~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm64/crypto/polyval-ce-core.S

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /arch/arm64/crypto/polyval-ce-core.S (Architecture i386) and /arch/mips/crypto/polyval-ce-core.S (Architecture mips)


  1 /* SPDX-License-Identifier: GPL-2.0 */            
  2 /*                                                
  3  * Implementation of POLYVAL using ARMv8 Crypt    
  4  *                                                
  5  * Copyright 2021 Google LLC                      
  6  */                                               
  7 /*                                                
  8  * This is an efficient implementation of POLY    
  9  * It works on 8 blocks at a time, by precompu    
 10  * ..., h^1 in the POLYVAL finite field. This     
 11  * finite field multiplication into two steps.    
 12  *                                                
 13  * In the first step, we consider h^i, m_i as     
 14  * than 128. We then compute p(x) = h^8m_0 + .    
 15  * is simply polynomial multiplication.           
 16  *                                                
 17  * In the second step, we compute the reductio    
 18  * modulus g(x) = x^128 + x^127 + x^126 + x^12    
 19  *                                                
 20  * This two step process is equivalent to comp    
 21  * multiplication is finite field multiplicati    
 22  * two-step process  only requires 1 finite fi    
 23  * polynomial multiplications. Further paralle    
 24  * multiplications and polynomial reductions.     
 25  */                                               
 26                                                   
 27 #include <linux/linkage.h>                        
 28 #define STRIDE_BLOCKS 8                           
 29                                                   
 30 KEY_POWERS      .req    x0                        
 31 MSG             .req    x1                        
 32 BLOCKS_LEFT     .req    x2                        
 33 ACCUMULATOR     .req    x3                        
 34 KEY_START       .req    x10                       
 35 EXTRA_BYTES     .req    x11                       
 36 TMP     .req    x13                               
 37                                                   
 38 M0      .req    v0                                
 39 M1      .req    v1                                
 40 M2      .req    v2                                
 41 M3      .req    v3                                
 42 M4      .req    v4                                
 43 M5      .req    v5                                
 44 M6      .req    v6                                
 45 M7      .req    v7                                
 46 KEY8    .req    v8                                
 47 KEY7    .req    v9                                
 48 KEY6    .req    v10                               
 49 KEY5    .req    v11                               
 50 KEY4    .req    v12                               
 51 KEY3    .req    v13                               
 52 KEY2    .req    v14                               
 53 KEY1    .req    v15                               
 54 PL      .req    v16                               
 55 PH      .req    v17                               
 56 TMP_V   .req    v18                               
 57 LO      .req    v20                               
 58 MI      .req    v21                               
 59 HI      .req    v22                               
 60 SUM     .req    v23                               
 61 GSTAR   .req    v24                               
 62                                                   
 63         .text                                     
 64                                                   
 65         .arch   armv8-a+crypto                    
 66         .align  4                                 
 67                                                   
 68 .Lgstar:                                          
 69         .quad   0xc200000000000000, 0xc2000000    
 70                                                   
 71 /*                                                
 72  * Computes the product of two 128-bit polynom    
 73  * components of the 256-bit product into LO,     
 74  *                                                
 75  * Given:                                         
 76  *  X = [X_1 : X_0]                               
 77  *  Y = [Y_1 : Y_0]                               
 78  *                                                
 79  * We compute:                                    
 80  *  LO += X_0 * Y_0                               
 81  *  MI += (X_0 + X_1) * (Y_0 + Y_1)               
 82  *  HI += X_1 * Y_1                               
 83  *                                                
 84  * Later, the 256-bit result can be extracted     
 85  *   [HI_1 : HI_0 + HI_1 + MI_1 + LO_1 : LO_1     
 86  * This step is done when computing the polyno    
 87  * reasons.                                       
 88  *                                                
 89  * Karatsuba multiplication is used instead of    
 90  * it was found to be slightly faster on ARM64    
 91  *                                                
 92  */                                               
 93 .macro karatsuba1 X Y                             
 94         X .req \X                                 
 95         Y .req \Y                                 
 96         ext     v25.16b, X.16b, X.16b, #8         
 97         ext     v26.16b, Y.16b, Y.16b, #8         
 98         eor     v25.16b, v25.16b, X.16b           
 99         eor     v26.16b, v26.16b, Y.16b           
100         pmull2  v28.1q, X.2d, Y.2d                
101         pmull   v29.1q, X.1d, Y.1d                
102         pmull   v27.1q, v25.1d, v26.1d            
103         eor     HI.16b, HI.16b, v28.16b           
104         eor     LO.16b, LO.16b, v29.16b           
105         eor     MI.16b, MI.16b, v27.16b           
106         .unreq X                                  
107         .unreq Y                                  
108 .endm                                             
109                                                   
110 /*                                                
111  * Same as karatsuba1, except overwrites HI, L    
112  * them.                                          
113  */                                               
114 .macro karatsuba1_store X Y                       
115         X .req \X                                 
116         Y .req \Y                                 
117         ext     v25.16b, X.16b, X.16b, #8         
118         ext     v26.16b, Y.16b, Y.16b, #8         
119         eor     v25.16b, v25.16b, X.16b           
120         eor     v26.16b, v26.16b, Y.16b           
121         pmull2  HI.1q, X.2d, Y.2d                 
122         pmull   LO.1q, X.1d, Y.1d                 
123         pmull   MI.1q, v25.1d, v26.1d             
124         .unreq X                                  
125         .unreq Y                                  
126 .endm                                             
127                                                   
128 /*                                                
129  * Computes the 256-bit polynomial represented    
130  * the result in PL, PH.                          
131  * [PH : PL] =                                    
132  *   [HI_1 : HI_1 + HI_0 + MI_1 + LO_1 : HI_0     
133  */                                               
134 .macro karatsuba2                                 
135         // v4 = [HI_1 + MI_1 : HI_0 + MI_0]       
136         eor     v4.16b, HI.16b, MI.16b            
137         // v4 = [HI_1 + MI_1 + LO_1 : HI_0 + M    
138         eor     v4.16b, v4.16b, LO.16b            
139         // v5 = [HI_0 : LO_1]                     
140         ext     v5.16b, LO.16b, HI.16b, #8        
141         // v4 = [HI_1 + HI_0 + MI_1 + LO_1 : H    
142         eor     v4.16b, v4.16b, v5.16b            
143         // HI = [HI_0 : HI_1]                     
144         ext     HI.16b, HI.16b, HI.16b, #8        
145         // LO = [LO_0 : LO_1]                     
146         ext     LO.16b, LO.16b, LO.16b, #8        
147         // PH = [HI_1 : HI_1 + HI_0 + MI_1 + L    
148         ext     PH.16b, v4.16b, HI.16b, #8        
149         // PL = [HI_0 + MI_0 + LO_1 + LO_0 : L    
150         ext     PL.16b, LO.16b, v4.16b, #8        
151 .endm                                             
152                                                   
153 /*                                                
154  * Computes the 128-bit reduction of PH : PL.     
155  *                                                
156  * This macro computes p(x) mod g(x) where p(x    
157  * x^128 + x^127 + x^126 + x^121 + 1.             
158  *                                                
159  * We have a 256-bit polynomial PH : PL = P_3     
160  * product of two 128-bit polynomials in Montg    
161  * mod g(x).  Also, since polynomials in Montg    
162  * of x^128, this product has two extra factor    
163  * Montgomery form, we need to remove one of t    
164  *                                                
165  * To accomplish both of these goals, we add m    
166  * the low 128 bits P_1 : P_0, leaving just th    
167  * bits are zero, the polynomial division by x    
168  * shifting.                                      
169  *                                                
170  * Since the only nonzero term in the low 64 b    
171  * the multiple of g(x) needed to cancel out P    
172  * only do 64x64 bit multiplications, so split    
173  * x^64 * g*(x) * P_0 + P_0, where g*(x) is bi    
174  * the original polynomial gives P_3 : P_2 + P    
175  * = T_1 : T_0 = g*(x) * P_0.  Thus, bits 0-63    
176  *                                                
177  * Repeating this same process on the next 64     
178  * 128-255, giving the answer in bits 128-255.    
179  * + T_0 in bits 64-127. The multiple of g(x)     
180  * x^64. Adding this to our previous computati    
181  * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_    
182  *                                                
183  * So our final computation is:                   
184  *   T = T_1 : T_0 = g*(x) * P_0                  
185  *   V = V_1 : V_0 = g*(x) * (P_1 + T_0)          
186  *   p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0    
187  *                                                
188  * The implementation below saves a XOR instru    
189  * + T_1 and XORing into dest, rather than sep    
190  * T_1 into dest.  This allows us to reuse P_1    
191  */                                               
192 .macro montgomery_reduction dest                  
193         DEST .req \dest                           
194         // TMP_V = T_1 : T_0 = P_0 * g*(x)        
195         pmull   TMP_V.1q, PL.1d, GSTAR.1d         
196         // TMP_V = T_0 : T_1                      
197         ext     TMP_V.16b, TMP_V.16b, TMP_V.16    
198         // TMP_V = P_1 + T_0 : P_0 + T_1          
199         eor     TMP_V.16b, PL.16b, TMP_V.16b      
200         // PH = P_3 + P_1 + T_0 : P_2 + P_0 +     
201         eor     PH.16b, PH.16b, TMP_V.16b         
202         // TMP_V = V_1 : V_0 = (P_1 + T_0) * g    
203         pmull2  TMP_V.1q, TMP_V.2d, GSTAR.2d      
204         eor     DEST.16b, PH.16b, TMP_V.16b       
205         .unreq DEST                               
206 .endm                                             
207                                                   
208 /*                                                
209  * Compute Polyval on 8 blocks.                   
210  *                                                
211  * If reduce is set, also computes the montgom    
212  * previous full_stride call and XORs with the    
213  * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.      
214  * I.e., the first multiplication uses m_0 + R    
215  *                                                
216  * Sets PL, PH.                                   
217  */                                               
218 .macro full_stride reduce                         
219         eor             LO.16b, LO.16b, LO.16b    
220         eor             MI.16b, MI.16b, MI.16b    
221         eor             HI.16b, HI.16b, HI.16b    
222                                                   
223         ld1             {M0.16b, M1.16b, M2.16    
224         ld1             {M4.16b, M5.16b, M6.16    
225                                                   
226         karatsuba1 M7 KEY1                        
227         .if \reduce                               
228         pmull   TMP_V.1q, PL.1d, GSTAR.1d         
229         .endif                                    
230                                                   
231         karatsuba1 M6 KEY2                        
232         .if \reduce                               
233         ext     TMP_V.16b, TMP_V.16b, TMP_V.16    
234         .endif                                    
235                                                   
236         karatsuba1 M5 KEY3                        
237         .if \reduce                               
238         eor     TMP_V.16b, PL.16b, TMP_V.16b      
239         .endif                                    
240                                                   
241         karatsuba1 M4 KEY4                        
242         .if \reduce                               
243         eor     PH.16b, PH.16b, TMP_V.16b         
244         .endif                                    
245                                                   
246         karatsuba1 M3 KEY5                        
247         .if \reduce                               
248         pmull2  TMP_V.1q, TMP_V.2d, GSTAR.2d      
249         .endif                                    
250                                                   
251         karatsuba1 M2 KEY6                        
252         .if \reduce                               
253         eor     SUM.16b, PH.16b, TMP_V.16b        
254         .endif                                    
255                                                   
256         karatsuba1 M1 KEY7                        
257         eor     M0.16b, M0.16b, SUM.16b           
258                                                   
259         karatsuba1 M0 KEY8                        
260         karatsuba2                                
261 .endm                                             
262                                                   
263 /*                                                
264  * Handle any extra blocks after full_stride l    
265  */                                               
266 .macro partial_stride                             
267         add     KEY_POWERS, KEY_START, #(STRID    
268         sub     KEY_POWERS, KEY_POWERS, BLOCKS    
269         ld1     {KEY1.16b}, [KEY_POWERS], #16     
270                                                   
271         ld1     {TMP_V.16b}, [MSG], #16           
272         eor     SUM.16b, SUM.16b, TMP_V.16b       
273         karatsuba1_store KEY1 SUM                 
274         sub     BLOCKS_LEFT, BLOCKS_LEFT, #1      
275                                                   
276         tst     BLOCKS_LEFT, #4                   
277         beq     .Lpartial4BlocksDone              
278         ld1     {M0.16b, M1.16b,  M2.16b, M3.1    
279         ld1     {KEY8.16b, KEY7.16b, KEY6.16b,    
280         karatsuba1 M0 KEY8                        
281         karatsuba1 M1 KEY7                        
282         karatsuba1 M2 KEY6                        
283         karatsuba1 M3 KEY5                        
284 .Lpartial4BlocksDone:                             
285         tst     BLOCKS_LEFT, #2                   
286         beq     .Lpartial2BlocksDone              
287         ld1     {M0.16b, M1.16b}, [MSG], #32      
288         ld1     {KEY8.16b, KEY7.16b}, [KEY_POW    
289         karatsuba1 M0 KEY8                        
290         karatsuba1 M1 KEY7                        
291 .Lpartial2BlocksDone:                             
292         tst     BLOCKS_LEFT, #1                   
293         beq     .LpartialDone                     
294         ld1     {M0.16b}, [MSG], #16              
295         ld1     {KEY8.16b}, [KEY_POWERS], #16     
296         karatsuba1 M0 KEY8                        
297 .LpartialDone:                                    
298         karatsuba2                                
299         montgomery_reduction SUM                  
300 .endm                                             
301                                                   
302 /*                                                
303  * Perform montgomery multiplication in GF(2^1    
304  *                                                
305  * Computes op1*op2*x^{-128} mod x^128 + x^127    
306  * If op1, op2 are in montgomery form, this co    
307  * form of op1*op2.                               
308  *                                                
309  * void pmull_polyval_mul(u8 *op1, const u8 *o    
310  */                                               
311 SYM_FUNC_START(pmull_polyval_mul)                 
312         adr     TMP, .Lgstar                      
313         ld1     {GSTAR.2d}, [TMP]                 
314         ld1     {v0.16b}, [x0]                    
315         ld1     {v1.16b}, [x1]                    
316         karatsuba1_store v0 v1                    
317         karatsuba2                                
318         montgomery_reduction SUM                  
319         st1     {SUM.16b}, [x0]                   
320         ret                                       
321 SYM_FUNC_END(pmull_polyval_mul)                   
322                                                   
323 /*                                                
324  * Perform polynomial evaluation as specified     
325  *      h^n * accumulator + h^n * m_0 + ... +     
326  * where n=nblocks, h is the hash key, and m_i    
327  *                                                
328  * x0 - pointer to precomputed key powers h^8     
329  * x1 - pointer to message blocks                 
330  * x2 - number of blocks to hash                  
331  * x3 - pointer to accumulator                    
332  *                                                
333  * void pmull_polyval_update(const struct poly    
334  *                           size_t nblocks, u    
335  */                                               
336 SYM_FUNC_START(pmull_polyval_update)              
337         adr     TMP, .Lgstar                      
338         mov     KEY_START, KEY_POWERS             
339         ld1     {GSTAR.2d}, [TMP]                 
340         ld1     {SUM.16b}, [ACCUMULATOR]          
341         subs    BLOCKS_LEFT, BLOCKS_LEFT, #STR    
342         blt .LstrideLoopExit                      
343         ld1     {KEY8.16b, KEY7.16b, KEY6.16b,    
344         ld1     {KEY4.16b, KEY3.16b, KEY2.16b,    
345         full_stride 0                             
346         subs    BLOCKS_LEFT, BLOCKS_LEFT, #STR    
347         blt .LstrideLoopExitReduce                
348 .LstrideLoop:                                     
349         full_stride 1                             
350         subs    BLOCKS_LEFT, BLOCKS_LEFT, #STR    
351         bge     .LstrideLoop                      
352 .LstrideLoopExitReduce:                           
353         montgomery_reduction SUM                  
354 .LstrideLoopExit:                                 
355         adds    BLOCKS_LEFT, BLOCKS_LEFT, #STR    
356         beq     .LskipPartial                     
357         partial_stride                            
358 .LskipPartial:                                    
359         st1     {SUM.16b}, [ACCUMULATOR]          
360         ret                                       
361 SYM_FUNC_END(pmull_polyval_update)                
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php