1 // SPDX-License-Identifier: GPL-2.0-or-later << 2 /* 1 /* 3 * Copyright (C) 2014 Imagination Technologies 2 * Copyright (C) 2014 Imagination Technologies 4 * Author: Paul Burton <paul.burton@mips.com> 3 * Author: Paul Burton <paul.burton@mips.com> >> 4 * >> 5 * This program is free software; you can redistribute it and/or modify it >> 6 * under the terms of the GNU General Public License as published by the >> 7 * Free Software Foundation; either version 2 of the License, or (at your >> 8 * option) any later version. 5 */ 9 */ 6 10 7 #include <linux/binfmts.h> 11 #include <linux/binfmts.h> 8 #include <linux/elf.h> 12 #include <linux/elf.h> 9 #include <linux/export.h> 13 #include <linux/export.h> 10 #include <linux/sched.h> 14 #include <linux/sched.h> 11 15 12 #include <asm/cpu-features.h> 16 #include <asm/cpu-features.h> 13 #include <asm/cpu-info.h> 17 #include <asm/cpu-info.h> 14 #include <asm/fpu.h> << 15 18 16 #ifdef CONFIG_MIPS_FP_SUPPORT 19 #ifdef CONFIG_MIPS_FP_SUPPORT 17 20 18 /* Whether to accept legacy-NaN and 2008-NaN u 21 /* Whether to accept legacy-NaN and 2008-NaN user binaries. */ 19 bool mips_use_nan_legacy; 22 bool mips_use_nan_legacy; 20 bool mips_use_nan_2008; 23 bool mips_use_nan_2008; 21 24 22 /* FPU modes */ 25 /* FPU modes */ 23 enum { 26 enum { 24 FP_FRE, 27 FP_FRE, 25 FP_FR0, 28 FP_FR0, 26 FP_FR1, 29 FP_FR1, 27 }; 30 }; 28 31 29 /** 32 /** 30 * struct mode_req - ABI FPU mode requirements 33 * struct mode_req - ABI FPU mode requirements 31 * @single: The program being loaded needs 34 * @single: The program being loaded needs an FPU but it will only issue 32 * single precision instructions 35 * single precision instructions meaning that it can execute in 33 * either FR0 or FR1. 36 * either FR0 or FR1. 34 * @soft: The soft(-float) requirement m 37 * @soft: The soft(-float) requirement means that the program being 35 * loaded needs has no FPU depend 38 * loaded needs has no FPU dependency at all (i.e. it has no 36 * FPU instructions). 39 * FPU instructions). 37 * @fr1: The program being loaded depen 40 * @fr1: The program being loaded depends on FPU being in FR=1 mode. 38 * @frdefault: The program being loaded depen 41 * @frdefault: The program being loaded depends on the default FPU mode. 39 * That is FR0 for O32 and FR1 fo 42 * That is FR0 for O32 and FR1 for N32/N64. 40 * @fre: The program being loaded depen 43 * @fre: The program being loaded depends on FPU with FRE=1. This mode is 41 * a bridge which uses FR=1 whils 44 * a bridge which uses FR=1 whilst still being able to maintain 42 * full compatibility with pre-ex 45 * full compatibility with pre-existing code using the O32 FP32 43 * ABI. 46 * ABI. 44 * 47 * 45 * More information about the FP ABIs can be f 48 * More information about the FP ABIs can be found here: 46 * 49 * 47 * https://dmz-portal.mips.com/wiki/MIPS_O32_A 50 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up 48 * 51 * 49 */ 52 */ 50 53 51 struct mode_req { 54 struct mode_req { 52 bool single; 55 bool single; 53 bool soft; 56 bool soft; 54 bool fr1; 57 bool fr1; 55 bool frdefault; 58 bool frdefault; 56 bool fre; 59 bool fre; 57 }; 60 }; 58 61 59 static const struct mode_req fpu_reqs[] = { 62 static const struct mode_req fpu_reqs[] = { 60 [MIPS_ABI_FP_ANY] = { true, true, 63 [MIPS_ABI_FP_ANY] = { true, true, true, true, true }, 61 [MIPS_ABI_FP_DOUBLE] = { false, false, 64 [MIPS_ABI_FP_DOUBLE] = { false, false, false, true, true }, 62 [MIPS_ABI_FP_SINGLE] = { true, false, 65 [MIPS_ABI_FP_SINGLE] = { true, false, false, false, false }, 63 [MIPS_ABI_FP_SOFT] = { false, true, 66 [MIPS_ABI_FP_SOFT] = { false, true, false, false, false }, 64 [MIPS_ABI_FP_OLD_64] = { false, false, 67 [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false }, 65 [MIPS_ABI_FP_XX] = { false, false, 68 [MIPS_ABI_FP_XX] = { false, false, true, true, true }, 66 [MIPS_ABI_FP_64] = { false, false, 69 [MIPS_ABI_FP_64] = { false, false, true, false, false }, 67 [MIPS_ABI_FP_64A] = { false, false, 70 [MIPS_ABI_FP_64A] = { false, false, true, false, true } 68 }; 71 }; 69 72 70 /* 73 /* 71 * Mode requirements when .MIPS.abiflags is no 74 * Mode requirements when .MIPS.abiflags is not present in the ELF. 72 * Not present means that everything is accept 75 * Not present means that everything is acceptable except FR1. 73 */ 76 */ 74 static struct mode_req none_req = { true, true 77 static struct mode_req none_req = { true, true, false, true, true }; 75 78 76 int arch_elf_pt_proc(void *_ehdr, void *_phdr, 79 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf, 77 bool is_interp, struct ar 80 bool is_interp, struct arch_elf_state *state) 78 { 81 { 79 union { 82 union { 80 struct elf32_hdr e32; 83 struct elf32_hdr e32; 81 struct elf64_hdr e64; 84 struct elf64_hdr e64; 82 } *ehdr = _ehdr; 85 } *ehdr = _ehdr; 83 struct elf32_phdr *phdr32 = _phdr; 86 struct elf32_phdr *phdr32 = _phdr; 84 struct elf64_phdr *phdr64 = _phdr; 87 struct elf64_phdr *phdr64 = _phdr; 85 struct mips_elf_abiflags_v0 abiflags; 88 struct mips_elf_abiflags_v0 abiflags; 86 bool elf32; 89 bool elf32; 87 u32 flags; 90 u32 flags; 88 int ret; 91 int ret; 89 loff_t pos; 92 loff_t pos; 90 93 91 elf32 = ehdr->e32.e_ident[EI_CLASS] == 94 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; 92 flags = elf32 ? ehdr->e32.e_flags : eh 95 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; 93 96 94 /* Let's see if this is an O32 ELF */ 97 /* Let's see if this is an O32 ELF */ 95 if (elf32) { 98 if (elf32) { 96 if (flags & EF_MIPS_FP64) { 99 if (flags & EF_MIPS_FP64) { 97 /* 100 /* 98 * Set MIPS_ABI_FP_OLD 101 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it 99 * later if needed 102 * later if needed 100 */ 103 */ 101 if (is_interp) 104 if (is_interp) 102 state->interp_ 105 state->interp_fp_abi = MIPS_ABI_FP_OLD_64; 103 else 106 else 104 state->fp_abi 107 state->fp_abi = MIPS_ABI_FP_OLD_64; 105 } 108 } 106 if (phdr32->p_type != PT_MIPS_ 109 if (phdr32->p_type != PT_MIPS_ABIFLAGS) 107 return 0; 110 return 0; 108 111 109 if (phdr32->p_filesz < sizeof( 112 if (phdr32->p_filesz < sizeof(abiflags)) 110 return -EINVAL; 113 return -EINVAL; 111 pos = phdr32->p_offset; 114 pos = phdr32->p_offset; 112 } else { 115 } else { 113 if (phdr64->p_type != PT_MIPS_ 116 if (phdr64->p_type != PT_MIPS_ABIFLAGS) 114 return 0; 117 return 0; 115 if (phdr64->p_filesz < sizeof( 118 if (phdr64->p_filesz < sizeof(abiflags)) 116 return -EINVAL; 119 return -EINVAL; 117 pos = phdr64->p_offset; 120 pos = phdr64->p_offset; 118 } 121 } 119 122 120 ret = kernel_read(elf, &abiflags, size 123 ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos); 121 if (ret < 0) 124 if (ret < 0) 122 return ret; 125 return ret; 123 if (ret != sizeof(abiflags)) 126 if (ret != sizeof(abiflags)) 124 return -EIO; 127 return -EIO; 125 128 126 /* Record the required FP ABIs for use 129 /* Record the required FP ABIs for use by mips_check_elf */ 127 if (is_interp) 130 if (is_interp) 128 state->interp_fp_abi = abiflag 131 state->interp_fp_abi = abiflags.fp_abi; 129 else 132 else 130 state->fp_abi = abiflags.fp_ab 133 state->fp_abi = abiflags.fp_abi; 131 134 132 return 0; 135 return 0; 133 } 136 } 134 137 135 int arch_check_elf(void *_ehdr, bool has_inter 138 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr, 136 struct arch_elf_state *stat 139 struct arch_elf_state *state) 137 { 140 { 138 union { 141 union { 139 struct elf32_hdr e32; 142 struct elf32_hdr e32; 140 struct elf64_hdr e64; 143 struct elf64_hdr e64; 141 } *ehdr = _ehdr; 144 } *ehdr = _ehdr; 142 union { 145 union { 143 struct elf32_hdr e32; 146 struct elf32_hdr e32; 144 struct elf64_hdr e64; 147 struct elf64_hdr e64; 145 } *iehdr = _interp_ehdr; 148 } *iehdr = _interp_ehdr; 146 struct mode_req prog_req, interp_req; 149 struct mode_req prog_req, interp_req; 147 int fp_abi, interp_fp_abi, abi0, abi1, 150 int fp_abi, interp_fp_abi, abi0, abi1, max_abi; 148 bool elf32; 151 bool elf32; 149 u32 flags; 152 u32 flags; 150 153 151 elf32 = ehdr->e32.e_ident[EI_CLASS] == 154 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; 152 flags = elf32 ? ehdr->e32.e_flags : eh 155 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; 153 156 154 /* 157 /* 155 * Determine the NaN personality, reje 158 * Determine the NaN personality, reject the binary if not allowed. 156 * Also ensure that any interpreter ma 159 * Also ensure that any interpreter matches the executable. 157 */ 160 */ 158 if (flags & EF_MIPS_NAN2008) { 161 if (flags & EF_MIPS_NAN2008) { 159 if (mips_use_nan_2008) 162 if (mips_use_nan_2008) 160 state->nan_2008 = 1; 163 state->nan_2008 = 1; 161 else 164 else 162 return -ENOEXEC; 165 return -ENOEXEC; 163 } else { 166 } else { 164 if (mips_use_nan_legacy) 167 if (mips_use_nan_legacy) 165 state->nan_2008 = 0; 168 state->nan_2008 = 0; 166 else 169 else 167 return -ENOEXEC; 170 return -ENOEXEC; 168 } 171 } 169 if (has_interpreter) { 172 if (has_interpreter) { 170 bool ielf32; 173 bool ielf32; 171 u32 iflags; 174 u32 iflags; 172 175 173 ielf32 = iehdr->e32.e_ident[EI 176 ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; 174 iflags = ielf32 ? iehdr->e32.e 177 iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags; 175 178 176 if ((flags ^ iflags) & EF_MIPS 179 if ((flags ^ iflags) & EF_MIPS_NAN2008) 177 return -ELIBBAD; 180 return -ELIBBAD; 178 } 181 } 179 182 180 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_S 183 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) 181 return 0; 184 return 0; 182 185 183 fp_abi = state->fp_abi; 186 fp_abi = state->fp_abi; 184 187 185 if (has_interpreter) { 188 if (has_interpreter) { 186 interp_fp_abi = state->interp_ 189 interp_fp_abi = state->interp_fp_abi; 187 190 188 abi0 = min(fp_abi, interp_fp_a 191 abi0 = min(fp_abi, interp_fp_abi); 189 abi1 = max(fp_abi, interp_fp_a 192 abi1 = max(fp_abi, interp_fp_abi); 190 } else { 193 } else { 191 abi0 = abi1 = fp_abi; 194 abi0 = abi1 = fp_abi; 192 } 195 } 193 196 194 if (elf32 && !(flags & EF_MIPS_ABI2)) 197 if (elf32 && !(flags & EF_MIPS_ABI2)) { 195 /* Default to a mode capable o 198 /* Default to a mode capable of running code expecting FR=0 */ 196 state->overall_fp_mode = cpu_h 199 state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0; 197 200 198 /* Allow all ABIs we know abou 201 /* Allow all ABIs we know about */ 199 max_abi = MIPS_ABI_FP_64A; 202 max_abi = MIPS_ABI_FP_64A; 200 } else { 203 } else { 201 /* MIPS64 code always uses FR= 204 /* MIPS64 code always uses FR=1, thus the default is easy */ 202 state->overall_fp_mode = FP_FR 205 state->overall_fp_mode = FP_FR1; 203 206 204 /* Disallow access to the vari 207 /* Disallow access to the various FPXX & FP64 ABIs */ 205 max_abi = MIPS_ABI_FP_SOFT; 208 max_abi = MIPS_ABI_FP_SOFT; 206 } 209 } 207 210 208 if ((abi0 > max_abi && abi0 != MIPS_AB 211 if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) || 209 (abi1 > max_abi && abi1 != MIPS_AB 212 (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN)) 210 return -ELIBBAD; 213 return -ELIBBAD; 211 214 212 /* It's time to determine the FPU mode 215 /* It's time to determine the FPU mode requirements */ 213 prog_req = (abi0 == MIPS_ABI_FP_UNKNOW 216 prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0]; 214 interp_req = (abi1 == MIPS_ABI_FP_UNKN 217 interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1]; 215 218 216 /* 219 /* 217 * Check whether the program's and int 220 * Check whether the program's and interp's ABIs have a matching FPU 218 * mode requirement. 221 * mode requirement. 219 */ 222 */ 220 prog_req.single = interp_req.single && 223 prog_req.single = interp_req.single && prog_req.single; 221 prog_req.soft = interp_req.soft && pro 224 prog_req.soft = interp_req.soft && prog_req.soft; 222 prog_req.fr1 = interp_req.fr1 && prog_ 225 prog_req.fr1 = interp_req.fr1 && prog_req.fr1; 223 prog_req.frdefault = interp_req.frdefa 226 prog_req.frdefault = interp_req.frdefault && prog_req.frdefault; 224 prog_req.fre = interp_req.fre && prog_ 227 prog_req.fre = interp_req.fre && prog_req.fre; 225 228 226 /* 229 /* 227 * Determine the desired FPU mode 230 * Determine the desired FPU mode 228 * 231 * 229 * Decision making: 232 * Decision making: 230 * 233 * 231 * - We want FR_FRE if FRE=1 and both 234 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This 232 * means that we have a combination 235 * means that we have a combination of program and interpreter 233 * that inherently require the hybri 236 * that inherently require the hybrid FP mode. 234 * - If FR1 and FRDEFAULT is true, tha 237 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or 235 * fpxx case. This is because, in an 238 * fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU 236 * instructions so we don't care abo 239 * instructions so we don't care about the mode. We will simply use 237 * the one preferred by the hardware 240 * the one preferred by the hardware. In fpxx case, that ABI can 238 * handle both FR=1 and FR=0, so, ag 241 * handle both FR=1 and FR=0, so, again, we simply choose the one 239 * preferred by the hardware. Next, 242 * preferred by the hardware. Next, if we only use single-precision 240 * FPU instructions, and the default 243 * FPU instructions, and the default ABI FPU mode is not good 241 * (ie single + any ABI combination) 244 * (ie single + any ABI combination), we set again the FPU mode to the 242 * one is preferred by the hardware. 245 * one is preferred by the hardware. Next, if we know that the code 243 * will only use single-precision in 246 * will only use single-precision instructions, shown by single being 244 * true but frdefault being false, t 247 * true but frdefault being false, then we again set the FPU mode to 245 * the one that is preferred by the 248 * the one that is preferred by the hardware. 246 * - We want FP_FR1 if that's the only 249 * - We want FP_FR1 if that's the only matching mode and the default one 247 * is not good. 250 * is not good. 248 * - Return with -ELIBADD if we can't 251 * - Return with -ELIBADD if we can't find a matching FPU mode. 249 */ 252 */ 250 if (prog_req.fre && !prog_req.frdefaul 253 if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1) 251 state->overall_fp_mode = FP_FR 254 state->overall_fp_mode = FP_FRE; 252 else if ((prog_req.fr1 && prog_req.frd 255 else if ((prog_req.fr1 && prog_req.frdefault) || 253 (prog_req.single && !prog_req 256 (prog_req.single && !prog_req.frdefault)) 254 /* Make sure 64-bit MIPS III/I 257 /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */ 255 state->overall_fp_mode = ((raw 258 state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) && 256 cpu_ 259 cpu_has_mips_r2_r6) ? 257 FP_F 260 FP_FR1 : FP_FR0; 258 else if (prog_req.fr1) 261 else if (prog_req.fr1) 259 state->overall_fp_mode = FP_FR 262 state->overall_fp_mode = FP_FR1; 260 else if (!prog_req.fre && !prog_req.f 263 else if (!prog_req.fre && !prog_req.frdefault && 261 !prog_req.fr1 && !prog_req.s 264 !prog_req.fr1 && !prog_req.single && !prog_req.soft) 262 return -ELIBBAD; 265 return -ELIBBAD; 263 266 264 return 0; 267 return 0; 265 } 268 } 266 269 267 static inline void set_thread_fp_mode(int hybr 270 static inline void set_thread_fp_mode(int hybrid, int regs32) 268 { 271 { 269 if (hybrid) 272 if (hybrid) 270 set_thread_flag(TIF_HYBRID_FPR 273 set_thread_flag(TIF_HYBRID_FPREGS); 271 else 274 else 272 clear_thread_flag(TIF_HYBRID_F 275 clear_thread_flag(TIF_HYBRID_FPREGS); 273 if (regs32) 276 if (regs32) 274 set_thread_flag(TIF_32BIT_FPRE 277 set_thread_flag(TIF_32BIT_FPREGS); 275 else 278 else 276 clear_thread_flag(TIF_32BIT_FP 279 clear_thread_flag(TIF_32BIT_FPREGS); 277 } 280 } 278 281 279 void mips_set_personality_fp(struct arch_elf_s 282 void mips_set_personality_fp(struct arch_elf_state *state) 280 { 283 { 281 /* 284 /* 282 * This function is only ever called f 285 * This function is only ever called for O32 ELFs so we should 283 * not be worried about N32/N64 binari 286 * not be worried about N32/N64 binaries. 284 */ 287 */ 285 288 286 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_S 289 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) 287 return; 290 return; 288 291 289 switch (state->overall_fp_mode) { 292 switch (state->overall_fp_mode) { 290 case FP_FRE: 293 case FP_FRE: 291 set_thread_fp_mode(1, 0); 294 set_thread_fp_mode(1, 0); 292 break; 295 break; 293 case FP_FR0: 296 case FP_FR0: 294 set_thread_fp_mode(0, 1); 297 set_thread_fp_mode(0, 1); 295 break; 298 break; 296 case FP_FR1: 299 case FP_FR1: 297 set_thread_fp_mode(0, 0); 300 set_thread_fp_mode(0, 0); 298 break; 301 break; 299 default: 302 default: 300 BUG(); 303 BUG(); 301 } 304 } 302 } 305 } 303 306 304 /* 307 /* 305 * Select the IEEE 754 NaN encoding and ABS.fm 308 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode 306 * in FCSR according to the ELF NaN personalit 309 * in FCSR according to the ELF NaN personality. 307 */ 310 */ 308 void mips_set_personality_nan(struct arch_elf_ 311 void mips_set_personality_nan(struct arch_elf_state *state) 309 { 312 { 310 struct cpuinfo_mips *c = &boot_cpu_dat 313 struct cpuinfo_mips *c = &boot_cpu_data; 311 struct task_struct *t = current; 314 struct task_struct *t = current; 312 315 313 /* Do this early so t->thread.fpu.fcr3 << 314 * we are preempted before the lose_fp << 315 */ << 316 lose_fpu(0); << 317 << 318 t->thread.fpu.fcr31 = c->fpu_csr31; 316 t->thread.fpu.fcr31 = c->fpu_csr31; 319 switch (state->nan_2008) { 317 switch (state->nan_2008) { 320 case 0: 318 case 0: 321 if (!(c->fpu_msk31 & FPU_CSR_N << 322 t->thread.fpu.fcr31 &= << 323 if (!(c->fpu_msk31 & FPU_CSR_A << 324 t->thread.fpu.fcr31 &= << 325 break; 319 break; 326 case 1: 320 case 1: 327 if (!(c->fpu_msk31 & FPU_CSR_N 321 if (!(c->fpu_msk31 & FPU_CSR_NAN2008)) 328 t->thread.fpu.fcr31 |= 322 t->thread.fpu.fcr31 |= FPU_CSR_NAN2008; 329 if (!(c->fpu_msk31 & FPU_CSR_A 323 if (!(c->fpu_msk31 & FPU_CSR_ABS2008)) 330 t->thread.fpu.fcr31 |= 324 t->thread.fpu.fcr31 |= FPU_CSR_ABS2008; 331 break; 325 break; 332 default: 326 default: 333 BUG(); 327 BUG(); 334 } 328 } 335 } 329 } 336 330 337 #endif /* CONFIG_MIPS_FP_SUPPORT */ 331 #endif /* CONFIG_MIPS_FP_SUPPORT */ 338 332 339 int mips_elf_read_implies_exec(void *elf_ex, i 333 int mips_elf_read_implies_exec(void *elf_ex, int exstack) 340 { 334 { 341 /* !! 335 if (exstack != EXSTACK_DISABLE_X) { 342 * Set READ_IMPLIES_EXEC only on non-N !! 336 /* The binary doesn't request a non-executable stack */ 343 * do not request a specific state via !! 337 return 1; 344 */ !! 338 } 345 return (!cpu_has_rixi && exstack == EX !! 339 >> 340 if (!cpu_has_rixi) { >> 341 /* The CPU doesn't support non-executable memory */ >> 342 return 1; >> 343 } >> 344 >> 345 return 0; 346 } 346 } 347 EXPORT_SYMBOL(mips_elf_read_implies_exec); 347 EXPORT_SYMBOL(mips_elf_read_implies_exec); 348 348
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.