1 // SPDX-License-Identifier: GPL-2.0 !! 1 /* 2 #ifdef CONFIG_MMU !! 2 * This file is subject to the terms and conditions of the GNU General Public 3 #include "setup_mm.c" !! 3 * License. See the file "COPYING" in the main directory of this archive >> 4 * for more details. >> 5 * >> 6 * Copyright (C) 1995 Linus Torvalds >> 7 * Copyright (C) 1995 Waldorf Electronics >> 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle >> 9 * Copyright (C) 1996 Stoned Elipot >> 10 * Copyright (C) 1999 Silicon Graphics, Inc. >> 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki >> 12 */ >> 13 #include <linux/init.h> >> 14 #include <linux/ioport.h> >> 15 #include <linux/export.h> >> 16 #include <linux/screen_info.h> >> 17 #include <linux/memblock.h> >> 18 #include <linux/bootmem.h> >> 19 #include <linux/initrd.h> >> 20 #include <linux/root_dev.h> >> 21 #include <linux/highmem.h> >> 22 #include <linux/console.h> >> 23 #include <linux/pfn.h> >> 24 #include <linux/debugfs.h> >> 25 #include <linux/kexec.h> >> 26 #include <linux/sizes.h> >> 27 #include <linux/device.h> >> 28 #include <linux/dma-contiguous.h> >> 29 #include <linux/decompress/generic.h> >> 30 #include <linux/of_fdt.h> >> 31 >> 32 #include <asm/addrspace.h> >> 33 #include <asm/bootinfo.h> >> 34 #include <asm/bugs.h> >> 35 #include <asm/cache.h> >> 36 #include <asm/cdmm.h> >> 37 #include <asm/cpu.h> >> 38 #include <asm/debug.h> >> 39 #include <asm/sections.h> >> 40 #include <asm/setup.h> >> 41 #include <asm/smp-ops.h> >> 42 #include <asm/prom.h> >> 43 >> 44 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB >> 45 const char __section(.appended_dtb) __appended_dtb[0x100000]; >> 46 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */ >> 47 >> 48 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; >> 49 >> 50 EXPORT_SYMBOL(cpu_data); >> 51 >> 52 #ifdef CONFIG_VT >> 53 struct screen_info screen_info; >> 54 #endif >> 55 >> 56 /* >> 57 * Setup information >> 58 * >> 59 * These are initialized so they are in the .data section >> 60 */ >> 61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; >> 62 >> 63 EXPORT_SYMBOL(mips_machtype); >> 64 >> 65 struct boot_mem_map boot_mem_map; >> 66 >> 67 static char __initdata command_line[COMMAND_LINE_SIZE]; >> 68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; >> 69 >> 70 #ifdef CONFIG_CMDLINE_BOOL >> 71 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; >> 72 #endif >> 73 >> 74 /* >> 75 * mips_io_port_base is the begin of the address space to which x86 style >> 76 * I/O ports are mapped. >> 77 */ >> 78 const unsigned long mips_io_port_base = -1; >> 79 EXPORT_SYMBOL(mips_io_port_base); >> 80 >> 81 static struct resource code_resource = { .name = "Kernel code", }; >> 82 static struct resource data_resource = { .name = "Kernel data", }; >> 83 static struct resource bss_resource = { .name = "Kernel bss", }; >> 84 >> 85 static void *detect_magic __initdata = detect_memory_region; >> 86 >> 87 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type) >> 88 { >> 89 int x = boot_mem_map.nr_map; >> 90 int i; >> 91 >> 92 /* >> 93 * If the region reaches the top of the physical address space, adjust >> 94 * the size slightly so that (start + size) doesn't overflow >> 95 */ >> 96 if (start + size - 1 == PHYS_ADDR_MAX) >> 97 --size; >> 98 >> 99 /* Sanity check */ >> 100 if (start + size < start) { >> 101 pr_warn("Trying to add an invalid memory region, skipped\n"); >> 102 return; >> 103 } >> 104 >> 105 /* >> 106 * Try to merge with existing entry, if any. >> 107 */ >> 108 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 109 struct boot_mem_map_entry *entry = boot_mem_map.map + i; >> 110 unsigned long top; >> 111 >> 112 if (entry->type != type) >> 113 continue; >> 114 >> 115 if (start + size < entry->addr) >> 116 continue; /* no overlap */ >> 117 >> 118 if (entry->addr + entry->size < start) >> 119 continue; /* no overlap */ >> 120 >> 121 top = max(entry->addr + entry->size, start + size); >> 122 entry->addr = min(entry->addr, start); >> 123 entry->size = top - entry->addr; >> 124 >> 125 return; >> 126 } >> 127 >> 128 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) { >> 129 pr_err("Ooops! Too many entries in the memory map!\n"); >> 130 return; >> 131 } >> 132 >> 133 boot_mem_map.map[x].addr = start; >> 134 boot_mem_map.map[x].size = size; >> 135 boot_mem_map.map[x].type = type; >> 136 boot_mem_map.nr_map++; >> 137 } >> 138 >> 139 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) >> 140 { >> 141 void *dm = &detect_magic; >> 142 phys_addr_t size; >> 143 >> 144 for (size = sz_min; size < sz_max; size <<= 1) { >> 145 if (!memcmp(dm, dm + size, sizeof(detect_magic))) >> 146 break; >> 147 } >> 148 >> 149 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", >> 150 ((unsigned long long) size) / SZ_1M, >> 151 (unsigned long long) start, >> 152 ((unsigned long long) sz_min) / SZ_1M, >> 153 ((unsigned long long) sz_max) / SZ_1M); >> 154 >> 155 add_memory_region(start, size, BOOT_MEM_RAM); >> 156 } >> 157 >> 158 static bool __init __maybe_unused memory_region_available(phys_addr_t start, >> 159 phys_addr_t size) >> 160 { >> 161 int i; >> 162 bool in_ram = false, free = true; >> 163 >> 164 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 165 phys_addr_t start_, end_; >> 166 >> 167 start_ = boot_mem_map.map[i].addr; >> 168 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size; >> 169 >> 170 switch (boot_mem_map.map[i].type) { >> 171 case BOOT_MEM_RAM: >> 172 if (start >= start_ && start + size <= end_) >> 173 in_ram = true; >> 174 break; >> 175 case BOOT_MEM_RESERVED: >> 176 if ((start >= start_ && start < end_) || >> 177 (start < start_ && start + size >= start_)) >> 178 free = false; >> 179 break; >> 180 default: >> 181 continue; >> 182 } >> 183 } >> 184 >> 185 return in_ram && free; >> 186 } >> 187 >> 188 static void __init print_memory_map(void) >> 189 { >> 190 int i; >> 191 const int field = 2 * sizeof(unsigned long); >> 192 >> 193 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 194 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", >> 195 field, (unsigned long long) boot_mem_map.map[i].size, >> 196 field, (unsigned long long) boot_mem_map.map[i].addr); >> 197 >> 198 switch (boot_mem_map.map[i].type) { >> 199 case BOOT_MEM_RAM: >> 200 printk(KERN_CONT "(usable)\n"); >> 201 break; >> 202 case BOOT_MEM_INIT_RAM: >> 203 printk(KERN_CONT "(usable after init)\n"); >> 204 break; >> 205 case BOOT_MEM_ROM_DATA: >> 206 printk(KERN_CONT "(ROM data)\n"); >> 207 break; >> 208 case BOOT_MEM_RESERVED: >> 209 printk(KERN_CONT "(reserved)\n"); >> 210 break; >> 211 default: >> 212 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); >> 213 break; >> 214 } >> 215 } >> 216 } >> 217 >> 218 /* >> 219 * Manage initrd >> 220 */ >> 221 #ifdef CONFIG_BLK_DEV_INITRD >> 222 >> 223 static int __init rd_start_early(char *p) >> 224 { >> 225 unsigned long start = memparse(p, &p); >> 226 >> 227 #ifdef CONFIG_64BIT >> 228 /* Guess if the sign extension was forgotten by bootloader */ >> 229 if (start < XKPHYS) >> 230 start = (int)start; >> 231 #endif >> 232 initrd_start = start; >> 233 initrd_end += start; >> 234 return 0; >> 235 } >> 236 early_param("rd_start", rd_start_early); >> 237 >> 238 static int __init rd_size_early(char *p) >> 239 { >> 240 initrd_end += memparse(p, &p); >> 241 return 0; >> 242 } >> 243 early_param("rd_size", rd_size_early); >> 244 >> 245 /* it returns the next free pfn after initrd */ >> 246 static unsigned long __init init_initrd(void) >> 247 { >> 248 unsigned long end; >> 249 >> 250 /* >> 251 * Board specific code or command line parser should have >> 252 * already set up initrd_start and initrd_end. In these cases >> 253 * perfom sanity checks and use them if all looks good. >> 254 */ >> 255 if (!initrd_start || initrd_end <= initrd_start) >> 256 goto disable; >> 257 >> 258 if (initrd_start & ~PAGE_MASK) { >> 259 pr_err("initrd start must be page aligned\n"); >> 260 goto disable; >> 261 } >> 262 if (initrd_start < PAGE_OFFSET) { >> 263 pr_err("initrd start < PAGE_OFFSET\n"); >> 264 goto disable; >> 265 } >> 266 >> 267 /* >> 268 * Sanitize initrd addresses. For example firmware >> 269 * can't guess if they need to pass them through >> 270 * 64-bits values if the kernel has been built in pure >> 271 * 32-bit. We need also to switch from KSEG0 to XKPHYS >> 272 * addresses now, so the code can now safely use __pa(). >> 273 */ >> 274 end = __pa(initrd_end); >> 275 initrd_end = (unsigned long)__va(end); >> 276 initrd_start = (unsigned long)__va(__pa(initrd_start)); >> 277 >> 278 ROOT_DEV = Root_RAM0; >> 279 return PFN_UP(end); >> 280 disable: >> 281 initrd_start = 0; >> 282 initrd_end = 0; >> 283 return 0; >> 284 } >> 285 >> 286 /* In some conditions (e.g. big endian bootloader with a little endian >> 287 kernel), the initrd might appear byte swapped. Try to detect this and >> 288 byte swap it if needed. */ >> 289 static void __init maybe_bswap_initrd(void) >> 290 { >> 291 #if defined(CONFIG_CPU_CAVIUM_OCTEON) >> 292 u64 buf; >> 293 >> 294 /* Check for CPIO signature */ >> 295 if (!memcmp((void *)initrd_start, "070701", 6)) >> 296 return; >> 297 >> 298 /* Check for compressed initrd */ >> 299 if (decompress_method((unsigned char *)initrd_start, 8, NULL)) >> 300 return; >> 301 >> 302 /* Try again with a byte swapped header */ >> 303 buf = swab64p((u64 *)initrd_start); >> 304 if (!memcmp(&buf, "070701", 6) || >> 305 decompress_method((unsigned char *)(&buf), 8, NULL)) { >> 306 unsigned long i; >> 307 >> 308 pr_info("Byteswapped initrd detected\n"); >> 309 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8) >> 310 swab64s((u64 *)i); >> 311 } >> 312 #endif >> 313 } >> 314 >> 315 static void __init finalize_initrd(void) >> 316 { >> 317 unsigned long size = initrd_end - initrd_start; >> 318 >> 319 if (size == 0) { >> 320 printk(KERN_INFO "Initrd not found or empty"); >> 321 goto disable; >> 322 } >> 323 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { >> 324 printk(KERN_ERR "Initrd extends beyond end of memory"); >> 325 goto disable; >> 326 } >> 327 >> 328 maybe_bswap_initrd(); >> 329 >> 330 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); >> 331 initrd_below_start_ok = 1; >> 332 >> 333 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", >> 334 initrd_start, size); >> 335 return; >> 336 disable: >> 337 printk(KERN_CONT " - disabling initrd\n"); >> 338 initrd_start = 0; >> 339 initrd_end = 0; >> 340 } >> 341 >> 342 #else /* !CONFIG_BLK_DEV_INITRD */ >> 343 >> 344 static unsigned long __init init_initrd(void) >> 345 { >> 346 return 0; >> 347 } >> 348 >> 349 #define finalize_initrd() do {} while (0) >> 350 >> 351 #endif >> 352 >> 353 /* >> 354 * Initialize the bootmem allocator. It also setup initrd related data >> 355 * if needed. >> 356 */ >> 357 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA)) >> 358 >> 359 static void __init bootmem_init(void) >> 360 { >> 361 init_initrd(); >> 362 finalize_initrd(); >> 363 } >> 364 >> 365 #else /* !CONFIG_SGI_IP27 */ >> 366 >> 367 static unsigned long __init bootmap_bytes(unsigned long pages) >> 368 { >> 369 unsigned long bytes = DIV_ROUND_UP(pages, 8); >> 370 >> 371 return ALIGN(bytes, sizeof(long)); >> 372 } >> 373 >> 374 static void __init bootmem_init(void) >> 375 { >> 376 unsigned long reserved_end; >> 377 unsigned long mapstart = ~0UL; >> 378 unsigned long bootmap_size; >> 379 phys_addr_t ramstart = PHYS_ADDR_MAX; >> 380 bool bootmap_valid = false; >> 381 int i; >> 382 >> 383 /* >> 384 * Sanity check any INITRD first. We don't take it into account >> 385 * for bootmem setup initially, rely on the end-of-kernel-code >> 386 * as our memory range starting point. Once bootmem is inited we >> 387 * will reserve the area used for the initrd. >> 388 */ >> 389 init_initrd(); >> 390 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end)); >> 391 >> 392 /* >> 393 * max_low_pfn is not a number of pages. The number of pages >> 394 * of the system is given by 'max_low_pfn - min_low_pfn'. >> 395 */ >> 396 min_low_pfn = ~0UL; >> 397 max_low_pfn = 0; >> 398 >> 399 /* >> 400 * Find the highest page frame number we have available >> 401 * and the lowest used RAM address >> 402 */ >> 403 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 404 unsigned long start, end; >> 405 >> 406 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) >> 407 continue; >> 408 >> 409 start = PFN_UP(boot_mem_map.map[i].addr); >> 410 end = PFN_DOWN(boot_mem_map.map[i].addr >> 411 + boot_mem_map.map[i].size); >> 412 >> 413 ramstart = min(ramstart, boot_mem_map.map[i].addr); >> 414 >> 415 #ifndef CONFIG_HIGHMEM >> 416 /* >> 417 * Skip highmem here so we get an accurate max_low_pfn if low >> 418 * memory stops short of high memory. >> 419 * If the region overlaps HIGHMEM_START, end is clipped so >> 420 * max_pfn excludes the highmem portion. >> 421 */ >> 422 if (start >= PFN_DOWN(HIGHMEM_START)) >> 423 continue; >> 424 if (end > PFN_DOWN(HIGHMEM_START)) >> 425 end = PFN_DOWN(HIGHMEM_START); >> 426 #endif >> 427 >> 428 if (end > max_low_pfn) >> 429 max_low_pfn = end; >> 430 if (start < min_low_pfn) >> 431 min_low_pfn = start; >> 432 if (end <= reserved_end) >> 433 continue; >> 434 #ifdef CONFIG_BLK_DEV_INITRD >> 435 /* Skip zones before initrd and initrd itself */ >> 436 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end))) >> 437 continue; >> 438 #endif >> 439 if (start >= mapstart) >> 440 continue; >> 441 mapstart = max(reserved_end, start); >> 442 } >> 443 >> 444 /* >> 445 * Reserve any memory between the start of RAM and PHYS_OFFSET >> 446 */ >> 447 if (ramstart > PHYS_OFFSET) >> 448 add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET, >> 449 BOOT_MEM_RESERVED); >> 450 >> 451 if (min_low_pfn >= max_low_pfn) >> 452 panic("Incorrect memory mapping !!!"); >> 453 if (min_low_pfn > ARCH_PFN_OFFSET) { >> 454 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", >> 455 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), >> 456 min_low_pfn - ARCH_PFN_OFFSET); >> 457 } else if (ARCH_PFN_OFFSET - min_low_pfn > 0UL) { >> 458 pr_info("%lu free pages won't be used\n", >> 459 ARCH_PFN_OFFSET - min_low_pfn); >> 460 } >> 461 min_low_pfn = ARCH_PFN_OFFSET; >> 462 >> 463 /* >> 464 * Determine low and high memory ranges >> 465 */ >> 466 max_pfn = max_low_pfn; >> 467 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { >> 468 #ifdef CONFIG_HIGHMEM >> 469 highstart_pfn = PFN_DOWN(HIGHMEM_START); >> 470 highend_pfn = max_low_pfn; >> 471 #endif >> 472 max_low_pfn = PFN_DOWN(HIGHMEM_START); >> 473 } >> 474 >> 475 #ifdef CONFIG_BLK_DEV_INITRD >> 476 /* >> 477 * mapstart should be after initrd_end >> 478 */ >> 479 if (initrd_end) >> 480 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end))); >> 481 #endif >> 482 >> 483 /* >> 484 * check that mapstart doesn't overlap with any of >> 485 * memory regions that have been reserved through eg. DTB >> 486 */ >> 487 bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn); >> 488 >> 489 bootmap_valid = memory_region_available(PFN_PHYS(mapstart), >> 490 bootmap_size); >> 491 for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) { >> 492 unsigned long mapstart_addr; >> 493 >> 494 switch (boot_mem_map.map[i].type) { >> 495 case BOOT_MEM_RESERVED: >> 496 mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr + >> 497 boot_mem_map.map[i].size); >> 498 if (PHYS_PFN(mapstart_addr) < mapstart) >> 499 break; >> 500 >> 501 bootmap_valid = memory_region_available(mapstart_addr, >> 502 bootmap_size); >> 503 if (bootmap_valid) >> 504 mapstart = PHYS_PFN(mapstart_addr); >> 505 break; >> 506 default: >> 507 break; >> 508 } >> 509 } >> 510 >> 511 if (!bootmap_valid) >> 512 panic("No memory area to place a bootmap bitmap"); >> 513 >> 514 /* >> 515 * Initialize the boot-time allocator with low memory only. >> 516 */ >> 517 if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart, >> 518 min_low_pfn, max_low_pfn)) >> 519 panic("Unexpected memory size required for bootmap"); >> 520 >> 521 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 522 unsigned long start, end; >> 523 >> 524 start = PFN_UP(boot_mem_map.map[i].addr); >> 525 end = PFN_DOWN(boot_mem_map.map[i].addr >> 526 + boot_mem_map.map[i].size); >> 527 >> 528 if (start <= min_low_pfn) >> 529 start = min_low_pfn; >> 530 if (start >= end) >> 531 continue; >> 532 >> 533 #ifndef CONFIG_HIGHMEM >> 534 if (end > max_low_pfn) >> 535 end = max_low_pfn; >> 536 >> 537 /* >> 538 * ... finally, is the area going away? >> 539 */ >> 540 if (end <= start) >> 541 continue; >> 542 #endif >> 543 >> 544 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); >> 545 } >> 546 >> 547 /* >> 548 * Register fully available low RAM pages with the bootmem allocator. >> 549 */ >> 550 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 551 unsigned long start, end, size; >> 552 >> 553 start = PFN_UP(boot_mem_map.map[i].addr); >> 554 end = PFN_DOWN(boot_mem_map.map[i].addr >> 555 + boot_mem_map.map[i].size); >> 556 >> 557 /* >> 558 * Reserve usable memory. >> 559 */ >> 560 switch (boot_mem_map.map[i].type) { >> 561 case BOOT_MEM_RAM: >> 562 break; >> 563 case BOOT_MEM_INIT_RAM: >> 564 memory_present(0, start, end); >> 565 continue; >> 566 default: >> 567 /* Not usable memory */ >> 568 if (start > min_low_pfn && end < max_low_pfn) >> 569 reserve_bootmem(boot_mem_map.map[i].addr, >> 570 boot_mem_map.map[i].size, >> 571 BOOTMEM_DEFAULT); >> 572 continue; >> 573 } >> 574 >> 575 /* >> 576 * We are rounding up the start address of usable memory >> 577 * and at the end of the usable range downwards. >> 578 */ >> 579 if (start >= max_low_pfn) >> 580 continue; >> 581 if (start < reserved_end) >> 582 start = reserved_end; >> 583 if (end > max_low_pfn) >> 584 end = max_low_pfn; >> 585 >> 586 /* >> 587 * ... finally, is the area going away? >> 588 */ >> 589 if (end <= start) >> 590 continue; >> 591 size = end - start; >> 592 >> 593 /* Register lowmem ranges */ >> 594 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); >> 595 memory_present(0, start, end); >> 596 } >> 597 >> 598 /* >> 599 * Reserve the bootmap memory. >> 600 */ >> 601 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); >> 602 >> 603 #ifdef CONFIG_RELOCATABLE >> 604 /* >> 605 * The kernel reserves all memory below its _end symbol as bootmem, >> 606 * but the kernel may now be at a much higher address. The memory >> 607 * between the original and new locations may be returned to the system. >> 608 */ >> 609 if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) { >> 610 unsigned long offset; >> 611 extern void show_kernel_relocation(const char *level); >> 612 >> 613 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS); >> 614 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset); >> 615 >> 616 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO) >> 617 /* >> 618 * This information is necessary when debugging the kernel >> 619 * But is a security vulnerability otherwise! >> 620 */ >> 621 show_kernel_relocation(KERN_INFO); >> 622 #endif >> 623 } >> 624 #endif >> 625 >> 626 /* >> 627 * Reserve initrd memory if needed. >> 628 */ >> 629 finalize_initrd(); >> 630 } >> 631 >> 632 #endif /* CONFIG_SGI_IP27 */ >> 633 >> 634 /* >> 635 * arch_mem_init - initialize memory management subsystem >> 636 * >> 637 * o plat_mem_setup() detects the memory configuration and will record detected >> 638 * memory areas using add_memory_region. >> 639 * >> 640 * At this stage the memory configuration of the system is known to the >> 641 * kernel but generic memory management system is still entirely uninitialized. >> 642 * >> 643 * o bootmem_init() >> 644 * o sparse_init() >> 645 * o paging_init() >> 646 * o dma_contiguous_reserve() >> 647 * >> 648 * At this stage the bootmem allocator is ready to use. >> 649 * >> 650 * NOTE: historically plat_mem_setup did the entire platform initialization. >> 651 * This was rather impractical because it meant plat_mem_setup had to >> 652 * get away without any kind of memory allocator. To keep old code from >> 653 * breaking plat_setup was just renamed to plat_mem_setup and a second platform >> 654 * initialization hook for anything else was introduced. >> 655 */ >> 656 >> 657 static int usermem __initdata; >> 658 >> 659 static int __init early_parse_mem(char *p) >> 660 { >> 661 phys_addr_t start, size; >> 662 >> 663 /* >> 664 * If a user specifies memory size, we >> 665 * blow away any automatically generated >> 666 * size. >> 667 */ >> 668 if (usermem == 0) { >> 669 boot_mem_map.nr_map = 0; >> 670 usermem = 1; >> 671 } >> 672 start = 0; >> 673 size = memparse(p, &p); >> 674 if (*p == '@') >> 675 start = memparse(p + 1, &p); >> 676 >> 677 add_memory_region(start, size, BOOT_MEM_RAM); >> 678 >> 679 return 0; >> 680 } >> 681 early_param("mem", early_parse_mem); >> 682 >> 683 static int __init early_parse_memmap(char *p) >> 684 { >> 685 char *oldp; >> 686 u64 start_at, mem_size; >> 687 >> 688 if (!p) >> 689 return -EINVAL; >> 690 >> 691 if (!strncmp(p, "exactmap", 8)) { >> 692 pr_err("\"memmap=exactmap\" invalid on MIPS\n"); >> 693 return 0; >> 694 } >> 695 >> 696 oldp = p; >> 697 mem_size = memparse(p, &p); >> 698 if (p == oldp) >> 699 return -EINVAL; >> 700 >> 701 if (*p == '@') { >> 702 start_at = memparse(p+1, &p); >> 703 add_memory_region(start_at, mem_size, BOOT_MEM_RAM); >> 704 } else if (*p == '#') { >> 705 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n"); >> 706 return -EINVAL; >> 707 } else if (*p == '$') { >> 708 start_at = memparse(p+1, &p); >> 709 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED); >> 710 } else { >> 711 pr_err("\"memmap\" invalid format!\n"); >> 712 return -EINVAL; >> 713 } >> 714 >> 715 if (*p == '\0') { >> 716 usermem = 1; >> 717 return 0; >> 718 } else >> 719 return -EINVAL; >> 720 } >> 721 early_param("memmap", early_parse_memmap); >> 722 >> 723 #ifdef CONFIG_PROC_VMCORE >> 724 unsigned long setup_elfcorehdr, setup_elfcorehdr_size; >> 725 static int __init early_parse_elfcorehdr(char *p) >> 726 { >> 727 int i; >> 728 >> 729 setup_elfcorehdr = memparse(p, &p); >> 730 >> 731 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 732 unsigned long start = boot_mem_map.map[i].addr; >> 733 unsigned long end = (boot_mem_map.map[i].addr + >> 734 boot_mem_map.map[i].size); >> 735 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { >> 736 /* >> 737 * Reserve from the elf core header to the end of >> 738 * the memory segment, that should all be kdump >> 739 * reserved memory. >> 740 */ >> 741 setup_elfcorehdr_size = end - setup_elfcorehdr; >> 742 break; >> 743 } >> 744 } >> 745 /* >> 746 * If we don't find it in the memory map, then we shouldn't >> 747 * have to worry about it, as the new kernel won't use it. >> 748 */ >> 749 return 0; >> 750 } >> 751 early_param("elfcorehdr", early_parse_elfcorehdr); >> 752 #endif >> 753 >> 754 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type) >> 755 { >> 756 phys_addr_t size; >> 757 int i; >> 758 >> 759 size = end - mem; >> 760 if (!size) >> 761 return; >> 762 >> 763 /* Make sure it is in the boot_mem_map */ >> 764 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 765 if (mem >= boot_mem_map.map[i].addr && >> 766 mem < (boot_mem_map.map[i].addr + >> 767 boot_mem_map.map[i].size)) >> 768 return; >> 769 } >> 770 add_memory_region(mem, size, type); >> 771 } >> 772 >> 773 #ifdef CONFIG_KEXEC >> 774 static inline unsigned long long get_total_mem(void) >> 775 { >> 776 unsigned long long total; >> 777 >> 778 total = max_pfn - min_low_pfn; >> 779 return total << PAGE_SHIFT; >> 780 } >> 781 >> 782 static void __init mips_parse_crashkernel(void) >> 783 { >> 784 unsigned long long total_mem; >> 785 unsigned long long crash_size, crash_base; >> 786 int ret; >> 787 >> 788 total_mem = get_total_mem(); >> 789 ret = parse_crashkernel(boot_command_line, total_mem, >> 790 &crash_size, &crash_base); >> 791 if (ret != 0 || crash_size <= 0) >> 792 return; >> 793 >> 794 if (!memory_region_available(crash_base, crash_size)) { >> 795 pr_warn("Invalid memory region reserved for crash kernel\n"); >> 796 return; >> 797 } >> 798 >> 799 crashk_res.start = crash_base; >> 800 crashk_res.end = crash_base + crash_size - 1; >> 801 } >> 802 >> 803 static void __init request_crashkernel(struct resource *res) >> 804 { >> 805 int ret; >> 806 >> 807 if (crashk_res.start == crashk_res.end) >> 808 return; >> 809 >> 810 ret = request_resource(res, &crashk_res); >> 811 if (!ret) >> 812 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", >> 813 (unsigned long)((crashk_res.end - >> 814 crashk_res.start + 1) >> 20), >> 815 (unsigned long)(crashk_res.start >> 20)); >> 816 } >> 817 #else /* !defined(CONFIG_KEXEC) */ >> 818 static void __init mips_parse_crashkernel(void) >> 819 { >> 820 } >> 821 >> 822 static void __init request_crashkernel(struct resource *res) >> 823 { >> 824 } >> 825 #endif /* !defined(CONFIG_KEXEC) */ >> 826 >> 827 #define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER) >> 828 #define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) >> 829 #define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) >> 830 #define BUILTIN_EXTEND_WITH_PROM \ >> 831 IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND) >> 832 >> 833 static void __init arch_mem_init(char **cmdline_p) >> 834 { >> 835 struct memblock_region *reg; >> 836 extern void plat_mem_setup(void); >> 837 >> 838 /* >> 839 * Initialize boot_command_line to an innocuous but non-empty string in >> 840 * order to prevent early_init_dt_scan_chosen() from copying >> 841 * CONFIG_CMDLINE into it without our knowledge. We handle >> 842 * CONFIG_CMDLINE ourselves below & don't want to duplicate its >> 843 * content because repeating arguments can be problematic. >> 844 */ >> 845 strlcpy(boot_command_line, " ", COMMAND_LINE_SIZE); >> 846 >> 847 /* call board setup routine */ >> 848 plat_mem_setup(); >> 849 >> 850 /* >> 851 * Make sure all kernel memory is in the maps. The "UP" and >> 852 * "DOWN" are opposite for initdata since if it crosses over >> 853 * into another memory section you don't want that to be >> 854 * freed when the initdata is freed. >> 855 */ >> 856 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT, >> 857 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT, >> 858 BOOT_MEM_RAM); >> 859 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT, >> 860 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT, >> 861 BOOT_MEM_INIT_RAM); >> 862 >> 863 pr_info("Determined physical RAM map:\n"); >> 864 print_memory_map(); >> 865 >> 866 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE) >> 867 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); >> 868 #else >> 869 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) || >> 870 (USE_DTB_CMDLINE && !boot_command_line[0])) >> 871 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); >> 872 >> 873 if (EXTEND_WITH_PROM && arcs_cmdline[0]) { >> 874 if (boot_command_line[0]) >> 875 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); >> 876 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); >> 877 } >> 878 >> 879 #if defined(CONFIG_CMDLINE_BOOL) >> 880 if (builtin_cmdline[0]) { >> 881 if (boot_command_line[0]) >> 882 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); >> 883 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); >> 884 } >> 885 >> 886 if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) { >> 887 if (boot_command_line[0]) >> 888 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); >> 889 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); >> 890 } >> 891 #endif >> 892 #endif >> 893 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); >> 894 >> 895 *cmdline_p = command_line; >> 896 >> 897 parse_early_param(); >> 898 >> 899 if (usermem) { >> 900 pr_info("User-defined physical RAM map:\n"); >> 901 print_memory_map(); >> 902 } >> 903 >> 904 early_init_fdt_reserve_self(); >> 905 early_init_fdt_scan_reserved_mem(); >> 906 >> 907 bootmem_init(); >> 908 #ifdef CONFIG_PROC_VMCORE >> 909 if (setup_elfcorehdr && setup_elfcorehdr_size) { >> 910 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", >> 911 setup_elfcorehdr, setup_elfcorehdr_size); >> 912 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size, >> 913 BOOTMEM_DEFAULT); >> 914 } >> 915 #endif >> 916 >> 917 mips_parse_crashkernel(); >> 918 #ifdef CONFIG_KEXEC >> 919 if (crashk_res.start != crashk_res.end) >> 920 reserve_bootmem(crashk_res.start, >> 921 crashk_res.end - crashk_res.start + 1, >> 922 BOOTMEM_DEFAULT); >> 923 #endif >> 924 device_tree_init(); >> 925 sparse_init(); >> 926 plat_swiotlb_setup(); >> 927 >> 928 dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); >> 929 /* Tell bootmem about cma reserved memblock section */ >> 930 for_each_memblock(reserved, reg) >> 931 if (reg->size != 0) >> 932 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); >> 933 >> 934 reserve_bootmem_region(__pa_symbol(&__nosave_begin), >> 935 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */ >> 936 } >> 937 >> 938 static void __init resource_init(void) >> 939 { >> 940 int i; >> 941 >> 942 if (UNCAC_BASE != IO_BASE) >> 943 return; >> 944 >> 945 code_resource.start = __pa_symbol(&_text); >> 946 code_resource.end = __pa_symbol(&_etext) - 1; >> 947 data_resource.start = __pa_symbol(&_etext); >> 948 data_resource.end = __pa_symbol(&_edata) - 1; >> 949 bss_resource.start = __pa_symbol(&__bss_start); >> 950 bss_resource.end = __pa_symbol(&__bss_stop) - 1; >> 951 >> 952 for (i = 0; i < boot_mem_map.nr_map; i++) { >> 953 struct resource *res; >> 954 unsigned long start, end; >> 955 >> 956 start = boot_mem_map.map[i].addr; >> 957 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; >> 958 if (start >= HIGHMEM_START) >> 959 continue; >> 960 if (end >= HIGHMEM_START) >> 961 end = HIGHMEM_START - 1; >> 962 >> 963 res = alloc_bootmem(sizeof(struct resource)); >> 964 >> 965 res->start = start; >> 966 res->end = end; >> 967 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; >> 968 >> 969 switch (boot_mem_map.map[i].type) { >> 970 case BOOT_MEM_RAM: >> 971 case BOOT_MEM_INIT_RAM: >> 972 case BOOT_MEM_ROM_DATA: >> 973 res->name = "System RAM"; >> 974 res->flags |= IORESOURCE_SYSRAM; >> 975 break; >> 976 case BOOT_MEM_RESERVED: >> 977 default: >> 978 res->name = "reserved"; >> 979 } >> 980 >> 981 request_resource(&iomem_resource, res); >> 982 >> 983 /* >> 984 * We don't know which RAM region contains kernel data, >> 985 * so we try it repeatedly and let the resource manager >> 986 * test it. >> 987 */ >> 988 request_resource(res, &code_resource); >> 989 request_resource(res, &data_resource); >> 990 request_resource(res, &bss_resource); >> 991 request_crashkernel(res); >> 992 } >> 993 } >> 994 >> 995 #ifdef CONFIG_SMP >> 996 static void __init prefill_possible_map(void) >> 997 { >> 998 int i, possible = num_possible_cpus(); >> 999 >> 1000 if (possible > nr_cpu_ids) >> 1001 possible = nr_cpu_ids; >> 1002 >> 1003 for (i = 0; i < possible; i++) >> 1004 set_cpu_possible(i, true); >> 1005 for (; i < NR_CPUS; i++) >> 1006 set_cpu_possible(i, false); >> 1007 >> 1008 nr_cpu_ids = possible; >> 1009 } 4 #else 1010 #else 5 #include "setup_no.c" !! 1011 static inline void prefill_possible_map(void) {} >> 1012 #endif >> 1013 >> 1014 void __init setup_arch(char **cmdline_p) >> 1015 { >> 1016 cpu_probe(); >> 1017 mips_cm_probe(); >> 1018 prom_init(); >> 1019 >> 1020 setup_early_fdc_console(); >> 1021 #ifdef CONFIG_EARLY_PRINTK >> 1022 setup_early_printk(); >> 1023 #endif >> 1024 cpu_report(); >> 1025 check_bugs_early(); >> 1026 >> 1027 #if defined(CONFIG_VT) >> 1028 #if defined(CONFIG_VGA_CONSOLE) >> 1029 conswitchp = &vga_con; >> 1030 #elif defined(CONFIG_DUMMY_CONSOLE) >> 1031 conswitchp = &dummy_con; >> 1032 #endif >> 1033 #endif >> 1034 >> 1035 arch_mem_init(cmdline_p); >> 1036 >> 1037 resource_init(); >> 1038 plat_smp_setup(); >> 1039 prefill_possible_map(); >> 1040 >> 1041 cpu_cache_init(); >> 1042 paging_init(); >> 1043 } >> 1044 >> 1045 unsigned long kernelsp[NR_CPUS]; >> 1046 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; >> 1047 >> 1048 #ifdef CONFIG_USE_OF >> 1049 unsigned long fw_passed_dtb; 6 #endif 1050 #endif 7 1051 8 #if IS_ENABLED(CONFIG_INPUT_M68K_BEEP) !! 1052 #ifdef CONFIG_DEBUG_FS 9 void (*mach_beep)(unsigned int, unsigned int); !! 1053 struct dentry *mips_debugfs_dir; 10 EXPORT_SYMBOL(mach_beep); !! 1054 static int __init debugfs_mips(void) >> 1055 { >> 1056 struct dentry *d; >> 1057 >> 1058 d = debugfs_create_dir("mips", NULL); >> 1059 if (!d) >> 1060 return -ENOMEM; >> 1061 mips_debugfs_dir = d; >> 1062 return 0; >> 1063 } >> 1064 arch_initcall(debugfs_mips); 11 #endif 1065 #endif 12 1066
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.