1 // SPDX-License-Identifier: GPL-2.0 !! 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * Author: Huacai Chen <chenhuacai@loongson.cn !! 3 * Copyright (C) 2014 Imagination Technologies 4 * Copyright (C) 2020-2022 Loongson Technology !! 4 * Author: Paul Burton <paul.burton@mips.com> 5 */ 5 */ 6 6 7 #include <linux/binfmts.h> 7 #include <linux/binfmts.h> 8 #include <linux/elf.h> 8 #include <linux/elf.h> 9 #include <linux/export.h> 9 #include <linux/export.h> 10 #include <linux/sched.h> 10 #include <linux/sched.h> 11 11 12 #include <asm/cpu-features.h> 12 #include <asm/cpu-features.h> 13 #include <asm/cpu-info.h> 13 #include <asm/cpu-info.h> 14 14 >> 15 #ifdef CONFIG_MIPS_FP_SUPPORT >> 16 >> 17 /* Whether to accept legacy-NaN and 2008-NaN user binaries. */ >> 18 bool mips_use_nan_legacy; >> 19 bool mips_use_nan_2008; >> 20 >> 21 /* FPU modes */ >> 22 enum { >> 23 FP_FRE, >> 24 FP_FR0, >> 25 FP_FR1, >> 26 }; >> 27 >> 28 /** >> 29 * struct mode_req - ABI FPU mode requirements >> 30 * @single: The program being loaded needs an FPU but it will only issue >> 31 * single precision instructions meaning that it can execute in >> 32 * either FR0 or FR1. >> 33 * @soft: The soft(-float) requirement means that the program being >> 34 * loaded needs has no FPU dependency at all (i.e. it has no >> 35 * FPU instructions). >> 36 * @fr1: The program being loaded depends on FPU being in FR=1 mode. >> 37 * @frdefault: The program being loaded depends on the default FPU mode. >> 38 * That is FR0 for O32 and FR1 for N32/N64. >> 39 * @fre: The program being loaded depends on FPU with FRE=1. This mode is >> 40 * a bridge which uses FR=1 whilst still being able to maintain >> 41 * full compatibility with pre-existing code using the O32 FP32 >> 42 * ABI. >> 43 * >> 44 * More information about the FP ABIs can be found here: >> 45 * >> 46 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up >> 47 * >> 48 */ >> 49 >> 50 struct mode_req { >> 51 bool single; >> 52 bool soft; >> 53 bool fr1; >> 54 bool frdefault; >> 55 bool fre; >> 56 }; >> 57 >> 58 static const struct mode_req fpu_reqs[] = { >> 59 [MIPS_ABI_FP_ANY] = { true, true, true, true, true }, >> 60 [MIPS_ABI_FP_DOUBLE] = { false, false, false, true, true }, >> 61 [MIPS_ABI_FP_SINGLE] = { true, false, false, false, false }, >> 62 [MIPS_ABI_FP_SOFT] = { false, true, false, false, false }, >> 63 [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false }, >> 64 [MIPS_ABI_FP_XX] = { false, false, true, true, true }, >> 65 [MIPS_ABI_FP_64] = { false, false, true, false, false }, >> 66 [MIPS_ABI_FP_64A] = { false, false, true, false, true } >> 67 }; >> 68 >> 69 /* >> 70 * Mode requirements when .MIPS.abiflags is not present in the ELF. >> 71 * Not present means that everything is acceptable except FR1. >> 72 */ >> 73 static struct mode_req none_req = { true, true, false, true, true }; >> 74 15 int arch_elf_pt_proc(void *_ehdr, void *_phdr, 75 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf, 16 bool is_interp, struct ar 76 bool is_interp, struct arch_elf_state *state) 17 { 77 { >> 78 union { >> 79 struct elf32_hdr e32; >> 80 struct elf64_hdr e64; >> 81 } *ehdr = _ehdr; >> 82 struct elf32_phdr *phdr32 = _phdr; >> 83 struct elf64_phdr *phdr64 = _phdr; >> 84 struct mips_elf_abiflags_v0 abiflags; >> 85 bool elf32; >> 86 u32 flags; >> 87 int ret; >> 88 loff_t pos; >> 89 >> 90 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; >> 91 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; >> 92 >> 93 /* Let's see if this is an O32 ELF */ >> 94 if (elf32) { >> 95 if (flags & EF_MIPS_FP64) { >> 96 /* >> 97 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it >> 98 * later if needed >> 99 */ >> 100 if (is_interp) >> 101 state->interp_fp_abi = MIPS_ABI_FP_OLD_64; >> 102 else >> 103 state->fp_abi = MIPS_ABI_FP_OLD_64; >> 104 } >> 105 if (phdr32->p_type != PT_MIPS_ABIFLAGS) >> 106 return 0; >> 107 >> 108 if (phdr32->p_filesz < sizeof(abiflags)) >> 109 return -EINVAL; >> 110 pos = phdr32->p_offset; >> 111 } else { >> 112 if (phdr64->p_type != PT_MIPS_ABIFLAGS) >> 113 return 0; >> 114 if (phdr64->p_filesz < sizeof(abiflags)) >> 115 return -EINVAL; >> 116 pos = phdr64->p_offset; >> 117 } >> 118 >> 119 ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos); >> 120 if (ret < 0) >> 121 return ret; >> 122 if (ret != sizeof(abiflags)) >> 123 return -EIO; >> 124 >> 125 /* Record the required FP ABIs for use by mips_check_elf */ >> 126 if (is_interp) >> 127 state->interp_fp_abi = abiflags.fp_abi; >> 128 else >> 129 state->fp_abi = abiflags.fp_abi; >> 130 18 return 0; 131 return 0; 19 } 132 } 20 133 21 int arch_check_elf(void *_ehdr, bool has_inter 134 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr, 22 struct arch_elf_state *stat 135 struct arch_elf_state *state) 23 { 136 { >> 137 union { >> 138 struct elf32_hdr e32; >> 139 struct elf64_hdr e64; >> 140 } *ehdr = _ehdr; >> 141 union { >> 142 struct elf32_hdr e32; >> 143 struct elf64_hdr e64; >> 144 } *iehdr = _interp_ehdr; >> 145 struct mode_req prog_req, interp_req; >> 146 int fp_abi, interp_fp_abi, abi0, abi1, max_abi; >> 147 bool elf32; >> 148 u32 flags; >> 149 >> 150 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; >> 151 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; >> 152 >> 153 /* >> 154 * Determine the NaN personality, reject the binary if not allowed. >> 155 * Also ensure that any interpreter matches the executable. >> 156 */ >> 157 if (flags & EF_MIPS_NAN2008) { >> 158 if (mips_use_nan_2008) >> 159 state->nan_2008 = 1; >> 160 else >> 161 return -ENOEXEC; >> 162 } else { >> 163 if (mips_use_nan_legacy) >> 164 state->nan_2008 = 0; >> 165 else >> 166 return -ENOEXEC; >> 167 } >> 168 if (has_interpreter) { >> 169 bool ielf32; >> 170 u32 iflags; >> 171 >> 172 ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; >> 173 iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags; >> 174 >> 175 if ((flags ^ iflags) & EF_MIPS_NAN2008) >> 176 return -ELIBBAD; >> 177 } >> 178 >> 179 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) >> 180 return 0; >> 181 >> 182 fp_abi = state->fp_abi; >> 183 >> 184 if (has_interpreter) { >> 185 interp_fp_abi = state->interp_fp_abi; >> 186 >> 187 abi0 = min(fp_abi, interp_fp_abi); >> 188 abi1 = max(fp_abi, interp_fp_abi); >> 189 } else { >> 190 abi0 = abi1 = fp_abi; >> 191 } >> 192 >> 193 if (elf32 && !(flags & EF_MIPS_ABI2)) { >> 194 /* Default to a mode capable of running code expecting FR=0 */ >> 195 state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0; >> 196 >> 197 /* Allow all ABIs we know about */ >> 198 max_abi = MIPS_ABI_FP_64A; >> 199 } else { >> 200 /* MIPS64 code always uses FR=1, thus the default is easy */ >> 201 state->overall_fp_mode = FP_FR1; >> 202 >> 203 /* Disallow access to the various FPXX & FP64 ABIs */ >> 204 max_abi = MIPS_ABI_FP_SOFT; >> 205 } >> 206 >> 207 if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) || >> 208 (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN)) >> 209 return -ELIBBAD; >> 210 >> 211 /* It's time to determine the FPU mode requirements */ >> 212 prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0]; >> 213 interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1]; >> 214 >> 215 /* >> 216 * Check whether the program's and interp's ABIs have a matching FPU >> 217 * mode requirement. >> 218 */ >> 219 prog_req.single = interp_req.single && prog_req.single; >> 220 prog_req.soft = interp_req.soft && prog_req.soft; >> 221 prog_req.fr1 = interp_req.fr1 && prog_req.fr1; >> 222 prog_req.frdefault = interp_req.frdefault && prog_req.frdefault; >> 223 prog_req.fre = interp_req.fre && prog_req.fre; >> 224 >> 225 /* >> 226 * Determine the desired FPU mode >> 227 * >> 228 * Decision making: >> 229 * >> 230 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This >> 231 * means that we have a combination of program and interpreter >> 232 * that inherently require the hybrid FP mode. >> 233 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or >> 234 * fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU >> 235 * instructions so we don't care about the mode. We will simply use >> 236 * the one preferred by the hardware. In fpxx case, that ABI can >> 237 * handle both FR=1 and FR=0, so, again, we simply choose the one >> 238 * preferred by the hardware. Next, if we only use single-precision >> 239 * FPU instructions, and the default ABI FPU mode is not good >> 240 * (ie single + any ABI combination), we set again the FPU mode to the >> 241 * one is preferred by the hardware. Next, if we know that the code >> 242 * will only use single-precision instructions, shown by single being >> 243 * true but frdefault being false, then we again set the FPU mode to >> 244 * the one that is preferred by the hardware. >> 245 * - We want FP_FR1 if that's the only matching mode and the default one >> 246 * is not good. >> 247 * - Return with -ELIBADD if we can't find a matching FPU mode. >> 248 */ >> 249 if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1) >> 250 state->overall_fp_mode = FP_FRE; >> 251 else if ((prog_req.fr1 && prog_req.frdefault) || >> 252 (prog_req.single && !prog_req.frdefault)) >> 253 /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */ >> 254 state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) && >> 255 cpu_has_mips_r2_r6) ? >> 256 FP_FR1 : FP_FR0; >> 257 else if (prog_req.fr1) >> 258 state->overall_fp_mode = FP_FR1; >> 259 else if (!prog_req.fre && !prog_req.frdefault && >> 260 !prog_req.fr1 && !prog_req.single && !prog_req.soft) >> 261 return -ELIBBAD; >> 262 >> 263 return 0; >> 264 } >> 265 >> 266 static inline void set_thread_fp_mode(int hybrid, int regs32) >> 267 { >> 268 if (hybrid) >> 269 set_thread_flag(TIF_HYBRID_FPREGS); >> 270 else >> 271 clear_thread_flag(TIF_HYBRID_FPREGS); >> 272 if (regs32) >> 273 set_thread_flag(TIF_32BIT_FPREGS); >> 274 else >> 275 clear_thread_flag(TIF_32BIT_FPREGS); >> 276 } >> 277 >> 278 void mips_set_personality_fp(struct arch_elf_state *state) >> 279 { >> 280 /* >> 281 * This function is only ever called for O32 ELFs so we should >> 282 * not be worried about N32/N64 binaries. >> 283 */ >> 284 >> 285 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) >> 286 return; >> 287 >> 288 switch (state->overall_fp_mode) { >> 289 case FP_FRE: >> 290 set_thread_fp_mode(1, 0); >> 291 break; >> 292 case FP_FR0: >> 293 set_thread_fp_mode(0, 1); >> 294 break; >> 295 case FP_FR1: >> 296 set_thread_fp_mode(0, 0); >> 297 break; >> 298 default: >> 299 BUG(); >> 300 } >> 301 } >> 302 >> 303 /* >> 304 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode >> 305 * in FCSR according to the ELF NaN personality. >> 306 */ >> 307 void mips_set_personality_nan(struct arch_elf_state *state) >> 308 { >> 309 struct cpuinfo_mips *c = &boot_cpu_data; >> 310 struct task_struct *t = current; >> 311 >> 312 t->thread.fpu.fcr31 = c->fpu_csr31; >> 313 switch (state->nan_2008) { >> 314 case 0: >> 315 break; >> 316 case 1: >> 317 if (!(c->fpu_msk31 & FPU_CSR_NAN2008)) >> 318 t->thread.fpu.fcr31 |= FPU_CSR_NAN2008; >> 319 if (!(c->fpu_msk31 & FPU_CSR_ABS2008)) >> 320 t->thread.fpu.fcr31 |= FPU_CSR_ABS2008; >> 321 break; >> 322 default: >> 323 BUG(); >> 324 } >> 325 } >> 326 >> 327 #endif /* CONFIG_MIPS_FP_SUPPORT */ >> 328 >> 329 int mips_elf_read_implies_exec(void *elf_ex, int exstack) >> 330 { >> 331 if (exstack != EXSTACK_DISABLE_X) { >> 332 /* The binary doesn't request a non-executable stack */ >> 333 return 1; >> 334 } >> 335 >> 336 if (!cpu_has_rixi) { >> 337 /* The CPU doesn't support non-executable memory */ >> 338 return 1; >> 339 } >> 340 24 return 0; 341 return 0; 25 } 342 } >> 343 EXPORT_SYMBOL(mips_elf_read_implies_exec); 26 344
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.