1 // SPDX-License-Identifier: GPL-2.0 !! 1 /* 2 #ifdef CONFIG_MMU !! 2 * This file is subject to the terms and conditions of the GNU General Public 3 #include "setup_mm.c" !! 3 * License. See the file "COPYING" in the main directory of this archive >> 4 * for more details. >> 5 * >> 6 * Copyright (C) 1995 Linus Torvalds >> 7 * Copyright (C) 1995 Waldorf Electronics >> 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle >> 9 * Copyright (C) 1996 Stoned Elipot >> 10 * Copyright (C) 1999 Silicon Graphics, Inc. >> 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki >> 12 */ >> 13 #include <linux/init.h> >> 14 #include <linux/ioport.h> >> 15 #include <linux/export.h> >> 16 #include <linux/screen_info.h> >> 17 #include <linux/memblock.h> >> 18 #include <linux/bootmem.h> >> 19 #include <linux/initrd.h> >> 20 #include <linux/root_dev.h> >> 21 #include <linux/highmem.h> >> 22 #include <linux/console.h> >> 23 #include <linux/pfn.h> >> 24 #include <linux/debugfs.h> >> 25 #include <linux/kexec.h> >> 26 #include <linux/sizes.h> >> 27 #include <linux/device.h> >> 28 #include <linux/dma-contiguous.h> >> 29 #include <linux/decompress/generic.h> >> 30 #include <linux/of_fdt.h> >> 31 >> 32 #include <asm/addrspace.h> >> 33 #include <asm/bootinfo.h> >> 34 #include <asm/bugs.h> >> 35 #include <asm/cache.h> >> 36 #include <asm/cdmm.h> >> 37 #include <asm/cpu.h> >> 38 #include <asm/debug.h> >> 39 #include <asm/sections.h> >> 40 #include <asm/setup.h> >> 41 #include <asm/smp-ops.h> >> 42 #include <asm/prom.h> >> 43 >> 44 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB >> 45 const char __section(.appended_dtb) __appended_dtb[0x100000]; >> 46 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */ >> 47 >> 48 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; >> 49 >> 50 EXPORT_SYMBOL(cpu_data); >> 51 >> 52 #ifdef CONFIG_VT >> 53 struct screen_info screen_info; >> 54 #endif >> 55 >> 56 /* >> 57 * Setup information >> 58 * >> 59 * These are initialized so they are in the .data section >> 60 */ >> 61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; >> 62 >> 63 EXPORT_SYMBOL(mips_machtype); >> 64 >> 65 struct boot_mem_map boot_mem_map; >> 66 >> 67 static char __initdata command_line[COMMAND_LINE_SIZE]; >> 68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; >> 69 >> 70 #ifdef CONFIG_CMDLINE_BOOL >> 71 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; >> 72 #endif >> 73 >> 74 /* >> 75 * mips_io_port_base is the begin of the address space to which x86 style >> 76 * I/O ports are mapped. >> 77 */ >> 78 const unsigned long mips_io_port_base = -1; >> 79 EXPORT_SYMBOL(mips_io_port_base); >> 80 >> 81 static struct resource code_resource = { .name = "Kernel code", }; >> 82 static struct resource data_resource = { .name = "Kernel data", }; >> 83 >> 84 static void *detect_magic __initdata = detect_memory_region; >> 85 >> 86 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type) >> 87 { >> 88 int x = boot_mem_map.nr_map; >> 89 int i; >> 90 >> 91 /* >> 92 * If the region reaches the top of the physical address space, adjust >> 93 * the size slightly so that (start + size) doesn't overflow >> 94 */ >> 95 if (start + size - 1 == (phys_addr_t)ULLONG_MAX) >> 96 --size; >> 97 >> 98 /* Sanity check */ >> 99 if (start + size < start) { >> 100 pr_warn("Trying to add an invalid memory region, skipped\n"); >> 101 return; >> 102 } >> 103 >> 104 /* >> 105 * Try to merge with existing entry, if any. >> 106 */ >> 107 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 108 struct boot_mem_map_entry *entry = boot_mem_map.map + i; >> 109 unsigned long top; >> 110 >> 111 if (entry->type != type) >> 112 continue; >> 113 >> 114 if (start + size < entry->addr) >> 115 continue; /* no overlap */ >> 116 >> 117 if (entry->addr + entry->size < start) >> 118 continue; /* no overlap */ >> 119 >> 120 top = max(entry->addr + entry->size, start + size); >> 121 entry->addr = min(entry->addr, start); >> 122 entry->size = top - entry->addr; >> 123 >> 124 return; >> 125 } >> 126 >> 127 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) { >> 128 pr_err("Ooops! Too many entries in the memory map!\n"); >> 129 return; >> 130 } >> 131 >> 132 boot_mem_map.map[x].addr = start; >> 133 boot_mem_map.map[x].size = size; >> 134 boot_mem_map.map[x].type = type; >> 135 boot_mem_map.nr_map++; >> 136 } >> 137 >> 138 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) >> 139 { >> 140 void *dm = &detect_magic; >> 141 phys_addr_t size; >> 142 >> 143 for (size = sz_min; size < sz_max; size <<= 1) { >> 144 if (!memcmp(dm, dm + size, sizeof(detect_magic))) >> 145 break; >> 146 } >> 147 >> 148 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", >> 149 ((unsigned long long) size) / SZ_1M, >> 150 (unsigned long long) start, >> 151 ((unsigned long long) sz_min) / SZ_1M, >> 152 ((unsigned long long) sz_max) / SZ_1M); >> 153 >> 154 add_memory_region(start, size, BOOT_MEM_RAM); >> 155 } >> 156 >> 157 bool __init memory_region_available(phys_addr_t start, phys_addr_t size) >> 158 { >> 159 int i; >> 160 bool in_ram = false, free = true; >> 161 >> 162 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 163 phys_addr_t start_, end_; >> 164 >> 165 start_ = boot_mem_map.map[i].addr; >> 166 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size; >> 167 >> 168 switch (boot_mem_map.map[i].type) { >> 169 case BOOT_MEM_RAM: >> 170 if (start >= start_ && start + size <= end_) >> 171 in_ram = true; >> 172 break; >> 173 case BOOT_MEM_RESERVED: >> 174 if ((start >= start_ && start < end_) || >> 175 (start < start_ && start + size >= start_)) >> 176 free = false; >> 177 break; >> 178 default: >> 179 continue; >> 180 } >> 181 } >> 182 >> 183 return in_ram && free; >> 184 } >> 185 >> 186 static void __init print_memory_map(void) >> 187 { >> 188 int i; >> 189 const int field = 2 * sizeof(unsigned long); >> 190 >> 191 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 192 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", >> 193 field, (unsigned long long) boot_mem_map.map[i].size, >> 194 field, (unsigned long long) boot_mem_map.map[i].addr); >> 195 >> 196 switch (boot_mem_map.map[i].type) { >> 197 case BOOT_MEM_RAM: >> 198 printk(KERN_CONT "(usable)\n"); >> 199 break; >> 200 case BOOT_MEM_INIT_RAM: >> 201 printk(KERN_CONT "(usable after init)\n"); >> 202 break; >> 203 case BOOT_MEM_ROM_DATA: >> 204 printk(KERN_CONT "(ROM data)\n"); >> 205 break; >> 206 case BOOT_MEM_RESERVED: >> 207 printk(KERN_CONT "(reserved)\n"); >> 208 break; >> 209 default: >> 210 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); >> 211 break; >> 212 } >> 213 } >> 214 } >> 215 >> 216 /* >> 217 * Manage initrd >> 218 */ >> 219 #ifdef CONFIG_BLK_DEV_INITRD >> 220 >> 221 static int __init rd_start_early(char *p) >> 222 { >> 223 unsigned long start = memparse(p, &p); >> 224 >> 225 #ifdef CONFIG_64BIT >> 226 /* Guess if the sign extension was forgotten by bootloader */ >> 227 if (start < XKPHYS) >> 228 start = (int)start; >> 229 #endif >> 230 initrd_start = start; >> 231 initrd_end += start; >> 232 return 0; >> 233 } >> 234 early_param("rd_start", rd_start_early); >> 235 >> 236 static int __init rd_size_early(char *p) >> 237 { >> 238 initrd_end += memparse(p, &p); >> 239 return 0; >> 240 } >> 241 early_param("rd_size", rd_size_early); >> 242 >> 243 /* it returns the next free pfn after initrd */ >> 244 static unsigned long __init init_initrd(void) >> 245 { >> 246 unsigned long end; >> 247 >> 248 /* >> 249 * Board specific code or command line parser should have >> 250 * already set up initrd_start and initrd_end. In these cases >> 251 * perfom sanity checks and use them if all looks good. >> 252 */ >> 253 if (!initrd_start || initrd_end <= initrd_start) >> 254 goto disable; >> 255 >> 256 if (initrd_start & ~PAGE_MASK) { >> 257 pr_err("initrd start must be page aligned\n"); >> 258 goto disable; >> 259 } >> 260 if (initrd_start < PAGE_OFFSET) { >> 261 pr_err("initrd start < PAGE_OFFSET\n"); >> 262 goto disable; >> 263 } >> 264 >> 265 /* >> 266 * Sanitize initrd addresses. For example firmware >> 267 * can't guess if they need to pass them through >> 268 * 64-bits values if the kernel has been built in pure >> 269 * 32-bit. We need also to switch from KSEG0 to XKPHYS >> 270 * addresses now, so the code can now safely use __pa(). >> 271 */ >> 272 end = __pa(initrd_end); >> 273 initrd_end = (unsigned long)__va(end); >> 274 initrd_start = (unsigned long)__va(__pa(initrd_start)); >> 275 >> 276 ROOT_DEV = Root_RAM0; >> 277 return PFN_UP(end); >> 278 disable: >> 279 initrd_start = 0; >> 280 initrd_end = 0; >> 281 return 0; >> 282 } >> 283 >> 284 /* In some conditions (e.g. big endian bootloader with a little endian >> 285 kernel), the initrd might appear byte swapped. Try to detect this and >> 286 byte swap it if needed. */ >> 287 static void __init maybe_bswap_initrd(void) >> 288 { >> 289 #if defined(CONFIG_CPU_CAVIUM_OCTEON) >> 290 u64 buf; >> 291 >> 292 /* Check for CPIO signature */ >> 293 if (!memcmp((void *)initrd_start, "070701", 6)) >> 294 return; >> 295 >> 296 /* Check for compressed initrd */ >> 297 if (decompress_method((unsigned char *)initrd_start, 8, NULL)) >> 298 return; >> 299 >> 300 /* Try again with a byte swapped header */ >> 301 buf = swab64p((u64 *)initrd_start); >> 302 if (!memcmp(&buf, "070701", 6) || >> 303 decompress_method((unsigned char *)(&buf), 8, NULL)) { >> 304 unsigned long i; >> 305 >> 306 pr_info("Byteswapped initrd detected\n"); >> 307 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8) >> 308 swab64s((u64 *)i); >> 309 } >> 310 #endif >> 311 } >> 312 >> 313 static void __init finalize_initrd(void) >> 314 { >> 315 unsigned long size = initrd_end - initrd_start; >> 316 >> 317 if (size == 0) { >> 318 printk(KERN_INFO "Initrd not found or empty"); >> 319 goto disable; >> 320 } >> 321 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { >> 322 printk(KERN_ERR "Initrd extends beyond end of memory"); >> 323 goto disable; >> 324 } >> 325 >> 326 maybe_bswap_initrd(); >> 327 >> 328 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); >> 329 initrd_below_start_ok = 1; >> 330 >> 331 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", >> 332 initrd_start, size); >> 333 return; >> 334 disable: >> 335 printk(KERN_CONT " - disabling initrd\n"); >> 336 initrd_start = 0; >> 337 initrd_end = 0; >> 338 } >> 339 >> 340 #else /* !CONFIG_BLK_DEV_INITRD */ >> 341 >> 342 static unsigned long __init init_initrd(void) >> 343 { >> 344 return 0; >> 345 } >> 346 >> 347 #define finalize_initrd() do {} while (0) >> 348 >> 349 #endif >> 350 >> 351 /* >> 352 * Initialize the bootmem allocator. It also setup initrd related data >> 353 * if needed. >> 354 */ >> 355 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA)) >> 356 >> 357 static void __init bootmem_init(void) >> 358 { >> 359 init_initrd(); >> 360 finalize_initrd(); >> 361 } >> 362 >> 363 #else /* !CONFIG_SGI_IP27 */ >> 364 >> 365 static unsigned long __init bootmap_bytes(unsigned long pages) >> 366 { >> 367 unsigned long bytes = DIV_ROUND_UP(pages, 8); >> 368 >> 369 return ALIGN(bytes, sizeof(long)); >> 370 } >> 371 >> 372 static void __init bootmem_init(void) >> 373 { >> 374 unsigned long reserved_end; >> 375 unsigned long mapstart = ~0UL; >> 376 unsigned long bootmap_size; >> 377 bool bootmap_valid = false; >> 378 int i; >> 379 >> 380 /* >> 381 * Sanity check any INITRD first. We don't take it into account >> 382 * for bootmem setup initially, rely on the end-of-kernel-code >> 383 * as our memory range starting point. Once bootmem is inited we >> 384 * will reserve the area used for the initrd. >> 385 */ >> 386 init_initrd(); >> 387 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end)); >> 388 >> 389 /* >> 390 * max_low_pfn is not a number of pages. The number of pages >> 391 * of the system is given by 'max_low_pfn - min_low_pfn'. >> 392 */ >> 393 min_low_pfn = ~0UL; >> 394 max_low_pfn = 0; >> 395 >> 396 /* >> 397 * Find the highest page frame number we have available. >> 398 */ >> 399 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 400 unsigned long start, end; >> 401 >> 402 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) >> 403 continue; >> 404 >> 405 start = PFN_UP(boot_mem_map.map[i].addr); >> 406 end = PFN_DOWN(boot_mem_map.map[i].addr >> 407 + boot_mem_map.map[i].size); >> 408 >> 409 #ifndef CONFIG_HIGHMEM >> 410 /* >> 411 * Skip highmem here so we get an accurate max_low_pfn if low >> 412 * memory stops short of high memory. >> 413 * If the region overlaps HIGHMEM_START, end is clipped so >> 414 * max_pfn excludes the highmem portion. >> 415 */ >> 416 if (start >= PFN_DOWN(HIGHMEM_START)) >> 417 continue; >> 418 if (end > PFN_DOWN(HIGHMEM_START)) >> 419 end = PFN_DOWN(HIGHMEM_START); >> 420 #endif >> 421 >> 422 if (end > max_low_pfn) >> 423 max_low_pfn = end; >> 424 if (start < min_low_pfn) >> 425 min_low_pfn = start; >> 426 if (end <= reserved_end) >> 427 continue; >> 428 #ifdef CONFIG_BLK_DEV_INITRD >> 429 /* Skip zones before initrd and initrd itself */ >> 430 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end))) >> 431 continue; >> 432 #endif >> 433 if (start >= mapstart) >> 434 continue; >> 435 mapstart = max(reserved_end, start); >> 436 } >> 437 >> 438 if (min_low_pfn >= max_low_pfn) >> 439 panic("Incorrect memory mapping !!!"); >> 440 if (min_low_pfn > ARCH_PFN_OFFSET) { >> 441 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", >> 442 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), >> 443 min_low_pfn - ARCH_PFN_OFFSET); >> 444 } else if (min_low_pfn < ARCH_PFN_OFFSET) { >> 445 pr_info("%lu free pages won't be used\n", >> 446 ARCH_PFN_OFFSET - min_low_pfn); >> 447 } >> 448 min_low_pfn = ARCH_PFN_OFFSET; >> 449 >> 450 /* >> 451 * Determine low and high memory ranges >> 452 */ >> 453 max_pfn = max_low_pfn; >> 454 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { >> 455 #ifdef CONFIG_HIGHMEM >> 456 highstart_pfn = PFN_DOWN(HIGHMEM_START); >> 457 highend_pfn = max_low_pfn; >> 458 #endif >> 459 max_low_pfn = PFN_DOWN(HIGHMEM_START); >> 460 } >> 461 >> 462 #ifdef CONFIG_BLK_DEV_INITRD >> 463 /* >> 464 * mapstart should be after initrd_end >> 465 */ >> 466 if (initrd_end) >> 467 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end))); >> 468 #endif >> 469 >> 470 /* >> 471 * check that mapstart doesn't overlap with any of >> 472 * memory regions that have been reserved through eg. DTB >> 473 */ >> 474 bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn); >> 475 >> 476 bootmap_valid = memory_region_available(PFN_PHYS(mapstart), >> 477 bootmap_size); >> 478 for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) { >> 479 unsigned long mapstart_addr; >> 480 >> 481 switch (boot_mem_map.map[i].type) { >> 482 case BOOT_MEM_RESERVED: >> 483 mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr + >> 484 boot_mem_map.map[i].size); >> 485 if (PHYS_PFN(mapstart_addr) < mapstart) >> 486 break; >> 487 >> 488 bootmap_valid = memory_region_available(mapstart_addr, >> 489 bootmap_size); >> 490 if (bootmap_valid) >> 491 mapstart = PHYS_PFN(mapstart_addr); >> 492 break; >> 493 default: >> 494 break; >> 495 } >> 496 } >> 497 >> 498 if (!bootmap_valid) >> 499 panic("No memory area to place a bootmap bitmap"); >> 500 >> 501 /* >> 502 * Initialize the boot-time allocator with low memory only. >> 503 */ >> 504 if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart, >> 505 min_low_pfn, max_low_pfn)) >> 506 panic("Unexpected memory size required for bootmap"); >> 507 >> 508 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 509 unsigned long start, end; >> 510 >> 511 start = PFN_UP(boot_mem_map.map[i].addr); >> 512 end = PFN_DOWN(boot_mem_map.map[i].addr >> 513 + boot_mem_map.map[i].size); >> 514 >> 515 if (start <= min_low_pfn) >> 516 start = min_low_pfn; >> 517 if (start >= end) >> 518 continue; >> 519 >> 520 #ifndef CONFIG_HIGHMEM >> 521 if (end > max_low_pfn) >> 522 end = max_low_pfn; >> 523 >> 524 /* >> 525 * ... finally, is the area going away? >> 526 */ >> 527 if (end <= start) >> 528 continue; >> 529 #endif >> 530 >> 531 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); >> 532 } >> 533 >> 534 /* >> 535 * Register fully available low RAM pages with the bootmem allocator. >> 536 */ >> 537 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 538 unsigned long start, end, size; >> 539 >> 540 start = PFN_UP(boot_mem_map.map[i].addr); >> 541 end = PFN_DOWN(boot_mem_map.map[i].addr >> 542 + boot_mem_map.map[i].size); >> 543 >> 544 /* >> 545 * Reserve usable memory. >> 546 */ >> 547 switch (boot_mem_map.map[i].type) { >> 548 case BOOT_MEM_RAM: >> 549 break; >> 550 case BOOT_MEM_INIT_RAM: >> 551 memory_present(0, start, end); >> 552 continue; >> 553 default: >> 554 /* Not usable memory */ >> 555 if (start > min_low_pfn && end < max_low_pfn) >> 556 reserve_bootmem(boot_mem_map.map[i].addr, >> 557 boot_mem_map.map[i].size, >> 558 BOOTMEM_DEFAULT); >> 559 continue; >> 560 } >> 561 >> 562 /* >> 563 * We are rounding up the start address of usable memory >> 564 * and at the end of the usable range downwards. >> 565 */ >> 566 if (start >= max_low_pfn) >> 567 continue; >> 568 if (start < reserved_end) >> 569 start = reserved_end; >> 570 if (end > max_low_pfn) >> 571 end = max_low_pfn; >> 572 >> 573 /* >> 574 * ... finally, is the area going away? >> 575 */ >> 576 if (end <= start) >> 577 continue; >> 578 size = end - start; >> 579 >> 580 /* Register lowmem ranges */ >> 581 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); >> 582 memory_present(0, start, end); >> 583 } >> 584 >> 585 /* >> 586 * Reserve the bootmap memory. >> 587 */ >> 588 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); >> 589 >> 590 #ifdef CONFIG_RELOCATABLE >> 591 /* >> 592 * The kernel reserves all memory below its _end symbol as bootmem, >> 593 * but the kernel may now be at a much higher address. The memory >> 594 * between the original and new locations may be returned to the system. >> 595 */ >> 596 if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) { >> 597 unsigned long offset; >> 598 extern void show_kernel_relocation(const char *level); >> 599 >> 600 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS); >> 601 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset); >> 602 >> 603 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO) >> 604 /* >> 605 * This information is necessary when debugging the kernel >> 606 * But is a security vulnerability otherwise! >> 607 */ >> 608 show_kernel_relocation(KERN_INFO); >> 609 #endif >> 610 } >> 611 #endif >> 612 >> 613 /* >> 614 * Reserve initrd memory if needed. >> 615 */ >> 616 finalize_initrd(); >> 617 } >> 618 >> 619 #endif /* CONFIG_SGI_IP27 */ >> 620 >> 621 /* >> 622 * arch_mem_init - initialize memory management subsystem >> 623 * >> 624 * o plat_mem_setup() detects the memory configuration and will record detected >> 625 * memory areas using add_memory_region. >> 626 * >> 627 * At this stage the memory configuration of the system is known to the >> 628 * kernel but generic memory management system is still entirely uninitialized. >> 629 * >> 630 * o bootmem_init() >> 631 * o sparse_init() >> 632 * o paging_init() >> 633 * o dma_contiguous_reserve() >> 634 * >> 635 * At this stage the bootmem allocator is ready to use. >> 636 * >> 637 * NOTE: historically plat_mem_setup did the entire platform initialization. >> 638 * This was rather impractical because it meant plat_mem_setup had to >> 639 * get away without any kind of memory allocator. To keep old code from >> 640 * breaking plat_setup was just renamed to plat_mem_setup and a second platform >> 641 * initialization hook for anything else was introduced. >> 642 */ >> 643 >> 644 static int usermem __initdata; >> 645 >> 646 static int __init early_parse_mem(char *p) >> 647 { >> 648 phys_addr_t start, size; >> 649 >> 650 /* >> 651 * If a user specifies memory size, we >> 652 * blow away any automatically generated >> 653 * size. >> 654 */ >> 655 if (usermem == 0) { >> 656 boot_mem_map.nr_map = 0; >> 657 usermem = 1; >> 658 } >> 659 start = 0; >> 660 size = memparse(p, &p); >> 661 if (*p == '@') >> 662 start = memparse(p + 1, &p); >> 663 >> 664 add_memory_region(start, size, BOOT_MEM_RAM); >> 665 >> 666 if (start && start > PHYS_OFFSET) >> 667 add_memory_region(PHYS_OFFSET, start - PHYS_OFFSET, >> 668 BOOT_MEM_RESERVED); >> 669 return 0; >> 670 } >> 671 early_param("mem", early_parse_mem); >> 672 >> 673 #ifdef CONFIG_PROC_VMCORE >> 674 unsigned long setup_elfcorehdr, setup_elfcorehdr_size; >> 675 static int __init early_parse_elfcorehdr(char *p) >> 676 { >> 677 int i; >> 678 >> 679 setup_elfcorehdr = memparse(p, &p); >> 680 >> 681 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 682 unsigned long start = boot_mem_map.map[i].addr; >> 683 unsigned long end = (boot_mem_map.map[i].addr + >> 684 boot_mem_map.map[i].size); >> 685 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { >> 686 /* >> 687 * Reserve from the elf core header to the end of >> 688 * the memory segment, that should all be kdump >> 689 * reserved memory. >> 690 */ >> 691 setup_elfcorehdr_size = end - setup_elfcorehdr; >> 692 break; >> 693 } >> 694 } >> 695 /* >> 696 * If we don't find it in the memory map, then we shouldn't >> 697 * have to worry about it, as the new kernel won't use it. >> 698 */ >> 699 return 0; >> 700 } >> 701 early_param("elfcorehdr", early_parse_elfcorehdr); >> 702 #endif >> 703 >> 704 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type) >> 705 { >> 706 phys_addr_t size; >> 707 int i; >> 708 >> 709 size = end - mem; >> 710 if (!size) >> 711 return; >> 712 >> 713 /* Make sure it is in the boot_mem_map */ >> 714 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 715 if (mem >= boot_mem_map.map[i].addr && >> 716 mem < (boot_mem_map.map[i].addr + >> 717 boot_mem_map.map[i].size)) >> 718 return; >> 719 } >> 720 add_memory_region(mem, size, type); >> 721 } >> 722 >> 723 #ifdef CONFIG_KEXEC >> 724 static inline unsigned long long get_total_mem(void) >> 725 { >> 726 unsigned long long total; >> 727 >> 728 total = max_pfn - min_low_pfn; >> 729 return total << PAGE_SHIFT; >> 730 } >> 731 >> 732 static void __init mips_parse_crashkernel(void) >> 733 { >> 734 unsigned long long total_mem; >> 735 unsigned long long crash_size, crash_base; >> 736 int ret; >> 737 >> 738 total_mem = get_total_mem(); >> 739 ret = parse_crashkernel(boot_command_line, total_mem, >> 740 &crash_size, &crash_base); >> 741 if (ret != 0 || crash_size <= 0) >> 742 return; >> 743 >> 744 if (!memory_region_available(crash_base, crash_size)) { >> 745 pr_warn("Invalid memory region reserved for crash kernel\n"); >> 746 return; >> 747 } >> 748 >> 749 crashk_res.start = crash_base; >> 750 crashk_res.end = crash_base + crash_size - 1; >> 751 } >> 752 >> 753 static void __init request_crashkernel(struct resource *res) >> 754 { >> 755 int ret; >> 756 >> 757 if (crashk_res.start == crashk_res.end) >> 758 return; >> 759 >> 760 ret = request_resource(res, &crashk_res); >> 761 if (!ret) >> 762 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", >> 763 (unsigned long)((crashk_res.end - >> 764 crashk_res.start + 1) >> 20), >> 765 (unsigned long)(crashk_res.start >> 20)); >> 766 } >> 767 #else /* !defined(CONFIG_KEXEC) */ >> 768 static void __init mips_parse_crashkernel(void) >> 769 { >> 770 } >> 771 >> 772 static void __init request_crashkernel(struct resource *res) >> 773 { >> 774 } >> 775 #endif /* !defined(CONFIG_KEXEC) */ >> 776 >> 777 #define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER) >> 778 #define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) >> 779 #define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) >> 780 #define BUILTIN_EXTEND_WITH_PROM \ >> 781 IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND) >> 782 >> 783 static void __init arch_mem_init(char **cmdline_p) >> 784 { >> 785 struct memblock_region *reg; >> 786 extern void plat_mem_setup(void); >> 787 >> 788 /* call board setup routine */ >> 789 plat_mem_setup(); >> 790 >> 791 /* >> 792 * Make sure all kernel memory is in the maps. The "UP" and >> 793 * "DOWN" are opposite for initdata since if it crosses over >> 794 * into another memory section you don't want that to be >> 795 * freed when the initdata is freed. >> 796 */ >> 797 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT, >> 798 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT, >> 799 BOOT_MEM_RAM); >> 800 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT, >> 801 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT, >> 802 BOOT_MEM_INIT_RAM); >> 803 >> 804 pr_info("Determined physical RAM map:\n"); >> 805 print_memory_map(); >> 806 >> 807 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE) >> 808 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 4 #else 809 #else 5 #include "setup_no.c" !! 810 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) || >> 811 (USE_DTB_CMDLINE && !boot_command_line[0])) >> 812 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); >> 813 >> 814 if (EXTEND_WITH_PROM && arcs_cmdline[0]) { >> 815 if (boot_command_line[0]) >> 816 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); >> 817 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); >> 818 } >> 819 >> 820 #if defined(CONFIG_CMDLINE_BOOL) >> 821 if (builtin_cmdline[0]) { >> 822 if (boot_command_line[0]) >> 823 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); >> 824 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); >> 825 } >> 826 >> 827 if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) { >> 828 if (boot_command_line[0]) >> 829 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); >> 830 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); >> 831 } >> 832 #endif >> 833 #endif >> 834 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); >> 835 >> 836 *cmdline_p = command_line; >> 837 >> 838 parse_early_param(); >> 839 >> 840 if (usermem) { >> 841 pr_info("User-defined physical RAM map:\n"); >> 842 print_memory_map(); >> 843 } >> 844 >> 845 early_init_fdt_reserve_self(); >> 846 early_init_fdt_scan_reserved_mem(); >> 847 >> 848 bootmem_init(); >> 849 #ifdef CONFIG_PROC_VMCORE >> 850 if (setup_elfcorehdr && setup_elfcorehdr_size) { >> 851 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", >> 852 setup_elfcorehdr, setup_elfcorehdr_size); >> 853 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size, >> 854 BOOTMEM_DEFAULT); >> 855 } 6 #endif 856 #endif 7 857 8 #if IS_ENABLED(CONFIG_INPUT_M68K_BEEP) !! 858 mips_parse_crashkernel(); 9 void (*mach_beep)(unsigned int, unsigned int); !! 859 #ifdef CONFIG_KEXEC 10 EXPORT_SYMBOL(mach_beep); !! 860 if (crashk_res.start != crashk_res.end) >> 861 reserve_bootmem(crashk_res.start, >> 862 crashk_res.end - crashk_res.start + 1, >> 863 BOOTMEM_DEFAULT); >> 864 #endif >> 865 device_tree_init(); >> 866 sparse_init(); >> 867 plat_swiotlb_setup(); >> 868 >> 869 dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); >> 870 /* Tell bootmem about cma reserved memblock section */ >> 871 for_each_memblock(reserved, reg) >> 872 if (reg->size != 0) >> 873 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); >> 874 >> 875 reserve_bootmem_region(__pa_symbol(&__nosave_begin), >> 876 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */ >> 877 } >> 878 >> 879 static void __init resource_init(void) >> 880 { >> 881 int i; >> 882 >> 883 if (UNCAC_BASE != IO_BASE) >> 884 return; >> 885 >> 886 code_resource.start = __pa_symbol(&_text); >> 887 code_resource.end = __pa_symbol(&_etext) - 1; >> 888 data_resource.start = __pa_symbol(&_etext); >> 889 data_resource.end = __pa_symbol(&_edata) - 1; >> 890 >> 891 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 892 struct resource *res; >> 893 unsigned long start, end; >> 894 >> 895 start = boot_mem_map.map[i].addr; >> 896 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; >> 897 if (start >= HIGHMEM_START) >> 898 continue; >> 899 if (end >= HIGHMEM_START) >> 900 end = HIGHMEM_START - 1; >> 901 >> 902 res = alloc_bootmem(sizeof(struct resource)); >> 903 >> 904 res->start = start; >> 905 res->end = end; >> 906 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; >> 907 >> 908 switch (boot_mem_map.map[i].type) { >> 909 case BOOT_MEM_RAM: >> 910 case BOOT_MEM_INIT_RAM: >> 911 case BOOT_MEM_ROM_DATA: >> 912 res->name = "System RAM"; >> 913 res->flags |= IORESOURCE_SYSRAM; >> 914 break; >> 915 case BOOT_MEM_RESERVED: >> 916 default: >> 917 res->name = "reserved"; >> 918 } >> 919 >> 920 request_resource(&iomem_resource, res); >> 921 >> 922 /* >> 923 * We don't know which RAM region contains kernel data, >> 924 * so we try it repeatedly and let the resource manager >> 925 * test it. >> 926 */ >> 927 request_resource(res, &code_resource); >> 928 request_resource(res, &data_resource); >> 929 request_crashkernel(res); >> 930 } >> 931 } >> 932 >> 933 #ifdef CONFIG_SMP >> 934 static void __init prefill_possible_map(void) >> 935 { >> 936 int i, possible = num_possible_cpus(); >> 937 >> 938 if (possible > nr_cpu_ids) >> 939 possible = nr_cpu_ids; >> 940 >> 941 for (i = 0; i < possible; i++) >> 942 set_cpu_possible(i, true); >> 943 for (; i < NR_CPUS; i++) >> 944 set_cpu_possible(i, false); >> 945 >> 946 nr_cpu_ids = possible; >> 947 } >> 948 #else >> 949 static inline void prefill_possible_map(void) {} >> 950 #endif >> 951 >> 952 void __init setup_arch(char **cmdline_p) >> 953 { >> 954 cpu_probe(); >> 955 mips_cm_probe(); >> 956 prom_init(); >> 957 >> 958 setup_early_fdc_console(); >> 959 #ifdef CONFIG_EARLY_PRINTK >> 960 setup_early_printk(); >> 961 #endif >> 962 cpu_report(); >> 963 check_bugs_early(); >> 964 >> 965 #if defined(CONFIG_VT) >> 966 #if defined(CONFIG_VGA_CONSOLE) >> 967 conswitchp = &vga_con; >> 968 #elif defined(CONFIG_DUMMY_CONSOLE) >> 969 conswitchp = &dummy_con; >> 970 #endif >> 971 #endif >> 972 >> 973 arch_mem_init(cmdline_p); >> 974 >> 975 resource_init(); >> 976 plat_smp_setup(); >> 977 prefill_possible_map(); >> 978 >> 979 cpu_cache_init(); >> 980 paging_init(); >> 981 } >> 982 >> 983 unsigned long kernelsp[NR_CPUS]; >> 984 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; >> 985 >> 986 #ifdef CONFIG_USE_OF >> 987 unsigned long fw_passed_dtb; >> 988 #endif >> 989 >> 990 #ifdef CONFIG_DEBUG_FS >> 991 struct dentry *mips_debugfs_dir; >> 992 static int __init debugfs_mips(void) >> 993 { >> 994 struct dentry *d; >> 995 >> 996 d = debugfs_create_dir("mips", NULL); >> 997 if (!d) >> 998 return -ENOMEM; >> 999 mips_debugfs_dir = d; >> 1000 return 0; >> 1001 } >> 1002 arch_initcall(debugfs_mips); 11 #endif 1003 #endif 12 1004
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.