1 // SPDX-License-Identifier: GPL-2.0 !! 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * Author: Huacai Chen <chenhuacai@loongson.cn !! 3 * Copyright (C) 2014 Imagination Technologies 4 * Copyright (C) 2020-2022 Loongson Technology !! 4 * Author: Paul Burton <paul.burton@mips.com> 5 */ 5 */ 6 6 7 #include <linux/binfmts.h> 7 #include <linux/binfmts.h> 8 #include <linux/elf.h> 8 #include <linux/elf.h> 9 #include <linux/export.h> 9 #include <linux/export.h> 10 #include <linux/sched.h> 10 #include <linux/sched.h> 11 11 12 #include <asm/cpu-features.h> 12 #include <asm/cpu-features.h> 13 #include <asm/cpu-info.h> 13 #include <asm/cpu-info.h> >> 14 #include <asm/fpu.h> >> 15 >> 16 #ifdef CONFIG_MIPS_FP_SUPPORT >> 17 >> 18 /* Whether to accept legacy-NaN and 2008-NaN user binaries. */ >> 19 bool mips_use_nan_legacy; >> 20 bool mips_use_nan_2008; >> 21 >> 22 /* FPU modes */ >> 23 enum { >> 24 FP_FRE, >> 25 FP_FR0, >> 26 FP_FR1, >> 27 }; >> 28 >> 29 /** >> 30 * struct mode_req - ABI FPU mode requirements >> 31 * @single: The program being loaded needs an FPU but it will only issue >> 32 * single precision instructions meaning that it can execute in >> 33 * either FR0 or FR1. >> 34 * @soft: The soft(-float) requirement means that the program being >> 35 * loaded needs has no FPU dependency at all (i.e. it has no >> 36 * FPU instructions). >> 37 * @fr1: The program being loaded depends on FPU being in FR=1 mode. >> 38 * @frdefault: The program being loaded depends on the default FPU mode. >> 39 * That is FR0 for O32 and FR1 for N32/N64. >> 40 * @fre: The program being loaded depends on FPU with FRE=1. This mode is >> 41 * a bridge which uses FR=1 whilst still being able to maintain >> 42 * full compatibility with pre-existing code using the O32 FP32 >> 43 * ABI. >> 44 * >> 45 * More information about the FP ABIs can be found here: >> 46 * >> 47 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up >> 48 * >> 49 */ >> 50 >> 51 struct mode_req { >> 52 bool single; >> 53 bool soft; >> 54 bool fr1; >> 55 bool frdefault; >> 56 bool fre; >> 57 }; >> 58 >> 59 static const struct mode_req fpu_reqs[] = { >> 60 [MIPS_ABI_FP_ANY] = { true, true, true, true, true }, >> 61 [MIPS_ABI_FP_DOUBLE] = { false, false, false, true, true }, >> 62 [MIPS_ABI_FP_SINGLE] = { true, false, false, false, false }, >> 63 [MIPS_ABI_FP_SOFT] = { false, true, false, false, false }, >> 64 [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false }, >> 65 [MIPS_ABI_FP_XX] = { false, false, true, true, true }, >> 66 [MIPS_ABI_FP_64] = { false, false, true, false, false }, >> 67 [MIPS_ABI_FP_64A] = { false, false, true, false, true } >> 68 }; >> 69 >> 70 /* >> 71 * Mode requirements when .MIPS.abiflags is not present in the ELF. >> 72 * Not present means that everything is acceptable except FR1. >> 73 */ >> 74 static struct mode_req none_req = { true, true, false, true, true }; 14 75 15 int arch_elf_pt_proc(void *_ehdr, void *_phdr, 76 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf, 16 bool is_interp, struct ar 77 bool is_interp, struct arch_elf_state *state) 17 { 78 { >> 79 union { >> 80 struct elf32_hdr e32; >> 81 struct elf64_hdr e64; >> 82 } *ehdr = _ehdr; >> 83 struct elf32_phdr *phdr32 = _phdr; >> 84 struct elf64_phdr *phdr64 = _phdr; >> 85 struct mips_elf_abiflags_v0 abiflags; >> 86 bool elf32; >> 87 u32 flags; >> 88 int ret; >> 89 loff_t pos; >> 90 >> 91 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; >> 92 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; >> 93 >> 94 /* Let's see if this is an O32 ELF */ >> 95 if (elf32) { >> 96 if (flags & EF_MIPS_FP64) { >> 97 /* >> 98 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it >> 99 * later if needed >> 100 */ >> 101 if (is_interp) >> 102 state->interp_fp_abi = MIPS_ABI_FP_OLD_64; >> 103 else >> 104 state->fp_abi = MIPS_ABI_FP_OLD_64; >> 105 } >> 106 if (phdr32->p_type != PT_MIPS_ABIFLAGS) >> 107 return 0; >> 108 >> 109 if (phdr32->p_filesz < sizeof(abiflags)) >> 110 return -EINVAL; >> 111 pos = phdr32->p_offset; >> 112 } else { >> 113 if (phdr64->p_type != PT_MIPS_ABIFLAGS) >> 114 return 0; >> 115 if (phdr64->p_filesz < sizeof(abiflags)) >> 116 return -EINVAL; >> 117 pos = phdr64->p_offset; >> 118 } >> 119 >> 120 ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos); >> 121 if (ret < 0) >> 122 return ret; >> 123 if (ret != sizeof(abiflags)) >> 124 return -EIO; >> 125 >> 126 /* Record the required FP ABIs for use by mips_check_elf */ >> 127 if (is_interp) >> 128 state->interp_fp_abi = abiflags.fp_abi; >> 129 else >> 130 state->fp_abi = abiflags.fp_abi; >> 131 18 return 0; 132 return 0; 19 } 133 } 20 134 21 int arch_check_elf(void *_ehdr, bool has_inter 135 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr, 22 struct arch_elf_state *stat 136 struct arch_elf_state *state) 23 { 137 { >> 138 union { >> 139 struct elf32_hdr e32; >> 140 struct elf64_hdr e64; >> 141 } *ehdr = _ehdr; >> 142 union { >> 143 struct elf32_hdr e32; >> 144 struct elf64_hdr e64; >> 145 } *iehdr = _interp_ehdr; >> 146 struct mode_req prog_req, interp_req; >> 147 int fp_abi, interp_fp_abi, abi0, abi1, max_abi; >> 148 bool elf32; >> 149 u32 flags; >> 150 >> 151 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; >> 152 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; >> 153 >> 154 /* >> 155 * Determine the NaN personality, reject the binary if not allowed. >> 156 * Also ensure that any interpreter matches the executable. >> 157 */ >> 158 if (flags & EF_MIPS_NAN2008) { >> 159 if (mips_use_nan_2008) >> 160 state->nan_2008 = 1; >> 161 else >> 162 return -ENOEXEC; >> 163 } else { >> 164 if (mips_use_nan_legacy) >> 165 state->nan_2008 = 0; >> 166 else >> 167 return -ENOEXEC; >> 168 } >> 169 if (has_interpreter) { >> 170 bool ielf32; >> 171 u32 iflags; >> 172 >> 173 ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; >> 174 iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags; >> 175 >> 176 if ((flags ^ iflags) & EF_MIPS_NAN2008) >> 177 return -ELIBBAD; >> 178 } >> 179 >> 180 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) >> 181 return 0; >> 182 >> 183 fp_abi = state->fp_abi; >> 184 >> 185 if (has_interpreter) { >> 186 interp_fp_abi = state->interp_fp_abi; >> 187 >> 188 abi0 = min(fp_abi, interp_fp_abi); >> 189 abi1 = max(fp_abi, interp_fp_abi); >> 190 } else { >> 191 abi0 = abi1 = fp_abi; >> 192 } >> 193 >> 194 if (elf32 && !(flags & EF_MIPS_ABI2)) { >> 195 /* Default to a mode capable of running code expecting FR=0 */ >> 196 state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0; >> 197 >> 198 /* Allow all ABIs we know about */ >> 199 max_abi = MIPS_ABI_FP_64A; >> 200 } else { >> 201 /* MIPS64 code always uses FR=1, thus the default is easy */ >> 202 state->overall_fp_mode = FP_FR1; >> 203 >> 204 /* Disallow access to the various FPXX & FP64 ABIs */ >> 205 max_abi = MIPS_ABI_FP_SOFT; >> 206 } >> 207 >> 208 if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) || >> 209 (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN)) >> 210 return -ELIBBAD; >> 211 >> 212 /* It's time to determine the FPU mode requirements */ >> 213 prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0]; >> 214 interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1]; >> 215 >> 216 /* >> 217 * Check whether the program's and interp's ABIs have a matching FPU >> 218 * mode requirement. >> 219 */ >> 220 prog_req.single = interp_req.single && prog_req.single; >> 221 prog_req.soft = interp_req.soft && prog_req.soft; >> 222 prog_req.fr1 = interp_req.fr1 && prog_req.fr1; >> 223 prog_req.frdefault = interp_req.frdefault && prog_req.frdefault; >> 224 prog_req.fre = interp_req.fre && prog_req.fre; >> 225 >> 226 /* >> 227 * Determine the desired FPU mode >> 228 * >> 229 * Decision making: >> 230 * >> 231 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This >> 232 * means that we have a combination of program and interpreter >> 233 * that inherently require the hybrid FP mode. >> 234 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or >> 235 * fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU >> 236 * instructions so we don't care about the mode. We will simply use >> 237 * the one preferred by the hardware. In fpxx case, that ABI can >> 238 * handle both FR=1 and FR=0, so, again, we simply choose the one >> 239 * preferred by the hardware. Next, if we only use single-precision >> 240 * FPU instructions, and the default ABI FPU mode is not good >> 241 * (ie single + any ABI combination), we set again the FPU mode to the >> 242 * one is preferred by the hardware. Next, if we know that the code >> 243 * will only use single-precision instructions, shown by single being >> 244 * true but frdefault being false, then we again set the FPU mode to >> 245 * the one that is preferred by the hardware. >> 246 * - We want FP_FR1 if that's the only matching mode and the default one >> 247 * is not good. >> 248 * - Return with -ELIBADD if we can't find a matching FPU mode. >> 249 */ >> 250 if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1) >> 251 state->overall_fp_mode = FP_FRE; >> 252 else if ((prog_req.fr1 && prog_req.frdefault) || >> 253 (prog_req.single && !prog_req.frdefault)) >> 254 /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */ >> 255 state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) && >> 256 cpu_has_mips_r2_r6) ? >> 257 FP_FR1 : FP_FR0; >> 258 else if (prog_req.fr1) >> 259 state->overall_fp_mode = FP_FR1; >> 260 else if (!prog_req.fre && !prog_req.frdefault && >> 261 !prog_req.fr1 && !prog_req.single && !prog_req.soft) >> 262 return -ELIBBAD; >> 263 >> 264 return 0; >> 265 } >> 266 >> 267 static inline void set_thread_fp_mode(int hybrid, int regs32) >> 268 { >> 269 if (hybrid) >> 270 set_thread_flag(TIF_HYBRID_FPREGS); >> 271 else >> 272 clear_thread_flag(TIF_HYBRID_FPREGS); >> 273 if (regs32) >> 274 set_thread_flag(TIF_32BIT_FPREGS); >> 275 else >> 276 clear_thread_flag(TIF_32BIT_FPREGS); >> 277 } >> 278 >> 279 void mips_set_personality_fp(struct arch_elf_state *state) >> 280 { >> 281 /* >> 282 * This function is only ever called for O32 ELFs so we should >> 283 * not be worried about N32/N64 binaries. >> 284 */ >> 285 >> 286 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) >> 287 return; >> 288 >> 289 switch (state->overall_fp_mode) { >> 290 case FP_FRE: >> 291 set_thread_fp_mode(1, 0); >> 292 break; >> 293 case FP_FR0: >> 294 set_thread_fp_mode(0, 1); >> 295 break; >> 296 case FP_FR1: >> 297 set_thread_fp_mode(0, 0); >> 298 break; >> 299 default: >> 300 BUG(); >> 301 } >> 302 } >> 303 >> 304 /* >> 305 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode >> 306 * in FCSR according to the ELF NaN personality. >> 307 */ >> 308 void mips_set_personality_nan(struct arch_elf_state *state) >> 309 { >> 310 struct cpuinfo_mips *c = &boot_cpu_data; >> 311 struct task_struct *t = current; >> 312 >> 313 /* Do this early so t->thread.fpu.fcr31 won't be clobbered in case >> 314 * we are preempted before the lose_fpu(0) in start_thread. >> 315 */ >> 316 lose_fpu(0); >> 317 >> 318 t->thread.fpu.fcr31 = c->fpu_csr31; >> 319 switch (state->nan_2008) { >> 320 case 0: >> 321 break; >> 322 case 1: >> 323 if (!(c->fpu_msk31 & FPU_CSR_NAN2008)) >> 324 t->thread.fpu.fcr31 |= FPU_CSR_NAN2008; >> 325 if (!(c->fpu_msk31 & FPU_CSR_ABS2008)) >> 326 t->thread.fpu.fcr31 |= FPU_CSR_ABS2008; >> 327 break; >> 328 default: >> 329 BUG(); >> 330 } >> 331 } >> 332 >> 333 #endif /* CONFIG_MIPS_FP_SUPPORT */ >> 334 >> 335 int mips_elf_read_implies_exec(void *elf_ex, int exstack) >> 336 { >> 337 if (exstack != EXSTACK_DISABLE_X) { >> 338 /* The binary doesn't request a non-executable stack */ >> 339 return 1; >> 340 } >> 341 >> 342 if (!cpu_has_rixi) { >> 343 /* The CPU doesn't support non-executable memory */ >> 344 return 1; >> 345 } >> 346 24 return 0; 347 return 0; 25 } 348 } >> 349 EXPORT_SYMBOL(mips_elf_read_implies_exec); 26 350
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.