1 // SPDX-License-Identifier: GPL-2.0-or-later << 2 /* 1 /* 3 * Copyright (C) 2014 Imagination Technologies 2 * Copyright (C) 2014 Imagination Technologies 4 * Author: Paul Burton <paul.burton@mips.com> !! 3 * Author: Paul Burton <paul.burton@imgtec.com> >> 4 * >> 5 * This program is free software; you can redistribute it and/or modify it >> 6 * under the terms of the GNU General Public License as published by the >> 7 * Free Software Foundation; either version 2 of the License, or (at your >> 8 * option) any later version. 5 */ 9 */ 6 10 7 #include <linux/binfmts.h> 11 #include <linux/binfmts.h> 8 #include <linux/elf.h> 12 #include <linux/elf.h> 9 #include <linux/export.h> 13 #include <linux/export.h> 10 #include <linux/sched.h> 14 #include <linux/sched.h> 11 15 12 #include <asm/cpu-features.h> 16 #include <asm/cpu-features.h> 13 #include <asm/cpu-info.h> 17 #include <asm/cpu-info.h> 14 #include <asm/fpu.h> << 15 << 16 #ifdef CONFIG_MIPS_FP_SUPPORT << 17 18 18 /* Whether to accept legacy-NaN and 2008-NaN u 19 /* Whether to accept legacy-NaN and 2008-NaN user binaries. */ 19 bool mips_use_nan_legacy; 20 bool mips_use_nan_legacy; 20 bool mips_use_nan_2008; 21 bool mips_use_nan_2008; 21 22 22 /* FPU modes */ 23 /* FPU modes */ 23 enum { 24 enum { 24 FP_FRE, 25 FP_FRE, 25 FP_FR0, 26 FP_FR0, 26 FP_FR1, 27 FP_FR1, 27 }; 28 }; 28 29 29 /** 30 /** 30 * struct mode_req - ABI FPU mode requirements 31 * struct mode_req - ABI FPU mode requirements 31 * @single: The program being loaded needs 32 * @single: The program being loaded needs an FPU but it will only issue 32 * single precision instructions 33 * single precision instructions meaning that it can execute in 33 * either FR0 or FR1. 34 * either FR0 or FR1. 34 * @soft: The soft(-float) requirement m 35 * @soft: The soft(-float) requirement means that the program being 35 * loaded needs has no FPU depend 36 * loaded needs has no FPU dependency at all (i.e. it has no 36 * FPU instructions). 37 * FPU instructions). 37 * @fr1: The program being loaded depen 38 * @fr1: The program being loaded depends on FPU being in FR=1 mode. 38 * @frdefault: The program being loaded depen 39 * @frdefault: The program being loaded depends on the default FPU mode. 39 * That is FR0 for O32 and FR1 fo 40 * That is FR0 for O32 and FR1 for N32/N64. 40 * @fre: The program being loaded depen 41 * @fre: The program being loaded depends on FPU with FRE=1. This mode is 41 * a bridge which uses FR=1 whils 42 * a bridge which uses FR=1 whilst still being able to maintain 42 * full compatibility with pre-ex 43 * full compatibility with pre-existing code using the O32 FP32 43 * ABI. 44 * ABI. 44 * 45 * 45 * More information about the FP ABIs can be f 46 * More information about the FP ABIs can be found here: 46 * 47 * 47 * https://dmz-portal.mips.com/wiki/MIPS_O32_A 48 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up 48 * 49 * 49 */ 50 */ 50 51 51 struct mode_req { 52 struct mode_req { 52 bool single; 53 bool single; 53 bool soft; 54 bool soft; 54 bool fr1; 55 bool fr1; 55 bool frdefault; 56 bool frdefault; 56 bool fre; 57 bool fre; 57 }; 58 }; 58 59 59 static const struct mode_req fpu_reqs[] = { 60 static const struct mode_req fpu_reqs[] = { 60 [MIPS_ABI_FP_ANY] = { true, true, 61 [MIPS_ABI_FP_ANY] = { true, true, true, true, true }, 61 [MIPS_ABI_FP_DOUBLE] = { false, false, 62 [MIPS_ABI_FP_DOUBLE] = { false, false, false, true, true }, 62 [MIPS_ABI_FP_SINGLE] = { true, false, 63 [MIPS_ABI_FP_SINGLE] = { true, false, false, false, false }, 63 [MIPS_ABI_FP_SOFT] = { false, true, 64 [MIPS_ABI_FP_SOFT] = { false, true, false, false, false }, 64 [MIPS_ABI_FP_OLD_64] = { false, false, 65 [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false }, 65 [MIPS_ABI_FP_XX] = { false, false, 66 [MIPS_ABI_FP_XX] = { false, false, true, true, true }, 66 [MIPS_ABI_FP_64] = { false, false, 67 [MIPS_ABI_FP_64] = { false, false, true, false, false }, 67 [MIPS_ABI_FP_64A] = { false, false, 68 [MIPS_ABI_FP_64A] = { false, false, true, false, true } 68 }; 69 }; 69 70 70 /* 71 /* 71 * Mode requirements when .MIPS.abiflags is no 72 * Mode requirements when .MIPS.abiflags is not present in the ELF. 72 * Not present means that everything is accept 73 * Not present means that everything is acceptable except FR1. 73 */ 74 */ 74 static struct mode_req none_req = { true, true 75 static struct mode_req none_req = { true, true, false, true, true }; 75 76 76 int arch_elf_pt_proc(void *_ehdr, void *_phdr, 77 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf, 77 bool is_interp, struct ar 78 bool is_interp, struct arch_elf_state *state) 78 { 79 { 79 union { 80 union { 80 struct elf32_hdr e32; 81 struct elf32_hdr e32; 81 struct elf64_hdr e64; 82 struct elf64_hdr e64; 82 } *ehdr = _ehdr; 83 } *ehdr = _ehdr; 83 struct elf32_phdr *phdr32 = _phdr; 84 struct elf32_phdr *phdr32 = _phdr; 84 struct elf64_phdr *phdr64 = _phdr; 85 struct elf64_phdr *phdr64 = _phdr; 85 struct mips_elf_abiflags_v0 abiflags; 86 struct mips_elf_abiflags_v0 abiflags; 86 bool elf32; 87 bool elf32; 87 u32 flags; 88 u32 flags; 88 int ret; 89 int ret; 89 loff_t pos; << 90 90 91 elf32 = ehdr->e32.e_ident[EI_CLASS] == 91 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; 92 flags = elf32 ? ehdr->e32.e_flags : eh 92 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; 93 93 94 /* Let's see if this is an O32 ELF */ 94 /* Let's see if this is an O32 ELF */ 95 if (elf32) { 95 if (elf32) { 96 if (flags & EF_MIPS_FP64) { 96 if (flags & EF_MIPS_FP64) { 97 /* 97 /* 98 * Set MIPS_ABI_FP_OLD 98 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it 99 * later if needed 99 * later if needed 100 */ 100 */ 101 if (is_interp) 101 if (is_interp) 102 state->interp_ 102 state->interp_fp_abi = MIPS_ABI_FP_OLD_64; 103 else 103 else 104 state->fp_abi 104 state->fp_abi = MIPS_ABI_FP_OLD_64; 105 } 105 } 106 if (phdr32->p_type != PT_MIPS_ 106 if (phdr32->p_type != PT_MIPS_ABIFLAGS) 107 return 0; 107 return 0; 108 108 109 if (phdr32->p_filesz < sizeof( 109 if (phdr32->p_filesz < sizeof(abiflags)) 110 return -EINVAL; 110 return -EINVAL; 111 pos = phdr32->p_offset; !! 111 >> 112 ret = kernel_read(elf, phdr32->p_offset, >> 113 (char *)&abiflags, >> 114 sizeof(abiflags)); 112 } else { 115 } else { 113 if (phdr64->p_type != PT_MIPS_ 116 if (phdr64->p_type != PT_MIPS_ABIFLAGS) 114 return 0; 117 return 0; 115 if (phdr64->p_filesz < sizeof( 118 if (phdr64->p_filesz < sizeof(abiflags)) 116 return -EINVAL; 119 return -EINVAL; 117 pos = phdr64->p_offset; !! 120 >> 121 ret = kernel_read(elf, phdr64->p_offset, >> 122 (char *)&abiflags, >> 123 sizeof(abiflags)); 118 } 124 } 119 125 120 ret = kernel_read(elf, &abiflags, size << 121 if (ret < 0) 126 if (ret < 0) 122 return ret; 127 return ret; 123 if (ret != sizeof(abiflags)) 128 if (ret != sizeof(abiflags)) 124 return -EIO; 129 return -EIO; 125 130 126 /* Record the required FP ABIs for use 131 /* Record the required FP ABIs for use by mips_check_elf */ 127 if (is_interp) 132 if (is_interp) 128 state->interp_fp_abi = abiflag 133 state->interp_fp_abi = abiflags.fp_abi; 129 else 134 else 130 state->fp_abi = abiflags.fp_ab 135 state->fp_abi = abiflags.fp_abi; 131 136 132 return 0; 137 return 0; 133 } 138 } 134 139 135 int arch_check_elf(void *_ehdr, bool has_inter 140 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr, 136 struct arch_elf_state *stat 141 struct arch_elf_state *state) 137 { 142 { 138 union { 143 union { 139 struct elf32_hdr e32; 144 struct elf32_hdr e32; 140 struct elf64_hdr e64; 145 struct elf64_hdr e64; 141 } *ehdr = _ehdr; 146 } *ehdr = _ehdr; 142 union { 147 union { 143 struct elf32_hdr e32; 148 struct elf32_hdr e32; 144 struct elf64_hdr e64; 149 struct elf64_hdr e64; 145 } *iehdr = _interp_ehdr; 150 } *iehdr = _interp_ehdr; 146 struct mode_req prog_req, interp_req; 151 struct mode_req prog_req, interp_req; 147 int fp_abi, interp_fp_abi, abi0, abi1, 152 int fp_abi, interp_fp_abi, abi0, abi1, max_abi; 148 bool elf32; 153 bool elf32; 149 u32 flags; 154 u32 flags; 150 155 151 elf32 = ehdr->e32.e_ident[EI_CLASS] == 156 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; 152 flags = elf32 ? ehdr->e32.e_flags : eh 157 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; 153 158 154 /* 159 /* 155 * Determine the NaN personality, reje 160 * Determine the NaN personality, reject the binary if not allowed. 156 * Also ensure that any interpreter ma 161 * Also ensure that any interpreter matches the executable. 157 */ 162 */ 158 if (flags & EF_MIPS_NAN2008) { 163 if (flags & EF_MIPS_NAN2008) { 159 if (mips_use_nan_2008) 164 if (mips_use_nan_2008) 160 state->nan_2008 = 1; 165 state->nan_2008 = 1; 161 else 166 else 162 return -ENOEXEC; 167 return -ENOEXEC; 163 } else { 168 } else { 164 if (mips_use_nan_legacy) 169 if (mips_use_nan_legacy) 165 state->nan_2008 = 0; 170 state->nan_2008 = 0; 166 else 171 else 167 return -ENOEXEC; 172 return -ENOEXEC; 168 } 173 } 169 if (has_interpreter) { 174 if (has_interpreter) { 170 bool ielf32; 175 bool ielf32; 171 u32 iflags; 176 u32 iflags; 172 177 173 ielf32 = iehdr->e32.e_ident[EI 178 ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; 174 iflags = ielf32 ? iehdr->e32.e 179 iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags; 175 180 176 if ((flags ^ iflags) & EF_MIPS 181 if ((flags ^ iflags) & EF_MIPS_NAN2008) 177 return -ELIBBAD; 182 return -ELIBBAD; 178 } 183 } 179 184 180 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_S 185 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) 181 return 0; 186 return 0; 182 187 183 fp_abi = state->fp_abi; 188 fp_abi = state->fp_abi; 184 189 185 if (has_interpreter) { 190 if (has_interpreter) { 186 interp_fp_abi = state->interp_ 191 interp_fp_abi = state->interp_fp_abi; 187 192 188 abi0 = min(fp_abi, interp_fp_a 193 abi0 = min(fp_abi, interp_fp_abi); 189 abi1 = max(fp_abi, interp_fp_a 194 abi1 = max(fp_abi, interp_fp_abi); 190 } else { 195 } else { 191 abi0 = abi1 = fp_abi; 196 abi0 = abi1 = fp_abi; 192 } 197 } 193 198 194 if (elf32 && !(flags & EF_MIPS_ABI2)) 199 if (elf32 && !(flags & EF_MIPS_ABI2)) { 195 /* Default to a mode capable o 200 /* Default to a mode capable of running code expecting FR=0 */ 196 state->overall_fp_mode = cpu_h 201 state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0; 197 202 198 /* Allow all ABIs we know abou 203 /* Allow all ABIs we know about */ 199 max_abi = MIPS_ABI_FP_64A; 204 max_abi = MIPS_ABI_FP_64A; 200 } else { 205 } else { 201 /* MIPS64 code always uses FR= 206 /* MIPS64 code always uses FR=1, thus the default is easy */ 202 state->overall_fp_mode = FP_FR 207 state->overall_fp_mode = FP_FR1; 203 208 204 /* Disallow access to the vari 209 /* Disallow access to the various FPXX & FP64 ABIs */ 205 max_abi = MIPS_ABI_FP_SOFT; 210 max_abi = MIPS_ABI_FP_SOFT; 206 } 211 } 207 212 208 if ((abi0 > max_abi && abi0 != MIPS_AB 213 if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) || 209 (abi1 > max_abi && abi1 != MIPS_AB 214 (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN)) 210 return -ELIBBAD; 215 return -ELIBBAD; 211 216 212 /* It's time to determine the FPU mode 217 /* It's time to determine the FPU mode requirements */ 213 prog_req = (abi0 == MIPS_ABI_FP_UNKNOW 218 prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0]; 214 interp_req = (abi1 == MIPS_ABI_FP_UNKN 219 interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1]; 215 220 216 /* 221 /* 217 * Check whether the program's and int 222 * Check whether the program's and interp's ABIs have a matching FPU 218 * mode requirement. 223 * mode requirement. 219 */ 224 */ 220 prog_req.single = interp_req.single && 225 prog_req.single = interp_req.single && prog_req.single; 221 prog_req.soft = interp_req.soft && pro 226 prog_req.soft = interp_req.soft && prog_req.soft; 222 prog_req.fr1 = interp_req.fr1 && prog_ 227 prog_req.fr1 = interp_req.fr1 && prog_req.fr1; 223 prog_req.frdefault = interp_req.frdefa 228 prog_req.frdefault = interp_req.frdefault && prog_req.frdefault; 224 prog_req.fre = interp_req.fre && prog_ 229 prog_req.fre = interp_req.fre && prog_req.fre; 225 230 226 /* 231 /* 227 * Determine the desired FPU mode 232 * Determine the desired FPU mode 228 * 233 * 229 * Decision making: 234 * Decision making: 230 * 235 * 231 * - We want FR_FRE if FRE=1 and both 236 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This 232 * means that we have a combination 237 * means that we have a combination of program and interpreter 233 * that inherently require the hybri 238 * that inherently require the hybrid FP mode. 234 * - If FR1 and FRDEFAULT is true, tha 239 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or 235 * fpxx case. This is because, in an 240 * fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU 236 * instructions so we don't care abo 241 * instructions so we don't care about the mode. We will simply use 237 * the one preferred by the hardware 242 * the one preferred by the hardware. In fpxx case, that ABI can 238 * handle both FR=1 and FR=0, so, ag 243 * handle both FR=1 and FR=0, so, again, we simply choose the one 239 * preferred by the hardware. Next, 244 * preferred by the hardware. Next, if we only use single-precision 240 * FPU instructions, and the default 245 * FPU instructions, and the default ABI FPU mode is not good 241 * (ie single + any ABI combination) 246 * (ie single + any ABI combination), we set again the FPU mode to the 242 * one is preferred by the hardware. 247 * one is preferred by the hardware. Next, if we know that the code 243 * will only use single-precision in 248 * will only use single-precision instructions, shown by single being 244 * true but frdefault being false, t 249 * true but frdefault being false, then we again set the FPU mode to 245 * the one that is preferred by the 250 * the one that is preferred by the hardware. 246 * - We want FP_FR1 if that's the only 251 * - We want FP_FR1 if that's the only matching mode and the default one 247 * is not good. 252 * is not good. 248 * - Return with -ELIBADD if we can't 253 * - Return with -ELIBADD if we can't find a matching FPU mode. 249 */ 254 */ 250 if (prog_req.fre && !prog_req.frdefaul 255 if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1) 251 state->overall_fp_mode = FP_FR 256 state->overall_fp_mode = FP_FRE; 252 else if ((prog_req.fr1 && prog_req.frd 257 else if ((prog_req.fr1 && prog_req.frdefault) || 253 (prog_req.single && !prog_req 258 (prog_req.single && !prog_req.frdefault)) 254 /* Make sure 64-bit MIPS III/I 259 /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */ 255 state->overall_fp_mode = ((raw 260 state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) && 256 cpu_ 261 cpu_has_mips_r2_r6) ? 257 FP_F 262 FP_FR1 : FP_FR0; 258 else if (prog_req.fr1) 263 else if (prog_req.fr1) 259 state->overall_fp_mode = FP_FR 264 state->overall_fp_mode = FP_FR1; 260 else if (!prog_req.fre && !prog_req.f 265 else if (!prog_req.fre && !prog_req.frdefault && 261 !prog_req.fr1 && !prog_req.s 266 !prog_req.fr1 && !prog_req.single && !prog_req.soft) 262 return -ELIBBAD; 267 return -ELIBBAD; 263 268 264 return 0; 269 return 0; 265 } 270 } 266 271 267 static inline void set_thread_fp_mode(int hybr 272 static inline void set_thread_fp_mode(int hybrid, int regs32) 268 { 273 { 269 if (hybrid) 274 if (hybrid) 270 set_thread_flag(TIF_HYBRID_FPR 275 set_thread_flag(TIF_HYBRID_FPREGS); 271 else 276 else 272 clear_thread_flag(TIF_HYBRID_F 277 clear_thread_flag(TIF_HYBRID_FPREGS); 273 if (regs32) 278 if (regs32) 274 set_thread_flag(TIF_32BIT_FPRE 279 set_thread_flag(TIF_32BIT_FPREGS); 275 else 280 else 276 clear_thread_flag(TIF_32BIT_FP 281 clear_thread_flag(TIF_32BIT_FPREGS); 277 } 282 } 278 283 279 void mips_set_personality_fp(struct arch_elf_s 284 void mips_set_personality_fp(struct arch_elf_state *state) 280 { 285 { 281 /* 286 /* 282 * This function is only ever called f 287 * This function is only ever called for O32 ELFs so we should 283 * not be worried about N32/N64 binari 288 * not be worried about N32/N64 binaries. 284 */ 289 */ 285 290 286 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_S 291 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) 287 return; 292 return; 288 293 289 switch (state->overall_fp_mode) { 294 switch (state->overall_fp_mode) { 290 case FP_FRE: 295 case FP_FRE: 291 set_thread_fp_mode(1, 0); 296 set_thread_fp_mode(1, 0); 292 break; 297 break; 293 case FP_FR0: 298 case FP_FR0: 294 set_thread_fp_mode(0, 1); 299 set_thread_fp_mode(0, 1); 295 break; 300 break; 296 case FP_FR1: 301 case FP_FR1: 297 set_thread_fp_mode(0, 0); 302 set_thread_fp_mode(0, 0); 298 break; 303 break; 299 default: 304 default: 300 BUG(); 305 BUG(); 301 } 306 } 302 } 307 } 303 308 304 /* 309 /* 305 * Select the IEEE 754 NaN encoding and ABS.fm 310 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode 306 * in FCSR according to the ELF NaN personalit 311 * in FCSR according to the ELF NaN personality. 307 */ 312 */ 308 void mips_set_personality_nan(struct arch_elf_ 313 void mips_set_personality_nan(struct arch_elf_state *state) 309 { 314 { 310 struct cpuinfo_mips *c = &boot_cpu_dat 315 struct cpuinfo_mips *c = &boot_cpu_data; 311 struct task_struct *t = current; 316 struct task_struct *t = current; 312 317 313 /* Do this early so t->thread.fpu.fcr3 << 314 * we are preempted before the lose_fp << 315 */ << 316 lose_fpu(0); << 317 << 318 t->thread.fpu.fcr31 = c->fpu_csr31; 318 t->thread.fpu.fcr31 = c->fpu_csr31; 319 switch (state->nan_2008) { 319 switch (state->nan_2008) { 320 case 0: 320 case 0: 321 if (!(c->fpu_msk31 & FPU_CSR_N << 322 t->thread.fpu.fcr31 &= << 323 if (!(c->fpu_msk31 & FPU_CSR_A << 324 t->thread.fpu.fcr31 &= << 325 break; 321 break; 326 case 1: 322 case 1: 327 if (!(c->fpu_msk31 & FPU_CSR_N 323 if (!(c->fpu_msk31 & FPU_CSR_NAN2008)) 328 t->thread.fpu.fcr31 |= 324 t->thread.fpu.fcr31 |= FPU_CSR_NAN2008; 329 if (!(c->fpu_msk31 & FPU_CSR_A 325 if (!(c->fpu_msk31 & FPU_CSR_ABS2008)) 330 t->thread.fpu.fcr31 |= 326 t->thread.fpu.fcr31 |= FPU_CSR_ABS2008; 331 break; 327 break; 332 default: 328 default: 333 BUG(); 329 BUG(); 334 } 330 } 335 } 331 } 336 332 337 #endif /* CONFIG_MIPS_FP_SUPPORT */ << 338 << 339 int mips_elf_read_implies_exec(void *elf_ex, i 333 int mips_elf_read_implies_exec(void *elf_ex, int exstack) 340 { 334 { 341 /* !! 335 if (exstack != EXSTACK_DISABLE_X) { 342 * Set READ_IMPLIES_EXEC only on non-N !! 336 /* The binary doesn't request a non-executable stack */ 343 * do not request a specific state via !! 337 return 1; 344 */ !! 338 } 345 return (!cpu_has_rixi && exstack == EX !! 339 >> 340 if (!cpu_has_rixi) { >> 341 /* The CPU doesn't support non-executable memory */ >> 342 return 1; >> 343 } >> 344 >> 345 return 0; 346 } 346 } 347 EXPORT_SYMBOL(mips_elf_read_implies_exec); 347 EXPORT_SYMBOL(mips_elf_read_implies_exec); 348 348
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.