1 /* 1 /* 2 * intc.c -- interrupt controller or ColdFir 2 * intc.c -- interrupt controller or ColdFire 5272 SoC 3 * 3 * 4 * (C) Copyright 2009, Greg Ungerer <gerg@snap 4 * (C) Copyright 2009, Greg Ungerer <gerg@snapgear.com> 5 * 5 * 6 * This file is subject to the terms and condi 6 * This file is subject to the terms and conditions of the GNU General Public 7 * License. See the file COPYING in the main 7 * License. See the file COPYING in the main directory of this archive 8 * for more details. 8 * for more details. 9 */ 9 */ 10 10 11 #include <linux/types.h> 11 #include <linux/types.h> 12 #include <linux/init.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 13 #include <linux/kernel.h> 14 #include <linux/interrupt.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/irq.h> 16 #include <linux/irq.h> 17 #include <linux/io.h> 17 #include <linux/io.h> 18 #include <asm/coldfire.h> 18 #include <asm/coldfire.h> 19 #include <asm/mcfsim.h> 19 #include <asm/mcfsim.h> 20 #include <asm/traps.h> 20 #include <asm/traps.h> 21 21 22 /* 22 /* 23 * The 5272 ColdFire interrupt controller is n 23 * The 5272 ColdFire interrupt controller is nothing like any other 24 * ColdFire interrupt controller - it truly is 24 * ColdFire interrupt controller - it truly is completely different. 25 * Given its age it is unlikely to be used on 25 * Given its age it is unlikely to be used on any other ColdFire CPU. 26 */ 26 */ 27 27 28 /* 28 /* 29 * The masking and priproty setting of interru 29 * The masking and priproty setting of interrupts on the 5272 is done 30 * via a set of 4 "Interrupt Controller Regist 30 * via a set of 4 "Interrupt Controller Registers" (ICR). There is a 31 * loose mapping of vector number to register 31 * loose mapping of vector number to register and internal bits, but 32 * a table is the easiest and quickest way to 32 * a table is the easiest and quickest way to map them. 33 * 33 * 34 * Note that the external interrupts are edge 34 * Note that the external interrupts are edge triggered (unlike the 35 * internal interrupt sources which are level 35 * internal interrupt sources which are level triggered). Which means 36 * they also need acknowledging via acknowledg 36 * they also need acknowledging via acknowledge bits. 37 */ 37 */ 38 struct irqmap { 38 struct irqmap { 39 unsigned int icr; 39 unsigned int icr; 40 unsigned char index; 40 unsigned char index; 41 unsigned char ack; 41 unsigned char ack; 42 }; 42 }; 43 43 44 static struct irqmap intc_irqmap[MCFINT_VECMAX 44 static struct irqmap intc_irqmap[MCFINT_VECMAX - MCFINT_VECBASE] = { 45 /*MCF_IRQ_SPURIOUS*/ { .icr = 0, 45 /*MCF_IRQ_SPURIOUS*/ { .icr = 0, .index = 0, .ack = 0, }, 46 /*MCF_IRQ_EINT1*/ { .icr = MCFSI 46 /*MCF_IRQ_EINT1*/ { .icr = MCFSIM_ICR1, .index = 28, .ack = 1, }, 47 /*MCF_IRQ_EINT2*/ { .icr = MCFSI 47 /*MCF_IRQ_EINT2*/ { .icr = MCFSIM_ICR1, .index = 24, .ack = 1, }, 48 /*MCF_IRQ_EINT3*/ { .icr = MCFSI 48 /*MCF_IRQ_EINT3*/ { .icr = MCFSIM_ICR1, .index = 20, .ack = 1, }, 49 /*MCF_IRQ_EINT4*/ { .icr = MCFSI 49 /*MCF_IRQ_EINT4*/ { .icr = MCFSIM_ICR1, .index = 16, .ack = 1, }, 50 /*MCF_IRQ_TIMER1*/ { .icr = MCFSI 50 /*MCF_IRQ_TIMER1*/ { .icr = MCFSIM_ICR1, .index = 12, .ack = 0, }, 51 /*MCF_IRQ_TIMER2*/ { .icr = MCFSI 51 /*MCF_IRQ_TIMER2*/ { .icr = MCFSIM_ICR1, .index = 8, .ack = 0, }, 52 /*MCF_IRQ_TIMER3*/ { .icr = MCFSI 52 /*MCF_IRQ_TIMER3*/ { .icr = MCFSIM_ICR1, .index = 4, .ack = 0, }, 53 /*MCF_IRQ_TIMER4*/ { .icr = MCFSI 53 /*MCF_IRQ_TIMER4*/ { .icr = MCFSIM_ICR1, .index = 0, .ack = 0, }, 54 /*MCF_IRQ_UART1*/ { .icr = MCFSI 54 /*MCF_IRQ_UART1*/ { .icr = MCFSIM_ICR2, .index = 28, .ack = 0, }, 55 /*MCF_IRQ_UART2*/ { .icr = MCFSI 55 /*MCF_IRQ_UART2*/ { .icr = MCFSIM_ICR2, .index = 24, .ack = 0, }, 56 /*MCF_IRQ_PLIP*/ { .icr = MCFSI 56 /*MCF_IRQ_PLIP*/ { .icr = MCFSIM_ICR2, .index = 20, .ack = 0, }, 57 /*MCF_IRQ_PLIA*/ { .icr = MCFSI 57 /*MCF_IRQ_PLIA*/ { .icr = MCFSIM_ICR2, .index = 16, .ack = 0, }, 58 /*MCF_IRQ_USB0*/ { .icr = MCFSI 58 /*MCF_IRQ_USB0*/ { .icr = MCFSIM_ICR2, .index = 12, .ack = 0, }, 59 /*MCF_IRQ_USB1*/ { .icr = MCFSI 59 /*MCF_IRQ_USB1*/ { .icr = MCFSIM_ICR2, .index = 8, .ack = 0, }, 60 /*MCF_IRQ_USB2*/ { .icr = MCFSI 60 /*MCF_IRQ_USB2*/ { .icr = MCFSIM_ICR2, .index = 4, .ack = 0, }, 61 /*MCF_IRQ_USB3*/ { .icr = MCFSI 61 /*MCF_IRQ_USB3*/ { .icr = MCFSIM_ICR2, .index = 0, .ack = 0, }, 62 /*MCF_IRQ_USB4*/ { .icr = MCFSI 62 /*MCF_IRQ_USB4*/ { .icr = MCFSIM_ICR3, .index = 28, .ack = 0, }, 63 /*MCF_IRQ_USB5*/ { .icr = MCFSI 63 /*MCF_IRQ_USB5*/ { .icr = MCFSIM_ICR3, .index = 24, .ack = 0, }, 64 /*MCF_IRQ_USB6*/ { .icr = MCFSI 64 /*MCF_IRQ_USB6*/ { .icr = MCFSIM_ICR3, .index = 20, .ack = 0, }, 65 /*MCF_IRQ_USB7*/ { .icr = MCFSI 65 /*MCF_IRQ_USB7*/ { .icr = MCFSIM_ICR3, .index = 16, .ack = 0, }, 66 /*MCF_IRQ_DMA*/ { .icr = MCFSI 66 /*MCF_IRQ_DMA*/ { .icr = MCFSIM_ICR3, .index = 12, .ack = 0, }, 67 /*MCF_IRQ_ERX*/ { .icr = MCFSI 67 /*MCF_IRQ_ERX*/ { .icr = MCFSIM_ICR3, .index = 8, .ack = 0, }, 68 /*MCF_IRQ_ETX*/ { .icr = MCFSI 68 /*MCF_IRQ_ETX*/ { .icr = MCFSIM_ICR3, .index = 4, .ack = 0, }, 69 /*MCF_IRQ_ENTC*/ { .icr = MCFSI 69 /*MCF_IRQ_ENTC*/ { .icr = MCFSIM_ICR3, .index = 0, .ack = 0, }, 70 /*MCF_IRQ_QSPI*/ { .icr = MCFSI 70 /*MCF_IRQ_QSPI*/ { .icr = MCFSIM_ICR4, .index = 28, .ack = 0, }, 71 /*MCF_IRQ_EINT5*/ { .icr = MCFSI 71 /*MCF_IRQ_EINT5*/ { .icr = MCFSIM_ICR4, .index = 24, .ack = 1, }, 72 /*MCF_IRQ_EINT6*/ { .icr = MCFSI 72 /*MCF_IRQ_EINT6*/ { .icr = MCFSIM_ICR4, .index = 20, .ack = 1, }, 73 /*MCF_IRQ_SWTO*/ { .icr = MCFSI 73 /*MCF_IRQ_SWTO*/ { .icr = MCFSIM_ICR4, .index = 16, .ack = 0, }, 74 }; 74 }; 75 75 76 /* 76 /* 77 * The act of masking the interrupt also has a 77 * The act of masking the interrupt also has a side effect of 'ack'ing 78 * an interrupt on this irq (for the external 78 * an interrupt on this irq (for the external irqs). So this mask function 79 * is also an ack_mask function. 79 * is also an ack_mask function. 80 */ 80 */ 81 static void intc_irq_mask(struct irq_data *d) 81 static void intc_irq_mask(struct irq_data *d) 82 { 82 { 83 unsigned int irq = d->irq; 83 unsigned int irq = d->irq; 84 84 85 if ((irq >= MCFINT_VECBASE) && (irq <= 85 if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) { 86 u32 v; 86 u32 v; 87 irq -= MCFINT_VECBASE; 87 irq -= MCFINT_VECBASE; 88 v = 0x8 << intc_irqmap[irq].in 88 v = 0x8 << intc_irqmap[irq].index; 89 writel(v, intc_irqmap[irq].icr 89 writel(v, intc_irqmap[irq].icr); 90 } 90 } 91 } 91 } 92 92 93 static void intc_irq_unmask(struct irq_data *d 93 static void intc_irq_unmask(struct irq_data *d) 94 { 94 { 95 unsigned int irq = d->irq; 95 unsigned int irq = d->irq; 96 96 97 if ((irq >= MCFINT_VECBASE) && (irq <= 97 if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) { 98 u32 v; 98 u32 v; 99 irq -= MCFINT_VECBASE; 99 irq -= MCFINT_VECBASE; 100 v = 0xd << intc_irqmap[irq].in 100 v = 0xd << intc_irqmap[irq].index; 101 writel(v, intc_irqmap[irq].icr 101 writel(v, intc_irqmap[irq].icr); 102 } 102 } 103 } 103 } 104 104 105 static void intc_irq_ack(struct irq_data *d) 105 static void intc_irq_ack(struct irq_data *d) 106 { 106 { 107 unsigned int irq = d->irq; 107 unsigned int irq = d->irq; 108 108 109 /* Only external interrupts are acked 109 /* Only external interrupts are acked */ 110 if ((irq >= MCFINT_VECBASE) && (irq <= 110 if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) { 111 irq -= MCFINT_VECBASE; 111 irq -= MCFINT_VECBASE; 112 if (intc_irqmap[irq].ack) { 112 if (intc_irqmap[irq].ack) { 113 u32 v; 113 u32 v; 114 v = readl(intc_irqmap[ 114 v = readl(intc_irqmap[irq].icr); 115 v &= (0x7 << intc_irqm 115 v &= (0x7 << intc_irqmap[irq].index); 116 v |= (0x8 << intc_irqm 116 v |= (0x8 << intc_irqmap[irq].index); 117 writel(v, intc_irqmap[ 117 writel(v, intc_irqmap[irq].icr); 118 } 118 } 119 } 119 } 120 } 120 } 121 121 122 static int intc_irq_set_type(struct irq_data * 122 static int intc_irq_set_type(struct irq_data *d, unsigned int type) 123 { 123 { 124 unsigned int irq = d->irq; 124 unsigned int irq = d->irq; 125 125 126 if ((irq >= MCFINT_VECBASE) && (irq <= 126 if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) { 127 irq -= MCFINT_VECBASE; 127 irq -= MCFINT_VECBASE; 128 if (intc_irqmap[irq].ack) { 128 if (intc_irqmap[irq].ack) { 129 u32 v; 129 u32 v; 130 v = readl(MCFSIM_PITR) 130 v = readl(MCFSIM_PITR); 131 if (type == IRQ_TYPE_E 131 if (type == IRQ_TYPE_EDGE_FALLING) 132 v &= ~(0x1 << 132 v &= ~(0x1 << (32 - irq)); 133 else 133 else 134 v |= (0x1 << ( 134 v |= (0x1 << (32 - irq)); 135 writel(v, MCFSIM_PITR) 135 writel(v, MCFSIM_PITR); 136 } 136 } 137 } 137 } 138 return 0; 138 return 0; 139 } 139 } 140 140 141 /* 141 /* 142 * Simple flow handler to deal with the extern 142 * Simple flow handler to deal with the external edge triggered interrupts. 143 * We need to be careful with the masking/acki 143 * We need to be careful with the masking/acking due to the side effects 144 * of masking an interrupt. 144 * of masking an interrupt. 145 */ 145 */ 146 static void intc_external_irq(struct irq_desc 146 static void intc_external_irq(struct irq_desc *desc) 147 { 147 { 148 irq_desc_get_chip(desc)->irq_ack(&desc 148 irq_desc_get_chip(desc)->irq_ack(&desc->irq_data); 149 handle_simple_irq(desc); 149 handle_simple_irq(desc); 150 } 150 } 151 151 152 static struct irq_chip intc_irq_chip = { 152 static struct irq_chip intc_irq_chip = { 153 .name = "CF-INTC", 153 .name = "CF-INTC", 154 .irq_mask = intc_irq_mask, 154 .irq_mask = intc_irq_mask, 155 .irq_unmask = intc_irq_unmask, 155 .irq_unmask = intc_irq_unmask, 156 .irq_mask_ack = intc_irq_mask, 156 .irq_mask_ack = intc_irq_mask, 157 .irq_ack = intc_irq_ack, 157 .irq_ack = intc_irq_ack, 158 .irq_set_type = intc_irq_set_type, 158 .irq_set_type = intc_irq_set_type, 159 }; 159 }; 160 160 161 void __init init_IRQ(void) 161 void __init init_IRQ(void) 162 { 162 { 163 int irq, edge; 163 int irq, edge; 164 164 165 /* Mask all interrupt sources */ 165 /* Mask all interrupt sources */ 166 writel(0x88888888, MCFSIM_ICR1); 166 writel(0x88888888, MCFSIM_ICR1); 167 writel(0x88888888, MCFSIM_ICR2); 167 writel(0x88888888, MCFSIM_ICR2); 168 writel(0x88888888, MCFSIM_ICR3); 168 writel(0x88888888, MCFSIM_ICR3); 169 writel(0x88888888, MCFSIM_ICR4); 169 writel(0x88888888, MCFSIM_ICR4); 170 170 171 for (irq = 0; (irq < NR_IRQS); irq++) 171 for (irq = 0; (irq < NR_IRQS); irq++) { 172 irq_set_chip(irq, &intc_irq_ch 172 irq_set_chip(irq, &intc_irq_chip); 173 edge = 0; 173 edge = 0; 174 if ((irq >= MCFINT_VECBASE) && 174 if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) 175 edge = intc_irqmap[irq 175 edge = intc_irqmap[irq - MCFINT_VECBASE].ack; 176 if (edge) { 176 if (edge) { 177 irq_set_irq_type(irq, 177 irq_set_irq_type(irq, IRQ_TYPE_EDGE_RISING); 178 irq_set_handler(irq, i 178 irq_set_handler(irq, intc_external_irq); 179 } else { 179 } else { 180 irq_set_irq_type(irq, 180 irq_set_irq_type(irq, IRQ_TYPE_LEVEL_HIGH); 181 irq_set_handler(irq, h 181 irq_set_handler(irq, handle_level_irq); 182 } 182 } 183 } 183 } 184 } 184 } 185 185 186 186
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.