1 // SPDX-License-Identifier: GPL-2.0 !! 1 /* 2 #ifdef CONFIG_MMU !! 2 * This file is subject to the terms and conditions of the GNU General Public 3 #include "setup_mm.c" !! 3 * License. See the file "COPYING" in the main directory of this archive >> 4 * for more details. >> 5 * >> 6 * Copyright (C) 1995 Linus Torvalds >> 7 * Copyright (C) 1995 Waldorf Electronics >> 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle >> 9 * Copyright (C) 1996 Stoned Elipot >> 10 * Copyright (C) 1999 Silicon Graphics, Inc. >> 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki >> 12 */ >> 13 #include <linux/init.h> >> 14 #include <linux/ioport.h> >> 15 #include <linux/export.h> >> 16 #include <linux/screen_info.h> >> 17 #include <linux/memblock.h> >> 18 #include <linux/bootmem.h> >> 19 #include <linux/initrd.h> >> 20 #include <linux/root_dev.h> >> 21 #include <linux/highmem.h> >> 22 #include <linux/console.h> >> 23 #include <linux/pfn.h> >> 24 #include <linux/debugfs.h> >> 25 #include <linux/kexec.h> >> 26 #include <linux/sizes.h> >> 27 #include <linux/device.h> >> 28 #include <linux/dma-contiguous.h> >> 29 #include <linux/decompress/generic.h> >> 30 #include <linux/of_fdt.h> >> 31 >> 32 #include <asm/addrspace.h> >> 33 #include <asm/bootinfo.h> >> 34 #include <asm/bugs.h> >> 35 #include <asm/cache.h> >> 36 #include <asm/cdmm.h> >> 37 #include <asm/cpu.h> >> 38 #include <asm/debug.h> >> 39 #include <asm/sections.h> >> 40 #include <asm/setup.h> >> 41 #include <asm/smp-ops.h> >> 42 #include <asm/prom.h> >> 43 >> 44 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB >> 45 const char __section(.appended_dtb) __appended_dtb[0x100000]; >> 46 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */ >> 47 >> 48 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; >> 49 >> 50 EXPORT_SYMBOL(cpu_data); >> 51 >> 52 #ifdef CONFIG_VT >> 53 struct screen_info screen_info; >> 54 #endif >> 55 >> 56 /* >> 57 * Setup information >> 58 * >> 59 * These are initialized so they are in the .data section >> 60 */ >> 61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; >> 62 >> 63 EXPORT_SYMBOL(mips_machtype); >> 64 >> 65 struct boot_mem_map boot_mem_map; >> 66 >> 67 static char __initdata command_line[COMMAND_LINE_SIZE]; >> 68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; >> 69 >> 70 #ifdef CONFIG_CMDLINE_BOOL >> 71 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; >> 72 #endif >> 73 >> 74 /* >> 75 * mips_io_port_base is the begin of the address space to which x86 style >> 76 * I/O ports are mapped. >> 77 */ >> 78 const unsigned long mips_io_port_base = -1; >> 79 EXPORT_SYMBOL(mips_io_port_base); >> 80 >> 81 static struct resource code_resource = { .name = "Kernel code", }; >> 82 static struct resource data_resource = { .name = "Kernel data", }; >> 83 static struct resource bss_resource = { .name = "Kernel bss", }; >> 84 >> 85 static void *detect_magic __initdata = detect_memory_region; >> 86 >> 87 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type) >> 88 { >> 89 int x = boot_mem_map.nr_map; >> 90 int i; >> 91 >> 92 /* >> 93 * If the region reaches the top of the physical address space, adjust >> 94 * the size slightly so that (start + size) doesn't overflow >> 95 */ >> 96 if (start + size - 1 == (phys_addr_t)ULLONG_MAX) >> 97 --size; >> 98 >> 99 /* Sanity check */ >> 100 if (start + size < start) { >> 101 pr_warn("Trying to add an invalid memory region, skipped\n"); >> 102 return; >> 103 } >> 104 >> 105 /* >> 106 * Try to merge with existing entry, if any. >> 107 */ >> 108 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 109 struct boot_mem_map_entry *entry = boot_mem_map.map + i; >> 110 unsigned long top; >> 111 >> 112 if (entry->type != type) >> 113 continue; >> 114 >> 115 if (start + size < entry->addr) >> 116 continue; /* no overlap */ >> 117 >> 118 if (entry->addr + entry->size < start) >> 119 continue; /* no overlap */ >> 120 >> 121 top = max(entry->addr + entry->size, start + size); >> 122 entry->addr = min(entry->addr, start); >> 123 entry->size = top - entry->addr; >> 124 >> 125 return; >> 126 } >> 127 >> 128 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) { >> 129 pr_err("Ooops! Too many entries in the memory map!\n"); >> 130 return; >> 131 } >> 132 >> 133 boot_mem_map.map[x].addr = start; >> 134 boot_mem_map.map[x].size = size; >> 135 boot_mem_map.map[x].type = type; >> 136 boot_mem_map.nr_map++; >> 137 } >> 138 >> 139 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) >> 140 { >> 141 void *dm = &detect_magic; >> 142 phys_addr_t size; >> 143 >> 144 for (size = sz_min; size < sz_max; size <<= 1) { >> 145 if (!memcmp(dm, dm + size, sizeof(detect_magic))) >> 146 break; >> 147 } >> 148 >> 149 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", >> 150 ((unsigned long long) size) / SZ_1M, >> 151 (unsigned long long) start, >> 152 ((unsigned long long) sz_min) / SZ_1M, >> 153 ((unsigned long long) sz_max) / SZ_1M); >> 154 >> 155 add_memory_region(start, size, BOOT_MEM_RAM); >> 156 } >> 157 >> 158 bool __init memory_region_available(phys_addr_t start, phys_addr_t size) >> 159 { >> 160 int i; >> 161 bool in_ram = false, free = true; >> 162 >> 163 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 164 phys_addr_t start_, end_; >> 165 >> 166 start_ = boot_mem_map.map[i].addr; >> 167 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size; >> 168 >> 169 switch (boot_mem_map.map[i].type) { >> 170 case BOOT_MEM_RAM: >> 171 if (start >= start_ && start + size <= end_) >> 172 in_ram = true; >> 173 break; >> 174 case BOOT_MEM_RESERVED: >> 175 if ((start >= start_ && start < end_) || >> 176 (start < start_ && start + size >= start_)) >> 177 free = false; >> 178 break; >> 179 default: >> 180 continue; >> 181 } >> 182 } >> 183 >> 184 return in_ram && free; >> 185 } >> 186 >> 187 static void __init print_memory_map(void) >> 188 { >> 189 int i; >> 190 const int field = 2 * sizeof(unsigned long); >> 191 >> 192 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 193 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", >> 194 field, (unsigned long long) boot_mem_map.map[i].size, >> 195 field, (unsigned long long) boot_mem_map.map[i].addr); >> 196 >> 197 switch (boot_mem_map.map[i].type) { >> 198 case BOOT_MEM_RAM: >> 199 printk(KERN_CONT "(usable)\n"); >> 200 break; >> 201 case BOOT_MEM_INIT_RAM: >> 202 printk(KERN_CONT "(usable after init)\n"); >> 203 break; >> 204 case BOOT_MEM_ROM_DATA: >> 205 printk(KERN_CONT "(ROM data)\n"); >> 206 break; >> 207 case BOOT_MEM_RESERVED: >> 208 printk(KERN_CONT "(reserved)\n"); >> 209 break; >> 210 default: >> 211 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); >> 212 break; >> 213 } >> 214 } >> 215 } >> 216 >> 217 /* >> 218 * Manage initrd >> 219 */ >> 220 #ifdef CONFIG_BLK_DEV_INITRD >> 221 >> 222 static int __init rd_start_early(char *p) >> 223 { >> 224 unsigned long start = memparse(p, &p); >> 225 >> 226 #ifdef CONFIG_64BIT >> 227 /* Guess if the sign extension was forgotten by bootloader */ >> 228 if (start < XKPHYS) >> 229 start = (int)start; >> 230 #endif >> 231 initrd_start = start; >> 232 initrd_end += start; >> 233 return 0; >> 234 } >> 235 early_param("rd_start", rd_start_early); >> 236 >> 237 static int __init rd_size_early(char *p) >> 238 { >> 239 initrd_end += memparse(p, &p); >> 240 return 0; >> 241 } >> 242 early_param("rd_size", rd_size_early); >> 243 >> 244 /* it returns the next free pfn after initrd */ >> 245 static unsigned long __init init_initrd(void) >> 246 { >> 247 unsigned long end; >> 248 >> 249 /* >> 250 * Board specific code or command line parser should have >> 251 * already set up initrd_start and initrd_end. In these cases >> 252 * perfom sanity checks and use them if all looks good. >> 253 */ >> 254 if (!initrd_start || initrd_end <= initrd_start) >> 255 goto disable; >> 256 >> 257 if (initrd_start & ~PAGE_MASK) { >> 258 pr_err("initrd start must be page aligned\n"); >> 259 goto disable; >> 260 } >> 261 if (initrd_start < PAGE_OFFSET) { >> 262 pr_err("initrd start < PAGE_OFFSET\n"); >> 263 goto disable; >> 264 } >> 265 >> 266 /* >> 267 * Sanitize initrd addresses. For example firmware >> 268 * can't guess if they need to pass them through >> 269 * 64-bits values if the kernel has been built in pure >> 270 * 32-bit. We need also to switch from KSEG0 to XKPHYS >> 271 * addresses now, so the code can now safely use __pa(). >> 272 */ >> 273 end = __pa(initrd_end); >> 274 initrd_end = (unsigned long)__va(end); >> 275 initrd_start = (unsigned long)__va(__pa(initrd_start)); >> 276 >> 277 ROOT_DEV = Root_RAM0; >> 278 return PFN_UP(end); >> 279 disable: >> 280 initrd_start = 0; >> 281 initrd_end = 0; >> 282 return 0; >> 283 } >> 284 >> 285 /* In some conditions (e.g. big endian bootloader with a little endian >> 286 kernel), the initrd might appear byte swapped. Try to detect this and >> 287 byte swap it if needed. */ >> 288 static void __init maybe_bswap_initrd(void) >> 289 { >> 290 #if defined(CONFIG_CPU_CAVIUM_OCTEON) >> 291 u64 buf; >> 292 >> 293 /* Check for CPIO signature */ >> 294 if (!memcmp((void *)initrd_start, "070701", 6)) >> 295 return; >> 296 >> 297 /* Check for compressed initrd */ >> 298 if (decompress_method((unsigned char *)initrd_start, 8, NULL)) >> 299 return; >> 300 >> 301 /* Try again with a byte swapped header */ >> 302 buf = swab64p((u64 *)initrd_start); >> 303 if (!memcmp(&buf, "070701", 6) || >> 304 decompress_method((unsigned char *)(&buf), 8, NULL)) { >> 305 unsigned long i; >> 306 >> 307 pr_info("Byteswapped initrd detected\n"); >> 308 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8) >> 309 swab64s((u64 *)i); >> 310 } >> 311 #endif >> 312 } >> 313 >> 314 static void __init finalize_initrd(void) >> 315 { >> 316 unsigned long size = initrd_end - initrd_start; >> 317 >> 318 if (size == 0) { >> 319 printk(KERN_INFO "Initrd not found or empty"); >> 320 goto disable; >> 321 } >> 322 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { >> 323 printk(KERN_ERR "Initrd extends beyond end of memory"); >> 324 goto disable; >> 325 } >> 326 >> 327 maybe_bswap_initrd(); >> 328 >> 329 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); >> 330 initrd_below_start_ok = 1; >> 331 >> 332 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", >> 333 initrd_start, size); >> 334 return; >> 335 disable: >> 336 printk(KERN_CONT " - disabling initrd\n"); >> 337 initrd_start = 0; >> 338 initrd_end = 0; >> 339 } >> 340 >> 341 #else /* !CONFIG_BLK_DEV_INITRD */ >> 342 >> 343 static unsigned long __init init_initrd(void) >> 344 { >> 345 return 0; >> 346 } >> 347 >> 348 #define finalize_initrd() do {} while (0) >> 349 >> 350 #endif >> 351 >> 352 /* >> 353 * Initialize the bootmem allocator. It also setup initrd related data >> 354 * if needed. >> 355 */ >> 356 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA)) >> 357 >> 358 static void __init bootmem_init(void) >> 359 { >> 360 init_initrd(); >> 361 finalize_initrd(); >> 362 } >> 363 >> 364 #else /* !CONFIG_SGI_IP27 */ >> 365 >> 366 static unsigned long __init bootmap_bytes(unsigned long pages) >> 367 { >> 368 unsigned long bytes = DIV_ROUND_UP(pages, 8); >> 369 >> 370 return ALIGN(bytes, sizeof(long)); >> 371 } >> 372 >> 373 static void __init bootmem_init(void) >> 374 { >> 375 unsigned long reserved_end; >> 376 unsigned long mapstart = ~0UL; >> 377 unsigned long bootmap_size; >> 378 phys_addr_t ramstart = (phys_addr_t)ULLONG_MAX; >> 379 bool bootmap_valid = false; >> 380 int i; >> 381 >> 382 /* >> 383 * Sanity check any INITRD first. We don't take it into account >> 384 * for bootmem setup initially, rely on the end-of-kernel-code >> 385 * as our memory range starting point. Once bootmem is inited we >> 386 * will reserve the area used for the initrd. >> 387 */ >> 388 init_initrd(); >> 389 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end)); >> 390 >> 391 /* >> 392 * max_low_pfn is not a number of pages. The number of pages >> 393 * of the system is given by 'max_low_pfn - min_low_pfn'. >> 394 */ >> 395 min_low_pfn = ~0UL; >> 396 max_low_pfn = 0; >> 397 >> 398 /* >> 399 * Find the highest page frame number we have available >> 400 * and the lowest used RAM address >> 401 */ >> 402 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 403 unsigned long start, end; >> 404 >> 405 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) >> 406 continue; >> 407 >> 408 start = PFN_UP(boot_mem_map.map[i].addr); >> 409 end = PFN_DOWN(boot_mem_map.map[i].addr >> 410 + boot_mem_map.map[i].size); >> 411 >> 412 ramstart = min(ramstart, boot_mem_map.map[i].addr); >> 413 >> 414 #ifndef CONFIG_HIGHMEM >> 415 /* >> 416 * Skip highmem here so we get an accurate max_low_pfn if low >> 417 * memory stops short of high memory. >> 418 * If the region overlaps HIGHMEM_START, end is clipped so >> 419 * max_pfn excludes the highmem portion. >> 420 */ >> 421 if (start >= PFN_DOWN(HIGHMEM_START)) >> 422 continue; >> 423 if (end > PFN_DOWN(HIGHMEM_START)) >> 424 end = PFN_DOWN(HIGHMEM_START); >> 425 #endif >> 426 >> 427 if (end > max_low_pfn) >> 428 max_low_pfn = end; >> 429 if (start < min_low_pfn) >> 430 min_low_pfn = start; >> 431 if (end <= reserved_end) >> 432 continue; >> 433 #ifdef CONFIG_BLK_DEV_INITRD >> 434 /* Skip zones before initrd and initrd itself */ >> 435 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end))) >> 436 continue; >> 437 #endif >> 438 if (start >= mapstart) >> 439 continue; >> 440 mapstart = max(reserved_end, start); >> 441 } >> 442 >> 443 /* >> 444 * Reserve any memory between the start of RAM and PHYS_OFFSET >> 445 */ >> 446 if (ramstart > PHYS_OFFSET) >> 447 add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET, >> 448 BOOT_MEM_RESERVED); >> 449 >> 450 if (min_low_pfn >= max_low_pfn) >> 451 panic("Incorrect memory mapping !!!"); >> 452 if (min_low_pfn > ARCH_PFN_OFFSET) { >> 453 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", >> 454 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), >> 455 min_low_pfn - ARCH_PFN_OFFSET); >> 456 } else if (min_low_pfn < ARCH_PFN_OFFSET) { >> 457 pr_info("%lu free pages won't be used\n", >> 458 ARCH_PFN_OFFSET - min_low_pfn); >> 459 } >> 460 min_low_pfn = ARCH_PFN_OFFSET; >> 461 >> 462 /* >> 463 * Determine low and high memory ranges >> 464 */ >> 465 max_pfn = max_low_pfn; >> 466 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { >> 467 #ifdef CONFIG_HIGHMEM >> 468 highstart_pfn = PFN_DOWN(HIGHMEM_START); >> 469 highend_pfn = max_low_pfn; >> 470 #endif >> 471 max_low_pfn = PFN_DOWN(HIGHMEM_START); >> 472 } >> 473 >> 474 #ifdef CONFIG_BLK_DEV_INITRD >> 475 /* >> 476 * mapstart should be after initrd_end >> 477 */ >> 478 if (initrd_end) >> 479 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end))); >> 480 #endif >> 481 >> 482 /* >> 483 * check that mapstart doesn't overlap with any of >> 484 * memory regions that have been reserved through eg. DTB >> 485 */ >> 486 bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn); >> 487 >> 488 bootmap_valid = memory_region_available(PFN_PHYS(mapstart), >> 489 bootmap_size); >> 490 for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) { >> 491 unsigned long mapstart_addr; >> 492 >> 493 switch (boot_mem_map.map[i].type) { >> 494 case BOOT_MEM_RESERVED: >> 495 mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr + >> 496 boot_mem_map.map[i].size); >> 497 if (PHYS_PFN(mapstart_addr) < mapstart) >> 498 break; >> 499 >> 500 bootmap_valid = memory_region_available(mapstart_addr, >> 501 bootmap_size); >> 502 if (bootmap_valid) >> 503 mapstart = PHYS_PFN(mapstart_addr); >> 504 break; >> 505 default: >> 506 break; >> 507 } >> 508 } >> 509 >> 510 if (!bootmap_valid) >> 511 panic("No memory area to place a bootmap bitmap"); >> 512 >> 513 /* >> 514 * Initialize the boot-time allocator with low memory only. >> 515 */ >> 516 if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart, >> 517 min_low_pfn, max_low_pfn)) >> 518 panic("Unexpected memory size required for bootmap"); >> 519 >> 520 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 521 unsigned long start, end; >> 522 >> 523 start = PFN_UP(boot_mem_map.map[i].addr); >> 524 end = PFN_DOWN(boot_mem_map.map[i].addr >> 525 + boot_mem_map.map[i].size); >> 526 >> 527 if (start <= min_low_pfn) >> 528 start = min_low_pfn; >> 529 if (start >= end) >> 530 continue; >> 531 >> 532 #ifndef CONFIG_HIGHMEM >> 533 if (end > max_low_pfn) >> 534 end = max_low_pfn; >> 535 >> 536 /* >> 537 * ... finally, is the area going away? >> 538 */ >> 539 if (end <= start) >> 540 continue; >> 541 #endif >> 542 >> 543 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); >> 544 } >> 545 >> 546 /* >> 547 * Register fully available low RAM pages with the bootmem allocator. >> 548 */ >> 549 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 550 unsigned long start, end, size; >> 551 >> 552 start = PFN_UP(boot_mem_map.map[i].addr); >> 553 end = PFN_DOWN(boot_mem_map.map[i].addr >> 554 + boot_mem_map.map[i].size); >> 555 >> 556 /* >> 557 * Reserve usable memory. >> 558 */ >> 559 switch (boot_mem_map.map[i].type) { >> 560 case BOOT_MEM_RAM: >> 561 break; >> 562 case BOOT_MEM_INIT_RAM: >> 563 memory_present(0, start, end); >> 564 continue; >> 565 default: >> 566 /* Not usable memory */ >> 567 if (start > min_low_pfn && end < max_low_pfn) >> 568 reserve_bootmem(boot_mem_map.map[i].addr, >> 569 boot_mem_map.map[i].size, >> 570 BOOTMEM_DEFAULT); >> 571 continue; >> 572 } >> 573 >> 574 /* >> 575 * We are rounding up the start address of usable memory >> 576 * and at the end of the usable range downwards. >> 577 */ >> 578 if (start >= max_low_pfn) >> 579 continue; >> 580 if (start < reserved_end) >> 581 start = reserved_end; >> 582 if (end > max_low_pfn) >> 583 end = max_low_pfn; >> 584 >> 585 /* >> 586 * ... finally, is the area going away? >> 587 */ >> 588 if (end <= start) >> 589 continue; >> 590 size = end - start; >> 591 >> 592 /* Register lowmem ranges */ >> 593 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); >> 594 memory_present(0, start, end); >> 595 } >> 596 >> 597 /* >> 598 * Reserve the bootmap memory. >> 599 */ >> 600 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); >> 601 >> 602 #ifdef CONFIG_RELOCATABLE >> 603 /* >> 604 * The kernel reserves all memory below its _end symbol as bootmem, >> 605 * but the kernel may now be at a much higher address. The memory >> 606 * between the original and new locations may be returned to the system. >> 607 */ >> 608 if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) { >> 609 unsigned long offset; >> 610 extern void show_kernel_relocation(const char *level); >> 611 >> 612 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS); >> 613 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset); >> 614 >> 615 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO) >> 616 /* >> 617 * This information is necessary when debugging the kernel >> 618 * But is a security vulnerability otherwise! >> 619 */ >> 620 show_kernel_relocation(KERN_INFO); >> 621 #endif >> 622 } >> 623 #endif >> 624 >> 625 /* >> 626 * Reserve initrd memory if needed. >> 627 */ >> 628 finalize_initrd(); >> 629 } >> 630 >> 631 #endif /* CONFIG_SGI_IP27 */ >> 632 >> 633 /* >> 634 * arch_mem_init - initialize memory management subsystem >> 635 * >> 636 * o plat_mem_setup() detects the memory configuration and will record detected >> 637 * memory areas using add_memory_region. >> 638 * >> 639 * At this stage the memory configuration of the system is known to the >> 640 * kernel but generic memory management system is still entirely uninitialized. >> 641 * >> 642 * o bootmem_init() >> 643 * o sparse_init() >> 644 * o paging_init() >> 645 * o dma_contiguous_reserve() >> 646 * >> 647 * At this stage the bootmem allocator is ready to use. >> 648 * >> 649 * NOTE: historically plat_mem_setup did the entire platform initialization. >> 650 * This was rather impractical because it meant plat_mem_setup had to >> 651 * get away without any kind of memory allocator. To keep old code from >> 652 * breaking plat_setup was just renamed to plat_mem_setup and a second platform >> 653 * initialization hook for anything else was introduced. >> 654 */ >> 655 >> 656 static int usermem __initdata; >> 657 >> 658 static int __init early_parse_mem(char *p) >> 659 { >> 660 phys_addr_t start, size; >> 661 >> 662 /* >> 663 * If a user specifies memory size, we >> 664 * blow away any automatically generated >> 665 * size. >> 666 */ >> 667 if (usermem == 0) { >> 668 boot_mem_map.nr_map = 0; >> 669 usermem = 1; >> 670 } >> 671 start = 0; >> 672 size = memparse(p, &p); >> 673 if (*p == '@') >> 674 start = memparse(p + 1, &p); >> 675 >> 676 add_memory_region(start, size, BOOT_MEM_RAM); >> 677 >> 678 return 0; >> 679 } >> 680 early_param("mem", early_parse_mem); >> 681 >> 682 static int __init early_parse_memmap(char *p) >> 683 { >> 684 char *oldp; >> 685 u64 start_at, mem_size; >> 686 >> 687 if (!p) >> 688 return -EINVAL; >> 689 >> 690 if (!strncmp(p, "exactmap", 8)) { >> 691 pr_err("\"memmap=exactmap\" invalid on MIPS\n"); >> 692 return 0; >> 693 } >> 694 >> 695 oldp = p; >> 696 mem_size = memparse(p, &p); >> 697 if (p == oldp) >> 698 return -EINVAL; >> 699 >> 700 if (*p == '@') { >> 701 start_at = memparse(p+1, &p); >> 702 add_memory_region(start_at, mem_size, BOOT_MEM_RAM); >> 703 } else if (*p == '#') { >> 704 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n"); >> 705 return -EINVAL; >> 706 } else if (*p == '$') { >> 707 start_at = memparse(p+1, &p); >> 708 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED); >> 709 } else { >> 710 pr_err("\"memmap\" invalid format!\n"); >> 711 return -EINVAL; >> 712 } >> 713 >> 714 if (*p == '\0') { >> 715 usermem = 1; >> 716 return 0; >> 717 } else >> 718 return -EINVAL; >> 719 } >> 720 early_param("memmap", early_parse_memmap); >> 721 >> 722 #ifdef CONFIG_PROC_VMCORE >> 723 unsigned long setup_elfcorehdr, setup_elfcorehdr_size; >> 724 static int __init early_parse_elfcorehdr(char *p) >> 725 { >> 726 int i; >> 727 >> 728 setup_elfcorehdr = memparse(p, &p); >> 729 >> 730 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 731 unsigned long start = boot_mem_map.map[i].addr; >> 732 unsigned long end = (boot_mem_map.map[i].addr + >> 733 boot_mem_map.map[i].size); >> 734 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { >> 735 /* >> 736 * Reserve from the elf core header to the end of >> 737 * the memory segment, that should all be kdump >> 738 * reserved memory. >> 739 */ >> 740 setup_elfcorehdr_size = end - setup_elfcorehdr; >> 741 break; >> 742 } >> 743 } >> 744 /* >> 745 * If we don't find it in the memory map, then we shouldn't >> 746 * have to worry about it, as the new kernel won't use it. >> 747 */ >> 748 return 0; >> 749 } >> 750 early_param("elfcorehdr", early_parse_elfcorehdr); >> 751 #endif >> 752 >> 753 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type) >> 754 { >> 755 phys_addr_t size; >> 756 int i; >> 757 >> 758 size = end - mem; >> 759 if (!size) >> 760 return; >> 761 >> 762 /* Make sure it is in the boot_mem_map */ >> 763 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 764 if (mem >= boot_mem_map.map[i].addr && >> 765 mem < (boot_mem_map.map[i].addr + >> 766 boot_mem_map.map[i].size)) >> 767 return; >> 768 } >> 769 add_memory_region(mem, size, type); >> 770 } >> 771 >> 772 #ifdef CONFIG_KEXEC >> 773 static inline unsigned long long get_total_mem(void) >> 774 { >> 775 unsigned long long total; >> 776 >> 777 total = max_pfn - min_low_pfn; >> 778 return total << PAGE_SHIFT; >> 779 } >> 780 >> 781 static void __init mips_parse_crashkernel(void) >> 782 { >> 783 unsigned long long total_mem; >> 784 unsigned long long crash_size, crash_base; >> 785 int ret; >> 786 >> 787 total_mem = get_total_mem(); >> 788 ret = parse_crashkernel(boot_command_line, total_mem, >> 789 &crash_size, &crash_base); >> 790 if (ret != 0 || crash_size <= 0) >> 791 return; >> 792 >> 793 if (!memory_region_available(crash_base, crash_size)) { >> 794 pr_warn("Invalid memory region reserved for crash kernel\n"); >> 795 return; >> 796 } >> 797 >> 798 crashk_res.start = crash_base; >> 799 crashk_res.end = crash_base + crash_size - 1; >> 800 } >> 801 >> 802 static void __init request_crashkernel(struct resource *res) >> 803 { >> 804 int ret; >> 805 >> 806 if (crashk_res.start == crashk_res.end) >> 807 return; >> 808 >> 809 ret = request_resource(res, &crashk_res); >> 810 if (!ret) >> 811 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", >> 812 (unsigned long)((crashk_res.end - >> 813 crashk_res.start + 1) >> 20), >> 814 (unsigned long)(crashk_res.start >> 20)); >> 815 } >> 816 #else /* !defined(CONFIG_KEXEC) */ >> 817 static void __init mips_parse_crashkernel(void) >> 818 { >> 819 } >> 820 >> 821 static void __init request_crashkernel(struct resource *res) >> 822 { >> 823 } >> 824 #endif /* !defined(CONFIG_KEXEC) */ >> 825 >> 826 #define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER) >> 827 #define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) >> 828 #define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) >> 829 #define BUILTIN_EXTEND_WITH_PROM \ >> 830 IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND) >> 831 >> 832 static void __init arch_mem_init(char **cmdline_p) >> 833 { >> 834 struct memblock_region *reg; >> 835 extern void plat_mem_setup(void); >> 836 >> 837 /* call board setup routine */ >> 838 plat_mem_setup(); >> 839 >> 840 /* >> 841 * Make sure all kernel memory is in the maps. The "UP" and >> 842 * "DOWN" are opposite for initdata since if it crosses over >> 843 * into another memory section you don't want that to be >> 844 * freed when the initdata is freed. >> 845 */ >> 846 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT, >> 847 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT, >> 848 BOOT_MEM_RAM); >> 849 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT, >> 850 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT, >> 851 BOOT_MEM_INIT_RAM); >> 852 >> 853 pr_info("Determined physical RAM map:\n"); >> 854 print_memory_map(); >> 855 >> 856 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE) >> 857 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 4 #else 858 #else 5 #include "setup_no.c" !! 859 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) || >> 860 (USE_DTB_CMDLINE && !boot_command_line[0])) >> 861 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); >> 862 >> 863 if (EXTEND_WITH_PROM && arcs_cmdline[0]) { >> 864 if (boot_command_line[0]) >> 865 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); >> 866 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); >> 867 } >> 868 >> 869 #if defined(CONFIG_CMDLINE_BOOL) >> 870 if (builtin_cmdline[0]) { >> 871 if (boot_command_line[0]) >> 872 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); >> 873 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); >> 874 } >> 875 >> 876 if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) { >> 877 if (boot_command_line[0]) >> 878 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); >> 879 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); >> 880 } >> 881 #endif >> 882 #endif >> 883 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); >> 884 >> 885 *cmdline_p = command_line; >> 886 >> 887 parse_early_param(); >> 888 >> 889 if (usermem) { >> 890 pr_info("User-defined physical RAM map:\n"); >> 891 print_memory_map(); >> 892 } >> 893 >> 894 early_init_fdt_reserve_self(); >> 895 early_init_fdt_scan_reserved_mem(); >> 896 >> 897 bootmem_init(); >> 898 #ifdef CONFIG_PROC_VMCORE >> 899 if (setup_elfcorehdr && setup_elfcorehdr_size) { >> 900 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", >> 901 setup_elfcorehdr, setup_elfcorehdr_size); >> 902 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size, >> 903 BOOTMEM_DEFAULT); >> 904 } >> 905 #endif >> 906 >> 907 mips_parse_crashkernel(); >> 908 #ifdef CONFIG_KEXEC >> 909 if (crashk_res.start != crashk_res.end) >> 910 reserve_bootmem(crashk_res.start, >> 911 crashk_res.end - crashk_res.start + 1, >> 912 BOOTMEM_DEFAULT); 6 #endif 913 #endif >> 914 device_tree_init(); >> 915 sparse_init(); >> 916 plat_swiotlb_setup(); >> 917 >> 918 dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); >> 919 /* Tell bootmem about cma reserved memblock section */ >> 920 for_each_memblock(reserved, reg) >> 921 if (reg->size != 0) >> 922 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); >> 923 >> 924 reserve_bootmem_region(__pa_symbol(&__nosave_begin), >> 925 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */ >> 926 } >> 927 >> 928 static void __init resource_init(void) >> 929 { >> 930 int i; >> 931 >> 932 if (UNCAC_BASE != IO_BASE) >> 933 return; >> 934 >> 935 code_resource.start = __pa_symbol(&_text); >> 936 code_resource.end = __pa_symbol(&_etext) - 1; >> 937 data_resource.start = __pa_symbol(&_etext); >> 938 data_resource.end = __pa_symbol(&_edata) - 1; >> 939 bss_resource.start = __pa_symbol(&__bss_start); >> 940 bss_resource.end = __pa_symbol(&__bss_stop) - 1; >> 941 >> 942 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 943 struct resource *res; >> 944 unsigned long start, end; >> 945 >> 946 start = boot_mem_map.map[i].addr; >> 947 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; >> 948 if (start >= HIGHMEM_START) >> 949 continue; >> 950 if (end >= HIGHMEM_START) >> 951 end = HIGHMEM_START - 1; >> 952 >> 953 res = alloc_bootmem(sizeof(struct resource)); >> 954 >> 955 res->start = start; >> 956 res->end = end; >> 957 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; >> 958 >> 959 switch (boot_mem_map.map[i].type) { >> 960 case BOOT_MEM_RAM: >> 961 case BOOT_MEM_INIT_RAM: >> 962 case BOOT_MEM_ROM_DATA: >> 963 res->name = "System RAM"; >> 964 res->flags |= IORESOURCE_SYSRAM; >> 965 break; >> 966 case BOOT_MEM_RESERVED: >> 967 default: >> 968 res->name = "reserved"; >> 969 } >> 970 >> 971 request_resource(&iomem_resource, res); >> 972 >> 973 /* >> 974 * We don't know which RAM region contains kernel data, >> 975 * so we try it repeatedly and let the resource manager >> 976 * test it. >> 977 */ >> 978 request_resource(res, &code_resource); >> 979 request_resource(res, &data_resource); >> 980 request_resource(res, &bss_resource); >> 981 request_crashkernel(res); >> 982 } >> 983 } >> 984 >> 985 #ifdef CONFIG_SMP >> 986 static void __init prefill_possible_map(void) >> 987 { >> 988 int i, possible = num_possible_cpus(); >> 989 >> 990 if (possible > nr_cpu_ids) >> 991 possible = nr_cpu_ids; >> 992 >> 993 for (i = 0; i < possible; i++) >> 994 set_cpu_possible(i, true); >> 995 for (; i < NR_CPUS; i++) >> 996 set_cpu_possible(i, false); >> 997 >> 998 nr_cpu_ids = possible; >> 999 } >> 1000 #else >> 1001 static inline void prefill_possible_map(void) {} >> 1002 #endif >> 1003 >> 1004 void __init setup_arch(char **cmdline_p) >> 1005 { >> 1006 cpu_probe(); >> 1007 mips_cm_probe(); >> 1008 prom_init(); >> 1009 >> 1010 setup_early_fdc_console(); >> 1011 #ifdef CONFIG_EARLY_PRINTK >> 1012 setup_early_printk(); >> 1013 #endif >> 1014 cpu_report(); >> 1015 check_bugs_early(); >> 1016 >> 1017 #if defined(CONFIG_VT) >> 1018 #if defined(CONFIG_VGA_CONSOLE) >> 1019 conswitchp = &vga_con; >> 1020 #elif defined(CONFIG_DUMMY_CONSOLE) >> 1021 conswitchp = &dummy_con; >> 1022 #endif >> 1023 #endif >> 1024 >> 1025 arch_mem_init(cmdline_p); >> 1026 >> 1027 resource_init(); >> 1028 plat_smp_setup(); >> 1029 prefill_possible_map(); >> 1030 >> 1031 cpu_cache_init(); >> 1032 paging_init(); >> 1033 } >> 1034 >> 1035 unsigned long kernelsp[NR_CPUS]; >> 1036 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; >> 1037 >> 1038 #ifdef CONFIG_USE_OF >> 1039 unsigned long fw_passed_dtb; >> 1040 #endif >> 1041 >> 1042 #ifdef CONFIG_DEBUG_FS >> 1043 struct dentry *mips_debugfs_dir; >> 1044 static int __init debugfs_mips(void) >> 1045 { >> 1046 struct dentry *d; 7 1047 8 #if IS_ENABLED(CONFIG_INPUT_M68K_BEEP) !! 1048 d = debugfs_create_dir("mips", NULL); 9 void (*mach_beep)(unsigned int, unsigned int); !! 1049 if (!d) 10 EXPORT_SYMBOL(mach_beep); !! 1050 return -ENOMEM; >> 1051 mips_debugfs_dir = d; >> 1052 return 0; >> 1053 } >> 1054 arch_initcall(debugfs_mips); 11 #endif 1055 #endif 12 1056
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.