1 // SPDX-License-Identifier: GPL-2.0-only 1 2 /* 3 * Contains CPU feature definitions 4 * 5 * Copyright (C) 2015 ARM Ltd. 6 * 7 * A note for the weary kernel hacker: the cod 8 * follow! That's partly because it's solving 9 * there's a little bit of over-abstraction th 10 * on behind a maze of helper functions and ma 11 * 12 * The basic problem is that hardware folks ha 13 * with distinct architectural features; in so 14 * user-visible instructions are available onl 15 * cores. We try to address this by snapshotti 16 * boot CPU and comparing these with the featu 17 * CPU when bringing them up. If there is a mi 18 * snapshot state to indicate the lowest-commo 19 * known as the "safe" value. This snapshot st 20 * "sanitised" value of a feature register. 21 * 22 * The sanitised register values are used to d 23 * have in the system. These may be in the for 24 * advertised to userspace or internal "cpucap 25 * things like alternative patching and static 26 * may result in a TAINT_CPU_OUT_OF_SPEC kerne 27 * may prevent a CPU from being onlined at all 28 * 29 * Some implementation details worth rememberi 30 * 31 * - Mismatched features are *always* sanitise 32 * usually indicates that the feature is not 33 * 34 * - A mismatched feature marked with FTR_STRI 35 * warning when onlining an offending CPU an 36 * with TAINT_CPU_OUT_OF_SPEC. 37 * 38 * - Features marked as FTR_VISIBLE have their 39 * userspace. FTR_VISIBLE features in regist 40 * to EL0 by trapping *must* have a correspo 41 * onlining of CPUs cannot lead to features 42 * 43 * - A "feature" is typically a 4-bit register 44 * high-level description derived from the s 45 * 46 * - Read the Arm ARM (DDI 0487F.a) section D1 47 * scheme for fields in ID registers") to un 48 * may be signed or unsigned (FTR_SIGNED and 49 * 50 * - KVM exposes its own view of the feature r 51 * systems regardless of FTR_VISIBLE. This i 52 * sanitised register values to allow virtua 53 * arbitrary physical CPUs, but some feature 54 * also advertised and emulated. Look at sys 55 * details. 56 * 57 * - If the arm64_ftr_bits[] for a register ha 58 * field is treated as STRICT RES0, includin 59 * This is stronger than FTR_HIDDEN and can 60 * KVM guests. 61 */ 62 63 #define pr_fmt(fmt) "CPU features: " fmt 64 65 #include <linux/bsearch.h> 66 #include <linux/cpumask.h> 67 #include <linux/crash_dump.h> 68 #include <linux/kstrtox.h> 69 #include <linux/sort.h> 70 #include <linux/stop_machine.h> 71 #include <linux/sysfs.h> 72 #include <linux/types.h> 73 #include <linux/minmax.h> 74 #include <linux/mm.h> 75 #include <linux/cpu.h> 76 #include <linux/kasan.h> 77 #include <linux/percpu.h> 78 79 #include <asm/cpu.h> 80 #include <asm/cpufeature.h> 81 #include <asm/cpu_ops.h> 82 #include <asm/fpsimd.h> 83 #include <asm/hwcap.h> 84 #include <asm/insn.h> 85 #include <asm/kvm_host.h> 86 #include <asm/mmu_context.h> 87 #include <asm/mte.h> 88 #include <asm/processor.h> 89 #include <asm/smp.h> 90 #include <asm/sysreg.h> 91 #include <asm/traps.h> 92 #include <asm/vectors.h> 93 #include <asm/virt.h> 94 95 /* Kernel representation of AT_HWCAP and AT_HW 96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATU 97 98 #ifdef CONFIG_COMPAT 99 #define COMPAT_ELF_HWCAP_DEFAULT \ 100 (COMPAT_HWCAP_ 101 COMPAT_HWCAP_ 102 COMPAT_HWCAP_ 103 COMPAT_HWCAP_ 104 unsigned int compat_elf_hwcap __read_mostly = 105 unsigned int compat_elf_hwcap2 __read_mostly; 106 #endif 107 108 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS); 109 EXPORT_SYMBOL(system_cpucaps); 110 static struct arm64_cpu_capabilities const __r 111 112 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS); 113 114 bool arm64_use_ng_mappings = false; 115 EXPORT_SYMBOL(arm64_use_ng_mappings); 116 117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_ 118 119 /* 120 * Permit PER_LINUX32 and execve() of 32-bit b 121 * support it? 122 */ 123 static bool __read_mostly allow_mismatched_32b 124 125 /* 126 * Static branch enabled only if allow_mismatc 127 * seen at least one CPU capable of 32-bit EL0 128 */ 129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit 130 131 /* 132 * Mask of CPUs supporting 32-bit EL0. 133 * Only valid if arm64_mismatched_32bit_el0 is 134 */ 135 static cpumask_var_t cpu_32bit_el0_mask __cpum 136 137 void dump_cpu_features(void) 138 { 139 /* file-wide pr_fmt adds "CPU features 140 pr_emerg("0x%*pb\n", ARM64_NCAPS, &sys 141 } 142 143 #define __ARM64_MAX_POSITIVE(reg, field) 144 ((reg##_##field##_SIGNED ? 145 BIT(reg##_##field##_WIDTH - 146 BIT(reg##_##field##_WIDTH)) 147 148 #define __ARM64_MIN_NEGATIVE(reg, field) BIT( 149 150 #define __ARM64_CPUID_FIELDS(reg, field, min_v 151 .sys_reg = SYS_##reg, 152 .field_pos = reg##_##field##_S 153 .field_width = reg##_##field## 154 .sign = reg##_##field##_SIGNED 155 .min_field_value = min_value, 156 .max_field_value = max_value, 157 158 /* 159 * ARM64_CPUID_FIELDS() encodes a field with a 160 * an implicit maximum that depends on the sig 161 * 162 * An unsigned field will be capped at all one 163 * will be limited to the positive half only. 164 */ 165 #define ARM64_CPUID_FIELDS(reg, field, min_val 166 __ARM64_CPUID_FIELDS(reg, field, 167 SYS_FIELD_VALUE(r 168 __ARM64_MAX_POSIT 169 170 /* 171 * ARM64_CPUID_FIELDS_NEG() encodes a field wi 172 * implicit minimal value to max_value. This s 173 * matching a non-implemented property. 174 */ 175 #define ARM64_CPUID_FIELDS_NEG(reg, field, max 176 __ARM64_CPUID_FIELDS(reg, field, 177 __ARM64_MIN_NEGAT 178 SYS_FIELD_VALUE(r 179 180 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRI 181 { 182 .sign = SIGNED, 183 .visible = VISIBLE, 184 .strict = STRICT, 185 .type = TYPE, 186 .shift = SHIFT, 187 .width = WIDTH, 188 .safe_val = SAFE_VAL, 189 } 190 191 /* Define a feature with unsigned values */ 192 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, 193 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE 194 195 /* Define a feature with a signed value */ 196 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE 197 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, 198 199 #define ARM64_FTR_END 200 { 201 .width = 0, 202 } 203 204 static void cpu_enable_cnp(struct arm64_cpu_ca 205 206 static bool __system_matches_cap(unsigned int 207 208 /* 209 * NOTE: Any changes to the visibility of feat 210 * sync with the documentation of the CPU feat 211 */ 212 static const struct arm64_ftr_bits ftr_id_aa64 213 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 214 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 215 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 216 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 217 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 218 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 219 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 220 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 221 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 222 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 223 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 224 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 225 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 226 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 227 ARM64_FTR_END, 228 }; 229 230 static const struct arm64_ftr_bits ftr_id_aa64 231 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 232 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 233 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 234 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 235 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 236 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 237 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 238 FTR_STRICT, FTR_LOWER_S 239 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 240 FTR_STRICT, FTR_LOWER_S 241 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 242 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 243 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 244 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 245 FTR_STRICT, FTR_EXACT, 246 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 247 FTR_STRICT, FTR_EXACT, 248 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 249 ARM64_FTR_END, 250 }; 251 252 static const struct arm64_ftr_bits ftr_id_aa64 253 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTR 254 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTR 255 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTR 256 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 257 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 258 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 259 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 260 FTR_STRICT, FTR_EXACT, 261 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 262 FTR_STRICT, FTR_LOWER_S 263 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTR 264 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTR 265 ARM64_FTR_END, 266 }; 267 268 static const struct arm64_ftr_bits ftr_id_aa64 269 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTR 270 ARM64_FTR_END, 271 }; 272 273 static const struct arm64_ftr_bits ftr_id_aa64 274 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 275 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 276 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 277 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 278 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 279 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 280 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 281 FTR_STRICT, 282 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 283 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 284 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRI 285 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRI 286 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 287 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 288 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 289 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 290 ARM64_FTR_END, 291 }; 292 293 static const struct arm64_ftr_bits ftr_id_aa64 294 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 295 FTR_STRICT, FTR_LOWER_S 296 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 297 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 298 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 299 FTR_STRICT, FTR_LOWER_S 300 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTR 301 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 302 FTR_STRICT 303 ARM64_FTR_END, 304 }; 305 306 static const struct arm64_ftr_bits ftr_id_aa64 307 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 308 ARM64_FTR_END, 309 }; 310 311 static const struct arm64_ftr_bits ftr_id_aa64 312 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 313 FTR_STRICT, FTR_LOWER_S 314 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 315 FTR_STRICT, FTR_LOWER_S 316 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 317 FTR_STRICT, FTR_LOWER_S 318 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 319 FTR_STRICT, FTR_LOWER_S 320 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 321 FTR_STRICT, FTR_LOWER_S 322 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 323 FTR_STRICT, FTR_LOWER_S 324 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 325 FTR_STRICT, FTR_LOWER_S 326 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 327 FTR_STRICT, FTR_LOWER_S 328 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 329 FTR_STRICT, FTR_LOWER_S 330 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 331 FTR_STRICT, FTR_LOWER_S 332 ARM64_FTR_END, 333 }; 334 335 static const struct arm64_ftr_bits ftr_id_aa64 336 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 337 FTR_STRICT, FTR_EXACT, 338 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 339 FTR_STRICT, FTR_EXACT, 340 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 341 FTR_STRICT, FTR_EXACT, 342 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 343 FTR_STRICT, FTR_EXACT, 344 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 345 FTR_STRICT, FTR_EXACT, 346 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 347 FTR_STRICT, FTR_EXACT, 348 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 349 FTR_STRICT, FTR_EXACT, 350 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 351 FTR_STRICT, FTR_EXACT, 352 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 353 FTR_STRICT, FTR_EXACT, 354 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 355 FTR_STRICT, FTR_EXACT, 356 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 357 FTR_STRICT, FTR_EXACT, 358 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 359 FTR_STRICT, FTR_EXACT, 360 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 361 FTR_STRICT, FTR_EXACT, 362 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 363 FTR_STRICT, FTR_EXACT, 364 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 365 FTR_STRICT, FTR_EXACT, 366 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 367 FTR_STRICT, FTR_EXACT, 368 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 369 FTR_STRICT, FTR_EXACT, 370 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABL 371 FTR_STRICT, FTR_EXACT, 372 ARM64_FTR_END, 373 }; 374 375 static const struct arm64_ftr_bits ftr_id_aa64 376 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 377 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 378 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 379 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 380 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 381 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 382 ARM64_FTR_END, 383 }; 384 385 static const struct arm64_ftr_bits ftr_id_aa64 386 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 387 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 388 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 389 /* 390 * Page size not being supported at St 391 * just give up KVM if PAGE_SIZE isn't 392 * your favourite nesting hypervisor. 393 * 394 * There is a small corner case where 395 * advertises a given granule size at 396 * vCPUs, and uses the fallback to Sta 397 * vCPUs. Although this is not forbidd 398 * indicates that the hypervisor is be 399 * 400 * We make no effort to cope with this 401 * fields are inconsistent across vCPU 402 * trying to bring KVM up. 403 */ 404 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 405 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 406 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 407 /* 408 * We already refuse to boot CPUs that 409 * page size, so we can only detect mi 410 * than the one we're currently using. 411 * exist in the wild so, even though w 412 * along with it and treat them as non 413 */ 414 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONST 415 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONST 416 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 417 418 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 419 /* Linux shouldn't care about secure m 420 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 421 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 422 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 423 /* 424 * Differing PARange is fine as long a 425 * within the minimum PARange of all C 426 */ 427 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 428 ARM64_FTR_END, 429 }; 430 431 static const struct arm64_ftr_bits ftr_id_aa64 432 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 433 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 434 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 435 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 436 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 437 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 438 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 439 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 440 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 441 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 442 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 443 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 444 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 445 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 446 ARM64_FTR_END, 447 }; 448 449 static const struct arm64_ftr_bits ftr_id_aa64 450 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 451 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 452 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 453 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 454 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 455 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 456 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 457 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 458 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 459 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 460 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 461 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 462 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 463 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 464 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 465 ARM64_FTR_END, 466 }; 467 468 static const struct arm64_ftr_bits ftr_id_aa64 469 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 470 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 471 ARM64_FTR_END, 472 }; 473 474 static const struct arm64_ftr_bits ftr_id_aa64 475 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRIC 476 ARM64_FTR_END, 477 }; 478 479 static const struct arm64_ftr_bits ftr_ctr[] = 480 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 481 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 482 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 483 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 484 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 485 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 486 /* 487 * Linux can handle differing I-cache 488 * make use of *minLine. 489 * If we have differing I-cache polici 490 */ 491 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTR 492 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 493 ARM64_FTR_END, 494 }; 495 496 static struct arm64_ftr_override __ro_after_in 497 498 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = { 499 .name = "SYS_CTR_EL0", 500 .ftr_bits = ftr_ctr, 501 .override = &no_override, 502 }; 503 504 static const struct arm64_ftr_bits ftr_id_mmfr 505 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRIC 506 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 507 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 508 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 509 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 510 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRIC 511 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 512 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 513 ARM64_FTR_END, 514 }; 515 516 static const struct arm64_ftr_bits ftr_id_aa64 517 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRIC 518 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 519 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 520 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 521 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 522 /* 523 * We can instantiate multiple PMU ins 524 * of support. 525 */ 526 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONST 527 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 528 ARM64_FTR_END, 529 }; 530 531 static const struct arm64_ftr_bits ftr_mvfr0[] 532 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 533 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 534 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 535 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 536 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 537 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 538 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 539 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 540 ARM64_FTR_END, 541 }; 542 543 static const struct arm64_ftr_bits ftr_mvfr1[] 544 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 545 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 546 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 547 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 548 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 549 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 550 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 551 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 552 ARM64_FTR_END, 553 }; 554 555 static const struct arm64_ftr_bits ftr_mvfr2[] 556 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 557 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 558 ARM64_FTR_END, 559 }; 560 561 static const struct arm64_ftr_bits ftr_dczid[] 562 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 563 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 564 ARM64_FTR_END, 565 }; 566 567 static const struct arm64_ftr_bits ftr_gmid[] 568 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 569 ARM64_FTR_END, 570 }; 571 572 static const struct arm64_ftr_bits ftr_id_isar 573 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 574 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 575 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 576 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 577 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 578 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 579 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 580 ARM64_FTR_END, 581 }; 582 583 static const struct arm64_ftr_bits ftr_id_isar 584 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 585 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 586 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 587 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 588 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 589 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 590 ARM64_FTR_END, 591 }; 592 593 static const struct arm64_ftr_bits ftr_id_mmfr 594 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 595 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 596 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 597 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 598 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 599 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 600 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 601 602 /* 603 * SpecSEI = 1 indicates that the PE m 604 * external abort on speculative read. 605 * SError might be generated than it w 606 * classified as FTR_HIGHER_SAFE. 607 */ 608 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 609 ARM64_FTR_END, 610 }; 611 612 static const struct arm64_ftr_bits ftr_id_isar 613 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 614 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 615 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 616 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 617 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 618 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 619 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 620 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 621 ARM64_FTR_END, 622 }; 623 624 static const struct arm64_ftr_bits ftr_id_mmfr 625 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 626 ARM64_FTR_END, 627 }; 628 629 static const struct arm64_ftr_bits ftr_id_isar 630 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 631 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 632 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 633 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 634 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 635 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT 636 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 637 ARM64_FTR_END, 638 }; 639 640 static const struct arm64_ftr_bits ftr_id_pfr0 641 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 642 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 643 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 644 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 645 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 646 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 647 ARM64_FTR_END, 648 }; 649 650 static const struct arm64_ftr_bits ftr_id_pfr1 651 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 652 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 653 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 654 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 655 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 656 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 657 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 658 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 659 ARM64_FTR_END, 660 }; 661 662 static const struct arm64_ftr_bits ftr_id_pfr2 663 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTR 664 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRI 665 ARM64_FTR_END, 666 }; 667 668 static const struct arm64_ftr_bits ftr_id_dfr0 669 /* [31:28] TraceFilt */ 670 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONST 671 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 672 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 673 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 674 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 675 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 676 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 677 ARM64_FTR_END, 678 }; 679 680 static const struct arm64_ftr_bits ftr_id_dfr1 681 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRIC 682 ARM64_FTR_END, 683 }; 684 685 /* 686 * Common ftr bits for a 32bit register with a 687 * attributes, with 4bit feature fields and a 688 * 0. Covers the following 32bit registers: 689 * id_isar[1-3], id_mmfr[1-3] 690 */ 691 static const struct arm64_ftr_bits ftr_generic 692 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 693 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 694 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 695 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 696 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 697 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 698 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 699 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 700 ARM64_FTR_END, 701 }; 702 703 /* Table for a single 32bit feature value */ 704 static const struct arm64_ftr_bits ftr_single3 705 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, 706 ARM64_FTR_END, 707 }; 708 709 static const struct arm64_ftr_bits ftr_raz[] = 710 ARM64_FTR_END, 711 }; 712 713 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, t 714 .sys_id = id, 715 .reg = &(struct arm64_ftr_reg 716 .name = id_str, 717 .override = (ovr), 718 .ftr_bits = &((table)[ 719 }} 720 721 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) 722 __ARM64_FTR_REG_OVERRIDE(#id, id, tabl 723 724 #define ARM64_FTR_REG(id, table) 725 __ARM64_FTR_REG_OVERRIDE(#id, id, tabl 726 727 struct arm64_ftr_override id_aa64mmfr0_overrid 728 struct arm64_ftr_override id_aa64mmfr1_overrid 729 struct arm64_ftr_override id_aa64mmfr2_overrid 730 struct arm64_ftr_override id_aa64pfr0_override 731 struct arm64_ftr_override id_aa64pfr1_override 732 struct arm64_ftr_override id_aa64zfr0_override 733 struct arm64_ftr_override id_aa64smfr0_overrid 734 struct arm64_ftr_override id_aa64isar1_overrid 735 struct arm64_ftr_override id_aa64isar2_overrid 736 737 struct arm64_ftr_override arm64_sw_feature_ove 738 739 static const struct __ftr_reg_entry { 740 u32 sys_id; 741 struct arm64_ftr_reg *reg; 742 } arm64_ftr_regs[] = { 743 744 /* Op1 = 0, CRn = 0, CRm = 1 */ 745 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_ 746 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_ 747 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_ 748 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id 749 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_ge 750 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_ge 751 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_ge 752 753 /* Op1 = 0, CRn = 0, CRm = 2 */ 754 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id 755 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_ge 756 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_ge 757 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_ge 758 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id 759 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id 760 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id 761 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id 762 763 /* Op1 = 0, CRn = 0, CRm = 3 */ 764 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0 765 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1 766 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2 767 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_ 768 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_ 769 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id 770 771 /* Op1 = 0, CRn = 0, CRm = 4 */ 772 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0 773 &id_aa64pfr0_ov 774 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1 775 &id_aa64pfr1_ov 776 ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr 777 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0 778 &id_aa64zfr0_ov 779 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR 780 &id_aa64smfr0_o 781 ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ft 782 783 /* Op1 = 0, CRn = 0, CRm = 5 */ 784 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr 785 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr 786 787 /* Op1 = 0, CRn = 0, CRm = 6 */ 788 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ft 789 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR 790 &id_aa64isar1_o 791 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR 792 &id_aa64isar2_o 793 ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ft 794 795 /* Op1 = 0, CRn = 0, CRm = 7 */ 796 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR 797 &id_aa64mmfr0_o 798 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR 799 &id_aa64mmfr1_o 800 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR 801 &id_aa64mmfr2_o 802 ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ft 803 ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ft 804 805 /* Op1 = 1, CRn = 0, CRm = 0 */ 806 ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid), 807 808 /* Op1 = 3, CRn = 0, CRm = 0 */ 809 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 } 810 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid 811 812 /* Op1 = 3, CRn = 14, CRm = 0 */ 813 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_sing 814 }; 815 816 static int search_cmp_ftr_reg(const void *id, 817 { 818 return (int)(unsigned long)id - (int)( 819 } 820 821 /* 822 * get_arm64_ftr_reg_nowarn - Looks up a featu 823 * its sys_reg() encoding. With the array arm6 824 * ascending order of sys_id, we use binary se 825 * entry. 826 * 827 * returns - Upon success, matching ftr_reg e 828 * - NULL on failure. It is upto the c 829 * the impact of a failure. 830 */ 831 static struct arm64_ftr_reg *get_arm64_ftr_reg 832 { 833 const struct __ftr_reg_entry *ret; 834 835 ret = bsearch((const void *)(unsigned 836 arm64_ftr_regs, 837 ARRAY_SIZE(arm64_ftr_r 838 sizeof(arm64_ftr_regs[ 839 search_cmp_ftr_reg); 840 if (ret) 841 return ret->reg; 842 return NULL; 843 } 844 845 /* 846 * get_arm64_ftr_reg - Looks up a feature regi 847 * its sys_reg() encoding. This calls get_arm6 848 * 849 * returns - Upon success, matching ftr_reg e 850 * - NULL on failure but with an WARN_ 851 */ 852 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sy 853 { 854 struct arm64_ftr_reg *reg; 855 856 reg = get_arm64_ftr_reg_nowarn(sys_id) 857 858 /* 859 * Requesting a non-existent register 860 * and let the caller handle it. 861 */ 862 WARN_ON(!reg); 863 return reg; 864 } 865 866 static u64 arm64_ftr_set_value(const struct ar 867 s64 ftr_val) 868 { 869 u64 mask = arm64_ftr_mask(ftrp); 870 871 reg &= ~mask; 872 reg |= (ftr_val << ftrp->shift) & mask 873 return reg; 874 } 875 876 s64 arm64_ftr_safe_value(const struct arm64_ft 877 s64 cur) 878 { 879 s64 ret = 0; 880 881 switch (ftrp->type) { 882 case FTR_EXACT: 883 ret = ftrp->safe_val; 884 break; 885 case FTR_LOWER_SAFE: 886 ret = min(new, cur); 887 break; 888 case FTR_HIGHER_OR_ZERO_SAFE: 889 if (!cur || !new) 890 break; 891 fallthrough; 892 case FTR_HIGHER_SAFE: 893 ret = max(new, cur); 894 break; 895 default: 896 BUG(); 897 } 898 899 return ret; 900 } 901 902 static void __init sort_ftr_regs(void) 903 { 904 unsigned int i; 905 906 for (i = 0; i < ARRAY_SIZE(arm64_ftr_r 907 const struct arm64_ftr_reg *ft 908 const struct arm64_ftr_bits *f 909 unsigned int j = 0; 910 911 /* 912 * Features here must be sorte 913 * to their shift values and s 914 */ 915 for (; ftr_bits->width != 0; f 916 unsigned int width = f 917 unsigned int shift = f 918 unsigned int prev_shif 919 920 WARN((shift + width) 921 "%s has invali 922 ftr_reg->name, 923 924 /* 925 * Skip the first feat 926 * compare against for 927 */ 928 if (j == 0) 929 continue; 930 931 prev_shift = ftr_reg-> 932 WARN((shift + width) > 933 "%s has featur 934 ftr_reg->name, 935 } 936 937 /* 938 * Skip the first register. Th 939 * compare against for now. 940 */ 941 if (i == 0) 942 continue; 943 /* 944 * Registers here must be sort 945 * to sys_id for subsequent bi 946 * to work correctly. 947 */ 948 BUG_ON(arm64_ftr_regs[i].sys_i 949 } 950 } 951 952 /* 953 * Initialise the CPU feature register from Bo 954 * Also initiliases the strict_mask for the re 955 * Any bits that are not covered by an arm64_f 956 * RES0 for the system-wide value, and must st 957 */ 958 static void init_cpu_ftr_reg(u32 sys_reg, u64 959 { 960 u64 val = 0; 961 u64 strict_mask = ~0x0ULL; 962 u64 user_mask = 0; 963 u64 valid_mask = 0; 964 965 const struct arm64_ftr_bits *ftrp; 966 struct arm64_ftr_reg *reg = get_arm64_ 967 968 if (!reg) 969 return; 970 971 for (ftrp = reg->ftr_bits; ftrp->width 972 u64 ftr_mask = arm64_ftr_mask( 973 s64 ftr_new = arm64_ftr_value( 974 s64 ftr_ovr = arm64_ftr_value( 975 976 if ((ftr_mask & reg->override- 977 s64 tmp = arm64_ftr_sa 978 char *str = NULL; 979 980 if (ftr_ovr != tmp) { 981 /* Unsafe, rem 982 reg->override- 983 reg->override- 984 tmp = ftr_ovr; 985 str = "ignorin 986 } else if (ftr_new != 987 /* Override wa 988 ftr_new = tmp; 989 str = "forced" 990 } else if (ftr_ovr == 991 /* Override wa 992 str = "already 993 } 994 995 if (str) 996 pr_warn("%s[%d 997 reg->n 998 ftrp-> 999 ftrp-> 1000 tmp & 1001 } else if ((ftr_mask & reg->o 1002 reg->override->val &= 1003 pr_warn("%s[%d:%d]: i 1004 reg->name, 1005 ftrp->shift + 1006 ftrp->shift); 1007 } 1008 1009 val = arm64_ftr_set_value(ftr 1010 1011 valid_mask |= ftr_mask; 1012 if (!ftrp->strict) 1013 strict_mask &= ~ftr_m 1014 if (ftrp->visible) 1015 user_mask |= ftr_mask 1016 else 1017 reg->user_val = arm64 1018 1019 1020 } 1021 1022 val &= valid_mask; 1023 1024 reg->sys_val = val; 1025 reg->strict_mask = strict_mask; 1026 reg->user_mask = user_mask; 1027 } 1028 1029 extern const struct arm64_cpu_capabilities ar 1030 static const struct arm64_cpu_capabilities ar 1031 1032 static void __init 1033 init_cpucap_indirect_list_from_array(const st 1034 { 1035 for (; caps->matches; caps++) { 1036 if (WARN(caps->capability >= 1037 "Invalid capability % 1038 continue; 1039 if (WARN(cpucap_ptrs[caps->ca 1040 "Duplicate entry for 1041 caps->capability)) 1042 continue; 1043 cpucap_ptrs[caps->capability] 1044 } 1045 } 1046 1047 static void __init init_cpucap_indirect_list( 1048 { 1049 init_cpucap_indirect_list_from_array( 1050 init_cpucap_indirect_list_from_array( 1051 } 1052 1053 static void __init setup_boot_cpu_capabilitie 1054 1055 static void init_32bit_cpu_features(struct cp 1056 { 1057 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, inf 1058 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, inf 1059 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, in 1060 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, in 1061 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, in 1062 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, in 1063 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, in 1064 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, in 1065 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, in 1066 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, in 1067 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, in 1068 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, in 1069 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, in 1070 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, in 1071 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, in 1072 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, inf 1073 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, inf 1074 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, inf 1075 init_cpu_ftr_reg(SYS_MVFR0_EL1, info- 1076 init_cpu_ftr_reg(SYS_MVFR1_EL1, info- 1077 init_cpu_ftr_reg(SYS_MVFR2_EL1, info- 1078 } 1079 1080 #ifdef CONFIG_ARM64_PSEUDO_NMI 1081 static bool enable_pseudo_nmi; 1082 1083 static int __init early_enable_pseudo_nmi(cha 1084 { 1085 return kstrtobool(p, &enable_pseudo_n 1086 } 1087 early_param("irqchip.gicv3_pseudo_nmi", early 1088 1089 static __init void detect_system_supports_pse 1090 { 1091 struct device_node *np; 1092 1093 if (!enable_pseudo_nmi) 1094 return; 1095 1096 /* 1097 * Detect broken MediaTek firmware th 1098 * restore GIC priorities. 1099 */ 1100 np = of_find_compatible_node(NULL, NU 1101 if (np && of_property_read_bool(np, " 1102 pr_info("Pseudo-NMI disabled 1103 enable_pseudo_nmi = false; 1104 } 1105 of_node_put(np); 1106 } 1107 #else /* CONFIG_ARM64_PSEUDO_NMI */ 1108 static inline void detect_system_supports_pse 1109 #endif 1110 1111 void __init init_cpu_features(struct cpuinfo_ 1112 { 1113 /* Before we start using the tables, 1114 sort_ftr_regs(); 1115 1116 init_cpu_ftr_reg(SYS_CTR_EL0, info->r 1117 init_cpu_ftr_reg(SYS_DCZID_EL0, info- 1118 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info 1119 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, 1120 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, 1121 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1 1122 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1 1123 init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1 1124 init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1 1125 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1 1126 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1 1127 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1 1128 init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1 1129 init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1 1130 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, 1131 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, 1132 init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, 1133 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, 1134 init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1 1135 init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1 1136 1137 if (id_aa64pfr0_32bit_el0(info->reg_i 1138 init_32bit_cpu_features(&info 1139 1140 if (IS_ENABLED(CONFIG_ARM64_SVE) && 1141 id_aa64pfr0_sve(read_sanitised_ft 1142 unsigned long cpacr = cpacr_s 1143 1144 vec_init_vq_map(ARM64_VEC_SVE 1145 1146 cpacr_restore(cpacr); 1147 } 1148 1149 if (IS_ENABLED(CONFIG_ARM64_SME) && 1150 id_aa64pfr1_sme(read_sanitised_ft 1151 unsigned long cpacr = cpacr_s 1152 1153 /* 1154 * We mask out SMPS since eve 1155 * supports priorities the ke 1156 * and we block access to the 1157 */ 1158 info->reg_smidr = read_cpuid( 1159 vec_init_vq_map(ARM64_VEC_SME 1160 1161 cpacr_restore(cpacr); 1162 } 1163 1164 if (id_aa64pfr1_mte(info->reg_id_aa64 1165 init_cpu_ftr_reg(SYS_GMID_EL1 1166 } 1167 1168 static void update_cpu_ftr_reg(struct arm64_f 1169 { 1170 const struct arm64_ftr_bits *ftrp; 1171 1172 for (ftrp = reg->ftr_bits; ftrp->widt 1173 s64 ftr_cur = arm64_ftr_value 1174 s64 ftr_new = arm64_ftr_value 1175 1176 if (ftr_cur == ftr_new) 1177 continue; 1178 /* Find a safe value */ 1179 ftr_new = arm64_ftr_safe_valu 1180 reg->sys_val = arm64_ftr_set_ 1181 } 1182 1183 } 1184 1185 static int check_update_ftr_reg(u32 sys_id, i 1186 { 1187 struct arm64_ftr_reg *regp = get_arm6 1188 1189 if (!regp) 1190 return 0; 1191 1192 update_cpu_ftr_reg(regp, val); 1193 if ((boot & regp->strict_mask) == (va 1194 return 0; 1195 pr_warn("SANITY CHECK: Unexpected var 1196 regp->name, boot, cpu 1197 return 1; 1198 } 1199 1200 static void relax_cpu_ftr_reg(u32 sys_id, int 1201 { 1202 const struct arm64_ftr_bits *ftrp; 1203 struct arm64_ftr_reg *regp = get_arm6 1204 1205 if (!regp) 1206 return; 1207 1208 for (ftrp = regp->ftr_bits; ftrp->wid 1209 if (ftrp->shift == field) { 1210 regp->strict_mask &= 1211 break; 1212 } 1213 } 1214 1215 /* Bogus field? */ 1216 WARN_ON(!ftrp->width); 1217 } 1218 1219 static void lazy_init_32bit_cpu_features(stru 1220 stru 1221 { 1222 static bool boot_cpu_32bit_regs_overr 1223 1224 if (!allow_mismatched_32bit_el0 || bo 1225 return; 1226 1227 if (id_aa64pfr0_32bit_el0(boot->reg_i 1228 return; 1229 1230 boot->aarch32 = info->aarch32; 1231 init_32bit_cpu_features(&boot->aarch3 1232 boot_cpu_32bit_regs_overridden = true 1233 } 1234 1235 static int update_32bit_cpu_features(int cpu, 1236 struct c 1237 { 1238 int taint = 0; 1239 u64 pfr0 = read_sanitised_ftr_reg(SYS 1240 1241 /* 1242 * If we don't have AArch32 at EL1, t 1243 * EL1-dependent register fields to a 1244 */ 1245 if (!id_aa64pfr0_32bit_el1(pfr0)) { 1246 relax_cpu_ftr_reg(SYS_ID_ISAR 1247 relax_cpu_ftr_reg(SYS_ID_PFR1 1248 relax_cpu_ftr_reg(SYS_ID_PFR1 1249 relax_cpu_ftr_reg(SYS_ID_PFR1 1250 relax_cpu_ftr_reg(SYS_ID_PFR1 1251 relax_cpu_ftr_reg(SYS_ID_PFR1 1252 } 1253 1254 taint |= check_update_ftr_reg(SYS_ID_ 1255 info->r 1256 taint |= check_update_ftr_reg(SYS_ID_ 1257 info->r 1258 taint |= check_update_ftr_reg(SYS_ID_ 1259 info->r 1260 taint |= check_update_ftr_reg(SYS_ID_ 1261 info->r 1262 taint |= check_update_ftr_reg(SYS_ID_ 1263 info->r 1264 taint |= check_update_ftr_reg(SYS_ID_ 1265 info->r 1266 taint |= check_update_ftr_reg(SYS_ID_ 1267 info->r 1268 taint |= check_update_ftr_reg(SYS_ID_ 1269 info->r 1270 taint |= check_update_ftr_reg(SYS_ID_ 1271 info->r 1272 1273 /* 1274 * Regardless of the value of the Aux 1275 * ACTLR formats could differ across 1276 * be trapped for virtualization anyw 1277 */ 1278 taint |= check_update_ftr_reg(SYS_ID_ 1279 info->r 1280 taint |= check_update_ftr_reg(SYS_ID_ 1281 info->r 1282 taint |= check_update_ftr_reg(SYS_ID_ 1283 info->r 1284 taint |= check_update_ftr_reg(SYS_ID_ 1285 info->r 1286 taint |= check_update_ftr_reg(SYS_ID_ 1287 info->r 1288 taint |= check_update_ftr_reg(SYS_ID_ 1289 info->r 1290 taint |= check_update_ftr_reg(SYS_ID_ 1291 info->r 1292 taint |= check_update_ftr_reg(SYS_ID_ 1293 info->r 1294 taint |= check_update_ftr_reg(SYS_ID_ 1295 info->r 1296 taint |= check_update_ftr_reg(SYS_MVF 1297 info->r 1298 taint |= check_update_ftr_reg(SYS_MVF 1299 info->r 1300 taint |= check_update_ftr_reg(SYS_MVF 1301 info->r 1302 1303 return taint; 1304 } 1305 1306 /* 1307 * Update system wide CPU feature registers w 1308 * non-boot CPU. Also performs SANITY checks 1309 * aren't any insane variations from that of 1310 */ 1311 void update_cpu_features(int cpu, 1312 struct cpuinfo_arm64 1313 struct cpuinfo_arm64 1314 { 1315 int taint = 0; 1316 1317 /* 1318 * The kernel can handle differing I- 1319 * caches should look identical. User 1320 * *minLine. 1321 */ 1322 taint |= check_update_ftr_reg(SYS_CTR 1323 info->r 1324 1325 /* 1326 * Userspace may perform DC ZVA instr 1327 * could result in too much or too li 1328 * process is preempted and migrated 1329 */ 1330 taint |= check_update_ftr_reg(SYS_DCZ 1331 info->r 1332 1333 /* If different, timekeeping will be 1334 taint |= check_update_ftr_reg(SYS_CNT 1335 info->r 1336 1337 /* 1338 * The kernel uses self-hosted debug 1339 * support identical debug features. 1340 * and BRPs to be identical. 1341 * ID_AA64DFR1 is currently RES0. 1342 */ 1343 taint |= check_update_ftr_reg(SYS_ID_ 1344 info->r 1345 taint |= check_update_ftr_reg(SYS_ID_ 1346 info->r 1347 /* 1348 * Even in big.LITTLE, processors sho 1349 * wise. 1350 */ 1351 taint |= check_update_ftr_reg(SYS_ID_ 1352 info->r 1353 taint |= check_update_ftr_reg(SYS_ID_ 1354 info->r 1355 taint |= check_update_ftr_reg(SYS_ID_ 1356 info->r 1357 taint |= check_update_ftr_reg(SYS_ID_ 1358 info->r 1359 1360 /* 1361 * Differing PARange support is fine 1362 * memory are mapped within the minim 1363 * Linux should not care about secure 1364 */ 1365 taint |= check_update_ftr_reg(SYS_ID_ 1366 info->r 1367 taint |= check_update_ftr_reg(SYS_ID_ 1368 info->r 1369 taint |= check_update_ftr_reg(SYS_ID_ 1370 info->r 1371 taint |= check_update_ftr_reg(SYS_ID_ 1372 info->r 1373 1374 taint |= check_update_ftr_reg(SYS_ID_ 1375 info->r 1376 taint |= check_update_ftr_reg(SYS_ID_ 1377 info->r 1378 taint |= check_update_ftr_reg(SYS_ID_ 1379 info->r 1380 1381 taint |= check_update_ftr_reg(SYS_ID_ 1382 info->r 1383 1384 taint |= check_update_ftr_reg(SYS_ID_ 1385 info->r 1386 1387 taint |= check_update_ftr_reg(SYS_ID_ 1388 info->r 1389 1390 /* Probe vector lengths */ 1391 if (IS_ENABLED(CONFIG_ARM64_SVE) && 1392 id_aa64pfr0_sve(read_sanitised_ft 1393 if (!system_capabilities_fina 1394 unsigned long cpacr = 1395 1396 vec_update_vq_map(ARM 1397 1398 cpacr_restore(cpacr); 1399 } 1400 } 1401 1402 if (IS_ENABLED(CONFIG_ARM64_SME) && 1403 id_aa64pfr1_sme(read_sanitised_ft 1404 unsigned long cpacr = cpacr_s 1405 1406 /* 1407 * We mask out SMPS since eve 1408 * supports priorities the ke 1409 * and we block access to the 1410 */ 1411 info->reg_smidr = read_cpuid( 1412 1413 /* Probe vector lengths */ 1414 if (!system_capabilities_fina 1415 vec_update_vq_map(ARM 1416 1417 cpacr_restore(cpacr); 1418 } 1419 1420 /* 1421 * The kernel uses the LDGM/STGM inst 1422 * they read/write depends on the GMI 1423 * value is the same on all CPUs. 1424 */ 1425 if (IS_ENABLED(CONFIG_ARM64_MTE) && 1426 id_aa64pfr1_mte(info->reg_id_aa64 1427 taint |= check_update_ftr_reg 1428 1429 } 1430 1431 /* 1432 * If we don't have AArch32 at all th 1433 * as the register values may be UNKN 1434 * using them for anything. 1435 * 1436 * This relies on a sanitised view of 1437 * (e.g. SYS_ID_AA64PFR0_EL1), so we 1438 */ 1439 if (id_aa64pfr0_32bit_el0(info->reg_i 1440 lazy_init_32bit_cpu_features( 1441 taint |= update_32bit_cpu_fea 1442 1443 } 1444 1445 /* 1446 * Mismatched CPU features are a reci 1447 * pretend to support them. 1448 */ 1449 if (taint) { 1450 pr_warn_once("Unsupported CPU 1451 add_taint(TAINT_CPU_OUT_OF_SP 1452 } 1453 } 1454 1455 u64 read_sanitised_ftr_reg(u32 id) 1456 { 1457 struct arm64_ftr_reg *regp = get_arm6 1458 1459 if (!regp) 1460 return 0; 1461 return regp->sys_val; 1462 } 1463 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg); 1464 1465 #define read_sysreg_case(r) \ 1466 case r: val = read_sysreg_s(r 1467 1468 /* 1469 * __read_sysreg_by_encoding() - Used by a ST 1470 * Read the system register on the current CP 1471 */ 1472 u64 __read_sysreg_by_encoding(u32 sys_id) 1473 { 1474 struct arm64_ftr_reg *regp; 1475 u64 val; 1476 1477 switch (sys_id) { 1478 read_sysreg_case(SYS_ID_PFR0_EL1); 1479 read_sysreg_case(SYS_ID_PFR1_EL1); 1480 read_sysreg_case(SYS_ID_PFR2_EL1); 1481 read_sysreg_case(SYS_ID_DFR0_EL1); 1482 read_sysreg_case(SYS_ID_DFR1_EL1); 1483 read_sysreg_case(SYS_ID_MMFR0_EL1); 1484 read_sysreg_case(SYS_ID_MMFR1_EL1); 1485 read_sysreg_case(SYS_ID_MMFR2_EL1); 1486 read_sysreg_case(SYS_ID_MMFR3_EL1); 1487 read_sysreg_case(SYS_ID_MMFR4_EL1); 1488 read_sysreg_case(SYS_ID_MMFR5_EL1); 1489 read_sysreg_case(SYS_ID_ISAR0_EL1); 1490 read_sysreg_case(SYS_ID_ISAR1_EL1); 1491 read_sysreg_case(SYS_ID_ISAR2_EL1); 1492 read_sysreg_case(SYS_ID_ISAR3_EL1); 1493 read_sysreg_case(SYS_ID_ISAR4_EL1); 1494 read_sysreg_case(SYS_ID_ISAR5_EL1); 1495 read_sysreg_case(SYS_ID_ISAR6_EL1); 1496 read_sysreg_case(SYS_MVFR0_EL1); 1497 read_sysreg_case(SYS_MVFR1_EL1); 1498 read_sysreg_case(SYS_MVFR2_EL1); 1499 1500 read_sysreg_case(SYS_ID_AA64PFR0_EL1) 1501 read_sysreg_case(SYS_ID_AA64PFR1_EL1) 1502 read_sysreg_case(SYS_ID_AA64PFR2_EL1) 1503 read_sysreg_case(SYS_ID_AA64ZFR0_EL1) 1504 read_sysreg_case(SYS_ID_AA64SMFR0_EL1 1505 read_sysreg_case(SYS_ID_AA64FPFR0_EL1 1506 read_sysreg_case(SYS_ID_AA64DFR0_EL1) 1507 read_sysreg_case(SYS_ID_AA64DFR1_EL1) 1508 read_sysreg_case(SYS_ID_AA64MMFR0_EL1 1509 read_sysreg_case(SYS_ID_AA64MMFR1_EL1 1510 read_sysreg_case(SYS_ID_AA64MMFR2_EL1 1511 read_sysreg_case(SYS_ID_AA64MMFR3_EL1 1512 read_sysreg_case(SYS_ID_AA64MMFR4_EL1 1513 read_sysreg_case(SYS_ID_AA64ISAR0_EL1 1514 read_sysreg_case(SYS_ID_AA64ISAR1_EL1 1515 read_sysreg_case(SYS_ID_AA64ISAR2_EL1 1516 read_sysreg_case(SYS_ID_AA64ISAR3_EL1 1517 1518 read_sysreg_case(SYS_CNTFRQ_EL0); 1519 read_sysreg_case(SYS_CTR_EL0); 1520 read_sysreg_case(SYS_DCZID_EL0); 1521 1522 default: 1523 BUG(); 1524 return 0; 1525 } 1526 1527 regp = get_arm64_ftr_reg(sys_id); 1528 if (regp) { 1529 val &= ~regp->override->mask; 1530 val |= (regp->override->val & 1531 } 1532 1533 return val; 1534 } 1535 1536 #include <linux/irqchip/arm-gic-v3.h> 1537 1538 static bool 1539 has_always(const struct arm64_cpu_capabilitie 1540 { 1541 return true; 1542 } 1543 1544 static bool 1545 feature_matches(u64 reg, const struct arm64_c 1546 { 1547 int val, min, max; 1548 u64 tmp; 1549 1550 val = cpuid_feature_extract_field_wid 1551 1552 1553 1554 tmp = entry->min_field_value; 1555 tmp <<= entry->field_pos; 1556 1557 min = cpuid_feature_extract_field_wid 1558 1559 1560 1561 tmp = entry->max_field_value; 1562 tmp <<= entry->field_pos; 1563 1564 max = cpuid_feature_extract_field_wid 1565 1566 1567 1568 return val >= min && val <= max; 1569 } 1570 1571 static u64 1572 read_scoped_sysreg(const struct arm64_cpu_cap 1573 { 1574 WARN_ON(scope == SCOPE_LOCAL_CPU && p 1575 if (scope == SCOPE_SYSTEM) 1576 return read_sanitised_ftr_reg 1577 else 1578 return __read_sysreg_by_encod 1579 } 1580 1581 static bool 1582 has_user_cpuid_feature(const struct arm64_cpu 1583 { 1584 int mask; 1585 struct arm64_ftr_reg *regp; 1586 u64 val = read_scoped_sysreg(entry, s 1587 1588 regp = get_arm64_ftr_reg(entry->sys_r 1589 if (!regp) 1590 return false; 1591 1592 mask = cpuid_feature_extract_unsigned 1593 1594 1595 if (!mask) 1596 return false; 1597 1598 return feature_matches(val, entry); 1599 } 1600 1601 static bool 1602 has_cpuid_feature(const struct arm64_cpu_capa 1603 { 1604 u64 val = read_scoped_sysreg(entry, s 1605 return feature_matches(val, entry); 1606 } 1607 1608 const struct cpumask *system_32bit_el0_cpumas 1609 { 1610 if (!system_supports_32bit_el0()) 1611 return cpu_none_mask; 1612 1613 if (static_branch_unlikely(&arm64_mis 1614 return cpu_32bit_el0_mask; 1615 1616 return cpu_possible_mask; 1617 } 1618 1619 static int __init parse_32bit_el0_param(char 1620 { 1621 allow_mismatched_32bit_el0 = true; 1622 return 0; 1623 } 1624 early_param("allow_mismatched_32bit_el0", par 1625 1626 static ssize_t aarch32_el0_show(struct device 1627 struct device 1628 { 1629 const struct cpumask *mask = system_3 1630 1631 return sysfs_emit(buf, "%*pbl\n", cpu 1632 } 1633 static const DEVICE_ATTR_RO(aarch32_el0); 1634 1635 static int __init aarch32_el0_sysfs_init(void 1636 { 1637 struct device *dev_root; 1638 int ret = 0; 1639 1640 if (!allow_mismatched_32bit_el0) 1641 return 0; 1642 1643 dev_root = bus_get_dev_root(&cpu_subs 1644 if (dev_root) { 1645 ret = device_create_file(dev_ 1646 put_device(dev_root); 1647 } 1648 return ret; 1649 } 1650 device_initcall(aarch32_el0_sysfs_init); 1651 1652 static bool has_32bit_el0(const struct arm64_ 1653 { 1654 if (!has_cpuid_feature(entry, scope)) 1655 return allow_mismatched_32bit 1656 1657 if (scope == SCOPE_SYSTEM) 1658 pr_info("detected: 32-bit EL0 1659 1660 return true; 1661 } 1662 1663 static bool has_useable_gicv3_cpuif(const str 1664 { 1665 bool has_sre; 1666 1667 if (!has_cpuid_feature(entry, scope)) 1668 return false; 1669 1670 has_sre = gic_enable_sre(); 1671 if (!has_sre) 1672 pr_warn_once("%s present but 1673 entry->desc); 1674 1675 return has_sre; 1676 } 1677 1678 static bool has_cache_idc(const struct arm64_ 1679 int scope) 1680 { 1681 u64 ctr; 1682 1683 if (scope == SCOPE_SYSTEM) 1684 ctr = arm64_ftr_reg_ctrel0.sy 1685 else 1686 ctr = read_cpuid_effective_ca 1687 1688 return ctr & BIT(CTR_EL0_IDC_SHIFT); 1689 } 1690 1691 static void cpu_emulate_effective_ctr(const s 1692 { 1693 /* 1694 * If the CPU exposes raw CTR_EL0.IDC 1695 * CTR_EL0.IDC = 1 (from CLIDR values 1696 * to the CTR_EL0 on this CPU and emu 1697 * value. 1698 */ 1699 if (!(read_cpuid_cachetype() & BIT(CT 1700 sysreg_clear_set(sctlr_el1, S 1701 } 1702 1703 static bool has_cache_dic(const struct arm64_ 1704 int scope) 1705 { 1706 u64 ctr; 1707 1708 if (scope == SCOPE_SYSTEM) 1709 ctr = arm64_ftr_reg_ctrel0.sy 1710 else 1711 ctr = read_cpuid_cachetype(); 1712 1713 return ctr & BIT(CTR_EL0_DIC_SHIFT); 1714 } 1715 1716 static bool __maybe_unused 1717 has_useable_cnp(const struct arm64_cpu_capabi 1718 { 1719 /* 1720 * Kdump isn't guaranteed to power-of 1721 * may share TLB entries with a CPU s 1722 * kernel. 1723 */ 1724 if (is_kdump_kernel()) 1725 return false; 1726 1727 if (cpus_have_cap(ARM64_WORKAROUND_NV 1728 return false; 1729 1730 return has_cpuid_feature(entry, scope 1731 } 1732 1733 static bool __meltdown_safe = true; 1734 static int __kpti_forced; /* 0: not forced, > 1735 1736 static bool unmap_kernel_at_el0(const struct 1737 int scope) 1738 { 1739 /* List of CPUs that are not vulnerab 1740 static const struct midr_range kpti_s 1741 MIDR_ALL_VERSIONS(MIDR_CAVIUM 1742 MIDR_ALL_VERSIONS(MIDR_BRCM_V 1743 MIDR_ALL_VERSIONS(MIDR_BRAHMA 1744 MIDR_ALL_VERSIONS(MIDR_CORTEX 1745 MIDR_ALL_VERSIONS(MIDR_CORTEX 1746 MIDR_ALL_VERSIONS(MIDR_CORTEX 1747 MIDR_ALL_VERSIONS(MIDR_CORTEX 1748 MIDR_ALL_VERSIONS(MIDR_CORTEX 1749 MIDR_ALL_VERSIONS(MIDR_CORTEX 1750 MIDR_ALL_VERSIONS(MIDR_HISI_T 1751 MIDR_ALL_VERSIONS(MIDR_NVIDIA 1752 MIDR_ALL_VERSIONS(MIDR_QCOM_K 1753 MIDR_ALL_VERSIONS(MIDR_QCOM_K 1754 MIDR_ALL_VERSIONS(MIDR_QCOM_K 1755 MIDR_ALL_VERSIONS(MIDR_QCOM_K 1756 { /* sentinel */ } 1757 }; 1758 char const *str = "kpti command line 1759 bool meltdown_safe; 1760 1761 meltdown_safe = is_midr_in_range_list 1762 1763 /* Defer to CPU feature registers */ 1764 if (has_cpuid_feature(entry, scope)) 1765 meltdown_safe = true; 1766 1767 if (!meltdown_safe) 1768 __meltdown_safe = false; 1769 1770 /* 1771 * For reasons that aren't entirely c 1772 * ThunderX leads to apparent I-cache 1773 * ends as well as you might imagine. 1774 * on the cpus_have_*cap() helpers he 1775 * because cpucap detection order may 1776 * affected CPUs are always in a homo 1777 * safe to rely on this_cpu_has_cap() 1778 */ 1779 if (this_cpu_has_cap(ARM64_WORKAROUND 1780 str = "ARM64_WORKAROUND_CAVIU 1781 __kpti_forced = -1; 1782 } 1783 1784 /* Useful for KASLR robustness */ 1785 if (kaslr_enabled() && kaslr_requires 1786 if (!__kpti_forced) { 1787 str = "KASLR"; 1788 __kpti_forced = 1; 1789 } 1790 } 1791 1792 if (cpu_mitigations_off() && !__kpti_ 1793 str = "mitigations=off"; 1794 __kpti_forced = -1; 1795 } 1796 1797 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_A 1798 pr_info_once("kernel page tab 1799 return false; 1800 } 1801 1802 /* Forced? */ 1803 if (__kpti_forced) { 1804 pr_info_once("kernel page tab 1805 __kpti_forced > 1806 return __kpti_forced > 0; 1807 } 1808 1809 return !meltdown_safe; 1810 } 1811 1812 static bool has_nv1(const struct arm64_cpu_ca 1813 { 1814 /* 1815 * Although the Apple M2 family appea 1816 * PTW barfs on the nVHE EL2 S1 page 1817 * that it doesn't support NV1 at all 1818 */ 1819 static const struct midr_range nv1_ni 1820 MIDR_ALL_VERSIONS(MIDR_APPLE_ 1821 MIDR_ALL_VERSIONS(MIDR_APPLE_ 1822 MIDR_ALL_VERSIONS(MIDR_APPLE_ 1823 MIDR_ALL_VERSIONS(MIDR_APPLE_ 1824 MIDR_ALL_VERSIONS(MIDR_APPLE_ 1825 MIDR_ALL_VERSIONS(MIDR_APPLE_ 1826 {} 1827 }; 1828 1829 return (__system_matches_cap(ARM64_HA 1830 !(has_cpuid_feature(entry, sc 1831 is_midr_in_range_list(read_ 1832 } 1833 1834 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && d 1835 static bool has_lpa2_at_stage1(u64 mmfr0) 1836 { 1837 unsigned int tgran; 1838 1839 tgran = cpuid_feature_extract_unsigne 1840 ID_AA 1841 return tgran == ID_AA64MMFR0_EL1_TGRA 1842 } 1843 1844 static bool has_lpa2_at_stage2(u64 mmfr0) 1845 { 1846 unsigned int tgran; 1847 1848 tgran = cpuid_feature_extract_unsigne 1849 ID_AA 1850 return tgran == ID_AA64MMFR0_EL1_TGRA 1851 } 1852 1853 static bool has_lpa2(const struct arm64_cpu_c 1854 { 1855 u64 mmfr0; 1856 1857 mmfr0 = read_sanitised_ftr_reg(SYS_ID 1858 return has_lpa2_at_stage1(mmfr0) && h 1859 } 1860 #else 1861 static bool has_lpa2(const struct arm64_cpu_c 1862 { 1863 return false; 1864 } 1865 #endif 1866 1867 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 1868 #define KPTI_NG_TEMP_VA (-(1UL << PMD 1869 1870 extern 1871 void create_kpti_ng_temp_pgd(pgd_t *pgdir, ph 1872 phys_addr_t size 1873 phys_addr_t (*pg 1874 1875 static phys_addr_t __initdata kpti_ng_temp_al 1876 1877 static phys_addr_t __init kpti_ng_pgd_alloc(i 1878 { 1879 kpti_ng_temp_alloc -= PAGE_SIZE; 1880 return kpti_ng_temp_alloc; 1881 } 1882 1883 static int __init __kpti_install_ng_mappings( 1884 { 1885 typedef void (kpti_remap_fn)(int, int 1886 extern kpti_remap_fn idmap_kpti_insta 1887 kpti_remap_fn *remap_fn; 1888 1889 int cpu = smp_processor_id(); 1890 int levels = CONFIG_PGTABLE_LEVELS; 1891 int order = order_base_2(levels); 1892 u64 kpti_ng_temp_pgd_pa = 0; 1893 pgd_t *kpti_ng_temp_pgd; 1894 u64 alloc = 0; 1895 1896 if (levels == 5 && !pgtable_l5_enable 1897 levels = 4; 1898 else if (levels == 4 && !pgtable_l4_e 1899 levels = 3; 1900 1901 remap_fn = (void *)__pa_symbol(idmap_ 1902 1903 if (!cpu) { 1904 alloc = __get_free_pages(GFP_ 1905 kpti_ng_temp_pgd = (pgd_t *)( 1906 kpti_ng_temp_alloc = kpti_ng_ 1907 1908 // 1909 // Create a minimal page tabl 1910 // the swapper page tables te 1911 // 1912 // The physical pages are lai 1913 // 1914 // +--------+-/-------+-/---- 1915 // : PTE[] : | PMD[] : | PUD 1916 // +--------+-\-------+-\---- 1917 // ^ 1918 // The first page is mapped i 1919 // aligned virtual address, s 1920 // level entries while the ma 1921 // covers the PTE[] page itse 1922 // to be used as a ad-hoc fix 1923 // 1924 create_kpti_ng_temp_pgd(kpti_ 1925 KPTI_ 1926 kpti_ 1927 } 1928 1929 cpu_install_idmap(); 1930 remap_fn(cpu, num_online_cpus(), kpti 1931 cpu_uninstall_idmap(); 1932 1933 if (!cpu) { 1934 free_pages(alloc, order); 1935 arm64_use_ng_mappings = true; 1936 } 1937 1938 return 0; 1939 } 1940 1941 static void __init kpti_install_ng_mappings(v 1942 { 1943 /* Check whether KPTI is going to be 1944 if (!arm64_kernel_unmapped_at_el0()) 1945 return; 1946 1947 /* 1948 * We don't need to rewrite the page- 1949 * it already or we have KASLR enable 1950 * created any global mappings at all 1951 */ 1952 if (arm64_use_ng_mappings) 1953 return; 1954 1955 stop_machine(__kpti_install_ng_mappin 1956 } 1957 1958 #else 1959 static inline void kpti_install_ng_mappings(v 1960 { 1961 } 1962 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */ 1963 1964 static void cpu_enable_kpti(struct arm64_cpu_ 1965 { 1966 if (__this_cpu_read(this_cpu_vector) 1967 const char *v = arm64_get_bp_ 1968 1969 __this_cpu_write(this_cpu_vec 1970 } 1971 1972 } 1973 1974 static int __init parse_kpti(char *str) 1975 { 1976 bool enabled; 1977 int ret = kstrtobool(str, &enabled); 1978 1979 if (ret) 1980 return ret; 1981 1982 __kpti_forced = enabled ? 1 : -1; 1983 return 0; 1984 } 1985 early_param("kpti", parse_kpti); 1986 1987 #ifdef CONFIG_ARM64_HW_AFDBM 1988 static struct cpumask dbm_cpus __read_mostly; 1989 1990 static inline void __cpu_enable_hw_dbm(void) 1991 { 1992 u64 tcr = read_sysreg(tcr_el1) | TCR_ 1993 1994 write_sysreg(tcr, tcr_el1); 1995 isb(); 1996 local_flush_tlb_all(); 1997 } 1998 1999 static bool cpu_has_broken_dbm(void) 2000 { 2001 /* List of CPUs which have broken DBM 2002 static const struct midr_range cpus[] 2003 #ifdef CONFIG_ARM64_ERRATUM_1024718 2004 MIDR_ALL_VERSIONS(MIDR_CORTEX 2005 /* Kryo4xx Silver (rdpe => r1 2006 MIDR_REV(MIDR_QCOM_KRYO_4XX_S 2007 #endif 2008 #ifdef CONFIG_ARM64_ERRATUM_2051678 2009 MIDR_REV_RANGE(MIDR_CORTEX_A5 2010 #endif 2011 {}, 2012 }; 2013 2014 return is_midr_in_range_list(read_cpu 2015 } 2016 2017 static bool cpu_can_use_dbm(const struct arm6 2018 { 2019 return has_cpuid_feature(cap, SCOPE_L 2020 !cpu_has_broken_dbm(); 2021 } 2022 2023 static void cpu_enable_hw_dbm(struct arm64_cp 2024 { 2025 if (cpu_can_use_dbm(cap)) { 2026 __cpu_enable_hw_dbm(); 2027 cpumask_set_cpu(smp_processor 2028 } 2029 } 2030 2031 static bool has_hw_dbm(const struct arm64_cpu 2032 int __unused) 2033 { 2034 /* 2035 * DBM is a non-conflicting feature. 2036 * run a mix of CPUs with and without 2037 * unconditionally enable the capabil 2038 * to use the feature. We only enable 2039 * CPU, if it is supported. 2040 */ 2041 2042 return true; 2043 } 2044 2045 #endif 2046 2047 #ifdef CONFIG_ARM64_AMU_EXTN 2048 2049 /* 2050 * The "amu_cpus" cpumask only signals that t 2051 * flagged CPUs supports the Activity Monitor 2052 * information regarding all the events that 2053 * set in the cpumask, the user of this featu 2054 * of the 4 fixed counters for that CPU. But 2055 * counters are enabled or access to these co 2056 * executed at higher exception levels (firmw 2057 */ 2058 static struct cpumask amu_cpus __read_mostly; 2059 2060 bool cpu_has_amu_feat(int cpu) 2061 { 2062 return cpumask_test_cpu(cpu, &amu_cpu 2063 } 2064 2065 int get_cpu_with_amu_feat(void) 2066 { 2067 return cpumask_any(&amu_cpus); 2068 } 2069 2070 static void cpu_amu_enable(struct arm64_cpu_c 2071 { 2072 if (has_cpuid_feature(cap, SCOPE_LOCA 2073 cpumask_set_cpu(smp_processor 2074 2075 /* 0 reference values signal 2076 if (!this_cpu_has_cap(ARM64_W 2077 update_freq_counters_ 2078 } 2079 } 2080 2081 static bool has_amu(const struct arm64_cpu_ca 2082 int __unused) 2083 { 2084 /* 2085 * The AMU extension is a non-conflic 2086 * safely run a mix of CPUs with and 2087 * activity monitors extension. There 2088 * the capability to allow any late C 2089 * 2090 * With this feature unconditionally 2091 * function will be called for all CP 2092 * including secondary and hotplugged 2093 * present on that respective CPU. Th 2094 * print a detection message. 2095 */ 2096 2097 return true; 2098 } 2099 #else 2100 int get_cpu_with_amu_feat(void) 2101 { 2102 return nr_cpu_ids; 2103 } 2104 #endif 2105 2106 static bool runs_at_el2(const struct arm64_cp 2107 { 2108 return is_kernel_in_hyp_mode(); 2109 } 2110 2111 static void cpu_copy_el2regs(const struct arm 2112 { 2113 /* 2114 * Copy register values that aren't r 2115 * 2116 * Before code patching, we only set 2117 * this value to tpidr_el2 before we 2118 * that, freshly-onlined CPUs will se 2119 * do anything here. 2120 */ 2121 if (!alternative_is_applied(ARM64_HAS 2122 write_sysreg(read_sysreg(tpid 2123 } 2124 2125 static bool has_nested_virt_support(const str 2126 int scope 2127 { 2128 if (kvm_get_mode() != KVM_MODE_NV) 2129 return false; 2130 2131 if (!has_cpuid_feature(cap, scope)) { 2132 pr_warn("unavailable: %s\n", 2133 return false; 2134 } 2135 2136 return true; 2137 } 2138 2139 static bool hvhe_possible(const struct arm64_ 2140 int __unused) 2141 { 2142 return arm64_test_sw_feature_override 2143 } 2144 2145 #ifdef CONFIG_ARM64_PAN 2146 static void cpu_enable_pan(const struct arm64 2147 { 2148 /* 2149 * We modify PSTATE. This won't work 2150 * is discarded once we return from t 2151 */ 2152 WARN_ON_ONCE(in_interrupt()); 2153 2154 sysreg_clear_set(sctlr_el1, SCTLR_EL1 2155 set_pstate_pan(1); 2156 } 2157 #endif /* CONFIG_ARM64_PAN */ 2158 2159 #ifdef CONFIG_ARM64_RAS_EXTN 2160 static void cpu_clear_disr(const struct arm64 2161 { 2162 /* Firmware may have left a deferred 2163 write_sysreg_s(0, SYS_DISR_EL1); 2164 } 2165 #endif /* CONFIG_ARM64_RAS_EXTN */ 2166 2167 #ifdef CONFIG_ARM64_PTR_AUTH 2168 static bool has_address_auth_cpucap(const str 2169 { 2170 int boot_val, sec_val; 2171 2172 /* We don't expect to be called with 2173 WARN_ON(scope == SCOPE_SYSTEM); 2174 /* 2175 * The ptr-auth feature levels are no 2176 * levels. Hence we must match ptr-au 2177 * CPUs with that of the boot CPU. Th 2178 * from the sanitised register wherea 2179 * the secondary CPUs. 2180 * The sanitised feature state is gua 2181 * boot CPU as a mismatched secondary 2182 * a chance to update the state, with 2183 */ 2184 boot_val = cpuid_feature_extract_fiel 2185 2186 if (scope & SCOPE_BOOT_CPU) 2187 return boot_val >= entry->min 2188 /* Now check for the secondary CPUs w 2189 sec_val = cpuid_feature_extract_field 2190 2191 return (sec_val >= entry->min_field_v 2192 } 2193 2194 static bool has_address_auth_metacap(const st 2195 int scop 2196 { 2197 bool api = has_address_auth_cpucap(cp 2198 bool apa = has_address_auth_cpucap(cp 2199 bool apa3 = has_address_auth_cpucap(c 2200 2201 return apa || apa3 || api; 2202 } 2203 2204 static bool has_generic_auth(const struct arm 2205 int __unused) 2206 { 2207 bool gpi = __system_matches_cap(ARM64 2208 bool gpa = __system_matches_cap(ARM64 2209 bool gpa3 = __system_matches_cap(ARM6 2210 2211 return gpa || gpa3 || gpi; 2212 } 2213 #endif /* CONFIG_ARM64_PTR_AUTH */ 2214 2215 #ifdef CONFIG_ARM64_E0PD 2216 static void cpu_enable_e0pd(struct arm64_cpu_ 2217 { 2218 if (this_cpu_has_cap(ARM64_HAS_E0PD)) 2219 sysreg_clear_set(tcr_el1, 0, 2220 } 2221 #endif /* CONFIG_ARM64_E0PD */ 2222 2223 #ifdef CONFIG_ARM64_PSEUDO_NMI 2224 static bool can_use_gic_priorities(const stru 2225 int scope) 2226 { 2227 /* 2228 * ARM64_HAS_GIC_CPUIF_SYSREGS has a 2229 * feature, so will be detected earli 2230 */ 2231 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKI 2232 if (!cpus_have_cap(ARM64_HAS_GIC_CPUI 2233 return false; 2234 2235 return enable_pseudo_nmi; 2236 } 2237 2238 static bool has_gic_prio_relaxed_sync(const s 2239 int sco 2240 { 2241 /* 2242 * If we're not using priority maskin 2243 * and there's no need to relax synch 2244 * ICC_CTLR_EL1 might not be accessib 2245 * that. 2246 * 2247 * ARM64_HAS_GIC_PRIO_MASKING has a l 2248 * feature, so will be detected earli 2249 */ 2250 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAX 2251 if (!cpus_have_cap(ARM64_HAS_GIC_PRIO 2252 return false; 2253 2254 /* 2255 * When Priority Mask Hint Enable (PM 2256 * hint for interrupt distribution, a 2257 * unmasking IRQs via PMR, and we can 2258 * 2259 * Linux itself doesn't use 1:N distr 2260 * set PMHE. The only reason to have 2261 * (and we can't change it). 2262 */ 2263 return (gic_read_ctlr() & ICC_CTLR_EL 2264 } 2265 #endif 2266 2267 #ifdef CONFIG_ARM64_BTI 2268 static void bti_enable(const struct arm64_cpu 2269 { 2270 /* 2271 * Use of X16/X17 for tail-calls and 2272 * function entry points using BR is 2273 * marking binaries with GNU_PROPERTY 2274 * So, be strict and forbid other BRs 2275 * jump onto a PACIxSP instruction: 2276 */ 2277 sysreg_clear_set(sctlr_el1, 0, SCTLR_ 2278 isb(); 2279 } 2280 #endif /* CONFIG_ARM64_BTI */ 2281 2282 #ifdef CONFIG_ARM64_MTE 2283 static void cpu_enable_mte(struct arm64_cpu_c 2284 { 2285 sysreg_clear_set(sctlr_el1, 0, SCTLR_ 2286 2287 mte_cpu_setup(); 2288 2289 /* 2290 * Clear the tags in the zero page. T 2291 * linear map which has the Tagged at 2292 */ 2293 if (try_page_mte_tagging(ZERO_PAGE(0) 2294 mte_clear_page_tags(lm_alias( 2295 set_page_mte_tagged(ZERO_PAGE 2296 } 2297 2298 kasan_init_hw_tags_cpu(); 2299 } 2300 #endif /* CONFIG_ARM64_MTE */ 2301 2302 static void user_feature_fixup(void) 2303 { 2304 if (cpus_have_cap(ARM64_WORKAROUND_26 2305 struct arm64_ftr_reg *regp; 2306 2307 regp = get_arm64_ftr_reg(SYS_ 2308 if (regp) 2309 regp->user_mask &= ~I 2310 } 2311 2312 if (cpus_have_cap(ARM64_WORKAROUND_SP 2313 struct arm64_ftr_reg *regp; 2314 2315 regp = get_arm64_ftr_reg(SYS_ 2316 if (regp) 2317 regp->user_mask &= ~I 2318 } 2319 } 2320 2321 static void elf_hwcap_fixup(void) 2322 { 2323 #ifdef CONFIG_COMPAT 2324 if (cpus_have_cap(ARM64_WORKAROUND_17 2325 compat_elf_hwcap2 &= ~COMPAT_ 2326 #endif /* CONFIG_COMPAT */ 2327 } 2328 2329 #ifdef CONFIG_KVM 2330 static bool is_kvm_protected_mode(const struc 2331 { 2332 return kvm_get_mode() == KVM_MODE_PRO 2333 } 2334 #endif /* CONFIG_KVM */ 2335 2336 static void cpu_trap_el0_impdef(const struct 2337 { 2338 sysreg_clear_set(sctlr_el1, 0, SCTLR_ 2339 } 2340 2341 static void cpu_enable_dit(const struct arm64 2342 { 2343 set_pstate_dit(1); 2344 } 2345 2346 static void cpu_enable_mops(const struct arm6 2347 { 2348 sysreg_clear_set(sctlr_el1, 0, SCTLR_ 2349 } 2350 2351 /* Internal helper functions to match cpu cap 2352 static bool 2353 cpucap_late_cpu_optional(const struct arm64_c 2354 { 2355 return !!(cap->type & ARM64_CPUCAP_OP 2356 } 2357 2358 static bool 2359 cpucap_late_cpu_permitted(const struct arm64_ 2360 { 2361 return !!(cap->type & ARM64_CPUCAP_PE 2362 } 2363 2364 static bool 2365 cpucap_panic_on_conflict(const struct arm64_c 2366 { 2367 return !!(cap->type & ARM64_CPUCAP_PA 2368 } 2369 2370 static const struct arm64_cpu_capabilities ar 2371 { 2372 .capability = ARM64_ALWAYS_BO 2373 .type = ARM64_CPUCAP_BOOT_CPU 2374 .matches = has_always, 2375 }, 2376 { 2377 .capability = ARM64_ALWAYS_SY 2378 .type = ARM64_CPUCAP_SYSTEM_F 2379 .matches = has_always, 2380 }, 2381 { 2382 .desc = "GIC system register 2383 .capability = ARM64_HAS_GIC_C 2384 .type = ARM64_CPUCAP_STRICT_B 2385 .matches = has_useable_gicv3_ 2386 ARM64_CPUID_FIELDS(ID_AA64PFR 2387 }, 2388 { 2389 .desc = "Enhanced Counter Vir 2390 .capability = ARM64_HAS_ECV, 2391 .type = ARM64_CPUCAP_SYSTEM_F 2392 .matches = has_cpuid_feature, 2393 ARM64_CPUID_FIELDS(ID_AA64MMF 2394 }, 2395 { 2396 .desc = "Enhanced Counter Vir 2397 .capability = ARM64_HAS_ECV_C 2398 .type = ARM64_CPUCAP_SYSTEM_F 2399 .matches = has_cpuid_feature, 2400 ARM64_CPUID_FIELDS(ID_AA64MMF 2401 }, 2402 #ifdef CONFIG_ARM64_PAN 2403 { 2404 .desc = "Privileged Access Ne 2405 .capability = ARM64_HAS_PAN, 2406 .type = ARM64_CPUCAP_SYSTEM_F 2407 .matches = has_cpuid_feature, 2408 .cpu_enable = cpu_enable_pan, 2409 ARM64_CPUID_FIELDS(ID_AA64MMF 2410 }, 2411 #endif /* CONFIG_ARM64_PAN */ 2412 #ifdef CONFIG_ARM64_EPAN 2413 { 2414 .desc = "Enhanced Privileged 2415 .capability = ARM64_HAS_EPAN, 2416 .type = ARM64_CPUCAP_SYSTEM_F 2417 .matches = has_cpuid_feature, 2418 ARM64_CPUID_FIELDS(ID_AA64MMF 2419 }, 2420 #endif /* CONFIG_ARM64_EPAN */ 2421 #ifdef CONFIG_ARM64_LSE_ATOMICS 2422 { 2423 .desc = "LSE atomic instructi 2424 .capability = ARM64_HAS_LSE_A 2425 .type = ARM64_CPUCAP_SYSTEM_F 2426 .matches = has_cpuid_feature, 2427 ARM64_CPUID_FIELDS(ID_AA64ISA 2428 }, 2429 #endif /* CONFIG_ARM64_LSE_ATOMICS */ 2430 { 2431 .desc = "Virtualization Host 2432 .capability = ARM64_HAS_VIRT_ 2433 .type = ARM64_CPUCAP_STRICT_B 2434 .matches = runs_at_el2, 2435 .cpu_enable = cpu_copy_el2reg 2436 }, 2437 { 2438 .desc = "Nested Virtualizatio 2439 .capability = ARM64_HAS_NESTE 2440 .type = ARM64_CPUCAP_SYSTEM_F 2441 .matches = has_nested_virt_su 2442 ARM64_CPUID_FIELDS(ID_AA64MMF 2443 }, 2444 { 2445 .capability = ARM64_HAS_32BIT 2446 .type = ARM64_CPUCAP_SYSTEM_F 2447 .matches = has_32bit_el0, 2448 ARM64_CPUID_FIELDS(ID_AA64PFR 2449 }, 2450 #ifdef CONFIG_KVM 2451 { 2452 .desc = "32-bit EL1 Support", 2453 .capability = ARM64_HAS_32BIT 2454 .type = ARM64_CPUCAP_SYSTEM_F 2455 .matches = has_cpuid_feature, 2456 ARM64_CPUID_FIELDS(ID_AA64PFR 2457 }, 2458 { 2459 .desc = "Protected KVM", 2460 .capability = ARM64_KVM_PROTE 2461 .type = ARM64_CPUCAP_SYSTEM_F 2462 .matches = is_kvm_protected_m 2463 }, 2464 { 2465 .desc = "HCRX_EL2 register", 2466 .capability = ARM64_HAS_HCX, 2467 .type = ARM64_CPUCAP_STRICT_B 2468 .matches = has_cpuid_feature, 2469 ARM64_CPUID_FIELDS(ID_AA64MMF 2470 }, 2471 #endif 2472 { 2473 .desc = "Kernel page table is 2474 .capability = ARM64_UNMAP_KER 2475 .type = ARM64_CPUCAP_BOOT_RES 2476 .cpu_enable = cpu_enable_kpti 2477 .matches = unmap_kernel_at_el 2478 /* 2479 * The ID feature fields belo 2480 * the CPU doesn't need KPTI. 2481 * more details. 2482 */ 2483 ARM64_CPUID_FIELDS(ID_AA64PFR 2484 }, 2485 { 2486 .capability = ARM64_HAS_FPSIM 2487 .type = ARM64_CPUCAP_SYSTEM_F 2488 .matches = has_cpuid_feature, 2489 .cpu_enable = cpu_enable_fpsi 2490 ARM64_CPUID_FIELDS(ID_AA64PFR 2491 }, 2492 #ifdef CONFIG_ARM64_PMEM 2493 { 2494 .desc = "Data cache clean to 2495 .capability = ARM64_HAS_DCPOP 2496 .type = ARM64_CPUCAP_SYSTEM_F 2497 .matches = has_cpuid_feature, 2498 ARM64_CPUID_FIELDS(ID_AA64ISA 2499 }, 2500 { 2501 .desc = "Data cache clean to 2502 .capability = ARM64_HAS_DCPOD 2503 .type = ARM64_CPUCAP_SYSTEM_F 2504 .matches = has_cpuid_feature, 2505 ARM64_CPUID_FIELDS(ID_AA64ISA 2506 }, 2507 #endif 2508 #ifdef CONFIG_ARM64_SVE 2509 { 2510 .desc = "Scalable Vector Exte 2511 .type = ARM64_CPUCAP_SYSTEM_F 2512 .capability = ARM64_SVE, 2513 .cpu_enable = cpu_enable_sve, 2514 .matches = has_cpuid_feature, 2515 ARM64_CPUID_FIELDS(ID_AA64PFR 2516 }, 2517 #endif /* CONFIG_ARM64_SVE */ 2518 #ifdef CONFIG_ARM64_RAS_EXTN 2519 { 2520 .desc = "RAS Extension Suppor 2521 .capability = ARM64_HAS_RAS_E 2522 .type = ARM64_CPUCAP_SYSTEM_F 2523 .matches = has_cpuid_feature, 2524 .cpu_enable = cpu_clear_disr, 2525 ARM64_CPUID_FIELDS(ID_AA64PFR 2526 }, 2527 #endif /* CONFIG_ARM64_RAS_EXTN */ 2528 #ifdef CONFIG_ARM64_AMU_EXTN 2529 { 2530 .desc = "Activity Monitors Un 2531 .capability = ARM64_HAS_AMU_E 2532 .type = ARM64_CPUCAP_WEAK_LOC 2533 .matches = has_amu, 2534 .cpu_enable = cpu_amu_enable, 2535 .cpus = &amu_cpus, 2536 ARM64_CPUID_FIELDS(ID_AA64PFR 2537 }, 2538 #endif /* CONFIG_ARM64_AMU_EXTN */ 2539 { 2540 .desc = "Data cache clean to 2541 .capability = ARM64_HAS_CACHE 2542 .type = ARM64_CPUCAP_SYSTEM_F 2543 .matches = has_cache_idc, 2544 .cpu_enable = cpu_emulate_eff 2545 }, 2546 { 2547 .desc = "Instruction cache in 2548 .capability = ARM64_HAS_CACHE 2549 .type = ARM64_CPUCAP_SYSTEM_F 2550 .matches = has_cache_dic, 2551 }, 2552 { 2553 .desc = "Stage-2 Force Write- 2554 .type = ARM64_CPUCAP_SYSTEM_F 2555 .capability = ARM64_HAS_STAGE 2556 .matches = has_cpuid_feature, 2557 ARM64_CPUID_FIELDS(ID_AA64MMF 2558 }, 2559 { 2560 .desc = "ARMv8.4 Translation 2561 .type = ARM64_CPUCAP_SYSTEM_F 2562 .capability = ARM64_HAS_ARMv8 2563 .matches = has_cpuid_feature, 2564 ARM64_CPUID_FIELDS(ID_AA64MMF 2565 }, 2566 { 2567 .desc = "TLB range maintenanc 2568 .capability = ARM64_HAS_TLB_R 2569 .type = ARM64_CPUCAP_SYSTEM_F 2570 .matches = has_cpuid_feature, 2571 ARM64_CPUID_FIELDS(ID_AA64ISA 2572 }, 2573 #ifdef CONFIG_ARM64_HW_AFDBM 2574 { 2575 .desc = "Hardware dirty bit m 2576 .type = ARM64_CPUCAP_WEAK_LOC 2577 .capability = ARM64_HW_DBM, 2578 .matches = has_hw_dbm, 2579 .cpu_enable = cpu_enable_hw_d 2580 .cpus = &dbm_cpus, 2581 ARM64_CPUID_FIELDS(ID_AA64MMF 2582 }, 2583 #endif 2584 { 2585 .desc = "CRC32 instructions", 2586 .capability = ARM64_HAS_CRC32 2587 .type = ARM64_CPUCAP_SYSTEM_F 2588 .matches = has_cpuid_feature, 2589 ARM64_CPUID_FIELDS(ID_AA64ISA 2590 }, 2591 { 2592 .desc = "Speculative Store By 2593 .capability = ARM64_SSBS, 2594 .type = ARM64_CPUCAP_SYSTEM_F 2595 .matches = has_cpuid_feature, 2596 ARM64_CPUID_FIELDS(ID_AA64PFR 2597 }, 2598 #ifdef CONFIG_ARM64_CNP 2599 { 2600 .desc = "Common not Private t 2601 .capability = ARM64_HAS_CNP, 2602 .type = ARM64_CPUCAP_SYSTEM_F 2603 .matches = has_useable_cnp, 2604 .cpu_enable = cpu_enable_cnp, 2605 ARM64_CPUID_FIELDS(ID_AA64MMF 2606 }, 2607 #endif 2608 { 2609 .desc = "Speculation barrier 2610 .capability = ARM64_HAS_SB, 2611 .type = ARM64_CPUCAP_SYSTEM_F 2612 .matches = has_cpuid_feature, 2613 ARM64_CPUID_FIELDS(ID_AA64ISA 2614 }, 2615 #ifdef CONFIG_ARM64_PTR_AUTH 2616 { 2617 .desc = "Address authenticati 2618 .capability = ARM64_HAS_ADDRE 2619 .type = ARM64_CPUCAP_BOOT_CPU 2620 .matches = has_address_auth_c 2621 ARM64_CPUID_FIELDS(ID_AA64ISA 2622 }, 2623 { 2624 .desc = "Address authenticati 2625 .capability = ARM64_HAS_ADDRE 2626 .type = ARM64_CPUCAP_BOOT_CPU 2627 .matches = has_address_auth_c 2628 ARM64_CPUID_FIELDS(ID_AA64ISA 2629 }, 2630 { 2631 .desc = "Address authenticati 2632 .capability = ARM64_HAS_ADDRE 2633 .type = ARM64_CPUCAP_BOOT_CPU 2634 .matches = has_address_auth_c 2635 ARM64_CPUID_FIELDS(ID_AA64ISA 2636 }, 2637 { 2638 .capability = ARM64_HAS_ADDRE 2639 .type = ARM64_CPUCAP_BOOT_CPU 2640 .matches = has_address_auth_m 2641 }, 2642 { 2643 .desc = "Generic authenticati 2644 .capability = ARM64_HAS_GENER 2645 .type = ARM64_CPUCAP_SYSTEM_F 2646 .matches = has_cpuid_feature, 2647 ARM64_CPUID_FIELDS(ID_AA64ISA 2648 }, 2649 { 2650 .desc = "Generic authenticati 2651 .capability = ARM64_HAS_GENER 2652 .type = ARM64_CPUCAP_SYSTEM_F 2653 .matches = has_cpuid_feature, 2654 ARM64_CPUID_FIELDS(ID_AA64ISA 2655 }, 2656 { 2657 .desc = "Generic authenticati 2658 .capability = ARM64_HAS_GENER 2659 .type = ARM64_CPUCAP_SYSTEM_F 2660 .matches = has_cpuid_feature, 2661 ARM64_CPUID_FIELDS(ID_AA64ISA 2662 }, 2663 { 2664 .capability = ARM64_HAS_GENER 2665 .type = ARM64_CPUCAP_SYSTEM_F 2666 .matches = has_generic_auth, 2667 }, 2668 #endif /* CONFIG_ARM64_PTR_AUTH */ 2669 #ifdef CONFIG_ARM64_PSEUDO_NMI 2670 { 2671 /* 2672 * Depends on having GICv3 2673 */ 2674 .desc = "IRQ priority masking 2675 .capability = ARM64_HAS_GIC_P 2676 .type = ARM64_CPUCAP_STRICT_B 2677 .matches = can_use_gic_priori 2678 }, 2679 { 2680 /* 2681 * Depends on ARM64_HAS_GIC_P 2682 */ 2683 .capability = ARM64_HAS_GIC_P 2684 .type = ARM64_CPUCAP_STRICT_B 2685 .matches = has_gic_prio_relax 2686 }, 2687 #endif 2688 #ifdef CONFIG_ARM64_E0PD 2689 { 2690 .desc = "E0PD", 2691 .capability = ARM64_HAS_E0PD, 2692 .type = ARM64_CPUCAP_SYSTEM_F 2693 .cpu_enable = cpu_enable_e0pd 2694 .matches = has_cpuid_feature, 2695 ARM64_CPUID_FIELDS(ID_AA64MMF 2696 }, 2697 #endif 2698 { 2699 .desc = "Random Number Genera 2700 .capability = ARM64_HAS_RNG, 2701 .type = ARM64_CPUCAP_SYSTEM_F 2702 .matches = has_cpuid_feature, 2703 ARM64_CPUID_FIELDS(ID_AA64ISA 2704 }, 2705 #ifdef CONFIG_ARM64_BTI 2706 { 2707 .desc = "Branch Target Identi 2708 .capability = ARM64_BTI, 2709 #ifdef CONFIG_ARM64_BTI_KERNEL 2710 .type = ARM64_CPUCAP_STRICT_B 2711 #else 2712 .type = ARM64_CPUCAP_SYSTEM_F 2713 #endif 2714 .matches = has_cpuid_feature, 2715 .cpu_enable = bti_enable, 2716 ARM64_CPUID_FIELDS(ID_AA64PFR 2717 }, 2718 #endif 2719 #ifdef CONFIG_ARM64_MTE 2720 { 2721 .desc = "Memory Tagging Exten 2722 .capability = ARM64_MTE, 2723 .type = ARM64_CPUCAP_STRICT_B 2724 .matches = has_cpuid_feature, 2725 .cpu_enable = cpu_enable_mte, 2726 ARM64_CPUID_FIELDS(ID_AA64PFR 2727 }, 2728 { 2729 .desc = "Asymmetric MTE Tag C 2730 .capability = ARM64_MTE_ASYMM 2731 .type = ARM64_CPUCAP_BOOT_CPU 2732 .matches = has_cpuid_feature, 2733 ARM64_CPUID_FIELDS(ID_AA64PFR 2734 }, 2735 #endif /* CONFIG_ARM64_MTE */ 2736 { 2737 .desc = "RCpc load-acquire (L 2738 .capability = ARM64_HAS_LDAPR 2739 .type = ARM64_CPUCAP_SYSTEM_F 2740 .matches = has_cpuid_feature, 2741 ARM64_CPUID_FIELDS(ID_AA64ISA 2742 }, 2743 { 2744 .desc = "Fine Grained Traps", 2745 .type = ARM64_CPUCAP_SYSTEM_F 2746 .capability = ARM64_HAS_FGT, 2747 .matches = has_cpuid_feature, 2748 ARM64_CPUID_FIELDS(ID_AA64MMF 2749 }, 2750 #ifdef CONFIG_ARM64_SME 2751 { 2752 .desc = "Scalable Matrix Exte 2753 .type = ARM64_CPUCAP_SYSTEM_F 2754 .capability = ARM64_SME, 2755 .matches = has_cpuid_feature, 2756 .cpu_enable = cpu_enable_sme, 2757 ARM64_CPUID_FIELDS(ID_AA64PFR 2758 }, 2759 /* FA64 should be sorted after the ba 2760 { 2761 .desc = "FA64", 2762 .type = ARM64_CPUCAP_SYSTEM_F 2763 .capability = ARM64_SME_FA64, 2764 .matches = has_cpuid_feature, 2765 .cpu_enable = cpu_enable_fa64 2766 ARM64_CPUID_FIELDS(ID_AA64SMF 2767 }, 2768 { 2769 .desc = "SME2", 2770 .type = ARM64_CPUCAP_SYSTEM_F 2771 .capability = ARM64_SME2, 2772 .matches = has_cpuid_feature, 2773 .cpu_enable = cpu_enable_sme2 2774 ARM64_CPUID_FIELDS(ID_AA64PFR 2775 }, 2776 #endif /* CONFIG_ARM64_SME */ 2777 { 2778 .desc = "WFx with timeout", 2779 .capability = ARM64_HAS_WFXT, 2780 .type = ARM64_CPUCAP_SYSTEM_F 2781 .matches = has_cpuid_feature, 2782 ARM64_CPUID_FIELDS(ID_AA64ISA 2783 }, 2784 { 2785 .desc = "Trap EL0 IMPLEMENTAT 2786 .capability = ARM64_HAS_TIDCP 2787 .type = ARM64_CPUCAP_SYSTEM_F 2788 .matches = has_cpuid_feature, 2789 .cpu_enable = cpu_trap_el0_im 2790 ARM64_CPUID_FIELDS(ID_AA64MMF 2791 }, 2792 { 2793 .desc = "Data independent tim 2794 .capability = ARM64_HAS_DIT, 2795 .type = ARM64_CPUCAP_SYSTEM_F 2796 .matches = has_cpuid_feature, 2797 .cpu_enable = cpu_enable_dit, 2798 ARM64_CPUID_FIELDS(ID_AA64PFR 2799 }, 2800 { 2801 .desc = "Memory Copy and Memo 2802 .capability = ARM64_HAS_MOPS, 2803 .type = ARM64_CPUCAP_SYSTEM_F 2804 .matches = has_cpuid_feature, 2805 .cpu_enable = cpu_enable_mops 2806 ARM64_CPUID_FIELDS(ID_AA64ISA 2807 }, 2808 { 2809 .capability = ARM64_HAS_TCR2, 2810 .type = ARM64_CPUCAP_SYSTEM_F 2811 .matches = has_cpuid_feature, 2812 ARM64_CPUID_FIELDS(ID_AA64MMF 2813 }, 2814 { 2815 .desc = "Stage-1 Permission I 2816 .capability = ARM64_HAS_S1PIE 2817 .type = ARM64_CPUCAP_BOOT_CPU 2818 .matches = has_cpuid_feature, 2819 ARM64_CPUID_FIELDS(ID_AA64MMF 2820 }, 2821 { 2822 .desc = "VHE for hypervisor o 2823 .capability = ARM64_KVM_HVHE, 2824 .type = ARM64_CPUCAP_SYSTEM_F 2825 .matches = hvhe_possible, 2826 }, 2827 { 2828 .desc = "Enhanced Virtualizat 2829 .capability = ARM64_HAS_EVT, 2830 .type = ARM64_CPUCAP_SYSTEM_F 2831 .matches = has_cpuid_feature, 2832 ARM64_CPUID_FIELDS(ID_AA64MMF 2833 }, 2834 { 2835 .desc = "52-bit Virtual Addre 2836 .capability = ARM64_HAS_LPA2, 2837 .type = ARM64_CPUCAP_SYSTEM_F 2838 .matches = has_lpa2, 2839 }, 2840 { 2841 .desc = "FPMR", 2842 .type = ARM64_CPUCAP_SYSTEM_F 2843 .capability = ARM64_HAS_FPMR, 2844 .matches = has_cpuid_feature, 2845 .cpu_enable = cpu_enable_fpmr 2846 ARM64_CPUID_FIELDS(ID_AA64PFR 2847 }, 2848 #ifdef CONFIG_ARM64_VA_BITS_52 2849 { 2850 .capability = ARM64_HAS_VA52, 2851 .type = ARM64_CPUCAP_BOOT_CPU 2852 .matches = has_cpuid_feature, 2853 #ifdef CONFIG_ARM64_64K_PAGES 2854 .desc = "52-bit Virtual Addre 2855 ARM64_CPUID_FIELDS(ID_AA64MMF 2856 #else 2857 .desc = "52-bit Virtual Addre 2858 #ifdef CONFIG_ARM64_4K_PAGES 2859 ARM64_CPUID_FIELDS(ID_AA64MMF 2860 #else 2861 ARM64_CPUID_FIELDS(ID_AA64MMF 2862 #endif 2863 #endif 2864 }, 2865 #endif 2866 { 2867 .desc = "NV1", 2868 .capability = ARM64_HAS_HCR_N 2869 .type = ARM64_CPUCAP_SYSTEM_F 2870 .matches = has_nv1, 2871 ARM64_CPUID_FIELDS_NEG(ID_AA6 2872 }, 2873 {}, 2874 }; 2875 2876 #define HWCAP_CPUID_MATCH(reg, field, min_val 2877 .matches = has_user_cpuid_fea 2878 ARM64_CPUID_FIELDS(reg, field 2879 2880 #define __HWCAP_CAP(name, cap_type, cap) 2881 .desc = name, 2882 .type = ARM64_CPUCAP_SYSTEM_F 2883 .hwcap_type = cap_type, 2884 .hwcap = cap, 2885 2886 #define HWCAP_CAP(reg, field, min_value, cap_ 2887 { 2888 __HWCAP_CAP(#cap, cap_type, c 2889 HWCAP_CPUID_MATCH(reg, field, 2890 } 2891 2892 #define HWCAP_MULTI_CAP(list, cap_type, cap) 2893 { 2894 __HWCAP_CAP(#cap, cap_type, c 2895 .matches = cpucap_multi_entry 2896 .match_list = list, 2897 } 2898 2899 #define HWCAP_CAP_MATCH(match, cap_type, cap) 2900 { 2901 __HWCAP_CAP(#cap, cap_type, c 2902 .matches = match, 2903 } 2904 2905 #ifdef CONFIG_ARM64_PTR_AUTH 2906 static const struct arm64_cpu_capabilities pt 2907 { 2908 HWCAP_CPUID_MATCH(ID_AA64ISAR 2909 }, 2910 { 2911 HWCAP_CPUID_MATCH(ID_AA64ISAR 2912 }, 2913 { 2914 HWCAP_CPUID_MATCH(ID_AA64ISAR 2915 }, 2916 {}, 2917 }; 2918 2919 static const struct arm64_cpu_capabilities pt 2920 { 2921 HWCAP_CPUID_MATCH(ID_AA64ISAR 2922 }, 2923 { 2924 HWCAP_CPUID_MATCH(ID_AA64ISAR 2925 }, 2926 { 2927 HWCAP_CPUID_MATCH(ID_AA64ISAR 2928 }, 2929 {}, 2930 }; 2931 #endif 2932 2933 static const struct arm64_cpu_capabilities ar 2934 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMUL 2935 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, 2936 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP 2937 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA 2938 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA 2939 HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IM 2940 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, I 2941 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, F 2942 HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, 2943 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP 2944 HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, 2945 HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, 2946 HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, 2947 HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, 2948 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM 2949 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM 2950 HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP 2951 HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, C 2952 HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, 2953 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, I 2954 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, F 2955 HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, 2956 HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, 2957 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, 2958 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2 2959 HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IM 2960 HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP 2961 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IM 2962 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LR 2963 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LR 2964 HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, 2965 HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, 2966 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP 2967 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF 2968 HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, 2969 HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP 2970 HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, 2971 HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, 2972 HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, 2973 #ifdef CONFIG_ARM64_SVE 2974 HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, 2975 HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SV 2976 HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SV 2977 HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, 2978 HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL 2979 HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, I 2980 HWCAP_CAP(ID_AA64ZFR0_EL1, B16B16, IM 2981 HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, 2982 HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF1 2983 HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, 2984 HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, 2985 HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, 2986 HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP 2987 HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP 2988 #endif 2989 HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS 2990 #ifdef CONFIG_ARM64_BTI 2991 HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, C 2992 #endif 2993 #ifdef CONFIG_ARM64_PTR_AUTH 2994 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_m 2995 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_ma 2996 #endif 2997 #ifdef CONFIG_ARM64_MTE 2998 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, 2999 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, 3000 #endif /* CONFIG_ARM64_MTE */ 3001 HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, 3002 HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, 3003 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP 3004 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IM 3005 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IM 3006 HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP 3007 HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP 3008 HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, 3009 #ifdef CONFIG_ARM64_SME 3010 HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, 3011 HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP 3012 HWCAP_CAP(ID_AA64SMFR0_EL1, LUTv2, IM 3013 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, S 3014 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, S 3015 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, I 3016 HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, I 3017 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, I 3018 HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, I 3019 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, I 3020 HWCAP_CAP(ID_AA64SMFR0_EL1, F8F16, IM 3021 HWCAP_CAP(ID_AA64SMFR0_EL1, F8F32, IM 3022 HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IM 3023 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, I 3024 HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, I 3025 HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, 3026 HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, I 3027 HWCAP_CAP(ID_AA64SMFR0_EL1, SF8FMA, I 3028 HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP4, I 3029 HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP2, I 3030 #endif /* CONFIG_ARM64_SME */ 3031 HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IM 3032 HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IM 3033 HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IM 3034 HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IM 3035 HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, I 3036 HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, I 3037 {}, 3038 }; 3039 3040 #ifdef CONFIG_COMPAT 3041 static bool compat_has_neon(const struct arm6 3042 { 3043 /* 3044 * Check that all of MVFR1_EL1.{SIMDS 3045 * in line with that of arm32 as in v 3046 * check is future proof, by making s 3047 */ 3048 u32 mvfr1; 3049 3050 WARN_ON(scope == SCOPE_LOCAL_CPU && p 3051 if (scope == SCOPE_SYSTEM) 3052 mvfr1 = read_sanitised_ftr_re 3053 else 3054 mvfr1 = read_sysreg_s(SYS_MVF 3055 3056 return cpuid_feature_extract_unsigned 3057 cpuid_feature_extract_unsigne 3058 cpuid_feature_extract_unsigne 3059 } 3060 #endif 3061 3062 static const struct arm64_cpu_capabilities co 3063 #ifdef CONFIG_COMPAT 3064 HWCAP_CAP_MATCH(compat_has_neon, CAP_ 3065 HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, C 3066 /* Arm v8 mandates MVFR0.FPDP == {0, 3067 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP 3068 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP 3069 HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_ 3070 HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_F 3071 HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, C 3072 HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP 3073 HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CA 3074 HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CA 3075 HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, C 3076 HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_ 3077 HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP 3078 HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_ 3079 HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CA 3080 HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CA 3081 HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP 3082 #endif 3083 {}, 3084 }; 3085 3086 static void cap_set_elf_hwcap(const struct ar 3087 { 3088 switch (cap->hwcap_type) { 3089 case CAP_HWCAP: 3090 cpu_set_feature(cap->hwcap); 3091 break; 3092 #ifdef CONFIG_COMPAT 3093 case CAP_COMPAT_HWCAP: 3094 compat_elf_hwcap |= (u32)cap- 3095 break; 3096 case CAP_COMPAT_HWCAP2: 3097 compat_elf_hwcap2 |= (u32)cap 3098 break; 3099 #endif 3100 default: 3101 WARN_ON(1); 3102 break; 3103 } 3104 } 3105 3106 /* Check if we have a particular HWCAP enable 3107 static bool cpus_have_elf_hwcap(const struct 3108 { 3109 bool rc; 3110 3111 switch (cap->hwcap_type) { 3112 case CAP_HWCAP: 3113 rc = cpu_have_feature(cap->hw 3114 break; 3115 #ifdef CONFIG_COMPAT 3116 case CAP_COMPAT_HWCAP: 3117 rc = (compat_elf_hwcap & (u32 3118 break; 3119 case CAP_COMPAT_HWCAP2: 3120 rc = (compat_elf_hwcap2 & (u3 3121 break; 3122 #endif 3123 default: 3124 WARN_ON(1); 3125 rc = false; 3126 } 3127 3128 return rc; 3129 } 3130 3131 static void setup_elf_hwcaps(const struct arm 3132 { 3133 /* We support emulation of accesses t 3134 cpu_set_named_feature(CPUID); 3135 for (; hwcaps->matches; hwcaps++) 3136 if (hwcaps->matches(hwcaps, c 3137 cap_set_elf_hwcap(hwc 3138 } 3139 3140 static void update_cpu_capabilities(u16 scope 3141 { 3142 int i; 3143 const struct arm64_cpu_capabilities * 3144 3145 scope_mask &= ARM64_CPUCAP_SCOPE_MASK 3146 for (i = 0; i < ARM64_NCAPS; i++) { 3147 caps = cpucap_ptrs[i]; 3148 if (!caps || !(caps->type & s 3149 cpus_have_cap(caps->capab 3150 !caps->matches(caps, cpuc 3151 continue; 3152 3153 if (caps->desc && !caps->cpus 3154 pr_info("detected: %s 3155 3156 __set_bit(caps->capability, s 3157 3158 if ((scope_mask & SCOPE_BOOT_ 3159 set_bit(caps->capabil 3160 } 3161 } 3162 3163 /* 3164 * Enable all the available capabilities on t 3165 * with BOOT_CPU scope are handled separately 3166 */ 3167 static int cpu_enable_non_boot_scope_capabili 3168 { 3169 int i; 3170 u16 non_boot_scope = SCOPE_ALL & ~SCO 3171 3172 for_each_available_cap(i) { 3173 const struct arm64_cpu_capabi 3174 3175 if (WARN_ON(!cap)) 3176 continue; 3177 3178 if (!(cap->type & non_boot_sc 3179 continue; 3180 3181 if (cap->cpu_enable) 3182 cap->cpu_enable(cap); 3183 } 3184 return 0; 3185 } 3186 3187 /* 3188 * Run through the enabled capabilities and e 3189 * CPUs 3190 */ 3191 static void __init enable_cpu_capabilities(u1 3192 { 3193 int i; 3194 const struct arm64_cpu_capabilities * 3195 bool boot_scope; 3196 3197 scope_mask &= ARM64_CPUCAP_SCOPE_MASK 3198 boot_scope = !!(scope_mask & SCOPE_BO 3199 3200 for (i = 0; i < ARM64_NCAPS; i++) { 3201 caps = cpucap_ptrs[i]; 3202 if (!caps || !(caps->type & s 3203 !cpus_have_cap(caps->capa 3204 continue; 3205 3206 if (boot_scope && caps->cpu_e 3207 /* 3208 * Capabilities with 3209 * before any seconda 3210 * will enable the ca 3211 * check_local_cpu_ca 3212 * the boot CPU, for 3213 * enabled here. This 3214 * stop_machine() cal 3215 */ 3216 caps->cpu_enable(caps 3217 } 3218 3219 /* 3220 * For all non-boot scope capabilitie 3221 * as it schedules the work allowing 3222 * instead of on_each_cpu() which use 3223 * PSTATE that disappears when we ret 3224 */ 3225 if (!boot_scope) 3226 stop_machine(cpu_enable_non_b 3227 NULL, cpu_online 3228 } 3229 3230 /* 3231 * Run through the list of capabilities to ch 3232 * If the system has already detected a capab 3233 * action on this CPU. 3234 */ 3235 static void verify_local_cpu_caps(u16 scope_m 3236 { 3237 int i; 3238 bool cpu_has_cap, system_has_cap; 3239 const struct arm64_cpu_capabilities * 3240 3241 scope_mask &= ARM64_CPUCAP_SCOPE_MASK 3242 3243 for (i = 0; i < ARM64_NCAPS; i++) { 3244 caps = cpucap_ptrs[i]; 3245 if (!caps || !(caps->type & s 3246 continue; 3247 3248 cpu_has_cap = caps->matches(c 3249 system_has_cap = cpus_have_ca 3250 3251 if (system_has_cap) { 3252 /* 3253 * Check if the new C 3254 * which is not safe 3255 */ 3256 if (!cpu_has_cap && ! 3257 break; 3258 /* 3259 * We have to issue c 3260 * whether the CPU ha 3261 * system wide. It is 3262 * appropriate action 3263 */ 3264 if (caps->cpu_enable) 3265 caps->cpu_ena 3266 } else { 3267 /* 3268 * Check if the CPU h 3269 * safe to have when 3270 */ 3271 if (cpu_has_cap && !c 3272 break; 3273 } 3274 } 3275 3276 if (i < ARM64_NCAPS) { 3277 pr_crit("CPU%d: Detected conf 3278 smp_processor_id(), c 3279 caps->desc, system_ha 3280 3281 if (cpucap_panic_on_conflict( 3282 cpu_panic_kernel(); 3283 else 3284 cpu_die_early(); 3285 } 3286 } 3287 3288 /* 3289 * Check for CPU features that are used in ea 3290 * based on the Boot CPU value. 3291 */ 3292 static void check_early_cpu_features(void) 3293 { 3294 verify_cpu_asid_bits(); 3295 3296 verify_local_cpu_caps(SCOPE_BOOT_CPU) 3297 } 3298 3299 static void 3300 __verify_local_elf_hwcaps(const struct arm64_ 3301 { 3302 3303 for (; caps->matches; caps++) 3304 if (cpus_have_elf_hwcap(caps) 3305 pr_crit("CPU%d: missi 3306 smp_p 3307 cpu_die_early(); 3308 } 3309 } 3310 3311 static void verify_local_elf_hwcaps(void) 3312 { 3313 __verify_local_elf_hwcaps(arm64_elf_h 3314 3315 if (id_aa64pfr0_32bit_el0(read_cpuid( 3316 __verify_local_elf_hwcaps(com 3317 } 3318 3319 static void verify_sve_features(void) 3320 { 3321 unsigned long cpacr = cpacr_save_enab 3322 3323 if (vec_verify_vq_map(ARM64_VEC_SVE)) 3324 pr_crit("CPU%d: SVE: vector l 3325 smp_processor_id()); 3326 cpu_die_early(); 3327 } 3328 3329 cpacr_restore(cpacr); 3330 } 3331 3332 static void verify_sme_features(void) 3333 { 3334 unsigned long cpacr = cpacr_save_enab 3335 3336 if (vec_verify_vq_map(ARM64_VEC_SME)) 3337 pr_crit("CPU%d: SME: vector l 3338 smp_processor_id()); 3339 cpu_die_early(); 3340 } 3341 3342 cpacr_restore(cpacr); 3343 } 3344 3345 static void verify_hyp_capabilities(void) 3346 { 3347 u64 safe_mmfr1, mmfr0, mmfr1; 3348 int parange, ipa_max; 3349 unsigned int safe_vmid_bits, vmid_bit 3350 3351 if (!IS_ENABLED(CONFIG_KVM)) 3352 return; 3353 3354 safe_mmfr1 = read_sanitised_ftr_reg(S 3355 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1); 3356 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1); 3357 3358 /* Verify VMID bits */ 3359 safe_vmid_bits = get_vmid_bits(safe_m 3360 vmid_bits = get_vmid_bits(mmfr1); 3361 if (vmid_bits < safe_vmid_bits) { 3362 pr_crit("CPU%d: VMID width mi 3363 cpu_die_early(); 3364 } 3365 3366 /* Verify IPA range */ 3367 parange = cpuid_feature_extract_unsig 3368 ID_AA64MMFR0_ 3369 ipa_max = id_aa64mmfr0_parange_to_phy 3370 if (ipa_max < get_kvm_ipa_limit()) { 3371 pr_crit("CPU%d: IPA range mis 3372 cpu_die_early(); 3373 } 3374 } 3375 3376 /* 3377 * Run through the enabled system capabilitie 3378 * The capabilities were decided based on the 3379 * Any new CPU should match the system wide s 3380 * new CPU doesn't have a capability which th 3381 * cannot do anything to fix it up and could 3382 * we park the CPU. 3383 */ 3384 static void verify_local_cpu_capabilities(voi 3385 { 3386 /* 3387 * The capabilities with SCOPE_BOOT_C 3388 * check_early_cpu_features(), as the 3389 * on all secondary CPUs. 3390 */ 3391 verify_local_cpu_caps(SCOPE_ALL & ~SC 3392 verify_local_elf_hwcaps(); 3393 3394 if (system_supports_sve()) 3395 verify_sve_features(); 3396 3397 if (system_supports_sme()) 3398 verify_sme_features(); 3399 3400 if (is_hyp_mode_available()) 3401 verify_hyp_capabilities(); 3402 } 3403 3404 void check_local_cpu_capabilities(void) 3405 { 3406 /* 3407 * All secondary CPUs should conform 3408 * in use by the kernel based on boot 3409 */ 3410 check_early_cpu_features(); 3411 3412 /* 3413 * If we haven't finalised the system 3414 * a chance to update the errata work 3415 * Otherwise, this CPU should verify 3416 * advertised capabilities. 3417 */ 3418 if (!system_capabilities_finalized()) 3419 update_cpu_capabilities(SCOPE 3420 else 3421 verify_local_cpu_capabilities 3422 } 3423 3424 bool this_cpu_has_cap(unsigned int n) 3425 { 3426 if (!WARN_ON(preemptible()) && n < AR 3427 const struct arm64_cpu_capabi 3428 3429 if (cap) 3430 return cap->matches(c 3431 } 3432 3433 return false; 3434 } 3435 EXPORT_SYMBOL_GPL(this_cpu_has_cap); 3436 3437 /* 3438 * This helper function is used in a narrow w 3439 * - The system wide safe registers are set w 3440 * - The SYSTEM_FEATURE system_cpucaps may no 3441 */ 3442 static bool __maybe_unused __system_matches_c 3443 { 3444 if (n < ARM64_NCAPS) { 3445 const struct arm64_cpu_capabi 3446 3447 if (cap) 3448 return cap->matches(c 3449 } 3450 return false; 3451 } 3452 3453 void cpu_set_feature(unsigned int num) 3454 { 3455 set_bit(num, elf_hwcap); 3456 } 3457 3458 bool cpu_have_feature(unsigned int num) 3459 { 3460 return test_bit(num, elf_hwcap); 3461 } 3462 EXPORT_SYMBOL_GPL(cpu_have_feature); 3463 3464 unsigned long cpu_get_elf_hwcap(void) 3465 { 3466 /* 3467 * We currently only populate the fir 3468 * note that for userspace compatibil 3469 * and 63 will always be returned as 3470 */ 3471 return elf_hwcap[0]; 3472 } 3473 3474 unsigned long cpu_get_elf_hwcap2(void) 3475 { 3476 return elf_hwcap[1]; 3477 } 3478 3479 static void __init setup_boot_cpu_capabilitie 3480 { 3481 /* 3482 * The boot CPU's feature register va 3483 * boot cpucaps and local cpucaps for 3484 * patch alternatives for the availab 3485 */ 3486 update_cpu_capabilities(SCOPE_BOOT_CP 3487 enable_cpu_capabilities(SCOPE_BOOT_CP 3488 apply_boot_alternatives(); 3489 } 3490 3491 void __init setup_boot_cpu_features(void) 3492 { 3493 /* 3494 * Initialize the indirect array of C 3495 * handle the boot CPU. 3496 */ 3497 init_cpucap_indirect_list(); 3498 3499 /* 3500 * Detect broken pseudo-NMI. Must be 3501 * setup_boot_cpu_capabilities() sinc 3502 * can_use_gic_priorities(). 3503 */ 3504 detect_system_supports_pseudo_nmi(); 3505 3506 setup_boot_cpu_capabilities(); 3507 } 3508 3509 static void __init setup_system_capabilities( 3510 { 3511 /* 3512 * The system-wide safe feature regis 3513 * Detect, enable, and patch alternat 3514 * cpucaps. 3515 */ 3516 update_cpu_capabilities(SCOPE_SYSTEM) 3517 enable_cpu_capabilities(SCOPE_ALL & ~ 3518 apply_alternatives_all(); 3519 3520 /* 3521 * Log any cpucaps with a cpumask as 3522 * update_cpu_capabilities(). 3523 */ 3524 for (int i = 0; i < ARM64_NCAPS; i++) 3525 const struct arm64_cpu_capabi 3526 3527 if (caps && caps->cpus && cap 3528 cpumask_any(caps->cpu 3529 pr_info("detected: %s 3530 caps->desc, c 3531 } 3532 3533 /* 3534 * TTBR0 PAN doesn't have its own cpu 3535 */ 3536 if (system_uses_ttbr0_pan()) 3537 pr_info("emulated: Privileged 3538 } 3539 3540 void __init setup_system_features(void) 3541 { 3542 setup_system_capabilities(); 3543 3544 kpti_install_ng_mappings(); 3545 3546 sve_setup(); 3547 sme_setup(); 3548 3549 /* 3550 * Check for sane CTR_EL0.CWG value. 3551 */ 3552 if (!cache_type_cwg()) 3553 pr_warn("No Cache Writeback G 3554 ARCH_DMA_MINALIGN); 3555 } 3556 3557 void __init setup_user_features(void) 3558 { 3559 user_feature_fixup(); 3560 3561 setup_elf_hwcaps(arm64_elf_hwcaps); 3562 3563 if (system_supports_32bit_el0()) { 3564 setup_elf_hwcaps(compat_elf_h 3565 elf_hwcap_fixup(); 3566 } 3567 3568 minsigstksz_setup(); 3569 } 3570 3571 static int enable_mismatched_32bit_el0(unsign 3572 { 3573 /* 3574 * The first 32-bit-capable CPU we de 3575 * be offlined by userspace. -1 indic 3576 * a 32-bit-capable CPU. 3577 */ 3578 static int lucky_winner = -1; 3579 3580 struct cpuinfo_arm64 *info = &per_cpu 3581 bool cpu_32bit = id_aa64pfr0_32bit_el 3582 3583 if (cpu_32bit) { 3584 cpumask_set_cpu(cpu, cpu_32bi 3585 static_branch_enable_cpuslock 3586 } 3587 3588 if (cpumask_test_cpu(0, cpu_32bit_el0 3589 return 0; 3590 3591 if (lucky_winner >= 0) 3592 return 0; 3593 3594 /* 3595 * We've detected a mismatch. We need 3596 * 32-bit EL0 online so that is_cpu_a 3597 * every CPU in the system for a 32-b 3598 */ 3599 lucky_winner = cpu_32bit ? cpu : cpum 3600 3601 get_cpu_device(lucky_winner)->offline 3602 setup_elf_hwcaps(compat_elf_hwcaps); 3603 elf_hwcap_fixup(); 3604 pr_info("Asymmetric 32-bit EL0 suppor 3605 cpu, lucky_winner); 3606 return 0; 3607 } 3608 3609 static int __init init_32bit_el0_mask(void) 3610 { 3611 if (!allow_mismatched_32bit_el0) 3612 return 0; 3613 3614 if (!zalloc_cpumask_var(&cpu_32bit_el 3615 return -ENOMEM; 3616 3617 return cpuhp_setup_state(CPUHP_AP_ONL 3618 "arm64/misma 3619 enable_misma 3620 } 3621 subsys_initcall_sync(init_32bit_el0_mask); 3622 3623 static void __maybe_unused cpu_enable_cnp(str 3624 { 3625 cpu_enable_swapper_cnp(); 3626 } 3627 3628 /* 3629 * We emulate only the following system regis 3630 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 3631 * See Table C5-6 System instruction encoding 3632 * ARMv8 ARM(ARM DDI 0487A.f) for more detail 3633 */ 3634 static inline bool __attribute_const__ is_emu 3635 { 3636 return (sys_reg_Op0(id) == 0x3 && 3637 sys_reg_CRn(id) == 0x0 && 3638 sys_reg_Op1(id) == 0x0 && 3639 (sys_reg_CRm(id) == 0 || 3640 ((sys_reg_CRm(id) >= 2) && ( 3641 } 3642 3643 /* 3644 * With CRm == 0, reg should be one of : 3645 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1. 3646 */ 3647 static inline int emulate_id_reg(u32 id, u64 3648 { 3649 switch (id) { 3650 case SYS_MIDR_EL1: 3651 *valp = read_cpuid_id(); 3652 break; 3653 case SYS_MPIDR_EL1: 3654 *valp = SYS_MPIDR_SAFE_VAL; 3655 break; 3656 case SYS_REVIDR_EL1: 3657 /* IMPLEMENTATION DEFINED val 3658 *valp = 0; 3659 break; 3660 default: 3661 return -EINVAL; 3662 } 3663 3664 return 0; 3665 } 3666 3667 static int emulate_sys_reg(u32 id, u64 *valp) 3668 { 3669 struct arm64_ftr_reg *regp; 3670 3671 if (!is_emulated(id)) 3672 return -EINVAL; 3673 3674 if (sys_reg_CRm(id) == 0) 3675 return emulate_id_reg(id, val 3676 3677 regp = get_arm64_ftr_reg_nowarn(id); 3678 if (regp) 3679 *valp = arm64_ftr_reg_user_va 3680 else 3681 /* 3682 * The untracked registers ar 3683 * (e.g, ID_AFR0_EL1) or rese 3684 */ 3685 *valp = 0; 3686 return 0; 3687 } 3688 3689 int do_emulate_mrs(struct pt_regs *regs, u32 3690 { 3691 int rc; 3692 u64 val; 3693 3694 rc = emulate_sys_reg(sys_reg, &val); 3695 if (!rc) { 3696 pt_regs_write_reg(regs, rt, v 3697 arm64_skip_faulting_instructi 3698 } 3699 return rc; 3700 } 3701 3702 bool try_emulate_mrs(struct pt_regs *regs, u3 3703 { 3704 u32 sys_reg, rt; 3705 3706 if (compat_user_mode(regs) || !aarch6 3707 return false; 3708 3709 /* 3710 * sys_reg values are defined as used 3711 * shift the imm value to get the enc 3712 */ 3713 sys_reg = (u32)aarch64_insn_decode_im 3714 rt = aarch64_insn_decode_register(AAR 3715 return do_emulate_mrs(regs, sys_reg, 3716 } 3717 3718 enum mitigation_state arm64_get_meltdown_stat 3719 { 3720 if (__meltdown_safe) 3721 return SPECTRE_UNAFFECTED; 3722 3723 if (arm64_kernel_unmapped_at_el0()) 3724 return SPECTRE_MITIGATED; 3725 3726 return SPECTRE_VULNERABLE; 3727 } 3728 3729 ssize_t cpu_show_meltdown(struct device *dev, 3730 char *buf) 3731 { 3732 switch (arm64_get_meltdown_state()) { 3733 case SPECTRE_UNAFFECTED: 3734 return sprintf(buf, "Not affe 3735 3736 case SPECTRE_MITIGATED: 3737 return sprintf(buf, "Mitigati 3738 3739 default: 3740 return sprintf(buf, "Vulnerab 3741 } 3742 } 3743
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.