1 /* SPDX-License-Identifier: GPL-2.0-or-later * 2 /* 3 * Calculate a crc32c with vpmsum acceleration 4 * 5 * Copyright (C) 2015 Anton Blanchard <anton@au 6 */ 7 .section .rodata 8 .balign 16 9 10 .byteswap_constant: 11 /* byte reverse permute constant */ 12 .octa 0x0F0E0D0C0B0A090807060504030201 13 14 .constants: 15 16 /* Reduce 262144 kbits to 1024 bits */ 17 /* x^261120 mod p(x)` << 1, x^261184 m 18 .octa 0x00000000b6ca9e20000000009c37c4 19 20 /* x^260096 mod p(x)` << 1, x^260160 m 21 .octa 0x00000000350249a800000001b51df2 22 23 /* x^259072 mod p(x)` << 1, x^259136 m 24 .octa 0x00000001862dac54000000000724b9 25 26 /* x^258048 mod p(x)` << 1, x^258112 m 27 .octa 0x00000001d87fb48c00000001c00532 28 29 /* x^257024 mod p(x)` << 1, x^257088 m 30 .octa 0x00000001f39b699e00000000f05a93 31 32 /* x^256000 mod p(x)` << 1, x^256064 m 33 .octa 0x0000000101da11b400000001e10079 34 35 /* x^254976 mod p(x)` << 1, x^255040 m 36 .octa 0x00000001cab571e000000000a57366 37 38 /* x^253952 mod p(x)` << 1, x^254016 m 39 .octa 0x00000000c7020cfe00000001920112 40 41 /* x^252928 mod p(x)` << 1, x^252992 m 42 .octa 0x00000000cdaed1ae0000000162716d 43 44 /* x^251904 mod p(x)` << 1, x^251968 m 45 .octa 0x00000001e804effc00000000cd97ec 46 47 /* x^250880 mod p(x)` << 1, x^250944 m 48 .octa 0x0000000077c3ea3a0000000058812b 49 50 /* x^249856 mod p(x)` << 1, x^249920 m 51 .octa 0x0000000068df31b40000000088b8c1 52 53 /* x^248832 mod p(x)` << 1, x^248896 m 54 .octa 0x00000000b059b6c200000001230b23 55 56 /* x^247808 mod p(x)` << 1, x^247872 m 57 .octa 0x0000000145fb8ed800000001120b41 58 59 /* x^246784 mod p(x)` << 1, x^246848 m 60 .octa 0x00000000cbc0916800000001974aec 61 62 /* x^245760 mod p(x)` << 1, x^245824 m 63 .octa 0x000000005ceeedc2000000008ee3f2 64 65 /* x^244736 mod p(x)` << 1, x^244800 m 66 .octa 0x0000000047d74e8600000001089aba 67 68 /* x^243712 mod p(x)` << 1, x^243776 m 69 .octa 0x00000001407e9e2200000000651138 70 71 /* x^242688 mod p(x)` << 1, x^242752 m 72 .octa 0x00000001da967bda000000005c07ec 73 74 /* x^241664 mod p(x)` << 1, x^241728 m 75 .octa 0x000000006c89836800000001875909 76 77 /* x^240640 mod p(x)` << 1, x^240704 m 78 .octa 0x00000000f2d14c9800000000e35da7 79 80 /* x^239616 mod p(x)` << 1, x^239680 m 81 .octa 0x00000001993c6ad400000000041585 82 83 /* x^238592 mod p(x)` << 1, x^238656 m 84 .octa 0x000000014683d1ac00000000736177 85 86 /* x^237568 mod p(x)` << 1, x^237632 m 87 .octa 0x00000001a7c93e6c0000000176021d 88 89 /* x^236544 mod p(x)` << 1, x^236608 m 90 .octa 0x000000010211e90a00000001c358fd 91 92 /* x^235520 mod p(x)` << 1, x^235584 m 93 .octa 0x000000001119403e00000001ff7a2c 94 95 /* x^234496 mod p(x)` << 1, x^234560 m 96 .octa 0x000000001c3261aa00000000f2d9f7 97 98 /* x^233472 mod p(x)` << 1, x^233536 m 99 .octa 0x000000014e37a634000000016cf1f9 100 101 /* x^232448 mod p(x)` << 1, x^232512 m 102 .octa 0x0000000073786c0c000000010af927 103 104 /* x^231424 mod p(x)` << 1, x^231488 m 105 .octa 0x000000011dc037f80000000004f101 106 107 /* x^230400 mod p(x)` << 1, x^230464 m 108 .octa 0x0000000031433dfc0000000070bcf1 109 110 /* x^229376 mod p(x)` << 1, x^229440 m 111 .octa 0x000000009cde8348000000000a8de6 112 113 /* x^228352 mod p(x)` << 1, x^228416 m 114 .octa 0x0000000038d3c2a60000000062ea13 115 116 /* x^227328 mod p(x)` << 1, x^227392 m 117 .octa 0x000000011b25f26000000001eb31cb 118 119 /* x^226304 mod p(x)` << 1, x^226368 m 120 .octa 0x000000001629e6f000000001707834 121 122 /* x^225280 mod p(x)` << 1, x^225344 m 123 .octa 0x0000000160838b4c00000001a684b4 124 125 /* x^224256 mod p(x)` << 1, x^224320 m 126 .octa 0x000000007a44011c00000000253ca5 127 128 /* x^223232 mod p(x)` << 1, x^223296 m 129 .octa 0x00000000226f417a0000000057b4b1 130 131 /* x^222208 mod p(x)` << 1, x^222272 m 132 .octa 0x0000000045eb2eb400000000b6bd08 133 134 /* x^221184 mod p(x)` << 1, x^221248 m 135 .octa 0x000000014459d70c0000000123c2d5 136 137 /* x^220160 mod p(x)` << 1, x^220224 m 138 .octa 0x00000001d406ed8200000000159daf 139 140 /* x^219136 mod p(x)` << 1, x^219200 m 141 .octa 0x0000000160c8e1a80000000127e1a6 142 143 /* x^218112 mod p(x)` << 1, x^218176 m 144 .octa 0x0000000027ba809800000000568607 145 146 /* x^217088 mod p(x)` << 1, x^217152 m 147 .octa 0x000000006d92d01800000001e661aa 148 149 /* x^216064 mod p(x)` << 1, x^216128 m 150 .octa 0x000000012ed7e3f200000000f82c61 151 152 /* x^215040 mod p(x)` << 1, x^215104 m 153 .octa 0x000000002dc8778800000000c4f9c7 154 155 /* x^214016 mod p(x)` << 1, x^214080 m 156 .octa 0x0000000018240bb80000000074203d 157 158 /* x^212992 mod p(x)` << 1, x^213056 m 159 .octa 0x000000001ad3815800000001981730 160 161 /* x^211968 mod p(x)` << 1, x^212032 m 162 .octa 0x00000001396b78f200000001ce8aba 163 164 /* x^210944 mod p(x)` << 1, x^211008 m 165 .octa 0x000000011a68133400000001850d5d 166 167 /* x^209920 mod p(x)` << 1, x^209984 m 168 .octa 0x000000012104732e00000001d60923 169 170 /* x^208896 mod p(x)` << 1, x^208960 m 171 .octa 0x00000000a140d90c000000001595f0 172 173 /* x^207872 mod p(x)` << 1, x^207936 m 174 .octa 0x00000001b7215eda0000000042ccee 175 176 /* x^206848 mod p(x)` << 1, x^206912 m 177 .octa 0x00000001aaf1df3c000000010a389d 178 179 /* x^205824 mod p(x)` << 1, x^205888 m 180 .octa 0x0000000029d15b8a000000012a840d 181 182 /* x^204800 mod p(x)` << 1, x^204864 m 183 .octa 0x00000000f1a96922000000001d181c 184 185 /* x^203776 mod p(x)` << 1, x^203840 m 186 .octa 0x00000001ac80d03c0000000068b7d1 187 188 /* x^202752 mod p(x)` << 1, x^202816 m 189 .octa 0x000000000f11d56a000000005b0f14 190 191 /* x^201728 mod p(x)` << 1, x^201792 m 192 .octa 0x00000001f1c022a20000000179e9e7 193 194 /* x^200704 mod p(x)` << 1, x^200768 m 195 .octa 0x0000000173d00ae200000001ce1368 196 197 /* x^199680 mod p(x)` << 1, x^199744 m 198 .octa 0x00000001d4ffe4ac0000000112c3a8 199 200 /* x^198656 mod p(x)` << 1, x^198720 m 201 .octa 0x000000016edc5ae400000000de940f 202 203 /* x^197632 mod p(x)` << 1, x^197696 m 204 .octa 0x00000001f1a0214000000000fe896b 205 206 /* x^196608 mod p(x)` << 1, x^196672 m 207 .octa 0x00000000ca0b28a000000001f79743 208 209 /* x^195584 mod p(x)` << 1, x^195648 m 210 .octa 0x00000001928e30a20000000053e989 211 212 /* x^194560 mod p(x)` << 1, x^194624 m 213 .octa 0x0000000097b1b002000000003920cd 214 215 /* x^193536 mod p(x)` << 1, x^193600 m 216 .octa 0x00000000b15bf90600000001e6f579 217 218 /* x^192512 mod p(x)` << 1, x^192576 m 219 .octa 0x00000000411c5d52000000007493cb 220 221 /* x^191488 mod p(x)` << 1, x^191552 m 222 .octa 0x00000001c36f330000000001bdd376 223 224 /* x^190464 mod p(x)` << 1, x^190528 m 225 .octa 0x00000001119227e0000000016badfe 226 227 /* x^189440 mod p(x)` << 1, x^189504 m 228 .octa 0x00000000114d47020000000071de5c 229 230 /* x^188416 mod p(x)` << 1, x^188480 m 231 .octa 0x00000000458b5b9800000000453f31 232 233 /* x^187392 mod p(x)` << 1, x^187456 m 234 .octa 0x000000012e31fb8e0000000121675c 235 236 /* x^186368 mod p(x)` << 1, x^186432 m 237 .octa 0x000000005cf619d800000001f409ee 238 239 /* x^185344 mod p(x)` << 1, x^185408 m 240 .octa 0x0000000063f4d8b200000000f36b9c 241 242 /* x^184320 mod p(x)` << 1, x^184384 m 243 .octa 0x000000004138dc8a0000000036b398 244 245 /* x^183296 mod p(x)` << 1, x^183360 m 246 .octa 0x00000001d29ee8e000000001748f9a 247 248 /* x^182272 mod p(x)` << 1, x^182336 m 249 .octa 0x000000006a08ace800000001be94ec 250 251 /* x^181248 mod p(x)` << 1, x^181312 m 252 .octa 0x0000000127d4201000000000b74370 253 254 /* x^180224 mod p(x)` << 1, x^180288 m 255 .octa 0x0000000019d76b6200000001174d0b 256 257 /* x^179200 mod p(x)` << 1, x^179264 m 258 .octa 0x00000001b1471f6e00000000befc06 259 260 /* x^178176 mod p(x)` << 1, x^178240 m 261 .octa 0x00000001f64c19cc00000001ae1252 262 263 /* x^177152 mod p(x)` << 1, x^177216 m 264 .octa 0x00000000003c0ea00000000095c19b 265 266 /* x^176128 mod p(x)` << 1, x^176192 m 267 .octa 0x000000014d73abf600000001a78496 268 269 /* x^175104 mod p(x)` << 1, x^175168 m 270 .octa 0x00000001620eb84400000001ac5390 271 272 /* x^174080 mod p(x)` << 1, x^174144 m 273 .octa 0x0000000147655048000000002a80ed 274 275 /* x^173056 mod p(x)` << 1, x^173120 m 276 .octa 0x0000000067b5077e00000001fa9b01 277 278 /* x^172032 mod p(x)` << 1, x^172096 m 279 .octa 0x0000000010ffe20600000001ea9492 280 281 /* x^171008 mod p(x)` << 1, x^171072 m 282 .octa 0x000000000fee8f1e0000000125f430 283 284 /* x^169984 mod p(x)` << 1, x^170048 m 285 .octa 0x00000001da26fbae00000001471e20 286 287 /* x^168960 mod p(x)` << 1, x^169024 m 288 .octa 0x00000001b3a8bd880000000132d225 289 290 /* x^167936 mod p(x)` << 1, x^168000 m 291 .octa 0x00000000e8f3898e00000000f26b35 292 293 /* x^166912 mod p(x)` << 1, x^166976 m 294 .octa 0x00000000b0d0d28c00000000bc8b67 295 296 /* x^165888 mod p(x)` << 1, x^165952 m 297 .octa 0x0000000030f2a798000000013a826e 298 299 /* x^164864 mod p(x)` << 1, x^164928 m 300 .octa 0x000000000fba10020000000081482c 301 302 /* x^163840 mod p(x)` << 1, x^163904 m 303 .octa 0x00000000bdb9bd7200000000e77307 304 305 /* x^162816 mod p(x)` << 1, x^162880 m 306 .octa 0x0000000075d3bf5a00000000d4a07e 307 308 /* x^161792 mod p(x)` << 1, x^161856 m 309 .octa 0x00000000ef1f98a000000000171021 310 311 /* x^160768 mod p(x)` << 1, x^160832 m 312 .octa 0x00000000689c760200000000db4064 313 314 /* x^159744 mod p(x)` << 1, x^159808 m 315 .octa 0x000000016d5fa5fe0000000192db7f 316 317 /* x^158720 mod p(x)` << 1, x^158784 m 318 .octa 0x00000001d0d2b9ca000000018bf67b 319 320 /* x^157696 mod p(x)` << 1, x^157760 m 321 .octa 0x0000000041e7b470000000007c0916 322 323 /* x^156672 mod p(x)` << 1, x^156736 m 324 .octa 0x00000001cbb6495e000000000adac0 325 326 /* x^155648 mod p(x)` << 1, x^155712 m 327 .octa 0x000000010052a0b000000000bd8316 328 329 /* x^154624 mod p(x)` << 1, x^154688 m 330 .octa 0x00000001d8effb5c000000019f09ab 331 332 /* x^153600 mod p(x)` << 1, x^153664 m 333 .octa 0x00000001d969853c00000001251555 334 335 /* x^152576 mod p(x)` << 1, x^152640 m 336 .octa 0x00000000523ccce2000000018fdb58 337 338 /* x^151552 mod p(x)` << 1, x^151616 m 339 .octa 0x000000001e2436bc00000000e794b3 340 341 /* x^150528 mod p(x)` << 1, x^150592 m 342 .octa 0x00000000ddd1c3a2000000016f9bb0 343 344 /* x^149504 mod p(x)` << 1, x^149568 m 345 .octa 0x0000000019fcfe3800000000290c99 346 347 /* x^148480 mod p(x)` << 1, x^148544 m 348 .octa 0x00000001ce95db640000000083c0f3 349 350 /* x^147456 mod p(x)` << 1, x^147520 m 351 .octa 0x00000000af5828060000000173ea66 352 353 /* x^146432 mod p(x)` << 1, x^146496 m 354 .octa 0x00000001006388f600000001c8b4e0 355 356 /* x^145408 mod p(x)` << 1, x^145472 m 357 .octa 0x0000000179eca00a00000000de95d6 358 359 /* x^144384 mod p(x)` << 1, x^144448 m 360 .octa 0x0000000122410a6a000000010b7f72 361 362 /* x^143360 mod p(x)` << 1, x^143424 m 363 .octa 0x000000004288e87c00000001326e3a 364 365 /* x^142336 mod p(x)` << 1, x^142400 m 366 .octa 0x000000016c5490da00000000bb62c2 367 368 /* x^141312 mod p(x)` << 1, x^141376 m 369 .octa 0x00000000d1c71f6e0000000156a4b2 370 371 /* x^140288 mod p(x)` << 1, x^140352 m 372 .octa 0x00000001b4ce08a6000000011dfe76 373 374 /* x^139264 mod p(x)` << 1, x^139328 m 375 .octa 0x00000001466ba60c000000007bcca8 376 377 /* x^138240 mod p(x)` << 1, x^138304 m 378 .octa 0x00000001f6c488a40000000186118f 379 380 /* x^137216 mod p(x)` << 1, x^137280 m 381 .octa 0x000000013bfb06820000000111a65a 382 383 /* x^136192 mod p(x)` << 1, x^136256 m 384 .octa 0x00000000690e9e54000000003565e1 385 386 /* x^135168 mod p(x)` << 1, x^135232 m 387 .octa 0x00000000281346b6000000012ed02a 388 389 /* x^134144 mod p(x)` << 1, x^134208 m 390 .octa 0x000000015646402400000000c486ec 391 392 /* x^133120 mod p(x)` << 1, x^133184 m 393 .octa 0x000000016063a8dc0000000001b951 394 395 /* x^132096 mod p(x)` << 1, x^132160 m 396 .octa 0x0000000116a6636200000000481439 397 398 /* x^131072 mod p(x)` << 1, x^131136 m 399 .octa 0x000000017e8aa4d200000001dc2ae1 400 401 /* x^130048 mod p(x)` << 1, x^130112 m 402 .octa 0x00000001728eb10c00000001416c58 403 404 /* x^129024 mod p(x)` << 1, x^129088 m 405 .octa 0x00000001b08fd7fa00000000a47974 406 407 /* x^128000 mod p(x)` << 1, x^128064 m 408 .octa 0x00000001092a16e80000000096ca3a 409 410 /* x^126976 mod p(x)` << 1, x^127040 m 411 .octa 0x00000000a505637c00000000ff223d 412 413 /* x^125952 mod p(x)` << 1, x^126016 m 414 .octa 0x00000000d94869b2000000010e84da 415 416 /* x^124928 mod p(x)` << 1, x^124992 m 417 .octa 0x00000001c8b203ae00000001b61ba3 418 419 /* x^123904 mod p(x)` << 1, x^123968 m 420 .octa 0x000000005704aea000000000680f2d 421 422 /* x^122880 mod p(x)` << 1, x^122944 m 423 .octa 0x000000012e295fa2000000008772a9 424 425 /* x^121856 mod p(x)` << 1, x^121920 m 426 .octa 0x000000011d0908bc0000000155f295 427 428 /* x^120832 mod p(x)` << 1, x^120896 m 429 .octa 0x0000000193ed97ea00000000595f92 430 431 /* x^119808 mod p(x)` << 1, x^119872 m 432 .octa 0x000000013a0f1c520000000164b1c2 433 434 /* x^118784 mod p(x)` << 1, x^118848 m 435 .octa 0x000000010c2c40c000000000fbd67c 436 437 /* x^117760 mod p(x)` << 1, x^117824 m 438 .octa 0x00000000ff6fac3e00000000960762 439 440 /* x^116736 mod p(x)` << 1, x^116800 m 441 .octa 0x000000017b3609c000000001d288e4 442 443 /* x^115712 mod p(x)` << 1, x^115776 m 444 .octa 0x0000000088c8c92200000001eaac1b 445 446 /* x^114688 mod p(x)` << 1, x^114752 m 447 .octa 0x00000001751baae600000001f1ea39 448 449 /* x^113664 mod p(x)` << 1, x^113728 m 450 .octa 0x000000010795297200000001eb6506 451 452 /* x^112640 mod p(x)` << 1, x^112704 m 453 .octa 0x0000000162b00abe000000010f806f 454 455 /* x^111616 mod p(x)` << 1, x^111680 m 456 .octa 0x000000000d7b404c00000001040848 457 458 /* x^110592 mod p(x)` << 1, x^110656 m 459 .octa 0x00000000763b13d400000001882605 460 461 /* x^109568 mod p(x)` << 1, x^109632 m 462 .octa 0x00000000f6dc22d80000000058fc73 463 464 /* x^108544 mod p(x)` << 1, x^108608 m 465 .octa 0x000000007daae06000000000391c59 466 467 /* x^107520 mod p(x)` << 1, x^107584 m 468 .octa 0x000000013359ab7c000000018b6384 469 470 /* x^106496 mod p(x)` << 1, x^106560 m 471 .octa 0x000000008add438a000000011738f5 472 473 /* x^105472 mod p(x)` << 1, x^105536 m 474 .octa 0x00000001edbefdea000000008cf7c6 475 476 /* x^104448 mod p(x)` << 1, x^104512 m 477 .octa 0x000000004104e0f800000001ef97fb 478 479 /* x^103424 mod p(x)` << 1, x^103488 m 480 .octa 0x00000000b48a82220000000102130e 481 482 /* x^102400 mod p(x)` << 1, x^102464 m 483 .octa 0x00000001bcb4684400000000db9688 484 485 /* x^101376 mod p(x)` << 1, x^101440 m 486 .octa 0x000000013293ce0a00000000b5047b 487 488 /* x^100352 mod p(x)` << 1, x^100416 m 489 .octa 0x00000001710d0844000000010b90fd 490 491 /* x^99328 mod p(x)` << 1, x^99392 mod 492 .octa 0x0000000117907f6e000000004834a3 493 494 /* x^98304 mod p(x)` << 1, x^98368 mod 495 .octa 0x0000000087ddf93e0000000059c8f2 496 497 /* x^97280 mod p(x)` << 1, x^97344 mod 498 .octa 0x000000005970e9b00000000122cec5 499 500 /* x^96256 mod p(x)` << 1, x^96320 mod 501 .octa 0x0000000185b2b7d0000000000a330c 502 503 /* x^95232 mod p(x)` << 1, x^95296 mod 504 .octa 0x00000001dcee0efc000000014a4714 505 506 /* x^94208 mod p(x)` << 1, x^94272 mod 507 .octa 0x0000000030da27220000000042c61c 508 509 /* x^93184 mod p(x)` << 1, x^93248 mod 510 .octa 0x000000012f925a180000000012fe69 511 512 /* x^92160 mod p(x)` << 1, x^92224 mod 513 .octa 0x00000000dd2e357c00000000dbda2c 514 515 /* x^91136 mod p(x)` << 1, x^91200 mod 516 .octa 0x00000000071c80de00000001112241 517 518 /* x^90112 mod p(x)` << 1, x^90176 mod 519 .octa 0x000000011513140a00000000977b20 520 521 /* x^89088 mod p(x)` << 1, x^89152 mod 522 .octa 0x00000001df876e8e00000001405043 523 524 /* x^88064 mod p(x)` << 1, x^88128 mod 525 .octa 0x000000015f81d6ce0000000147c840 526 527 /* x^87040 mod p(x)` << 1, x^87104 mod 528 .octa 0x000000019dd94dbe00000001cc7c88 529 530 /* x^86016 mod p(x)` << 1, x^86080 mod 531 .octa 0x00000001373d206e00000001476b35 532 533 /* x^84992 mod p(x)` << 1, x^85056 mod 534 .octa 0x00000000668ccade000000013d52d5 535 536 /* x^83968 mod p(x)` << 1, x^84032 mod 537 .octa 0x00000001b192d268000000008e4be3 538 539 /* x^82944 mod p(x)` << 1, x^83008 mod 540 .octa 0x00000000e30f3a7800000000024120 541 542 /* x^81920 mod p(x)` << 1, x^81984 mod 543 .octa 0x000000010ef1f7bc00000000ddecdd 544 545 /* x^80896 mod p(x)` << 1, x^80960 mod 546 .octa 0x00000001f5ac738000000000d4d403 547 548 /* x^79872 mod p(x)` << 1, x^79936 mod 549 .octa 0x000000011822ea7000000001734b89 550 551 /* x^78848 mod p(x)` << 1, x^78912 mod 552 .octa 0x00000000c3a33848000000010e7a58 553 554 /* x^77824 mod p(x)` << 1, x^77888 mod 555 .octa 0x00000001bd151c2400000001f9f04e 556 557 /* x^76800 mod p(x)` << 1, x^76864 mod 558 .octa 0x0000000056002d7600000000b69222 559 560 /* x^75776 mod p(x)` << 1, x^75840 mod 561 .octa 0x000000014657c4f4000000019b8d3f 562 563 /* x^74752 mod p(x)` << 1, x^74816 mod 564 .octa 0x0000000113742d7c00000001a874f1 565 566 /* x^73728 mod p(x)` << 1, x^73792 mod 567 .octa 0x000000019c5920ba000000010d5a42 568 569 /* x^72704 mod p(x)` << 1, x^72768 mod 570 .octa 0x000000005216d2d600000000bbb2f5 571 572 /* x^71680 mod p(x)` << 1, x^71744 mod 573 .octa 0x0000000136f5ad8a0000000179cc0e 574 575 /* x^70656 mod p(x)` << 1, x^70720 mod 576 .octa 0x000000018b07beb600000001dca1da 577 578 /* x^69632 mod p(x)` << 1, x^69696 mod 579 .octa 0x00000000db1e93b000000000feb1a1 580 581 /* x^68608 mod p(x)` << 1, x^68672 mod 582 .octa 0x000000000b96fa3a00000000d1eeed 583 584 /* x^67584 mod p(x)` << 1, x^67648 mod 585 .octa 0x00000001d9968af0000000008fad9b 586 587 /* x^66560 mod p(x)` << 1, x^66624 mod 588 .octa 0x000000000e4a77a200000001884938 589 590 /* x^65536 mod p(x)` << 1, x^65600 mod 591 .octa 0x00000000508c2ac800000001bc2e9b 592 593 /* x^64512 mod p(x)` << 1, x^64576 mod 594 .octa 0x0000000021572a8000000001f9658a 595 596 /* x^63488 mod p(x)` << 1, x^63552 mod 597 .octa 0x00000001b859daf2000000001b9224 598 599 /* x^62464 mod p(x)` << 1, x^62528 mod 600 .octa 0x000000016f7884740000000055b2fb 601 602 /* x^61440 mod p(x)` << 1, x^61504 mod 603 .octa 0x00000001b438810e000000018b0903 604 605 /* x^60416 mod p(x)` << 1, x^60480 mod 606 .octa 0x0000000095ddc6f2000000011ccbd5 607 608 /* x^59392 mod p(x)` << 1, x^59456 mod 609 .octa 0x00000001d977c20c0000000007ae47 610 611 /* x^58368 mod p(x)` << 1, x^58432 mod 612 .octa 0x00000000ebedb99a0000000172acbe 613 614 /* x^57344 mod p(x)` << 1, x^57408 mod 615 .octa 0x00000001df9e9e9200000001c6e3ff 616 617 /* x^56320 mod p(x)` << 1, x^56384 mod 618 .octa 0x00000001a4a3f95200000000e1b387 619 620 /* x^55296 mod p(x)` << 1, x^55360 mod 621 .octa 0x00000000e2f5122000000000791585 622 623 /* x^54272 mod p(x)` << 1, x^54336 mod 624 .octa 0x000000004aa01f3e00000000ac53b8 625 626 /* x^53248 mod p(x)` << 1, x^53312 mod 627 .octa 0x00000000b3e90a5800000001ed5f2c 628 629 /* x^52224 mod p(x)` << 1, x^52288 mod 630 .octa 0x000000000c9ca2aa00000001df48b2 631 632 /* x^51200 mod p(x)` << 1, x^51264 mod 633 .octa 0x000000015168231600000000049c1c 634 635 /* x^50176 mod p(x)` << 1, x^50240 mod 636 .octa 0x0000000036fce78c000000017c460c 637 638 /* x^49152 mod p(x)` << 1, x^49216 mod 639 .octa 0x000000009037dc10000000015be4da 640 641 /* x^48128 mod p(x)` << 1, x^48192 mod 642 .octa 0x00000000d3298582000000010f38f6 643 644 /* x^47104 mod p(x)` << 1, x^47168 mod 645 .octa 0x00000001b42e8ad60000000039f40a 646 647 /* x^46080 mod p(x)` << 1, x^46144 mod 648 .octa 0x00000000142a983800000000bd4c10 649 650 /* x^45056 mod p(x)` << 1, x^45120 mod 651 .octa 0x0000000109c7f1900000000042db1d 652 653 /* x^44032 mod p(x)` << 1, x^44096 mod 654 .octa 0x0000000056ff931000000001c905ba 655 656 /* x^43008 mod p(x)` << 1, x^43072 mod 657 .octa 0x00000001594513aa00000000069d40 658 659 /* x^41984 mod p(x)` << 1, x^42048 mod 660 .octa 0x00000001e3b5b1e8000000008e4fba 661 662 /* x^40960 mod p(x)` << 1, x^41024 mod 663 .octa 0x000000011dd5fc080000000047bedd 664 665 /* x^39936 mod p(x)` << 1, x^40000 mod 666 .octa 0x00000001675f0cc20000000026396b 667 668 /* x^38912 mod p(x)` << 1, x^38976 mod 669 .octa 0x00000000d1c8dd4400000000379beb 670 671 /* x^37888 mod p(x)` << 1, x^37952 mod 672 .octa 0x0000000115ebd3d8000000000abae5 673 674 /* x^36864 mod p(x)` << 1, x^36928 mod 675 .octa 0x00000001ecbd0dac0000000007e6a1 676 677 /* x^35840 mod p(x)` << 1, x^35904 mod 678 .octa 0x00000000cdf67af2000000000ade29 679 680 /* x^34816 mod p(x)` << 1, x^34880 mod 681 .octa 0x000000004c01ff4c00000000f974c4 682 683 /* x^33792 mod p(x)` << 1, x^33856 mod 684 .octa 0x00000000f2d8657e00000000e77ac6 685 686 /* x^32768 mod p(x)` << 1, x^32832 mod 687 .octa 0x000000006bae74c400000001458958 688 689 /* x^31744 mod p(x)` << 1, x^31808 mod 690 .octa 0x0000000152af8aa00000000038e362 691 692 /* x^30720 mod p(x)` << 1, x^30784 mod 693 .octa 0x0000000004663802000000007f991a 694 695 /* x^29696 mod p(x)` << 1, x^29760 mod 696 .octa 0x00000001ab2f5afc00000000fa366d 697 698 /* x^28672 mod p(x)` << 1, x^28736 mod 699 .octa 0x0000000074a4ebd400000001a2bb34 700 701 /* x^27648 mod p(x)` << 1, x^27712 mod 702 .octa 0x00000001d7ab3a4c0000000028a998 703 704 /* x^26624 mod p(x)` << 1, x^26688 mod 705 .octa 0x00000001a8da60c600000001dbc672 706 707 /* x^25600 mod p(x)` << 1, x^25664 mod 708 .octa 0x000000013cf6382000000000b04d77 709 710 /* x^24576 mod p(x)` << 1, x^24640 mod 711 .octa 0x00000000bec12e1e0000000124400d 712 713 /* x^23552 mod p(x)` << 1, x^23616 mod 714 .octa 0x00000001c6368010000000014ca4b4 715 716 /* x^22528 mod p(x)` << 1, x^22592 mod 717 .octa 0x00000001e6e78758000000012fe2c9 718 719 /* x^21504 mod p(x)` << 1, x^21568 mod 720 .octa 0x000000008d7f2b3c00000001faed01 721 722 /* x^20480 mod p(x)` << 1, x^20544 mod 723 .octa 0x000000016b4a156e000000007e80ec 724 725 /* x^19456 mod p(x)` << 1, x^19520 mod 726 .octa 0x00000001c63cfeb60000000098daee 727 728 /* x^18432 mod p(x)` << 1, x^18496 mod 729 .octa 0x000000015f902670000000010a04ed 730 731 /* x^17408 mod p(x)` << 1, x^17472 mod 732 .octa 0x00000001cd5de11e00000001c00b45 733 734 /* x^16384 mod p(x)` << 1, x^16448 mod 735 .octa 0x000000001acaec5400000001702965 736 737 /* x^15360 mod p(x)` << 1, x^15424 mod 738 .octa 0x000000002bd0ca780000000181afaa 739 740 /* x^14336 mod p(x)` << 1, x^14400 mod 741 .octa 0x0000000032d63d5c0000000185a31f 742 743 /* x^13312 mod p(x)` << 1, x^13376 mod 744 .octa 0x000000001c6d4e4c000000002469f6 745 746 /* x^12288 mod p(x)` << 1, x^12352 mod 747 .octa 0x0000000106a60b9200000000698010 748 749 /* x^11264 mod p(x)` << 1, x^11328 mod 750 .octa 0x00000000d3855e120000000111ea9c 751 752 /* x^10240 mod p(x)` << 1, x^10304 mod 753 .octa 0x00000000e312563600000001bd1d29 754 755 /* x^9216 mod p(x)` << 1, x^9280 mod p 756 .octa 0x000000009e8f7ea400000001b34b95 757 758 /* x^8192 mod p(x)` << 1, x^8256 mod p 759 .octa 0x00000001c82e562c00000000307605 760 761 /* x^7168 mod p(x)` << 1, x^7232 mod p 762 .octa 0x00000000ca9f09ce000000012a608e 763 764 /* x^6144 mod p(x)` << 1, x^6208 mod p 765 .octa 0x00000000c63764e600000000784d05 766 767 /* x^5120 mod p(x)` << 1, x^5184 mod p 768 .octa 0x0000000168d2e49e000000016ef0d8 769 770 /* x^4096 mod p(x)` << 1, x^4160 mod p 771 .octa 0x00000000e986c1480000000075bda4 772 773 /* x^3072 mod p(x)` << 1, x^3136 mod p 774 .octa 0x00000000cfb65894000000003dc0a1 775 776 /* x^2048 mod p(x)` << 1, x^2112 mod p 777 .octa 0x0000000111cadee400000000e9a5d8 778 779 /* x^1024 mod p(x)` << 1, x^1088 mod p 780 .octa 0x0000000171fb63ce00000001609bc4 781 782 .short_constants: 783 784 /* Reduce final 1024-2048 bits to 64 b 785 /* x^1952 mod p(x)`, x^1984 mod p(x)`, 786 .octa 0x7fec2963e5bf80485cf015c388e56f 787 788 /* x^1824 mod p(x)`, x^1856 mod p(x)`, 789 .octa 0x38e888d4844752a9963a18920246e2 790 791 /* x^1696 mod p(x)`, x^1728 mod p(x)`, 792 .octa 0x42316c00730206ad419a441956993a 793 794 /* x^1568 mod p(x)`, x^1600 mod p(x)`, 795 .octa 0x543d5c543e65ddf9924752ba2b8300 796 797 /* x^1440 mod p(x)`, x^1472 mod p(x)`, 798 .octa 0x78e87aaf56767c9255bd7f9518e4a3 799 800 /* x^1312 mod p(x)`, x^1344 mod p(x)`, 801 .octa 0x8f68fcec1903da7f6d76739fe0553f 802 803 /* x^1184 mod p(x)`, x^1216 mod p(x)`, 804 .octa 0x3f4840246791d588c133722b1fe0b5 805 806 /* x^1056 mod p(x)`, x^1088 mod p(x)`, 807 .octa 0x34c96751b04de25a64b67ee0e55ef1 808 809 /* x^928 mod p(x)`, x^960 mod p(x)`, x 810 .octa 0x156c8e180b4a395b069db049b8fdb1 811 812 /* x^800 mod p(x)`, x^832 mod p(x)`, x 813 .octa 0xe0b99ccbe661f7bea11bfaf3c9e90b 814 815 /* x^672 mod p(x)`, x^704 mod p(x)`, x 816 .octa 0x041d37768cd75659817cdc5119b29a 817 818 /* x^544 mod p(x)`, x^576 mod p(x)`, x 819 .octa 0x3a0777818cfaa9651ce9d94b36c41f 820 821 /* x^416 mod p(x)`, x^448 mod p(x)`, x 822 .octa 0x0e148e8252377a554f256efcb82be9 823 824 /* x^288 mod p(x)`, x^320 mod p(x)`, x 825 .octa 0x9c25531d19e65ddeec1631edb2dea9 826 827 /* x^160 mod p(x)`, x^192 mod p(x)`, x 828 .octa 0x790606ff9957c0a65d27e147510ac5 829 830 /* x^32 mod p(x)`, x^64 mod p(x)`, x^9 831 .octa 0x82f63b786ea2d55ca66805eb18b8ea 832 833 834 .barrett_constants: 835 /* 33 bit reflected Barrett constant m 836 .octa 0x000000000000000000000000dea713 837 /* 33 bit reflected Barrett constant n 838 .octa 0x00000000000000000000000105ec76 839 840 #define CRC_FUNCTION_NAME __crc32c_vpmsum 841 #define REFLECT 842 #include "crc32-vpmsum_core.S"
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.