~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/crypto/crc32c-vpmsum_asm.S

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /arch/powerpc/crypto/crc32c-vpmsum_asm.S (Architecture m68k) and /arch/sparc64/crypto/crc32c-vpmsum_asm.S (Architecture sparc64)


  1 /* SPDX-License-Identifier: GPL-2.0-or-later *    
  2 /*                                                
  3  * Calculate a crc32c with vpmsum acceleration    
  4  *                                                
  5  * Copyright (C) 2015 Anton Blanchard <anton@au    
  6  */                                               
  7         .section        .rodata                   
  8 .balign 16                                        
  9                                                   
 10 .byteswap_constant:                               
 11         /* byte reverse permute constant */       
 12         .octa 0x0F0E0D0C0B0A090807060504030201    
 13                                                   
 14 .constants:                                       
 15                                                   
 16         /* Reduce 262144 kbits to 1024 bits */    
 17         /* x^261120 mod p(x)` << 1, x^261184 m    
 18         .octa 0x00000000b6ca9e20000000009c37c4    
 19                                                   
 20         /* x^260096 mod p(x)` << 1, x^260160 m    
 21         .octa 0x00000000350249a800000001b51df2    
 22                                                   
 23         /* x^259072 mod p(x)` << 1, x^259136 m    
 24         .octa 0x00000001862dac54000000000724b9    
 25                                                   
 26         /* x^258048 mod p(x)` << 1, x^258112 m    
 27         .octa 0x00000001d87fb48c00000001c00532    
 28                                                   
 29         /* x^257024 mod p(x)` << 1, x^257088 m    
 30         .octa 0x00000001f39b699e00000000f05a93    
 31                                                   
 32         /* x^256000 mod p(x)` << 1, x^256064 m    
 33         .octa 0x0000000101da11b400000001e10079    
 34                                                   
 35         /* x^254976 mod p(x)` << 1, x^255040 m    
 36         .octa 0x00000001cab571e000000000a57366    
 37                                                   
 38         /* x^253952 mod p(x)` << 1, x^254016 m    
 39         .octa 0x00000000c7020cfe00000001920112    
 40                                                   
 41         /* x^252928 mod p(x)` << 1, x^252992 m    
 42         .octa 0x00000000cdaed1ae0000000162716d    
 43                                                   
 44         /* x^251904 mod p(x)` << 1, x^251968 m    
 45         .octa 0x00000001e804effc00000000cd97ec    
 46                                                   
 47         /* x^250880 mod p(x)` << 1, x^250944 m    
 48         .octa 0x0000000077c3ea3a0000000058812b    
 49                                                   
 50         /* x^249856 mod p(x)` << 1, x^249920 m    
 51         .octa 0x0000000068df31b40000000088b8c1    
 52                                                   
 53         /* x^248832 mod p(x)` << 1, x^248896 m    
 54         .octa 0x00000000b059b6c200000001230b23    
 55                                                   
 56         /* x^247808 mod p(x)` << 1, x^247872 m    
 57         .octa 0x0000000145fb8ed800000001120b41    
 58                                                   
 59         /* x^246784 mod p(x)` << 1, x^246848 m    
 60         .octa 0x00000000cbc0916800000001974aec    
 61                                                   
 62         /* x^245760 mod p(x)` << 1, x^245824 m    
 63         .octa 0x000000005ceeedc2000000008ee3f2    
 64                                                   
 65         /* x^244736 mod p(x)` << 1, x^244800 m    
 66         .octa 0x0000000047d74e8600000001089aba    
 67                                                   
 68         /* x^243712 mod p(x)` << 1, x^243776 m    
 69         .octa 0x00000001407e9e2200000000651138    
 70                                                   
 71         /* x^242688 mod p(x)` << 1, x^242752 m    
 72         .octa 0x00000001da967bda000000005c07ec    
 73                                                   
 74         /* x^241664 mod p(x)` << 1, x^241728 m    
 75         .octa 0x000000006c89836800000001875909    
 76                                                   
 77         /* x^240640 mod p(x)` << 1, x^240704 m    
 78         .octa 0x00000000f2d14c9800000000e35da7    
 79                                                   
 80         /* x^239616 mod p(x)` << 1, x^239680 m    
 81         .octa 0x00000001993c6ad400000000041585    
 82                                                   
 83         /* x^238592 mod p(x)` << 1, x^238656 m    
 84         .octa 0x000000014683d1ac00000000736177    
 85                                                   
 86         /* x^237568 mod p(x)` << 1, x^237632 m    
 87         .octa 0x00000001a7c93e6c0000000176021d    
 88                                                   
 89         /* x^236544 mod p(x)` << 1, x^236608 m    
 90         .octa 0x000000010211e90a00000001c358fd    
 91                                                   
 92         /* x^235520 mod p(x)` << 1, x^235584 m    
 93         .octa 0x000000001119403e00000001ff7a2c    
 94                                                   
 95         /* x^234496 mod p(x)` << 1, x^234560 m    
 96         .octa 0x000000001c3261aa00000000f2d9f7    
 97                                                   
 98         /* x^233472 mod p(x)` << 1, x^233536 m    
 99         .octa 0x000000014e37a634000000016cf1f9    
100                                                   
101         /* x^232448 mod p(x)` << 1, x^232512 m    
102         .octa 0x0000000073786c0c000000010af927    
103                                                   
104         /* x^231424 mod p(x)` << 1, x^231488 m    
105         .octa 0x000000011dc037f80000000004f101    
106                                                   
107         /* x^230400 mod p(x)` << 1, x^230464 m    
108         .octa 0x0000000031433dfc0000000070bcf1    
109                                                   
110         /* x^229376 mod p(x)` << 1, x^229440 m    
111         .octa 0x000000009cde8348000000000a8de6    
112                                                   
113         /* x^228352 mod p(x)` << 1, x^228416 m    
114         .octa 0x0000000038d3c2a60000000062ea13    
115                                                   
116         /* x^227328 mod p(x)` << 1, x^227392 m    
117         .octa 0x000000011b25f26000000001eb31cb    
118                                                   
119         /* x^226304 mod p(x)` << 1, x^226368 m    
120         .octa 0x000000001629e6f000000001707834    
121                                                   
122         /* x^225280 mod p(x)` << 1, x^225344 m    
123         .octa 0x0000000160838b4c00000001a684b4    
124                                                   
125         /* x^224256 mod p(x)` << 1, x^224320 m    
126         .octa 0x000000007a44011c00000000253ca5    
127                                                   
128         /* x^223232 mod p(x)` << 1, x^223296 m    
129         .octa 0x00000000226f417a0000000057b4b1    
130                                                   
131         /* x^222208 mod p(x)` << 1, x^222272 m    
132         .octa 0x0000000045eb2eb400000000b6bd08    
133                                                   
134         /* x^221184 mod p(x)` << 1, x^221248 m    
135         .octa 0x000000014459d70c0000000123c2d5    
136                                                   
137         /* x^220160 mod p(x)` << 1, x^220224 m    
138         .octa 0x00000001d406ed8200000000159daf    
139                                                   
140         /* x^219136 mod p(x)` << 1, x^219200 m    
141         .octa 0x0000000160c8e1a80000000127e1a6    
142                                                   
143         /* x^218112 mod p(x)` << 1, x^218176 m    
144         .octa 0x0000000027ba809800000000568607    
145                                                   
146         /* x^217088 mod p(x)` << 1, x^217152 m    
147         .octa 0x000000006d92d01800000001e661aa    
148                                                   
149         /* x^216064 mod p(x)` << 1, x^216128 m    
150         .octa 0x000000012ed7e3f200000000f82c61    
151                                                   
152         /* x^215040 mod p(x)` << 1, x^215104 m    
153         .octa 0x000000002dc8778800000000c4f9c7    
154                                                   
155         /* x^214016 mod p(x)` << 1, x^214080 m    
156         .octa 0x0000000018240bb80000000074203d    
157                                                   
158         /* x^212992 mod p(x)` << 1, x^213056 m    
159         .octa 0x000000001ad3815800000001981730    
160                                                   
161         /* x^211968 mod p(x)` << 1, x^212032 m    
162         .octa 0x00000001396b78f200000001ce8aba    
163                                                   
164         /* x^210944 mod p(x)` << 1, x^211008 m    
165         .octa 0x000000011a68133400000001850d5d    
166                                                   
167         /* x^209920 mod p(x)` << 1, x^209984 m    
168         .octa 0x000000012104732e00000001d60923    
169                                                   
170         /* x^208896 mod p(x)` << 1, x^208960 m    
171         .octa 0x00000000a140d90c000000001595f0    
172                                                   
173         /* x^207872 mod p(x)` << 1, x^207936 m    
174         .octa 0x00000001b7215eda0000000042ccee    
175                                                   
176         /* x^206848 mod p(x)` << 1, x^206912 m    
177         .octa 0x00000001aaf1df3c000000010a389d    
178                                                   
179         /* x^205824 mod p(x)` << 1, x^205888 m    
180         .octa 0x0000000029d15b8a000000012a840d    
181                                                   
182         /* x^204800 mod p(x)` << 1, x^204864 m    
183         .octa 0x00000000f1a96922000000001d181c    
184                                                   
185         /* x^203776 mod p(x)` << 1, x^203840 m    
186         .octa 0x00000001ac80d03c0000000068b7d1    
187                                                   
188         /* x^202752 mod p(x)` << 1, x^202816 m    
189         .octa 0x000000000f11d56a000000005b0f14    
190                                                   
191         /* x^201728 mod p(x)` << 1, x^201792 m    
192         .octa 0x00000001f1c022a20000000179e9e7    
193                                                   
194         /* x^200704 mod p(x)` << 1, x^200768 m    
195         .octa 0x0000000173d00ae200000001ce1368    
196                                                   
197         /* x^199680 mod p(x)` << 1, x^199744 m    
198         .octa 0x00000001d4ffe4ac0000000112c3a8    
199                                                   
200         /* x^198656 mod p(x)` << 1, x^198720 m    
201         .octa 0x000000016edc5ae400000000de940f    
202                                                   
203         /* x^197632 mod p(x)` << 1, x^197696 m    
204         .octa 0x00000001f1a0214000000000fe896b    
205                                                   
206         /* x^196608 mod p(x)` << 1, x^196672 m    
207         .octa 0x00000000ca0b28a000000001f79743    
208                                                   
209         /* x^195584 mod p(x)` << 1, x^195648 m    
210         .octa 0x00000001928e30a20000000053e989    
211                                                   
212         /* x^194560 mod p(x)` << 1, x^194624 m    
213         .octa 0x0000000097b1b002000000003920cd    
214                                                   
215         /* x^193536 mod p(x)` << 1, x^193600 m    
216         .octa 0x00000000b15bf90600000001e6f579    
217                                                   
218         /* x^192512 mod p(x)` << 1, x^192576 m    
219         .octa 0x00000000411c5d52000000007493cb    
220                                                   
221         /* x^191488 mod p(x)` << 1, x^191552 m    
222         .octa 0x00000001c36f330000000001bdd376    
223                                                   
224         /* x^190464 mod p(x)` << 1, x^190528 m    
225         .octa 0x00000001119227e0000000016badfe    
226                                                   
227         /* x^189440 mod p(x)` << 1, x^189504 m    
228         .octa 0x00000000114d47020000000071de5c    
229                                                   
230         /* x^188416 mod p(x)` << 1, x^188480 m    
231         .octa 0x00000000458b5b9800000000453f31    
232                                                   
233         /* x^187392 mod p(x)` << 1, x^187456 m    
234         .octa 0x000000012e31fb8e0000000121675c    
235                                                   
236         /* x^186368 mod p(x)` << 1, x^186432 m    
237         .octa 0x000000005cf619d800000001f409ee    
238                                                   
239         /* x^185344 mod p(x)` << 1, x^185408 m    
240         .octa 0x0000000063f4d8b200000000f36b9c    
241                                                   
242         /* x^184320 mod p(x)` << 1, x^184384 m    
243         .octa 0x000000004138dc8a0000000036b398    
244                                                   
245         /* x^183296 mod p(x)` << 1, x^183360 m    
246         .octa 0x00000001d29ee8e000000001748f9a    
247                                                   
248         /* x^182272 mod p(x)` << 1, x^182336 m    
249         .octa 0x000000006a08ace800000001be94ec    
250                                                   
251         /* x^181248 mod p(x)` << 1, x^181312 m    
252         .octa 0x0000000127d4201000000000b74370    
253                                                   
254         /* x^180224 mod p(x)` << 1, x^180288 m    
255         .octa 0x0000000019d76b6200000001174d0b    
256                                                   
257         /* x^179200 mod p(x)` << 1, x^179264 m    
258         .octa 0x00000001b1471f6e00000000befc06    
259                                                   
260         /* x^178176 mod p(x)` << 1, x^178240 m    
261         .octa 0x00000001f64c19cc00000001ae1252    
262                                                   
263         /* x^177152 mod p(x)` << 1, x^177216 m    
264         .octa 0x00000000003c0ea00000000095c19b    
265                                                   
266         /* x^176128 mod p(x)` << 1, x^176192 m    
267         .octa 0x000000014d73abf600000001a78496    
268                                                   
269         /* x^175104 mod p(x)` << 1, x^175168 m    
270         .octa 0x00000001620eb84400000001ac5390    
271                                                   
272         /* x^174080 mod p(x)` << 1, x^174144 m    
273         .octa 0x0000000147655048000000002a80ed    
274                                                   
275         /* x^173056 mod p(x)` << 1, x^173120 m    
276         .octa 0x0000000067b5077e00000001fa9b01    
277                                                   
278         /* x^172032 mod p(x)` << 1, x^172096 m    
279         .octa 0x0000000010ffe20600000001ea9492    
280                                                   
281         /* x^171008 mod p(x)` << 1, x^171072 m    
282         .octa 0x000000000fee8f1e0000000125f430    
283                                                   
284         /* x^169984 mod p(x)` << 1, x^170048 m    
285         .octa 0x00000001da26fbae00000001471e20    
286                                                   
287         /* x^168960 mod p(x)` << 1, x^169024 m    
288         .octa 0x00000001b3a8bd880000000132d225    
289                                                   
290         /* x^167936 mod p(x)` << 1, x^168000 m    
291         .octa 0x00000000e8f3898e00000000f26b35    
292                                                   
293         /* x^166912 mod p(x)` << 1, x^166976 m    
294         .octa 0x00000000b0d0d28c00000000bc8b67    
295                                                   
296         /* x^165888 mod p(x)` << 1, x^165952 m    
297         .octa 0x0000000030f2a798000000013a826e    
298                                                   
299         /* x^164864 mod p(x)` << 1, x^164928 m    
300         .octa 0x000000000fba10020000000081482c    
301                                                   
302         /* x^163840 mod p(x)` << 1, x^163904 m    
303         .octa 0x00000000bdb9bd7200000000e77307    
304                                                   
305         /* x^162816 mod p(x)` << 1, x^162880 m    
306         .octa 0x0000000075d3bf5a00000000d4a07e    
307                                                   
308         /* x^161792 mod p(x)` << 1, x^161856 m    
309         .octa 0x00000000ef1f98a000000000171021    
310                                                   
311         /* x^160768 mod p(x)` << 1, x^160832 m    
312         .octa 0x00000000689c760200000000db4064    
313                                                   
314         /* x^159744 mod p(x)` << 1, x^159808 m    
315         .octa 0x000000016d5fa5fe0000000192db7f    
316                                                   
317         /* x^158720 mod p(x)` << 1, x^158784 m    
318         .octa 0x00000001d0d2b9ca000000018bf67b    
319                                                   
320         /* x^157696 mod p(x)` << 1, x^157760 m    
321         .octa 0x0000000041e7b470000000007c0916    
322                                                   
323         /* x^156672 mod p(x)` << 1, x^156736 m    
324         .octa 0x00000001cbb6495e000000000adac0    
325                                                   
326         /* x^155648 mod p(x)` << 1, x^155712 m    
327         .octa 0x000000010052a0b000000000bd8316    
328                                                   
329         /* x^154624 mod p(x)` << 1, x^154688 m    
330         .octa 0x00000001d8effb5c000000019f09ab    
331                                                   
332         /* x^153600 mod p(x)` << 1, x^153664 m    
333         .octa 0x00000001d969853c00000001251555    
334                                                   
335         /* x^152576 mod p(x)` << 1, x^152640 m    
336         .octa 0x00000000523ccce2000000018fdb58    
337                                                   
338         /* x^151552 mod p(x)` << 1, x^151616 m    
339         .octa 0x000000001e2436bc00000000e794b3    
340                                                   
341         /* x^150528 mod p(x)` << 1, x^150592 m    
342         .octa 0x00000000ddd1c3a2000000016f9bb0    
343                                                   
344         /* x^149504 mod p(x)` << 1, x^149568 m    
345         .octa 0x0000000019fcfe3800000000290c99    
346                                                   
347         /* x^148480 mod p(x)` << 1, x^148544 m    
348         .octa 0x00000001ce95db640000000083c0f3    
349                                                   
350         /* x^147456 mod p(x)` << 1, x^147520 m    
351         .octa 0x00000000af5828060000000173ea66    
352                                                   
353         /* x^146432 mod p(x)` << 1, x^146496 m    
354         .octa 0x00000001006388f600000001c8b4e0    
355                                                   
356         /* x^145408 mod p(x)` << 1, x^145472 m    
357         .octa 0x0000000179eca00a00000000de95d6    
358                                                   
359         /* x^144384 mod p(x)` << 1, x^144448 m    
360         .octa 0x0000000122410a6a000000010b7f72    
361                                                   
362         /* x^143360 mod p(x)` << 1, x^143424 m    
363         .octa 0x000000004288e87c00000001326e3a    
364                                                   
365         /* x^142336 mod p(x)` << 1, x^142400 m    
366         .octa 0x000000016c5490da00000000bb62c2    
367                                                   
368         /* x^141312 mod p(x)` << 1, x^141376 m    
369         .octa 0x00000000d1c71f6e0000000156a4b2    
370                                                   
371         /* x^140288 mod p(x)` << 1, x^140352 m    
372         .octa 0x00000001b4ce08a6000000011dfe76    
373                                                   
374         /* x^139264 mod p(x)` << 1, x^139328 m    
375         .octa 0x00000001466ba60c000000007bcca8    
376                                                   
377         /* x^138240 mod p(x)` << 1, x^138304 m    
378         .octa 0x00000001f6c488a40000000186118f    
379                                                   
380         /* x^137216 mod p(x)` << 1, x^137280 m    
381         .octa 0x000000013bfb06820000000111a65a    
382                                                   
383         /* x^136192 mod p(x)` << 1, x^136256 m    
384         .octa 0x00000000690e9e54000000003565e1    
385                                                   
386         /* x^135168 mod p(x)` << 1, x^135232 m    
387         .octa 0x00000000281346b6000000012ed02a    
388                                                   
389         /* x^134144 mod p(x)` << 1, x^134208 m    
390         .octa 0x000000015646402400000000c486ec    
391                                                   
392         /* x^133120 mod p(x)` << 1, x^133184 m    
393         .octa 0x000000016063a8dc0000000001b951    
394                                                   
395         /* x^132096 mod p(x)` << 1, x^132160 m    
396         .octa 0x0000000116a6636200000000481439    
397                                                   
398         /* x^131072 mod p(x)` << 1, x^131136 m    
399         .octa 0x000000017e8aa4d200000001dc2ae1    
400                                                   
401         /* x^130048 mod p(x)` << 1, x^130112 m    
402         .octa 0x00000001728eb10c00000001416c58    
403                                                   
404         /* x^129024 mod p(x)` << 1, x^129088 m    
405         .octa 0x00000001b08fd7fa00000000a47974    
406                                                   
407         /* x^128000 mod p(x)` << 1, x^128064 m    
408         .octa 0x00000001092a16e80000000096ca3a    
409                                                   
410         /* x^126976 mod p(x)` << 1, x^127040 m    
411         .octa 0x00000000a505637c00000000ff223d    
412                                                   
413         /* x^125952 mod p(x)` << 1, x^126016 m    
414         .octa 0x00000000d94869b2000000010e84da    
415                                                   
416         /* x^124928 mod p(x)` << 1, x^124992 m    
417         .octa 0x00000001c8b203ae00000001b61ba3    
418                                                   
419         /* x^123904 mod p(x)` << 1, x^123968 m    
420         .octa 0x000000005704aea000000000680f2d    
421                                                   
422         /* x^122880 mod p(x)` << 1, x^122944 m    
423         .octa 0x000000012e295fa2000000008772a9    
424                                                   
425         /* x^121856 mod p(x)` << 1, x^121920 m    
426         .octa 0x000000011d0908bc0000000155f295    
427                                                   
428         /* x^120832 mod p(x)` << 1, x^120896 m    
429         .octa 0x0000000193ed97ea00000000595f92    
430                                                   
431         /* x^119808 mod p(x)` << 1, x^119872 m    
432         .octa 0x000000013a0f1c520000000164b1c2    
433                                                   
434         /* x^118784 mod p(x)` << 1, x^118848 m    
435         .octa 0x000000010c2c40c000000000fbd67c    
436                                                   
437         /* x^117760 mod p(x)` << 1, x^117824 m    
438         .octa 0x00000000ff6fac3e00000000960762    
439                                                   
440         /* x^116736 mod p(x)` << 1, x^116800 m    
441         .octa 0x000000017b3609c000000001d288e4    
442                                                   
443         /* x^115712 mod p(x)` << 1, x^115776 m    
444         .octa 0x0000000088c8c92200000001eaac1b    
445                                                   
446         /* x^114688 mod p(x)` << 1, x^114752 m    
447         .octa 0x00000001751baae600000001f1ea39    
448                                                   
449         /* x^113664 mod p(x)` << 1, x^113728 m    
450         .octa 0x000000010795297200000001eb6506    
451                                                   
452         /* x^112640 mod p(x)` << 1, x^112704 m    
453         .octa 0x0000000162b00abe000000010f806f    
454                                                   
455         /* x^111616 mod p(x)` << 1, x^111680 m    
456         .octa 0x000000000d7b404c00000001040848    
457                                                   
458         /* x^110592 mod p(x)` << 1, x^110656 m    
459         .octa 0x00000000763b13d400000001882605    
460                                                   
461         /* x^109568 mod p(x)` << 1, x^109632 m    
462         .octa 0x00000000f6dc22d80000000058fc73    
463                                                   
464         /* x^108544 mod p(x)` << 1, x^108608 m    
465         .octa 0x000000007daae06000000000391c59    
466                                                   
467         /* x^107520 mod p(x)` << 1, x^107584 m    
468         .octa 0x000000013359ab7c000000018b6384    
469                                                   
470         /* x^106496 mod p(x)` << 1, x^106560 m    
471         .octa 0x000000008add438a000000011738f5    
472                                                   
473         /* x^105472 mod p(x)` << 1, x^105536 m    
474         .octa 0x00000001edbefdea000000008cf7c6    
475                                                   
476         /* x^104448 mod p(x)` << 1, x^104512 m    
477         .octa 0x000000004104e0f800000001ef97fb    
478                                                   
479         /* x^103424 mod p(x)` << 1, x^103488 m    
480         .octa 0x00000000b48a82220000000102130e    
481                                                   
482         /* x^102400 mod p(x)` << 1, x^102464 m    
483         .octa 0x00000001bcb4684400000000db9688    
484                                                   
485         /* x^101376 mod p(x)` << 1, x^101440 m    
486         .octa 0x000000013293ce0a00000000b5047b    
487                                                   
488         /* x^100352 mod p(x)` << 1, x^100416 m    
489         .octa 0x00000001710d0844000000010b90fd    
490                                                   
491         /* x^99328 mod p(x)` << 1, x^99392 mod    
492         .octa 0x0000000117907f6e000000004834a3    
493                                                   
494         /* x^98304 mod p(x)` << 1, x^98368 mod    
495         .octa 0x0000000087ddf93e0000000059c8f2    
496                                                   
497         /* x^97280 mod p(x)` << 1, x^97344 mod    
498         .octa 0x000000005970e9b00000000122cec5    
499                                                   
500         /* x^96256 mod p(x)` << 1, x^96320 mod    
501         .octa 0x0000000185b2b7d0000000000a330c    
502                                                   
503         /* x^95232 mod p(x)` << 1, x^95296 mod    
504         .octa 0x00000001dcee0efc000000014a4714    
505                                                   
506         /* x^94208 mod p(x)` << 1, x^94272 mod    
507         .octa 0x0000000030da27220000000042c61c    
508                                                   
509         /* x^93184 mod p(x)` << 1, x^93248 mod    
510         .octa 0x000000012f925a180000000012fe69    
511                                                   
512         /* x^92160 mod p(x)` << 1, x^92224 mod    
513         .octa 0x00000000dd2e357c00000000dbda2c    
514                                                   
515         /* x^91136 mod p(x)` << 1, x^91200 mod    
516         .octa 0x00000000071c80de00000001112241    
517                                                   
518         /* x^90112 mod p(x)` << 1, x^90176 mod    
519         .octa 0x000000011513140a00000000977b20    
520                                                   
521         /* x^89088 mod p(x)` << 1, x^89152 mod    
522         .octa 0x00000001df876e8e00000001405043    
523                                                   
524         /* x^88064 mod p(x)` << 1, x^88128 mod    
525         .octa 0x000000015f81d6ce0000000147c840    
526                                                   
527         /* x^87040 mod p(x)` << 1, x^87104 mod    
528         .octa 0x000000019dd94dbe00000001cc7c88    
529                                                   
530         /* x^86016 mod p(x)` << 1, x^86080 mod    
531         .octa 0x00000001373d206e00000001476b35    
532                                                   
533         /* x^84992 mod p(x)` << 1, x^85056 mod    
534         .octa 0x00000000668ccade000000013d52d5    
535                                                   
536         /* x^83968 mod p(x)` << 1, x^84032 mod    
537         .octa 0x00000001b192d268000000008e4be3    
538                                                   
539         /* x^82944 mod p(x)` << 1, x^83008 mod    
540         .octa 0x00000000e30f3a7800000000024120    
541                                                   
542         /* x^81920 mod p(x)` << 1, x^81984 mod    
543         .octa 0x000000010ef1f7bc00000000ddecdd    
544                                                   
545         /* x^80896 mod p(x)` << 1, x^80960 mod    
546         .octa 0x00000001f5ac738000000000d4d403    
547                                                   
548         /* x^79872 mod p(x)` << 1, x^79936 mod    
549         .octa 0x000000011822ea7000000001734b89    
550                                                   
551         /* x^78848 mod p(x)` << 1, x^78912 mod    
552         .octa 0x00000000c3a33848000000010e7a58    
553                                                   
554         /* x^77824 mod p(x)` << 1, x^77888 mod    
555         .octa 0x00000001bd151c2400000001f9f04e    
556                                                   
557         /* x^76800 mod p(x)` << 1, x^76864 mod    
558         .octa 0x0000000056002d7600000000b69222    
559                                                   
560         /* x^75776 mod p(x)` << 1, x^75840 mod    
561         .octa 0x000000014657c4f4000000019b8d3f    
562                                                   
563         /* x^74752 mod p(x)` << 1, x^74816 mod    
564         .octa 0x0000000113742d7c00000001a874f1    
565                                                   
566         /* x^73728 mod p(x)` << 1, x^73792 mod    
567         .octa 0x000000019c5920ba000000010d5a42    
568                                                   
569         /* x^72704 mod p(x)` << 1, x^72768 mod    
570         .octa 0x000000005216d2d600000000bbb2f5    
571                                                   
572         /* x^71680 mod p(x)` << 1, x^71744 mod    
573         .octa 0x0000000136f5ad8a0000000179cc0e    
574                                                   
575         /* x^70656 mod p(x)` << 1, x^70720 mod    
576         .octa 0x000000018b07beb600000001dca1da    
577                                                   
578         /* x^69632 mod p(x)` << 1, x^69696 mod    
579         .octa 0x00000000db1e93b000000000feb1a1    
580                                                   
581         /* x^68608 mod p(x)` << 1, x^68672 mod    
582         .octa 0x000000000b96fa3a00000000d1eeed    
583                                                   
584         /* x^67584 mod p(x)` << 1, x^67648 mod    
585         .octa 0x00000001d9968af0000000008fad9b    
586                                                   
587         /* x^66560 mod p(x)` << 1, x^66624 mod    
588         .octa 0x000000000e4a77a200000001884938    
589                                                   
590         /* x^65536 mod p(x)` << 1, x^65600 mod    
591         .octa 0x00000000508c2ac800000001bc2e9b    
592                                                   
593         /* x^64512 mod p(x)` << 1, x^64576 mod    
594         .octa 0x0000000021572a8000000001f9658a    
595                                                   
596         /* x^63488 mod p(x)` << 1, x^63552 mod    
597         .octa 0x00000001b859daf2000000001b9224    
598                                                   
599         /* x^62464 mod p(x)` << 1, x^62528 mod    
600         .octa 0x000000016f7884740000000055b2fb    
601                                                   
602         /* x^61440 mod p(x)` << 1, x^61504 mod    
603         .octa 0x00000001b438810e000000018b0903    
604                                                   
605         /* x^60416 mod p(x)` << 1, x^60480 mod    
606         .octa 0x0000000095ddc6f2000000011ccbd5    
607                                                   
608         /* x^59392 mod p(x)` << 1, x^59456 mod    
609         .octa 0x00000001d977c20c0000000007ae47    
610                                                   
611         /* x^58368 mod p(x)` << 1, x^58432 mod    
612         .octa 0x00000000ebedb99a0000000172acbe    
613                                                   
614         /* x^57344 mod p(x)` << 1, x^57408 mod    
615         .octa 0x00000001df9e9e9200000001c6e3ff    
616                                                   
617         /* x^56320 mod p(x)` << 1, x^56384 mod    
618         .octa 0x00000001a4a3f95200000000e1b387    
619                                                   
620         /* x^55296 mod p(x)` << 1, x^55360 mod    
621         .octa 0x00000000e2f5122000000000791585    
622                                                   
623         /* x^54272 mod p(x)` << 1, x^54336 mod    
624         .octa 0x000000004aa01f3e00000000ac53b8    
625                                                   
626         /* x^53248 mod p(x)` << 1, x^53312 mod    
627         .octa 0x00000000b3e90a5800000001ed5f2c    
628                                                   
629         /* x^52224 mod p(x)` << 1, x^52288 mod    
630         .octa 0x000000000c9ca2aa00000001df48b2    
631                                                   
632         /* x^51200 mod p(x)` << 1, x^51264 mod    
633         .octa 0x000000015168231600000000049c1c    
634                                                   
635         /* x^50176 mod p(x)` << 1, x^50240 mod    
636         .octa 0x0000000036fce78c000000017c460c    
637                                                   
638         /* x^49152 mod p(x)` << 1, x^49216 mod    
639         .octa 0x000000009037dc10000000015be4da    
640                                                   
641         /* x^48128 mod p(x)` << 1, x^48192 mod    
642         .octa 0x00000000d3298582000000010f38f6    
643                                                   
644         /* x^47104 mod p(x)` << 1, x^47168 mod    
645         .octa 0x00000001b42e8ad60000000039f40a    
646                                                   
647         /* x^46080 mod p(x)` << 1, x^46144 mod    
648         .octa 0x00000000142a983800000000bd4c10    
649                                                   
650         /* x^45056 mod p(x)` << 1, x^45120 mod    
651         .octa 0x0000000109c7f1900000000042db1d    
652                                                   
653         /* x^44032 mod p(x)` << 1, x^44096 mod    
654         .octa 0x0000000056ff931000000001c905ba    
655                                                   
656         /* x^43008 mod p(x)` << 1, x^43072 mod    
657         .octa 0x00000001594513aa00000000069d40    
658                                                   
659         /* x^41984 mod p(x)` << 1, x^42048 mod    
660         .octa 0x00000001e3b5b1e8000000008e4fba    
661                                                   
662         /* x^40960 mod p(x)` << 1, x^41024 mod    
663         .octa 0x000000011dd5fc080000000047bedd    
664                                                   
665         /* x^39936 mod p(x)` << 1, x^40000 mod    
666         .octa 0x00000001675f0cc20000000026396b    
667                                                   
668         /* x^38912 mod p(x)` << 1, x^38976 mod    
669         .octa 0x00000000d1c8dd4400000000379beb    
670                                                   
671         /* x^37888 mod p(x)` << 1, x^37952 mod    
672         .octa 0x0000000115ebd3d8000000000abae5    
673                                                   
674         /* x^36864 mod p(x)` << 1, x^36928 mod    
675         .octa 0x00000001ecbd0dac0000000007e6a1    
676                                                   
677         /* x^35840 mod p(x)` << 1, x^35904 mod    
678         .octa 0x00000000cdf67af2000000000ade29    
679                                                   
680         /* x^34816 mod p(x)` << 1, x^34880 mod    
681         .octa 0x000000004c01ff4c00000000f974c4    
682                                                   
683         /* x^33792 mod p(x)` << 1, x^33856 mod    
684         .octa 0x00000000f2d8657e00000000e77ac6    
685                                                   
686         /* x^32768 mod p(x)` << 1, x^32832 mod    
687         .octa 0x000000006bae74c400000001458958    
688                                                   
689         /* x^31744 mod p(x)` << 1, x^31808 mod    
690         .octa 0x0000000152af8aa00000000038e362    
691                                                   
692         /* x^30720 mod p(x)` << 1, x^30784 mod    
693         .octa 0x0000000004663802000000007f991a    
694                                                   
695         /* x^29696 mod p(x)` << 1, x^29760 mod    
696         .octa 0x00000001ab2f5afc00000000fa366d    
697                                                   
698         /* x^28672 mod p(x)` << 1, x^28736 mod    
699         .octa 0x0000000074a4ebd400000001a2bb34    
700                                                   
701         /* x^27648 mod p(x)` << 1, x^27712 mod    
702         .octa 0x00000001d7ab3a4c0000000028a998    
703                                                   
704         /* x^26624 mod p(x)` << 1, x^26688 mod    
705         .octa 0x00000001a8da60c600000001dbc672    
706                                                   
707         /* x^25600 mod p(x)` << 1, x^25664 mod    
708         .octa 0x000000013cf6382000000000b04d77    
709                                                   
710         /* x^24576 mod p(x)` << 1, x^24640 mod    
711         .octa 0x00000000bec12e1e0000000124400d    
712                                                   
713         /* x^23552 mod p(x)` << 1, x^23616 mod    
714         .octa 0x00000001c6368010000000014ca4b4    
715                                                   
716         /* x^22528 mod p(x)` << 1, x^22592 mod    
717         .octa 0x00000001e6e78758000000012fe2c9    
718                                                   
719         /* x^21504 mod p(x)` << 1, x^21568 mod    
720         .octa 0x000000008d7f2b3c00000001faed01    
721                                                   
722         /* x^20480 mod p(x)` << 1, x^20544 mod    
723         .octa 0x000000016b4a156e000000007e80ec    
724                                                   
725         /* x^19456 mod p(x)` << 1, x^19520 mod    
726         .octa 0x00000001c63cfeb60000000098daee    
727                                                   
728         /* x^18432 mod p(x)` << 1, x^18496 mod    
729         .octa 0x000000015f902670000000010a04ed    
730                                                   
731         /* x^17408 mod p(x)` << 1, x^17472 mod    
732         .octa 0x00000001cd5de11e00000001c00b45    
733                                                   
734         /* x^16384 mod p(x)` << 1, x^16448 mod    
735         .octa 0x000000001acaec5400000001702965    
736                                                   
737         /* x^15360 mod p(x)` << 1, x^15424 mod    
738         .octa 0x000000002bd0ca780000000181afaa    
739                                                   
740         /* x^14336 mod p(x)` << 1, x^14400 mod    
741         .octa 0x0000000032d63d5c0000000185a31f    
742                                                   
743         /* x^13312 mod p(x)` << 1, x^13376 mod    
744         .octa 0x000000001c6d4e4c000000002469f6    
745                                                   
746         /* x^12288 mod p(x)` << 1, x^12352 mod    
747         .octa 0x0000000106a60b9200000000698010    
748                                                   
749         /* x^11264 mod p(x)` << 1, x^11328 mod    
750         .octa 0x00000000d3855e120000000111ea9c    
751                                                   
752         /* x^10240 mod p(x)` << 1, x^10304 mod    
753         .octa 0x00000000e312563600000001bd1d29    
754                                                   
755         /* x^9216 mod p(x)` << 1, x^9280 mod p    
756         .octa 0x000000009e8f7ea400000001b34b95    
757                                                   
758         /* x^8192 mod p(x)` << 1, x^8256 mod p    
759         .octa 0x00000001c82e562c00000000307605    
760                                                   
761         /* x^7168 mod p(x)` << 1, x^7232 mod p    
762         .octa 0x00000000ca9f09ce000000012a608e    
763                                                   
764         /* x^6144 mod p(x)` << 1, x^6208 mod p    
765         .octa 0x00000000c63764e600000000784d05    
766                                                   
767         /* x^5120 mod p(x)` << 1, x^5184 mod p    
768         .octa 0x0000000168d2e49e000000016ef0d8    
769                                                   
770         /* x^4096 mod p(x)` << 1, x^4160 mod p    
771         .octa 0x00000000e986c1480000000075bda4    
772                                                   
773         /* x^3072 mod p(x)` << 1, x^3136 mod p    
774         .octa 0x00000000cfb65894000000003dc0a1    
775                                                   
776         /* x^2048 mod p(x)` << 1, x^2112 mod p    
777         .octa 0x0000000111cadee400000000e9a5d8    
778                                                   
779         /* x^1024 mod p(x)` << 1, x^1088 mod p    
780         .octa 0x0000000171fb63ce00000001609bc4    
781                                                   
782 .short_constants:                                 
783                                                   
784         /* Reduce final 1024-2048 bits to 64 b    
785         /* x^1952 mod p(x)`, x^1984 mod p(x)`,    
786         .octa 0x7fec2963e5bf80485cf015c388e56f    
787                                                   
788         /* x^1824 mod p(x)`, x^1856 mod p(x)`,    
789         .octa 0x38e888d4844752a9963a18920246e2    
790                                                   
791         /* x^1696 mod p(x)`, x^1728 mod p(x)`,    
792         .octa 0x42316c00730206ad419a441956993a    
793                                                   
794         /* x^1568 mod p(x)`, x^1600 mod p(x)`,    
795         .octa 0x543d5c543e65ddf9924752ba2b8300    
796                                                   
797         /* x^1440 mod p(x)`, x^1472 mod p(x)`,    
798         .octa 0x78e87aaf56767c9255bd7f9518e4a3    
799                                                   
800         /* x^1312 mod p(x)`, x^1344 mod p(x)`,    
801         .octa 0x8f68fcec1903da7f6d76739fe0553f    
802                                                   
803         /* x^1184 mod p(x)`, x^1216 mod p(x)`,    
804         .octa 0x3f4840246791d588c133722b1fe0b5    
805                                                   
806         /* x^1056 mod p(x)`, x^1088 mod p(x)`,    
807         .octa 0x34c96751b04de25a64b67ee0e55ef1    
808                                                   
809         /* x^928 mod p(x)`, x^960 mod p(x)`, x    
810         .octa 0x156c8e180b4a395b069db049b8fdb1    
811                                                   
812         /* x^800 mod p(x)`, x^832 mod p(x)`, x    
813         .octa 0xe0b99ccbe661f7bea11bfaf3c9e90b    
814                                                   
815         /* x^672 mod p(x)`, x^704 mod p(x)`, x    
816         .octa 0x041d37768cd75659817cdc5119b29a    
817                                                   
818         /* x^544 mod p(x)`, x^576 mod p(x)`, x    
819         .octa 0x3a0777818cfaa9651ce9d94b36c41f    
820                                                   
821         /* x^416 mod p(x)`, x^448 mod p(x)`, x    
822         .octa 0x0e148e8252377a554f256efcb82be9    
823                                                   
824         /* x^288 mod p(x)`, x^320 mod p(x)`, x    
825         .octa 0x9c25531d19e65ddeec1631edb2dea9    
826                                                   
827         /* x^160 mod p(x)`, x^192 mod p(x)`, x    
828         .octa 0x790606ff9957c0a65d27e147510ac5    
829                                                   
830         /* x^32 mod p(x)`, x^64 mod p(x)`, x^9    
831         .octa 0x82f63b786ea2d55ca66805eb18b8ea    
832                                                   
833                                                   
834 .barrett_constants:                               
835         /* 33 bit reflected Barrett constant m    
836         .octa 0x000000000000000000000000dea713    
837         /* 33 bit reflected Barrett constant n    
838         .octa 0x00000000000000000000000105ec76    
839                                                   
840 #define CRC_FUNCTION_NAME __crc32c_vpmsum         
841 #define REFLECT                                   
842 #include "crc32-vpmsum_core.S"                    
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php