1 // SPDX-License-Identifier: GPL-2.0 << 2 /* 1 /* 3 * Author: Huacai Chen <chenhuacai@loongson.cn !! 2 * Copyright (C) 2014 Imagination Technologies 4 * Copyright (C) 2020-2022 Loongson Technology !! 3 * Author: Paul Burton <paul.burton@mips.com> >> 4 * >> 5 * This program is free software; you can redistribute it and/or modify it >> 6 * under the terms of the GNU General Public License as published by the >> 7 * Free Software Foundation; either version 2 of the License, or (at your >> 8 * option) any later version. 5 */ 9 */ 6 10 7 #include <linux/binfmts.h> 11 #include <linux/binfmts.h> 8 #include <linux/elf.h> 12 #include <linux/elf.h> 9 #include <linux/export.h> 13 #include <linux/export.h> 10 #include <linux/sched.h> 14 #include <linux/sched.h> 11 15 12 #include <asm/cpu-features.h> 16 #include <asm/cpu-features.h> 13 #include <asm/cpu-info.h> 17 #include <asm/cpu-info.h> 14 18 >> 19 /* Whether to accept legacy-NaN and 2008-NaN user binaries. */ >> 20 bool mips_use_nan_legacy; >> 21 bool mips_use_nan_2008; >> 22 >> 23 /* FPU modes */ >> 24 enum { >> 25 FP_FRE, >> 26 FP_FR0, >> 27 FP_FR1, >> 28 }; >> 29 >> 30 /** >> 31 * struct mode_req - ABI FPU mode requirements >> 32 * @single: The program being loaded needs an FPU but it will only issue >> 33 * single precision instructions meaning that it can execute in >> 34 * either FR0 or FR1. >> 35 * @soft: The soft(-float) requirement means that the program being >> 36 * loaded needs has no FPU dependency at all (i.e. it has no >> 37 * FPU instructions). >> 38 * @fr1: The program being loaded depends on FPU being in FR=1 mode. >> 39 * @frdefault: The program being loaded depends on the default FPU mode. >> 40 * That is FR0 for O32 and FR1 for N32/N64. >> 41 * @fre: The program being loaded depends on FPU with FRE=1. This mode is >> 42 * a bridge which uses FR=1 whilst still being able to maintain >> 43 * full compatibility with pre-existing code using the O32 FP32 >> 44 * ABI. >> 45 * >> 46 * More information about the FP ABIs can be found here: >> 47 * >> 48 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up >> 49 * >> 50 */ >> 51 >> 52 struct mode_req { >> 53 bool single; >> 54 bool soft; >> 55 bool fr1; >> 56 bool frdefault; >> 57 bool fre; >> 58 }; >> 59 >> 60 static const struct mode_req fpu_reqs[] = { >> 61 [MIPS_ABI_FP_ANY] = { true, true, true, true, true }, >> 62 [MIPS_ABI_FP_DOUBLE] = { false, false, false, true, true }, >> 63 [MIPS_ABI_FP_SINGLE] = { true, false, false, false, false }, >> 64 [MIPS_ABI_FP_SOFT] = { false, true, false, false, false }, >> 65 [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false }, >> 66 [MIPS_ABI_FP_XX] = { false, false, true, true, true }, >> 67 [MIPS_ABI_FP_64] = { false, false, true, false, false }, >> 68 [MIPS_ABI_FP_64A] = { false, false, true, false, true } >> 69 }; >> 70 >> 71 /* >> 72 * Mode requirements when .MIPS.abiflags is not present in the ELF. >> 73 * Not present means that everything is acceptable except FR1. >> 74 */ >> 75 static struct mode_req none_req = { true, true, false, true, true }; >> 76 15 int arch_elf_pt_proc(void *_ehdr, void *_phdr, 77 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf, 16 bool is_interp, struct ar 78 bool is_interp, struct arch_elf_state *state) 17 { 79 { >> 80 union { >> 81 struct elf32_hdr e32; >> 82 struct elf64_hdr e64; >> 83 } *ehdr = _ehdr; >> 84 struct elf32_phdr *phdr32 = _phdr; >> 85 struct elf64_phdr *phdr64 = _phdr; >> 86 struct mips_elf_abiflags_v0 abiflags; >> 87 bool elf32; >> 88 u32 flags; >> 89 int ret; >> 90 loff_t pos; >> 91 >> 92 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; >> 93 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; >> 94 >> 95 /* Let's see if this is an O32 ELF */ >> 96 if (elf32) { >> 97 if (flags & EF_MIPS_FP64) { >> 98 /* >> 99 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it >> 100 * later if needed >> 101 */ >> 102 if (is_interp) >> 103 state->interp_fp_abi = MIPS_ABI_FP_OLD_64; >> 104 else >> 105 state->fp_abi = MIPS_ABI_FP_OLD_64; >> 106 } >> 107 if (phdr32->p_type != PT_MIPS_ABIFLAGS) >> 108 return 0; >> 109 >> 110 if (phdr32->p_filesz < sizeof(abiflags)) >> 111 return -EINVAL; >> 112 pos = phdr32->p_offset; >> 113 } else { >> 114 if (phdr64->p_type != PT_MIPS_ABIFLAGS) >> 115 return 0; >> 116 if (phdr64->p_filesz < sizeof(abiflags)) >> 117 return -EINVAL; >> 118 pos = phdr64->p_offset; >> 119 } >> 120 >> 121 ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos); >> 122 if (ret < 0) >> 123 return ret; >> 124 if (ret != sizeof(abiflags)) >> 125 return -EIO; >> 126 >> 127 /* Record the required FP ABIs for use by mips_check_elf */ >> 128 if (is_interp) >> 129 state->interp_fp_abi = abiflags.fp_abi; >> 130 else >> 131 state->fp_abi = abiflags.fp_abi; >> 132 18 return 0; 133 return 0; 19 } 134 } 20 135 21 int arch_check_elf(void *_ehdr, bool has_inter 136 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr, 22 struct arch_elf_state *stat 137 struct arch_elf_state *state) 23 { 138 { >> 139 union { >> 140 struct elf32_hdr e32; >> 141 struct elf64_hdr e64; >> 142 } *ehdr = _ehdr; >> 143 union { >> 144 struct elf32_hdr e32; >> 145 struct elf64_hdr e64; >> 146 } *iehdr = _interp_ehdr; >> 147 struct mode_req prog_req, interp_req; >> 148 int fp_abi, interp_fp_abi, abi0, abi1, max_abi; >> 149 bool elf32; >> 150 u32 flags; >> 151 >> 152 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; >> 153 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; >> 154 >> 155 /* >> 156 * Determine the NaN personality, reject the binary if not allowed. >> 157 * Also ensure that any interpreter matches the executable. >> 158 */ >> 159 if (flags & EF_MIPS_NAN2008) { >> 160 if (mips_use_nan_2008) >> 161 state->nan_2008 = 1; >> 162 else >> 163 return -ENOEXEC; >> 164 } else { >> 165 if (mips_use_nan_legacy) >> 166 state->nan_2008 = 0; >> 167 else >> 168 return -ENOEXEC; >> 169 } >> 170 if (has_interpreter) { >> 171 bool ielf32; >> 172 u32 iflags; >> 173 >> 174 ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; >> 175 iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags; >> 176 >> 177 if ((flags ^ iflags) & EF_MIPS_NAN2008) >> 178 return -ELIBBAD; >> 179 } >> 180 >> 181 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) >> 182 return 0; >> 183 >> 184 fp_abi = state->fp_abi; >> 185 >> 186 if (has_interpreter) { >> 187 interp_fp_abi = state->interp_fp_abi; >> 188 >> 189 abi0 = min(fp_abi, interp_fp_abi); >> 190 abi1 = max(fp_abi, interp_fp_abi); >> 191 } else { >> 192 abi0 = abi1 = fp_abi; >> 193 } >> 194 >> 195 if (elf32 && !(flags & EF_MIPS_ABI2)) { >> 196 /* Default to a mode capable of running code expecting FR=0 */ >> 197 state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0; >> 198 >> 199 /* Allow all ABIs we know about */ >> 200 max_abi = MIPS_ABI_FP_64A; >> 201 } else { >> 202 /* MIPS64 code always uses FR=1, thus the default is easy */ >> 203 state->overall_fp_mode = FP_FR1; >> 204 >> 205 /* Disallow access to the various FPXX & FP64 ABIs */ >> 206 max_abi = MIPS_ABI_FP_SOFT; >> 207 } >> 208 >> 209 if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) || >> 210 (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN)) >> 211 return -ELIBBAD; >> 212 >> 213 /* It's time to determine the FPU mode requirements */ >> 214 prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0]; >> 215 interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1]; >> 216 >> 217 /* >> 218 * Check whether the program's and interp's ABIs have a matching FPU >> 219 * mode requirement. >> 220 */ >> 221 prog_req.single = interp_req.single && prog_req.single; >> 222 prog_req.soft = interp_req.soft && prog_req.soft; >> 223 prog_req.fr1 = interp_req.fr1 && prog_req.fr1; >> 224 prog_req.frdefault = interp_req.frdefault && prog_req.frdefault; >> 225 prog_req.fre = interp_req.fre && prog_req.fre; >> 226 >> 227 /* >> 228 * Determine the desired FPU mode >> 229 * >> 230 * Decision making: >> 231 * >> 232 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This >> 233 * means that we have a combination of program and interpreter >> 234 * that inherently require the hybrid FP mode. >> 235 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or >> 236 * fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU >> 237 * instructions so we don't care about the mode. We will simply use >> 238 * the one preferred by the hardware. In fpxx case, that ABI can >> 239 * handle both FR=1 and FR=0, so, again, we simply choose the one >> 240 * preferred by the hardware. Next, if we only use single-precision >> 241 * FPU instructions, and the default ABI FPU mode is not good >> 242 * (ie single + any ABI combination), we set again the FPU mode to the >> 243 * one is preferred by the hardware. Next, if we know that the code >> 244 * will only use single-precision instructions, shown by single being >> 245 * true but frdefault being false, then we again set the FPU mode to >> 246 * the one that is preferred by the hardware. >> 247 * - We want FP_FR1 if that's the only matching mode and the default one >> 248 * is not good. >> 249 * - Return with -ELIBADD if we can't find a matching FPU mode. >> 250 */ >> 251 if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1) >> 252 state->overall_fp_mode = FP_FRE; >> 253 else if ((prog_req.fr1 && prog_req.frdefault) || >> 254 (prog_req.single && !prog_req.frdefault)) >> 255 /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */ >> 256 state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) && >> 257 cpu_has_mips_r2_r6) ? >> 258 FP_FR1 : FP_FR0; >> 259 else if (prog_req.fr1) >> 260 state->overall_fp_mode = FP_FR1; >> 261 else if (!prog_req.fre && !prog_req.frdefault && >> 262 !prog_req.fr1 && !prog_req.single && !prog_req.soft) >> 263 return -ELIBBAD; >> 264 >> 265 return 0; >> 266 } >> 267 >> 268 static inline void set_thread_fp_mode(int hybrid, int regs32) >> 269 { >> 270 if (hybrid) >> 271 set_thread_flag(TIF_HYBRID_FPREGS); >> 272 else >> 273 clear_thread_flag(TIF_HYBRID_FPREGS); >> 274 if (regs32) >> 275 set_thread_flag(TIF_32BIT_FPREGS); >> 276 else >> 277 clear_thread_flag(TIF_32BIT_FPREGS); >> 278 } >> 279 >> 280 void mips_set_personality_fp(struct arch_elf_state *state) >> 281 { >> 282 /* >> 283 * This function is only ever called for O32 ELFs so we should >> 284 * not be worried about N32/N64 binaries. >> 285 */ >> 286 >> 287 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) >> 288 return; >> 289 >> 290 switch (state->overall_fp_mode) { >> 291 case FP_FRE: >> 292 set_thread_fp_mode(1, 0); >> 293 break; >> 294 case FP_FR0: >> 295 set_thread_fp_mode(0, 1); >> 296 break; >> 297 case FP_FR1: >> 298 set_thread_fp_mode(0, 0); >> 299 break; >> 300 default: >> 301 BUG(); >> 302 } >> 303 } >> 304 >> 305 /* >> 306 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode >> 307 * in FCSR according to the ELF NaN personality. >> 308 */ >> 309 void mips_set_personality_nan(struct arch_elf_state *state) >> 310 { >> 311 struct cpuinfo_mips *c = &boot_cpu_data; >> 312 struct task_struct *t = current; >> 313 >> 314 t->thread.fpu.fcr31 = c->fpu_csr31; >> 315 switch (state->nan_2008) { >> 316 case 0: >> 317 break; >> 318 case 1: >> 319 if (!(c->fpu_msk31 & FPU_CSR_NAN2008)) >> 320 t->thread.fpu.fcr31 |= FPU_CSR_NAN2008; >> 321 if (!(c->fpu_msk31 & FPU_CSR_ABS2008)) >> 322 t->thread.fpu.fcr31 |= FPU_CSR_ABS2008; >> 323 break; >> 324 default: >> 325 BUG(); >> 326 } >> 327 } >> 328 >> 329 int mips_elf_read_implies_exec(void *elf_ex, int exstack) >> 330 { >> 331 if (exstack != EXSTACK_DISABLE_X) { >> 332 /* The binary doesn't request a non-executable stack */ >> 333 return 1; >> 334 } >> 335 >> 336 if (!cpu_has_rixi) { >> 337 /* The CPU doesn't support non-executable memory */ >> 338 return 1; >> 339 } >> 340 24 return 0; 341 return 0; 25 } 342 } >> 343 EXPORT_SYMBOL(mips_elf_read_implies_exec); 26 344
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.