1 // SPDX-License-Identifier: GPL-2.0-or-later << 2 /* 1 /* 3 * Copyright (C) 2014 Imagination Technologies 2 * Copyright (C) 2014 Imagination Technologies 4 * Author: Paul Burton <paul.burton@mips.com> 3 * Author: Paul Burton <paul.burton@mips.com> >> 4 * >> 5 * This program is free software; you can redistribute it and/or modify it >> 6 * under the terms of the GNU General Public License as published by the >> 7 * Free Software Foundation; either version 2 of the License, or (at your >> 8 * option) any later version. 5 */ 9 */ 6 10 7 #include <linux/binfmts.h> 11 #include <linux/binfmts.h> 8 #include <linux/elf.h> 12 #include <linux/elf.h> 9 #include <linux/export.h> 13 #include <linux/export.h> 10 #include <linux/sched.h> 14 #include <linux/sched.h> 11 15 12 #include <asm/cpu-features.h> 16 #include <asm/cpu-features.h> 13 #include <asm/cpu-info.h> 17 #include <asm/cpu-info.h> 14 #include <asm/fpu.h> << 15 << 16 #ifdef CONFIG_MIPS_FP_SUPPORT << 17 18 18 /* Whether to accept legacy-NaN and 2008-NaN u 19 /* Whether to accept legacy-NaN and 2008-NaN user binaries. */ 19 bool mips_use_nan_legacy; 20 bool mips_use_nan_legacy; 20 bool mips_use_nan_2008; 21 bool mips_use_nan_2008; 21 22 22 /* FPU modes */ 23 /* FPU modes */ 23 enum { 24 enum { 24 FP_FRE, 25 FP_FRE, 25 FP_FR0, 26 FP_FR0, 26 FP_FR1, 27 FP_FR1, 27 }; 28 }; 28 29 29 /** 30 /** 30 * struct mode_req - ABI FPU mode requirements 31 * struct mode_req - ABI FPU mode requirements 31 * @single: The program being loaded needs 32 * @single: The program being loaded needs an FPU but it will only issue 32 * single precision instructions 33 * single precision instructions meaning that it can execute in 33 * either FR0 or FR1. 34 * either FR0 or FR1. 34 * @soft: The soft(-float) requirement m 35 * @soft: The soft(-float) requirement means that the program being 35 * loaded needs has no FPU depend 36 * loaded needs has no FPU dependency at all (i.e. it has no 36 * FPU instructions). 37 * FPU instructions). 37 * @fr1: The program being loaded depen 38 * @fr1: The program being loaded depends on FPU being in FR=1 mode. 38 * @frdefault: The program being loaded depen 39 * @frdefault: The program being loaded depends on the default FPU mode. 39 * That is FR0 for O32 and FR1 fo 40 * That is FR0 for O32 and FR1 for N32/N64. 40 * @fre: The program being loaded depen 41 * @fre: The program being loaded depends on FPU with FRE=1. This mode is 41 * a bridge which uses FR=1 whils 42 * a bridge which uses FR=1 whilst still being able to maintain 42 * full compatibility with pre-ex 43 * full compatibility with pre-existing code using the O32 FP32 43 * ABI. 44 * ABI. 44 * 45 * 45 * More information about the FP ABIs can be f 46 * More information about the FP ABIs can be found here: 46 * 47 * 47 * https://dmz-portal.mips.com/wiki/MIPS_O32_A 48 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up 48 * 49 * 49 */ 50 */ 50 51 51 struct mode_req { 52 struct mode_req { 52 bool single; 53 bool single; 53 bool soft; 54 bool soft; 54 bool fr1; 55 bool fr1; 55 bool frdefault; 56 bool frdefault; 56 bool fre; 57 bool fre; 57 }; 58 }; 58 59 59 static const struct mode_req fpu_reqs[] = { 60 static const struct mode_req fpu_reqs[] = { 60 [MIPS_ABI_FP_ANY] = { true, true, 61 [MIPS_ABI_FP_ANY] = { true, true, true, true, true }, 61 [MIPS_ABI_FP_DOUBLE] = { false, false, 62 [MIPS_ABI_FP_DOUBLE] = { false, false, false, true, true }, 62 [MIPS_ABI_FP_SINGLE] = { true, false, 63 [MIPS_ABI_FP_SINGLE] = { true, false, false, false, false }, 63 [MIPS_ABI_FP_SOFT] = { false, true, 64 [MIPS_ABI_FP_SOFT] = { false, true, false, false, false }, 64 [MIPS_ABI_FP_OLD_64] = { false, false, 65 [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false }, 65 [MIPS_ABI_FP_XX] = { false, false, 66 [MIPS_ABI_FP_XX] = { false, false, true, true, true }, 66 [MIPS_ABI_FP_64] = { false, false, 67 [MIPS_ABI_FP_64] = { false, false, true, false, false }, 67 [MIPS_ABI_FP_64A] = { false, false, 68 [MIPS_ABI_FP_64A] = { false, false, true, false, true } 68 }; 69 }; 69 70 70 /* 71 /* 71 * Mode requirements when .MIPS.abiflags is no 72 * Mode requirements when .MIPS.abiflags is not present in the ELF. 72 * Not present means that everything is accept 73 * Not present means that everything is acceptable except FR1. 73 */ 74 */ 74 static struct mode_req none_req = { true, true 75 static struct mode_req none_req = { true, true, false, true, true }; 75 76 76 int arch_elf_pt_proc(void *_ehdr, void *_phdr, 77 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf, 77 bool is_interp, struct ar 78 bool is_interp, struct arch_elf_state *state) 78 { 79 { 79 union { 80 union { 80 struct elf32_hdr e32; 81 struct elf32_hdr e32; 81 struct elf64_hdr e64; 82 struct elf64_hdr e64; 82 } *ehdr = _ehdr; 83 } *ehdr = _ehdr; 83 struct elf32_phdr *phdr32 = _phdr; 84 struct elf32_phdr *phdr32 = _phdr; 84 struct elf64_phdr *phdr64 = _phdr; 85 struct elf64_phdr *phdr64 = _phdr; 85 struct mips_elf_abiflags_v0 abiflags; 86 struct mips_elf_abiflags_v0 abiflags; 86 bool elf32; 87 bool elf32; 87 u32 flags; 88 u32 flags; 88 int ret; 89 int ret; 89 loff_t pos; 90 loff_t pos; 90 91 91 elf32 = ehdr->e32.e_ident[EI_CLASS] == 92 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; 92 flags = elf32 ? ehdr->e32.e_flags : eh 93 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; 93 94 94 /* Let's see if this is an O32 ELF */ 95 /* Let's see if this is an O32 ELF */ 95 if (elf32) { 96 if (elf32) { 96 if (flags & EF_MIPS_FP64) { 97 if (flags & EF_MIPS_FP64) { 97 /* 98 /* 98 * Set MIPS_ABI_FP_OLD 99 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it 99 * later if needed 100 * later if needed 100 */ 101 */ 101 if (is_interp) 102 if (is_interp) 102 state->interp_ 103 state->interp_fp_abi = MIPS_ABI_FP_OLD_64; 103 else 104 else 104 state->fp_abi 105 state->fp_abi = MIPS_ABI_FP_OLD_64; 105 } 106 } 106 if (phdr32->p_type != PT_MIPS_ 107 if (phdr32->p_type != PT_MIPS_ABIFLAGS) 107 return 0; 108 return 0; 108 109 109 if (phdr32->p_filesz < sizeof( 110 if (phdr32->p_filesz < sizeof(abiflags)) 110 return -EINVAL; 111 return -EINVAL; 111 pos = phdr32->p_offset; 112 pos = phdr32->p_offset; 112 } else { 113 } else { 113 if (phdr64->p_type != PT_MIPS_ 114 if (phdr64->p_type != PT_MIPS_ABIFLAGS) 114 return 0; 115 return 0; 115 if (phdr64->p_filesz < sizeof( 116 if (phdr64->p_filesz < sizeof(abiflags)) 116 return -EINVAL; 117 return -EINVAL; 117 pos = phdr64->p_offset; 118 pos = phdr64->p_offset; 118 } 119 } 119 120 120 ret = kernel_read(elf, &abiflags, size 121 ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos); 121 if (ret < 0) 122 if (ret < 0) 122 return ret; 123 return ret; 123 if (ret != sizeof(abiflags)) 124 if (ret != sizeof(abiflags)) 124 return -EIO; 125 return -EIO; 125 126 126 /* Record the required FP ABIs for use 127 /* Record the required FP ABIs for use by mips_check_elf */ 127 if (is_interp) 128 if (is_interp) 128 state->interp_fp_abi = abiflag 129 state->interp_fp_abi = abiflags.fp_abi; 129 else 130 else 130 state->fp_abi = abiflags.fp_ab 131 state->fp_abi = abiflags.fp_abi; 131 132 132 return 0; 133 return 0; 133 } 134 } 134 135 135 int arch_check_elf(void *_ehdr, bool has_inter 136 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr, 136 struct arch_elf_state *stat 137 struct arch_elf_state *state) 137 { 138 { 138 union { 139 union { 139 struct elf32_hdr e32; 140 struct elf32_hdr e32; 140 struct elf64_hdr e64; 141 struct elf64_hdr e64; 141 } *ehdr = _ehdr; 142 } *ehdr = _ehdr; 142 union { 143 union { 143 struct elf32_hdr e32; 144 struct elf32_hdr e32; 144 struct elf64_hdr e64; 145 struct elf64_hdr e64; 145 } *iehdr = _interp_ehdr; 146 } *iehdr = _interp_ehdr; 146 struct mode_req prog_req, interp_req; 147 struct mode_req prog_req, interp_req; 147 int fp_abi, interp_fp_abi, abi0, abi1, 148 int fp_abi, interp_fp_abi, abi0, abi1, max_abi; 148 bool elf32; 149 bool elf32; 149 u32 flags; 150 u32 flags; 150 151 151 elf32 = ehdr->e32.e_ident[EI_CLASS] == 152 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; 152 flags = elf32 ? ehdr->e32.e_flags : eh 153 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; 153 154 154 /* 155 /* 155 * Determine the NaN personality, reje 156 * Determine the NaN personality, reject the binary if not allowed. 156 * Also ensure that any interpreter ma 157 * Also ensure that any interpreter matches the executable. 157 */ 158 */ 158 if (flags & EF_MIPS_NAN2008) { 159 if (flags & EF_MIPS_NAN2008) { 159 if (mips_use_nan_2008) 160 if (mips_use_nan_2008) 160 state->nan_2008 = 1; 161 state->nan_2008 = 1; 161 else 162 else 162 return -ENOEXEC; 163 return -ENOEXEC; 163 } else { 164 } else { 164 if (mips_use_nan_legacy) 165 if (mips_use_nan_legacy) 165 state->nan_2008 = 0; 166 state->nan_2008 = 0; 166 else 167 else 167 return -ENOEXEC; 168 return -ENOEXEC; 168 } 169 } 169 if (has_interpreter) { 170 if (has_interpreter) { 170 bool ielf32; 171 bool ielf32; 171 u32 iflags; 172 u32 iflags; 172 173 173 ielf32 = iehdr->e32.e_ident[EI 174 ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; 174 iflags = ielf32 ? iehdr->e32.e 175 iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags; 175 176 176 if ((flags ^ iflags) & EF_MIPS 177 if ((flags ^ iflags) & EF_MIPS_NAN2008) 177 return -ELIBBAD; 178 return -ELIBBAD; 178 } 179 } 179 180 180 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_S 181 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) 181 return 0; 182 return 0; 182 183 183 fp_abi = state->fp_abi; 184 fp_abi = state->fp_abi; 184 185 185 if (has_interpreter) { 186 if (has_interpreter) { 186 interp_fp_abi = state->interp_ 187 interp_fp_abi = state->interp_fp_abi; 187 188 188 abi0 = min(fp_abi, interp_fp_a 189 abi0 = min(fp_abi, interp_fp_abi); 189 abi1 = max(fp_abi, interp_fp_a 190 abi1 = max(fp_abi, interp_fp_abi); 190 } else { 191 } else { 191 abi0 = abi1 = fp_abi; 192 abi0 = abi1 = fp_abi; 192 } 193 } 193 194 194 if (elf32 && !(flags & EF_MIPS_ABI2)) 195 if (elf32 && !(flags & EF_MIPS_ABI2)) { 195 /* Default to a mode capable o 196 /* Default to a mode capable of running code expecting FR=0 */ 196 state->overall_fp_mode = cpu_h 197 state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0; 197 198 198 /* Allow all ABIs we know abou 199 /* Allow all ABIs we know about */ 199 max_abi = MIPS_ABI_FP_64A; 200 max_abi = MIPS_ABI_FP_64A; 200 } else { 201 } else { 201 /* MIPS64 code always uses FR= 202 /* MIPS64 code always uses FR=1, thus the default is easy */ 202 state->overall_fp_mode = FP_FR 203 state->overall_fp_mode = FP_FR1; 203 204 204 /* Disallow access to the vari 205 /* Disallow access to the various FPXX & FP64 ABIs */ 205 max_abi = MIPS_ABI_FP_SOFT; 206 max_abi = MIPS_ABI_FP_SOFT; 206 } 207 } 207 208 208 if ((abi0 > max_abi && abi0 != MIPS_AB 209 if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) || 209 (abi1 > max_abi && abi1 != MIPS_AB 210 (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN)) 210 return -ELIBBAD; 211 return -ELIBBAD; 211 212 212 /* It's time to determine the FPU mode 213 /* It's time to determine the FPU mode requirements */ 213 prog_req = (abi0 == MIPS_ABI_FP_UNKNOW 214 prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0]; 214 interp_req = (abi1 == MIPS_ABI_FP_UNKN 215 interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1]; 215 216 216 /* 217 /* 217 * Check whether the program's and int 218 * Check whether the program's and interp's ABIs have a matching FPU 218 * mode requirement. 219 * mode requirement. 219 */ 220 */ 220 prog_req.single = interp_req.single && 221 prog_req.single = interp_req.single && prog_req.single; 221 prog_req.soft = interp_req.soft && pro 222 prog_req.soft = interp_req.soft && prog_req.soft; 222 prog_req.fr1 = interp_req.fr1 && prog_ 223 prog_req.fr1 = interp_req.fr1 && prog_req.fr1; 223 prog_req.frdefault = interp_req.frdefa 224 prog_req.frdefault = interp_req.frdefault && prog_req.frdefault; 224 prog_req.fre = interp_req.fre && prog_ 225 prog_req.fre = interp_req.fre && prog_req.fre; 225 226 226 /* 227 /* 227 * Determine the desired FPU mode 228 * Determine the desired FPU mode 228 * 229 * 229 * Decision making: 230 * Decision making: 230 * 231 * 231 * - We want FR_FRE if FRE=1 and both 232 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This 232 * means that we have a combination 233 * means that we have a combination of program and interpreter 233 * that inherently require the hybri 234 * that inherently require the hybrid FP mode. 234 * - If FR1 and FRDEFAULT is true, tha 235 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or 235 * fpxx case. This is because, in an 236 * fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU 236 * instructions so we don't care abo 237 * instructions so we don't care about the mode. We will simply use 237 * the one preferred by the hardware 238 * the one preferred by the hardware. In fpxx case, that ABI can 238 * handle both FR=1 and FR=0, so, ag 239 * handle both FR=1 and FR=0, so, again, we simply choose the one 239 * preferred by the hardware. Next, 240 * preferred by the hardware. Next, if we only use single-precision 240 * FPU instructions, and the default 241 * FPU instructions, and the default ABI FPU mode is not good 241 * (ie single + any ABI combination) 242 * (ie single + any ABI combination), we set again the FPU mode to the 242 * one is preferred by the hardware. 243 * one is preferred by the hardware. Next, if we know that the code 243 * will only use single-precision in 244 * will only use single-precision instructions, shown by single being 244 * true but frdefault being false, t 245 * true but frdefault being false, then we again set the FPU mode to 245 * the one that is preferred by the 246 * the one that is preferred by the hardware. 246 * - We want FP_FR1 if that's the only 247 * - We want FP_FR1 if that's the only matching mode and the default one 247 * is not good. 248 * is not good. 248 * - Return with -ELIBADD if we can't 249 * - Return with -ELIBADD if we can't find a matching FPU mode. 249 */ 250 */ 250 if (prog_req.fre && !prog_req.frdefaul 251 if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1) 251 state->overall_fp_mode = FP_FR 252 state->overall_fp_mode = FP_FRE; 252 else if ((prog_req.fr1 && prog_req.frd 253 else if ((prog_req.fr1 && prog_req.frdefault) || 253 (prog_req.single && !prog_req 254 (prog_req.single && !prog_req.frdefault)) 254 /* Make sure 64-bit MIPS III/I 255 /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */ 255 state->overall_fp_mode = ((raw 256 state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) && 256 cpu_ 257 cpu_has_mips_r2_r6) ? 257 FP_F 258 FP_FR1 : FP_FR0; 258 else if (prog_req.fr1) 259 else if (prog_req.fr1) 259 state->overall_fp_mode = FP_FR 260 state->overall_fp_mode = FP_FR1; 260 else if (!prog_req.fre && !prog_req.f 261 else if (!prog_req.fre && !prog_req.frdefault && 261 !prog_req.fr1 && !prog_req.s 262 !prog_req.fr1 && !prog_req.single && !prog_req.soft) 262 return -ELIBBAD; 263 return -ELIBBAD; 263 264 264 return 0; 265 return 0; 265 } 266 } 266 267 267 static inline void set_thread_fp_mode(int hybr 268 static inline void set_thread_fp_mode(int hybrid, int regs32) 268 { 269 { 269 if (hybrid) 270 if (hybrid) 270 set_thread_flag(TIF_HYBRID_FPR 271 set_thread_flag(TIF_HYBRID_FPREGS); 271 else 272 else 272 clear_thread_flag(TIF_HYBRID_F 273 clear_thread_flag(TIF_HYBRID_FPREGS); 273 if (regs32) 274 if (regs32) 274 set_thread_flag(TIF_32BIT_FPRE 275 set_thread_flag(TIF_32BIT_FPREGS); 275 else 276 else 276 clear_thread_flag(TIF_32BIT_FP 277 clear_thread_flag(TIF_32BIT_FPREGS); 277 } 278 } 278 279 279 void mips_set_personality_fp(struct arch_elf_s 280 void mips_set_personality_fp(struct arch_elf_state *state) 280 { 281 { 281 /* 282 /* 282 * This function is only ever called f 283 * This function is only ever called for O32 ELFs so we should 283 * not be worried about N32/N64 binari 284 * not be worried about N32/N64 binaries. 284 */ 285 */ 285 286 286 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_S 287 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) 287 return; 288 return; 288 289 289 switch (state->overall_fp_mode) { 290 switch (state->overall_fp_mode) { 290 case FP_FRE: 291 case FP_FRE: 291 set_thread_fp_mode(1, 0); 292 set_thread_fp_mode(1, 0); 292 break; 293 break; 293 case FP_FR0: 294 case FP_FR0: 294 set_thread_fp_mode(0, 1); 295 set_thread_fp_mode(0, 1); 295 break; 296 break; 296 case FP_FR1: 297 case FP_FR1: 297 set_thread_fp_mode(0, 0); 298 set_thread_fp_mode(0, 0); 298 break; 299 break; 299 default: 300 default: 300 BUG(); 301 BUG(); 301 } 302 } 302 } 303 } 303 304 304 /* 305 /* 305 * Select the IEEE 754 NaN encoding and ABS.fm 306 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode 306 * in FCSR according to the ELF NaN personalit 307 * in FCSR according to the ELF NaN personality. 307 */ 308 */ 308 void mips_set_personality_nan(struct arch_elf_ 309 void mips_set_personality_nan(struct arch_elf_state *state) 309 { 310 { 310 struct cpuinfo_mips *c = &boot_cpu_dat 311 struct cpuinfo_mips *c = &boot_cpu_data; 311 struct task_struct *t = current; 312 struct task_struct *t = current; 312 313 313 /* Do this early so t->thread.fpu.fcr3 << 314 * we are preempted before the lose_fp << 315 */ << 316 lose_fpu(0); << 317 << 318 t->thread.fpu.fcr31 = c->fpu_csr31; 314 t->thread.fpu.fcr31 = c->fpu_csr31; 319 switch (state->nan_2008) { 315 switch (state->nan_2008) { 320 case 0: 316 case 0: 321 if (!(c->fpu_msk31 & FPU_CSR_N << 322 t->thread.fpu.fcr31 &= << 323 if (!(c->fpu_msk31 & FPU_CSR_A << 324 t->thread.fpu.fcr31 &= << 325 break; 317 break; 326 case 1: 318 case 1: 327 if (!(c->fpu_msk31 & FPU_CSR_N 319 if (!(c->fpu_msk31 & FPU_CSR_NAN2008)) 328 t->thread.fpu.fcr31 |= 320 t->thread.fpu.fcr31 |= FPU_CSR_NAN2008; 329 if (!(c->fpu_msk31 & FPU_CSR_A 321 if (!(c->fpu_msk31 & FPU_CSR_ABS2008)) 330 t->thread.fpu.fcr31 |= 322 t->thread.fpu.fcr31 |= FPU_CSR_ABS2008; 331 break; 323 break; 332 default: 324 default: 333 BUG(); 325 BUG(); 334 } 326 } 335 } 327 } 336 328 337 #endif /* CONFIG_MIPS_FP_SUPPORT */ << 338 << 339 int mips_elf_read_implies_exec(void *elf_ex, i 329 int mips_elf_read_implies_exec(void *elf_ex, int exstack) 340 { 330 { 341 /* !! 331 if (exstack != EXSTACK_DISABLE_X) { 342 * Set READ_IMPLIES_EXEC only on non-N !! 332 /* The binary doesn't request a non-executable stack */ 343 * do not request a specific state via !! 333 return 1; 344 */ !! 334 } 345 return (!cpu_has_rixi && exstack == EX !! 335 >> 336 if (!cpu_has_rixi) { >> 337 /* The CPU doesn't support non-executable memory */ >> 338 return 1; >> 339 } >> 340 >> 341 return 0; 346 } 342 } 347 EXPORT_SYMBOL(mips_elf_read_implies_exec); 343 EXPORT_SYMBOL(mips_elf_read_implies_exec); 348 344
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.