1 // SPDX-License-Identifier: GPL-2.0 !! 1 /* 2 #ifdef CONFIG_MMU !! 2 * This file is subject to the terms and conditions of the GNU General Public 3 #include "setup_mm.c" !! 3 * License. See the file "COPYING" in the main directory of this archive >> 4 * for more details. >> 5 * >> 6 * Copyright (C) 1995 Linus Torvalds >> 7 * Copyright (C) 1995 Waldorf Electronics >> 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle >> 9 * Copyright (C) 1996 Stoned Elipot >> 10 * Copyright (C) 1999 Silicon Graphics, Inc. >> 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki >> 12 */ >> 13 #include <linux/init.h> >> 14 #include <linux/ioport.h> >> 15 #include <linux/export.h> >> 16 #include <linux/screen_info.h> >> 17 #include <linux/memblock.h> >> 18 #include <linux/initrd.h> >> 19 #include <linux/root_dev.h> >> 20 #include <linux/highmem.h> >> 21 #include <linux/console.h> >> 22 #include <linux/pfn.h> >> 23 #include <linux/debugfs.h> >> 24 #include <linux/kexec.h> >> 25 #include <linux/sizes.h> >> 26 #include <linux/device.h> >> 27 #include <linux/dma-map-ops.h> >> 28 #include <linux/decompress/generic.h> >> 29 #include <linux/of_fdt.h> >> 30 #include <linux/of_reserved_mem.h> >> 31 #include <linux/dmi.h> >> 32 >> 33 #include <asm/addrspace.h> >> 34 #include <asm/bootinfo.h> >> 35 #include <asm/bugs.h> >> 36 #include <asm/cache.h> >> 37 #include <asm/cdmm.h> >> 38 #include <asm/cpu.h> >> 39 #include <asm/debug.h> >> 40 #include <asm/dma-coherence.h> >> 41 #include <asm/sections.h> >> 42 #include <asm/setup.h> >> 43 #include <asm/smp-ops.h> >> 44 #include <asm/prom.h> >> 45 >> 46 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB >> 47 const char __section(".appended_dtb") __appended_dtb[0x100000]; >> 48 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */ >> 49 >> 50 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; >> 51 >> 52 EXPORT_SYMBOL(cpu_data); >> 53 >> 54 #ifdef CONFIG_VT >> 55 struct screen_info screen_info; >> 56 #endif >> 57 >> 58 /* >> 59 * Setup information >> 60 * >> 61 * These are initialized so they are in the .data section >> 62 */ >> 63 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; >> 64 >> 65 EXPORT_SYMBOL(mips_machtype); >> 66 >> 67 static char __initdata command_line[COMMAND_LINE_SIZE]; >> 68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; >> 69 >> 70 #ifdef CONFIG_CMDLINE_BOOL >> 71 static const char builtin_cmdline[] __initconst = CONFIG_CMDLINE; >> 72 #else >> 73 static const char builtin_cmdline[] __initconst = ""; >> 74 #endif >> 75 >> 76 /* >> 77 * mips_io_port_base is the begin of the address space to which x86 style >> 78 * I/O ports are mapped. >> 79 */ >> 80 unsigned long mips_io_port_base = -1; >> 81 EXPORT_SYMBOL(mips_io_port_base); >> 82 >> 83 static struct resource code_resource = { .name = "Kernel code", }; >> 84 static struct resource data_resource = { .name = "Kernel data", }; >> 85 static struct resource bss_resource = { .name = "Kernel bss", }; >> 86 >> 87 unsigned long __kaslr_offset __ro_after_init; >> 88 EXPORT_SYMBOL(__kaslr_offset); >> 89 >> 90 static void *detect_magic __initdata = detect_memory_region; >> 91 >> 92 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET >> 93 unsigned long ARCH_PFN_OFFSET; >> 94 EXPORT_SYMBOL(ARCH_PFN_OFFSET); >> 95 #endif >> 96 >> 97 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) >> 98 { >> 99 void *dm = &detect_magic; >> 100 phys_addr_t size; >> 101 >> 102 for (size = sz_min; size < sz_max; size <<= 1) { >> 103 if (!memcmp(dm, dm + size, sizeof(detect_magic))) >> 104 break; >> 105 } >> 106 >> 107 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", >> 108 ((unsigned long long) size) / SZ_1M, >> 109 (unsigned long long) start, >> 110 ((unsigned long long) sz_min) / SZ_1M, >> 111 ((unsigned long long) sz_max) / SZ_1M); >> 112 >> 113 memblock_add(start, size); >> 114 } >> 115 >> 116 /* >> 117 * Manage initrd >> 118 */ >> 119 #ifdef CONFIG_BLK_DEV_INITRD >> 120 >> 121 static int __init rd_start_early(char *p) >> 122 { >> 123 unsigned long start = memparse(p, &p); >> 124 >> 125 #ifdef CONFIG_64BIT >> 126 /* Guess if the sign extension was forgotten by bootloader */ >> 127 if (start < XKPHYS) >> 128 start = (int)start; >> 129 #endif >> 130 initrd_start = start; >> 131 initrd_end += start; >> 132 return 0; >> 133 } >> 134 early_param("rd_start", rd_start_early); >> 135 >> 136 static int __init rd_size_early(char *p) >> 137 { >> 138 initrd_end += memparse(p, &p); >> 139 return 0; >> 140 } >> 141 early_param("rd_size", rd_size_early); >> 142 >> 143 /* it returns the next free pfn after initrd */ >> 144 static unsigned long __init init_initrd(void) >> 145 { >> 146 unsigned long end; >> 147 >> 148 /* >> 149 * Board specific code or command line parser should have >> 150 * already set up initrd_start and initrd_end. In these cases >> 151 * perfom sanity checks and use them if all looks good. >> 152 */ >> 153 if (!initrd_start || initrd_end <= initrd_start) >> 154 goto disable; >> 155 >> 156 if (initrd_start & ~PAGE_MASK) { >> 157 pr_err("initrd start must be page aligned\n"); >> 158 goto disable; >> 159 } >> 160 if (initrd_start < PAGE_OFFSET) { >> 161 pr_err("initrd start < PAGE_OFFSET\n"); >> 162 goto disable; >> 163 } >> 164 >> 165 /* >> 166 * Sanitize initrd addresses. For example firmware >> 167 * can't guess if they need to pass them through >> 168 * 64-bits values if the kernel has been built in pure >> 169 * 32-bit. We need also to switch from KSEG0 to XKPHYS >> 170 * addresses now, so the code can now safely use __pa(). >> 171 */ >> 172 end = __pa(initrd_end); >> 173 initrd_end = (unsigned long)__va(end); >> 174 initrd_start = (unsigned long)__va(__pa(initrd_start)); >> 175 >> 176 ROOT_DEV = Root_RAM0; >> 177 return PFN_UP(end); >> 178 disable: >> 179 initrd_start = 0; >> 180 initrd_end = 0; >> 181 return 0; >> 182 } >> 183 >> 184 /* In some conditions (e.g. big endian bootloader with a little endian >> 185 kernel), the initrd might appear byte swapped. Try to detect this and >> 186 byte swap it if needed. */ >> 187 static void __init maybe_bswap_initrd(void) >> 188 { >> 189 #if defined(CONFIG_CPU_CAVIUM_OCTEON) >> 190 u64 buf; >> 191 >> 192 /* Check for CPIO signature */ >> 193 if (!memcmp((void *)initrd_start, "070701", 6)) >> 194 return; >> 195 >> 196 /* Check for compressed initrd */ >> 197 if (decompress_method((unsigned char *)initrd_start, 8, NULL)) >> 198 return; >> 199 >> 200 /* Try again with a byte swapped header */ >> 201 buf = swab64p((u64 *)initrd_start); >> 202 if (!memcmp(&buf, "070701", 6) || >> 203 decompress_method((unsigned char *)(&buf), 8, NULL)) { >> 204 unsigned long i; >> 205 >> 206 pr_info("Byteswapped initrd detected\n"); >> 207 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8) >> 208 swab64s((u64 *)i); >> 209 } >> 210 #endif >> 211 } >> 212 >> 213 static void __init finalize_initrd(void) >> 214 { >> 215 unsigned long size = initrd_end - initrd_start; >> 216 >> 217 if (size == 0) { >> 218 printk(KERN_INFO "Initrd not found or empty"); >> 219 goto disable; >> 220 } >> 221 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { >> 222 printk(KERN_ERR "Initrd extends beyond end of memory"); >> 223 goto disable; >> 224 } >> 225 >> 226 maybe_bswap_initrd(); >> 227 >> 228 memblock_reserve(__pa(initrd_start), size); >> 229 initrd_below_start_ok = 1; >> 230 >> 231 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", >> 232 initrd_start, size); >> 233 return; >> 234 disable: >> 235 printk(KERN_CONT " - disabling initrd\n"); >> 236 initrd_start = 0; >> 237 initrd_end = 0; >> 238 } >> 239 >> 240 #else /* !CONFIG_BLK_DEV_INITRD */ >> 241 >> 242 static unsigned long __init init_initrd(void) >> 243 { >> 244 return 0; >> 245 } >> 246 >> 247 #define finalize_initrd() do {} while (0) >> 248 >> 249 #endif >> 250 >> 251 /* >> 252 * Initialize the bootmem allocator. It also setup initrd related data >> 253 * if needed. >> 254 */ >> 255 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON64) && defined(CONFIG_NUMA)) >> 256 >> 257 static void __init bootmem_init(void) >> 258 { >> 259 init_initrd(); >> 260 finalize_initrd(); >> 261 } >> 262 >> 263 #else /* !CONFIG_SGI_IP27 */ >> 264 >> 265 static void __init bootmem_init(void) >> 266 { >> 267 phys_addr_t ramstart, ramend; >> 268 unsigned long start, end; >> 269 int i; >> 270 >> 271 ramstart = memblock_start_of_DRAM(); >> 272 ramend = memblock_end_of_DRAM(); >> 273 >> 274 /* >> 275 * Sanity check any INITRD first. We don't take it into account >> 276 * for bootmem setup initially, rely on the end-of-kernel-code >> 277 * as our memory range starting point. Once bootmem is inited we >> 278 * will reserve the area used for the initrd. >> 279 */ >> 280 init_initrd(); >> 281 >> 282 /* Reserve memory occupied by kernel. */ >> 283 memblock_reserve(__pa_symbol(&_text), >> 284 __pa_symbol(&_end) - __pa_symbol(&_text)); >> 285 >> 286 /* max_low_pfn is not a number of pages but the end pfn of low mem */ >> 287 >> 288 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET >> 289 ARCH_PFN_OFFSET = PFN_UP(ramstart); >> 290 #else >> 291 /* >> 292 * Reserve any memory between the start of RAM and PHYS_OFFSET >> 293 */ >> 294 if (ramstart > PHYS_OFFSET) >> 295 memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET); >> 296 >> 297 if (PFN_UP(ramstart) > ARCH_PFN_OFFSET) { >> 298 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", >> 299 (unsigned long)((PFN_UP(ramstart) - ARCH_PFN_OFFSET) * sizeof(struct page)), >> 300 (unsigned long)(PFN_UP(ramstart) - ARCH_PFN_OFFSET)); >> 301 } >> 302 #endif >> 303 >> 304 min_low_pfn = ARCH_PFN_OFFSET; >> 305 max_pfn = PFN_DOWN(ramend); >> 306 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { >> 307 /* >> 308 * Skip highmem here so we get an accurate max_low_pfn if low >> 309 * memory stops short of high memory. >> 310 * If the region overlaps HIGHMEM_START, end is clipped so >> 311 * max_pfn excludes the highmem portion. >> 312 */ >> 313 if (start >= PFN_DOWN(HIGHMEM_START)) >> 314 continue; >> 315 if (end > PFN_DOWN(HIGHMEM_START)) >> 316 end = PFN_DOWN(HIGHMEM_START); >> 317 if (end > max_low_pfn) >> 318 max_low_pfn = end; >> 319 } >> 320 >> 321 if (min_low_pfn >= max_low_pfn) >> 322 panic("Incorrect memory mapping !!!"); >> 323 >> 324 if (max_pfn > PFN_DOWN(HIGHMEM_START)) { >> 325 #ifdef CONFIG_HIGHMEM >> 326 highstart_pfn = PFN_DOWN(HIGHMEM_START); >> 327 highend_pfn = max_pfn; 4 #else 328 #else 5 #include "setup_no.c" !! 329 max_low_pfn = PFN_DOWN(HIGHMEM_START); >> 330 max_pfn = max_low_pfn; >> 331 #endif >> 332 } >> 333 >> 334 /* >> 335 * Reserve initrd memory if needed. >> 336 */ >> 337 finalize_initrd(); >> 338 } >> 339 >> 340 #endif /* CONFIG_SGI_IP27 */ >> 341 >> 342 static int usermem __initdata; >> 343 >> 344 static int __init early_parse_mem(char *p) >> 345 { >> 346 phys_addr_t start, size; >> 347 >> 348 /* >> 349 * If a user specifies memory size, we >> 350 * blow away any automatically generated >> 351 * size. >> 352 */ >> 353 if (usermem == 0) { >> 354 usermem = 1; >> 355 memblock_remove(memblock_start_of_DRAM(), >> 356 memblock_end_of_DRAM() - memblock_start_of_DRAM()); >> 357 } >> 358 start = 0; >> 359 size = memparse(p, &p); >> 360 if (*p == '@') >> 361 start = memparse(p + 1, &p); >> 362 >> 363 memblock_add(start, size); >> 364 >> 365 return 0; >> 366 } >> 367 early_param("mem", early_parse_mem); >> 368 >> 369 static int __init early_parse_memmap(char *p) >> 370 { >> 371 char *oldp; >> 372 u64 start_at, mem_size; >> 373 >> 374 if (!p) >> 375 return -EINVAL; >> 376 >> 377 if (!strncmp(p, "exactmap", 8)) { >> 378 pr_err("\"memmap=exactmap\" invalid on MIPS\n"); >> 379 return 0; >> 380 } >> 381 >> 382 oldp = p; >> 383 mem_size = memparse(p, &p); >> 384 if (p == oldp) >> 385 return -EINVAL; >> 386 >> 387 if (*p == '@') { >> 388 start_at = memparse(p+1, &p); >> 389 memblock_add(start_at, mem_size); >> 390 } else if (*p == '#') { >> 391 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n"); >> 392 return -EINVAL; >> 393 } else if (*p == '$') { >> 394 start_at = memparse(p+1, &p); >> 395 memblock_add(start_at, mem_size); >> 396 memblock_reserve(start_at, mem_size); >> 397 } else { >> 398 pr_err("\"memmap\" invalid format!\n"); >> 399 return -EINVAL; >> 400 } >> 401 >> 402 if (*p == '\0') { >> 403 usermem = 1; >> 404 return 0; >> 405 } else >> 406 return -EINVAL; >> 407 } >> 408 early_param("memmap", early_parse_memmap); >> 409 >> 410 #ifdef CONFIG_PROC_VMCORE >> 411 static unsigned long setup_elfcorehdr, setup_elfcorehdr_size; >> 412 static int __init early_parse_elfcorehdr(char *p) >> 413 { >> 414 phys_addr_t start, end; >> 415 u64 i; >> 416 >> 417 setup_elfcorehdr = memparse(p, &p); >> 418 >> 419 for_each_mem_range(i, &start, &end) { >> 420 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { >> 421 /* >> 422 * Reserve from the elf core header to the end of >> 423 * the memory segment, that should all be kdump >> 424 * reserved memory. >> 425 */ >> 426 setup_elfcorehdr_size = end - setup_elfcorehdr; >> 427 break; >> 428 } >> 429 } >> 430 /* >> 431 * If we don't find it in the memory map, then we shouldn't >> 432 * have to worry about it, as the new kernel won't use it. >> 433 */ >> 434 return 0; >> 435 } >> 436 early_param("elfcorehdr", early_parse_elfcorehdr); 6 #endif 437 #endif 7 438 8 #if IS_ENABLED(CONFIG_INPUT_M68K_BEEP) !! 439 #ifdef CONFIG_KEXEC 9 void (*mach_beep)(unsigned int, unsigned int); !! 440 10 EXPORT_SYMBOL(mach_beep); !! 441 /* 64M alignment for crash kernel regions */ >> 442 #define CRASH_ALIGN SZ_64M >> 443 #define CRASH_ADDR_MAX SZ_512M >> 444 >> 445 static void __init mips_parse_crashkernel(void) >> 446 { >> 447 unsigned long long total_mem; >> 448 unsigned long long crash_size, crash_base; >> 449 int ret; >> 450 >> 451 total_mem = memblock_phys_mem_size(); >> 452 ret = parse_crashkernel(boot_command_line, total_mem, >> 453 &crash_size, &crash_base); >> 454 if (ret != 0 || crash_size <= 0) >> 455 return; >> 456 >> 457 if (crash_base <= 0) { >> 458 crash_base = memblock_find_in_range(CRASH_ALIGN, CRASH_ADDR_MAX, >> 459 crash_size, CRASH_ALIGN); >> 460 if (!crash_base) { >> 461 pr_warn("crashkernel reservation failed - No suitable area found.\n"); >> 462 return; >> 463 } >> 464 } else { >> 465 unsigned long long start; >> 466 >> 467 start = memblock_find_in_range(crash_base, crash_base + crash_size, >> 468 crash_size, 1); >> 469 if (start != crash_base) { >> 470 pr_warn("Invalid memory region reserved for crash kernel\n"); >> 471 return; >> 472 } >> 473 } >> 474 >> 475 crashk_res.start = crash_base; >> 476 crashk_res.end = crash_base + crash_size - 1; >> 477 } >> 478 >> 479 static void __init request_crashkernel(struct resource *res) >> 480 { >> 481 int ret; >> 482 >> 483 if (crashk_res.start == crashk_res.end) >> 484 return; >> 485 >> 486 ret = request_resource(res, &crashk_res); >> 487 if (!ret) >> 488 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", >> 489 (unsigned long)(resource_size(&crashk_res) >> 20), >> 490 (unsigned long)(crashk_res.start >> 20)); >> 491 } >> 492 #else /* !defined(CONFIG_KEXEC) */ >> 493 static void __init mips_parse_crashkernel(void) >> 494 { >> 495 } >> 496 >> 497 static void __init request_crashkernel(struct resource *res) >> 498 { >> 499 } >> 500 #endif /* !defined(CONFIG_KEXEC) */ >> 501 >> 502 static void __init check_kernel_sections_mem(void) >> 503 { >> 504 phys_addr_t start = __pa_symbol(&_text); >> 505 phys_addr_t size = __pa_symbol(&_end) - start; >> 506 >> 507 if (!memblock_is_region_memory(start, size)) { >> 508 pr_info("Kernel sections are not in the memory maps\n"); >> 509 memblock_add(start, size); >> 510 } >> 511 } >> 512 >> 513 static void __init bootcmdline_append(const char *s, size_t max) >> 514 { >> 515 if (!s[0] || !max) >> 516 return; >> 517 >> 518 if (boot_command_line[0]) >> 519 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); >> 520 >> 521 strlcat(boot_command_line, s, max); >> 522 } >> 523 >> 524 #ifdef CONFIG_OF_EARLY_FLATTREE >> 525 >> 526 static int __init bootcmdline_scan_chosen(unsigned long node, const char *uname, >> 527 int depth, void *data) >> 528 { >> 529 bool *dt_bootargs = data; >> 530 const char *p; >> 531 int l; >> 532 >> 533 if (depth != 1 || !data || >> 534 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0)) >> 535 return 0; >> 536 >> 537 p = of_get_flat_dt_prop(node, "bootargs", &l); >> 538 if (p != NULL && l > 0) { >> 539 bootcmdline_append(p, min(l, COMMAND_LINE_SIZE)); >> 540 *dt_bootargs = true; >> 541 } >> 542 >> 543 return 1; >> 544 } >> 545 >> 546 #endif /* CONFIG_OF_EARLY_FLATTREE */ >> 547 >> 548 static void __init bootcmdline_init(void) >> 549 { >> 550 bool dt_bootargs = false; >> 551 >> 552 /* >> 553 * If CMDLINE_OVERRIDE is enabled then initializing the command line is >> 554 * trivial - we simply use the built-in command line unconditionally & >> 555 * unmodified. >> 556 */ >> 557 if (IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) { >> 558 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); >> 559 return; >> 560 } >> 561 >> 562 /* >> 563 * If the user specified a built-in command line & >> 564 * MIPS_CMDLINE_BUILTIN_EXTEND, then the built-in command line is >> 565 * prepended to arguments from the bootloader or DT so we'll copy them >> 566 * to the start of boot_command_line here. Otherwise, empty >> 567 * boot_command_line to undo anything early_init_dt_scan_chosen() did. >> 568 */ >> 569 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)) >> 570 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); >> 571 else >> 572 boot_command_line[0] = 0; >> 573 >> 574 #ifdef CONFIG_OF_EARLY_FLATTREE >> 575 /* >> 576 * If we're configured to take boot arguments from DT, look for those >> 577 * now. >> 578 */ >> 579 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) || >> 580 IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)) >> 581 of_scan_flat_dt(bootcmdline_scan_chosen, &dt_bootargs); >> 582 #endif >> 583 >> 584 /* >> 585 * If we didn't get any arguments from DT (regardless of whether that's >> 586 * because we weren't configured to look for them, or because we looked >> 587 * & found none) then we'll take arguments from the bootloader. >> 588 * plat_mem_setup() should have filled arcs_cmdline with arguments from >> 589 * the bootloader. >> 590 */ >> 591 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) || !dt_bootargs) >> 592 bootcmdline_append(arcs_cmdline, COMMAND_LINE_SIZE); >> 593 >> 594 /* >> 595 * If the user specified a built-in command line & we didn't already >> 596 * prepend it, we append it to boot_command_line here. >> 597 */ >> 598 if (IS_ENABLED(CONFIG_CMDLINE_BOOL) && >> 599 !IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)) >> 600 bootcmdline_append(builtin_cmdline, COMMAND_LINE_SIZE); >> 601 } >> 602 >> 603 /* >> 604 * arch_mem_init - initialize memory management subsystem >> 605 * >> 606 * o plat_mem_setup() detects the memory configuration and will record detected >> 607 * memory areas using memblock_add. >> 608 * >> 609 * At this stage the memory configuration of the system is known to the >> 610 * kernel but generic memory management system is still entirely uninitialized. >> 611 * >> 612 * o bootmem_init() >> 613 * o sparse_init() >> 614 * o paging_init() >> 615 * o dma_contiguous_reserve() >> 616 * >> 617 * At this stage the bootmem allocator is ready to use. >> 618 * >> 619 * NOTE: historically plat_mem_setup did the entire platform initialization. >> 620 * This was rather impractical because it meant plat_mem_setup had to >> 621 * get away without any kind of memory allocator. To keep old code from >> 622 * breaking plat_setup was just renamed to plat_mem_setup and a second platform >> 623 * initialization hook for anything else was introduced. >> 624 */ >> 625 static void __init arch_mem_init(char **cmdline_p) >> 626 { >> 627 /* call board setup routine */ >> 628 plat_mem_setup(); >> 629 memblock_set_bottom_up(true); >> 630 >> 631 bootcmdline_init(); >> 632 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); >> 633 *cmdline_p = command_line; >> 634 >> 635 parse_early_param(); >> 636 >> 637 if (usermem) >> 638 pr_info("User-defined physical RAM map overwrite\n"); >> 639 >> 640 check_kernel_sections_mem(); >> 641 >> 642 early_init_fdt_reserve_self(); >> 643 early_init_fdt_scan_reserved_mem(); >> 644 >> 645 #ifndef CONFIG_NUMA >> 646 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); >> 647 #endif >> 648 bootmem_init(); >> 649 >> 650 /* >> 651 * Prevent memblock from allocating high memory. >> 652 * This cannot be done before max_low_pfn is detected, so up >> 653 * to this point is possible to only reserve physical memory >> 654 * with memblock_reserve; memblock_alloc* can be used >> 655 * only after this point >> 656 */ >> 657 memblock_set_current_limit(PFN_PHYS(max_low_pfn)); >> 658 >> 659 #ifdef CONFIG_PROC_VMCORE >> 660 if (setup_elfcorehdr && setup_elfcorehdr_size) { >> 661 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", >> 662 setup_elfcorehdr, setup_elfcorehdr_size); >> 663 memblock_reserve(setup_elfcorehdr, setup_elfcorehdr_size); >> 664 } >> 665 #endif >> 666 >> 667 mips_parse_crashkernel(); >> 668 #ifdef CONFIG_KEXEC >> 669 if (crashk_res.start != crashk_res.end) >> 670 memblock_reserve(crashk_res.start, resource_size(&crashk_res)); >> 671 #endif >> 672 device_tree_init(); >> 673 >> 674 /* >> 675 * In order to reduce the possibility of kernel panic when failed to >> 676 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate >> 677 * low memory as small as possible before plat_swiotlb_setup(), so >> 678 * make sparse_init() using top-down allocation. >> 679 */ >> 680 memblock_set_bottom_up(false); >> 681 sparse_init(); >> 682 memblock_set_bottom_up(true); >> 683 >> 684 plat_swiotlb_setup(); >> 685 >> 686 dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); >> 687 >> 688 /* Reserve for hibernation. */ >> 689 memblock_reserve(__pa_symbol(&__nosave_begin), >> 690 __pa_symbol(&__nosave_end) - __pa_symbol(&__nosave_begin)); >> 691 >> 692 fdt_init_reserved_mem(); >> 693 >> 694 early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn)); >> 695 } >> 696 >> 697 static void __init resource_init(void) >> 698 { >> 699 phys_addr_t start, end; >> 700 u64 i; >> 701 >> 702 if (UNCAC_BASE != IO_BASE) >> 703 return; >> 704 >> 705 code_resource.start = __pa_symbol(&_text); >> 706 code_resource.end = __pa_symbol(&_etext) - 1; >> 707 data_resource.start = __pa_symbol(&_etext); >> 708 data_resource.end = __pa_symbol(&_edata) - 1; >> 709 bss_resource.start = __pa_symbol(&__bss_start); >> 710 bss_resource.end = __pa_symbol(&__bss_stop) - 1; >> 711 >> 712 for_each_mem_range(i, &start, &end) { >> 713 struct resource *res; >> 714 >> 715 res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES); >> 716 if (!res) >> 717 panic("%s: Failed to allocate %zu bytes\n", __func__, >> 718 sizeof(struct resource)); >> 719 >> 720 res->start = start; >> 721 /* >> 722 * In memblock, end points to the first byte after the >> 723 * range while in resourses, end points to the last byte in >> 724 * the range. >> 725 */ >> 726 res->end = end - 1; >> 727 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; >> 728 res->name = "System RAM"; >> 729 >> 730 request_resource(&iomem_resource, res); >> 731 >> 732 /* >> 733 * We don't know which RAM region contains kernel data, >> 734 * so we try it repeatedly and let the resource manager >> 735 * test it. >> 736 */ >> 737 request_resource(res, &code_resource); >> 738 request_resource(res, &data_resource); >> 739 request_resource(res, &bss_resource); >> 740 request_crashkernel(res); >> 741 } >> 742 } >> 743 >> 744 #ifdef CONFIG_SMP >> 745 static void __init prefill_possible_map(void) >> 746 { >> 747 int i, possible = num_possible_cpus(); >> 748 >> 749 if (possible > nr_cpu_ids) >> 750 possible = nr_cpu_ids; >> 751 >> 752 for (i = 0; i < possible; i++) >> 753 set_cpu_possible(i, true); >> 754 for (; i < NR_CPUS; i++) >> 755 set_cpu_possible(i, false); >> 756 >> 757 nr_cpu_ids = possible; >> 758 } >> 759 #else >> 760 static inline void prefill_possible_map(void) {} >> 761 #endif >> 762 >> 763 void __init setup_arch(char **cmdline_p) >> 764 { >> 765 cpu_probe(); >> 766 mips_cm_probe(); >> 767 prom_init(); >> 768 >> 769 setup_early_fdc_console(); >> 770 #ifdef CONFIG_EARLY_PRINTK >> 771 setup_early_printk(); >> 772 #endif >> 773 cpu_report(); >> 774 check_bugs_early(); >> 775 >> 776 #if defined(CONFIG_VT) >> 777 #if defined(CONFIG_VGA_CONSOLE) >> 778 conswitchp = &vga_con; >> 779 #endif >> 780 #endif >> 781 >> 782 arch_mem_init(cmdline_p); >> 783 dmi_setup(); >> 784 >> 785 resource_init(); >> 786 plat_smp_setup(); >> 787 prefill_possible_map(); >> 788 >> 789 cpu_cache_init(); >> 790 paging_init(); >> 791 >> 792 memblock_dump_all(); >> 793 } >> 794 >> 795 unsigned long kernelsp[NR_CPUS]; >> 796 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; >> 797 >> 798 #ifdef CONFIG_USE_OF >> 799 unsigned long fw_passed_dtb; >> 800 #endif >> 801 >> 802 #ifdef CONFIG_DEBUG_FS >> 803 struct dentry *mips_debugfs_dir; >> 804 static int __init debugfs_mips(void) >> 805 { >> 806 mips_debugfs_dir = debugfs_create_dir("mips", NULL); >> 807 return 0; >> 808 } >> 809 arch_initcall(debugfs_mips); >> 810 #endif >> 811 >> 812 #ifdef CONFIG_DMA_MAYBE_COHERENT >> 813 /* User defined DMA coherency from command line. */ >> 814 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT; >> 815 EXPORT_SYMBOL_GPL(coherentio); >> 816 int hw_coherentio; /* Actual hardware supported DMA coherency setting. */ >> 817 >> 818 static int __init setcoherentio(char *str) >> 819 { >> 820 coherentio = IO_COHERENCE_ENABLED; >> 821 pr_info("Hardware DMA cache coherency (command line)\n"); >> 822 return 0; >> 823 } >> 824 early_param("coherentio", setcoherentio); >> 825 >> 826 static int __init setnocoherentio(char *str) >> 827 { >> 828 coherentio = IO_COHERENCE_DISABLED; >> 829 pr_info("Software DMA cache coherency (command line)\n"); >> 830 return 0; >> 831 } >> 832 early_param("nocoherentio", setnocoherentio); 11 #endif 833 #endif 12 834
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.