~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/m68k/fpsp040/setox.S

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /arch/m68k/fpsp040/setox.S (Version linux-6.12-rc7) and /arch/m68k/fpsp040/setox.S (Version linux-6.8.12)


  1 |                                                   1 |
  2 |       setox.sa 3.1 12/10/90                       2 |       setox.sa 3.1 12/10/90
  3 |                                                   3 |
  4 |       The entry point setox computes the exp      4 |       The entry point setox computes the exponential of a value.
  5 |       setoxd does the same except the input       5 |       setoxd does the same except the input value is a denormalized
  6 |       number. setoxm1 computes exp(X)-1, and      6 |       number. setoxm1 computes exp(X)-1, and setoxm1d computes
  7 |       exp(X)-1 for denormalized X.                7 |       exp(X)-1 for denormalized X.
  8 |                                                   8 |
  9 |       INPUT                                       9 |       INPUT
 10 |       -----                                      10 |       -----
 11 |       Double-extended value in memory locati     11 |       Double-extended value in memory location pointed to by address
 12 |       register a0.                               12 |       register a0.
 13 |                                                  13 |
 14 |       OUTPUT                                     14 |       OUTPUT
 15 |       ------                                     15 |       ------
 16 |       exp(X) or exp(X)-1 returned in floatin     16 |       exp(X) or exp(X)-1 returned in floating-point register fp0.
 17 |                                                  17 |
 18 |       ACCURACY and MONOTONICITY                  18 |       ACCURACY and MONOTONICITY
 19 |       -------------------------                  19 |       -------------------------
 20 |       The returned result is within 0.85 ulp     20 |       The returned result is within 0.85 ulps in 64 significant bit, i.e.
 21 |       within 0.5001 ulp to 53 bits if the re     21 |       within 0.5001 ulp to 53 bits if the result is subsequently rounded
 22 |       to double precision. The result is pro     22 |       to double precision. The result is provably monotonic in double
 23 |       precision.                                 23 |       precision.
 24 |                                                  24 |
 25 |       SPEED                                      25 |       SPEED
 26 |       -----                                      26 |       -----
 27 |       Two timings are measured, both in the      27 |       Two timings are measured, both in the copy-back mode. The
 28 |       first one is measured when the functio     28 |       first one is measured when the function is invoked the first time
 29 |       (so the instructions and data are not      29 |       (so the instructions and data are not in cache), and the
 30 |       second one is measured when the functi     30 |       second one is measured when the function is reinvoked at the same
 31 |       input argument.                            31 |       input argument.
 32 |                                                  32 |
 33 |       The program setox takes approximately      33 |       The program setox takes approximately 210/190 cycles for input
 34 |       argument X whose magnitude is less tha     34 |       argument X whose magnitude is less than 16380 log2, which
 35 |       is the usual situation. For the less c     35 |       is the usual situation. For the less common arguments,
 36 |       depending on their values, the program     36 |       depending on their values, the program may run faster or slower --
 37 |       but no worse than 10% slower even in t     37 |       but no worse than 10% slower even in the extreme cases.
 38 |                                                  38 |
 39 |       The program setoxm1 takes approximatel     39 |       The program setoxm1 takes approximately ??? / ??? cycles for input
 40 |       argument X, 0.25 <= |X| < 70log2. For      40 |       argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes
 41 |       approximately ??? / ??? cycles. For th     41 |       approximately ??? / ??? cycles. For the less common arguments,
 42 |       depending on their values, the program     42 |       depending on their values, the program may run faster or slower --
 43 |       but no worse than 10% slower even in t     43 |       but no worse than 10% slower even in the extreme cases.
 44 |                                                  44 |
 45 |       ALGORITHM and IMPLEMENTATION NOTES         45 |       ALGORITHM and IMPLEMENTATION NOTES
 46 |       ----------------------------------         46 |       ----------------------------------
 47 |                                                  47 |
 48 |       setoxd                                     48 |       setoxd
 49 |       ------                                     49 |       ------
 50 |       Step 1. Set ans := 1.0                     50 |       Step 1. Set ans := 1.0
 51 |                                                  51 |
 52 |       Step 2. Return  ans := ans + sign(X)*2     52 |       Step 2. Return  ans := ans + sign(X)*2^(-126). Exit.
 53 |       Notes:  This will always generate one      53 |       Notes:  This will always generate one exception -- inexact.
 54 |                                                  54 |
 55 |                                                  55 |
 56 |       setox                                      56 |       setox
 57 |       -----                                      57 |       -----
 58 |                                                  58 |
 59 |       Step 1. Filter out extreme cases of in     59 |       Step 1. Filter out extreme cases of input argument.
 60 |               1.1     If |X| >= 2^(-65), go      60 |               1.1     If |X| >= 2^(-65), go to Step 1.3.
 61 |               1.2     Go to Step 7.              61 |               1.2     Go to Step 7.
 62 |               1.3     If |X| < 16380 log(2),     62 |               1.3     If |X| < 16380 log(2), go to Step 2.
 63 |               1.4     Go to Step 8.              63 |               1.4     Go to Step 8.
 64 |       Notes:  The usual case should take the     64 |       Notes:  The usual case should take the branches 1.1 -> 1.3 -> 2.
 65 |                To avoid the use of floating-     65 |                To avoid the use of floating-point comparisons, a
 66 |                compact representation of |X|     66 |                compact representation of |X| is used. This format is a
 67 |                32-bit integer, the upper (mo     67 |                32-bit integer, the upper (more significant) 16 bits are
 68 |                the sign and biased exponent      68 |                the sign and biased exponent field of |X|; the lower 16
 69 |                bits are the 16 most signific     69 |                bits are the 16 most significant fraction (including the
 70 |                explicit bit) bits of |X|. Co     70 |                explicit bit) bits of |X|. Consequently, the comparisons
 71 |                in Steps 1.1 and 1.3 can be p     71 |                in Steps 1.1 and 1.3 can be performed by integer comparison.
 72 |                Note also that the constant 1     72 |                Note also that the constant 16380 log(2) used in Step 1.3
 73 |                is also in the compact form.      73 |                is also in the compact form. Thus taking the branch
 74 |                to Step 2 guarantees |X| < 16     74 |                to Step 2 guarantees |X| < 16380 log(2). There is no harm
 75 |                to have a small number of cas     75 |                to have a small number of cases where |X| is less than,
 76 |                but close to, 16380 log(2) an     76 |                but close to, 16380 log(2) and the branch to Step 9 is
 77 |                taken.                            77 |                taken.
 78 |                                                  78 |
 79 |       Step 2. Calculate N = round-to-nearest     79 |       Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
 80 |               2.1     Set AdjFlag := 0 (indi     80 |               2.1     Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)
 81 |               2.2     N := round-to-nearest-     81 |               2.2     N := round-to-nearest-integer( X * 64/log2 ).
 82 |               2.3     Calculate       J = N      82 |               2.3     Calculate       J = N mod 64; so J = 0,1,2,..., or 63.
 83 |               2.4     Calculate       M = (N     83 |               2.4     Calculate       M = (N - J)/64; so N = 64M + J.
 84 |               2.5     Calculate the address      84 |               2.5     Calculate the address of the stored value of 2^(J/64).
 85 |               2.6     Create the value Scale     85 |               2.6     Create the value Scale = 2^M.
 86 |       Notes:  The calculation in 2.2 is real     86 |       Notes:  The calculation in 2.2 is really performed by
 87 |                                                  87 |
 88 |                       Z := X * constant          88 |                       Z := X * constant
 89 |                       N := round-to-nearest-     89 |                       N := round-to-nearest-integer(Z)
 90 |                                                  90 |
 91 |                where                             91 |                where
 92 |                                                  92 |
 93 |                       constant := single-pre     93 |                       constant := single-precision( 64/log 2 ).
 94 |                                                  94 |
 95 |                Using a single-precision cons     95 |                Using a single-precision constant avoids memory access.
 96 |                Another effect of using a sin     96 |                Another effect of using a single-precision "constant" is
 97 |                that the calculated value Z i     97 |                that the calculated value Z is
 98 |                                                  98 |
 99 |                       Z = X*(64/log2)*(1+eps     99 |                       Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).
100 |                                                 100 |
101 |                This error has to be consider    101 |                This error has to be considered later in Steps 3 and 4.
102 |                                                 102 |
103 |       Step 3. Calculate X - N*log2/64.          103 |       Step 3. Calculate X - N*log2/64.
104 |               3.1     R := X + N*L1, where L    104 |               3.1     R := X + N*L1, where L1 := single-precision(-log2/64).
105 |               3.2     R := R + N*L2, L2 := e    105 |               3.2     R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
106 |       Notes:  a) The way L1 and L2 are chose    106 |       Notes:  a) The way L1 and L2 are chosen ensures L1+L2 approximate
107 |                the value      -log2/64          107 |                the value      -log2/64        to 88 bits of accuracy.
108 |                b) N*L1 is exact because N is    108 |                b) N*L1 is exact because N is no longer than 22 bits and
109 |                L1 is no longer than 24 bits.    109 |                L1 is no longer than 24 bits.
110 |                c) The calculation X+N*L1 is     110 |                c) The calculation X+N*L1 is also exact due to cancellation.
111 |                Thus, R is practically X+N(L1    111 |                Thus, R is practically X+N(L1+L2) to full 64 bits.
112 |                d) It is important to estimat    112 |                d) It is important to estimate how large can |R| be after
113 |                Step 3.2.                        113 |                Step 3.2.
114 |                                                 114 |
115 |                       N = rnd-to-int( X*64/l    115 |                       N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
116 |                       X*64/log2 (1+eps)         116 |                       X*64/log2 (1+eps)       =       N + f,  |f| <= 0.5
117 |                       X*64/log2 - N   =         117 |                       X*64/log2 - N   =       f - eps*X 64/log2
118 |                       X - N*log2/64   =         118 |                       X - N*log2/64   =       f*log2/64 - eps*X
119 |                                                 119 |
120 |                                                 120 |
121 |                Now |X| <= 16446 log2, thus      121 |                Now |X| <= 16446 log2, thus
122 |                                                 122 |
123 |                       |X - N*log2/64| <= (0.    123 |                       |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64
124 |                                       <= 0.5    124 |                                       <= 0.57 log2/64.
125 |                This bound will be used in St    125 |                This bound will be used in Step 4.
126 |                                                 126 |
127 |       Step 4. Approximate exp(R)-1 by a poly    127 |       Step 4. Approximate exp(R)-1 by a polynomial
128 |                       p = R + R*R*(A1 + R*(A    128 |                       p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
129 |       Notes:  a) In order to reduce memory a    129 |       Notes:  a) In order to reduce memory access, the coefficients are
130 |                made as "short" as possible:     130 |                made as "short" as possible: A1 (which is 1/2), A4 and A5
131 |                are single precision; A2 and     131 |                are single precision; A2 and A3 are double precision.
132 |                b) Even with the restrictions    132 |                b) Even with the restrictions above,
133 |                       |p - (exp(R)-1)| < 2^(    133 |                       |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.
134 |                Note that 0.0062 is slightly     134 |                Note that 0.0062 is slightly bigger than 0.57 log2/64.
135 |                c) To fully utilize the pipel    135 |                c) To fully utilize the pipeline, p is separated into
136 |                two independent pieces of rou    136 |                two independent pieces of roughly equal complexities
137 |                       p = [ R + R*S*(A2 + S*    137 |                       p = [ R + R*S*(A2 + S*A4) ]     +
138 |                               [ S*(A1 + S*(A    138 |                               [ S*(A1 + S*(A3 + S*A5)) ]
139 |                where S = R*R.                   139 |                where S = R*R.
140 |                                                 140 |
141 |       Step 5. Compute 2^(J/64)*exp(R) = 2^(J    141 |       Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by
142 |                               ans := T + ( T    142 |                               ans := T + ( T*p + t)
143 |                where T and t are the stored     143 |                where T and t are the stored values for 2^(J/64).
144 |       Notes:  2^(J/64) is stored as T and t     144 |       Notes:  2^(J/64) is stored as T and t where T+t approximates
145 |                2^(J/64) to roughly 85 bits;     145 |                2^(J/64) to roughly 85 bits; T is in extended precision
146 |                and t is in single precision.    146 |                and t is in single precision. Note also that T is rounded
147 |                to 62 bits so that the last t    147 |                to 62 bits so that the last two bits of T are zero. The
148 |                reason for such a special for    148 |                reason for such a special form is that T-1, T-2, and T-8
149 |                will all be exact --- a prope    149 |                will all be exact --- a property that will give much
150 |                more accurate computation of     150 |                more accurate computation of the function EXPM1.
151 |                                                 151 |
152 |       Step 6. Reconstruction of exp(X)          152 |       Step 6. Reconstruction of exp(X)
153 |                       exp(X) = 2^M * 2^(J/64    153 |                       exp(X) = 2^M * 2^(J/64) * exp(R).
154 |               6.1     If AdjFlag = 0, go to     154 |               6.1     If AdjFlag = 0, go to 6.3
155 |               6.2     ans := ans * AdjScale     155 |               6.2     ans := ans * AdjScale
156 |               6.3     Restore the user FPCR     156 |               6.3     Restore the user FPCR
157 |               6.4     Return ans := ans * Sc    157 |               6.4     Return ans := ans * Scale. Exit.
158 |       Notes:  If AdjFlag = 0, we have X = Ml    158 |       Notes:  If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,
159 |                |M| <= 16380, and Scale = 2^M    159 |                |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will
160 |                neither overflow nor underflo    160 |                neither overflow nor underflow. If AdjFlag = 1, that
161 |                means that                       161 |                means that
162 |                       X = (M1+M)log2 + Jlog2    162 |                       X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.
163 |                Hence, exp(X) may overflow or    163 |                Hence, exp(X) may overflow or underflow or neither.
164 |                When that is the case, AdjSca    164 |                When that is the case, AdjScale = 2^(M1) where M1 is
165 |                approximately M. Thus 6.2 wil    165 |                approximately M. Thus 6.2 will never cause over/underflow.
166 |                Possible exception in 6.4 is     166 |                Possible exception in 6.4 is overflow or underflow.
167 |                The inexact exception is not     167 |                The inexact exception is not generated in 6.4. Although
168 |                one can argue that the inexac    168 |                one can argue that the inexact flag should always be
169 |                raised, to simulate that exce    169 |                raised, to simulate that exception cost to much than the
170 |                flag is worth in practical us    170 |                flag is worth in practical uses.
171 |                                                 171 |
172 |       Step 7. Return 1 + X.                     172 |       Step 7. Return 1 + X.
173 |               7.1     ans := X                  173 |               7.1     ans := X
174 |               7.2     Restore user FPCR.        174 |               7.2     Restore user FPCR.
175 |               7.3     Return ans := 1 + ans.    175 |               7.3     Return ans := 1 + ans. Exit
176 |       Notes:  For non-zero X, the inexact ex    176 |       Notes:  For non-zero X, the inexact exception will always be
177 |                raised by 7.3. That is the on    177 |                raised by 7.3. That is the only exception raised by 7.3.
178 |                Note also that we use the FMO    178 |                Note also that we use the FMOVEM instruction to move X
179 |                in Step 7.1 to avoid unnecess    179 |                in Step 7.1 to avoid unnecessary trapping. (Although
180 |                the FMOVEM may not seem relev    180 |                the FMOVEM may not seem relevant since X is normalized,
181 |                the precaution will be useful    181 |                the precaution will be useful in the library version of
182 |                this code where the separate     182 |                this code where the separate entry for denormalized inputs
183 |                will be done away with.)         183 |                will be done away with.)
184 |                                                 184 |
185 |       Step 8. Handle exp(X) where |X| >= 163    185 |       Step 8. Handle exp(X) where |X| >= 16380log2.
186 |               8.1     If |X| > 16480 log2, g    186 |               8.1     If |X| > 16480 log2, go to Step 9.
187 |               (mimic 2.2 - 2.6)                 187 |               (mimic 2.2 - 2.6)
188 |               8.2     N := round-to-integer(    188 |               8.2     N := round-to-integer( X * 64/log2 )
189 |               8.3     Calculate J = N mod 64    189 |               8.3     Calculate J = N mod 64, J = 0,1,...,63
190 |               8.4     K := (N-J)/64, M1 := t    190 |               8.4     K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.
191 |               8.5     Calculate the address     191 |               8.5     Calculate the address of the stored value 2^(J/64).
192 |               8.6     Create the values Scal    192 |               8.6     Create the values Scale = 2^M, AdjScale = 2^M1.
193 |               8.7     Go to Step 3.             193 |               8.7     Go to Step 3.
194 |       Notes:  Refer to notes for 2.2 - 2.6.     194 |       Notes:  Refer to notes for 2.2 - 2.6.
195 |                                                 195 |
196 |       Step 9. Handle exp(X), |X| > 16480 log    196 |       Step 9. Handle exp(X), |X| > 16480 log2.
197 |               9.1     If X < 0, go to 9.3       197 |               9.1     If X < 0, go to 9.3
198 |               9.2     ans := Huge, go to 9.4    198 |               9.2     ans := Huge, go to 9.4
199 |               9.3     ans := Tiny.              199 |               9.3     ans := Tiny.
200 |               9.4     Restore user FPCR.        200 |               9.4     Restore user FPCR.
201 |               9.5     Return ans := ans * an    201 |               9.5     Return ans := ans * ans. Exit.
202 |       Notes:  Exp(X) will surely overflow or    202 |       Notes:  Exp(X) will surely overflow or underflow, depending on
203 |                X's sign. "Huge" and "Tiny" a    203 |                X's sign. "Huge" and "Tiny" are respectively large/tiny
204 |                extended-precision numbers wh    204 |                extended-precision numbers whose square over/underflow
205 |                with an inexact result. Thus,    205 |                with an inexact result. Thus, 9.5 always raises the
206 |                inexact together with either     206 |                inexact together with either overflow or underflow.
207 |                                                 207 |
208 |                                                 208 |
209 |       setoxm1d                                  209 |       setoxm1d
210 |       --------                                  210 |       --------
211 |                                                 211 |
212 |       Step 1. Set ans := 0                      212 |       Step 1. Set ans := 0
213 |                                                 213 |
214 |       Step 2. Return  ans := X + ans. Exit.     214 |       Step 2. Return  ans := X + ans. Exit.
215 |       Notes:  This will return X with the ap    215 |       Notes:  This will return X with the appropriate rounding
216 |                precision prescribed by the u    216 |                precision prescribed by the user FPCR.
217 |                                                 217 |
218 |       setoxm1                                   218 |       setoxm1
219 |       -------                                   219 |       -------
220 |                                                 220 |
221 |       Step 1. Check |X|                         221 |       Step 1. Check |X|
222 |               1.1     If |X| >= 1/4, go to S    222 |               1.1     If |X| >= 1/4, go to Step 1.3.
223 |               1.2     Go to Step 7.             223 |               1.2     Go to Step 7.
224 |               1.3     If |X| < 70 log(2), go    224 |               1.3     If |X| < 70 log(2), go to Step 2.
225 |               1.4     Go to Step 10.            225 |               1.4     Go to Step 10.
226 |       Notes:  The usual case should take the    226 |       Notes:  The usual case should take the branches 1.1 -> 1.3 -> 2.
227 |                However, it is conceivable |X    227 |                However, it is conceivable |X| can be small very often
228 |                because EXPM1 is intended to     228 |                because EXPM1 is intended to evaluate exp(X)-1 accurately
229 |                when |X| is small. For furthe    229 |                when |X| is small. For further details on the comparisons,
230 |                see the notes on Step 1 of se    230 |                see the notes on Step 1 of setox.
231 |                                                 231 |
232 |       Step 2. Calculate N = round-to-nearest    232 |       Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
233 |               2.1     N := round-to-nearest-    233 |               2.1     N := round-to-nearest-integer( X * 64/log2 ).
234 |               2.2     Calculate       J = N     234 |               2.2     Calculate       J = N mod 64; so J = 0,1,2,..., or 63.
235 |               2.3     Calculate       M = (N    235 |               2.3     Calculate       M = (N - J)/64; so N = 64M + J.
236 |               2.4     Calculate the address     236 |               2.4     Calculate the address of the stored value of 2^(J/64).
237 |               2.5     Create the values Sc =    237 |               2.5     Create the values Sc = 2^M and OnebySc := -2^(-M).
238 |       Notes:  See the notes on Step 2 of set    238 |       Notes:  See the notes on Step 2 of setox.
239 |                                                 239 |
240 |       Step 3. Calculate X - N*log2/64.          240 |       Step 3. Calculate X - N*log2/64.
241 |               3.1     R := X + N*L1, where L    241 |               3.1     R := X + N*L1, where L1 := single-precision(-log2/64).
242 |               3.2     R := R + N*L2, L2 := e    242 |               3.2     R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
243 |       Notes:  Applying the analysis of Step     243 |       Notes:  Applying the analysis of Step 3 of setox in this case
244 |                shows that |R| <= 0.0055 (not    244 |                shows that |R| <= 0.0055 (note that |X| <= 70 log2 in
245 |                this case).                      245 |                this case).
246 |                                                 246 |
247 |       Step 4. Approximate exp(R)-1 by a poly    247 |       Step 4. Approximate exp(R)-1 by a polynomial
248 |                       p = R+R*R*(A1+R*(A2+R*    248 |                       p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))
249 |       Notes:  a) In order to reduce memory a    249 |       Notes:  a) In order to reduce memory access, the coefficients are
250 |                made as "short" as possible:     250 |                made as "short" as possible: A1 (which is 1/2), A5 and A6
251 |                are single precision; A2, A3     251 |                are single precision; A2, A3 and A4 are double precision.
252 |                b) Even with the restriction     252 |                b) Even with the restriction above,
253 |                       |p - (exp(R)-1)| <        253 |                       |p - (exp(R)-1)| <      |R| * 2^(-72.7)
254 |                for all |R| <= 0.0055.           254 |                for all |R| <= 0.0055.
255 |                c) To fully utilize the pipel    255 |                c) To fully utilize the pipeline, p is separated into
256 |                two independent pieces of rou    256 |                two independent pieces of roughly equal complexity
257 |                       p = [ R*S*(A2 + S*(A4     257 |                       p = [ R*S*(A2 + S*(A4 + S*A6)) ]        +
258 |                               [ R + S*(A1 +     258 |                               [ R + S*(A1 + S*(A3 + S*A5)) ]
259 |                where S = R*R.                   259 |                where S = R*R.
260 |                                                 260 |
261 |       Step 5. Compute 2^(J/64)*p by             261 |       Step 5. Compute 2^(J/64)*p by
262 |                               p := T*p          262 |                               p := T*p
263 |                where T and t are the stored     263 |                where T and t are the stored values for 2^(J/64).
264 |       Notes:  2^(J/64) is stored as T and t     264 |       Notes:  2^(J/64) is stored as T and t where T+t approximates
265 |                2^(J/64) to roughly 85 bits;     265 |                2^(J/64) to roughly 85 bits; T is in extended precision
266 |                and t is in single precision.    266 |                and t is in single precision. Note also that T is rounded
267 |                to 62 bits so that the last t    267 |                to 62 bits so that the last two bits of T are zero. The
268 |                reason for such a special for    268 |                reason for such a special form is that T-1, T-2, and T-8
269 |                will all be exact --- a prope    269 |                will all be exact --- a property that will be exploited
270 |                in Step 6 below. The total re    270 |                in Step 6 below. The total relative error in p is no
271 |                bigger than 2^(-67.7) compare    271 |                bigger than 2^(-67.7) compared to the final result.
272 |                                                 272 |
273 |       Step 6. Reconstruction of exp(X)-1        273 |       Step 6. Reconstruction of exp(X)-1
274 |                       exp(X)-1 = 2^M * ( 2^(    274 |                       exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).
275 |               6.1     If M <= 63, go to Step    275 |               6.1     If M <= 63, go to Step 6.3.
276 |               6.2     ans := T + (p + (t + O    276 |               6.2     ans := T + (p + (t + OnebySc)). Go to 6.6
277 |               6.3     If M >= -3, go to 6.5.    277 |               6.3     If M >= -3, go to 6.5.
278 |               6.4     ans := (T + (p + t)) +    278 |               6.4     ans := (T + (p + t)) + OnebySc. Go to 6.6
279 |               6.5     ans := (T + OnebySc) +    279 |               6.5     ans := (T + OnebySc) + (p + t).
280 |               6.6     Restore user FPCR.        280 |               6.6     Restore user FPCR.
281 |               6.7     Return ans := Sc * ans    281 |               6.7     Return ans := Sc * ans. Exit.
282 |       Notes:  The various arrangements of th    282 |       Notes:  The various arrangements of the expressions give accurate
283 |                evaluations.                     283 |                evaluations.
284 |                                                 284 |
285 |       Step 7. exp(X)-1 for |X| < 1/4.           285 |       Step 7. exp(X)-1 for |X| < 1/4.
286 |               7.1     If |X| >= 2^(-65), go     286 |               7.1     If |X| >= 2^(-65), go to Step 9.
287 |               7.2     Go to Step 8.             287 |               7.2     Go to Step 8.
288 |                                                 288 |
289 |       Step 8. Calculate exp(X)-1, |X| < 2^(-    289 |       Step 8. Calculate exp(X)-1, |X| < 2^(-65).
290 |               8.1     If |X| < 2^(-16312), g    290 |               8.1     If |X| < 2^(-16312), goto 8.3
291 |               8.2     Restore FPCR; return a    291 |               8.2     Restore FPCR; return ans := X - 2^(-16382). Exit.
292 |               8.3     X := X * 2^(140).         292 |               8.3     X := X * 2^(140).
293 |               8.4     Restore FPCR; ans := a    293 |               8.4     Restore FPCR; ans := ans - 2^(-16382).
294 |                Return ans := ans*2^(140). Ex    294 |                Return ans := ans*2^(140). Exit
295 |       Notes:  The idea is to return "X - tin    295 |       Notes:  The idea is to return "X - tiny" under the user
296 |                precision and rounding modes.    296 |                precision and rounding modes. To avoid unnecessary
297 |                inefficiency, we stay away fr    297 |                inefficiency, we stay away from denormalized numbers the
298 |                best we can. For |X| >= 2^(-1    298 |                best we can. For |X| >= 2^(-16312), the straightforward
299 |                8.2 generates the inexact exc    299 |                8.2 generates the inexact exception as the case warrants.
300 |                                                 300 |
301 |       Step 9. Calculate exp(X)-1, |X| < 1/4,    301 |       Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial
302 |                       p = X + X*X*(B1 + X*(B    302 |                       p = X + X*X*(B1 + X*(B2 + ... + X*B12))
303 |       Notes:  a) In order to reduce memory a    303 |       Notes:  a) In order to reduce memory access, the coefficients are
304 |                made as "short" as possible:     304 |                made as "short" as possible: B1 (which is 1/2), B9 to B12
305 |                are single precision; B3 to B    305 |                are single precision; B3 to B8 are double precision; and
306 |                B2 is double extended.           306 |                B2 is double extended.
307 |                b) Even with the restriction     307 |                b) Even with the restriction above,
308 |                       |p - (exp(X)-1)| < |X|    308 |                       |p - (exp(X)-1)| < |X| 2^(-70.6)
309 |                for all |X| <= 0.251.            309 |                for all |X| <= 0.251.
310 |                Note that 0.251 is slightly b    310 |                Note that 0.251 is slightly bigger than 1/4.
311 |                c) To fully preserve accuracy    311 |                c) To fully preserve accuracy, the polynomial is computed
312 |                as     X + ( S*B1 +    Q ) wh    312 |                as     X + ( S*B1 +    Q ) where S = X*X and
313 |                       Q       =       X*S*(B    313 |                       Q       =       X*S*(B2 + X*(B3 + ... + X*B12))
314 |                d) To fully utilize the pipel    314 |                d) To fully utilize the pipeline, Q is separated into
315 |                two independent pieces of rou    315 |                two independent pieces of roughly equal complexity
316 |                       Q = [ X*S*(B2 + S*(B4     316 |                       Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] +
317 |                               [ S*S*(B3 + S*    317 |                               [ S*S*(B3 + S*(B5 + ... + S*B11)) ]
318 |                                                 318 |
319 |       Step 10.        Calculate exp(X)-1 for    319 |       Step 10.        Calculate exp(X)-1 for |X| >= 70 log 2.
320 |               10.1 If X >= 70log2 , exp(X) -    320 |               10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical
321 |                purposes. Therefore, go to St    321 |                purposes. Therefore, go to Step 1 of setox.
322 |               10.2 If X <= -70log2, exp(X) -    322 |               10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.
323 |                ans := -1                        323 |                ans := -1
324 |                Restore user FPCR                324 |                Restore user FPCR
325 |                Return ans := ans + 2^(-126).    325 |                Return ans := ans + 2^(-126). Exit.
326 |       Notes:  10.2 will always create an ine    326 |       Notes:  10.2 will always create an inexact and return -1 + tiny
327 |                in the user rounding precisio    327 |                in the user rounding precision and mode.
328 |                                                 328 |
329 |                                                 329 |
330                                                   330 
331 |               Copyright (C) Motorola, Inc. 1    331 |               Copyright (C) Motorola, Inc. 1990
332 |                       All Rights Reserved       332 |                       All Rights Reserved
333 |                                                 333 |
334 |       For details on the license for this fi    334 |       For details on the license for this file, please see the
335 |       file, README, in this same directory.     335 |       file, README, in this same directory.
336                                                   336 
337 |setox  idnt    2,1 | Motorola 040 Floating Po    337 |setox  idnt    2,1 | Motorola 040 Floating Point Software Package
338                                                   338 
339         |section        8                         339         |section        8
340                                                   340 
341 #include "fpsp.h"                                 341 #include "fpsp.h"
342                                                   342 
343 L2:     .long   0x3FDC0000,0x82E30865,0x4361C4    343 L2:     .long   0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000
344                                                   344 
345 EXPA3:  .long   0x3FA55555,0x55554431             345 EXPA3:  .long   0x3FA55555,0x55554431
346 EXPA2:  .long   0x3FC55555,0x55554018             346 EXPA2:  .long   0x3FC55555,0x55554018
347                                                   347 
348 HUGE:   .long   0x7FFE0000,0xFFFFFFFF,0xFFFFFF    348 HUGE:   .long   0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000
349 TINY:   .long   0x00010000,0xFFFFFFFF,0xFFFFFF    349 TINY:   .long   0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000
350                                                   350 
351 EM1A4:  .long   0x3F811111,0x11174385             351 EM1A4:  .long   0x3F811111,0x11174385
352 EM1A3:  .long   0x3FA55555,0x55554F5A             352 EM1A3:  .long   0x3FA55555,0x55554F5A
353                                                   353 
354 EM1A2:  .long   0x3FC55555,0x55555555,0x000000    354 EM1A2:  .long   0x3FC55555,0x55555555,0x00000000,0x00000000
355                                                   355 
356 EM1B8:  .long   0x3EC71DE3,0xA5774682             356 EM1B8:  .long   0x3EC71DE3,0xA5774682
357 EM1B7:  .long   0x3EFA01A0,0x19D7CB68             357 EM1B7:  .long   0x3EFA01A0,0x19D7CB68
358                                                   358 
359 EM1B6:  .long   0x3F2A01A0,0x1A019DF3             359 EM1B6:  .long   0x3F2A01A0,0x1A019DF3
360 EM1B5:  .long   0x3F56C16C,0x16C170E2             360 EM1B5:  .long   0x3F56C16C,0x16C170E2
361                                                   361 
362 EM1B4:  .long   0x3F811111,0x11111111             362 EM1B4:  .long   0x3F811111,0x11111111
363 EM1B3:  .long   0x3FA55555,0x55555555             363 EM1B3:  .long   0x3FA55555,0x55555555
364                                                   364 
365 EM1B2:  .long   0x3FFC0000,0xAAAAAAAA,0xAAAAAA    365 EM1B2:  .long   0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB
366         .long   0x00000000                        366         .long   0x00000000
367                                                   367 
368 TWO140: .long   0x48B00000,0x00000000             368 TWO140: .long   0x48B00000,0x00000000
369 TWON140:        .long   0x37300000,0x00000000     369 TWON140:        .long   0x37300000,0x00000000
370                                                   370 
371 EXPTBL:                                           371 EXPTBL:
372         .long   0x3FFF0000,0x80000000,0x000000    372         .long   0x3FFF0000,0x80000000,0x00000000,0x00000000
373         .long   0x3FFF0000,0x8164D1F3,0xBC0307    373         .long   0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B
374         .long   0x3FFF0000,0x82CD8698,0xAC2BA1    374         .long   0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9
375         .long   0x3FFF0000,0x843A28C3,0xACDE40    375         .long   0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369
376         .long   0x3FFF0000,0x85AAC367,0xCC487B    376         .long   0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C
377         .long   0x3FFF0000,0x871F6196,0x9E8D10    377         .long   0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F
378         .long   0x3FFF0000,0x88980E80,0x92DA85    378         .long   0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729
379         .long   0x3FFF0000,0x8A14D575,0x496EFD    379         .long   0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF
380         .long   0x3FFF0000,0x8B95C1E3,0xEA8BD6    380         .long   0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF
381         .long   0x3FFF0000,0x8D1ADF5B,0x7E5BA9    381         .long   0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA
382         .long   0x3FFF0000,0x8EA4398B,0x45CD53    382         .long   0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051
383         .long   0x3FFF0000,0x9031DC43,0x1466B1    383         .long   0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029
384         .long   0x3FFF0000,0x91C3D373,0xAB11C3    384         .long   0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494
385         .long   0x3FFF0000,0x935A2B2F,0x13E6E9    385         .long   0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0
386         .long   0x3FFF0000,0x94F4EFA8,0xFEF709    386         .long   0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D
387         .long   0x3FFF0000,0x96942D37,0x20185A    387         .long   0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537
388         .long   0x3FFF0000,0x9837F051,0x8DB8A9    388         .long   0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD
389         .long   0x3FFF0000,0x99E04593,0x20B7FA    389         .long   0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087
390         .long   0x3FFF0000,0x9B8D39B9,0xD54E55    390         .long   0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818
391         .long   0x3FFF0000,0x9D3ED9A7,0x2CFFB7    391         .long   0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D
392         .long   0x3FFF0000,0x9EF53260,0x91A111    392         .long   0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890
393         .long   0x3FFF0000,0xA0B0510F,0xB9714F    393         .long   0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C
394         .long   0x3FFF0000,0xA2704303,0x0C4968    394         .long   0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05
395         .long   0x3FFF0000,0xA43515AE,0x09E680    395         .long   0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126
396         .long   0x3FFF0000,0xA5FED6A9,0xB15138    396         .long   0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140
397         .long   0x3FFF0000,0xA7CD93B4,0xE96535    397         .long   0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA
398         .long   0x3FFF0000,0xA9A15AB4,0xEA7C0E    398         .long   0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A
399         .long   0x3FFF0000,0xAB7A39B5,0xA93ED3    399         .long   0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC
400         .long   0x3FFF0000,0xAD583EEA,0x42A14A    400         .long   0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC
401         .long   0x3FFF0000,0xAF3B78AD,0x690A43    401         .long   0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610
402         .long   0x3FFF0000,0xB123F581,0xD2AC25    402         .long   0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90
403         .long   0x3FFF0000,0xB311C412,0xA91124    403         .long   0x3FFF0000,0xB311C412,0xA9112488,0x201F678A
404         .long   0x3FFF0000,0xB504F333,0xF9DE64    404         .long   0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13
405         .long   0x3FFF0000,0xB6FD91E3,0x28D177    405         .long   0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30
406         .long   0x3FFF0000,0xB8FBAF47,0x62FB9E    406         .long   0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC
407         .long   0x3FFF0000,0xBAFF5AB2,0x133E45    407         .long   0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6
408         .long   0x3FFF0000,0xBD08A39F,0x580C36    408         .long   0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70
409         .long   0x3FFF0000,0xBF1799B6,0x7A7310    409         .long   0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518
410         .long   0x3FFF0000,0xC12C4CCA,0x667094    410         .long   0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41
411         .long   0x3FFF0000,0xC346CCDA,0x249764    411         .long   0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B
412         .long   0x3FFF0000,0xC5672A11,0x5506DA    412         .long   0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568
413         .long   0x3FFF0000,0xC78D74C8,0xABB9B1    413         .long   0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E
414         .long   0x3FFF0000,0xC9B9BD86,0x6E2F27    414         .long   0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03
415         .long   0x3FFF0000,0xCBEC14FE,0xF2727C    415         .long   0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D
416         .long   0x3FFF0000,0xCE248C15,0x1F8480    416         .long   0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4
417         .long   0x3FFF0000,0xD06333DA,0xEF2B25    417         .long   0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C
418         .long   0x3FFF0000,0xD2A81D91,0xF12AE4    418         .long   0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9
419         .long   0x3FFF0000,0xD4F35AAB,0xCFEDFA    419         .long   0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21
420         .long   0x3FFF0000,0xD744FCCA,0xD69D6A    420         .long   0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F
421         .long   0x3FFF0000,0xD99D15C2,0x78AFD7    421         .long   0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F
422         .long   0x3FFF0000,0xDBFBB797,0xDAF237    422         .long   0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207
423         .long   0x3FFF0000,0xDE60F482,0x5E0E91    423         .long   0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175
424         .long   0x3FFF0000,0xE0CCDEEC,0x2A94E1    424         .long   0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B
425         .long   0x3FFF0000,0xE33F8972,0xBE8A5A    425         .long   0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5
426         .long   0x3FFF0000,0xE5B906E7,0x7C8348    426         .long   0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A
427         .long   0x3FFF0000,0xE8396A50,0x3C4BDC    427         .long   0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22
428         .long   0x3FFF0000,0xEAC0C6E7,0xDD2439    428         .long   0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945
429         .long   0x3FFF0000,0xED4F301E,0xD9942B    429         .long   0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B
430         .long   0x3FFF0000,0xEFE4B99B,0xDCDAF5    430         .long   0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3
431         .long   0x3FFF0000,0xF281773C,0x59FFB1    431         .long   0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05
432         .long   0x3FFF0000,0xF5257D15,0x2486CC    432         .long   0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19
433         .long   0x3FFF0000,0xF7D0DF73,0x0AD13B    433         .long   0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5
434         .long   0x3FFF0000,0xFA83B2DB,0x722A03    434         .long   0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22
435         .long   0x3FFF0000,0xFD3E0C0C,0xF486C1    435         .long   0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A
436                                                   436 
437         .set    ADJFLAG,L_SCR2                    437         .set    ADJFLAG,L_SCR2
438         .set    SCALE,FP_SCR1                     438         .set    SCALE,FP_SCR1
439         .set    ADJSCALE,FP_SCR2                  439         .set    ADJSCALE,FP_SCR2
440         .set    SC,FP_SCR3                        440         .set    SC,FP_SCR3
441         .set    ONEBYSC,FP_SCR4                   441         .set    ONEBYSC,FP_SCR4
442                                                   442 
443         | xref  t_frcinx                          443         | xref  t_frcinx
444         |xref   t_extdnrm                         444         |xref   t_extdnrm
445         |xref   t_unfl                            445         |xref   t_unfl
446         |xref   t_ovfl                            446         |xref   t_ovfl
447                                                   447 
448         .global setoxd                            448         .global setoxd
449 setoxd:                                           449 setoxd:
450 |--entry point for EXP(X), X is denormalized      450 |--entry point for EXP(X), X is denormalized
451         movel           (%a0),%d0                 451         movel           (%a0),%d0
452         andil           #0x80000000,%d0           452         andil           #0x80000000,%d0
453         oril            #0x00800000,%d0           453         oril            #0x00800000,%d0         | ...sign(X)*2^(-126)
454         movel           %d0,-(%sp)                454         movel           %d0,-(%sp)
455         fmoves          #0x3F800000,%fp0          455         fmoves          #0x3F800000,%fp0
456         fmovel          %d1,%fpcr                 456         fmovel          %d1,%fpcr
457         fadds           (%sp)+,%fp0               457         fadds           (%sp)+,%fp0
458         bra             t_frcinx                  458         bra             t_frcinx
459                                                   459 
460         .global setox                             460         .global setox
461 setox:                                            461 setox:
462 |--entry point for EXP(X), here X is finite, n    462 |--entry point for EXP(X), here X is finite, non-zero, and not NaN's
463                                                   463 
464 |--Step 1.                                        464 |--Step 1.
465         movel           (%a0),%d0        | ...    465         movel           (%a0),%d0        | ...load part of input X
466         andil           #0x7FFF0000,%d0 | ...b    466         andil           #0x7FFF0000,%d0 | ...biased expo. of X
467         cmpil           #0x3FBE0000,%d0 | ...2    467         cmpil           #0x3FBE0000,%d0 | ...2^(-65)
468         bges            EXPC1           | ...n    468         bges            EXPC1           | ...normal case
469         bra             EXPSM                     469         bra             EXPSM
470                                                   470 
471 EXPC1:                                            471 EXPC1:
472 |--The case |X| >= 2^(-65)                        472 |--The case |X| >= 2^(-65)
473         movew           4(%a0),%d0      | ...e    473         movew           4(%a0),%d0      | ...expo. and partial sig. of |X|
474         cmpil           #0x400CB167,%d0 | ...1    474         cmpil           #0x400CB167,%d0 | ...16380 log2 trunc. 16 bits
475         blts            EXPMAIN  | ...normal c    475         blts            EXPMAIN  | ...normal case
476         bra             EXPBIG                    476         bra             EXPBIG
477                                                   477 
478 EXPMAIN:                                          478 EXPMAIN:
479 |--Step 2.                                        479 |--Step 2.
480 |--This is the normal branch:   2^(-65) <= |X|    480 |--This is the normal branch:   2^(-65) <= |X| < 16380 log2.
481         fmovex          (%a0),%fp0      | ...l    481         fmovex          (%a0),%fp0      | ...load input from (a0)
482                                                   482 
483         fmovex          %fp0,%fp1                 483         fmovex          %fp0,%fp1
484         fmuls           #0x42B8AA3B,%fp0          484         fmuls           #0x42B8AA3B,%fp0        | ...64/log2 * X
485         fmovemx %fp2-%fp2/%fp3,-(%a7)             485         fmovemx %fp2-%fp2/%fp3,-(%a7)           | ...save fp2
486         movel           #0,ADJFLAG(%a6)           486         movel           #0,ADJFLAG(%a6)
487         fmovel          %fp0,%d0                  487         fmovel          %fp0,%d0                | ...N = int( X * 64/log2 )
488         lea             EXPTBL,%a1                488         lea             EXPTBL,%a1
489         fmovel          %d0,%fp0                  489         fmovel          %d0,%fp0                | ...convert to floating-format
490                                                   490 
491         movel           %d0,L_SCR1(%a6) | ...s    491         movel           %d0,L_SCR1(%a6) | ...save N temporarily
492         andil           #0x3F,%d0                 492         andil           #0x3F,%d0               | ...D0 is J = N mod 64
493         lsll            #4,%d0                    493         lsll            #4,%d0
494         addal           %d0,%a1         | ...a    494         addal           %d0,%a1         | ...address of 2^(J/64)
495         movel           L_SCR1(%a6),%d0           495         movel           L_SCR1(%a6),%d0
496         asrl            #6,%d0          | ...D    496         asrl            #6,%d0          | ...D0 is M
497         addiw           #0x3FFF,%d0     | ...b    497         addiw           #0x3FFF,%d0     | ...biased expo. of 2^(M)
498         movew           L2,L_SCR1(%a6)  | ...p    498         movew           L2,L_SCR1(%a6)  | ...prefetch L2, no need in CB
499                                                   499 
500 EXPCONT1:                                         500 EXPCONT1:
501 |--Step 3.                                        501 |--Step 3.
502 |--fp1,fp2 saved on the stack. fp0 is N, fp1 i    502 |--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
503 |--a0 points to 2^(J/64), D0 is biased expo. o    503 |--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
504         fmovex          %fp0,%fp2                 504         fmovex          %fp0,%fp2
505         fmuls           #0xBC317218,%fp0          505         fmuls           #0xBC317218,%fp0        | ...N * L1, L1 = lead(-log2/64)
506         fmulx           L2,%fp2         | ...N    506         fmulx           L2,%fp2         | ...N * L2, L1+L2 = -log2/64
507         faddx           %fp1,%fp0                 507         faddx           %fp1,%fp0               | ...X + N*L1
508         faddx           %fp2,%fp0                 508         faddx           %fp2,%fp0               | ...fp0 is R, reduced arg.
509 |       MOVE.W          #$3FA5,EXPA3    ...loa    509 |       MOVE.W          #$3FA5,EXPA3    ...load EXPA3 in cache
510                                                   510 
511 |--Step 4.                                        511 |--Step 4.
512 |--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL        512 |--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
513 |-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5    513 |-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
514 |--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S    514 |--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
515 |--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]       515 |--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
516                                                   516 
517         fmovex          %fp0,%fp1                 517         fmovex          %fp0,%fp1
518         fmulx           %fp1,%fp1                 518         fmulx           %fp1,%fp1               | ...fp1 IS S = R*R
519                                                   519 
520         fmoves          #0x3AB60B70,%fp2          520         fmoves          #0x3AB60B70,%fp2        | ...fp2 IS A5
521 |       MOVE.W          #0,2(%a1)       ...loa    521 |       MOVE.W          #0,2(%a1)       ...load 2^(J/64) in cache
522                                                   522 
523         fmulx           %fp1,%fp2                 523         fmulx           %fp1,%fp2               | ...fp2 IS S*A5
524         fmovex          %fp1,%fp3                 524         fmovex          %fp1,%fp3
525         fmuls           #0x3C088895,%fp3          525         fmuls           #0x3C088895,%fp3        | ...fp3 IS S*A4
526                                                   526 
527         faddd           EXPA3,%fp2      | ...f    527         faddd           EXPA3,%fp2      | ...fp2 IS A3+S*A5
528         faddd           EXPA2,%fp3      | ...f    528         faddd           EXPA2,%fp3      | ...fp3 IS A2+S*A4
529                                                   529 
530         fmulx           %fp1,%fp2                 530         fmulx           %fp1,%fp2               | ...fp2 IS S*(A3+S*A5)
531         movew           %d0,SCALE(%a6)  | ...S    531         movew           %d0,SCALE(%a6)  | ...SCALE is 2^(M) in extended
532         clrw            SCALE+2(%a6)              532         clrw            SCALE+2(%a6)
533         movel           #0x80000000,SCALE+4(%a    533         movel           #0x80000000,SCALE+4(%a6)
534         clrl            SCALE+8(%a6)              534         clrl            SCALE+8(%a6)
535                                                   535 
536         fmulx           %fp1,%fp3                 536         fmulx           %fp1,%fp3               | ...fp3 IS S*(A2+S*A4)
537                                                   537 
538         fadds           #0x3F000000,%fp2          538         fadds           #0x3F000000,%fp2        | ...fp2 IS A1+S*(A3+S*A5)
539         fmulx           %fp0,%fp3                 539         fmulx           %fp0,%fp3               | ...fp3 IS R*S*(A2+S*A4)
540                                                   540 
541         fmulx           %fp1,%fp2                 541         fmulx           %fp1,%fp2               | ...fp2 IS S*(A1+S*(A3+S*A5))
542         faddx           %fp3,%fp0                 542         faddx           %fp3,%fp0               | ...fp0 IS R+R*S*(A2+S*A4),
543 |                                       ...fp3    543 |                                       ...fp3 released
544                                                   544 
545         fmovex          (%a1)+,%fp1     | ...f    545         fmovex          (%a1)+,%fp1     | ...fp1 is lead. pt. of 2^(J/64)
546         faddx           %fp2,%fp0                 546         faddx           %fp2,%fp0               | ...fp0 is EXP(R) - 1
547 |                                       ...fp2    547 |                                       ...fp2 released
548                                                   548 
549 |--Step 5                                         549 |--Step 5
550 |--final reconstruction process                   550 |--final reconstruction process
551 |--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R    551 |--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
552                                                   552 
553         fmulx           %fp1,%fp0                 553         fmulx           %fp1,%fp0               | ...2^(J/64)*(Exp(R)-1)
554         fmovemx (%a7)+,%fp2-%fp2/%fp3   | ...f    554         fmovemx (%a7)+,%fp2-%fp2/%fp3   | ...fp2 restored
555         fadds           (%a1),%fp0      | ...a    555         fadds           (%a1),%fp0      | ...accurate 2^(J/64)
556                                                   556 
557         faddx           %fp1,%fp0                 557         faddx           %fp1,%fp0               | ...2^(J/64) + 2^(J/64)*...
558         movel           ADJFLAG(%a6),%d0          558         movel           ADJFLAG(%a6),%d0
559                                                   559 
560 |--Step 6                                         560 |--Step 6
561         tstl            %d0                       561         tstl            %d0
562         beqs            NORMAL                    562         beqs            NORMAL
563 ADJUST:                                           563 ADJUST:
564         fmulx           ADJSCALE(%a6),%fp0        564         fmulx           ADJSCALE(%a6),%fp0
565 NORMAL:                                           565 NORMAL:
566         fmovel          %d1,%FPCR                 566         fmovel          %d1,%FPCR               | ...restore user FPCR
567         fmulx           SCALE(%a6),%fp0 | ...m    567         fmulx           SCALE(%a6),%fp0 | ...multiply 2^(M)
568         bra             t_frcinx                  568         bra             t_frcinx
569                                                   569 
570 EXPSM:                                            570 EXPSM:
571 |--Step 7                                         571 |--Step 7
572         fmovemx (%a0),%fp0-%fp0 | ...in case X    572         fmovemx (%a0),%fp0-%fp0 | ...in case X is denormalized
573         fmovel          %d1,%FPCR                 573         fmovel          %d1,%FPCR
574         fadds           #0x3F800000,%fp0          574         fadds           #0x3F800000,%fp0        | ...1+X in user mode
575         bra             t_frcinx                  575         bra             t_frcinx
576                                                   576 
577 EXPBIG:                                           577 EXPBIG:
578 |--Step 8                                         578 |--Step 8
579         cmpil           #0x400CB27C,%d0 | ...1    579         cmpil           #0x400CB27C,%d0 | ...16480 log2
580         bgts            EXP2BIG                   580         bgts            EXP2BIG
581 |--Steps 8.2 -- 8.6                               581 |--Steps 8.2 -- 8.6
582         fmovex          (%a0),%fp0      | ...l    582         fmovex          (%a0),%fp0      | ...load input from (a0)
583                                                   583 
584         fmovex          %fp0,%fp1                 584         fmovex          %fp0,%fp1
585         fmuls           #0x42B8AA3B,%fp0          585         fmuls           #0x42B8AA3B,%fp0        | ...64/log2 * X
586         fmovemx  %fp2-%fp2/%fp3,-(%a7)            586         fmovemx  %fp2-%fp2/%fp3,-(%a7)          | ...save fp2
587         movel           #1,ADJFLAG(%a6)           587         movel           #1,ADJFLAG(%a6)
588         fmovel          %fp0,%d0                  588         fmovel          %fp0,%d0                | ...N = int( X * 64/log2 )
589         lea             EXPTBL,%a1                589         lea             EXPTBL,%a1
590         fmovel          %d0,%fp0                  590         fmovel          %d0,%fp0                | ...convert to floating-format
591         movel           %d0,L_SCR1(%a6)           591         movel           %d0,L_SCR1(%a6)                 | ...save N temporarily
592         andil           #0x3F,%d0                 592         andil           #0x3F,%d0                | ...D0 is J = N mod 64
593         lsll            #4,%d0                    593         lsll            #4,%d0
594         addal           %d0,%a1                   594         addal           %d0,%a1                 | ...address of 2^(J/64)
595         movel           L_SCR1(%a6),%d0           595         movel           L_SCR1(%a6),%d0
596         asrl            #6,%d0                    596         asrl            #6,%d0                  | ...D0 is K
597         movel           %d0,L_SCR1(%a6)           597         movel           %d0,L_SCR1(%a6)                 | ...save K temporarily
598         asrl            #1,%d0                    598         asrl            #1,%d0                  | ...D0 is M1
599         subl            %d0,L_SCR1(%a6)           599         subl            %d0,L_SCR1(%a6)                 | ...a1 is M
600         addiw           #0x3FFF,%d0               600         addiw           #0x3FFF,%d0             | ...biased expo. of 2^(M1)
601         movew           %d0,ADJSCALE(%a6)         601         movew           %d0,ADJSCALE(%a6)               | ...ADJSCALE := 2^(M1)
602         clrw            ADJSCALE+2(%a6)           602         clrw            ADJSCALE+2(%a6)
603         movel           #0x80000000,ADJSCALE+4    603         movel           #0x80000000,ADJSCALE+4(%a6)
604         clrl            ADJSCALE+8(%a6)           604         clrl            ADJSCALE+8(%a6)
605         movel           L_SCR1(%a6),%d0           605         movel           L_SCR1(%a6),%d0                 | ...D0 is M
606         addiw           #0x3FFF,%d0               606         addiw           #0x3FFF,%d0             | ...biased expo. of 2^(M)
607         bra             EXPCONT1                  607         bra             EXPCONT1                | ...go back to Step 3
608                                                   608 
609 EXP2BIG:                                          609 EXP2BIG:
610 |--Step 9                                         610 |--Step 9
611         fmovel          %d1,%FPCR                 611         fmovel          %d1,%FPCR
612         movel           (%a0),%d0                 612         movel           (%a0),%d0
613         bclrb           #sign_bit,(%a0)           613         bclrb           #sign_bit,(%a0)         | ...setox always returns positive
614         cmpil           #0,%d0                    614         cmpil           #0,%d0
615         blt             t_unfl                    615         blt             t_unfl
616         bra             t_ovfl                    616         bra             t_ovfl
617                                                   617 
618         .global setoxm1d                          618         .global setoxm1d
619 setoxm1d:                                         619 setoxm1d:
620 |--entry point for EXPM1(X), here X is denorma    620 |--entry point for EXPM1(X), here X is denormalized
621 |--Step 0.                                        621 |--Step 0.
622         bra             t_extdnrm                 622         bra             t_extdnrm
623                                                   623 
624                                                   624 
625         .global setoxm1                           625         .global setoxm1
626 setoxm1:                                          626 setoxm1:
627 |--entry point for EXPM1(X), here X is finite,    627 |--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
628                                                   628 
629 |--Step 1.                                        629 |--Step 1.
630 |--Step 1.1                                       630 |--Step 1.1
631         movel           (%a0),%d0        | ...    631         movel           (%a0),%d0        | ...load part of input X
632         andil           #0x7FFF0000,%d0 | ...b    632         andil           #0x7FFF0000,%d0 | ...biased expo. of X
633         cmpil           #0x3FFD0000,%d0 | ...1    633         cmpil           #0x3FFD0000,%d0 | ...1/4
634         bges            EM1CON1  | ...|X| >= 1    634         bges            EM1CON1  | ...|X| >= 1/4
635         bra             EM1SM                     635         bra             EM1SM
636                                                   636 
637 EM1CON1:                                          637 EM1CON1:
638 |--Step 1.3                                       638 |--Step 1.3
639 |--The case |X| >= 1/4                            639 |--The case |X| >= 1/4
640         movew           4(%a0),%d0      | ...e    640         movew           4(%a0),%d0      | ...expo. and partial sig. of |X|
641         cmpil           #0x4004C215,%d0 | ...7    641         cmpil           #0x4004C215,%d0 | ...70log2 rounded up to 16 bits
642         bles            EM1MAIN  | ...1/4 <= |    642         bles            EM1MAIN  | ...1/4 <= |X| <= 70log2
643         bra             EM1BIG                    643         bra             EM1BIG
644                                                   644 
645 EM1MAIN:                                          645 EM1MAIN:
646 |--Step 2.                                        646 |--Step 2.
647 |--This is the case:    1/4 <= |X| <= 70 log2.    647 |--This is the case:    1/4 <= |X| <= 70 log2.
648         fmovex          (%a0),%fp0      | ...l    648         fmovex          (%a0),%fp0      | ...load input from (a0)
649                                                   649 
650         fmovex          %fp0,%fp1                 650         fmovex          %fp0,%fp1
651         fmuls           #0x42B8AA3B,%fp0          651         fmuls           #0x42B8AA3B,%fp0        | ...64/log2 * X
652         fmovemx %fp2-%fp2/%fp3,-(%a7)             652         fmovemx %fp2-%fp2/%fp3,-(%a7)           | ...save fp2
653 |       MOVE.W          #$3F81,EM1A4              653 |       MOVE.W          #$3F81,EM1A4            ...prefetch in CB mode
654         fmovel          %fp0,%d0                  654         fmovel          %fp0,%d0                | ...N = int( X * 64/log2 )
655         lea             EXPTBL,%a1                655         lea             EXPTBL,%a1
656         fmovel          %d0,%fp0                  656         fmovel          %d0,%fp0                | ...convert to floating-format
657                                                   657 
658         movel           %d0,L_SCR1(%a6)           658         movel           %d0,L_SCR1(%a6)                 | ...save N temporarily
659         andil           #0x3F,%d0                 659         andil           #0x3F,%d0                | ...D0 is J = N mod 64
660         lsll            #4,%d0                    660         lsll            #4,%d0
661         addal           %d0,%a1                   661         addal           %d0,%a1                 | ...address of 2^(J/64)
662         movel           L_SCR1(%a6),%d0           662         movel           L_SCR1(%a6),%d0
663         asrl            #6,%d0                    663         asrl            #6,%d0                  | ...D0 is M
664         movel           %d0,L_SCR1(%a6)           664         movel           %d0,L_SCR1(%a6)                 | ...save a copy of M
665 |       MOVE.W          #$3FDC,L2                 665 |       MOVE.W          #$3FDC,L2               ...prefetch L2 in CB mode
666                                                   666 
667 |--Step 3.                                        667 |--Step 3.
668 |--fp1,fp2 saved on the stack. fp0 is N, fp1 i    668 |--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
669 |--a0 points to 2^(J/64), D0 and a1 both conta    669 |--a0 points to 2^(J/64), D0 and a1 both contain M
670         fmovex          %fp0,%fp2                 670         fmovex          %fp0,%fp2
671         fmuls           #0xBC317218,%fp0          671         fmuls           #0xBC317218,%fp0        | ...N * L1, L1 = lead(-log2/64)
672         fmulx           L2,%fp2         | ...N    672         fmulx           L2,%fp2         | ...N * L2, L1+L2 = -log2/64
673         faddx           %fp1,%fp0        | ...    673         faddx           %fp1,%fp0        | ...X + N*L1
674         faddx           %fp2,%fp0        | ...    674         faddx           %fp2,%fp0        | ...fp0 is R, reduced arg.
675 |       MOVE.W          #$3FC5,EM1A2              675 |       MOVE.W          #$3FC5,EM1A2            ...load EM1A2 in cache
676         addiw           #0x3FFF,%d0               676         addiw           #0x3FFF,%d0             | ...D0 is biased expo. of 2^M
677                                                   677 
678 |--Step 4.                                        678 |--Step 4.
679 |--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL        679 |--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
680 |-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A    680 |-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
681 |--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S    681 |--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
682 |--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A    682 |--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
683                                                   683 
684         fmovex          %fp0,%fp1                 684         fmovex          %fp0,%fp1
685         fmulx           %fp1,%fp1                 685         fmulx           %fp1,%fp1               | ...fp1 IS S = R*R
686                                                   686 
687         fmoves          #0x3950097B,%fp2          687         fmoves          #0x3950097B,%fp2        | ...fp2 IS a6
688 |       MOVE.W          #0,2(%a1)       ...loa    688 |       MOVE.W          #0,2(%a1)       ...load 2^(J/64) in cache
689                                                   689 
690         fmulx           %fp1,%fp2                 690         fmulx           %fp1,%fp2               | ...fp2 IS S*A6
691         fmovex          %fp1,%fp3                 691         fmovex          %fp1,%fp3
692         fmuls           #0x3AB60B6A,%fp3          692         fmuls           #0x3AB60B6A,%fp3        | ...fp3 IS S*A5
693                                                   693 
694         faddd           EM1A4,%fp2      | ...f    694         faddd           EM1A4,%fp2      | ...fp2 IS A4+S*A6
695         faddd           EM1A3,%fp3      | ...f    695         faddd           EM1A3,%fp3      | ...fp3 IS A3+S*A5
696         movew           %d0,SC(%a6)               696         movew           %d0,SC(%a6)             | ...SC is 2^(M) in extended
697         clrw            SC+2(%a6)                 697         clrw            SC+2(%a6)
698         movel           #0x80000000,SC+4(%a6)     698         movel           #0x80000000,SC+4(%a6)
699         clrl            SC+8(%a6)                 699         clrl            SC+8(%a6)
700                                                   700 
701         fmulx           %fp1,%fp2                 701         fmulx           %fp1,%fp2               | ...fp2 IS S*(A4+S*A6)
702         movel           L_SCR1(%a6),%d0           702         movel           L_SCR1(%a6),%d0         | ...D0 is      M
703         negw            %d0             | ...D    703         negw            %d0             | ...D0 is -M
704         fmulx           %fp1,%fp3                 704         fmulx           %fp1,%fp3               | ...fp3 IS S*(A3+S*A5)
705         addiw           #0x3FFF,%d0     | ...b    705         addiw           #0x3FFF,%d0     | ...biased expo. of 2^(-M)
706         faddd           EM1A2,%fp2      | ...f    706         faddd           EM1A2,%fp2      | ...fp2 IS A2+S*(A4+S*A6)
707         fadds           #0x3F000000,%fp3          707         fadds           #0x3F000000,%fp3        | ...fp3 IS A1+S*(A3+S*A5)
708                                                   708 
709         fmulx           %fp1,%fp2                 709         fmulx           %fp1,%fp2               | ...fp2 IS S*(A2+S*(A4+S*A6))
710         oriw            #0x8000,%d0     | ...s    710         oriw            #0x8000,%d0     | ...signed/expo. of -2^(-M)
711         movew           %d0,ONEBYSC(%a6)          711         movew           %d0,ONEBYSC(%a6)        | ...OnebySc is -2^(-M)
712         clrw            ONEBYSC+2(%a6)            712         clrw            ONEBYSC+2(%a6)
713         movel           #0x80000000,ONEBYSC+4(    713         movel           #0x80000000,ONEBYSC+4(%a6)
714         clrl            ONEBYSC+8(%a6)            714         clrl            ONEBYSC+8(%a6)
715         fmulx           %fp3,%fp1                 715         fmulx           %fp3,%fp1               | ...fp1 IS S*(A1+S*(A3+S*A5))
716 |                                       ...fp3    716 |                                       ...fp3 released
717                                                   717 
718         fmulx           %fp0,%fp2                 718         fmulx           %fp0,%fp2               | ...fp2 IS R*S*(A2+S*(A4+S*A6))
719         faddx           %fp1,%fp0                 719         faddx           %fp1,%fp0               | ...fp0 IS R+S*(A1+S*(A3+S*A5))
720 |                                       ...fp1    720 |                                       ...fp1 released
721                                                   721 
722         faddx           %fp2,%fp0                 722         faddx           %fp2,%fp0               | ...fp0 IS EXP(R)-1
723 |                                       ...fp2    723 |                                       ...fp2 released
724         fmovemx (%a7)+,%fp2-%fp2/%fp3   | ...f    724         fmovemx (%a7)+,%fp2-%fp2/%fp3   | ...fp2 restored
725                                                   725 
726 |--Step 5                                         726 |--Step 5
727 |--Compute 2^(J/64)*p                             727 |--Compute 2^(J/64)*p
728                                                   728 
729         fmulx           (%a1),%fp0      | ...2    729         fmulx           (%a1),%fp0      | ...2^(J/64)*(Exp(R)-1)
730                                                   730 
731 |--Step 6                                         731 |--Step 6
732 |--Step 6.1                                       732 |--Step 6.1
733         movel           L_SCR1(%a6),%d0           733         movel           L_SCR1(%a6),%d0         | ...retrieve M
734         cmpil           #63,%d0                   734         cmpil           #63,%d0
735         bles            MLE63                     735         bles            MLE63
736 |--Step 6.2     M >= 64                           736 |--Step 6.2     M >= 64
737         fmoves          12(%a1),%fp1    | ...f    737         fmoves          12(%a1),%fp1    | ...fp1 is t
738         faddx           ONEBYSC(%a6),%fp1         738         faddx           ONEBYSC(%a6),%fp1       | ...fp1 is t+OnebySc
739         faddx           %fp1,%fp0                 739         faddx           %fp1,%fp0               | ...p+(t+OnebySc), fp1 released
740         faddx           (%a1),%fp0      | ...T    740         faddx           (%a1),%fp0      | ...T+(p+(t+OnebySc))
741         bras            EM1SCALE                  741         bras            EM1SCALE
742 MLE63:                                            742 MLE63:
743 |--Step 6.3     M <= 63                           743 |--Step 6.3     M <= 63
744         cmpil           #-3,%d0                   744         cmpil           #-3,%d0
745         bges            MGEN3                     745         bges            MGEN3
746 MLTN3:                                            746 MLTN3:
747 |--Step 6.4     M <= -4                           747 |--Step 6.4     M <= -4
748         fadds           12(%a1),%fp0    | ...p    748         fadds           12(%a1),%fp0    | ...p+t
749         faddx           (%a1),%fp0      | ...T    749         faddx           (%a1),%fp0      | ...T+(p+t)
750         faddx           ONEBYSC(%a6),%fp0         750         faddx           ONEBYSC(%a6),%fp0       | ...OnebySc + (T+(p+t))
751         bras            EM1SCALE                  751         bras            EM1SCALE
752 MGEN3:                                            752 MGEN3:
753 |--Step 6.5     -3 <= M <= 63                     753 |--Step 6.5     -3 <= M <= 63
754         fmovex          (%a1)+,%fp1     | ...f    754         fmovex          (%a1)+,%fp1     | ...fp1 is T
755         fadds           (%a1),%fp0      | ...f    755         fadds           (%a1),%fp0      | ...fp0 is p+t
756         faddx           ONEBYSC(%a6),%fp1         756         faddx           ONEBYSC(%a6),%fp1       | ...fp1 is T+OnebySc
757         faddx           %fp1,%fp0                 757         faddx           %fp1,%fp0               | ...(T+OnebySc)+(p+t)
758                                                   758 
759 EM1SCALE:                                         759 EM1SCALE:
760 |--Step 6.6                                       760 |--Step 6.6
761         fmovel          %d1,%FPCR                 761         fmovel          %d1,%FPCR
762         fmulx           SC(%a6),%fp0              762         fmulx           SC(%a6),%fp0
763                                                   763 
764         bra             t_frcinx                  764         bra             t_frcinx
765                                                   765 
766 EM1SM:                                            766 EM1SM:
767 |--Step 7       |X| < 1/4.                        767 |--Step 7       |X| < 1/4.
768         cmpil           #0x3FBE0000,%d0 | ...2    768         cmpil           #0x3FBE0000,%d0 | ...2^(-65)
769         bges            EM1POLY                   769         bges            EM1POLY
770                                                   770 
771 EM1TINY:                                          771 EM1TINY:
772 |--Step 8       |X| < 2^(-65)                     772 |--Step 8       |X| < 2^(-65)
773         cmpil           #0x00330000,%d0 | ...2    773         cmpil           #0x00330000,%d0 | ...2^(-16312)
774         blts            EM12TINY                  774         blts            EM12TINY
775 |--Step 8.2                                       775 |--Step 8.2
776         movel           #0x80010000,SC(%a6)       776         movel           #0x80010000,SC(%a6)     | ...SC is -2^(-16382)
777         movel           #0x80000000,SC+4(%a6)     777         movel           #0x80000000,SC+4(%a6)
778         clrl            SC+8(%a6)                 778         clrl            SC+8(%a6)
779         fmovex          (%a0),%fp0                779         fmovex          (%a0),%fp0
780         fmovel          %d1,%FPCR                 780         fmovel          %d1,%FPCR
781         faddx           SC(%a6),%fp0              781         faddx           SC(%a6),%fp0
782                                                   782 
783         bra             t_frcinx                  783         bra             t_frcinx
784                                                   784 
785 EM12TINY:                                         785 EM12TINY:
786 |--Step 8.3                                       786 |--Step 8.3
787         fmovex          (%a0),%fp0                787         fmovex          (%a0),%fp0
788         fmuld           TWO140,%fp0               788         fmuld           TWO140,%fp0
789         movel           #0x80010000,SC(%a6)       789         movel           #0x80010000,SC(%a6)
790         movel           #0x80000000,SC+4(%a6)     790         movel           #0x80000000,SC+4(%a6)
791         clrl            SC+8(%a6)                 791         clrl            SC+8(%a6)
792         faddx           SC(%a6),%fp0              792         faddx           SC(%a6),%fp0
793         fmovel          %d1,%FPCR                 793         fmovel          %d1,%FPCR
794         fmuld           TWON140,%fp0              794         fmuld           TWON140,%fp0
795                                                   795 
796         bra             t_frcinx                  796         bra             t_frcinx
797                                                   797 
798 EM1POLY:                                          798 EM1POLY:
799 |--Step 9       exp(X)-1 by a simple polynomia    799 |--Step 9       exp(X)-1 by a simple polynomial
800         fmovex          (%a0),%fp0      | ...f    800         fmovex          (%a0),%fp0      | ...fp0 is X
801         fmulx           %fp0,%fp0                 801         fmulx           %fp0,%fp0               | ...fp0 is S := X*X
802         fmovemx %fp2-%fp2/%fp3,-(%a7)   | ...s    802         fmovemx %fp2-%fp2/%fp3,-(%a7)   | ...save fp2
803         fmoves          #0x2F30CAA8,%fp1          803         fmoves          #0x2F30CAA8,%fp1        | ...fp1 is B12
804         fmulx           %fp0,%fp1                 804         fmulx           %fp0,%fp1               | ...fp1 is S*B12
805         fmoves          #0x310F8290,%fp2          805         fmoves          #0x310F8290,%fp2        | ...fp2 is B11
806         fadds           #0x32D73220,%fp1          806         fadds           #0x32D73220,%fp1        | ...fp1 is B10+S*B12
807                                                   807 
808         fmulx           %fp0,%fp2                 808         fmulx           %fp0,%fp2               | ...fp2 is S*B11
809         fmulx           %fp0,%fp1                 809         fmulx           %fp0,%fp1               | ...fp1 is S*(B10 + ...
810                                                   810 
811         fadds           #0x3493F281,%fp2          811         fadds           #0x3493F281,%fp2        | ...fp2 is B9+S*...
812         faddd           EM1B8,%fp1      | ...f    812         faddd           EM1B8,%fp1      | ...fp1 is B8+S*...
813                                                   813 
814         fmulx           %fp0,%fp2                 814         fmulx           %fp0,%fp2               | ...fp2 is S*(B9+...
815         fmulx           %fp0,%fp1                 815         fmulx           %fp0,%fp1               | ...fp1 is S*(B8+...
816                                                   816 
817         faddd           EM1B7,%fp2      | ...f    817         faddd           EM1B7,%fp2      | ...fp2 is B7+S*...
818         faddd           EM1B6,%fp1      | ...f    818         faddd           EM1B6,%fp1      | ...fp1 is B6+S*...
819                                                   819 
820         fmulx           %fp0,%fp2                 820         fmulx           %fp0,%fp2               | ...fp2 is S*(B7+...
821         fmulx           %fp0,%fp1                 821         fmulx           %fp0,%fp1               | ...fp1 is S*(B6+...
822                                                   822 
823         faddd           EM1B5,%fp2      | ...f    823         faddd           EM1B5,%fp2      | ...fp2 is B5+S*...
824         faddd           EM1B4,%fp1      | ...f    824         faddd           EM1B4,%fp1      | ...fp1 is B4+S*...
825                                                   825 
826         fmulx           %fp0,%fp2                 826         fmulx           %fp0,%fp2               | ...fp2 is S*(B5+...
827         fmulx           %fp0,%fp1                 827         fmulx           %fp0,%fp1               | ...fp1 is S*(B4+...
828                                                   828 
829         faddd           EM1B3,%fp2      | ...f    829         faddd           EM1B3,%fp2      | ...fp2 is B3+S*...
830         faddx           EM1B2,%fp1      | ...f    830         faddx           EM1B2,%fp1      | ...fp1 is B2+S*...
831                                                   831 
832         fmulx           %fp0,%fp2                 832         fmulx           %fp0,%fp2               | ...fp2 is S*(B3+...
833         fmulx           %fp0,%fp1                 833         fmulx           %fp0,%fp1               | ...fp1 is S*(B2+...
834                                                   834 
835         fmulx           %fp0,%fp2                 835         fmulx           %fp0,%fp2               | ...fp2 is S*S*(B3+...)
836         fmulx           (%a0),%fp1      | ...f    836         fmulx           (%a0),%fp1      | ...fp1 is X*S*(B2...
837                                                   837 
838         fmuls           #0x3F000000,%fp0          838         fmuls           #0x3F000000,%fp0        | ...fp0 is S*B1
839         faddx           %fp2,%fp1                 839         faddx           %fp2,%fp1               | ...fp1 is Q
840 |                                       ...fp2    840 |                                       ...fp2 released
841                                                   841 
842         fmovemx (%a7)+,%fp2-%fp2/%fp3   | ...f    842         fmovemx (%a7)+,%fp2-%fp2/%fp3   | ...fp2 restored
843                                                   843 
844         faddx           %fp1,%fp0                 844         faddx           %fp1,%fp0               | ...fp0 is S*B1+Q
845 |                                       ...fp1    845 |                                       ...fp1 released
846                                                   846 
847         fmovel          %d1,%FPCR                 847         fmovel          %d1,%FPCR
848         faddx           (%a0),%fp0                848         faddx           (%a0),%fp0
849                                                   849 
850         bra             t_frcinx                  850         bra             t_frcinx
851                                                   851 
852 EM1BIG:                                           852 EM1BIG:
853 |--Step 10      |X| > 70 log2                     853 |--Step 10      |X| > 70 log2
854         movel           (%a0),%d0                 854         movel           (%a0),%d0
855         cmpil           #0,%d0                    855         cmpil           #0,%d0
856         bgt             EXPC1                     856         bgt             EXPC1
857 |--Step 10.2                                      857 |--Step 10.2
858         fmoves          #0xBF800000,%fp0          858         fmoves          #0xBF800000,%fp0        | ...fp0 is -1
859         fmovel          %d1,%FPCR                 859         fmovel          %d1,%FPCR
860         fadds           #0x00800000,%fp0          860         fadds           #0x00800000,%fp0        | ...-1 + 2^(-126)
861                                                   861 
862         bra             t_frcinx                  862         bra             t_frcinx
863                                                   863 
864         |end                                      864         |end
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php