struct and hence also shares 6106 the command ids. 5885 the command ids. 6107 5886 6108 **command:** 5887 **command:** 6109 5888 6110 KVM_PV_DUMP 5889 KVM_PV_DUMP 6111 Presents an API that provides calls which f 5890 Presents an API that provides calls which facilitate dumping a vcpu 6112 of a protected VM. 5891 of a protected VM. 6113 5892 6114 **subcommand:** 5893 **subcommand:** 6115 5894 6116 KVM_PV_DUMP_CPU 5895 KVM_PV_DUMP_CPU 6117 Provides encrypted dump data like register 5896 Provides encrypted dump data like register values. 6118 The length of the returned data is provided 5897 The length of the returned data is provided by uv_info.guest_cpu_stor_len. 6119 5898 6120 4.137 KVM_S390_ZPCI_OP 5899 4.137 KVM_S390_ZPCI_OP 6121 ---------------------- 5900 ---------------------- 6122 5901 6123 :Capability: KVM_CAP_S390_ZPCI_OP 5902 :Capability: KVM_CAP_S390_ZPCI_OP 6124 :Architectures: s390 5903 :Architectures: s390 6125 :Type: vm ioctl 5904 :Type: vm ioctl 6126 :Parameters: struct kvm_s390_zpci_op (in) 5905 :Parameters: struct kvm_s390_zpci_op (in) 6127 :Returns: 0 on success, <0 on error 5906 :Returns: 0 on success, <0 on error 6128 5907 6129 Used to manage hardware-assisted virtualizati 5908 Used to manage hardware-assisted virtualization features for zPCI devices. 6130 5909 6131 Parameters are specified via the following st 5910 Parameters are specified via the following structure:: 6132 5911 6133 struct kvm_s390_zpci_op { 5912 struct kvm_s390_zpci_op { 6134 /* in */ 5913 /* in */ 6135 __u32 fh; /* target dev 5914 __u32 fh; /* target device */ 6136 __u8 op; /* operation 5915 __u8 op; /* operation to perform */ 6137 __u8 pad[3]; 5916 __u8 pad[3]; 6138 union { 5917 union { 6139 /* for KVM_S390_ZPCIOP_REG_AE 5918 /* for KVM_S390_ZPCIOP_REG_AEN */ 6140 struct { 5919 struct { 6141 __u64 ibv; /* Gu 5920 __u64 ibv; /* Guest addr of interrupt bit vector */ 6142 __u64 sb; /* Gu 5921 __u64 sb; /* Guest addr of summary bit */ 6143 __u32 flags; 5922 __u32 flags; 6144 __u32 noi; /* Nu 5923 __u32 noi; /* Number of interrupts */ 6145 __u8 isc; /* Gu 5924 __u8 isc; /* Guest interrupt subclass */ 6146 __u8 sbo; /* Of 5925 __u8 sbo; /* Offset of guest summary bit vector */ 6147 __u16 pad; 5926 __u16 pad; 6148 } reg_aen; 5927 } reg_aen; 6149 __u64 reserved[8]; 5928 __u64 reserved[8]; 6150 } u; 5929 } u; 6151 }; 5930 }; 6152 5931 6153 The type of operation is specified in the "op 5932 The type of operation is specified in the "op" field. 6154 KVM_S390_ZPCIOP_REG_AEN is used to register t 5933 KVM_S390_ZPCIOP_REG_AEN is used to register the VM for adapter event 6155 notification interpretation, which will allow 5934 notification interpretation, which will allow firmware delivery of adapter 6156 events directly to the vm, with KVM providing 5935 events directly to the vm, with KVM providing a backup delivery mechanism; 6157 KVM_S390_ZPCIOP_DEREG_AEN is used to subseque 5936 KVM_S390_ZPCIOP_DEREG_AEN is used to subsequently disable interpretation of 6158 adapter event notifications. 5937 adapter event notifications. 6159 5938 6160 The target zPCI function must also be specifi 5939 The target zPCI function must also be specified via the "fh" field. For the 6161 KVM_S390_ZPCIOP_REG_AEN operation, additional 5940 KVM_S390_ZPCIOP_REG_AEN operation, additional information to establish firmware 6162 delivery must be provided via the "reg_aen" s 5941 delivery must be provided via the "reg_aen" struct. 6163 5942 6164 The "pad" and "reserved" fields may be used f 5943 The "pad" and "reserved" fields may be used for future extensions and should be 6165 set to 0s by userspace. 5944 set to 0s by userspace. 6166 5945 6167 4.138 KVM_ARM_SET_COUNTER_OFFSET << 6168 -------------------------------- << 6169 << 6170 :Capability: KVM_CAP_COUNTER_OFFSET << 6171 :Architectures: arm64 << 6172 :Type: vm ioctl << 6173 :Parameters: struct kvm_arm_counter_offset (i << 6174 :Returns: 0 on success, < 0 on error << 6175 << 6176 This capability indicates that userspace is a << 6177 offset to both the virtual and physical count << 6178 using the KVM_ARM_SET_CNT_OFFSET ioctl and th << 6179 << 6180 :: << 6181 << 6182 struct kvm_arm_counter_offset { << 6183 __u64 counter_offset; << 6184 __u64 reserved; << 6185 }; << 6186 << 6187 The offset describes a number of counter cycl << 6188 both virtual and physical counter views (simi << 6189 CNTVOFF_EL2 and CNTPOFF_EL2 system registers, << 6190 always applies to all vcpus (already created << 6191 for this VM. << 6192 << 6193 It is userspace's responsibility to compute t << 6194 on previous values of the guest counters. << 6195 << 6196 Any value other than 0 for the "reserved" fie << 6197 (-EINVAL) being returned. This ioctl can also << 6198 ioctl is issued concurrently. << 6199 << 6200 Note that using this ioctl results in KVM ign << 6201 writes to the CNTVCT_EL0 and CNTPCT_EL0 regis << 6202 interface. No error will be returned, but the << 6203 applied. << 6204 << 6205 .. _KVM_ARM_GET_REG_WRITABLE_MASKS: << 6206 << 6207 4.139 KVM_ARM_GET_REG_WRITABLE_MASKS << 6208 ------------------------------------------- << 6209 << 6210 :Capability: KVM_CAP_ARM_SUPPORTED_REG_MASK_R << 6211 :Architectures: arm64 << 6212 :Type: vm ioctl << 6213 :Parameters: struct reg_mask_range (in/out) << 6214 :Returns: 0 on success, < 0 on error << 6215 << 6216 << 6217 :: << 6218 << 6219 #define KVM_ARM_FEATURE_ID_RANGE << 6220 #define KVM_ARM_FEATURE_ID_RANGE_SIZE << 6221 << 6222 struct reg_mask_range { << 6223 __u64 addr; /* Po << 6224 __u32 range; /* Re << 6225 __u32 reserved[13]; << 6226 }; << 6227 << 6228 This ioctl copies the writable masks for a se << 6229 userspace. << 6230 << 6231 The ``addr`` field is a pointer to the destin << 6232 the writable masks. << 6233 << 6234 The ``range`` field indicates the requested r << 6235 ``KVM_CHECK_EXTENSION`` for the ``KVM_CAP_ARM << 6236 capability returns the supported ranges, expr << 6237 flag's bit index represents a possible value << 6238 All other values are reserved for future use << 6239 << 6240 The ``reserved[13]`` array is reserved for fu << 6241 KVM may return an error. << 6242 << 6243 KVM_ARM_FEATURE_ID_RANGE (0) << 6244 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ << 6245 << 6246 The Feature ID range is defined as the AArch6 << 6247 op0==3, op1=={0, 1, 3}, CRn==0, CRm=={0-7}, o << 6248 << 6249 The mask returned array pointed to by ``addr` << 6250 ``ARM64_FEATURE_ID_RANGE_IDX(op0, op1, crn, c << 6251 to know what fields can be changed for the sy << 6252 ``op0, op1, crn, crm, op2``. KVM rejects ID r << 6253 superset of the features supported by the sys << 6254 << 6255 4.140 KVM_SET_USER_MEMORY_REGION2 << 6256 --------------------------------- << 6257 << 6258 :Capability: KVM_CAP_USER_MEMORY2 << 6259 :Architectures: all << 6260 :Type: vm ioctl << 6261 :Parameters: struct kvm_userspace_memory_regi << 6262 :Returns: 0 on success, -1 on error << 6263 << 6264 KVM_SET_USER_MEMORY_REGION2 is an extension t << 6265 allows mapping guest_memfd memory into a gues << 6266 KVM_SET_USER_MEMORY_REGION identically. User << 6267 in flags to have KVM bind the memory region t << 6268 [guest_memfd_offset, guest_memfd_offset + mem << 6269 must point at a file created via KVM_CREATE_G << 6270 the target range must not be bound to any oth << 6271 bounds checks apply (use common sense). << 6272 << 6273 :: << 6274 << 6275 struct kvm_userspace_memory_region2 { << 6276 __u32 slot; << 6277 __u32 flags; << 6278 __u64 guest_phys_addr; << 6279 __u64 memory_size; /* bytes */ << 6280 __u64 userspace_addr; /* start of the << 6281 __u64 guest_memfd_offset; << 6282 __u32 guest_memfd; << 6283 __u32 pad1; << 6284 __u64 pad2[14]; << 6285 }; << 6286 << 6287 A KVM_MEM_GUEST_MEMFD region _must_ have a va << 6288 userspace_addr (shared memory). However, "va << 6289 means that the address itself must be a legal << 6290 mapping for userspace_addr is not required to << 6291 KVM_SET_USER_MEMORY_REGION2, e.g. shared memo << 6292 on-demand. << 6293 << 6294 When mapping a gfn into the guest, KVM select << 6295 userspace_addr vs. guest_memfd, based on the << 6296 state. At VM creation time, all memory is sh << 6297 is '0' for all gfns. Userspace can control w << 6298 toggling KVM_MEMORY_ATTRIBUTE_PRIVATE via KVM << 6299 << 6300 S390: << 6301 ^^^^^ << 6302 << 6303 Returns -EINVAL if the VM has the KVM_VM_S390 << 6304 Returns -EINVAL if called on a protected VM. << 6305 << 6306 4.141 KVM_SET_MEMORY_ATTRIBUTES << 6307 ------------------------------- << 6308 << 6309 :Capability: KVM_CAP_MEMORY_ATTRIBUTES << 6310 :Architectures: x86 << 6311 :Type: vm ioctl << 6312 :Parameters: struct kvm_memory_attributes (in << 6313 :Returns: 0 on success, <0 on error << 6314 << 6315 KVM_SET_MEMORY_ATTRIBUTES allows userspace to << 6316 of guest physical memory. << 6317 << 6318 :: << 6319 << 6320 struct kvm_memory_attributes { << 6321 __u64 address; << 6322 __u64 size; << 6323 __u64 attributes; << 6324 __u64 flags; << 6325 }; << 6326 << 6327 #define KVM_MEMORY_ATTRIBUTE_PRIVATE << 6328 << 6329 The address and size must be page aligned. T << 6330 retrieved via ioctl(KVM_CHECK_EXTENSION) on K << 6331 executed on a VM, KVM_CAP_MEMORY_ATTRIBUTES p << 6332 supported by that VM. If executed at system << 6333 returns all attributes supported by KVM. The << 6334 time is KVM_MEMORY_ATTRIBUTE_PRIVATE, which m << 6335 guest private memory. << 6336 << 6337 Note, there is no "get" API. Userspace is re << 6338 the state of a gfn/page as needed. << 6339 << 6340 The "flags" field is reserved for future exte << 6341 << 6342 4.142 KVM_CREATE_GUEST_MEMFD << 6343 ---------------------------- << 6344 << 6345 :Capability: KVM_CAP_GUEST_MEMFD << 6346 :Architectures: none << 6347 :Type: vm ioctl << 6348 :Parameters: struct kvm_create_guest_memfd(in << 6349 :Returns: A file descriptor on success, <0 on << 6350 << 6351 KVM_CREATE_GUEST_MEMFD creates an anonymous f << 6352 that refers to it. guest_memfd files are rou << 6353 via memfd_create(), e.g. guest_memfd files li << 6354 and are automatically released when the last << 6355 "regular" memfd_create() files, guest_memfd f << 6356 virtual machine (see below), cannot be mapped << 6357 and cannot be resized (guest_memfd files do << 6358 << 6359 :: << 6360 << 6361 struct kvm_create_guest_memfd { << 6362 __u64 size; << 6363 __u64 flags; << 6364 __u64 reserved[6]; << 6365 }; << 6366 << 6367 Conceptually, the inode backing a guest_memfd << 6368 i.e. is coupled to the virtual machine as a t << 6369 file itself, which is bound to a "struct kvm" << 6370 underlying memory, e.g. effectively provides << 6371 to host memory. This allows for use cases wh << 6372 used to manage a single virtual machine, e.g. << 6373 migration of a virtual machine. << 6374 << 6375 KVM currently only supports mapping guest_mem << 6376 and more specifically via the guest_memfd and << 6377 "struct kvm_userspace_memory_region2", where << 6378 into the guest_memfd instance. For a given g << 6379 most one mapping per page, i.e. binding multi << 6380 guest_memfd range is not allowed (any number << 6381 a single guest_memfd file, but the bound rang << 6382 << 6383 See KVM_SET_USER_MEMORY_REGION2 for additiona << 6384 << 6385 4.143 KVM_PRE_FAULT_MEMORY << 6386 --------------------------- << 6387 << 6388 :Capability: KVM_CAP_PRE_FAULT_MEMORY << 6389 :Architectures: none << 6390 :Type: vcpu ioctl << 6391 :Parameters: struct kvm_pre_fault_memory (in/ << 6392 :Returns: 0 if at least one page is processed << 6393 << 6394 Errors: << 6395 << 6396 ========== ================================ << 6397 EINVAL The specified `gpa` and `size` w << 6398 page aligned, causes an overflow << 6399 ENOENT The specified `gpa` is outside d << 6400 EINTR An unmasked signal is pending an << 6401 EFAULT The parameter address was invali << 6402 EOPNOTSUPP Mapping memory for a GPA is unsu << 6403 hypervisor, and/or for the curre << 6404 EIO unexpected error conditions (als << 6405 ========== ================================ << 6406 << 6407 :: << 6408 << 6409 struct kvm_pre_fault_memory { << 6410 /* in/out */ << 6411 __u64 gpa; << 6412 __u64 size; << 6413 /* in */ << 6414 __u64 flags; << 6415 __u64 padding[5]; << 6416 }; << 6417 << 6418 KVM_PRE_FAULT_MEMORY populates KVM's stage-2 << 6419 for the current vCPU state. KVM maps memory << 6420 stage-2 read page fault, e.g. faults in memor << 6421 CoW. However, KVM does not mark any newly cr << 6422 << 6423 In the case of confidential VM types where th << 6424 private guest memory before the guest is 'fin << 6425 should only be issued after completing all th << 6426 guest into a 'finalized' state so that the ab << 6427 ensured. << 6428 << 6429 In some cases, multiple vCPUs might share the << 6430 case, the ioctl can be called in parallel. << 6431 << 6432 When the ioctl returns, the input values are << 6433 remaining range. If `size` > 0 on return, th << 6434 the ioctl again with the same `struct kvm_map << 6435 << 6436 Shadow page tables cannot support this ioctl << 6437 are indexed by virtual address or nested gues << 6438 Calling this ioctl when the guest is using sh << 6439 example because it is running a nested guest << 6440 will fail with `EOPNOTSUPP` even if `KVM_CHEC << 6441 the capability to be present. << 6442 << 6443 `flags` must currently be zero. << 6444 << 6445 << 6446 5. The kvm_run structure 5946 5. The kvm_run structure 6447 ======================== 5947 ======================== 6448 5948 6449 Application code obtains a pointer to the kvm 5949 Application code obtains a pointer to the kvm_run structure by 6450 mmap()ing a vcpu fd. From that point, applic 5950 mmap()ing a vcpu fd. From that point, application code can control 6451 execution by changing fields in kvm_run prior 5951 execution by changing fields in kvm_run prior to calling the KVM_RUN 6452 ioctl, and obtain information about the reaso 5952 ioctl, and obtain information about the reason KVM_RUN returned by 6453 looking up structure members. 5953 looking up structure members. 6454 5954 6455 :: 5955 :: 6456 5956 6457 struct kvm_run { 5957 struct kvm_run { 6458 /* in */ 5958 /* in */ 6459 __u8 request_interrupt_window; 5959 __u8 request_interrupt_window; 6460 5960 6461 Request that KVM_RUN return when it becomes p 5961 Request that KVM_RUN return when it becomes possible to inject external 6462 interrupts into the guest. Useful in conjunc 5962 interrupts into the guest. Useful in conjunction with KVM_INTERRUPT. 6463 5963 6464 :: 5964 :: 6465 5965 6466 __u8 immediate_exit; 5966 __u8 immediate_exit; 6467 5967 6468 This field is polled once when KVM_RUN starts 5968 This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN 6469 exits immediately, returning -EINTR. In the 5969 exits immediately, returning -EINTR. In the common scenario where a 6470 signal is used to "kick" a VCPU out of KVM_RU 5970 signal is used to "kick" a VCPU out of KVM_RUN, this field can be used 6471 to avoid usage of KVM_SET_SIGNAL_MASK, which 5971 to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability. 6472 Rather than blocking the signal outside KVM_R 5972 Rather than blocking the signal outside KVM_RUN, userspace can set up 6473 a signal handler that sets run->immediate_exi 5973 a signal handler that sets run->immediate_exit to a non-zero value. 6474 5974 6475 This field is ignored if KVM_CAP_IMMEDIATE_EX 5975 This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available. 6476 5976 6477 :: 5977 :: 6478 5978 6479 __u8 padding1[6]; 5979 __u8 padding1[6]; 6480 5980 6481 /* out */ 5981 /* out */ 6482 __u32 exit_reason; 5982 __u32 exit_reason; 6483 5983 6484 When KVM_RUN has returned successfully (retur 5984 When KVM_RUN has returned successfully (return value 0), this informs 6485 application code why KVM_RUN has returned. A 5985 application code why KVM_RUN has returned. Allowable values for this 6486 field are detailed below. 5986 field are detailed below. 6487 5987 6488 :: 5988 :: 6489 5989 6490 __u8 ready_for_interrupt_injection; 5990 __u8 ready_for_interrupt_injection; 6491 5991 6492 If request_interrupt_window has been specifie 5992 If request_interrupt_window has been specified, this field indicates 6493 an interrupt can be injected now with KVM_INT 5993 an interrupt can be injected now with KVM_INTERRUPT. 6494 5994 6495 :: 5995 :: 6496 5996 6497 __u8 if_flag; 5997 __u8 if_flag; 6498 5998 6499 The value of the current interrupt flag. Onl 5999 The value of the current interrupt flag. Only valid if in-kernel 6500 local APIC is not used. 6000 local APIC is not used. 6501 6001 6502 :: 6002 :: 6503 6003 6504 __u16 flags; 6004 __u16 flags; 6505 6005 6506 More architecture-specific flags detailing st 6006 More architecture-specific flags detailing state of the VCPU that may 6507 affect the device's behavior. Current defined 6007 affect the device's behavior. Current defined flags:: 6508 6008 6509 /* x86, set if the VCPU is in system manage 6009 /* x86, set if the VCPU is in system management mode */ 6510 #define KVM_RUN_X86_SMM (1 << 0) !! 6010 #define KVM_RUN_X86_SMM (1 << 0) 6511 /* x86, set if bus lock detected in VM */ 6011 /* x86, set if bus lock detected in VM */ 6512 #define KVM_RUN_X86_BUS_LOCK (1 << 1) !! 6012 #define KVM_RUN_BUS_LOCK (1 << 1) 6513 /* x86, set if the VCPU is executing a nest << 6514 #define KVM_RUN_X86_GUEST_MODE (1 << 2) << 6515 << 6516 /* arm64, set for KVM_EXIT_DEBUG */ 6013 /* arm64, set for KVM_EXIT_DEBUG */ 6517 #define KVM_DEBUG_ARCH_HSR_HIGH_VALID (1 < 6014 #define KVM_DEBUG_ARCH_HSR_HIGH_VALID (1 << 0) 6518 6015 6519 :: 6016 :: 6520 6017 6521 /* in (pre_kvm_run), out (post_kvm_ru 6018 /* in (pre_kvm_run), out (post_kvm_run) */ 6522 __u64 cr8; 6019 __u64 cr8; 6523 6020 6524 The value of the cr8 register. Only valid if 6021 The value of the cr8 register. Only valid if in-kernel local APIC is 6525 not used. Both input and output. 6022 not used. Both input and output. 6526 6023 6527 :: 6024 :: 6528 6025 6529 __u64 apic_base; 6026 __u64 apic_base; 6530 6027 6531 The value of the APIC BASE msr. Only valid i 6028 The value of the APIC BASE msr. Only valid if in-kernel local 6532 APIC is not used. Both input and output. 6029 APIC is not used. Both input and output. 6533 6030 6534 :: 6031 :: 6535 6032 6536 union { 6033 union { 6537 /* KVM_EXIT_UNKNOWN */ 6034 /* KVM_EXIT_UNKNOWN */ 6538 struct { 6035 struct { 6539 __u64 hardware_exit_r 6036 __u64 hardware_exit_reason; 6540 } hw; 6037 } hw; 6541 6038 6542 If exit_reason is KVM_EXIT_UNKNOWN, the vcpu 6039 If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown 6543 reasons. Further architecture-specific infor 6040 reasons. Further architecture-specific information is available in 6544 hardware_exit_reason. 6041 hardware_exit_reason. 6545 6042 6546 :: 6043 :: 6547 6044 6548 /* KVM_EXIT_FAIL_ENTRY */ 6045 /* KVM_EXIT_FAIL_ENTRY */ 6549 struct { 6046 struct { 6550 __u64 hardware_entry_ 6047 __u64 hardware_entry_failure_reason; 6551 __u32 cpu; /* if KVM_ 6048 __u32 cpu; /* if KVM_LAST_CPU */ 6552 } fail_entry; 6049 } fail_entry; 6553 6050 6554 If exit_reason is KVM_EXIT_FAIL_ENTRY, the vc 6051 If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due 6555 to unknown reasons. Further architecture-spe 6052 to unknown reasons. Further architecture-specific information is 6556 available in hardware_entry_failure_reason. 6053 available in hardware_entry_failure_reason. 6557 6054 6558 :: 6055 :: 6559 6056 6560 /* KVM_EXIT_EXCEPTION */ 6057 /* KVM_EXIT_EXCEPTION */ 6561 struct { 6058 struct { 6562 __u32 exception; 6059 __u32 exception; 6563 __u32 error_code; 6060 __u32 error_code; 6564 } ex; 6061 } ex; 6565 6062 6566 Unused. 6063 Unused. 6567 6064 6568 :: 6065 :: 6569 6066 6570 /* KVM_EXIT_IO */ 6067 /* KVM_EXIT_IO */ 6571 struct { 6068 struct { 6572 #define KVM_EXIT_IO_IN 0 6069 #define KVM_EXIT_IO_IN 0 6573 #define KVM_EXIT_IO_OUT 1 6070 #define KVM_EXIT_IO_OUT 1 6574 __u8 direction; 6071 __u8 direction; 6575 __u8 size; /* bytes * 6072 __u8 size; /* bytes */ 6576 __u16 port; 6073 __u16 port; 6577 __u32 count; 6074 __u32 count; 6578 __u64 data_offset; /* 6075 __u64 data_offset; /* relative to kvm_run start */ 6579 } io; 6076 } io; 6580 6077 6581 If exit_reason is KVM_EXIT_IO, then the vcpu 6078 If exit_reason is KVM_EXIT_IO, then the vcpu has 6582 executed a port I/O instruction which could n 6079 executed a port I/O instruction which could not be satisfied by kvm. 6583 data_offset describes where the data is locat 6080 data_offset describes where the data is located (KVM_EXIT_IO_OUT) or 6584 where kvm expects application code to place t 6081 where kvm expects application code to place the data for the next 6585 KVM_RUN invocation (KVM_EXIT_IO_IN). Data fo 6082 KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array. 6586 6083 6587 :: 6084 :: 6588 6085 6589 /* KVM_EXIT_DEBUG */ 6086 /* KVM_EXIT_DEBUG */ 6590 struct { 6087 struct { 6591 struct kvm_debug_exit 6088 struct kvm_debug_exit_arch arch; 6592 } debug; 6089 } debug; 6593 6090 6594 If the exit_reason is KVM_EXIT_DEBUG, then a 6091 If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event 6595 for which architecture specific information i 6092 for which architecture specific information is returned. 6596 6093 6597 :: 6094 :: 6598 6095 6599 /* KVM_EXIT_MMIO */ 6096 /* KVM_EXIT_MMIO */ 6600 struct { 6097 struct { 6601 __u64 phys_addr; 6098 __u64 phys_addr; 6602 __u8 data[8]; 6099 __u8 data[8]; 6603 __u32 len; 6100 __u32 len; 6604 __u8 is_write; 6101 __u8 is_write; 6605 } mmio; 6102 } mmio; 6606 6103 6607 If exit_reason is KVM_EXIT_MMIO, then the vcp 6104 If exit_reason is KVM_EXIT_MMIO, then the vcpu has 6608 executed a memory-mapped I/O instruction whic 6105 executed a memory-mapped I/O instruction which could not be satisfied 6609 by kvm. The 'data' member contains the writt 6106 by kvm. The 'data' member contains the written data if 'is_write' is 6610 true, and should be filled by application cod 6107 true, and should be filled by application code otherwise. 6611 6108 6612 The 'data' member contains, in its first 'len 6109 The 'data' member contains, in its first 'len' bytes, the value as it would 6613 appear if the VCPU performed a load or store 6110 appear if the VCPU performed a load or store of the appropriate width directly 6614 to the byte array. 6111 to the byte array. 6615 6112 6616 .. note:: 6113 .. note:: 6617 6114 6618 For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXI 6115 For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR, KVM_EXIT_XEN, 6619 KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KV 6116 KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR the corresponding 6620 operations are complete (and guest stat 6117 operations are complete (and guest state is consistent) only after userspace 6621 has re-entered the kernel with KVM_RUN. 6118 has re-entered the kernel with KVM_RUN. The kernel side will first finish 6622 incomplete operations and then check fo 6119 incomplete operations and then check for pending signals. 6623 6120 6624 The pending state of the operation is n 6121 The pending state of the operation is not preserved in state which is 6625 visible to userspace, thus userspace sh 6122 visible to userspace, thus userspace should ensure that the operation is 6626 completed before performing a live migr 6123 completed before performing a live migration. Userspace can re-enter the 6627 guest with an unmasked signal pending o 6124 guest with an unmasked signal pending or with the immediate_exit field set 6628 to complete pending operations without 6125 to complete pending operations without allowing any further instructions 6629 to be executed. 6126 to be executed. 6630 6127 6631 :: 6128 :: 6632 6129 6633 /* KVM_EXIT_HYPERCALL */ 6130 /* KVM_EXIT_HYPERCALL */ 6634 struct { 6131 struct { 6635 __u64 nr; 6132 __u64 nr; 6636 __u64 args[6]; 6133 __u64 args[6]; 6637 __u64 ret; 6134 __u64 ret; 6638 __u64 flags; !! 6135 __u32 longmode; >> 6136 __u32 pad; 6639 } hypercall; 6137 } hypercall; 6640 6138 6641 !! 6139 Unused. This was once used for 'hypercall to userspace'. To implement 6642 It is strongly recommended that userspace use !! 6140 such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390). 6643 ``KVM_EXIT_MMIO`` (all except s390) to implem << 6644 requires a guest to interact with host usersp << 6645 6141 6646 .. note:: KVM_EXIT_IO is significantly faster 6142 .. note:: KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO. 6647 6143 6648 For arm64: << 6649 ---------- << 6650 << 6651 SMCCC exits can be enabled depending on the c << 6652 filter. See the Documentation/virt/kvm/device << 6653 ``KVM_ARM_SMCCC_FILTER`` for more details. << 6654 << 6655 ``nr`` contains the function ID of the guest' << 6656 expected to use the ``KVM_GET_ONE_REG`` ioctl << 6657 parameters from the vCPU's GPRs. << 6658 << 6659 Definition of ``flags``: << 6660 - ``KVM_HYPERCALL_EXIT_SMC``: Indicates that << 6661 conduit to initiate the SMCCC call. If thi << 6662 used the HVC conduit for the SMCCC call. << 6663 << 6664 - ``KVM_HYPERCALL_EXIT_16BIT``: Indicates th << 6665 instruction to initiate the SMCCC call. If << 6666 guest used a 32bit instruction. An AArch64 << 6667 bit set to 0. << 6668 << 6669 At the point of exit, PC points to the instru << 6670 the trapping instruction. << 6671 << 6672 :: 6144 :: 6673 6145 6674 /* KVM_EXIT_TPR_ACCESS */ 6146 /* KVM_EXIT_TPR_ACCESS */ 6675 struct { 6147 struct { 6676 __u64 rip; 6148 __u64 rip; 6677 __u32 is_write; 6149 __u32 is_write; 6678 __u32 pad; 6150 __u32 pad; 6679 } tpr_access; 6151 } tpr_access; 6680 6152 6681 To be documented (KVM_TPR_ACCESS_REPORTING). 6153 To be documented (KVM_TPR_ACCESS_REPORTING). 6682 6154 6683 :: 6155 :: 6684 6156 6685 /* KVM_EXIT_S390_SIEIC */ 6157 /* KVM_EXIT_S390_SIEIC */ 6686 struct { 6158 struct { 6687 __u8 icptcode; 6159 __u8 icptcode; 6688 __u64 mask; /* psw up 6160 __u64 mask; /* psw upper half */ 6689 __u64 addr; /* psw lo 6161 __u64 addr; /* psw lower half */ 6690 __u16 ipa; 6162 __u16 ipa; 6691 __u32 ipb; 6163 __u32 ipb; 6692 } s390_sieic; 6164 } s390_sieic; 6693 6165 6694 s390 specific. 6166 s390 specific. 6695 6167 6696 :: 6168 :: 6697 6169 6698 /* KVM_EXIT_S390_RESET */ 6170 /* KVM_EXIT_S390_RESET */ 6699 #define KVM_S390_RESET_POR 1 6171 #define KVM_S390_RESET_POR 1 6700 #define KVM_S390_RESET_CLEAR 2 6172 #define KVM_S390_RESET_CLEAR 2 6701 #define KVM_S390_RESET_SUBSYSTEM 4 6173 #define KVM_S390_RESET_SUBSYSTEM 4 6702 #define KVM_S390_RESET_CPU_INIT 8 6174 #define KVM_S390_RESET_CPU_INIT 8 6703 #define KVM_S390_RESET_IPL 16 6175 #define KVM_S390_RESET_IPL 16 6704 __u64 s390_reset_flags; 6176 __u64 s390_reset_flags; 6705 6177 6706 s390 specific. 6178 s390 specific. 6707 6179 6708 :: 6180 :: 6709 6181 6710 /* KVM_EXIT_S390_UCONTROL */ 6182 /* KVM_EXIT_S390_UCONTROL */ 6711 struct { 6183 struct { 6712 __u64 trans_exc_code; 6184 __u64 trans_exc_code; 6713 __u32 pgm_code; 6185 __u32 pgm_code; 6714 } s390_ucontrol; 6186 } s390_ucontrol; 6715 6187 6716 s390 specific. A page fault has occurred for 6188 s390 specific. A page fault has occurred for a user controlled virtual 6717 machine (KVM_VM_S390_UNCONTROL) on its host p !! 6189 machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be 6718 resolved by the kernel. 6190 resolved by the kernel. 6719 The program code and the translation exceptio 6191 The program code and the translation exception code that were placed 6720 in the cpu's lowcore are presented here as de 6192 in the cpu's lowcore are presented here as defined by the z Architecture 6721 Principles of Operation Book in the Chapter f 6193 Principles of Operation Book in the Chapter for Dynamic Address Translation 6722 (DAT) 6194 (DAT) 6723 6195 6724 :: 6196 :: 6725 6197 6726 /* KVM_EXIT_DCR */ 6198 /* KVM_EXIT_DCR */ 6727 struct { 6199 struct { 6728 __u32 dcrn; 6200 __u32 dcrn; 6729 __u32 data; 6201 __u32 data; 6730 __u8 is_write; 6202 __u8 is_write; 6731 } dcr; 6203 } dcr; 6732 6204 6733 Deprecated - was used for 440 KVM. 6205 Deprecated - was used for 440 KVM. 6734 6206 6735 :: 6207 :: 6736 6208 6737 /* KVM_EXIT_OSI */ 6209 /* KVM_EXIT_OSI */ 6738 struct { 6210 struct { 6739 __u64 gprs[32]; 6211 __u64 gprs[32]; 6740 } osi; 6212 } osi; 6741 6213 6742 MOL uses a special hypercall interface it cal 6214 MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch 6743 hypercalls and exit with this exit struct tha 6215 hypercalls and exit with this exit struct that contains all the guest gprs. 6744 6216 6745 If exit_reason is KVM_EXIT_OSI, then the vcpu 6217 If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall. 6746 Userspace can now handle the hypercall and wh 6218 Userspace can now handle the hypercall and when it's done modify the gprs as 6747 necessary. Upon guest entry all guest GPRs wi 6219 necessary. Upon guest entry all guest GPRs will then be replaced by the values 6748 in this struct. 6220 in this struct. 6749 6221 6750 :: 6222 :: 6751 6223 6752 /* KVM_EXIT_PAPR_HCALL */ 6224 /* KVM_EXIT_PAPR_HCALL */ 6753 struct { 6225 struct { 6754 __u64 nr; 6226 __u64 nr; 6755 __u64 ret; 6227 __u64 ret; 6756 __u64 args[9]; 6228 __u64 args[9]; 6757 } papr_hcall; 6229 } papr_hcall; 6758 6230 6759 This is used on 64-bit PowerPC when emulating 6231 This is used on 64-bit PowerPC when emulating a pSeries partition, 6760 e.g. with the 'pseries' machine type in qemu. 6232 e.g. with the 'pseries' machine type in qemu. It occurs when the 6761 guest does a hypercall using the 'sc 1' instr 6233 guest does a hypercall using the 'sc 1' instruction. The 'nr' field 6762 contains the hypercall number (from the guest 6234 contains the hypercall number (from the guest R3), and 'args' contains 6763 the arguments (from the guest R4 - R12). Use 6235 the arguments (from the guest R4 - R12). Userspace should put the 6764 return code in 'ret' and any extra returned v 6236 return code in 'ret' and any extra returned values in args[]. 6765 The possible hypercalls are defined in the Po 6237 The possible hypercalls are defined in the Power Architecture Platform 6766 Requirements (PAPR) document available from w 6238 Requirements (PAPR) document available from www.power.org (free 6767 developer registration required to access it) 6239 developer registration required to access it). 6768 6240 6769 :: 6241 :: 6770 6242 6771 /* KVM_EXIT_S390_TSCH */ 6243 /* KVM_EXIT_S390_TSCH */ 6772 struct { 6244 struct { 6773 __u16 subchannel_id; 6245 __u16 subchannel_id; 6774 __u16 subchannel_nr; 6246 __u16 subchannel_nr; 6775 __u32 io_int_parm; 6247 __u32 io_int_parm; 6776 __u32 io_int_word; 6248 __u32 io_int_word; 6777 __u32 ipb; 6249 __u32 ipb; 6778 __u8 dequeued; 6250 __u8 dequeued; 6779 } s390_tsch; 6251 } s390_tsch; 6780 6252 6781 s390 specific. This exit occurs when KVM_CAP_ 6253 s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled 6782 and TEST SUBCHANNEL was intercepted. If deque 6254 and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O 6783 interrupt for the target subchannel has been 6255 interrupt for the target subchannel has been dequeued and subchannel_id, 6784 subchannel_nr, io_int_parm and io_int_word co 6256 subchannel_nr, io_int_parm and io_int_word contain the parameters for that 6785 interrupt. ipb is needed for instruction para 6257 interrupt. ipb is needed for instruction parameter decoding. 6786 6258 6787 :: 6259 :: 6788 6260 6789 /* KVM_EXIT_EPR */ 6261 /* KVM_EXIT_EPR */ 6790 struct { 6262 struct { 6791 __u32 epr; 6263 __u32 epr; 6792 } epr; 6264 } epr; 6793 6265 6794 On FSL BookE PowerPC chips, the interrupt con 6266 On FSL BookE PowerPC chips, the interrupt controller has a fast patch 6795 interrupt acknowledge path to the core. When 6267 interrupt acknowledge path to the core. When the core successfully 6796 delivers an interrupt, it automatically popul 6268 delivers an interrupt, it automatically populates the EPR register with 6797 the interrupt vector number and acknowledges 6269 the interrupt vector number and acknowledges the interrupt inside 6798 the interrupt controller. 6270 the interrupt controller. 6799 6271 6800 In case the interrupt controller lives in use 6272 In case the interrupt controller lives in user space, we need to do 6801 the interrupt acknowledge cycle through it to 6273 the interrupt acknowledge cycle through it to fetch the next to be 6802 delivered interrupt vector using this exit. 6274 delivered interrupt vector using this exit. 6803 6275 6804 It gets triggered whenever both KVM_CAP_PPC_E 6276 It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an 6805 external interrupt has just been delivered in 6277 external interrupt has just been delivered into the guest. User space 6806 should put the acknowledged interrupt vector 6278 should put the acknowledged interrupt vector into the 'epr' field. 6807 6279 6808 :: 6280 :: 6809 6281 6810 /* KVM_EXIT_SYSTEM_EVENT */ 6282 /* KVM_EXIT_SYSTEM_EVENT */ 6811 struct { 6283 struct { 6812 #define KVM_SYSTEM_EVENT_SHUTDOWN 1 6284 #define KVM_SYSTEM_EVENT_SHUTDOWN 1 6813 #define KVM_SYSTEM_EVENT_RESET 2 6285 #define KVM_SYSTEM_EVENT_RESET 2 6814 #define KVM_SYSTEM_EVENT_CRASH 3 6286 #define KVM_SYSTEM_EVENT_CRASH 3 6815 #define KVM_SYSTEM_EVENT_WAKEUP 4 6287 #define KVM_SYSTEM_EVENT_WAKEUP 4 6816 #define KVM_SYSTEM_EVENT_SUSPEND 5 6288 #define KVM_SYSTEM_EVENT_SUSPEND 5 6817 #define KVM_SYSTEM_EVENT_SEV_TERM 6 6289 #define KVM_SYSTEM_EVENT_SEV_TERM 6 6818 __u32 type; 6290 __u32 type; 6819 __u32 ndata; 6291 __u32 ndata; 6820 __u64 data[16]; 6292 __u64 data[16]; 6821 } system_event; 6293 } system_event; 6822 6294 6823 If exit_reason is KVM_EXIT_SYSTEM_EVENT then 6295 If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered 6824 a system-level event using some architecture 6296 a system-level event using some architecture specific mechanism (hypercall 6825 or some special instruction). In case of ARM6 6297 or some special instruction). In case of ARM64, this is triggered using 6826 HVC instruction based PSCI call from the vcpu 6298 HVC instruction based PSCI call from the vcpu. 6827 6299 6828 The 'type' field describes the system-level e 6300 The 'type' field describes the system-level event type. 6829 Valid values for 'type' are: 6301 Valid values for 'type' are: 6830 6302 6831 - KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has 6303 - KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the 6832 VM. Userspace is not obliged to honour thi 6304 VM. Userspace is not obliged to honour this, and if it does honour 6833 this does not need to destroy the VM synch 6305 this does not need to destroy the VM synchronously (ie it may call 6834 KVM_RUN again before shutdown finally occu 6306 KVM_RUN again before shutdown finally occurs). 6835 - KVM_SYSTEM_EVENT_RESET -- the guest has re 6307 - KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM. 6836 As with SHUTDOWN, userspace can choose to 6308 As with SHUTDOWN, userspace can choose to ignore the request, or 6837 to schedule the reset to occur in the futu 6309 to schedule the reset to occur in the future and may call KVM_RUN again. 6838 - KVM_SYSTEM_EVENT_CRASH -- the guest crash 6310 - KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest 6839 has requested a crash condition maintenanc 6311 has requested a crash condition maintenance. Userspace can choose 6840 to ignore the request, or to gather VM mem 6312 to ignore the request, or to gather VM memory core dump and/or 6841 reset/shutdown of the VM. 6313 reset/shutdown of the VM. 6842 - KVM_SYSTEM_EVENT_SEV_TERM -- an AMD SEV gu 6314 - KVM_SYSTEM_EVENT_SEV_TERM -- an AMD SEV guest requested termination. 6843 The guest physical address of the guest's 6315 The guest physical address of the guest's GHCB is stored in `data[0]`. 6844 - KVM_SYSTEM_EVENT_WAKEUP -- the exiting vCP 6316 - KVM_SYSTEM_EVENT_WAKEUP -- the exiting vCPU is in a suspended state and 6845 KVM has recognized a wakeup event. Userspa 6317 KVM has recognized a wakeup event. Userspace may honor this event by 6846 marking the exiting vCPU as runnable, or d 6318 marking the exiting vCPU as runnable, or deny it and call KVM_RUN again. 6847 - KVM_SYSTEM_EVENT_SUSPEND -- the guest has 6319 - KVM_SYSTEM_EVENT_SUSPEND -- the guest has requested a suspension of 6848 the VM. 6320 the VM. 6849 6321 6850 If KVM_CAP_SYSTEM_EVENT_DATA is present, the 6322 If KVM_CAP_SYSTEM_EVENT_DATA is present, the 'data' field can contain 6851 architecture specific information for the sys 6323 architecture specific information for the system-level event. Only 6852 the first `ndata` items (possibly zero) of th 6324 the first `ndata` items (possibly zero) of the data array are valid. 6853 6325 6854 - for arm64, data[0] is set to KVM_SYSTEM_EV 6326 - for arm64, data[0] is set to KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2 if 6855 the guest issued a SYSTEM_RESET2 call acco 6327 the guest issued a SYSTEM_RESET2 call according to v1.1 of the PSCI 6856 specification. 6328 specification. 6857 6329 6858 - for RISC-V, data[0] is set to the value of 6330 - for RISC-V, data[0] is set to the value of the second argument of the 6859 ``sbi_system_reset`` call. 6331 ``sbi_system_reset`` call. 6860 6332 6861 Previous versions of Linux defined a `flags` 6333 Previous versions of Linux defined a `flags` member in this struct. The 6862 field is now aliased to `data[0]`. Userspace 6334 field is now aliased to `data[0]`. Userspace can assume that it is only 6863 written if ndata is greater than 0. 6335 written if ndata is greater than 0. 6864 6336 6865 For arm/arm64: 6337 For arm/arm64: 6866 -------------- 6338 -------------- 6867 6339 6868 KVM_SYSTEM_EVENT_SUSPEND exits are enabled wi 6340 KVM_SYSTEM_EVENT_SUSPEND exits are enabled with the 6869 KVM_CAP_ARM_SYSTEM_SUSPEND VM capability. If 6341 KVM_CAP_ARM_SYSTEM_SUSPEND VM capability. If a guest invokes the PSCI 6870 SYSTEM_SUSPEND function, KVM will exit to use 6342 SYSTEM_SUSPEND function, KVM will exit to userspace with this event 6871 type. 6343 type. 6872 6344 6873 It is the sole responsibility of userspace to 6345 It is the sole responsibility of userspace to implement the PSCI 6874 SYSTEM_SUSPEND call according to ARM DEN0022D 6346 SYSTEM_SUSPEND call according to ARM DEN0022D.b 5.19 "SYSTEM_SUSPEND". 6875 KVM does not change the vCPU's state before e 6347 KVM does not change the vCPU's state before exiting to userspace, so 6876 the call parameters are left in-place in the 6348 the call parameters are left in-place in the vCPU registers. 6877 6349 6878 Userspace is _required_ to take action for su 6350 Userspace is _required_ to take action for such an exit. It must 6879 either: 6351 either: 6880 6352 6881 - Honor the guest request to suspend the VM. 6353 - Honor the guest request to suspend the VM. Userspace can request 6882 in-kernel emulation of suspension by setti 6354 in-kernel emulation of suspension by setting the calling vCPU's 6883 state to KVM_MP_STATE_SUSPENDED. Userspace 6355 state to KVM_MP_STATE_SUSPENDED. Userspace must configure the vCPU's 6884 state according to the parameters passed t 6356 state according to the parameters passed to the PSCI function when 6885 the calling vCPU is resumed. See ARM DEN00 6357 the calling vCPU is resumed. See ARM DEN0022D.b 5.19.1 "Intended use" 6886 for details on the function parameters. 6358 for details on the function parameters. 6887 6359 6888 - Deny the guest request to suspend the VM. 6360 - Deny the guest request to suspend the VM. See ARM DEN0022D.b 5.19.2 6889 "Caller responsibilities" for possible ret 6361 "Caller responsibilities" for possible return values. 6890 6362 6891 :: 6363 :: 6892 6364 6893 /* KVM_EXIT_IOAPIC_EOI */ 6365 /* KVM_EXIT_IOAPIC_EOI */ 6894 struct { 6366 struct { 6895 __u8 vector; 6367 __u8 vector; 6896 } eoi; 6368 } eoi; 6897 6369 6898 Indicates that the VCPU's in-kernel local API 6370 Indicates that the VCPU's in-kernel local APIC received an EOI for a 6899 level-triggered IOAPIC interrupt. This exit 6371 level-triggered IOAPIC interrupt. This exit only triggers when the 6900 IOAPIC is implemented in userspace (i.e. KVM_ 6372 IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled); 6901 the userspace IOAPIC should process the EOI a 6373 the userspace IOAPIC should process the EOI and retrigger the interrupt if 6902 it is still asserted. Vector is the LAPIC in 6374 it is still asserted. Vector is the LAPIC interrupt vector for which the 6903 EOI was received. 6375 EOI was received. 6904 6376 6905 :: 6377 :: 6906 6378 6907 struct kvm_hyperv_exit { 6379 struct kvm_hyperv_exit { 6908 #define KVM_EXIT_HYPERV_SYNIC 1 6380 #define KVM_EXIT_HYPERV_SYNIC 1 6909 #define KVM_EXIT_HYPERV_HCALL 2 6381 #define KVM_EXIT_HYPERV_HCALL 2 6910 #define KVM_EXIT_HYPERV_SYNDBG 3 6382 #define KVM_EXIT_HYPERV_SYNDBG 3 6911 __u32 type; 6383 __u32 type; 6912 __u32 pad1; 6384 __u32 pad1; 6913 union { 6385 union { 6914 struct { 6386 struct { 6915 __u32 6387 __u32 msr; 6916 __u32 6388 __u32 pad2; 6917 __u64 6389 __u64 control; 6918 __u64 6390 __u64 evt_page; 6919 __u64 6391 __u64 msg_page; 6920 } synic; 6392 } synic; 6921 struct { 6393 struct { 6922 __u64 6394 __u64 input; 6923 __u64 6395 __u64 result; 6924 __u64 6396 __u64 params[2]; 6925 } hcall; 6397 } hcall; 6926 struct { 6398 struct { 6927 __u32 6399 __u32 msr; 6928 __u32 6400 __u32 pad2; 6929 __u64 6401 __u64 control; 6930 __u64 6402 __u64 status; 6931 __u64 6403 __u64 send_page; 6932 __u64 6404 __u64 recv_page; 6933 __u64 6405 __u64 pending_page; 6934 } syndbg; 6406 } syndbg; 6935 } u; 6407 } u; 6936 }; 6408 }; 6937 /* KVM_EXIT_HYPERV */ 6409 /* KVM_EXIT_HYPERV */ 6938 struct kvm_hyperv_exit hyperv 6410 struct kvm_hyperv_exit hyperv; 6939 6411 6940 Indicates that the VCPU exits into userspace 6412 Indicates that the VCPU exits into userspace to process some tasks 6941 related to Hyper-V emulation. 6413 related to Hyper-V emulation. 6942 6414 6943 Valid values for 'type' are: 6415 Valid values for 'type' are: 6944 6416 6945 - KVM_EXIT_HYPERV_SYNIC -- synchronou 6417 - KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about 6946 6418 6947 Hyper-V SynIC state change. Notification is u 6419 Hyper-V SynIC state change. Notification is used to remap SynIC 6948 event/message pages and to enable/disable Syn 6420 event/message pages and to enable/disable SynIC messages/events processing 6949 in userspace. 6421 in userspace. 6950 6422 6951 - KVM_EXIT_HYPERV_SYNDBG -- synchrono 6423 - KVM_EXIT_HYPERV_SYNDBG -- synchronously notify user-space about 6952 6424 6953 Hyper-V Synthetic debugger state change. Noti 6425 Hyper-V Synthetic debugger state change. Notification is used to either update 6954 the pending_page location or to send a contro 6426 the pending_page location or to send a control command (send the buffer located 6955 in send_page or recv a buffer to recv_page). 6427 in send_page or recv a buffer to recv_page). 6956 6428 6957 :: 6429 :: 6958 6430 6959 /* KVM_EXIT_ARM_NISV */ 6431 /* KVM_EXIT_ARM_NISV */ 6960 struct { 6432 struct { 6961 __u64 esr_iss; 6433 __u64 esr_iss; 6962 __u64 fault_ipa; 6434 __u64 fault_ipa; 6963 } arm_nisv; 6435 } arm_nisv; 6964 6436 6965 Used on arm64 systems. If a guest accesses me 6437 Used on arm64 systems. If a guest accesses memory not in a memslot, 6966 KVM will typically return to userspace and as 6438 KVM will typically return to userspace and ask it to do MMIO emulation on its 6967 behalf. However, for certain classes of instr 6439 behalf. However, for certain classes of instructions, no instruction decode 6968 (direction, length of memory access) is provi 6440 (direction, length of memory access) is provided, and fetching and decoding 6969 the instruction from the VM is overly complic 6441 the instruction from the VM is overly complicated to live in the kernel. 6970 6442 6971 Historically, when this situation occurred, K 6443 Historically, when this situation occurred, KVM would print a warning and kill 6972 the VM. KVM assumed that if the guest accesse 6444 the VM. KVM assumed that if the guest accessed non-memslot memory, it was 6973 trying to do I/O, which just couldn't be emul 6445 trying to do I/O, which just couldn't be emulated, and the warning message was 6974 phrased accordingly. However, what happened m 6446 phrased accordingly. However, what happened more often was that a guest bug 6975 caused access outside the guest memory areas 6447 caused access outside the guest memory areas which should lead to a more 6976 meaningful warning message and an external ab 6448 meaningful warning message and an external abort in the guest, if the access 6977 did not fall within an I/O window. 6449 did not fall within an I/O window. 6978 6450 6979 Userspace implementations can query for KVM_C 6451 Userspace implementations can query for KVM_CAP_ARM_NISV_TO_USER, and enable 6980 this capability at VM creation. Once this is 6452 this capability at VM creation. Once this is done, these types of errors will 6981 instead return to userspace with KVM_EXIT_ARM 6453 instead return to userspace with KVM_EXIT_ARM_NISV, with the valid bits from 6982 the ESR_EL2 in the esr_iss field, and the fau 6454 the ESR_EL2 in the esr_iss field, and the faulting IPA in the fault_ipa field. 6983 Userspace can either fix up the access if it' 6455 Userspace can either fix up the access if it's actually an I/O access by 6984 decoding the instruction from guest memory (i 6456 decoding the instruction from guest memory (if it's very brave) and continue 6985 executing the guest, or it can decide to susp 6457 executing the guest, or it can decide to suspend, dump, or restart the guest. 6986 6458 6987 Note that KVM does not skip the faulting inst 6459 Note that KVM does not skip the faulting instruction as it does for 6988 KVM_EXIT_MMIO, but userspace has to emulate a 6460 KVM_EXIT_MMIO, but userspace has to emulate any change to the processing state 6989 if it decides to decode and emulate the instr 6461 if it decides to decode and emulate the instruction. 6990 6462 6991 This feature isn't available to protected VMs << 6992 have access to the state that is required to << 6993 Instead, a data abort exception is directly i << 6994 Note that although KVM_CAP_ARM_NISV_TO_USER w << 6995 queried outside of a protected VM context, th << 6996 exposed if queried on a protected VM file des << 6997 << 6998 :: 6463 :: 6999 6464 7000 /* KVM_EXIT_X86_RDMSR / KVM_E 6465 /* KVM_EXIT_X86_RDMSR / KVM_EXIT_X86_WRMSR */ 7001 struct { 6466 struct { 7002 __u8 error; /* user - 6467 __u8 error; /* user -> kernel */ 7003 __u8 pad[7]; 6468 __u8 pad[7]; 7004 __u32 reason; /* kern 6469 __u32 reason; /* kernel -> user */ 7005 __u32 index; /* kerne 6470 __u32 index; /* kernel -> user */ 7006 __u64 data; /* kernel 6471 __u64 data; /* kernel <-> user */ 7007 } msr; 6472 } msr; 7008 6473 7009 Used on x86 systems. When the VM capability K 6474 Used on x86 systems. When the VM capability KVM_CAP_X86_USER_SPACE_MSR is 7010 enabled, MSR accesses to registers that would 6475 enabled, MSR accesses to registers that would invoke a #GP by KVM kernel code 7011 may instead trigger a KVM_EXIT_X86_RDMSR exit 6476 may instead trigger a KVM_EXIT_X86_RDMSR exit for reads and KVM_EXIT_X86_WRMSR 7012 exit for writes. 6477 exit for writes. 7013 6478 7014 The "reason" field specifies why the MSR inte 6479 The "reason" field specifies why the MSR interception occurred. Userspace will 7015 only receive MSR exits when a particular reas 6480 only receive MSR exits when a particular reason was requested during through 7016 ENABLE_CAP. Currently valid exit reasons are: 6481 ENABLE_CAP. Currently valid exit reasons are: 7017 6482 7018 ============================ ================ 6483 ============================ ======================================== 7019 KVM_MSR_EXIT_REASON_UNKNOWN access to MSR th 6484 KVM_MSR_EXIT_REASON_UNKNOWN access to MSR that is unknown to KVM 7020 KVM_MSR_EXIT_REASON_INVAL access to invali 6485 KVM_MSR_EXIT_REASON_INVAL access to invalid MSRs or reserved bits 7021 KVM_MSR_EXIT_REASON_FILTER access blocked b 6486 KVM_MSR_EXIT_REASON_FILTER access blocked by KVM_X86_SET_MSR_FILTER 7022 ============================ ================ 6487 ============================ ======================================== 7023 6488 7024 For KVM_EXIT_X86_RDMSR, the "index" field tel 6489 For KVM_EXIT_X86_RDMSR, the "index" field tells userspace which MSR the guest 7025 wants to read. To respond to this request wit 6490 wants to read. To respond to this request with a successful read, userspace 7026 writes the respective data into the "data" fi 6491 writes the respective data into the "data" field and must continue guest 7027 execution to ensure the read data is transfer 6492 execution to ensure the read data is transferred into guest register state. 7028 6493 7029 If the RDMSR request was unsuccessful, usersp 6494 If the RDMSR request was unsuccessful, userspace indicates that with a "1" in 7030 the "error" field. This will inject a #GP int 6495 the "error" field. This will inject a #GP into the guest when the VCPU is 7031 executed again. 6496 executed again. 7032 6497 7033 For KVM_EXIT_X86_WRMSR, the "index" field tel 6498 For KVM_EXIT_X86_WRMSR, the "index" field tells userspace which MSR the guest 7034 wants to write. Once finished processing the 6499 wants to write. Once finished processing the event, userspace must continue 7035 vCPU execution. If the MSR write was unsucces 6500 vCPU execution. If the MSR write was unsuccessful, userspace also sets the 7036 "error" field to "1". 6501 "error" field to "1". 7037 6502 7038 See KVM_X86_SET_MSR_FILTER for details on the 6503 See KVM_X86_SET_MSR_FILTER for details on the interaction with MSR filtering. 7039 6504 7040 :: 6505 :: 7041 6506 7042 6507 7043 struct kvm_xen_exit { 6508 struct kvm_xen_exit { 7044 #define KVM_EXIT_XEN_HCALL 1 6509 #define KVM_EXIT_XEN_HCALL 1 7045 __u32 type; 6510 __u32 type; 7046 union { 6511 union { 7047 struct { 6512 struct { 7048 __u32 6513 __u32 longmode; 7049 __u32 6514 __u32 cpl; 7050 __u64 6515 __u64 input; 7051 __u64 6516 __u64 result; 7052 __u64 6517 __u64 params[6]; 7053 } hcall; 6518 } hcall; 7054 } u; 6519 } u; 7055 }; 6520 }; 7056 /* KVM_EXIT_XEN */ 6521 /* KVM_EXIT_XEN */ 7057 struct kvm_hyperv_exit xen; 6522 struct kvm_hyperv_exit xen; 7058 6523 7059 Indicates that the VCPU exits into userspace 6524 Indicates that the VCPU exits into userspace to process some tasks 7060 related to Xen emulation. 6525 related to Xen emulation. 7061 6526 7062 Valid values for 'type' are: 6527 Valid values for 'type' are: 7063 6528 7064 - KVM_EXIT_XEN_HCALL -- synchronously notif 6529 - KVM_EXIT_XEN_HCALL -- synchronously notify user-space about Xen hypercall. 7065 Userspace is expected to place the hyperc 6530 Userspace is expected to place the hypercall result into the appropriate 7066 field before invoking KVM_RUN again. 6531 field before invoking KVM_RUN again. 7067 6532 7068 :: 6533 :: 7069 6534 7070 /* KVM_EXIT_RISCV_SBI */ 6535 /* KVM_EXIT_RISCV_SBI */ 7071 struct { 6536 struct { 7072 unsigned long extensi 6537 unsigned long extension_id; 7073 unsigned long functio 6538 unsigned long function_id; 7074 unsigned long args[6] 6539 unsigned long args[6]; 7075 unsigned long ret[2]; 6540 unsigned long ret[2]; 7076 } riscv_sbi; 6541 } riscv_sbi; 7077 6542 7078 If exit reason is KVM_EXIT_RISCV_SBI then it 6543 If exit reason is KVM_EXIT_RISCV_SBI then it indicates that the VCPU has 7079 done a SBI call which is not handled by KVM R 6544 done a SBI call which is not handled by KVM RISC-V kernel module. The details 7080 of the SBI call are available in 'riscv_sbi' 6545 of the SBI call are available in 'riscv_sbi' member of kvm_run structure. The 7081 'extension_id' field of 'riscv_sbi' represent 6546 'extension_id' field of 'riscv_sbi' represents SBI extension ID whereas the 7082 'function_id' field represents function ID of 6547 'function_id' field represents function ID of given SBI extension. The 'args' 7083 array field of 'riscv_sbi' represents paramet 6548 array field of 'riscv_sbi' represents parameters for the SBI call and 'ret' 7084 array field represents return values. The use 6549 array field represents return values. The userspace should update the return 7085 values of SBI call before resuming the VCPU. 6550 values of SBI call before resuming the VCPU. For more details on RISC-V SBI 7086 spec refer, https://github.com/riscv/riscv-sb 6551 spec refer, https://github.com/riscv/riscv-sbi-doc. 7087 6552 7088 :: 6553 :: 7089 6554 7090 /* KVM_EXIT_MEMORY_FAULT */ << 7091 struct { << 7092 #define KVM_MEMORY_EXIT_FLAG_PRIVATE (1ULL << 7093 __u64 flags; << 7094 __u64 gpa; << 7095 __u64 size; << 7096 } memory_fault; << 7097 << 7098 KVM_EXIT_MEMORY_FAULT indicates the vCPU has << 7099 could not be resolved by KVM. The 'gpa' and << 7100 guest physical address range [gpa, gpa + size << 7101 describes properties of the faulting access t << 7102 << 7103 - KVM_MEMORY_EXIT_FLAG_PRIVATE - When set, i << 7104 on a private memory access. When clear, i << 7105 shared access. << 7106 << 7107 Note! KVM_EXIT_MEMORY_FAULT is unique among << 7108 accompanies a return code of '-1', not '0'! << 7109 or EHWPOISON when KVM exits with KVM_EXIT_MEM << 7110 kvm_run.exit_reason is stale/undefined for al << 7111 << 7112 :: << 7113 << 7114 /* KVM_EXIT_NOTIFY */ 6555 /* KVM_EXIT_NOTIFY */ 7115 struct { 6556 struct { 7116 #define KVM_NOTIFY_CONTEXT_INVALID (1 << 6557 #define KVM_NOTIFY_CONTEXT_INVALID (1 << 0) 7117 __u32 flags; 6558 __u32 flags; 7118 } notify; 6559 } notify; 7119 6560 7120 Used on x86 systems. When the VM capability K 6561 Used on x86 systems. When the VM capability KVM_CAP_X86_NOTIFY_VMEXIT is 7121 enabled, a VM exit generated if no event wind 6562 enabled, a VM exit generated if no event window occurs in VM non-root mode 7122 for a specified amount of time. Once KVM_X86_ 6563 for a specified amount of time. Once KVM_X86_NOTIFY_VMEXIT_USER is set when 7123 enabling the cap, it would exit to userspace 6564 enabling the cap, it would exit to userspace with the exit reason 7124 KVM_EXIT_NOTIFY for further handling. The "fl 6565 KVM_EXIT_NOTIFY for further handling. The "flags" field contains more 7125 detailed info. 6566 detailed info. 7126 6567 7127 The valid value for 'flags' is: 6568 The valid value for 'flags' is: 7128 6569 7129 - KVM_NOTIFY_CONTEXT_INVALID -- the VM cont 6570 - KVM_NOTIFY_CONTEXT_INVALID -- the VM context is corrupted and not valid 7130 in VMCS. It would run into unknown result 6571 in VMCS. It would run into unknown result if resume the target VM. 7131 6572 7132 :: 6573 :: 7133 6574 7134 /* Fix the size of the union. 6575 /* Fix the size of the union. */ 7135 char padding[256]; 6576 char padding[256]; 7136 }; 6577 }; 7137 6578 7138 /* 6579 /* 7139 * shared registers between kvm and u 6580 * shared registers between kvm and userspace. 7140 * kvm_valid_regs specifies the regis 6581 * kvm_valid_regs specifies the register classes set by the host 7141 * kvm_dirty_regs specified the regis 6582 * kvm_dirty_regs specified the register classes dirtied by userspace 7142 * struct kvm_sync_regs is architectu 6583 * struct kvm_sync_regs is architecture specific, as well as the 7143 * bits for kvm_valid_regs and kvm_di 6584 * bits for kvm_valid_regs and kvm_dirty_regs 7144 */ 6585 */ 7145 __u64 kvm_valid_regs; 6586 __u64 kvm_valid_regs; 7146 __u64 kvm_dirty_regs; 6587 __u64 kvm_dirty_regs; 7147 union { 6588 union { 7148 struct kvm_sync_regs regs; 6589 struct kvm_sync_regs regs; 7149 char padding[SYNC_REGS_SIZE_B 6590 char padding[SYNC_REGS_SIZE_BYTES]; 7150 } s; 6591 } s; 7151 6592 7152 If KVM_CAP_SYNC_REGS is defined, these fields 6593 If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access 7153 certain guest registers without having to cal 6594 certain guest registers without having to call SET/GET_*REGS. Thus we can 7154 avoid some system call overhead if userspace 6595 avoid some system call overhead if userspace has to handle the exit. 7155 Userspace can query the validity of the struc 6596 Userspace can query the validity of the structure by checking 7156 kvm_valid_regs for specific bits. These bits 6597 kvm_valid_regs for specific bits. These bits are architecture specific 7157 and usually define the validity of a groups o 6598 and usually define the validity of a groups of registers. (e.g. one bit 7158 for general purpose registers) 6599 for general purpose registers) 7159 6600 7160 Please note that the kernel is allowed to use 6601 Please note that the kernel is allowed to use the kvm_run structure as the 7161 primary storage for certain register types. T 6602 primary storage for certain register types. Therefore, the kernel may use the 7162 values in kvm_run even if the corresponding b 6603 values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set. 7163 6604 7164 6605 7165 6. Capabilities that can be enabled on vCPUs 6606 6. Capabilities that can be enabled on vCPUs 7166 ============================================ 6607 ============================================ 7167 6608 7168 There are certain capabilities that change th 6609 There are certain capabilities that change the behavior of the virtual CPU or 7169 the virtual machine when enabled. To enable t 6610 the virtual machine when enabled. To enable them, please see section 4.37. 7170 Below you can find a list of capabilities and 6611 Below you can find a list of capabilities and what their effect on the vCPU or 7171 the virtual machine is when enabling them. 6612 the virtual machine is when enabling them. 7172 6613 7173 The following information is provided along w 6614 The following information is provided along with the description: 7174 6615 7175 Architectures: 6616 Architectures: 7176 which instruction set architectures pro 6617 which instruction set architectures provide this ioctl. 7177 x86 includes both i386 and x86_64. 6618 x86 includes both i386 and x86_64. 7178 6619 7179 Target: 6620 Target: 7180 whether this is a per-vcpu or per-vm ca 6621 whether this is a per-vcpu or per-vm capability. 7181 6622 7182 Parameters: 6623 Parameters: 7183 what parameters are accepted by the cap 6624 what parameters are accepted by the capability. 7184 6625 7185 Returns: 6626 Returns: 7186 the return value. General error number 6627 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 7187 are not detailed, but errors with speci 6628 are not detailed, but errors with specific meanings are. 7188 6629 7189 6630 7190 6.1 KVM_CAP_PPC_OSI 6631 6.1 KVM_CAP_PPC_OSI 7191 ------------------- 6632 ------------------- 7192 6633 7193 :Architectures: ppc 6634 :Architectures: ppc 7194 :Target: vcpu 6635 :Target: vcpu 7195 :Parameters: none 6636 :Parameters: none 7196 :Returns: 0 on success; -1 on error 6637 :Returns: 0 on success; -1 on error 7197 6638 7198 This capability enables interception of OSI h 6639 This capability enables interception of OSI hypercalls that otherwise would 7199 be treated as normal system calls to be injec 6640 be treated as normal system calls to be injected into the guest. OSI hypercalls 7200 were invented by Mac-on-Linux to have a stand 6641 were invented by Mac-on-Linux to have a standardized communication mechanism 7201 between the guest and the host. 6642 between the guest and the host. 7202 6643 7203 When this capability is enabled, KVM_EXIT_OSI 6644 When this capability is enabled, KVM_EXIT_OSI can occur. 7204 6645 7205 6646 7206 6.2 KVM_CAP_PPC_PAPR 6647 6.2 KVM_CAP_PPC_PAPR 7207 -------------------- 6648 -------------------- 7208 6649 7209 :Architectures: ppc 6650 :Architectures: ppc 7210 :Target: vcpu 6651 :Target: vcpu 7211 :Parameters: none 6652 :Parameters: none 7212 :Returns: 0 on success; -1 on error 6653 :Returns: 0 on success; -1 on error 7213 6654 7214 This capability enables interception of PAPR 6655 This capability enables interception of PAPR hypercalls. PAPR hypercalls are 7215 done using the hypercall instruction "sc 1". 6656 done using the hypercall instruction "sc 1". 7216 6657 7217 It also sets the guest privilege level to "su 6658 It also sets the guest privilege level to "supervisor" mode. Usually the guest 7218 runs in "hypervisor" privilege mode with a fe 6659 runs in "hypervisor" privilege mode with a few missing features. 7219 6660 7220 In addition to the above, it changes the sema 6661 In addition to the above, it changes the semantics of SDR1. In this mode, the 7221 HTAB address part of SDR1 contains an HVA ins 6662 HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the 7222 HTAB invisible to the guest. 6663 HTAB invisible to the guest. 7223 6664 7224 When this capability is enabled, KVM_EXIT_PAP 6665 When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur. 7225 6666 7226 6667 7227 6.3 KVM_CAP_SW_TLB 6668 6.3 KVM_CAP_SW_TLB 7228 ------------------ 6669 ------------------ 7229 6670 7230 :Architectures: ppc 6671 :Architectures: ppc 7231 :Target: vcpu 6672 :Target: vcpu 7232 :Parameters: args[0] is the address of a stru 6673 :Parameters: args[0] is the address of a struct kvm_config_tlb 7233 :Returns: 0 on success; -1 on error 6674 :Returns: 0 on success; -1 on error 7234 6675 7235 :: 6676 :: 7236 6677 7237 struct kvm_config_tlb { 6678 struct kvm_config_tlb { 7238 __u64 params; 6679 __u64 params; 7239 __u64 array; 6680 __u64 array; 7240 __u32 mmu_type; 6681 __u32 mmu_type; 7241 __u32 array_len; 6682 __u32 array_len; 7242 }; 6683 }; 7243 6684 7244 Configures the virtual CPU's TLB array, estab 6685 Configures the virtual CPU's TLB array, establishing a shared memory area 7245 between userspace and KVM. The "params" and 6686 between userspace and KVM. The "params" and "array" fields are userspace 7246 addresses of mmu-type-specific data structure 6687 addresses of mmu-type-specific data structures. The "array_len" field is an 7247 safety mechanism, and should be set to the si 6688 safety mechanism, and should be set to the size in bytes of the memory that 7248 userspace has reserved for the array. It mus 6689 userspace has reserved for the array. It must be at least the size dictated 7249 by "mmu_type" and "params". 6690 by "mmu_type" and "params". 7250 6691 7251 While KVM_RUN is active, the shared region is 6692 While KVM_RUN is active, the shared region is under control of KVM. Its 7252 contents are undefined, and any modification 6693 contents are undefined, and any modification by userspace results in 7253 boundedly undefined behavior. 6694 boundedly undefined behavior. 7254 6695 7255 On return from KVM_RUN, the shared region wil 6696 On return from KVM_RUN, the shared region will reflect the current state of 7256 the guest's TLB. If userspace makes any chan 6697 the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB 7257 to tell KVM which entries have been changed, 6698 to tell KVM which entries have been changed, prior to calling KVM_RUN again 7258 on this vcpu. 6699 on this vcpu. 7259 6700 7260 For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_ 6701 For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV: 7261 6702 7262 - The "params" field is of type "struct kvm_ 6703 - The "params" field is of type "struct kvm_book3e_206_tlb_params". 7263 - The "array" field points to an array of ty 6704 - The "array" field points to an array of type "struct 7264 kvm_book3e_206_tlb_entry". 6705 kvm_book3e_206_tlb_entry". 7265 - The array consists of all entries in the f 6706 - The array consists of all entries in the first TLB, followed by all 7266 entries in the second TLB. 6707 entries in the second TLB. 7267 - Within a TLB, entries are ordered first by 6708 - Within a TLB, entries are ordered first by increasing set number. Within a 7268 set, entries are ordered by way (increasin 6709 set, entries are ordered by way (increasing ESEL). 7269 - The hash for determining set number in TLB 6710 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1) 7270 where "num_sets" is the tlb_sizes[] value 6711 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value. 7271 - The tsize field of mas1 shall be set to 4K 6712 - The tsize field of mas1 shall be set to 4K on TLB0, even though the 7272 hardware ignores this value for TLB0. 6713 hardware ignores this value for TLB0. 7273 6714 7274 6.4 KVM_CAP_S390_CSS_SUPPORT 6715 6.4 KVM_CAP_S390_CSS_SUPPORT 7275 ---------------------------- 6716 ---------------------------- 7276 6717 7277 :Architectures: s390 6718 :Architectures: s390 7278 :Target: vcpu 6719 :Target: vcpu 7279 :Parameters: none 6720 :Parameters: none 7280 :Returns: 0 on success; -1 on error 6721 :Returns: 0 on success; -1 on error 7281 6722 7282 This capability enables support for handling 6723 This capability enables support for handling of channel I/O instructions. 7283 6724 7284 TEST PENDING INTERRUPTION and the interrupt p 6725 TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are 7285 handled in-kernel, while the other I/O instru 6726 handled in-kernel, while the other I/O instructions are passed to userspace. 7286 6727 7287 When this capability is enabled, KVM_EXIT_S39 6728 When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST 7288 SUBCHANNEL intercepts. 6729 SUBCHANNEL intercepts. 7289 6730 7290 Note that even though this capability is enab 6731 Note that even though this capability is enabled per-vcpu, the complete 7291 virtual machine is affected. 6732 virtual machine is affected. 7292 6733 7293 6.5 KVM_CAP_PPC_EPR 6734 6.5 KVM_CAP_PPC_EPR 7294 ------------------- 6735 ------------------- 7295 6736 7296 :Architectures: ppc 6737 :Architectures: ppc 7297 :Target: vcpu 6738 :Target: vcpu 7298 :Parameters: args[0] defines whether the prox 6739 :Parameters: args[0] defines whether the proxy facility is active 7299 :Returns: 0 on success; -1 on error 6740 :Returns: 0 on success; -1 on error 7300 6741 7301 This capability enables or disables the deliv 6742 This capability enables or disables the delivery of interrupts through the 7302 external proxy facility. 6743 external proxy facility. 7303 6744 7304 When enabled (args[0] != 0), every time the g 6745 When enabled (args[0] != 0), every time the guest gets an external interrupt 7305 delivered, it automatically exits into user s 6746 delivered, it automatically exits into user space with a KVM_EXIT_EPR exit 7306 to receive the topmost interrupt vector. 6747 to receive the topmost interrupt vector. 7307 6748 7308 When disabled (args[0] == 0), behavior is as 6749 When disabled (args[0] == 0), behavior is as if this facility is unsupported. 7309 6750 7310 When this capability is enabled, KVM_EXIT_EPR 6751 When this capability is enabled, KVM_EXIT_EPR can occur. 7311 6752 7312 6.6 KVM_CAP_IRQ_MPIC 6753 6.6 KVM_CAP_IRQ_MPIC 7313 -------------------- 6754 -------------------- 7314 6755 7315 :Architectures: ppc 6756 :Architectures: ppc 7316 :Parameters: args[0] is the MPIC device fd; 6757 :Parameters: args[0] is the MPIC device fd; 7317 args[1] is the MPIC CPU number f 6758 args[1] is the MPIC CPU number for this vcpu 7318 6759 7319 This capability connects the vcpu to an in-ke 6760 This capability connects the vcpu to an in-kernel MPIC device. 7320 6761 7321 6.7 KVM_CAP_IRQ_XICS 6762 6.7 KVM_CAP_IRQ_XICS 7322 -------------------- 6763 -------------------- 7323 6764 7324 :Architectures: ppc 6765 :Architectures: ppc 7325 :Target: vcpu 6766 :Target: vcpu 7326 :Parameters: args[0] is the XICS device fd; 6767 :Parameters: args[0] is the XICS device fd; 7327 args[1] is the XICS CPU number ( 6768 args[1] is the XICS CPU number (server ID) for this vcpu 7328 6769 7329 This capability connects the vcpu to an in-ke 6770 This capability connects the vcpu to an in-kernel XICS device. 7330 6771 7331 6.8 KVM_CAP_S390_IRQCHIP 6772 6.8 KVM_CAP_S390_IRQCHIP 7332 ------------------------ 6773 ------------------------ 7333 6774 7334 :Architectures: s390 6775 :Architectures: s390 7335 :Target: vm 6776 :Target: vm 7336 :Parameters: none 6777 :Parameters: none 7337 6778 7338 This capability enables the in-kernel irqchip 6779 This capability enables the in-kernel irqchip for s390. Please refer to 7339 "4.24 KVM_CREATE_IRQCHIP" for details. 6780 "4.24 KVM_CREATE_IRQCHIP" for details. 7340 6781 7341 6.9 KVM_CAP_MIPS_FPU 6782 6.9 KVM_CAP_MIPS_FPU 7342 -------------------- 6783 -------------------- 7343 6784 7344 :Architectures: mips 6785 :Architectures: mips 7345 :Target: vcpu 6786 :Target: vcpu 7346 :Parameters: args[0] is reserved for future u 6787 :Parameters: args[0] is reserved for future use (should be 0). 7347 6788 7348 This capability allows the use of the host Fl 6789 This capability allows the use of the host Floating Point Unit by the guest. It 7349 allows the Config1.FP bit to be set to enable 6790 allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is 7350 done the ``KVM_REG_MIPS_FPR_*`` and ``KVM_REG 6791 done the ``KVM_REG_MIPS_FPR_*`` and ``KVM_REG_MIPS_FCR_*`` registers can be 7351 accessed (depending on the current guest FPU 6792 accessed (depending on the current guest FPU register mode), and the Status.FR, 7352 Config5.FRE bits are accessible via the KVM A 6793 Config5.FRE bits are accessible via the KVM API and also from the guest, 7353 depending on them being supported by the FPU. 6794 depending on them being supported by the FPU. 7354 6795 7355 6.10 KVM_CAP_MIPS_MSA 6796 6.10 KVM_CAP_MIPS_MSA 7356 --------------------- 6797 --------------------- 7357 6798 7358 :Architectures: mips 6799 :Architectures: mips 7359 :Target: vcpu 6800 :Target: vcpu 7360 :Parameters: args[0] is reserved for future u 6801 :Parameters: args[0] is reserved for future use (should be 0). 7361 6802 7362 This capability allows the use of the MIPS SI 6803 This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest. 7363 It allows the Config3.MSAP bit to be set to e 6804 It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest. 7364 Once this is done the ``KVM_REG_MIPS_VEC_*`` 6805 Once this is done the ``KVM_REG_MIPS_VEC_*`` and ``KVM_REG_MIPS_MSA_*`` 7365 registers can be accessed, and the Config5.MS 6806 registers can be accessed, and the Config5.MSAEn bit is accessible via the 7366 KVM API and also from the guest. 6807 KVM API and also from the guest. 7367 6808 7368 6.74 KVM_CAP_SYNC_REGS 6809 6.74 KVM_CAP_SYNC_REGS 7369 ---------------------- 6810 ---------------------- 7370 6811 7371 :Architectures: s390, x86 6812 :Architectures: s390, x86 7372 :Target: s390: always enabled, x86: vcpu 6813 :Target: s390: always enabled, x86: vcpu 7373 :Parameters: none 6814 :Parameters: none 7374 :Returns: x86: KVM_CHECK_EXTENSION returns a 6815 :Returns: x86: KVM_CHECK_EXTENSION returns a bit-array indicating which register 7375 sets are supported 6816 sets are supported 7376 (bitfields defined in arch/x86/incl 6817 (bitfields defined in arch/x86/include/uapi/asm/kvm.h). 7377 6818 7378 As described above in the kvm_sync_regs struc 6819 As described above in the kvm_sync_regs struct info in section 5 (kvm_run): 7379 KVM_CAP_SYNC_REGS "allow[s] userspace to acce 6820 KVM_CAP_SYNC_REGS "allow[s] userspace to access certain guest registers 7380 without having to call SET/GET_*REGS". This r 6821 without having to call SET/GET_*REGS". This reduces overhead by eliminating 7381 repeated ioctl calls for setting and/or getti 6822 repeated ioctl calls for setting and/or getting register values. This is 7382 particularly important when userspace is maki 6823 particularly important when userspace is making synchronous guest state 7383 modifications, e.g. when emulating and/or int 6824 modifications, e.g. when emulating and/or intercepting instructions in 7384 userspace. 6825 userspace. 7385 6826 7386 For s390 specifics, please refer to the sourc 6827 For s390 specifics, please refer to the source code. 7387 6828 7388 For x86: 6829 For x86: 7389 6830 7390 - the register sets to be copied out to kvm_r 6831 - the register sets to be copied out to kvm_run are selectable 7391 by userspace (rather that all sets being co 6832 by userspace (rather that all sets being copied out for every exit). 7392 - vcpu_events are available in addition to re 6833 - vcpu_events are available in addition to regs and sregs. 7393 6834 7394 For x86, the 'kvm_valid_regs' field of struct 6835 For x86, the 'kvm_valid_regs' field of struct kvm_run is overloaded to 7395 function as an input bit-array field set by u 6836 function as an input bit-array field set by userspace to indicate the 7396 specific register sets to be copied out on th 6837 specific register sets to be copied out on the next exit. 7397 6838 7398 To indicate when userspace has modified value 6839 To indicate when userspace has modified values that should be copied into 7399 the vCPU, the all architecture bitarray field 6840 the vCPU, the all architecture bitarray field, 'kvm_dirty_regs' must be set. 7400 This is done using the same bitflags as for t 6841 This is done using the same bitflags as for the 'kvm_valid_regs' field. 7401 If the dirty bit is not set, then the registe 6842 If the dirty bit is not set, then the register set values will not be copied 7402 into the vCPU even if they've been modified. 6843 into the vCPU even if they've been modified. 7403 6844 7404 Unused bitfields in the bitarrays must be set 6845 Unused bitfields in the bitarrays must be set to zero. 7405 6846 7406 :: 6847 :: 7407 6848 7408 struct kvm_sync_regs { 6849 struct kvm_sync_regs { 7409 struct kvm_regs regs; 6850 struct kvm_regs regs; 7410 struct kvm_sregs sregs; 6851 struct kvm_sregs sregs; 7411 struct kvm_vcpu_events events; 6852 struct kvm_vcpu_events events; 7412 }; 6853 }; 7413 6854 7414 6.75 KVM_CAP_PPC_IRQ_XIVE 6855 6.75 KVM_CAP_PPC_IRQ_XIVE 7415 ------------------------- 6856 ------------------------- 7416 6857 7417 :Architectures: ppc 6858 :Architectures: ppc 7418 :Target: vcpu 6859 :Target: vcpu 7419 :Parameters: args[0] is the XIVE device fd; 6860 :Parameters: args[0] is the XIVE device fd; 7420 args[1] is the XIVE CPU number ( 6861 args[1] is the XIVE CPU number (server ID) for this vcpu 7421 6862 7422 This capability connects the vcpu to an in-ke 6863 This capability connects the vcpu to an in-kernel XIVE device. 7423 6864 7424 7. Capabilities that can be enabled on VMs 6865 7. Capabilities that can be enabled on VMs 7425 ========================================== 6866 ========================================== 7426 6867 7427 There are certain capabilities that change th 6868 There are certain capabilities that change the behavior of the virtual 7428 machine when enabled. To enable them, please 6869 machine when enabled. To enable them, please see section 4.37. Below 7429 you can find a list of capabilities and what 6870 you can find a list of capabilities and what their effect on the VM 7430 is when enabling them. 6871 is when enabling them. 7431 6872 7432 The following information is provided along w 6873 The following information is provided along with the description: 7433 6874 7434 Architectures: 6875 Architectures: 7435 which instruction set architectures pro 6876 which instruction set architectures provide this ioctl. 7436 x86 includes both i386 and x86_64. 6877 x86 includes both i386 and x86_64. 7437 6878 7438 Parameters: 6879 Parameters: 7439 what parameters are accepted by the cap 6880 what parameters are accepted by the capability. 7440 6881 7441 Returns: 6882 Returns: 7442 the return value. General error number 6883 the return value. General error numbers (EBADF, ENOMEM, EINVAL) 7443 are not detailed, but errors with speci 6884 are not detailed, but errors with specific meanings are. 7444 6885 7445 6886 7446 7.1 KVM_CAP_PPC_ENABLE_HCALL 6887 7.1 KVM_CAP_PPC_ENABLE_HCALL 7447 ---------------------------- 6888 ---------------------------- 7448 6889 7449 :Architectures: ppc 6890 :Architectures: ppc 7450 :Parameters: args[0] is the sPAPR hcall numbe 6891 :Parameters: args[0] is the sPAPR hcall number; 7451 args[1] is 0 to disable, 1 to en 6892 args[1] is 0 to disable, 1 to enable in-kernel handling 7452 6893 7453 This capability controls whether individual s 6894 This capability controls whether individual sPAPR hypercalls (hcalls) 7454 get handled by the kernel or not. Enabling o 6895 get handled by the kernel or not. Enabling or disabling in-kernel 7455 handling of an hcall is effective across the 6896 handling of an hcall is effective across the VM. On creation, an 7456 initial set of hcalls are enabled for in-kern 6897 initial set of hcalls are enabled for in-kernel handling, which 7457 consists of those hcalls for which in-kernel 6898 consists of those hcalls for which in-kernel handlers were implemented 7458 before this capability was implemented. If d 6899 before this capability was implemented. If disabled, the kernel will 7459 not to attempt to handle the hcall, but will 6900 not to attempt to handle the hcall, but will always exit to userspace 7460 to handle it. Note that it may not make sens 6901 to handle it. Note that it may not make sense to enable some and 7461 disable others of a group of related hcalls, 6902 disable others of a group of related hcalls, but KVM does not prevent 7462 userspace from doing that. 6903 userspace from doing that. 7463 6904 7464 If the hcall number specified is not one that 6905 If the hcall number specified is not one that has an in-kernel 7465 implementation, the KVM_ENABLE_CAP ioctl will 6906 implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL 7466 error. 6907 error. 7467 6908 7468 7.2 KVM_CAP_S390_USER_SIGP 6909 7.2 KVM_CAP_S390_USER_SIGP 7469 -------------------------- 6910 -------------------------- 7470 6911 7471 :Architectures: s390 6912 :Architectures: s390 7472 :Parameters: none 6913 :Parameters: none 7473 6914 7474 This capability controls which SIGP orders wi 6915 This capability controls which SIGP orders will be handled completely in user 7475 space. With this capability enabled, all fast 6916 space. With this capability enabled, all fast orders will be handled completely 7476 in the kernel: 6917 in the kernel: 7477 6918 7478 - SENSE 6919 - SENSE 7479 - SENSE RUNNING 6920 - SENSE RUNNING 7480 - EXTERNAL CALL 6921 - EXTERNAL CALL 7481 - EMERGENCY SIGNAL 6922 - EMERGENCY SIGNAL 7482 - CONDITIONAL EMERGENCY SIGNAL 6923 - CONDITIONAL EMERGENCY SIGNAL 7483 6924 7484 All other orders will be handled completely i 6925 All other orders will be handled completely in user space. 7485 6926 7486 Only privileged operation exceptions will be 6927 Only privileged operation exceptions will be checked for in the kernel (or even 7487 in the hardware prior to interception). If th 6928 in the hardware prior to interception). If this capability is not enabled, the 7488 old way of handling SIGP orders is used (part 6929 old way of handling SIGP orders is used (partially in kernel and user space). 7489 6930 7490 7.3 KVM_CAP_S390_VECTOR_REGISTERS 6931 7.3 KVM_CAP_S390_VECTOR_REGISTERS 7491 --------------------------------- 6932 --------------------------------- 7492 6933 7493 :Architectures: s390 6934 :Architectures: s390 7494 :Parameters: none 6935 :Parameters: none 7495 :Returns: 0 on success, negative value on err 6936 :Returns: 0 on success, negative value on error 7496 6937 7497 Allows use of the vector registers introduced 6938 Allows use of the vector registers introduced with z13 processor, and 7498 provides for the synchronization between host 6939 provides for the synchronization between host and user space. Will 7499 return -EINVAL if the machine does not suppor 6940 return -EINVAL if the machine does not support vectors. 7500 6941 7501 7.4 KVM_CAP_S390_USER_STSI 6942 7.4 KVM_CAP_S390_USER_STSI 7502 -------------------------- 6943 -------------------------- 7503 6944 7504 :Architectures: s390 6945 :Architectures: s390 7505 :Parameters: none 6946 :Parameters: none 7506 6947 7507 This capability allows post-handlers for the 6948 This capability allows post-handlers for the STSI instruction. After 7508 initial handling in the kernel, KVM exits to 6949 initial handling in the kernel, KVM exits to user space with 7509 KVM_EXIT_S390_STSI to allow user space to ins 6950 KVM_EXIT_S390_STSI to allow user space to insert further data. 7510 6951 7511 Before exiting to userspace, kvm handlers sho 6952 Before exiting to userspace, kvm handlers should fill in s390_stsi field of 7512 vcpu->run:: 6953 vcpu->run:: 7513 6954 7514 struct { 6955 struct { 7515 __u64 addr; 6956 __u64 addr; 7516 __u8 ar; 6957 __u8 ar; 7517 __u8 reserved; 6958 __u8 reserved; 7518 __u8 fc; 6959 __u8 fc; 7519 __u8 sel1; 6960 __u8 sel1; 7520 __u16 sel2; 6961 __u16 sel2; 7521 } s390_stsi; 6962 } s390_stsi; 7522 6963 7523 @addr - guest address of STSI SYSIB 6964 @addr - guest address of STSI SYSIB 7524 @fc - function code 6965 @fc - function code 7525 @sel1 - selector 1 6966 @sel1 - selector 1 7526 @sel2 - selector 2 6967 @sel2 - selector 2 7527 @ar - access register number 6968 @ar - access register number 7528 6969 7529 KVM handlers should exit to userspace with rc 6970 KVM handlers should exit to userspace with rc = -EREMOTE. 7530 6971 7531 7.5 KVM_CAP_SPLIT_IRQCHIP 6972 7.5 KVM_CAP_SPLIT_IRQCHIP 7532 ------------------------- 6973 ------------------------- 7533 6974 7534 :Architectures: x86 6975 :Architectures: x86 7535 :Parameters: args[0] - number of routes reser 6976 :Parameters: args[0] - number of routes reserved for userspace IOAPICs 7536 :Returns: 0 on success, -1 on error 6977 :Returns: 0 on success, -1 on error 7537 6978 7538 Create a local apic for each processor in the 6979 Create a local apic for each processor in the kernel. This can be used 7539 instead of KVM_CREATE_IRQCHIP if the userspac 6980 instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the 7540 IOAPIC and PIC (and also the PIT, even though 6981 IOAPIC and PIC (and also the PIT, even though this has to be enabled 7541 separately). 6982 separately). 7542 6983 7543 This capability also enables in kernel routin 6984 This capability also enables in kernel routing of interrupt requests; 7544 when KVM_CAP_SPLIT_IRQCHIP only routes of KVM 6985 when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are 7545 used in the IRQ routing table. The first arg 6986 used in the IRQ routing table. The first args[0] MSI routes are reserved 7546 for the IOAPIC pins. Whenever the LAPIC rece 6987 for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes, 7547 a KVM_EXIT_IOAPIC_EOI vmexit will be reported 6988 a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace. 7548 6989 7549 Fails if VCPU has already been created, or if 6990 Fails if VCPU has already been created, or if the irqchip is already in the 7550 kernel (i.e. KVM_CREATE_IRQCHIP has already b 6991 kernel (i.e. KVM_CREATE_IRQCHIP has already been called). 7551 6992 7552 7.6 KVM_CAP_S390_RI 6993 7.6 KVM_CAP_S390_RI 7553 ------------------- 6994 ------------------- 7554 6995 7555 :Architectures: s390 6996 :Architectures: s390 7556 :Parameters: none 6997 :Parameters: none 7557 6998 7558 Allows use of runtime-instrumentation introdu 6999 Allows use of runtime-instrumentation introduced with zEC12 processor. 7559 Will return -EINVAL if the machine does not s 7000 Will return -EINVAL if the machine does not support runtime-instrumentation. 7560 Will return -EBUSY if a VCPU has already been 7001 Will return -EBUSY if a VCPU has already been created. 7561 7002 7562 7.7 KVM_CAP_X2APIC_API 7003 7.7 KVM_CAP_X2APIC_API 7563 ---------------------- 7004 ---------------------- 7564 7005 7565 :Architectures: x86 7006 :Architectures: x86 7566 :Parameters: args[0] - features that should b 7007 :Parameters: args[0] - features that should be enabled 7567 :Returns: 0 on success, -EINVAL when args[0] 7008 :Returns: 0 on success, -EINVAL when args[0] contains invalid features 7568 7009 7569 Valid feature flags in args[0] are:: 7010 Valid feature flags in args[0] are:: 7570 7011 7571 #define KVM_X2APIC_API_USE_32BIT_IDS 7012 #define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0) 7572 #define KVM_X2APIC_API_DISABLE_BROADCAST_QU 7013 #define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1) 7573 7014 7574 Enabling KVM_X2APIC_API_USE_32BIT_IDS changes 7015 Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of 7575 KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_ 7016 KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC, 7576 allowing the use of 32-bit APIC IDs. See KVM 7017 allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their 7577 respective sections. 7018 respective sections. 7578 7019 7579 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must b 7020 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work 7580 in logical mode or with more than 255 VCPUs. 7021 in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff 7581 as a broadcast even in x2APIC mode in order t 7022 as a broadcast even in x2APIC mode in order to support physical x2APIC 7582 without interrupt remapping. This is undesir 7023 without interrupt remapping. This is undesirable in logical mode, 7583 where 0xff represents CPUs 0-7 in cluster 0. 7024 where 0xff represents CPUs 0-7 in cluster 0. 7584 7025 7585 7.8 KVM_CAP_S390_USER_INSTR0 7026 7.8 KVM_CAP_S390_USER_INSTR0 7586 ---------------------------- 7027 ---------------------------- 7587 7028 7588 :Architectures: s390 7029 :Architectures: s390 7589 :Parameters: none 7030 :Parameters: none 7590 7031 7591 With this capability enabled, all illegal ins 7032 With this capability enabled, all illegal instructions 0x0000 (2 bytes) will 7592 be intercepted and forwarded to user space. U 7033 be intercepted and forwarded to user space. User space can use this 7593 mechanism e.g. to realize 2-byte software bre 7034 mechanism e.g. to realize 2-byte software breakpoints. The kernel will 7594 not inject an operating exception for these i 7035 not inject an operating exception for these instructions, user space has 7595 to take care of that. 7036 to take care of that. 7596 7037 7597 This capability can be enabled dynamically ev 7038 This capability can be enabled dynamically even if VCPUs were already 7598 created and are running. 7039 created and are running. 7599 7040 7600 7.9 KVM_CAP_S390_GS 7041 7.9 KVM_CAP_S390_GS 7601 ------------------- 7042 ------------------- 7602 7043 7603 :Architectures: s390 7044 :Architectures: s390 7604 :Parameters: none 7045 :Parameters: none 7605 :Returns: 0 on success; -EINVAL if the machin 7046 :Returns: 0 on success; -EINVAL if the machine does not support 7606 guarded storage; -EBUSY if a VCPU h 7047 guarded storage; -EBUSY if a VCPU has already been created. 7607 7048 7608 Allows use of guarded storage for the KVM gue 7049 Allows use of guarded storage for the KVM guest. 7609 7050 7610 7.10 KVM_CAP_S390_AIS 7051 7.10 KVM_CAP_S390_AIS 7611 --------------------- 7052 --------------------- 7612 7053 7613 :Architectures: s390 7054 :Architectures: s390 7614 :Parameters: none 7055 :Parameters: none 7615 7056 7616 Allow use of adapter-interruption suppression 7057 Allow use of adapter-interruption suppression. 7617 :Returns: 0 on success; -EBUSY if a VCPU has 7058 :Returns: 0 on success; -EBUSY if a VCPU has already been created. 7618 7059 7619 7.11 KVM_CAP_PPC_SMT 7060 7.11 KVM_CAP_PPC_SMT 7620 -------------------- 7061 -------------------- 7621 7062 7622 :Architectures: ppc 7063 :Architectures: ppc 7623 :Parameters: vsmt_mode, flags 7064 :Parameters: vsmt_mode, flags 7624 7065 7625 Enabling this capability on a VM provides use 7066 Enabling this capability on a VM provides userspace with a way to set 7626 the desired virtual SMT mode (i.e. the number 7067 the desired virtual SMT mode (i.e. the number of virtual CPUs per 7627 virtual core). The virtual SMT mode, vsmt_mo 7068 virtual core). The virtual SMT mode, vsmt_mode, must be a power of 2 7628 between 1 and 8. On POWER8, vsmt_mode must a 7069 between 1 and 8. On POWER8, vsmt_mode must also be no greater than 7629 the number of threads per subcore for the hos 7070 the number of threads per subcore for the host. Currently flags must 7630 be 0. A successful call to enable this capab 7071 be 0. A successful call to enable this capability will result in 7631 vsmt_mode being returned when the KVM_CAP_PPC 7072 vsmt_mode being returned when the KVM_CAP_PPC_SMT capability is 7632 subsequently queried for the VM. This capabi 7073 subsequently queried for the VM. This capability is only supported by 7633 HV KVM, and can only be set before any VCPUs 7074 HV KVM, and can only be set before any VCPUs have been created. 7634 The KVM_CAP_PPC_SMT_POSSIBLE capability indic 7075 The KVM_CAP_PPC_SMT_POSSIBLE capability indicates which virtual SMT 7635 modes are available. 7076 modes are available. 7636 7077 7637 7.12 KVM_CAP_PPC_FWNMI 7078 7.12 KVM_CAP_PPC_FWNMI 7638 ---------------------- 7079 ---------------------- 7639 7080 7640 :Architectures: ppc 7081 :Architectures: ppc 7641 :Parameters: none 7082 :Parameters: none 7642 7083 7643 With this capability a machine check exceptio 7084 With this capability a machine check exception in the guest address 7644 space will cause KVM to exit the guest with N 7085 space will cause KVM to exit the guest with NMI exit reason. This 7645 enables QEMU to build error log and branch to 7086 enables QEMU to build error log and branch to guest kernel registered 7646 machine check handling routine. Without this 7087 machine check handling routine. Without this capability KVM will 7647 branch to guests' 0x200 interrupt vector. 7088 branch to guests' 0x200 interrupt vector. 7648 7089 7649 7.13 KVM_CAP_X86_DISABLE_EXITS 7090 7.13 KVM_CAP_X86_DISABLE_EXITS 7650 ------------------------------ 7091 ------------------------------ 7651 7092 7652 :Architectures: x86 7093 :Architectures: x86 7653 :Parameters: args[0] defines which exits are 7094 :Parameters: args[0] defines which exits are disabled 7654 :Returns: 0 on success, -EINVAL when args[0] 7095 :Returns: 0 on success, -EINVAL when args[0] contains invalid exits 7655 7096 7656 Valid bits in args[0] are:: 7097 Valid bits in args[0] are:: 7657 7098 7658 #define KVM_X86_DISABLE_EXITS_MWAIT 7099 #define KVM_X86_DISABLE_EXITS_MWAIT (1 << 0) 7659 #define KVM_X86_DISABLE_EXITS_HLT 7100 #define KVM_X86_DISABLE_EXITS_HLT (1 << 1) 7660 #define KVM_X86_DISABLE_EXITS_PAUSE 7101 #define KVM_X86_DISABLE_EXITS_PAUSE (1 << 2) 7661 #define KVM_X86_DISABLE_EXITS_CSTATE 7102 #define KVM_X86_DISABLE_EXITS_CSTATE (1 << 3) 7662 7103 7663 Enabling this capability on a VM provides use 7104 Enabling this capability on a VM provides userspace with a way to no 7664 longer intercept some instructions for improv 7105 longer intercept some instructions for improved latency in some 7665 workloads, and is suggested when vCPUs are as 7106 workloads, and is suggested when vCPUs are associated to dedicated 7666 physical CPUs. More bits can be added in the 7107 physical CPUs. More bits can be added in the future; userspace can 7667 just pass the KVM_CHECK_EXTENSION result to K 7108 just pass the KVM_CHECK_EXTENSION result to KVM_ENABLE_CAP to disable 7668 all such vmexits. 7109 all such vmexits. 7669 7110 7670 Do not enable KVM_FEATURE_PV_UNHALT if you di 7111 Do not enable KVM_FEATURE_PV_UNHALT if you disable HLT exits. 7671 7112 7672 7.14 KVM_CAP_S390_HPAGE_1M 7113 7.14 KVM_CAP_S390_HPAGE_1M 7673 -------------------------- 7114 -------------------------- 7674 7115 7675 :Architectures: s390 7116 :Architectures: s390 7676 :Parameters: none 7117 :Parameters: none 7677 :Returns: 0 on success, -EINVAL if hpage modu 7118 :Returns: 0 on success, -EINVAL if hpage module parameter was not set 7678 or cmma is enabled, or the VM has t 7119 or cmma is enabled, or the VM has the KVM_VM_S390_UCONTROL 7679 flag set 7120 flag set 7680 7121 7681 With this capability the KVM support for memo 7122 With this capability the KVM support for memory backing with 1m pages 7682 through hugetlbfs can be enabled for a VM. Af 7123 through hugetlbfs can be enabled for a VM. After the capability is 7683 enabled, cmma can't be enabled anymore and pf 7124 enabled, cmma can't be enabled anymore and pfmfi and the storage key 7684 interpretation are disabled. If cmma has alre 7125 interpretation are disabled. If cmma has already been enabled or the 7685 hpage module parameter is not set to 1, -EINV 7126 hpage module parameter is not set to 1, -EINVAL is returned. 7686 7127 7687 While it is generally possible to create a hu 7128 While it is generally possible to create a huge page backed VM without 7688 this capability, the VM will not be able to r 7129 this capability, the VM will not be able to run. 7689 7130 7690 7.15 KVM_CAP_MSR_PLATFORM_INFO 7131 7.15 KVM_CAP_MSR_PLATFORM_INFO 7691 ------------------------------ 7132 ------------------------------ 7692 7133 7693 :Architectures: x86 7134 :Architectures: x86 7694 :Parameters: args[0] whether feature should b 7135 :Parameters: args[0] whether feature should be enabled or not 7695 7136 7696 With this capability, a guest may read the MS 7137 With this capability, a guest may read the MSR_PLATFORM_INFO MSR. Otherwise, 7697 a #GP would be raised when the guest tries to 7138 a #GP would be raised when the guest tries to access. Currently, this 7698 capability does not enable write permissions 7139 capability does not enable write permissions of this MSR for the guest. 7699 7140 7700 7.16 KVM_CAP_PPC_NESTED_HV 7141 7.16 KVM_CAP_PPC_NESTED_HV 7701 -------------------------- 7142 -------------------------- 7702 7143 7703 :Architectures: ppc 7144 :Architectures: ppc 7704 :Parameters: none 7145 :Parameters: none 7705 :Returns: 0 on success, -EINVAL when the impl 7146 :Returns: 0 on success, -EINVAL when the implementation doesn't support 7706 nested-HV virtualization. 7147 nested-HV virtualization. 7707 7148 7708 HV-KVM on POWER9 and later systems allows for 7149 HV-KVM on POWER9 and later systems allows for "nested-HV" 7709 virtualization, which provides a way for a gu 7150 virtualization, which provides a way for a guest VM to run guests that 7710 can run using the CPU's supervisor mode (priv 7151 can run using the CPU's supervisor mode (privileged non-hypervisor 7711 state). Enabling this capability on a VM dep 7152 state). Enabling this capability on a VM depends on the CPU having 7712 the necessary functionality and on the facili 7153 the necessary functionality and on the facility being enabled with a 7713 kvm-hv module parameter. 7154 kvm-hv module parameter. 7714 7155 7715 7.17 KVM_CAP_EXCEPTION_PAYLOAD 7156 7.17 KVM_CAP_EXCEPTION_PAYLOAD 7716 ------------------------------ 7157 ------------------------------ 7717 7158 7718 :Architectures: x86 7159 :Architectures: x86 7719 :Parameters: args[0] whether feature should b 7160 :Parameters: args[0] whether feature should be enabled or not 7720 7161 7721 With this capability enabled, CR2 will not be 7162 With this capability enabled, CR2 will not be modified prior to the 7722 emulated VM-exit when L1 intercepts a #PF exc 7163 emulated VM-exit when L1 intercepts a #PF exception that occurs in 7723 L2. Similarly, for kvm-intel only, DR6 will n 7164 L2. Similarly, for kvm-intel only, DR6 will not be modified prior to 7724 the emulated VM-exit when L1 intercepts a #DB 7165 the emulated VM-exit when L1 intercepts a #DB exception that occurs in 7725 L2. As a result, when KVM_GET_VCPU_EVENTS rep 7166 L2. As a result, when KVM_GET_VCPU_EVENTS reports a pending #PF (or 7726 #DB) exception for L2, exception.has_payload 7167 #DB) exception for L2, exception.has_payload will be set and the 7727 faulting address (or the new DR6 bits*) will 7168 faulting address (or the new DR6 bits*) will be reported in the 7728 exception_payload field. Similarly, when user 7169 exception_payload field. Similarly, when userspace injects a #PF (or 7729 #DB) into L2 using KVM_SET_VCPU_EVENTS, it is 7170 #DB) into L2 using KVM_SET_VCPU_EVENTS, it is expected to set 7730 exception.has_payload and to put the faulting 7171 exception.has_payload and to put the faulting address - or the new DR6 7731 bits\ [#]_ - in the exception_payload field. 7172 bits\ [#]_ - in the exception_payload field. 7732 7173 7733 This capability also enables exception.pendin 7174 This capability also enables exception.pending in struct 7734 kvm_vcpu_events, which allows userspace to di 7175 kvm_vcpu_events, which allows userspace to distinguish between pending 7735 and injected exceptions. 7176 and injected exceptions. 7736 7177 7737 7178 7738 .. [#] For the new DR6 bits, note that bit 16 7179 .. [#] For the new DR6 bits, note that bit 16 is set iff the #DB exception 7739 will clear DR6.RTM. 7180 will clear DR6.RTM. 7740 7181 7741 7.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 7182 7.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 7742 -------------------------------------- << 7743 7183 7744 :Architectures: x86, arm64, mips 7184 :Architectures: x86, arm64, mips 7745 :Parameters: args[0] whether feature should b 7185 :Parameters: args[0] whether feature should be enabled or not 7746 7186 7747 Valid flags are:: 7187 Valid flags are:: 7748 7188 7749 #define KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 7189 #define KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (1 << 0) 7750 #define KVM_DIRTY_LOG_INITIALLY_SET 7190 #define KVM_DIRTY_LOG_INITIALLY_SET (1 << 1) 7751 7191 7752 With KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE is s 7192 With KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE is set, KVM_GET_DIRTY_LOG will not 7753 automatically clear and write-protect all pag 7193 automatically clear and write-protect all pages that are returned as dirty. 7754 Rather, userspace will have to do this operat 7194 Rather, userspace will have to do this operation separately using 7755 KVM_CLEAR_DIRTY_LOG. 7195 KVM_CLEAR_DIRTY_LOG. 7756 7196 7757 At the cost of a slightly more complicated op 7197 At the cost of a slightly more complicated operation, this provides better 7758 scalability and responsiveness for two reason 7198 scalability and responsiveness for two reasons. First, 7759 KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64 7199 KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64-page granularity rather 7760 than requiring to sync a full memslot; this e 7200 than requiring to sync a full memslot; this ensures that KVM does not 7761 take spinlocks for an extended period of time 7201 take spinlocks for an extended period of time. Second, in some cases a 7762 large amount of time can pass between a call 7202 large amount of time can pass between a call to KVM_GET_DIRTY_LOG and 7763 userspace actually using the data in the page 7203 userspace actually using the data in the page. Pages can be modified 7764 during this time, which is inefficient for bo 7204 during this time, which is inefficient for both the guest and userspace: 7765 the guest will incur a higher penalty due to 7205 the guest will incur a higher penalty due to write protection faults, 7766 while userspace can see false reports of dirt 7206 while userspace can see false reports of dirty pages. Manual reprotection 7767 helps reducing this time, improving guest per 7207 helps reducing this time, improving guest performance and reducing the 7768 number of dirty log false positives. 7208 number of dirty log false positives. 7769 7209 7770 With KVM_DIRTY_LOG_INITIALLY_SET set, all the 7210 With KVM_DIRTY_LOG_INITIALLY_SET set, all the bits of the dirty bitmap 7771 will be initialized to 1 when created. This 7211 will be initialized to 1 when created. This also improves performance because 7772 dirty logging can be enabled gradually in sma 7212 dirty logging can be enabled gradually in small chunks on the first call 7773 to KVM_CLEAR_DIRTY_LOG. KVM_DIRTY_LOG_INITIA 7213 to KVM_CLEAR_DIRTY_LOG. KVM_DIRTY_LOG_INITIALLY_SET depends on 7774 KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (it is al 7214 KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (it is also only available on 7775 x86 and arm64 for now). 7215 x86 and arm64 for now). 7776 7216 7777 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previou 7217 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previously available under the name 7778 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the imp 7218 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the implementation had bugs that make 7779 it hard or impossible to use it correctly. T 7219 it hard or impossible to use it correctly. The availability of 7780 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 signals tha 7220 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 signals that those bugs are fixed. 7781 Userspace should not try to use KVM_CAP_MANUA 7221 Userspace should not try to use KVM_CAP_MANUAL_DIRTY_LOG_PROTECT. 7782 7222 7783 7.19 KVM_CAP_PPC_SECURE_GUEST 7223 7.19 KVM_CAP_PPC_SECURE_GUEST 7784 ------------------------------ 7224 ------------------------------ 7785 7225 7786 :Architectures: ppc 7226 :Architectures: ppc 7787 7227 7788 This capability indicates that KVM is running 7228 This capability indicates that KVM is running on a host that has 7789 ultravisor firmware and thus can support a se 7229 ultravisor firmware and thus can support a secure guest. On such a 7790 system, a guest can ask the ultravisor to mak 7230 system, a guest can ask the ultravisor to make it a secure guest, 7791 one whose memory is inaccessible to the host 7231 one whose memory is inaccessible to the host except for pages which 7792 are explicitly requested to be shared with th 7232 are explicitly requested to be shared with the host. The ultravisor 7793 notifies KVM when a guest requests to become 7233 notifies KVM when a guest requests to become a secure guest, and KVM 7794 has the opportunity to veto the transition. 7234 has the opportunity to veto the transition. 7795 7235 7796 If present, this capability can be enabled fo 7236 If present, this capability can be enabled for a VM, meaning that KVM 7797 will allow the transition to secure guest mod 7237 will allow the transition to secure guest mode. Otherwise KVM will 7798 veto the transition. 7238 veto the transition. 7799 7239 7800 7.20 KVM_CAP_HALT_POLL 7240 7.20 KVM_CAP_HALT_POLL 7801 ---------------------- 7241 ---------------------- 7802 7242 7803 :Architectures: all 7243 :Architectures: all 7804 :Target: VM 7244 :Target: VM 7805 :Parameters: args[0] is the maximum poll time 7245 :Parameters: args[0] is the maximum poll time in nanoseconds 7806 :Returns: 0 on success; -1 on error 7246 :Returns: 0 on success; -1 on error 7807 7247 7808 KVM_CAP_HALT_POLL overrides the kvm.halt_poll 7248 KVM_CAP_HALT_POLL overrides the kvm.halt_poll_ns module parameter to set the 7809 maximum halt-polling time for all vCPUs in th 7249 maximum halt-polling time for all vCPUs in the target VM. This capability can 7810 be invoked at any time and any number of time 7250 be invoked at any time and any number of times to dynamically change the 7811 maximum halt-polling time. 7251 maximum halt-polling time. 7812 7252 7813 See Documentation/virt/kvm/halt-polling.rst f 7253 See Documentation/virt/kvm/halt-polling.rst for more information on halt 7814 polling. 7254 polling. 7815 7255 7816 7.21 KVM_CAP_X86_USER_SPACE_MSR 7256 7.21 KVM_CAP_X86_USER_SPACE_MSR 7817 ------------------------------- 7257 ------------------------------- 7818 7258 7819 :Architectures: x86 7259 :Architectures: x86 7820 :Target: VM 7260 :Target: VM 7821 :Parameters: args[0] contains the mask of KVM 7261 :Parameters: args[0] contains the mask of KVM_MSR_EXIT_REASON_* events to report 7822 :Returns: 0 on success; -1 on error 7262 :Returns: 0 on success; -1 on error 7823 7263 7824 This capability allows userspace to intercept 7264 This capability allows userspace to intercept RDMSR and WRMSR instructions if 7825 access to an MSR is denied. By default, KVM 7265 access to an MSR is denied. By default, KVM injects #GP on denied accesses. 7826 7266 7827 When a guest requests to read or write an MSR 7267 When a guest requests to read or write an MSR, KVM may not implement all MSRs 7828 that are relevant to a respective system. It 7268 that are relevant to a respective system. It also does not differentiate by 7829 CPU type. 7269 CPU type. 7830 7270 7831 To allow more fine grained control over MSR h 7271 To allow more fine grained control over MSR handling, userspace may enable 7832 this capability. With it enabled, MSR accesse 7272 this capability. With it enabled, MSR accesses that match the mask specified in 7833 args[0] and would trigger a #GP inside the gu 7273 args[0] and would trigger a #GP inside the guest will instead trigger 7834 KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exi 7274 KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exit notifications. Userspace 7835 can then implement model specific MSR handlin 7275 can then implement model specific MSR handling and/or user notifications 7836 to inform a user that an MSR was not emulated 7276 to inform a user that an MSR was not emulated/virtualized by KVM. 7837 7277 7838 The valid mask flags are: 7278 The valid mask flags are: 7839 7279 7840 ============================ ================ 7280 ============================ =============================================== 7841 KVM_MSR_EXIT_REASON_UNKNOWN intercept access 7281 KVM_MSR_EXIT_REASON_UNKNOWN intercept accesses to unknown (to KVM) MSRs 7842 KVM_MSR_EXIT_REASON_INVAL intercept access 7282 KVM_MSR_EXIT_REASON_INVAL intercept accesses that are architecturally 7843 invalid accordin 7283 invalid according to the vCPU model and/or mode 7844 KVM_MSR_EXIT_REASON_FILTER intercept access 7284 KVM_MSR_EXIT_REASON_FILTER intercept accesses that are denied by userspace 7845 via KVM_X86_SET_ 7285 via KVM_X86_SET_MSR_FILTER 7846 ============================ ================ 7286 ============================ =============================================== 7847 7287 7848 7.22 KVM_CAP_X86_BUS_LOCK_EXIT 7288 7.22 KVM_CAP_X86_BUS_LOCK_EXIT 7849 ------------------------------- 7289 ------------------------------- 7850 7290 7851 :Architectures: x86 7291 :Architectures: x86 7852 :Target: VM 7292 :Target: VM 7853 :Parameters: args[0] defines the policy used 7293 :Parameters: args[0] defines the policy used when bus locks detected in guest 7854 :Returns: 0 on success, -EINVAL when args[0] 7294 :Returns: 0 on success, -EINVAL when args[0] contains invalid bits 7855 7295 7856 Valid bits in args[0] are:: 7296 Valid bits in args[0] are:: 7857 7297 7858 #define KVM_BUS_LOCK_DETECTION_OFF (1 7298 #define KVM_BUS_LOCK_DETECTION_OFF (1 << 0) 7859 #define KVM_BUS_LOCK_DETECTION_EXIT (1 7299 #define KVM_BUS_LOCK_DETECTION_EXIT (1 << 1) 7860 7300 7861 Enabling this capability on a VM provides use !! 7301 Enabling this capability on a VM provides userspace with a way to select 7862 policy to handle the bus locks detected in gu !! 7302 a policy to handle the bus locks detected in guest. Userspace can obtain 7863 supported modes from the result of KVM_CHECK_ !! 7303 the supported modes from the result of KVM_CHECK_EXTENSION and define it 7864 the KVM_ENABLE_CAP. The supported modes are m !! 7304 through the KVM_ENABLE_CAP. 7865 !! 7305 7866 This capability allows userspace to force VM !! 7306 KVM_BUS_LOCK_DETECTION_OFF and KVM_BUS_LOCK_DETECTION_EXIT are supported 7867 guest, irrespective whether or not the host h !! 7307 currently and mutually exclusive with each other. More bits can be added in 7868 (which triggers an #AC exception that KVM int !! 7308 the future. 7869 intended to mitigate attacks where a maliciou !! 7309 7870 locks to degrade the performance of the whole !! 7310 With KVM_BUS_LOCK_DETECTION_OFF set, bus locks in guest will not cause vm exits 7871 !! 7311 so that no additional actions are needed. This is the default mode. 7872 If KVM_BUS_LOCK_DETECTION_OFF is set, KVM doe !! 7312 7873 exit, although the host kernel's split-lock # !! 7313 With KVM_BUS_LOCK_DETECTION_EXIT set, vm exits happen when bus lock detected 7874 enabled. !! 7314 in VM. KVM just exits to userspace when handling them. Userspace can enforce 7875 !! 7315 its own throttling or other policy based mitigations. 7876 If KVM_BUS_LOCK_DETECTION_EXIT is set, KVM en !! 7316 7877 bus locks in the guest trigger a VM exit, and !! 7317 This capability is aimed to address the thread that VM can exploit bus locks to 7878 such VM exits, e.g. to allow userspace to thr !! 7318 degree the performance of the whole system. Once the userspace enable this 7879 apply some other policy-based mitigation. Whe !! 7319 capability and select the KVM_BUS_LOCK_DETECTION_EXIT mode, KVM will set the 7880 KVM_RUN_X86_BUS_LOCK in vcpu-run->flags, and !! 7320 KVM_RUN_BUS_LOCK flag in vcpu-run->flags field and exit to userspace. Concerning 7881 to KVM_EXIT_X86_BUS_LOCK. !! 7321 the bus lock vm exit can be preempted by a higher priority VM exit, the exit 7882 !! 7322 notifications to userspace can be KVM_EXIT_BUS_LOCK or other reasons. 7883 Note! Detected bus locks may be coincident wi !! 7323 KVM_RUN_BUS_LOCK flag is used to distinguish between them. 7884 KVM_RUN_X86_BUS_LOCK should be checked regard << 7885 userspace wants to take action on all detecte << 7886 7324 7887 7.23 KVM_CAP_PPC_DAWR1 7325 7.23 KVM_CAP_PPC_DAWR1 7888 ---------------------- 7326 ---------------------- 7889 7327 7890 :Architectures: ppc 7328 :Architectures: ppc 7891 :Parameters: none 7329 :Parameters: none 7892 :Returns: 0 on success, -EINVAL when CPU does 7330 :Returns: 0 on success, -EINVAL when CPU doesn't support 2nd DAWR 7893 7331 7894 This capability can be used to check / enable 7332 This capability can be used to check / enable 2nd DAWR feature provided 7895 by POWER10 processor. 7333 by POWER10 processor. 7896 7334 7897 7335 7898 7.24 KVM_CAP_VM_COPY_ENC_CONTEXT_FROM 7336 7.24 KVM_CAP_VM_COPY_ENC_CONTEXT_FROM 7899 ------------------------------------- 7337 ------------------------------------- 7900 7338 7901 Architectures: x86 SEV enabled 7339 Architectures: x86 SEV enabled 7902 Type: vm 7340 Type: vm 7903 Parameters: args[0] is the fd of the source v 7341 Parameters: args[0] is the fd of the source vm 7904 Returns: 0 on success; ENOTTY on error 7342 Returns: 0 on success; ENOTTY on error 7905 7343 7906 This capability enables userspace to copy enc 7344 This capability enables userspace to copy encryption context from the vm 7907 indicated by the fd to the vm this is called 7345 indicated by the fd to the vm this is called on. 7908 7346 7909 This is intended to support in-guest workload 7347 This is intended to support in-guest workloads scheduled by the host. This 7910 allows the in-guest workload to maintain its 7348 allows the in-guest workload to maintain its own NPTs and keeps the two vms 7911 from accidentally clobbering each other with 7349 from accidentally clobbering each other with interrupts and the like (separate 7912 APIC/MSRs/etc). 7350 APIC/MSRs/etc). 7913 7351 7914 7.25 KVM_CAP_SGX_ATTRIBUTE 7352 7.25 KVM_CAP_SGX_ATTRIBUTE 7915 -------------------------- 7353 -------------------------- 7916 7354 7917 :Architectures: x86 7355 :Architectures: x86 7918 :Target: VM 7356 :Target: VM 7919 :Parameters: args[0] is a file handle of a SG 7357 :Parameters: args[0] is a file handle of a SGX attribute file in securityfs 7920 :Returns: 0 on success, -EINVAL if the file h 7358 :Returns: 0 on success, -EINVAL if the file handle is invalid or if a requested 7921 attribute is not supported by KVM. 7359 attribute is not supported by KVM. 7922 7360 7923 KVM_CAP_SGX_ATTRIBUTE enables a userspace VMM 7361 KVM_CAP_SGX_ATTRIBUTE enables a userspace VMM to grant a VM access to one or 7924 more privileged enclave attributes. args[0] !! 7362 more priveleged enclave attributes. args[0] must hold a file handle to a valid 7925 SGX attribute file corresponding to an attrib 7363 SGX attribute file corresponding to an attribute that is supported/restricted 7926 by KVM (currently only PROVISIONKEY). 7364 by KVM (currently only PROVISIONKEY). 7927 7365 7928 The SGX subsystem restricts access to a subse 7366 The SGX subsystem restricts access to a subset of enclave attributes to provide 7929 additional security for an uncompromised kern 7367 additional security for an uncompromised kernel, e.g. use of the PROVISIONKEY 7930 is restricted to deter malware from using the 7368 is restricted to deter malware from using the PROVISIONKEY to obtain a stable 7931 system fingerprint. To prevent userspace fro 7369 system fingerprint. To prevent userspace from circumventing such restrictions 7932 by running an enclave in a VM, KVM prevents a 7370 by running an enclave in a VM, KVM prevents access to privileged attributes by 7933 default. 7371 default. 7934 7372 7935 See Documentation/arch/x86/sgx.rst for more d !! 7373 See Documentation/x86/sgx.rst for more details. 7936 7374 7937 7.26 KVM_CAP_PPC_RPT_INVALIDATE 7375 7.26 KVM_CAP_PPC_RPT_INVALIDATE 7938 ------------------------------- 7376 ------------------------------- 7939 7377 7940 :Capability: KVM_CAP_PPC_RPT_INVALIDATE 7378 :Capability: KVM_CAP_PPC_RPT_INVALIDATE 7941 :Architectures: ppc 7379 :Architectures: ppc 7942 :Type: vm 7380 :Type: vm 7943 7381 7944 This capability indicates that the kernel is 7382 This capability indicates that the kernel is capable of handling 7945 H_RPT_INVALIDATE hcall. 7383 H_RPT_INVALIDATE hcall. 7946 7384 7947 In order to enable the use of H_RPT_INVALIDAT 7385 In order to enable the use of H_RPT_INVALIDATE in the guest, 7948 user space might have to advertise it for the 7386 user space might have to advertise it for the guest. For example, 7949 IBM pSeries (sPAPR) guest starts using it if 7387 IBM pSeries (sPAPR) guest starts using it if "hcall-rpt-invalidate" is 7950 present in the "ibm,hypertas-functions" devic 7388 present in the "ibm,hypertas-functions" device-tree property. 7951 7389 7952 This capability is enabled for hypervisors on 7390 This capability is enabled for hypervisors on platforms like POWER9 7953 that support radix MMU. 7391 that support radix MMU. 7954 7392 7955 7.27 KVM_CAP_EXIT_ON_EMULATION_FAILURE 7393 7.27 KVM_CAP_EXIT_ON_EMULATION_FAILURE 7956 -------------------------------------- 7394 -------------------------------------- 7957 7395 7958 :Architectures: x86 7396 :Architectures: x86 7959 :Parameters: args[0] whether the feature shou 7397 :Parameters: args[0] whether the feature should be enabled or not 7960 7398 7961 When this capability is enabled, an emulation 7399 When this capability is enabled, an emulation failure will result in an exit 7962 to userspace with KVM_INTERNAL_ERROR (except 7400 to userspace with KVM_INTERNAL_ERROR (except when the emulator was invoked 7963 to handle a VMware backdoor instruction). Fur 7401 to handle a VMware backdoor instruction). Furthermore, KVM will now provide up 7964 to 15 instruction bytes for any exit to users 7402 to 15 instruction bytes for any exit to userspace resulting from an emulation 7965 failure. When these exits to userspace occur 7403 failure. When these exits to userspace occur use the emulation_failure struct 7966 instead of the internal struct. They both ha 7404 instead of the internal struct. They both have the same layout, but the 7967 emulation_failure struct matches the content 7405 emulation_failure struct matches the content better. It also explicitly 7968 defines the 'flags' field which is used to de 7406 defines the 'flags' field which is used to describe the fields in the struct 7969 that are valid (ie: if KVM_INTERNAL_ERROR_EMU 7407 that are valid (ie: if KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES is 7970 set in the 'flags' field then both 'insn_size 7408 set in the 'flags' field then both 'insn_size' and 'insn_bytes' have valid data 7971 in them.) 7409 in them.) 7972 7410 7973 7.28 KVM_CAP_ARM_MTE 7411 7.28 KVM_CAP_ARM_MTE 7974 -------------------- 7412 -------------------- 7975 7413 7976 :Architectures: arm64 7414 :Architectures: arm64 7977 :Parameters: none 7415 :Parameters: none 7978 7416 7979 This capability indicates that KVM (and the h 7417 This capability indicates that KVM (and the hardware) supports exposing the 7980 Memory Tagging Extensions (MTE) to the guest. 7418 Memory Tagging Extensions (MTE) to the guest. It must also be enabled by the 7981 VMM before creating any VCPUs to allow the gu 7419 VMM before creating any VCPUs to allow the guest access. Note that MTE is only 7982 available to a guest running in AArch64 mode 7420 available to a guest running in AArch64 mode and enabling this capability will 7983 cause attempts to create AArch32 VCPUs to fai 7421 cause attempts to create AArch32 VCPUs to fail. 7984 7422 7985 When enabled the guest is able to access tags 7423 When enabled the guest is able to access tags associated with any memory given 7986 to the guest. KVM will ensure that the tags a 7424 to the guest. KVM will ensure that the tags are maintained during swap or 7987 hibernation of the host; however the VMM need 7425 hibernation of the host; however the VMM needs to manually save/restore the 7988 tags as appropriate if the VM is migrated. 7426 tags as appropriate if the VM is migrated. 7989 7427 7990 When this capability is enabled all memory in 7428 When this capability is enabled all memory in memslots must be mapped as 7991 ``MAP_ANONYMOUS`` or with a RAM-based file ma 7429 ``MAP_ANONYMOUS`` or with a RAM-based file mapping (``tmpfs``, ``memfd``), 7992 attempts to create a memslot with an invalid 7430 attempts to create a memslot with an invalid mmap will result in an 7993 -EINVAL return. 7431 -EINVAL return. 7994 7432 7995 When enabled the VMM may make use of the ``KV 7433 When enabled the VMM may make use of the ``KVM_ARM_MTE_COPY_TAGS`` ioctl to 7996 perform a bulk copy of tags to/from the guest 7434 perform a bulk copy of tags to/from the guest. 7997 7435 7998 7.29 KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM 7436 7.29 KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM 7999 ------------------------------------- 7437 ------------------------------------- 8000 7438 8001 :Architectures: x86 SEV enabled !! 7439 Architectures: x86 SEV enabled 8002 :Type: vm !! 7440 Type: vm 8003 :Parameters: args[0] is the fd of the source !! 7441 Parameters: args[0] is the fd of the source vm 8004 :Returns: 0 on success !! 7442 Returns: 0 on success 8005 7443 8006 This capability enables userspace to migrate 7444 This capability enables userspace to migrate the encryption context from the VM 8007 indicated by the fd to the VM this is called 7445 indicated by the fd to the VM this is called on. 8008 7446 8009 This is intended to support intra-host migrat 7447 This is intended to support intra-host migration of VMs between userspace VMMs, 8010 upgrading the VMM process without interruptin 7448 upgrading the VMM process without interrupting the guest. 8011 7449 8012 7.30 KVM_CAP_PPC_AIL_MODE_3 7450 7.30 KVM_CAP_PPC_AIL_MODE_3 8013 ------------------------------- 7451 ------------------------------- 8014 7452 8015 :Capability: KVM_CAP_PPC_AIL_MODE_3 7453 :Capability: KVM_CAP_PPC_AIL_MODE_3 8016 :Architectures: ppc 7454 :Architectures: ppc 8017 :Type: vm 7455 :Type: vm 8018 7456 8019 This capability indicates that the kernel sup 7457 This capability indicates that the kernel supports the mode 3 setting for the 8020 "Address Translation Mode on Interrupt" aka " 7458 "Address Translation Mode on Interrupt" aka "Alternate Interrupt Location" 8021 resource that is controlled with the H_SET_MO 7459 resource that is controlled with the H_SET_MODE hypercall. 8022 7460 8023 This capability allows a guest kernel to use 7461 This capability allows a guest kernel to use a better-performance mode for 8024 handling interrupts and system calls. 7462 handling interrupts and system calls. 8025 7463 8026 7.31 KVM_CAP_DISABLE_QUIRKS2 7464 7.31 KVM_CAP_DISABLE_QUIRKS2 8027 ---------------------------- 7465 ---------------------------- 8028 7466 8029 :Capability: KVM_CAP_DISABLE_QUIRKS2 7467 :Capability: KVM_CAP_DISABLE_QUIRKS2 8030 :Parameters: args[0] - set of KVM quirks to d 7468 :Parameters: args[0] - set of KVM quirks to disable 8031 :Architectures: x86 7469 :Architectures: x86 8032 :Type: vm 7470 :Type: vm 8033 7471 8034 This capability, if enabled, will cause KVM t 7472 This capability, if enabled, will cause KVM to disable some behavior 8035 quirks. 7473 quirks. 8036 7474 8037 Calling KVM_CHECK_EXTENSION for this capabili 7475 Calling KVM_CHECK_EXTENSION for this capability returns a bitmask of 8038 quirks that can be disabled in KVM. 7476 quirks that can be disabled in KVM. 8039 7477 8040 The argument to KVM_ENABLE_CAP for this capab 7478 The argument to KVM_ENABLE_CAP for this capability is a bitmask of 8041 quirks to disable, and must be a subset of th 7479 quirks to disable, and must be a subset of the bitmask returned by 8042 KVM_CHECK_EXTENSION. 7480 KVM_CHECK_EXTENSION. 8043 7481 8044 The valid bits in cap.args[0] are: 7482 The valid bits in cap.args[0] are: 8045 7483 8046 =================================== ========= 7484 =================================== ============================================ 8047 KVM_X86_QUIRK_LINT0_REENABLED By defaul 7485 KVM_X86_QUIRK_LINT0_REENABLED By default, the reset value for the LVT 8048 LINT0 reg 7486 LINT0 register is 0x700 (APIC_MODE_EXTINT). 8049 When this 7487 When this quirk is disabled, the reset value 8050 is 0x1000 7488 is 0x10000 (APIC_LVT_MASKED). 8051 7489 8052 KVM_X86_QUIRK_CD_NW_CLEARED By defaul !! 7490 KVM_X86_QUIRK_CD_NW_CLEARED By default, KVM clears CR0.CD and CR0.NW. 8053 AMD CPUs << 8054 that runs << 8055 with cach << 8056 << 8057 When this 7491 When this quirk is disabled, KVM does not 8058 change th 7492 change the value of CR0.CD and CR0.NW. 8059 7493 8060 KVM_X86_QUIRK_LAPIC_MMIO_HOLE By defaul 7494 KVM_X86_QUIRK_LAPIC_MMIO_HOLE By default, the MMIO LAPIC interface is 8061 available 7495 available even when configured for x2APIC 8062 mode. Whe 7496 mode. When this quirk is disabled, KVM 8063 disables 7497 disables the MMIO LAPIC interface if the 8064 LAPIC is 7498 LAPIC is in x2APIC mode. 8065 7499 8066 KVM_X86_QUIRK_OUT_7E_INC_RIP By defaul 7500 KVM_X86_QUIRK_OUT_7E_INC_RIP By default, KVM pre-increments %rip before 8067 exiting t 7501 exiting to userspace for an OUT instruction 8068 to port 0 7502 to port 0x7e. When this quirk is disabled, 8069 KVM does 7503 KVM does not pre-increment %rip before 8070 exiting t 7504 exiting to userspace. 8071 7505 8072 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT When this 7506 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT When this quirk is disabled, KVM sets 8073 CPUID.01H 7507 CPUID.01H:ECX[bit 3] (MONITOR/MWAIT) if 8074 IA32_MISC 7508 IA32_MISC_ENABLE[bit 18] (MWAIT) is set. 8075 Additiona 7509 Additionally, when this quirk is disabled, 8076 KVM clear 7510 KVM clears CPUID.01H:ECX[bit 3] if 8077 IA32_MISC 7511 IA32_MISC_ENABLE[bit 18] is cleared. 8078 7512 8079 KVM_X86_QUIRK_FIX_HYPERCALL_INSN By defaul 7513 KVM_X86_QUIRK_FIX_HYPERCALL_INSN By default, KVM rewrites guest 8080 VMMCALL/V 7514 VMMCALL/VMCALL instructions to match the 8081 vendor's 7515 vendor's hypercall instruction for the 8082 system. W 7516 system. When this quirk is disabled, KVM 8083 will no l 7517 will no longer rewrite invalid guest 8084 hypercall 7518 hypercall instructions. Executing the 8085 incorrect 7519 incorrect hypercall instruction will 8086 generate 7520 generate a #UD within the guest. 8087 7521 8088 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS By defaul 7522 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS By default, KVM emulates MONITOR/MWAIT (if 8089 they are 7523 they are intercepted) as NOPs regardless of 8090 whether o 7524 whether or not MONITOR/MWAIT are supported 8091 according 7525 according to guest CPUID. When this quirk 8092 is disabl 7526 is disabled and KVM_X86_DISABLE_EXITS_MWAIT 8093 is not se 7527 is not set (MONITOR/MWAIT are intercepted), 8094 KVM will 7528 KVM will inject a #UD on MONITOR/MWAIT if 8095 they're u 7529 they're unsupported per guest CPUID. Note, 8096 KVM will 7530 KVM will modify MONITOR/MWAIT support in 8097 guest CPU 7531 guest CPUID on writes to MISC_ENABLE if 8098 KVM_X86_Q 7532 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT is 8099 disabled. 7533 disabled. 8100 << 8101 KVM_X86_QUIRK_SLOT_ZAP_ALL By defaul << 8102 invalidat << 8103 address s << 8104 moved. W << 8105 VM type i << 8106 ensures t << 8107 or moved << 8108 _may_ inv << 8109 memslot. << 8110 =================================== ========= 7534 =================================== ============================================ 8111 7535 8112 7.32 KVM_CAP_MAX_VCPU_ID 7536 7.32 KVM_CAP_MAX_VCPU_ID 8113 ------------------------ 7537 ------------------------ 8114 7538 8115 :Architectures: x86 7539 :Architectures: x86 8116 :Target: VM 7540 :Target: VM 8117 :Parameters: args[0] - maximum APIC ID value 7541 :Parameters: args[0] - maximum APIC ID value set for current VM 8118 :Returns: 0 on success, -EINVAL if args[0] is 7542 :Returns: 0 on success, -EINVAL if args[0] is beyond KVM_MAX_VCPU_IDS 8119 supported in KVM or if it has been 7543 supported in KVM or if it has been set. 8120 7544 8121 This capability allows userspace to specify m 7545 This capability allows userspace to specify maximum possible APIC ID 8122 assigned for current VM session prior to the 7546 assigned for current VM session prior to the creation of vCPUs, saving 8123 memory for data structures indexed by the API 7547 memory for data structures indexed by the APIC ID. Userspace is able 8124 to calculate the limit to APIC ID values from 7548 to calculate the limit to APIC ID values from designated 8125 CPU topology. 7549 CPU topology. 8126 7550 8127 The value can be changed only until KVM_ENABL 7551 The value can be changed only until KVM_ENABLE_CAP is set to a nonzero 8128 value or until a vCPU is created. Upon creat 7552 value or until a vCPU is created. Upon creation of the first vCPU, 8129 if the value was set to zero or KVM_ENABLE_CA 7553 if the value was set to zero or KVM_ENABLE_CAP was not invoked, KVM 8130 uses the return value of KVM_CHECK_EXTENSION( 7554 uses the return value of KVM_CHECK_EXTENSION(KVM_CAP_MAX_VCPU_ID) as 8131 the maximum APIC ID. 7555 the maximum APIC ID. 8132 7556 8133 7.33 KVM_CAP_X86_NOTIFY_VMEXIT 7557 7.33 KVM_CAP_X86_NOTIFY_VMEXIT 8134 ------------------------------ 7558 ------------------------------ 8135 7559 8136 :Architectures: x86 7560 :Architectures: x86 8137 :Target: VM 7561 :Target: VM 8138 :Parameters: args[0] is the value of notify w 7562 :Parameters: args[0] is the value of notify window as well as some flags 8139 :Returns: 0 on success, -EINVAL if args[0] co 7563 :Returns: 0 on success, -EINVAL if args[0] contains invalid flags or notify 8140 VM exit is unsupported. 7564 VM exit is unsupported. 8141 7565 8142 Bits 63:32 of args[0] are used for notify win 7566 Bits 63:32 of args[0] are used for notify window. 8143 Bits 31:0 of args[0] are for some flags. Vali 7567 Bits 31:0 of args[0] are for some flags. Valid bits are:: 8144 7568 8145 #define KVM_X86_NOTIFY_VMEXIT_ENABLED (1 7569 #define KVM_X86_NOTIFY_VMEXIT_ENABLED (1 << 0) 8146 #define KVM_X86_NOTIFY_VMEXIT_USER (1 7570 #define KVM_X86_NOTIFY_VMEXIT_USER (1 << 1) 8147 7571 8148 This capability allows userspace to configure 7572 This capability allows userspace to configure the notify VM exit on/off 8149 in per-VM scope during VM creation. Notify VM 7573 in per-VM scope during VM creation. Notify VM exit is disabled by default. 8150 When userspace sets KVM_X86_NOTIFY_VMEXIT_ENA 7574 When userspace sets KVM_X86_NOTIFY_VMEXIT_ENABLED bit in args[0], VMM will 8151 enable this feature with the notify window pr 7575 enable this feature with the notify window provided, which will generate 8152 a VM exit if no event window occurs in VM non 7576 a VM exit if no event window occurs in VM non-root mode for a specified of 8153 time (notify window). 7577 time (notify window). 8154 7578 8155 If KVM_X86_NOTIFY_VMEXIT_USER is set in args[ 7579 If KVM_X86_NOTIFY_VMEXIT_USER is set in args[0], upon notify VM exits happen, 8156 KVM would exit to userspace for handling. 7580 KVM would exit to userspace for handling. 8157 7581 8158 This capability is aimed to mitigate the thre 7582 This capability is aimed to mitigate the threat that malicious VMs can 8159 cause CPU stuck (due to event windows don't o 7583 cause CPU stuck (due to event windows don't open up) and make the CPU 8160 unavailable to host or other VMs. 7584 unavailable to host or other VMs. 8161 7585 8162 7.34 KVM_CAP_MEMORY_FAULT_INFO << 8163 ------------------------------ << 8164 << 8165 :Architectures: x86 << 8166 :Returns: Informational only, -EINVAL on dire << 8167 << 8168 The presence of this capability indicates tha << 8169 kvm_run.memory_fault if KVM cannot resolve a << 8170 there is a valid memslot but no backing VMA f << 8171 address. << 8172 << 8173 The information in kvm_run.memory_fault is va << 8174 an error with errno=EFAULT or errno=EHWPOISON << 8175 to KVM_EXIT_MEMORY_FAULT. << 8176 << 8177 Note: Userspaces which attempt to resolve mem << 8178 KVM_RUN are encouraged to guard against repea << 8179 error/annotated fault. << 8180 << 8181 See KVM_EXIT_MEMORY_FAULT for more informatio << 8182 << 8183 7.35 KVM_CAP_X86_APIC_BUS_CYCLES_NS << 8184 ----------------------------------- << 8185 << 8186 :Architectures: x86 << 8187 :Target: VM << 8188 :Parameters: args[0] is the desired APIC bus << 8189 :Returns: 0 on success, -EINVAL if args[0] co << 8190 frequency or if any vCPUs have been << 8191 local APIC has not been created usi << 8192 << 8193 This capability sets the VM's APIC bus clock << 8194 virtual APIC when emulating APIC timers. KVM << 8195 by KVM_CHECK_EXTENSION. << 8196 << 8197 Note: Userspace is responsible for correctly << 8198 core crystal clock frequency, if a non-zero C << 8199 << 8200 7.36 KVM_CAP_X86_GUEST_MODE << 8201 ------------------------------ << 8202 << 8203 :Architectures: x86 << 8204 :Returns: Informational only, -EINVAL on dire << 8205 << 8206 The presence of this capability indicates tha << 8207 KVM_RUN_X86_GUEST_MODE bit in kvm_run.flags t << 8208 vCPU was executing nested guest code when it << 8209 << 8210 KVM exits with the register state of either t << 8211 depending on which executed at the time of an << 8212 take care to differentiate between these case << 8213 << 8214 8. Other capabilities. 7586 8. Other capabilities. 8215 ====================== 7587 ====================== 8216 7588 8217 This section lists capabilities that give inf 7589 This section lists capabilities that give information about other 8218 features of the KVM implementation. 7590 features of the KVM implementation. 8219 7591 8220 8.1 KVM_CAP_PPC_HWRNG 7592 8.1 KVM_CAP_PPC_HWRNG 8221 --------------------- 7593 --------------------- 8222 7594 8223 :Architectures: ppc 7595 :Architectures: ppc 8224 7596 8225 This capability, if KVM_CHECK_EXTENSION indic 7597 This capability, if KVM_CHECK_EXTENSION indicates that it is 8226 available, means that the kernel has an imple 7598 available, means that the kernel has an implementation of the 8227 H_RANDOM hypercall backed by a hardware rando 7599 H_RANDOM hypercall backed by a hardware random-number generator. 8228 If present, the kernel H_RANDOM handler can b 7600 If present, the kernel H_RANDOM handler can be enabled for guest use 8229 with the KVM_CAP_PPC_ENABLE_HCALL capability. 7601 with the KVM_CAP_PPC_ENABLE_HCALL capability. 8230 7602 8231 8.2 KVM_CAP_HYPERV_SYNIC 7603 8.2 KVM_CAP_HYPERV_SYNIC 8232 ------------------------ 7604 ------------------------ 8233 7605 8234 :Architectures: x86 7606 :Architectures: x86 8235 7607 8236 This capability, if KVM_CHECK_EXTENSION indic 7608 This capability, if KVM_CHECK_EXTENSION indicates that it is 8237 available, means that the kernel has an imple 7609 available, means that the kernel has an implementation of the 8238 Hyper-V Synthetic interrupt controller(SynIC) 7610 Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is 8239 used to support Windows Hyper-V based guest p 7611 used to support Windows Hyper-V based guest paravirt drivers(VMBus). 8240 7612 8241 In order to use SynIC, it has to be activated 7613 In order to use SynIC, it has to be activated by setting this 8242 capability via KVM_ENABLE_CAP ioctl on the vc 7614 capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this 8243 will disable the use of APIC hardware virtual 7615 will disable the use of APIC hardware virtualization even if supported 8244 by the CPU, as it's incompatible with SynIC a 7616 by the CPU, as it's incompatible with SynIC auto-EOI behavior. 8245 7617 8246 8.3 KVM_CAP_PPC_MMU_RADIX !! 7618 8.3 KVM_CAP_PPC_RADIX_MMU 8247 ------------------------- 7619 ------------------------- 8248 7620 8249 :Architectures: ppc 7621 :Architectures: ppc 8250 7622 8251 This capability, if KVM_CHECK_EXTENSION indic 7623 This capability, if KVM_CHECK_EXTENSION indicates that it is 8252 available, means that the kernel can support 7624 available, means that the kernel can support guests using the 8253 radix MMU defined in Power ISA V3.00 (as impl 7625 radix MMU defined in Power ISA V3.00 (as implemented in the POWER9 8254 processor). 7626 processor). 8255 7627 8256 8.4 KVM_CAP_PPC_MMU_HASH_V3 !! 7628 8.4 KVM_CAP_PPC_HASH_MMU_V3 8257 --------------------------- 7629 --------------------------- 8258 7630 8259 :Architectures: ppc 7631 :Architectures: ppc 8260 7632 8261 This capability, if KVM_CHECK_EXTENSION indic 7633 This capability, if KVM_CHECK_EXTENSION indicates that it is 8262 available, means that the kernel can support 7634 available, means that the kernel can support guests using the 8263 hashed page table MMU defined in Power ISA V3 7635 hashed page table MMU defined in Power ISA V3.00 (as implemented in 8264 the POWER9 processor), including in-memory se 7636 the POWER9 processor), including in-memory segment tables. 8265 7637 8266 8.5 KVM_CAP_MIPS_VZ 7638 8.5 KVM_CAP_MIPS_VZ 8267 ------------------- 7639 ------------------- 8268 7640 8269 :Architectures: mips 7641 :Architectures: mips 8270 7642 8271 This capability, if KVM_CHECK_EXTENSION on th 7643 This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that 8272 it is available, means that full hardware ass 7644 it is available, means that full hardware assisted virtualization capabilities 8273 of the hardware are available for use through 7645 of the hardware are available for use through KVM. An appropriate 8274 KVM_VM_MIPS_* type must be passed to KVM_CREA 7646 KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which 8275 utilises it. 7647 utilises it. 8276 7648 8277 If KVM_CHECK_EXTENSION on a kvm VM handle ind 7649 If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is 8278 available, it means that the VM is using full 7650 available, it means that the VM is using full hardware assisted virtualization 8279 capabilities of the hardware. This is useful 7651 capabilities of the hardware. This is useful to check after creating a VM with 8280 KVM_VM_MIPS_DEFAULT. 7652 KVM_VM_MIPS_DEFAULT. 8281 7653 8282 The value returned by KVM_CHECK_EXTENSION sho 7654 The value returned by KVM_CHECK_EXTENSION should be compared against known 8283 values (see below). All other values are rese 7655 values (see below). All other values are reserved. This is to allow for the 8284 possibility of other hardware assisted virtua 7656 possibility of other hardware assisted virtualization implementations which 8285 may be incompatible with the MIPS VZ ASE. 7657 may be incompatible with the MIPS VZ ASE. 8286 7658 8287 == ========================================= 7659 == ========================================================================== 8288 0 The trap & emulate implementation is in u 7660 0 The trap & emulate implementation is in use to run guest code in user 8289 mode. Guest virtual memory segments are r 7661 mode. Guest virtual memory segments are rearranged to fit the guest in the 8290 user mode address space. 7662 user mode address space. 8291 7663 8292 1 The MIPS VZ ASE is in use, providing full 7664 1 The MIPS VZ ASE is in use, providing full hardware assisted 8293 virtualization, including standard guest 7665 virtualization, including standard guest virtual memory segments. 8294 == ========================================= 7666 == ========================================================================== 8295 7667 8296 8.6 KVM_CAP_MIPS_TE 7668 8.6 KVM_CAP_MIPS_TE 8297 ------------------- 7669 ------------------- 8298 7670 8299 :Architectures: mips 7671 :Architectures: mips 8300 7672 8301 This capability, if KVM_CHECK_EXTENSION on th 7673 This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that 8302 it is available, means that the trap & emulat 7674 it is available, means that the trap & emulate implementation is available to 8303 run guest code in user mode, even if KVM_CAP_ 7675 run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware 8304 assisted virtualisation is also available. KV 7676 assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed 8305 to KVM_CREATE_VM to create a VM which utilise 7677 to KVM_CREATE_VM to create a VM which utilises it. 8306 7678 8307 If KVM_CHECK_EXTENSION on a kvm VM handle ind 7679 If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is 8308 available, it means that the VM is using trap 7680 available, it means that the VM is using trap & emulate. 8309 7681 8310 8.7 KVM_CAP_MIPS_64BIT 7682 8.7 KVM_CAP_MIPS_64BIT 8311 ---------------------- 7683 ---------------------- 8312 7684 8313 :Architectures: mips 7685 :Architectures: mips 8314 7686 8315 This capability indicates the supported archi 7687 This capability indicates the supported architecture type of the guest, i.e. the 8316 supported register and address width. 7688 supported register and address width. 8317 7689 8318 The values returned when this capability is c 7690 The values returned when this capability is checked by KVM_CHECK_EXTENSION on a 8319 kvm VM handle correspond roughly to the CP0_C 7691 kvm VM handle correspond roughly to the CP0_Config.AT register field, and should 8320 be checked specifically against known values 7692 be checked specifically against known values (see below). All other values are 8321 reserved. 7693 reserved. 8322 7694 8323 == ========================================= 7695 == ======================================================================== 8324 0 MIPS32 or microMIPS32. 7696 0 MIPS32 or microMIPS32. 8325 Both registers and addresses are 32-bits 7697 Both registers and addresses are 32-bits wide. 8326 It will only be possible to run 32-bit gu 7698 It will only be possible to run 32-bit guest code. 8327 7699 8328 1 MIPS64 or microMIPS64 with access only to 7700 1 MIPS64 or microMIPS64 with access only to 32-bit compatibility segments. 8329 Registers are 64-bits wide, but addresses 7701 Registers are 64-bits wide, but addresses are 32-bits wide. 8330 64-bit guest code may run but cannot acce 7702 64-bit guest code may run but cannot access MIPS64 memory segments. 8331 It will also be possible to run 32-bit gu 7703 It will also be possible to run 32-bit guest code. 8332 7704 8333 2 MIPS64 or microMIPS64 with access to all 7705 2 MIPS64 or microMIPS64 with access to all address segments. 8334 Both registers and addresses are 64-bits 7706 Both registers and addresses are 64-bits wide. 8335 It will be possible to run 64-bit or 32-b 7707 It will be possible to run 64-bit or 32-bit guest code. 8336 == ========================================= 7708 == ======================================================================== 8337 7709 8338 8.9 KVM_CAP_ARM_USER_IRQ 7710 8.9 KVM_CAP_ARM_USER_IRQ 8339 ------------------------ 7711 ------------------------ 8340 7712 8341 :Architectures: arm64 7713 :Architectures: arm64 8342 7714 8343 This capability, if KVM_CHECK_EXTENSION indic 7715 This capability, if KVM_CHECK_EXTENSION indicates that it is available, means 8344 that if userspace creates a VM without an in- 7716 that if userspace creates a VM without an in-kernel interrupt controller, it 8345 will be notified of changes to the output lev 7717 will be notified of changes to the output level of in-kernel emulated devices, 8346 which can generate virtual interrupts, presen 7718 which can generate virtual interrupts, presented to the VM. 8347 For such VMs, on every return to userspace, t 7719 For such VMs, on every return to userspace, the kernel 8348 updates the vcpu's run->s.regs.device_irq_lev 7720 updates the vcpu's run->s.regs.device_irq_level field to represent the actual 8349 output level of the device. 7721 output level of the device. 8350 7722 8351 Whenever kvm detects a change in the device o 7723 Whenever kvm detects a change in the device output level, kvm guarantees at 8352 least one return to userspace before running 7724 least one return to userspace before running the VM. This exit could either 8353 be a KVM_EXIT_INTR or any other exit event, l 7725 be a KVM_EXIT_INTR or any other exit event, like KVM_EXIT_MMIO. This way, 8354 userspace can always sample the device output 7726 userspace can always sample the device output level and re-compute the state of 8355 the userspace interrupt controller. Userspac 7727 the userspace interrupt controller. Userspace should always check the state 8356 of run->s.regs.device_irq_level on every kvm 7728 of run->s.regs.device_irq_level on every kvm exit. 8357 The value in run->s.regs.device_irq_level can 7729 The value in run->s.regs.device_irq_level can represent both level and edge 8358 triggered interrupt signals, depending on the 7730 triggered interrupt signals, depending on the device. Edge triggered interrupt 8359 signals will exit to userspace with the bit i 7731 signals will exit to userspace with the bit in run->s.regs.device_irq_level 8360 set exactly once per edge signal. 7732 set exactly once per edge signal. 8361 7733 8362 The field run->s.regs.device_irq_level is ava 7734 The field run->s.regs.device_irq_level is available independent of 8363 run->kvm_valid_regs or run->kvm_dirty_regs bi 7735 run->kvm_valid_regs or run->kvm_dirty_regs bits. 8364 7736 8365 If KVM_CAP_ARM_USER_IRQ is supported, the KVM 7737 If KVM_CAP_ARM_USER_IRQ is supported, the KVM_CHECK_EXTENSION ioctl returns a 8366 number larger than 0 indicating the version o 7738 number larger than 0 indicating the version of this capability is implemented 8367 and thereby which bits in run->s.regs.device_ 7739 and thereby which bits in run->s.regs.device_irq_level can signal values. 8368 7740 8369 Currently the following bits are defined for 7741 Currently the following bits are defined for the device_irq_level bitmap:: 8370 7742 8371 KVM_CAP_ARM_USER_IRQ >= 1: 7743 KVM_CAP_ARM_USER_IRQ >= 1: 8372 7744 8373 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual tim 7745 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual timer 8374 KVM_ARM_DEV_EL1_PTIMER - EL1 physical ti 7746 KVM_ARM_DEV_EL1_PTIMER - EL1 physical timer 8375 KVM_ARM_DEV_PMU - ARM PMU overflo 7747 KVM_ARM_DEV_PMU - ARM PMU overflow interrupt signal 8376 7748 8377 Future versions of kvm may implement addition 7749 Future versions of kvm may implement additional events. These will get 8378 indicated by returning a higher number from K 7750 indicated by returning a higher number from KVM_CHECK_EXTENSION and will be 8379 listed above. 7751 listed above. 8380 7752 8381 8.10 KVM_CAP_PPC_SMT_POSSIBLE 7753 8.10 KVM_CAP_PPC_SMT_POSSIBLE 8382 ----------------------------- 7754 ----------------------------- 8383 7755 8384 :Architectures: ppc 7756 :Architectures: ppc 8385 7757 8386 Querying this capability returns a bitmap ind 7758 Querying this capability returns a bitmap indicating the possible 8387 virtual SMT modes that can be set using KVM_C 7759 virtual SMT modes that can be set using KVM_CAP_PPC_SMT. If bit N 8388 (counting from the right) is set, then a virt 7760 (counting from the right) is set, then a virtual SMT mode of 2^N is 8389 available. 7761 available. 8390 7762 8391 8.11 KVM_CAP_HYPERV_SYNIC2 7763 8.11 KVM_CAP_HYPERV_SYNIC2 8392 -------------------------- 7764 -------------------------- 8393 7765 8394 :Architectures: x86 7766 :Architectures: x86 8395 7767 8396 This capability enables a newer version of Hy 7768 This capability enables a newer version of Hyper-V Synthetic interrupt 8397 controller (SynIC). The only difference with 7769 controller (SynIC). The only difference with KVM_CAP_HYPERV_SYNIC is that KVM 8398 doesn't clear SynIC message and event flags p 7770 doesn't clear SynIC message and event flags pages when they are enabled by 8399 writing to the respective MSRs. 7771 writing to the respective MSRs. 8400 7772 8401 8.12 KVM_CAP_HYPERV_VP_INDEX 7773 8.12 KVM_CAP_HYPERV_VP_INDEX 8402 ---------------------------- 7774 ---------------------------- 8403 7775 8404 :Architectures: x86 7776 :Architectures: x86 8405 7777 8406 This capability indicates that userspace can 7778 This capability indicates that userspace can load HV_X64_MSR_VP_INDEX msr. Its 8407 value is used to denote the target vcpu for a 7779 value is used to denote the target vcpu for a SynIC interrupt. For 8408 compatibility, KVM initializes this msr to KV !! 7780 compatibilty, KVM initializes this msr to KVM's internal vcpu index. When this 8409 capability is absent, userspace can still que 7781 capability is absent, userspace can still query this msr's value. 8410 7782 8411 8.13 KVM_CAP_S390_AIS_MIGRATION 7783 8.13 KVM_CAP_S390_AIS_MIGRATION 8412 ------------------------------- 7784 ------------------------------- 8413 7785 8414 :Architectures: s390 7786 :Architectures: s390 8415 :Parameters: none 7787 :Parameters: none 8416 7788 8417 This capability indicates if the flic device 7789 This capability indicates if the flic device will be able to get/set the 8418 AIS states for migration via the KVM_DEV_FLIC 7790 AIS states for migration via the KVM_DEV_FLIC_AISM_ALL attribute and allows 8419 to discover this without having to create a f 7791 to discover this without having to create a flic device. 8420 7792 8421 8.14 KVM_CAP_S390_PSW 7793 8.14 KVM_CAP_S390_PSW 8422 --------------------- 7794 --------------------- 8423 7795 8424 :Architectures: s390 7796 :Architectures: s390 8425 7797 8426 This capability indicates that the PSW is exp 7798 This capability indicates that the PSW is exposed via the kvm_run structure. 8427 7799 8428 8.15 KVM_CAP_S390_GMAP 7800 8.15 KVM_CAP_S390_GMAP 8429 ---------------------- 7801 ---------------------- 8430 7802 8431 :Architectures: s390 7803 :Architectures: s390 8432 7804 8433 This capability indicates that the user space 7805 This capability indicates that the user space memory used as guest mapping can 8434 be anywhere in the user memory address space, 7806 be anywhere in the user memory address space, as long as the memory slots are 8435 aligned and sized to a segment (1MB) boundary 7807 aligned and sized to a segment (1MB) boundary. 8436 7808 8437 8.16 KVM_CAP_S390_COW 7809 8.16 KVM_CAP_S390_COW 8438 --------------------- 7810 --------------------- 8439 7811 8440 :Architectures: s390 7812 :Architectures: s390 8441 7813 8442 This capability indicates that the user space 7814 This capability indicates that the user space memory used as guest mapping can 8443 use copy-on-write semantics as well as dirty 7815 use copy-on-write semantics as well as dirty pages tracking via read-only page 8444 tables. 7816 tables. 8445 7817 8446 8.17 KVM_CAP_S390_BPB 7818 8.17 KVM_CAP_S390_BPB 8447 --------------------- 7819 --------------------- 8448 7820 8449 :Architectures: s390 7821 :Architectures: s390 8450 7822 8451 This capability indicates that kvm will imple 7823 This capability indicates that kvm will implement the interfaces to handle 8452 reset, migration and nested KVM for branch pr 7824 reset, migration and nested KVM for branch prediction blocking. The stfle 8453 facility 82 should not be provided to the gue 7825 facility 82 should not be provided to the guest without this capability. 8454 7826 8455 8.18 KVM_CAP_HYPERV_TLBFLUSH 7827 8.18 KVM_CAP_HYPERV_TLBFLUSH 8456 ---------------------------- 7828 ---------------------------- 8457 7829 8458 :Architectures: x86 7830 :Architectures: x86 8459 7831 8460 This capability indicates that KVM supports p 7832 This capability indicates that KVM supports paravirtualized Hyper-V TLB Flush 8461 hypercalls: 7833 hypercalls: 8462 HvFlushVirtualAddressSpace, HvFlushVirtualAdd 7834 HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx, 8463 HvFlushVirtualAddressList, HvFlushVirtualAddr 7835 HvFlushVirtualAddressList, HvFlushVirtualAddressListEx. 8464 7836 8465 8.19 KVM_CAP_ARM_INJECT_SERROR_ESR 7837 8.19 KVM_CAP_ARM_INJECT_SERROR_ESR 8466 ---------------------------------- 7838 ---------------------------------- 8467 7839 8468 :Architectures: arm64 7840 :Architectures: arm64 8469 7841 8470 This capability indicates that userspace can 7842 This capability indicates that userspace can specify (via the 8471 KVM_SET_VCPU_EVENTS ioctl) the syndrome value 7843 KVM_SET_VCPU_EVENTS ioctl) the syndrome value reported to the guest when it 8472 takes a virtual SError interrupt exception. 7844 takes a virtual SError interrupt exception. 8473 If KVM advertises this capability, userspace 7845 If KVM advertises this capability, userspace can only specify the ISS field for 8474 the ESR syndrome. Other parts of the ESR, suc 7846 the ESR syndrome. Other parts of the ESR, such as the EC are generated by the 8475 CPU when the exception is taken. If this virt 7847 CPU when the exception is taken. If this virtual SError is taken to EL1 using 8476 AArch64, this value will be reported in the I 7848 AArch64, this value will be reported in the ISS field of ESR_ELx. 8477 7849 8478 See KVM_CAP_VCPU_EVENTS for more details. 7850 See KVM_CAP_VCPU_EVENTS for more details. 8479 7851 8480 8.20 KVM_CAP_HYPERV_SEND_IPI 7852 8.20 KVM_CAP_HYPERV_SEND_IPI 8481 ---------------------------- 7853 ---------------------------- 8482 7854 8483 :Architectures: x86 7855 :Architectures: x86 8484 7856 8485 This capability indicates that KVM supports p 7857 This capability indicates that KVM supports paravirtualized Hyper-V IPI send 8486 hypercalls: 7858 hypercalls: 8487 HvCallSendSyntheticClusterIpi, HvCallSendSynt 7859 HvCallSendSyntheticClusterIpi, HvCallSendSyntheticClusterIpiEx. 8488 7860 8489 8.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH 7861 8.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH 8490 ----------------------------------- 7862 ----------------------------------- 8491 7863 8492 :Architectures: x86 7864 :Architectures: x86 8493 7865 8494 This capability indicates that KVM running on 7866 This capability indicates that KVM running on top of Hyper-V hypervisor 8495 enables Direct TLB flush for its guests meani 7867 enables Direct TLB flush for its guests meaning that TLB flush 8496 hypercalls are handled by Level 0 hypervisor 7868 hypercalls are handled by Level 0 hypervisor (Hyper-V) bypassing KVM. 8497 Due to the different ABI for hypercall parame 7869 Due to the different ABI for hypercall parameters between Hyper-V and 8498 KVM, enabling this capability effectively dis 7870 KVM, enabling this capability effectively disables all hypercall 8499 handling by KVM (as some KVM hypercall may be 7871 handling by KVM (as some KVM hypercall may be mistakenly treated as TLB 8500 flush hypercalls by Hyper-V) so userspace sho 7872 flush hypercalls by Hyper-V) so userspace should disable KVM identification 8501 in CPUID and only exposes Hyper-V identificat 7873 in CPUID and only exposes Hyper-V identification. In this case, guest 8502 thinks it's running on Hyper-V and only use H 7874 thinks it's running on Hyper-V and only use Hyper-V hypercalls. 8503 7875 8504 8.22 KVM_CAP_S390_VCPU_RESETS 7876 8.22 KVM_CAP_S390_VCPU_RESETS 8505 ----------------------------- 7877 ----------------------------- 8506 7878 8507 :Architectures: s390 7879 :Architectures: s390 8508 7880 8509 This capability indicates that the KVM_S390_N 7881 This capability indicates that the KVM_S390_NORMAL_RESET and 8510 KVM_S390_CLEAR_RESET ioctls are available. 7882 KVM_S390_CLEAR_RESET ioctls are available. 8511 7883 8512 8.23 KVM_CAP_S390_PROTECTED 7884 8.23 KVM_CAP_S390_PROTECTED 8513 --------------------------- 7885 --------------------------- 8514 7886 8515 :Architectures: s390 7887 :Architectures: s390 8516 7888 8517 This capability indicates that the Ultravisor 7889 This capability indicates that the Ultravisor has been initialized and 8518 KVM can therefore start protected VMs. 7890 KVM can therefore start protected VMs. 8519 This capability governs the KVM_S390_PV_COMMA 7891 This capability governs the KVM_S390_PV_COMMAND ioctl and the 8520 KVM_MP_STATE_LOAD MP_STATE. KVM_SET_MP_STATE 7892 KVM_MP_STATE_LOAD MP_STATE. KVM_SET_MP_STATE can fail for protected 8521 guests when the state change is invalid. 7893 guests when the state change is invalid. 8522 7894 8523 8.24 KVM_CAP_STEAL_TIME 7895 8.24 KVM_CAP_STEAL_TIME 8524 ----------------------- 7896 ----------------------- 8525 7897 8526 :Architectures: arm64, x86 7898 :Architectures: arm64, x86 8527 7899 8528 This capability indicates that KVM supports s 7900 This capability indicates that KVM supports steal time accounting. 8529 When steal time accounting is supported it ma 7901 When steal time accounting is supported it may be enabled with 8530 architecture-specific interfaces. This capab 7902 architecture-specific interfaces. This capability and the architecture- 8531 specific interfaces must be consistent, i.e. 7903 specific interfaces must be consistent, i.e. if one says the feature 8532 is supported, than the other should as well a 7904 is supported, than the other should as well and vice versa. For arm64 8533 see Documentation/virt/kvm/devices/vcpu.rst " 7905 see Documentation/virt/kvm/devices/vcpu.rst "KVM_ARM_VCPU_PVTIME_CTRL". 8534 For x86 see Documentation/virt/kvm/x86/msr.rs 7906 For x86 see Documentation/virt/kvm/x86/msr.rst "MSR_KVM_STEAL_TIME". 8535 7907 8536 8.25 KVM_CAP_S390_DIAG318 7908 8.25 KVM_CAP_S390_DIAG318 8537 ------------------------- 7909 ------------------------- 8538 7910 8539 :Architectures: s390 7911 :Architectures: s390 8540 7912 8541 This capability enables a guest to set inform 7913 This capability enables a guest to set information about its control program 8542 (i.e. guest kernel type and version). The inf 7914 (i.e. guest kernel type and version). The information is helpful during 8543 system/firmware service events, providing add 7915 system/firmware service events, providing additional data about the guest 8544 environments running on the machine. 7916 environments running on the machine. 8545 7917 8546 The information is associated with the DIAGNO 7918 The information is associated with the DIAGNOSE 0x318 instruction, which sets 8547 an 8-byte value consisting of a one-byte Cont 7919 an 8-byte value consisting of a one-byte Control Program Name Code (CPNC) and 8548 a 7-byte Control Program Version Code (CPVC). 7920 a 7-byte Control Program Version Code (CPVC). The CPNC determines what 8549 environment the control program is running in 7921 environment the control program is running in (e.g. Linux, z/VM...), and the 8550 CPVC is used for information specific to OS ( 7922 CPVC is used for information specific to OS (e.g. Linux version, Linux 8551 distribution...) 7923 distribution...) 8552 7924 8553 If this capability is available, then the CPN 7925 If this capability is available, then the CPNC and CPVC can be synchronized 8554 between KVM and userspace via the sync regs m 7926 between KVM and userspace via the sync regs mechanism (KVM_SYNC_DIAG318). 8555 7927 8556 8.26 KVM_CAP_X86_USER_SPACE_MSR 7928 8.26 KVM_CAP_X86_USER_SPACE_MSR 8557 ------------------------------- 7929 ------------------------------- 8558 7930 8559 :Architectures: x86 7931 :Architectures: x86 8560 7932 8561 This capability indicates that KVM supports d 7933 This capability indicates that KVM supports deflection of MSR reads and 8562 writes to user space. It can be enabled on a 7934 writes to user space. It can be enabled on a VM level. If enabled, MSR 8563 accesses that would usually trigger a #GP by 7935 accesses that would usually trigger a #GP by KVM into the guest will 8564 instead get bounced to user space through the 7936 instead get bounced to user space through the KVM_EXIT_X86_RDMSR and 8565 KVM_EXIT_X86_WRMSR exit notifications. 7937 KVM_EXIT_X86_WRMSR exit notifications. 8566 7938 8567 8.27 KVM_CAP_X86_MSR_FILTER 7939 8.27 KVM_CAP_X86_MSR_FILTER 8568 --------------------------- 7940 --------------------------- 8569 7941 8570 :Architectures: x86 7942 :Architectures: x86 8571 7943 8572 This capability indicates that KVM supports t 7944 This capability indicates that KVM supports that accesses to user defined MSRs 8573 may be rejected. With this capability exposed 7945 may be rejected. With this capability exposed, KVM exports new VM ioctl 8574 KVM_X86_SET_MSR_FILTER which user space can c 7946 KVM_X86_SET_MSR_FILTER which user space can call to specify bitmaps of MSR 8575 ranges that KVM should deny access to. 7947 ranges that KVM should deny access to. 8576 7948 8577 In combination with KVM_CAP_X86_USER_SPACE_MS 7949 In combination with KVM_CAP_X86_USER_SPACE_MSR, this allows user space to 8578 trap and emulate MSRs that are outside of the 7950 trap and emulate MSRs that are outside of the scope of KVM as well as 8579 limit the attack surface on KVM's MSR emulati 7951 limit the attack surface on KVM's MSR emulation code. 8580 7952 8581 8.28 KVM_CAP_ENFORCE_PV_FEATURE_CPUID 7953 8.28 KVM_CAP_ENFORCE_PV_FEATURE_CPUID 8582 ------------------------------------- 7954 ------------------------------------- 8583 7955 8584 Architectures: x86 7956 Architectures: x86 8585 7957 8586 When enabled, KVM will disable paravirtual fe 7958 When enabled, KVM will disable paravirtual features provided to the 8587 guest according to the bits in the KVM_CPUID_ 7959 guest according to the bits in the KVM_CPUID_FEATURES CPUID leaf 8588 (0x40000001). Otherwise, a guest may use the 7960 (0x40000001). Otherwise, a guest may use the paravirtual features 8589 regardless of what has actually been exposed 7961 regardless of what has actually been exposed through the CPUID leaf. 8590 7962 8591 8.29 KVM_CAP_DIRTY_LOG_RING/KVM_CAP_DIRTY_LOG 7963 8.29 KVM_CAP_DIRTY_LOG_RING/KVM_CAP_DIRTY_LOG_RING_ACQ_REL 8592 --------------------------------------------- 7964 ---------------------------------------------------------- 8593 7965 8594 :Architectures: x86, arm64 7966 :Architectures: x86, arm64 8595 :Parameters: args[0] - size of the dirty log 7967 :Parameters: args[0] - size of the dirty log ring 8596 7968 8597 KVM is capable of tracking dirty memory using 7969 KVM is capable of tracking dirty memory using ring buffers that are 8598 mmapped into userspace; there is one dirty ri !! 7970 mmaped into userspace; there is one dirty ring per vcpu. 8599 7971 8600 The dirty ring is available to userspace as a 7972 The dirty ring is available to userspace as an array of 8601 ``struct kvm_dirty_gfn``. Each dirty entry i !! 7973 ``struct kvm_dirty_gfn``. Each dirty entry it's defined as:: 8602 7974 8603 struct kvm_dirty_gfn { 7975 struct kvm_dirty_gfn { 8604 __u32 flags; 7976 __u32 flags; 8605 __u32 slot; /* as_id | slot_id */ 7977 __u32 slot; /* as_id | slot_id */ 8606 __u64 offset; 7978 __u64 offset; 8607 }; 7979 }; 8608 7980 8609 The following values are defined for the flag 7981 The following values are defined for the flags field to define the 8610 current state of the entry:: 7982 current state of the entry:: 8611 7983 8612 #define KVM_DIRTY_GFN_F_DIRTY BIT 7984 #define KVM_DIRTY_GFN_F_DIRTY BIT(0) 8613 #define KVM_DIRTY_GFN_F_RESET BIT 7985 #define KVM_DIRTY_GFN_F_RESET BIT(1) 8614 #define KVM_DIRTY_GFN_F_MASK 0x3 7986 #define KVM_DIRTY_GFN_F_MASK 0x3 8615 7987 8616 Userspace should call KVM_ENABLE_CAP ioctl ri 7988 Userspace should call KVM_ENABLE_CAP ioctl right after KVM_CREATE_VM 8617 ioctl to enable this capability for the new g 7989 ioctl to enable this capability for the new guest and set the size of 8618 the rings. Enabling the capability is only a 7990 the rings. Enabling the capability is only allowed before creating any 8619 vCPU, and the size of the ring must be a powe 7991 vCPU, and the size of the ring must be a power of two. The larger the 8620 ring buffer, the less likely the ring is full 7992 ring buffer, the less likely the ring is full and the VM is forced to 8621 exit to userspace. The optimal size depends o 7993 exit to userspace. The optimal size depends on the workload, but it is 8622 recommended that it be at least 64 KiB (4096 7994 recommended that it be at least 64 KiB (4096 entries). 8623 7995 8624 Just like for dirty page bitmaps, the buffer 7996 Just like for dirty page bitmaps, the buffer tracks writes to 8625 all user memory regions for which the KVM_MEM 7997 all user memory regions for which the KVM_MEM_LOG_DIRTY_PAGES flag was 8626 set in KVM_SET_USER_MEMORY_REGION. Once a me 7998 set in KVM_SET_USER_MEMORY_REGION. Once a memory region is registered 8627 with the flag set, userspace can start harves 7999 with the flag set, userspace can start harvesting dirty pages from the 8628 ring buffer. 8000 ring buffer. 8629 8001 8630 An entry in the ring buffer can be unused (fl 8002 An entry in the ring buffer can be unused (flag bits ``00``), 8631 dirty (flag bits ``01``) or harvested (flag b 8003 dirty (flag bits ``01``) or harvested (flag bits ``1X``). The 8632 state machine for the entry is as follows:: 8004 state machine for the entry is as follows:: 8633 8005 8634 dirtied harvested re 8006 dirtied harvested reset 8635 00 -----------> 01 -------------> 1X --- 8007 00 -----------> 01 -------------> 1X -------+ 8636 ^ 8008 ^ | 8637 | 8009 | | 8638 +-------------------------------------- 8010 +------------------------------------------+ 8639 8011 8640 To harvest the dirty pages, userspace accesse !! 8012 To harvest the dirty pages, userspace accesses the mmaped ring buffer 8641 to read the dirty GFNs. If the flags has the 8013 to read the dirty GFNs. If the flags has the DIRTY bit set (at this stage 8642 the RESET bit must be cleared), then it means 8014 the RESET bit must be cleared), then it means this GFN is a dirty GFN. 8643 The userspace should harvest this GFN and mar 8015 The userspace should harvest this GFN and mark the flags from state 8644 ``01b`` to ``1Xb`` (bit 0 will be ignored by 8016 ``01b`` to ``1Xb`` (bit 0 will be ignored by KVM, but bit 1 must be set 8645 to show that this GFN is harvested and waitin 8017 to show that this GFN is harvested and waiting for a reset), and move 8646 on to the next GFN. The userspace should con 8018 on to the next GFN. The userspace should continue to do this until the 8647 flags of a GFN have the DIRTY bit cleared, me 8019 flags of a GFN have the DIRTY bit cleared, meaning that it has harvested 8648 all the dirty GFNs that were available. 8020 all the dirty GFNs that were available. 8649 8021 8650 Note that on weakly ordered architectures, us 8022 Note that on weakly ordered architectures, userspace accesses to the 8651 ring buffer (and more specifically the 'flags 8023 ring buffer (and more specifically the 'flags' field) must be ordered, 8652 using load-acquire/store-release accessors wh 8024 using load-acquire/store-release accessors when available, or any 8653 other memory barrier that will ensure this or 8025 other memory barrier that will ensure this ordering. 8654 8026 8655 It's not necessary for userspace to harvest t 8027 It's not necessary for userspace to harvest the all dirty GFNs at once. 8656 However it must collect the dirty GFNs in seq 8028 However it must collect the dirty GFNs in sequence, i.e., the userspace 8657 program cannot skip one dirty GFN to collect 8029 program cannot skip one dirty GFN to collect the one next to it. 8658 8030 8659 After processing one or more entries in the r 8031 After processing one or more entries in the ring buffer, userspace 8660 calls the VM ioctl KVM_RESET_DIRTY_RINGS to n 8032 calls the VM ioctl KVM_RESET_DIRTY_RINGS to notify the kernel about 8661 it, so that the kernel will reprotect those c 8033 it, so that the kernel will reprotect those collected GFNs. 8662 Therefore, the ioctl must be called *before* 8034 Therefore, the ioctl must be called *before* reading the content of 8663 the dirty pages. 8035 the dirty pages. 8664 8036 8665 The dirty ring can get full. When it happens 8037 The dirty ring can get full. When it happens, the KVM_RUN of the 8666 vcpu will return with exit reason KVM_EXIT_DI 8038 vcpu will return with exit reason KVM_EXIT_DIRTY_LOG_FULL. 8667 8039 8668 The dirty ring interface has a major differen 8040 The dirty ring interface has a major difference comparing to the 8669 KVM_GET_DIRTY_LOG interface in that, when rea 8041 KVM_GET_DIRTY_LOG interface in that, when reading the dirty ring from 8670 userspace, it's still possible that the kerne 8042 userspace, it's still possible that the kernel has not yet flushed the 8671 processor's dirty page buffers into the kerne 8043 processor's dirty page buffers into the kernel buffer (with dirty bitmaps, the 8672 flushing is done by the KVM_GET_DIRTY_LOG ioc 8044 flushing is done by the KVM_GET_DIRTY_LOG ioctl). To achieve that, one 8673 needs to kick the vcpu out of KVM_RUN using a 8045 needs to kick the vcpu out of KVM_RUN using a signal. The resulting 8674 vmexit ensures that all dirty GFNs are flushe 8046 vmexit ensures that all dirty GFNs are flushed to the dirty rings. 8675 8047 8676 NOTE: KVM_CAP_DIRTY_LOG_RING_ACQ_REL is the o 8048 NOTE: KVM_CAP_DIRTY_LOG_RING_ACQ_REL is the only capability that 8677 should be exposed by weakly ordered architect 8049 should be exposed by weakly ordered architecture, in order to indicate 8678 the additional memory ordering requirements i 8050 the additional memory ordering requirements imposed on userspace when 8679 reading the state of an entry and mutating it 8051 reading the state of an entry and mutating it from DIRTY to HARVESTED. 8680 Architecture with TSO-like ordering (such as 8052 Architecture with TSO-like ordering (such as x86) are allowed to 8681 expose both KVM_CAP_DIRTY_LOG_RING and KVM_CA 8053 expose both KVM_CAP_DIRTY_LOG_RING and KVM_CAP_DIRTY_LOG_RING_ACQ_REL 8682 to userspace. 8054 to userspace. 8683 8055 8684 After enabling the dirty rings, the userspace 8056 After enabling the dirty rings, the userspace needs to detect the 8685 capability of KVM_CAP_DIRTY_LOG_RING_WITH_BIT 8057 capability of KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP to see whether the 8686 ring structures can be backed by per-slot bit 8058 ring structures can be backed by per-slot bitmaps. With this capability 8687 advertised, it means the architecture can dir 8059 advertised, it means the architecture can dirty guest pages without 8688 vcpu/ring context, so that some of the dirty 8060 vcpu/ring context, so that some of the dirty information will still be 8689 maintained in the bitmap structure. KVM_CAP_D 8061 maintained in the bitmap structure. KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP 8690 can't be enabled if the capability of KVM_CAP 8062 can't be enabled if the capability of KVM_CAP_DIRTY_LOG_RING_ACQ_REL 8691 hasn't been enabled, or any memslot has been 8063 hasn't been enabled, or any memslot has been existing. 8692 8064 8693 Note that the bitmap here is only a backup of 8065 Note that the bitmap here is only a backup of the ring structure. The 8694 use of the ring and bitmap combination is onl 8066 use of the ring and bitmap combination is only beneficial if there is 8695 only a very small amount of memory that is di 8067 only a very small amount of memory that is dirtied out of vcpu/ring 8696 context. Otherwise, the stand-alone per-slot 8068 context. Otherwise, the stand-alone per-slot bitmap mechanism needs to 8697 be considered. 8069 be considered. 8698 8070 8699 To collect dirty bits in the backup bitmap, u 8071 To collect dirty bits in the backup bitmap, userspace can use the same 8700 KVM_GET_DIRTY_LOG ioctl. KVM_CLEAR_DIRTY_LOG 8072 KVM_GET_DIRTY_LOG ioctl. KVM_CLEAR_DIRTY_LOG isn't needed as long as all 8701 the generation of the dirty bits is done in a 8073 the generation of the dirty bits is done in a single pass. Collecting 8702 the dirty bitmap should be the very last thin 8074 the dirty bitmap should be the very last thing that the VMM does before 8703 considering the state as complete. VMM needs 8075 considering the state as complete. VMM needs to ensure that the dirty 8704 state is final and avoid missing dirty pages 8076 state is final and avoid missing dirty pages from another ioctl ordered 8705 after the bitmap collection. 8077 after the bitmap collection. 8706 8078 8707 NOTE: Multiple examples of using the backup b 8079 NOTE: Multiple examples of using the backup bitmap: (1) save vgic/its 8708 tables through command KVM_DEV_ARM_{VGIC_GRP_ 8080 tables through command KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_SAVE_TABLES} on 8709 KVM device "kvm-arm-vgic-its". (2) restore vg 8081 KVM device "kvm-arm-vgic-its". (2) restore vgic/its tables through 8710 command KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_RESTO 8082 command KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_RESTORE_TABLES} on KVM device 8711 "kvm-arm-vgic-its". VGICv3 LPI pending status 8083 "kvm-arm-vgic-its". VGICv3 LPI pending status is restored. (3) save 8712 vgic3 pending table through KVM_DEV_ARM_VGIC_ 8084 vgic3 pending table through KVM_DEV_ARM_VGIC_{GRP_CTRL, SAVE_PENDING_TABLES} 8713 command on KVM device "kvm-arm-vgic-v3". 8085 command on KVM device "kvm-arm-vgic-v3". 8714 8086 8715 8.30 KVM_CAP_XEN_HVM 8087 8.30 KVM_CAP_XEN_HVM 8716 -------------------- 8088 -------------------- 8717 8089 8718 :Architectures: x86 8090 :Architectures: x86 8719 8091 8720 This capability indicates the features that X 8092 This capability indicates the features that Xen supports for hosting Xen 8721 PVHVM guests. Valid flags are:: 8093 PVHVM guests. Valid flags are:: 8722 8094 8723 #define KVM_XEN_HVM_CONFIG_HYPERCALL_MSR 8095 #define KVM_XEN_HVM_CONFIG_HYPERCALL_MSR (1 << 0) 8724 #define KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL 8096 #define KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL (1 << 1) 8725 #define KVM_XEN_HVM_CONFIG_SHARED_INFO 8097 #define KVM_XEN_HVM_CONFIG_SHARED_INFO (1 << 2) 8726 #define KVM_XEN_HVM_CONFIG_RUNSTATE 8098 #define KVM_XEN_HVM_CONFIG_RUNSTATE (1 << 3) 8727 #define KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL 8099 #define KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL (1 << 4) 8728 #define KVM_XEN_HVM_CONFIG_EVTCHN_SEND 8100 #define KVM_XEN_HVM_CONFIG_EVTCHN_SEND (1 << 5) 8729 #define KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_ 8101 #define KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG (1 << 6) 8730 #define KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNST << 8731 8102 8732 The KVM_XEN_HVM_CONFIG_HYPERCALL_MSR flag ind 8103 The KVM_XEN_HVM_CONFIG_HYPERCALL_MSR flag indicates that the KVM_XEN_HVM_CONFIG 8733 ioctl is available, for the guest to set its 8104 ioctl is available, for the guest to set its hypercall page. 8734 8105 8735 If KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL is also 8106 If KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL is also set, the same flag may also be 8736 provided in the flags to KVM_XEN_HVM_CONFIG, 8107 provided in the flags to KVM_XEN_HVM_CONFIG, without providing hypercall page 8737 contents, to request that KVM generate hyperc 8108 contents, to request that KVM generate hypercall page content automatically 8738 and also enable interception of guest hyperca 8109 and also enable interception of guest hypercalls with KVM_EXIT_XEN. 8739 8110 8740 The KVM_XEN_HVM_CONFIG_SHARED_INFO flag indic 8111 The KVM_XEN_HVM_CONFIG_SHARED_INFO flag indicates the availability of the 8741 KVM_XEN_HVM_SET_ATTR, KVM_XEN_HVM_GET_ATTR, K 8112 KVM_XEN_HVM_SET_ATTR, KVM_XEN_HVM_GET_ATTR, KVM_XEN_VCPU_SET_ATTR and 8742 KVM_XEN_VCPU_GET_ATTR ioctls, as well as the 8113 KVM_XEN_VCPU_GET_ATTR ioctls, as well as the delivery of exception vectors 8743 for event channel upcalls when the evtchn_upc 8114 for event channel upcalls when the evtchn_upcall_pending field of a vcpu's 8744 vcpu_info is set. 8115 vcpu_info is set. 8745 8116 8746 The KVM_XEN_HVM_CONFIG_RUNSTATE flag indicate 8117 The KVM_XEN_HVM_CONFIG_RUNSTATE flag indicates that the runstate-related 8747 features KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR 8118 features KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR/_CURRENT/_DATA/_ADJUST are 8748 supported by the KVM_XEN_VCPU_SET_ATTR/KVM_XE 8119 supported by the KVM_XEN_VCPU_SET_ATTR/KVM_XEN_VCPU_GET_ATTR ioctls. 8749 8120 8750 The KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL flag ind 8121 The KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL flag indicates that IRQ routing entries 8751 of the type KVM_IRQ_ROUTING_XEN_EVTCHN are su 8122 of the type KVM_IRQ_ROUTING_XEN_EVTCHN are supported, with the priority 8752 field set to indicate 2 level event channel d 8123 field set to indicate 2 level event channel delivery. 8753 8124 8754 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indic 8125 The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indicates that KVM supports 8755 injecting event channel events directly into 8126 injecting event channel events directly into the guest with the 8756 KVM_XEN_HVM_EVTCHN_SEND ioctl. It also indica 8127 KVM_XEN_HVM_EVTCHN_SEND ioctl. It also indicates support for the 8757 KVM_XEN_ATTR_TYPE_EVTCHN/XEN_VERSION HVM attr 8128 KVM_XEN_ATTR_TYPE_EVTCHN/XEN_VERSION HVM attributes and the 8758 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID/TIMER/UPCALL_V 8129 KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID/TIMER/UPCALL_VECTOR vCPU attributes. 8759 related to event channel delivery, timers, an 8130 related to event channel delivery, timers, and the XENVER_version 8760 interception. 8131 interception. 8761 8132 8762 The KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG f 8133 The KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG flag indicates that KVM supports 8763 the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG at 8134 the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG attribute in the KVM_XEN_SET_ATTR 8764 and KVM_XEN_GET_ATTR ioctls. This controls wh 8135 and KVM_XEN_GET_ATTR ioctls. This controls whether KVM will set the 8765 XEN_RUNSTATE_UPDATE flag in guest memory mapp 8136 XEN_RUNSTATE_UPDATE flag in guest memory mapped vcpu_runstate_info during 8766 updates of the runstate information. Note tha 8137 updates of the runstate information. Note that versions of KVM which support 8767 the RUNSTATE feature above, but not the RUNST !! 8138 the RUNSTATE feature above, but not thie RUNSTATE_UPDATE_FLAG feature, will 8768 always set the XEN_RUNSTATE_UPDATE flag when 8139 always set the XEN_RUNSTATE_UPDATE flag when updating the guest structure, 8769 which is perhaps counterintuitive. When this 8140 which is perhaps counterintuitive. When this flag is advertised, KVM will 8770 behave more correctly, not using the XEN_RUNS 8141 behave more correctly, not using the XEN_RUNSTATE_UPDATE flag until/unless 8771 specifically enabled (by the guest making the 8142 specifically enabled (by the guest making the hypercall, causing the VMM 8772 to enable the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDA 8143 to enable the KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG attribute). 8773 8144 8774 The KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE f << 8775 clearing the PVCLOCK_TSC_STABLE_BIT flag in X << 8776 done when the KVM_CAP_XEN_HVM ioctl sets the << 8777 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE flag. << 8778 << 8779 8.31 KVM_CAP_PPC_MULTITCE 8145 8.31 KVM_CAP_PPC_MULTITCE 8780 ------------------------- 8146 ------------------------- 8781 8147 8782 :Capability: KVM_CAP_PPC_MULTITCE 8148 :Capability: KVM_CAP_PPC_MULTITCE 8783 :Architectures: ppc 8149 :Architectures: ppc 8784 :Type: vm 8150 :Type: vm 8785 8151 8786 This capability means the kernel is capable o 8152 This capability means the kernel is capable of handling hypercalls 8787 H_PUT_TCE_INDIRECT and H_STUFF_TCE without pa 8153 H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user 8788 space. This significantly accelerates DMA ope 8154 space. This significantly accelerates DMA operations for PPC KVM guests. 8789 User space should expect that its handlers fo 8155 User space should expect that its handlers for these hypercalls 8790 are not going to be called if user space prev 8156 are not going to be called if user space previously registered LIOBN 8791 in KVM (via KVM_CREATE_SPAPR_TCE or similar c 8157 in KVM (via KVM_CREATE_SPAPR_TCE or similar calls). 8792 8158 8793 In order to enable H_PUT_TCE_INDIRECT and H_S 8159 In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest, 8794 user space might have to advertise it for the 8160 user space might have to advertise it for the guest. For example, 8795 IBM pSeries (sPAPR) guest starts using them i 8161 IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is 8796 present in the "ibm,hypertas-functions" devic 8162 present in the "ibm,hypertas-functions" device-tree property. 8797 8163 8798 The hypercalls mentioned above may or may not 8164 The hypercalls mentioned above may or may not be processed successfully 8799 in the kernel based fast path. If they can no 8165 in the kernel based fast path. If they can not be handled by the kernel, 8800 they will get passed on to user space. So use 8166 they will get passed on to user space. So user space still has to have 8801 an implementation for these despite the in ke 8167 an implementation for these despite the in kernel acceleration. 8802 8168 8803 This capability is always enabled. 8169 This capability is always enabled. 8804 8170 8805 8.32 KVM_CAP_PTP_KVM 8171 8.32 KVM_CAP_PTP_KVM 8806 -------------------- 8172 -------------------- 8807 8173 8808 :Architectures: arm64 8174 :Architectures: arm64 8809 8175 8810 This capability indicates that the KVM virtua 8176 This capability indicates that the KVM virtual PTP service is 8811 supported in the host. A VMM can check whethe 8177 supported in the host. A VMM can check whether the service is 8812 available to the guest on migration. 8178 available to the guest on migration. 8813 8179 8814 8.33 KVM_CAP_HYPERV_ENFORCE_CPUID 8180 8.33 KVM_CAP_HYPERV_ENFORCE_CPUID 8815 --------------------------------- 8181 --------------------------------- 8816 8182 8817 Architectures: x86 8183 Architectures: x86 8818 8184 8819 When enabled, KVM will disable emulated Hyper 8185 When enabled, KVM will disable emulated Hyper-V features provided to the 8820 guest according to the bits Hyper-V CPUID fea 8186 guest according to the bits Hyper-V CPUID feature leaves. Otherwise, all 8821 currently implemented Hyper-V features are pr !! 8187 currently implmented Hyper-V features are provided unconditionally when 8822 Hyper-V identification is set in the HYPERV_C 8188 Hyper-V identification is set in the HYPERV_CPUID_INTERFACE (0x40000001) 8823 leaf. 8189 leaf. 8824 8190 8825 8.34 KVM_CAP_EXIT_HYPERCALL 8191 8.34 KVM_CAP_EXIT_HYPERCALL 8826 --------------------------- 8192 --------------------------- 8827 8193 8828 :Capability: KVM_CAP_EXIT_HYPERCALL 8194 :Capability: KVM_CAP_EXIT_HYPERCALL 8829 :Architectures: x86 8195 :Architectures: x86 8830 :Type: vm 8196 :Type: vm 8831 8197 8832 This capability, if enabled, will cause KVM t 8198 This capability, if enabled, will cause KVM to exit to userspace 8833 with KVM_EXIT_HYPERCALL exit reason to proces 8199 with KVM_EXIT_HYPERCALL exit reason to process some hypercalls. 8834 8200 8835 Calling KVM_CHECK_EXTENSION for this capabili 8201 Calling KVM_CHECK_EXTENSION for this capability will return a bitmask 8836 of hypercalls that can be configured to exit 8202 of hypercalls that can be configured to exit to userspace. 8837 Right now, the only such hypercall is KVM_HC_ 8203 Right now, the only such hypercall is KVM_HC_MAP_GPA_RANGE. 8838 8204 8839 The argument to KVM_ENABLE_CAP is also a bitm 8205 The argument to KVM_ENABLE_CAP is also a bitmask, and must be a subset 8840 of the result of KVM_CHECK_EXTENSION. KVM wi 8206 of the result of KVM_CHECK_EXTENSION. KVM will forward to userspace 8841 the hypercalls whose corresponding bit is in 8207 the hypercalls whose corresponding bit is in the argument, and return 8842 ENOSYS for the others. 8208 ENOSYS for the others. 8843 8209 8844 8.35 KVM_CAP_PMU_CAPABILITY 8210 8.35 KVM_CAP_PMU_CAPABILITY 8845 --------------------------- 8211 --------------------------- 8846 8212 8847 :Capability: KVM_CAP_PMU_CAPABILITY !! 8213 :Capability KVM_CAP_PMU_CAPABILITY 8848 :Architectures: x86 8214 :Architectures: x86 8849 :Type: vm 8215 :Type: vm 8850 :Parameters: arg[0] is bitmask of PMU virtual 8216 :Parameters: arg[0] is bitmask of PMU virtualization capabilities. 8851 :Returns: 0 on success, -EINVAL when arg[0] c !! 8217 :Returns 0 on success, -EINVAL when arg[0] contains invalid bits 8852 8218 8853 This capability alters PMU virtualization in 8219 This capability alters PMU virtualization in KVM. 8854 8220 8855 Calling KVM_CHECK_EXTENSION for this capabili 8221 Calling KVM_CHECK_EXTENSION for this capability returns a bitmask of 8856 PMU virtualization capabilities that can be a 8222 PMU virtualization capabilities that can be adjusted on a VM. 8857 8223 8858 The argument to KVM_ENABLE_CAP is also a bitm 8224 The argument to KVM_ENABLE_CAP is also a bitmask and selects specific 8859 PMU virtualization capabilities to be applied 8225 PMU virtualization capabilities to be applied to the VM. This can 8860 only be invoked on a VM prior to the creation 8226 only be invoked on a VM prior to the creation of VCPUs. 8861 8227 8862 At this time, KVM_PMU_CAP_DISABLE is the only 8228 At this time, KVM_PMU_CAP_DISABLE is the only capability. Setting 8863 this capability will disable PMU virtualizati 8229 this capability will disable PMU virtualization for that VM. Usermode 8864 should adjust CPUID leaf 0xA to reflect that 8230 should adjust CPUID leaf 0xA to reflect that the PMU is disabled. 8865 8231 8866 8.36 KVM_CAP_ARM_SYSTEM_SUSPEND 8232 8.36 KVM_CAP_ARM_SYSTEM_SUSPEND 8867 ------------------------------- 8233 ------------------------------- 8868 8234 8869 :Capability: KVM_CAP_ARM_SYSTEM_SUSPEND 8235 :Capability: KVM_CAP_ARM_SYSTEM_SUSPEND 8870 :Architectures: arm64 8236 :Architectures: arm64 8871 :Type: vm 8237 :Type: vm 8872 8238 8873 When enabled, KVM will exit to userspace with 8239 When enabled, KVM will exit to userspace with KVM_EXIT_SYSTEM_EVENT of 8874 type KVM_SYSTEM_EVENT_SUSPEND to process the 8240 type KVM_SYSTEM_EVENT_SUSPEND to process the guest suspend request. 8875 8241 8876 8.37 KVM_CAP_S390_PROTECTED_DUMP 8242 8.37 KVM_CAP_S390_PROTECTED_DUMP 8877 -------------------------------- 8243 -------------------------------- 8878 8244 8879 :Capability: KVM_CAP_S390_PROTECTED_DUMP 8245 :Capability: KVM_CAP_S390_PROTECTED_DUMP 8880 :Architectures: s390 8246 :Architectures: s390 8881 :Type: vm 8247 :Type: vm 8882 8248 8883 This capability indicates that KVM and the Ul 8249 This capability indicates that KVM and the Ultravisor support dumping 8884 PV guests. The `KVM_PV_DUMP` command is avail 8250 PV guests. The `KVM_PV_DUMP` command is available for the 8885 `KVM_S390_PV_COMMAND` ioctl and the `KVM_PV_I 8251 `KVM_S390_PV_COMMAND` ioctl and the `KVM_PV_INFO` command provides 8886 dump related UV data. Also the vcpu ioctl `KV 8252 dump related UV data. Also the vcpu ioctl `KVM_S390_PV_CPU_COMMAND` is 8887 available and supports the `KVM_PV_DUMP_CPU` 8253 available and supports the `KVM_PV_DUMP_CPU` subcommand. 8888 8254 8889 8.38 KVM_CAP_VM_DISABLE_NX_HUGE_PAGES 8255 8.38 KVM_CAP_VM_DISABLE_NX_HUGE_PAGES 8890 ------------------------------------- 8256 ------------------------------------- 8891 8257 8892 :Capability: KVM_CAP_VM_DISABLE_NX_HUGE_PAGES 8258 :Capability: KVM_CAP_VM_DISABLE_NX_HUGE_PAGES 8893 :Architectures: x86 8259 :Architectures: x86 8894 :Type: vm 8260 :Type: vm 8895 :Parameters: arg[0] must be 0. 8261 :Parameters: arg[0] must be 0. 8896 :Returns: 0 on success, -EPERM if the userspa 8262 :Returns: 0 on success, -EPERM if the userspace process does not 8897 have CAP_SYS_BOOT, -EINVAL if args[ 8263 have CAP_SYS_BOOT, -EINVAL if args[0] is not 0 or any vCPUs have been 8898 created. 8264 created. 8899 8265 8900 This capability disables the NX huge pages mi 8266 This capability disables the NX huge pages mitigation for iTLB MULTIHIT. 8901 8267 8902 The capability has no effect if the nx_huge_p 8268 The capability has no effect if the nx_huge_pages module parameter is not set. 8903 8269 8904 This capability may only be set before any vC 8270 This capability may only be set before any vCPUs are created. 8905 8271 8906 8.39 KVM_CAP_S390_CPU_TOPOLOGY 8272 8.39 KVM_CAP_S390_CPU_TOPOLOGY 8907 ------------------------------ 8273 ------------------------------ 8908 8274 8909 :Capability: KVM_CAP_S390_CPU_TOPOLOGY 8275 :Capability: KVM_CAP_S390_CPU_TOPOLOGY 8910 :Architectures: s390 8276 :Architectures: s390 8911 :Type: vm 8277 :Type: vm 8912 8278 8913 This capability indicates that KVM will provi 8279 This capability indicates that KVM will provide the S390 CPU Topology 8914 facility which consist of the interpretation 8280 facility which consist of the interpretation of the PTF instruction for 8915 the function code 2 along with interception a 8281 the function code 2 along with interception and forwarding of both the 8916 PTF instruction with function codes 0 or 1 an 8282 PTF instruction with function codes 0 or 1 and the STSI(15,1,x) 8917 instruction to the userland hypervisor. 8283 instruction to the userland hypervisor. 8918 8284 8919 The stfle facility 11, CPU Topology facility, 8285 The stfle facility 11, CPU Topology facility, should not be indicated 8920 to the guest without this capability. 8286 to the guest without this capability. 8921 8287 8922 When this capability is present, KVM provides 8288 When this capability is present, KVM provides a new attribute group 8923 on vm fd, KVM_S390_VM_CPU_TOPOLOGY. 8289 on vm fd, KVM_S390_VM_CPU_TOPOLOGY. 8924 This new attribute allows to get, set or clea 8290 This new attribute allows to get, set or clear the Modified Change 8925 Topology Report (MTCR) bit of the SCA through 8291 Topology Report (MTCR) bit of the SCA through the kvm_device_attr 8926 structure. 8292 structure. 8927 8293 8928 When getting the Modified Change Topology Rep 8294 When getting the Modified Change Topology Report value, the attr->addr 8929 must point to a byte where the value will be 8295 must point to a byte where the value will be stored or retrieved from. 8930 << 8931 8.40 KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE << 8932 --------------------------------------- << 8933 << 8934 :Capability: KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SI << 8935 :Architectures: arm64 << 8936 :Type: vm << 8937 :Parameters: arg[0] is the new split chunk si << 8938 :Returns: 0 on success, -EINVAL if any memslo << 8939 << 8940 This capability sets the chunk size used in E << 8941 << 8942 Eager Page Splitting improves the performance << 8943 in live migrations) when guest memory is back << 8944 avoids splitting huge-pages (into PAGE_SIZE p << 8945 it eagerly when enabling dirty logging (with << 8946 KVM_MEM_LOG_DIRTY_PAGES flag for a memory reg << 8947 KVM_CLEAR_DIRTY_LOG. << 8948 << 8949 The chunk size specifies how many pages to br << 8950 single allocation for each chunk. Bigger the << 8951 need to be allocated ahead of time. << 8952 << 8953 The chunk size needs to be a valid block size << 8954 block sizes is exposed in KVM_CAP_ARM_SUPPORT << 8955 64-bit bitmap (each bit describing a block si << 8956 0, to disable the eager page splitting. << 8957 << 8958 8.41 KVM_CAP_VM_TYPES << 8959 --------------------- << 8960 << 8961 :Capability: KVM_CAP_MEMORY_ATTRIBUTES << 8962 :Architectures: x86 << 8963 :Type: system ioctl << 8964 << 8965 This capability returns a bitmap of support V << 8966 means the VM type with value @n is supported. << 8967 << 8968 #define KVM_X86_DEFAULT_VM 0 << 8969 #define KVM_X86_SW_PROTECTED_VM 1 << 8970 #define KVM_X86_SEV_VM 2 << 8971 #define KVM_X86_SEV_ES_VM 3 << 8972 << 8973 Note, KVM_X86_SW_PROTECTED_VM is currently on << 8974 Do not use KVM_X86_SW_PROTECTED_VM for "real" << 8975 production. The behavior and effective ABI f << 8976 unstable. << 8977 8296 8978 9. Known KVM API problems 8297 9. Known KVM API problems 8979 ========================= 8298 ========================= 8980 8299 8981 In some cases, KVM's API has some inconsisten 8300 In some cases, KVM's API has some inconsistencies or common pitfalls 8982 that userspace need to be aware of. This sec 8301 that userspace need to be aware of. This section details some of 8983 these issues. 8302 these issues. 8984 8303 8985 Most of them are architecture specific, so th 8304 Most of them are architecture specific, so the section is split by 8986 architecture. 8305 architecture. 8987 8306 8988 9.1. x86 8307 9.1. x86 8989 -------- 8308 -------- 8990 8309 8991 ``KVM_GET_SUPPORTED_CPUID`` issues 8310 ``KVM_GET_SUPPORTED_CPUID`` issues 8992 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8311 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8993 8312 8994 In general, ``KVM_GET_SUPPORTED_CPUID`` is de 8313 In general, ``KVM_GET_SUPPORTED_CPUID`` is designed so that it is possible 8995 to take its result and pass it directly to `` 8314 to take its result and pass it directly to ``KVM_SET_CPUID2``. This section 8996 documents some cases in which that requires s 8315 documents some cases in which that requires some care. 8997 8316 8998 Local APIC features 8317 Local APIC features 8999 ~~~~~~~~~~~~~~~~~~~ 8318 ~~~~~~~~~~~~~~~~~~~ 9000 8319 9001 CPU[EAX=1]:ECX[21] (X2APIC) is reported by `` 8320 CPU[EAX=1]:ECX[21] (X2APIC) is reported by ``KVM_GET_SUPPORTED_CPUID``, 9002 but it can only be enabled if ``KVM_CREATE_IR 8321 but it can only be enabled if ``KVM_CREATE_IRQCHIP`` or 9003 ``KVM_ENABLE_CAP(KVM_CAP_IRQCHIP_SPLIT)`` are 8322 ``KVM_ENABLE_CAP(KVM_CAP_IRQCHIP_SPLIT)`` are used to enable in-kernel emulation of 9004 the local APIC. 8323 the local APIC. 9005 8324 9006 The same is true for the ``KVM_FEATURE_PV_UNH 8325 The same is true for the ``KVM_FEATURE_PV_UNHALT`` paravirtualized feature. 9007 8326 9008 CPU[EAX=1]:ECX[24] (TSC_DEADLINE) is not repo 8327 CPU[EAX=1]:ECX[24] (TSC_DEADLINE) is not reported by ``KVM_GET_SUPPORTED_CPUID``. 9009 It can be enabled if ``KVM_CAP_TSC_DEADLINE_T 8328 It can be enabled if ``KVM_CAP_TSC_DEADLINE_TIMER`` is present and the kernel 9010 has enabled in-kernel emulation of the local 8329 has enabled in-kernel emulation of the local APIC. 9011 8330 9012 CPU topology 8331 CPU topology 9013 ~~~~~~~~~~~~ 8332 ~~~~~~~~~~~~ 9014 8333 9015 Several CPUID values include topology informa 8334 Several CPUID values include topology information for the host CPU: 9016 0x0b and 0x1f for Intel systems, 0x8000001e f 8335 0x0b and 0x1f for Intel systems, 0x8000001e for AMD systems. Different 9017 versions of KVM return different values for t 8336 versions of KVM return different values for this information and userspace 9018 should not rely on it. Currently they return 8337 should not rely on it. Currently they return all zeroes. 9019 8338 9020 If userspace wishes to set up a guest topolog 8339 If userspace wishes to set up a guest topology, it should be careful that 9021 the values of these three leaves differ for e 8340 the values of these three leaves differ for each CPU. In particular, 9022 the APIC ID is found in EDX for all subleaves 8341 the APIC ID is found in EDX for all subleaves of 0x0b and 0x1f, and in EAX 9023 for 0x8000001e; the latter also encodes the c 8342 for 0x8000001e; the latter also encodes the core id and node id in bits 9024 7:0 of EBX and ECX respectively. 8343 7:0 of EBX and ECX respectively. 9025 8344 9026 Obsolete ioctls and capabilities 8345 Obsolete ioctls and capabilities 9027 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8346 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9028 8347 9029 KVM_CAP_DISABLE_QUIRKS does not let userspace 8348 KVM_CAP_DISABLE_QUIRKS does not let userspace know which quirks are actually 9030 available. Use ``KVM_CHECK_EXTENSION(KVM_CAP 8349 available. Use ``KVM_CHECK_EXTENSION(KVM_CAP_DISABLE_QUIRKS2)`` instead if 9031 available. 8350 available. 9032 8351 9033 Ordering of KVM_GET_*/KVM_SET_* ioctls 8352 Ordering of KVM_GET_*/KVM_SET_* ioctls 9034 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8353 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9035 8354 9036 TBD 8355 TBD
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.