1 // SPDX-License-Identifier: GPL-2.0-only !! 1 // SPDX-License-Identifier: GPL-2.0 2 /* !! 2 /* arch/sparc64/kernel/kprobes.c 3 * Copyright (C) 2004, 2007-2010, 2011-2012 Sy !! 3 * >> 4 * Copyright (C) 2004 David S. Miller <davem@davemloft.net> 4 */ 5 */ 5 6 6 #include <linux/types.h> !! 7 #include <linux/kernel.h> 7 #include <linux/kprobes.h> 8 #include <linux/kprobes.h> 8 #include <linux/slab.h> !! 9 #include <linux/extable.h> 9 #include <linux/module.h> << 10 #include <linux/kdebug.h> 10 #include <linux/kdebug.h> 11 #include <linux/sched.h> !! 11 #include <linux/slab.h> 12 #include <linux/uaccess.h> !! 12 #include <linux/context_tracking.h> >> 13 #include <asm/signal.h> 13 #include <asm/cacheflush.h> 14 #include <asm/cacheflush.h> 14 #include <asm/current.h> !! 15 #include <linux/uaccess.h> 15 #include <asm/disasm.h> << 16 16 17 #define MIN_STACK_SIZE(addr) min((unsigned !! 17 /* We do not have hardware single-stepping on sparc64. 18 (unsigned long)current_thread_ !! 18 * So we implement software single-stepping with breakpoint >> 19 * traps. The top-level scheme is similar to that used >> 20 * in the x86 kprobes implementation. >> 21 * >> 22 * In the kprobe->ainsn.insn[] array we store the original >> 23 * instruction at index zero and a break instruction at >> 24 * index one. >> 25 * >> 26 * When we hit a kprobe we: >> 27 * - Run the pre-handler >> 28 * - Remember "regs->tnpc" and interrupt level stored in >> 29 * "regs->tstate" so we can restore them later >> 30 * - Disable PIL interrupts >> 31 * - Set regs->tpc to point to kprobe->ainsn.insn[0] >> 32 * - Set regs->tnpc to point to kprobe->ainsn.insn[1] >> 33 * - Mark that we are actively in a kprobe >> 34 * >> 35 * At this point we wait for the second breakpoint at >> 36 * kprobe->ainsn.insn[1] to hit. When it does we: >> 37 * - Run the post-handler >> 38 * - Set regs->tpc to "remembered" regs->tnpc stored above, >> 39 * restore the PIL interrupt level in "regs->tstate" as well >> 40 * - Make any adjustments necessary to regs->tnpc in order >> 41 * to handle relative branches correctly. See below. >> 42 * - Mark that we are no longer actively in a kprobe. >> 43 */ 19 44 20 DEFINE_PER_CPU(struct kprobe *, current_kprobe 45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 21 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ct 46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 22 47 >> 48 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; >> 49 23 int __kprobes arch_prepare_kprobe(struct kprob 50 int __kprobes arch_prepare_kprobe(struct kprobe *p) 24 { 51 { 25 /* Attempt to probe at unaligned addre !! 52 if ((unsigned long) p->addr & 0x3UL) 26 if ((unsigned long)p->addr & 0x01) !! 53 return -EILSEQ; 27 return -EINVAL; << 28 54 29 /* Address should not be in exception !! 55 p->ainsn.insn[0] = *p->addr; >> 56 flushi(&p->ainsn.insn[0]); 30 57 31 p->ainsn.is_short = is_short_instr((un !! 58 p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2; 32 p->opcode = *p->addr; !! 59 flushi(&p->ainsn.insn[1]); 33 60 >> 61 p->opcode = *p->addr; 34 return 0; 62 return 0; 35 } 63 } 36 64 37 void __kprobes arch_arm_kprobe(struct kprobe * 65 void __kprobes arch_arm_kprobe(struct kprobe *p) 38 { 66 { 39 *p->addr = UNIMP_S_INSTRUCTION; !! 67 *p->addr = BREAKPOINT_INSTRUCTION; 40 !! 68 flushi(p->addr); 41 flush_icache_range((unsigned long)p->a << 42 (unsigned long)p->a << 43 } 69 } 44 70 45 void __kprobes arch_disarm_kprobe(struct kprob 71 void __kprobes arch_disarm_kprobe(struct kprobe *p) 46 { 72 { 47 *p->addr = p->opcode; 73 *p->addr = p->opcode; 48 !! 74 flushi(p->addr); 49 flush_icache_range((unsigned long)p->a << 50 (unsigned long)p->a << 51 } << 52 << 53 void __kprobes arch_remove_kprobe(struct kprob << 54 { << 55 arch_disarm_kprobe(p); << 56 << 57 /* Can we remove the kprobe in the mid << 58 if (p->ainsn.t1_addr) { << 59 *(p->ainsn.t1_addr) = p->ainsn << 60 << 61 flush_icache_range((unsigned l << 62 (unsigned l << 63 sizeof(kpro << 64 << 65 p->ainsn.t1_addr = NULL; << 66 } << 67 << 68 if (p->ainsn.t2_addr) { << 69 *(p->ainsn.t2_addr) = p->ainsn << 70 << 71 flush_icache_range((unsigned l << 72 (unsigned l << 73 sizeof(kpro << 74 << 75 p->ainsn.t2_addr = NULL; << 76 } << 77 } 75 } 78 76 79 static void __kprobes save_previous_kprobe(str 77 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 80 { 78 { 81 kcb->prev_kprobe.kp = kprobe_running() 79 kcb->prev_kprobe.kp = kprobe_running(); 82 kcb->prev_kprobe.status = kcb->kprobe_ 80 kcb->prev_kprobe.status = kcb->kprobe_status; >> 81 kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc; >> 82 kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil; 83 } 83 } 84 84 85 static void __kprobes restore_previous_kprobe( 85 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 86 { 86 { 87 __this_cpu_write(current_kprobe, kcb-> 87 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 88 kcb->kprobe_status = kcb->prev_kprobe. 88 kcb->kprobe_status = kcb->prev_kprobe.status; >> 89 kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc; >> 90 kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil; 89 } 91 } 90 92 91 static inline void __kprobes set_current_kprob !! 93 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, >> 94 struct kprobe_ctlblk *kcb) 92 { 95 { 93 __this_cpu_write(current_kprobe, p); 96 __this_cpu_write(current_kprobe, p); >> 97 kcb->kprobe_orig_tnpc = regs->tnpc; >> 98 kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL); 94 } 99 } 95 100 96 static void __kprobes resume_execution(struct !! 101 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs, 97 struct !! 102 struct kprobe_ctlblk *kcb) 98 { 103 { 99 /* Remove the trap instructions insert !! 104 regs->tstate |= TSTATE_PIL; 100 * restore the original instructions << 101 */ << 102 if (p->ainsn.t1_addr) { << 103 *(p->ainsn.t1_addr) = p->ainsn << 104 105 105 flush_icache_range((unsigned l !! 106 /*single step inline, if it a breakpoint instruction*/ 106 (unsigned l !! 107 if (p->opcode == BREAKPOINT_INSTRUCTION) { 107 sizeof(kpro !! 108 regs->tpc = (unsigned long) p->addr; 108 !! 109 regs->tnpc = kcb->kprobe_orig_tnpc; 109 p->ainsn.t1_addr = NULL; !! 110 } else { >> 111 regs->tpc = (unsigned long) &p->ainsn.insn[0]; >> 112 regs->tnpc = (unsigned long) &p->ainsn.insn[1]; 110 } 113 } >> 114 } 111 115 112 if (p->ainsn.t2_addr) { !! 116 static int __kprobes kprobe_handler(struct pt_regs *regs) 113 *(p->ainsn.t2_addr) = p->ainsn !! 117 { >> 118 struct kprobe *p; >> 119 void *addr = (void *) regs->tpc; >> 120 int ret = 0; >> 121 struct kprobe_ctlblk *kcb; 114 122 115 flush_icache_range((unsigned l !! 123 /* 116 (unsigned l !! 124 * We don't want to be preempted for the entire 117 sizeof(kpro !! 125 * duration of kprobe processing >> 126 */ >> 127 preempt_disable(); >> 128 kcb = get_kprobe_ctlblk(); 118 129 119 p->ainsn.t2_addr = NULL; !! 130 if (kprobe_running()) { >> 131 p = get_kprobe(addr); >> 132 if (p) { >> 133 if (kcb->kprobe_status == KPROBE_HIT_SS) { >> 134 regs->tstate = ((regs->tstate & ~TSTATE_PIL) | >> 135 kcb->kprobe_orig_tstate_pil); >> 136 goto no_kprobe; >> 137 } >> 138 /* We have reentered the kprobe_handler(), since >> 139 * another probe was hit while within the handler. >> 140 * We here save the original kprobes variables and >> 141 * just single step on the instruction of the new probe >> 142 * without calling any user handlers. >> 143 */ >> 144 save_previous_kprobe(kcb); >> 145 set_current_kprobe(p, regs, kcb); >> 146 kprobes_inc_nmissed_count(p); >> 147 kcb->kprobe_status = KPROBE_REENTER; >> 148 prepare_singlestep(p, regs, kcb); >> 149 return 1; >> 150 } else if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) { >> 151 /* The breakpoint instruction was removed by >> 152 * another cpu right after we hit, no further >> 153 * handling of this interrupt is appropriate >> 154 */ >> 155 ret = 1; >> 156 } >> 157 goto no_kprobe; >> 158 } >> 159 >> 160 p = get_kprobe(addr); >> 161 if (!p) { >> 162 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) { >> 163 /* >> 164 * The breakpoint instruction was removed right >> 165 * after we hit it. Another cpu has removed >> 166 * either a probepoint or a debugger breakpoint >> 167 * at this address. In either case, no further >> 168 * handling of this interrupt is appropriate. >> 169 */ >> 170 ret = 1; >> 171 } >> 172 /* Not one of ours: let kernel handle it */ >> 173 goto no_kprobe; >> 174 } >> 175 >> 176 set_current_kprobe(p, regs, kcb); >> 177 kcb->kprobe_status = KPROBE_HIT_ACTIVE; >> 178 if (p->pre_handler && p->pre_handler(p, regs)) { >> 179 reset_current_kprobe(); >> 180 preempt_enable_no_resched(); >> 181 return 1; 120 } 182 } 121 183 122 return; !! 184 prepare_singlestep(p, regs, kcb); >> 185 kcb->kprobe_status = KPROBE_HIT_SS; >> 186 return 1; >> 187 >> 188 no_kprobe: >> 189 preempt_enable_no_resched(); >> 190 return ret; 123 } 191 } 124 192 125 static void __kprobes setup_singlestep(struct !! 193 /* If INSN is a relative control transfer instruction, >> 194 * return the corrected branch destination value. >> 195 * >> 196 * regs->tpc and regs->tnpc still hold the values of the >> 197 * program counters at the time of trap due to the execution >> 198 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1] >> 199 * >> 200 */ >> 201 static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p, >> 202 struct pt_regs *regs) 126 { 203 { 127 unsigned long next_pc; !! 204 unsigned long real_pc = (unsigned long) p->addr; 128 unsigned long tgt_if_br = 0; << 129 int is_branch; << 130 unsigned long bta; << 131 205 132 /* Copy the opcode back to the kprobe !! 206 /* Branch not taken, no mods necessary. */ 133 * instruction. Because of this we wil !! 207 if (regs->tnpc == regs->tpc + 0x4UL) 134 * same kprobe until this kprobe is do !! 208 return real_pc + 0x8UL; 135 */ << 136 *(p->addr) = p->opcode; << 137 209 138 flush_icache_range((unsigned long)p->a !! 210 /* The three cases are call, branch w/prediction, 139 (unsigned long)p->a !! 211 * and traditional branch. >> 212 */ >> 213 if ((insn & 0xc0000000) == 0x40000000 || >> 214 (insn & 0xc1c00000) == 0x00400000 || >> 215 (insn & 0xc1c00000) == 0x00800000) { >> 216 unsigned long ainsn_addr; >> 217 >> 218 ainsn_addr = (unsigned long) &p->ainsn.insn[0]; >> 219 >> 220 /* The instruction did all the work for us >> 221 * already, just apply the offset to the correct >> 222 * instruction location. >> 223 */ >> 224 return (real_pc + (regs->tnpc - ainsn_addr)); >> 225 } 140 226 141 /* Now we insert the trap at the next !! 227 /* It is jmpl or some other absolute PC modification instruction, 142 * single step. If it is a branch we i !! 228 * leave NPC as-is. 143 * targets << 144 */ 229 */ >> 230 return regs->tnpc; >> 231 } 145 232 146 bta = regs->bta; !! 233 /* If INSN is an instruction which writes it's PC location >> 234 * into a destination register, fix that up. >> 235 */ >> 236 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn, >> 237 unsigned long real_pc) >> 238 { >> 239 unsigned long *slot = NULL; 147 240 148 if (regs->status32 & 0x40) { !! 241 /* Simplest case is 'call', which always uses %o7 */ 149 /* We are in a delay slot with !! 242 if ((insn & 0xc0000000) == 0x40000000) { >> 243 slot = ®s->u_regs[UREG_I7]; >> 244 } 150 245 151 next_pc = bta & ~0x01; !! 246 /* 'jmpl' encodes the register inside of the opcode */ >> 247 if ((insn & 0xc1f80000) == 0x81c00000) { >> 248 unsigned long rd = ((insn >> 25) & 0x1f); 152 249 153 if (!p->ainsn.is_short) { !! 250 if (rd <= 15) { 154 if (bta & 0x01) !! 251 slot = ®s->u_regs[rd]; 155 regs->blink += !! 252 } else { 156 else { !! 253 /* Hard case, it goes onto the stack. */ 157 /* Branch not !! 254 flushw_all(); 158 next_pc += 2; << 159 << 160 /* next pc is << 161 * delay slot << 162 */ << 163 regs->bta += 2 << 164 } << 165 } << 166 255 167 is_branch = 0; !! 256 rd -= 16; 168 } else !! 257 slot = (unsigned long *) 169 is_branch = !! 258 (regs->u_regs[UREG_FP] + STACK_BIAS); 170 disasm_next_pc((unsigned l !! 259 slot += rd; 171 (struct callee_regs *) !! 260 } 172 &next_pc, &tgt_if_br); << 173 << 174 p->ainsn.t1_addr = (kprobe_opcode_t *) << 175 p->ainsn.t1_opcode = *(p->ainsn.t1_add << 176 *(p->ainsn.t1_addr) = TRAP_S_2_INSTRUC << 177 << 178 flush_icache_range((unsigned long)p->a << 179 (unsigned long)p->a << 180 sizeof(kprobe_opcod << 181 << 182 if (is_branch) { << 183 p->ainsn.t2_addr = (kprobe_opc << 184 p->ainsn.t2_opcode = *(p->ains << 185 *(p->ainsn.t2_addr) = TRAP_S_2 << 186 << 187 flush_icache_range((unsigned l << 188 (unsigned l << 189 sizeof(kpro << 190 } 261 } >> 262 if (slot != NULL) >> 263 *slot = real_pc; 191 } 264 } 192 265 193 static int !! 266 /* 194 __kprobes arc_kprobe_handler(unsigned long add !! 267 * Called after single-stepping. p->addr is the address of the >> 268 * instruction which has been replaced by the breakpoint >> 269 * instruction. To avoid the SMP problems that can occur when we >> 270 * temporarily put back the original opcode to single-step, we >> 271 * single-stepped a copy of the instruction. The address of this >> 272 * copy is &p->ainsn.insn[0]. >> 273 * >> 274 * This function prepares to return from the post-single-step >> 275 * breakpoint trap. >> 276 */ >> 277 static void __kprobes resume_execution(struct kprobe *p, >> 278 struct pt_regs *regs, struct kprobe_ctlblk *kcb) 195 { 279 { 196 struct kprobe *p; !! 280 u32 insn = p->ainsn.insn[0]; 197 struct kprobe_ctlblk *kcb; << 198 281 199 preempt_disable(); !! 282 regs->tnpc = relbranch_fixup(insn, p, regs); 200 283 201 kcb = get_kprobe_ctlblk(); !! 284 /* This assignment must occur after relbranch_fixup() */ 202 p = get_kprobe((unsigned long *)addr); !! 285 regs->tpc = kcb->kprobe_orig_tnpc; 203 286 204 if (p) { !! 287 retpc_fixup(regs, insn, (unsigned long) p->addr); 205 /* << 206 * We have reentered the kprob << 207 * was hit while within the ha << 208 * kprobes and single step on << 209 * without calling any user ha << 210 * kprobes. << 211 */ << 212 if (kprobe_running()) { << 213 save_previous_kprobe(k << 214 set_current_kprobe(p); << 215 kprobes_inc_nmissed_co << 216 setup_singlestep(p, re << 217 kcb->kprobe_status = K << 218 return 1; << 219 } << 220 << 221 set_current_kprobe(p); << 222 kcb->kprobe_status = KPROBE_HI << 223 << 224 /* If we have no pre-handler o << 225 * normal processing. If we ha << 226 * non-zero - which means user << 227 * to another instruction, we << 228 */ << 229 if (!p->pre_handler || !p->pre << 230 setup_singlestep(p, re << 231 kcb->kprobe_status = K << 232 } else { << 233 reset_current_kprobe() << 234 preempt_enable_no_resc << 235 } << 236 288 237 return 1; !! 289 regs->tstate = ((regs->tstate & ~TSTATE_PIL) | 238 } !! 290 kcb->kprobe_orig_tstate_pil); 239 << 240 /* no_kprobe: */ << 241 preempt_enable_no_resched(); << 242 return 0; << 243 } 291 } 244 292 245 static int !! 293 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 246 __kprobes arc_post_kprobe_handler(unsigned lon << 247 { 294 { 248 struct kprobe *cur = kprobe_running(); 295 struct kprobe *cur = kprobe_running(); 249 struct kprobe_ctlblk *kcb = get_kprobe 296 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 250 297 251 if (!cur) 298 if (!cur) 252 return 0; 299 return 0; 253 300 254 resume_execution(cur, addr, regs); << 255 << 256 /* Rearm the kprobe */ << 257 arch_arm_kprobe(cur); << 258 << 259 /* << 260 * When we return from trap instructio << 261 * We restored the actual instruction << 262 * return to the same address and exec << 263 */ << 264 regs->ret = addr; << 265 << 266 if ((kcb->kprobe_status != KPROBE_REEN 301 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 267 kcb->kprobe_status = KPROBE_HI 302 kcb->kprobe_status = KPROBE_HIT_SSDONE; 268 cur->post_handler(cur, regs, 0 303 cur->post_handler(cur, regs, 0); 269 } 304 } 270 305 >> 306 resume_execution(cur, regs, kcb); >> 307 >> 308 /*Restore back the original saved kprobes variables and continue. */ 271 if (kcb->kprobe_status == KPROBE_REENT 309 if (kcb->kprobe_status == KPROBE_REENTER) { 272 restore_previous_kprobe(kcb); 310 restore_previous_kprobe(kcb); 273 goto out; 311 goto out; 274 } 312 } 275 << 276 reset_current_kprobe(); 313 reset_current_kprobe(); 277 << 278 out: 314 out: 279 preempt_enable_no_resched(); 315 preempt_enable_no_resched(); >> 316 280 return 1; 317 return 1; 281 } 318 } 282 319 283 /* !! 320 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 284 * Fault can be for the instruction being sing << 285 * pre/post handlers in the module. << 286 * This is applicable for applications like us << 287 * probe in user space and the handlers in the << 288 */ << 289 << 290 int __kprobes kprobe_fault_handler(struct pt_r << 291 { 321 { 292 struct kprobe *cur = kprobe_running(); 322 struct kprobe *cur = kprobe_running(); 293 struct kprobe_ctlblk *kcb = get_kprobe 323 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); >> 324 const struct exception_table_entry *entry; 294 325 295 switch (kcb->kprobe_status) { !! 326 switch(kcb->kprobe_status) { 296 case KPROBE_HIT_SS: 327 case KPROBE_HIT_SS: 297 case KPROBE_REENTER: 328 case KPROBE_REENTER: 298 /* 329 /* 299 * We are here because the ins !! 330 * We are here because the instruction being single 300 * caused the fault. We reset !! 331 * stepped caused a page fault. We reset the current 301 * exception handler as if it !! 332 * kprobe and the tpc points back to the probe address 302 * case it doesn't matter beca !! 333 * and allow the page fault handler to continue as a >> 334 * normal page fault. 303 */ 335 */ 304 resume_execution(cur, (unsigne !! 336 regs->tpc = (unsigned long)cur->addr; 305 !! 337 regs->tnpc = kcb->kprobe_orig_tnpc; >> 338 regs->tstate = ((regs->tstate & ~TSTATE_PIL) | >> 339 kcb->kprobe_orig_tstate_pil); 306 if (kcb->kprobe_status == KPRO 340 if (kcb->kprobe_status == KPROBE_REENTER) 307 restore_previous_kprob 341 restore_previous_kprobe(kcb); 308 else 342 else 309 reset_current_kprobe() 343 reset_current_kprobe(); 310 << 311 preempt_enable_no_resched(); 344 preempt_enable_no_resched(); 312 break; 345 break; 313 << 314 case KPROBE_HIT_ACTIVE: 346 case KPROBE_HIT_ACTIVE: 315 case KPROBE_HIT_SSDONE: 347 case KPROBE_HIT_SSDONE: 316 /* 348 /* 317 * We are here because the ins !! 349 * We increment the nmissed count for accounting, 318 * caused the fault. !! 350 * we can also use npre/npostfault count for accounting >> 351 * these specific fault cases. >> 352 */ >> 353 kprobes_inc_nmissed_count(cur); >> 354 >> 355 /* >> 356 * We come here because instructions in the pre/post >> 357 * handler caused the page_fault, this could happen >> 358 * if handler tries to access user space by >> 359 * copy_from_user(), get_user() etc. Let the >> 360 * user-specified handler try to fix it first. 319 */ 361 */ >> 362 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) >> 363 return 1; 320 364 321 /* 365 /* 322 * In case the user-specified !! 366 * In case the user-specified fault handler returned 323 * try to fix up. !! 367 * zero, try to fix up. 324 */ 368 */ 325 if (fixup_exception(regs)) !! 369 >> 370 entry = search_exception_tables(regs->tpc); >> 371 if (entry) { >> 372 regs->tpc = entry->fixup; >> 373 regs->tnpc = regs->tpc + 4; 326 return 1; 374 return 1; >> 375 } 327 376 328 /* 377 /* 329 * fixup_exception() could not 378 * fixup_exception() could not handle it, 330 * Let do_page_fault() fix it. 379 * Let do_page_fault() fix it. 331 */ 380 */ 332 break; 381 break; 333 << 334 default: 382 default: 335 break; 383 break; 336 } 384 } >> 385 337 return 0; 386 return 0; 338 } 387 } 339 388 >> 389 /* >> 390 * Wrapper routine to for handling exceptions. >> 391 */ 340 int __kprobes kprobe_exceptions_notify(struct 392 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 341 unsigne 393 unsigned long val, void *data) 342 { 394 { 343 struct die_args *args = data; !! 395 struct die_args *args = (struct die_args *)data; 344 unsigned long addr = args->err; << 345 int ret = NOTIFY_DONE; 396 int ret = NOTIFY_DONE; 346 397 >> 398 if (args->regs && user_mode(args->regs)) >> 399 return ret; >> 400 347 switch (val) { 401 switch (val) { 348 case DIE_IERR: !! 402 case DIE_DEBUG: 349 if (arc_kprobe_handler(addr, a !! 403 if (kprobe_handler(args->regs)) 350 return NOTIFY_STOP; !! 404 ret = NOTIFY_STOP; 351 break; 405 break; 352 !! 406 case DIE_DEBUG_2: 353 case DIE_TRAP: !! 407 if (post_kprobe_handler(args->regs)) 354 if (arc_post_kprobe_handler(ad !! 408 ret = NOTIFY_STOP; 355 return NOTIFY_STOP; << 356 break; 409 break; 357 << 358 default: 410 default: 359 break; 411 break; 360 } 412 } 361 << 362 return ret; 413 return ret; 363 } 414 } 364 415 365 static void __used kretprobe_trampoline_holder !! 416 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level, >> 417 struct pt_regs *regs) 366 { 418 { 367 __asm__ __volatile__(".global __kretpr !! 419 enum ctx_state prev_state = exception_enter(); 368 "__kretprobe_tram !! 420 369 "nop\n"); !! 421 BUG_ON(trap_level != 0x170 && trap_level != 0x171); >> 422 >> 423 if (user_mode(regs)) { >> 424 local_irq_enable(); >> 425 bad_trap(regs, trap_level); >> 426 goto out; >> 427 } >> 428 >> 429 /* trap_level == 0x170 --> ta 0x70 >> 430 * trap_level == 0x171 --> ta 0x71 >> 431 */ >> 432 if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2, >> 433 (trap_level == 0x170) ? "debug" : "debug_2", >> 434 regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP) >> 435 bad_trap(regs, trap_level); >> 436 out: >> 437 exception_exit(prev_state); 370 } 438 } 371 439 >> 440 /* The value stored in the return address register is actually 2 >> 441 * instructions before where the callee will return to. >> 442 * Sequences usually look something like this >> 443 * >> 444 * call some_function <--- return register points here >> 445 * nop <--- call delay slot >> 446 * whatever <--- where callee returns to >> 447 * >> 448 * To keep trampoline_probe_handler logic simpler, we normalize the >> 449 * value kept in ri->ret_addr so we don't need to keep adjusting it >> 450 * back and forth. >> 451 */ 372 void __kprobes arch_prepare_kretprobe(struct k 452 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 373 struct p 453 struct pt_regs *regs) 374 { 454 { 375 !! 455 ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8); 376 ri->ret_addr = (kprobe_opcode_t *) reg << 377 ri->fp = NULL; << 378 456 379 /* Replace the return addr with trampo 457 /* Replace the return addr with trampoline addr */ 380 regs->blink = (unsigned long)&__kretpr !! 458 regs->u_regs[UREG_RETPC] = >> 459 ((unsigned long)kretprobe_trampoline) - 8; 381 } 460 } 382 461 >> 462 /* >> 463 * Called when the probe at kretprobe trampoline is hit >> 464 */ 383 static int __kprobes trampoline_probe_handler( 465 static int __kprobes trampoline_probe_handler(struct kprobe *p, 384 466 struct pt_regs *regs) 385 { 467 { 386 regs->ret = __kretprobe_trampoline_han !! 468 struct kretprobe_instance *ri = NULL; >> 469 struct hlist_head *head, empty_rp; >> 470 struct hlist_node *tmp; >> 471 unsigned long flags, orig_ret_address = 0; >> 472 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; >> 473 >> 474 INIT_HLIST_HEAD(&empty_rp); >> 475 kretprobe_hash_lock(current, &head, &flags); 387 476 388 /* By returning a non zero value, we a !! 477 /* 389 * that we don't want the post_handler !! 478 * It is possible to have multiple instances associated with a given >> 479 * task either because an multiple functions in the call path >> 480 * have a return probe installed on them, and/or more than one return >> 481 * return probe was registered for a target function. >> 482 * >> 483 * We can handle this because: >> 484 * - instances are always inserted at the head of the list >> 485 * - when multiple return probes are registered for the same >> 486 * function, the first instance's ret_addr will point to the >> 487 * real return address, and all the rest will point to >> 488 * kretprobe_trampoline >> 489 */ >> 490 hlist_for_each_entry_safe(ri, tmp, head, hlist) { >> 491 if (ri->task != current) >> 492 /* another task is sharing our hash bucket */ >> 493 continue; >> 494 >> 495 if (ri->rp && ri->rp->handler) >> 496 ri->rp->handler(ri, regs); >> 497 >> 498 orig_ret_address = (unsigned long)ri->ret_addr; >> 499 recycle_rp_inst(ri, &empty_rp); >> 500 >> 501 if (orig_ret_address != trampoline_address) >> 502 /* >> 503 * This is the real return address. Any other >> 504 * instances associated with this task are for >> 505 * other calls deeper on the call stack >> 506 */ >> 507 break; >> 508 } >> 509 >> 510 kretprobe_assert(ri, orig_ret_address, trampoline_address); >> 511 regs->tpc = orig_ret_address; >> 512 regs->tnpc = orig_ret_address + 4; >> 513 >> 514 kretprobe_hash_unlock(current, &flags); >> 515 >> 516 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { >> 517 hlist_del(&ri->hlist); >> 518 kfree(ri); >> 519 } >> 520 /* >> 521 * By returning a non-zero value, we are telling >> 522 * kprobe_handler() that we don't want the post_handler >> 523 * to run (and have re-enabled preemption) 390 */ 524 */ 391 return 1; 525 return 1; 392 } 526 } 393 527 >> 528 static void __used kretprobe_trampoline_holder(void) >> 529 { >> 530 asm volatile(".global kretprobe_trampoline\n" >> 531 "kretprobe_trampoline:\n" >> 532 "\tnop\n" >> 533 "\tnop\n"); >> 534 } 394 static struct kprobe trampoline_p = { 535 static struct kprobe trampoline_p = { 395 .addr = (kprobe_opcode_t *) &__kretpro !! 536 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 396 .pre_handler = trampoline_probe_handle 537 .pre_handler = trampoline_probe_handler 397 }; 538 }; 398 539 399 int __init arch_init_kprobes(void) 540 int __init arch_init_kprobes(void) 400 { 541 { 401 /* Registering the trampoline code for << 402 return register_kprobe(&trampoline_p); 542 return register_kprobe(&trampoline_p); 403 } 543 } 404 544 405 int __kprobes arch_trampoline_kprobe(struct kp 545 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 406 { 546 { 407 if (p->addr == (kprobe_opcode_t *) &__ !! 547 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) 408 return 1; 548 return 1; 409 549 410 return 0; 550 return 0; 411 } << 412 << 413 void trap_is_kprobe(unsigned long address, str << 414 { << 415 notify_die(DIE_TRAP, "kprobe_trap", re << 416 } 551 } 417 552
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.