1 /* 1 /* 2 * intc.c -- support for the old ColdFire int 2 * intc.c -- support for the old ColdFire interrupt controller 3 * 3 * 4 * (C) Copyright 2009, Greg Ungerer <gerg@snap 4 * (C) Copyright 2009, Greg Ungerer <gerg@snapgear.com> 5 * 5 * 6 * This file is subject to the terms and condi 6 * This file is subject to the terms and conditions of the GNU General Public 7 * License. See the file COPYING in the main 7 * License. See the file COPYING in the main directory of this archive 8 * for more details. 8 * for more details. 9 */ 9 */ 10 10 11 #include <linux/types.h> 11 #include <linux/types.h> 12 #include <linux/init.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 13 #include <linux/kernel.h> 14 #include <linux/interrupt.h> 14 #include <linux/interrupt.h> 15 #include <linux/irq.h> 15 #include <linux/irq.h> 16 #include <linux/io.h> 16 #include <linux/io.h> 17 #include <asm/traps.h> 17 #include <asm/traps.h> 18 #include <asm/coldfire.h> 18 #include <asm/coldfire.h> 19 #include <asm/mcfsim.h> 19 #include <asm/mcfsim.h> 20 20 21 /* 21 /* 22 * The mapping of irq number to a mask registe 22 * The mapping of irq number to a mask register bit is not one-to-one. 23 * The irq numbers are either based on "level" 23 * The irq numbers are either based on "level" of interrupt or fixed 24 * for an autovector-able interrupt. So we kee 24 * for an autovector-able interrupt. So we keep a local data structure 25 * that maps from irq to mask register. Not al 25 * that maps from irq to mask register. Not all interrupts will have 26 * an IMR bit. 26 * an IMR bit. 27 */ 27 */ 28 unsigned char mcf_irq2imr[NR_IRQS]; 28 unsigned char mcf_irq2imr[NR_IRQS]; 29 29 30 /* 30 /* 31 * Define the minimum and maximum external int 31 * Define the minimum and maximum external interrupt numbers. 32 * This is also used as the "level" interrupt 32 * This is also used as the "level" interrupt numbers. 33 */ 33 */ 34 #define EIRQ1 25 34 #define EIRQ1 25 35 #define EIRQ7 31 35 #define EIRQ7 31 36 36 37 /* 37 /* 38 * In the early version 2 core ColdFire parts 38 * In the early version 2 core ColdFire parts the IMR register was 16 bits 39 * in size. Version 3 (and later version 2) co 39 * in size. Version 3 (and later version 2) core parts have a 32 bit 40 * sized IMR register. Provide some size indep 40 * sized IMR register. Provide some size independent methods to access the 41 * IMR register. 41 * IMR register. 42 */ 42 */ 43 #ifdef MCFSIM_IMR_IS_16BITS 43 #ifdef MCFSIM_IMR_IS_16BITS 44 44 45 void mcf_setimr(int index) 45 void mcf_setimr(int index) 46 { 46 { 47 u16 imr; 47 u16 imr; 48 imr = __raw_readw(MCFSIM_IMR); 48 imr = __raw_readw(MCFSIM_IMR); 49 __raw_writew(imr | (0x1 << index), MCF 49 __raw_writew(imr | (0x1 << index), MCFSIM_IMR); 50 } 50 } 51 51 52 void mcf_clrimr(int index) 52 void mcf_clrimr(int index) 53 { 53 { 54 u16 imr; 54 u16 imr; 55 imr = __raw_readw(MCFSIM_IMR); 55 imr = __raw_readw(MCFSIM_IMR); 56 __raw_writew(imr & ~(0x1 << index), MC 56 __raw_writew(imr & ~(0x1 << index), MCFSIM_IMR); 57 } 57 } 58 58 59 static void mcf_maskimr(unsigned int mask) 59 static void mcf_maskimr(unsigned int mask) 60 { 60 { 61 u16 imr; 61 u16 imr; 62 imr = __raw_readw(MCFSIM_IMR); 62 imr = __raw_readw(MCFSIM_IMR); 63 imr |= mask; 63 imr |= mask; 64 __raw_writew(imr, MCFSIM_IMR); 64 __raw_writew(imr, MCFSIM_IMR); 65 } 65 } 66 66 67 #else 67 #else 68 68 69 void mcf_setimr(int index) 69 void mcf_setimr(int index) 70 { 70 { 71 u32 imr; 71 u32 imr; 72 imr = __raw_readl(MCFSIM_IMR); 72 imr = __raw_readl(MCFSIM_IMR); 73 __raw_writel(imr | (0x1 << index), MCF 73 __raw_writel(imr | (0x1 << index), MCFSIM_IMR); 74 } 74 } 75 75 76 void mcf_clrimr(int index) 76 void mcf_clrimr(int index) 77 { 77 { 78 u32 imr; 78 u32 imr; 79 imr = __raw_readl(MCFSIM_IMR); 79 imr = __raw_readl(MCFSIM_IMR); 80 __raw_writel(imr & ~(0x1 << index), MC 80 __raw_writel(imr & ~(0x1 << index), MCFSIM_IMR); 81 } 81 } 82 82 83 static void mcf_maskimr(unsigned int mask) 83 static void mcf_maskimr(unsigned int mask) 84 { 84 { 85 u32 imr; 85 u32 imr; 86 imr = __raw_readl(MCFSIM_IMR); 86 imr = __raw_readl(MCFSIM_IMR); 87 imr |= mask; 87 imr |= mask; 88 __raw_writel(imr, MCFSIM_IMR); 88 __raw_writel(imr, MCFSIM_IMR); 89 } 89 } 90 90 91 #endif 91 #endif 92 92 93 /* 93 /* 94 * Interrupts can be "vectored" on the ColdFir 94 * Interrupts can be "vectored" on the ColdFire cores that support this old 95 * interrupt controller. That is, the device r 95 * interrupt controller. That is, the device raising the interrupt can also 96 * supply the vector number to interrupt throu 96 * supply the vector number to interrupt through. The AVR register of the 97 * interrupt controller enables or disables th 97 * interrupt controller enables or disables this for each external interrupt, 98 * so provide generic support for this. Settin 98 * so provide generic support for this. Setting this up is out-of-band for 99 * the interrupt system API's, and needs to be 99 * the interrupt system API's, and needs to be done by the driver that 100 * supports this device. Very few devices actu 100 * supports this device. Very few devices actually use this. 101 */ 101 */ 102 void mcf_autovector(int irq) 102 void mcf_autovector(int irq) 103 { 103 { 104 #ifdef MCFSIM_AVR 104 #ifdef MCFSIM_AVR 105 if ((irq >= EIRQ1) && (irq <= EIRQ7)) 105 if ((irq >= EIRQ1) && (irq <= EIRQ7)) { 106 u8 avec; 106 u8 avec; 107 avec = __raw_readb(MCFSIM_AVR) 107 avec = __raw_readb(MCFSIM_AVR); 108 avec |= (0x1 << (irq - EIRQ1 + 108 avec |= (0x1 << (irq - EIRQ1 + 1)); 109 __raw_writeb(avec, MCFSIM_AVR) 109 __raw_writeb(avec, MCFSIM_AVR); 110 } 110 } 111 #endif 111 #endif 112 } 112 } 113 113 114 static void intc_irq_mask(struct irq_data *d) 114 static void intc_irq_mask(struct irq_data *d) 115 { 115 { 116 if (mcf_irq2imr[d->irq]) 116 if (mcf_irq2imr[d->irq]) 117 mcf_setimr(mcf_irq2imr[d->irq] 117 mcf_setimr(mcf_irq2imr[d->irq]); 118 } 118 } 119 119 120 static void intc_irq_unmask(struct irq_data *d 120 static void intc_irq_unmask(struct irq_data *d) 121 { 121 { 122 if (mcf_irq2imr[d->irq]) 122 if (mcf_irq2imr[d->irq]) 123 mcf_clrimr(mcf_irq2imr[d->irq] 123 mcf_clrimr(mcf_irq2imr[d->irq]); 124 } 124 } 125 125 126 static int intc_irq_set_type(struct irq_data * 126 static int intc_irq_set_type(struct irq_data *d, unsigned int type) 127 { 127 { 128 return 0; 128 return 0; 129 } 129 } 130 130 131 static struct irq_chip intc_irq_chip = { 131 static struct irq_chip intc_irq_chip = { 132 .name = "CF-INTC", 132 .name = "CF-INTC", 133 .irq_mask = intc_irq_mask, 133 .irq_mask = intc_irq_mask, 134 .irq_unmask = intc_irq_unmask, 134 .irq_unmask = intc_irq_unmask, 135 .irq_set_type = intc_irq_set_type, 135 .irq_set_type = intc_irq_set_type, 136 }; 136 }; 137 137 138 void __init init_IRQ(void) 138 void __init init_IRQ(void) 139 { 139 { 140 int irq; 140 int irq; 141 141 142 mcf_maskimr(0xffffffff); 142 mcf_maskimr(0xffffffff); 143 143 144 for (irq = 0; (irq < NR_IRQS); irq++) 144 for (irq = 0; (irq < NR_IRQS); irq++) { 145 irq_set_chip(irq, &intc_irq_ch 145 irq_set_chip(irq, &intc_irq_chip); 146 irq_set_irq_type(irq, IRQ_TYPE 146 irq_set_irq_type(irq, IRQ_TYPE_LEVEL_HIGH); 147 irq_set_handler(irq, handle_le 147 irq_set_handler(irq, handle_level_irq); 148 } 148 } 149 } 149 } 150 150 151 151
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.