1 // SPDX-License-Identifier: GPL-2.0 << 2 /* 1 /* 3 * Author: Huacai Chen <chenhuacai@loongson.cn !! 2 * Copyright (C) 2014 Imagination Technologies 4 * Copyright (C) 2020-2022 Loongson Technology !! 3 * Author: Paul Burton <paul.burton@mips.com> >> 4 * >> 5 * This program is free software; you can redistribute it and/or modify it >> 6 * under the terms of the GNU General Public License as published by the >> 7 * Free Software Foundation; either version 2 of the License, or (at your >> 8 * option) any later version. 5 */ 9 */ 6 10 7 #include <linux/binfmts.h> 11 #include <linux/binfmts.h> 8 #include <linux/elf.h> 12 #include <linux/elf.h> 9 #include <linux/export.h> 13 #include <linux/export.h> 10 #include <linux/sched.h> 14 #include <linux/sched.h> 11 15 12 #include <asm/cpu-features.h> 16 #include <asm/cpu-features.h> 13 #include <asm/cpu-info.h> 17 #include <asm/cpu-info.h> 14 18 >> 19 #ifdef CONFIG_MIPS_FP_SUPPORT >> 20 >> 21 /* Whether to accept legacy-NaN and 2008-NaN user binaries. */ >> 22 bool mips_use_nan_legacy; >> 23 bool mips_use_nan_2008; >> 24 >> 25 /* FPU modes */ >> 26 enum { >> 27 FP_FRE, >> 28 FP_FR0, >> 29 FP_FR1, >> 30 }; >> 31 >> 32 /** >> 33 * struct mode_req - ABI FPU mode requirements >> 34 * @single: The program being loaded needs an FPU but it will only issue >> 35 * single precision instructions meaning that it can execute in >> 36 * either FR0 or FR1. >> 37 * @soft: The soft(-float) requirement means that the program being >> 38 * loaded needs has no FPU dependency at all (i.e. it has no >> 39 * FPU instructions). >> 40 * @fr1: The program being loaded depends on FPU being in FR=1 mode. >> 41 * @frdefault: The program being loaded depends on the default FPU mode. >> 42 * That is FR0 for O32 and FR1 for N32/N64. >> 43 * @fre: The program being loaded depends on FPU with FRE=1. This mode is >> 44 * a bridge which uses FR=1 whilst still being able to maintain >> 45 * full compatibility with pre-existing code using the O32 FP32 >> 46 * ABI. >> 47 * >> 48 * More information about the FP ABIs can be found here: >> 49 * >> 50 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up >> 51 * >> 52 */ >> 53 >> 54 struct mode_req { >> 55 bool single; >> 56 bool soft; >> 57 bool fr1; >> 58 bool frdefault; >> 59 bool fre; >> 60 }; >> 61 >> 62 static const struct mode_req fpu_reqs[] = { >> 63 [MIPS_ABI_FP_ANY] = { true, true, true, true, true }, >> 64 [MIPS_ABI_FP_DOUBLE] = { false, false, false, true, true }, >> 65 [MIPS_ABI_FP_SINGLE] = { true, false, false, false, false }, >> 66 [MIPS_ABI_FP_SOFT] = { false, true, false, false, false }, >> 67 [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false }, >> 68 [MIPS_ABI_FP_XX] = { false, false, true, true, true }, >> 69 [MIPS_ABI_FP_64] = { false, false, true, false, false }, >> 70 [MIPS_ABI_FP_64A] = { false, false, true, false, true } >> 71 }; >> 72 >> 73 /* >> 74 * Mode requirements when .MIPS.abiflags is not present in the ELF. >> 75 * Not present means that everything is acceptable except FR1. >> 76 */ >> 77 static struct mode_req none_req = { true, true, false, true, true }; >> 78 15 int arch_elf_pt_proc(void *_ehdr, void *_phdr, 79 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf, 16 bool is_interp, struct ar 80 bool is_interp, struct arch_elf_state *state) 17 { 81 { >> 82 union { >> 83 struct elf32_hdr e32; >> 84 struct elf64_hdr e64; >> 85 } *ehdr = _ehdr; >> 86 struct elf32_phdr *phdr32 = _phdr; >> 87 struct elf64_phdr *phdr64 = _phdr; >> 88 struct mips_elf_abiflags_v0 abiflags; >> 89 bool elf32; >> 90 u32 flags; >> 91 int ret; >> 92 loff_t pos; >> 93 >> 94 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; >> 95 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; >> 96 >> 97 /* Let's see if this is an O32 ELF */ >> 98 if (elf32) { >> 99 if (flags & EF_MIPS_FP64) { >> 100 /* >> 101 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it >> 102 * later if needed >> 103 */ >> 104 if (is_interp) >> 105 state->interp_fp_abi = MIPS_ABI_FP_OLD_64; >> 106 else >> 107 state->fp_abi = MIPS_ABI_FP_OLD_64; >> 108 } >> 109 if (phdr32->p_type != PT_MIPS_ABIFLAGS) >> 110 return 0; >> 111 >> 112 if (phdr32->p_filesz < sizeof(abiflags)) >> 113 return -EINVAL; >> 114 pos = phdr32->p_offset; >> 115 } else { >> 116 if (phdr64->p_type != PT_MIPS_ABIFLAGS) >> 117 return 0; >> 118 if (phdr64->p_filesz < sizeof(abiflags)) >> 119 return -EINVAL; >> 120 pos = phdr64->p_offset; >> 121 } >> 122 >> 123 ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos); >> 124 if (ret < 0) >> 125 return ret; >> 126 if (ret != sizeof(abiflags)) >> 127 return -EIO; >> 128 >> 129 /* Record the required FP ABIs for use by mips_check_elf */ >> 130 if (is_interp) >> 131 state->interp_fp_abi = abiflags.fp_abi; >> 132 else >> 133 state->fp_abi = abiflags.fp_abi; >> 134 18 return 0; 135 return 0; 19 } 136 } 20 137 21 int arch_check_elf(void *_ehdr, bool has_inter 138 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr, 22 struct arch_elf_state *stat 139 struct arch_elf_state *state) 23 { 140 { >> 141 union { >> 142 struct elf32_hdr e32; >> 143 struct elf64_hdr e64; >> 144 } *ehdr = _ehdr; >> 145 union { >> 146 struct elf32_hdr e32; >> 147 struct elf64_hdr e64; >> 148 } *iehdr = _interp_ehdr; >> 149 struct mode_req prog_req, interp_req; >> 150 int fp_abi, interp_fp_abi, abi0, abi1, max_abi; >> 151 bool elf32; >> 152 u32 flags; >> 153 >> 154 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; >> 155 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; >> 156 >> 157 /* >> 158 * Determine the NaN personality, reject the binary if not allowed. >> 159 * Also ensure that any interpreter matches the executable. >> 160 */ >> 161 if (flags & EF_MIPS_NAN2008) { >> 162 if (mips_use_nan_2008) >> 163 state->nan_2008 = 1; >> 164 else >> 165 return -ENOEXEC; >> 166 } else { >> 167 if (mips_use_nan_legacy) >> 168 state->nan_2008 = 0; >> 169 else >> 170 return -ENOEXEC; >> 171 } >> 172 if (has_interpreter) { >> 173 bool ielf32; >> 174 u32 iflags; >> 175 >> 176 ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; >> 177 iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags; >> 178 >> 179 if ((flags ^ iflags) & EF_MIPS_NAN2008) >> 180 return -ELIBBAD; >> 181 } >> 182 >> 183 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) >> 184 return 0; >> 185 >> 186 fp_abi = state->fp_abi; >> 187 >> 188 if (has_interpreter) { >> 189 interp_fp_abi = state->interp_fp_abi; >> 190 >> 191 abi0 = min(fp_abi, interp_fp_abi); >> 192 abi1 = max(fp_abi, interp_fp_abi); >> 193 } else { >> 194 abi0 = abi1 = fp_abi; >> 195 } >> 196 >> 197 if (elf32 && !(flags & EF_MIPS_ABI2)) { >> 198 /* Default to a mode capable of running code expecting FR=0 */ >> 199 state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0; >> 200 >> 201 /* Allow all ABIs we know about */ >> 202 max_abi = MIPS_ABI_FP_64A; >> 203 } else { >> 204 /* MIPS64 code always uses FR=1, thus the default is easy */ >> 205 state->overall_fp_mode = FP_FR1; >> 206 >> 207 /* Disallow access to the various FPXX & FP64 ABIs */ >> 208 max_abi = MIPS_ABI_FP_SOFT; >> 209 } >> 210 >> 211 if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) || >> 212 (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN)) >> 213 return -ELIBBAD; >> 214 >> 215 /* It's time to determine the FPU mode requirements */ >> 216 prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0]; >> 217 interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1]; >> 218 >> 219 /* >> 220 * Check whether the program's and interp's ABIs have a matching FPU >> 221 * mode requirement. >> 222 */ >> 223 prog_req.single = interp_req.single && prog_req.single; >> 224 prog_req.soft = interp_req.soft && prog_req.soft; >> 225 prog_req.fr1 = interp_req.fr1 && prog_req.fr1; >> 226 prog_req.frdefault = interp_req.frdefault && prog_req.frdefault; >> 227 prog_req.fre = interp_req.fre && prog_req.fre; >> 228 >> 229 /* >> 230 * Determine the desired FPU mode >> 231 * >> 232 * Decision making: >> 233 * >> 234 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This >> 235 * means that we have a combination of program and interpreter >> 236 * that inherently require the hybrid FP mode. >> 237 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or >> 238 * fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU >> 239 * instructions so we don't care about the mode. We will simply use >> 240 * the one preferred by the hardware. In fpxx case, that ABI can >> 241 * handle both FR=1 and FR=0, so, again, we simply choose the one >> 242 * preferred by the hardware. Next, if we only use single-precision >> 243 * FPU instructions, and the default ABI FPU mode is not good >> 244 * (ie single + any ABI combination), we set again the FPU mode to the >> 245 * one is preferred by the hardware. Next, if we know that the code >> 246 * will only use single-precision instructions, shown by single being >> 247 * true but frdefault being false, then we again set the FPU mode to >> 248 * the one that is preferred by the hardware. >> 249 * - We want FP_FR1 if that's the only matching mode and the default one >> 250 * is not good. >> 251 * - Return with -ELIBADD if we can't find a matching FPU mode. >> 252 */ >> 253 if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1) >> 254 state->overall_fp_mode = FP_FRE; >> 255 else if ((prog_req.fr1 && prog_req.frdefault) || >> 256 (prog_req.single && !prog_req.frdefault)) >> 257 /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */ >> 258 state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) && >> 259 cpu_has_mips_r2_r6) ? >> 260 FP_FR1 : FP_FR0; >> 261 else if (prog_req.fr1) >> 262 state->overall_fp_mode = FP_FR1; >> 263 else if (!prog_req.fre && !prog_req.frdefault && >> 264 !prog_req.fr1 && !prog_req.single && !prog_req.soft) >> 265 return -ELIBBAD; >> 266 >> 267 return 0; >> 268 } >> 269 >> 270 static inline void set_thread_fp_mode(int hybrid, int regs32) >> 271 { >> 272 if (hybrid) >> 273 set_thread_flag(TIF_HYBRID_FPREGS); >> 274 else >> 275 clear_thread_flag(TIF_HYBRID_FPREGS); >> 276 if (regs32) >> 277 set_thread_flag(TIF_32BIT_FPREGS); >> 278 else >> 279 clear_thread_flag(TIF_32BIT_FPREGS); >> 280 } >> 281 >> 282 void mips_set_personality_fp(struct arch_elf_state *state) >> 283 { >> 284 /* >> 285 * This function is only ever called for O32 ELFs so we should >> 286 * not be worried about N32/N64 binaries. >> 287 */ >> 288 >> 289 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) >> 290 return; >> 291 >> 292 switch (state->overall_fp_mode) { >> 293 case FP_FRE: >> 294 set_thread_fp_mode(1, 0); >> 295 break; >> 296 case FP_FR0: >> 297 set_thread_fp_mode(0, 1); >> 298 break; >> 299 case FP_FR1: >> 300 set_thread_fp_mode(0, 0); >> 301 break; >> 302 default: >> 303 BUG(); >> 304 } >> 305 } >> 306 >> 307 /* >> 308 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode >> 309 * in FCSR according to the ELF NaN personality. >> 310 */ >> 311 void mips_set_personality_nan(struct arch_elf_state *state) >> 312 { >> 313 struct cpuinfo_mips *c = &boot_cpu_data; >> 314 struct task_struct *t = current; >> 315 >> 316 t->thread.fpu.fcr31 = c->fpu_csr31; >> 317 switch (state->nan_2008) { >> 318 case 0: >> 319 break; >> 320 case 1: >> 321 if (!(c->fpu_msk31 & FPU_CSR_NAN2008)) >> 322 t->thread.fpu.fcr31 |= FPU_CSR_NAN2008; >> 323 if (!(c->fpu_msk31 & FPU_CSR_ABS2008)) >> 324 t->thread.fpu.fcr31 |= FPU_CSR_ABS2008; >> 325 break; >> 326 default: >> 327 BUG(); >> 328 } >> 329 } >> 330 >> 331 #endif /* CONFIG_MIPS_FP_SUPPORT */ >> 332 >> 333 int mips_elf_read_implies_exec(void *elf_ex, int exstack) >> 334 { >> 335 if (exstack != EXSTACK_DISABLE_X) { >> 336 /* The binary doesn't request a non-executable stack */ >> 337 return 1; >> 338 } >> 339 >> 340 if (!cpu_has_rixi) { >> 341 /* The CPU doesn't support non-executable memory */ >> 342 return 1; >> 343 } >> 344 24 return 0; 345 return 0; 25 } 346 } >> 347 EXPORT_SYMBOL(mips_elf_read_implies_exec); 26 348
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.