1 /* SPDX-License-Identifier: GPL-2.0 */ 1 2 #ifndef _ASM_POWERPC_DMA_H 3 #define _ASM_POWERPC_DMA_H 4 #ifdef __KERNEL__ 5 6 /* 7 * Defines for using and allocating dma channe 8 * Written by Hennus Bergman, 1992. 9 * High DMA channel support & info by Hannu Sa 10 * and John Boyd, Nov. 1992. 11 * Changes for ppc sound by Christoph Nadig 12 */ 13 14 /* 15 * Note: Adapted for PowerPC by Gary Thomas 16 * Modified by Cort Dougan <cort@cs.nmt.edu> 17 * 18 * None of this really applies for Power Macin 19 * basically just enough here to get kernel/dm 20 */ 21 22 #include <asm/io.h> 23 #include <linux/spinlock.h> 24 25 #ifndef MAX_DMA_CHANNELS 26 #define MAX_DMA_CHANNELS 8 27 #endif 28 29 /* The maximum address that we can perform a D 30 /* Doesn't really apply... */ 31 #define MAX_DMA_ADDRESS (~0UL) 32 33 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER 34 #define dma_outb outb_p 35 #else 36 #define dma_outb outb 37 #endif 38 39 #define dma_inb inb 40 41 /* 42 * NOTES about DMA transfers: 43 * 44 * controller 1: channels 0-3, byte operation 45 * controller 2: channels 4-7, word operation 46 * 47 * - ALL registers are 8 bits only, regardles 48 * - channel 4 is not used - cascades 1 into 49 * - channels 0-3 are byte - addresses/counts 50 * - channels 5-7 are word - addresses/counts 51 * - transfers must not cross physical 64K (0 52 * - transfer count loaded to registers is 1 53 * - controller 2 offsets are all even (2x of 54 * - page registers for 5-7 don't use data bi 55 * - page registers for 0-3 use bit 0, repres 56 * 57 * On CHRP, the W83C553F (and VLSI Tollgate?) 58 * Note that addresses loaded into registers m 59 * not logical addresses (which may differ if 60 * 61 * Address mapping for channels 0-3: 62 * 63 * A23 ... A16 A15 ... A8 A7 ... A0 (Phy 64 * | ... | | ... | | ... | 65 * | ... | | ... | | ... | 66 * | ... | | ... | | ... | 67 * P7 ... P0 A7 ... A0 A7 ... A0 68 * | Page | Addr MSB | Addr LSB | (DMA 69 * 70 * Address mapping for channels 5-7: 71 * 72 * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A 73 * | ... | \ \ ... \ \ \ ... \ 74 * | ... | \ \ ... \ \ \ ... \ 75 * | ... | \ \ ... \ \ \ ... \ 76 * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A 77 * | Page | Addr MSB | Addr LSB 78 * 79 * Again, channels 5-7 transfer _physical_ wor 80 * and counts _must_ be word-aligned (the lowe 81 * the hardware level, so odd-byte transfers a 82 * 83 * Transfer count (_not # bytes_) is limited t 84 * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Th 85 * and up to 128K bytes may be transferred on 86 * 87 */ 88 89 /* 8237 DMA controllers */ 90 #define IO_DMA1_BASE 0x00 /* 8 bit slave 91 #define IO_DMA2_BASE 0xC0 /* 16 bit mast 92 93 /* DMA controller registers */ 94 #define DMA1_CMD_REG 0x08 /* com 95 #define DMA1_STAT_REG 0x08 /* sta 96 #define DMA1_REQ_REG 0x09 /* req 97 #define DMA1_MASK_REG 0x0A /* sin 98 #define DMA1_MODE_REG 0x0B /* mod 99 #define DMA1_CLEAR_FF_REG 0x0C /* cle 100 #define DMA1_TEMP_REG 0x0D /* Tem 101 #define DMA1_RESET_REG 0x0D /* Mas 102 #define DMA1_CLR_MASK_REG 0x0E /* Cle 103 #define DMA1_MASK_ALL_REG 0x0F /* all 104 105 #define DMA2_CMD_REG 0xD0 /* com 106 #define DMA2_STAT_REG 0xD0 /* sta 107 #define DMA2_REQ_REG 0xD2 /* req 108 #define DMA2_MASK_REG 0xD4 /* sin 109 #define DMA2_MODE_REG 0xD6 /* mod 110 #define DMA2_CLEAR_FF_REG 0xD8 /* cle 111 #define DMA2_TEMP_REG 0xDA /* Tem 112 #define DMA2_RESET_REG 0xDA /* Mas 113 #define DMA2_CLR_MASK_REG 0xDC /* Cle 114 #define DMA2_MASK_ALL_REG 0xDE /* all 115 116 #define DMA_ADDR_0 0x00 /* DMA 117 #define DMA_ADDR_1 0x02 118 #define DMA_ADDR_2 0x04 119 #define DMA_ADDR_3 0x06 120 #define DMA_ADDR_4 0xC0 121 #define DMA_ADDR_5 0xC4 122 #define DMA_ADDR_6 0xC8 123 #define DMA_ADDR_7 0xCC 124 125 #define DMA_CNT_0 0x01 /* DMA 126 #define DMA_CNT_1 0x03 127 #define DMA_CNT_2 0x05 128 #define DMA_CNT_3 0x07 129 #define DMA_CNT_4 0xC2 130 #define DMA_CNT_5 0xC6 131 #define DMA_CNT_6 0xCA 132 #define DMA_CNT_7 0xCE 133 134 #define DMA_LO_PAGE_0 0x87 /* DMA 135 #define DMA_LO_PAGE_1 0x83 136 #define DMA_LO_PAGE_2 0x81 137 #define DMA_LO_PAGE_3 0x82 138 #define DMA_LO_PAGE_5 0x8B 139 #define DMA_LO_PAGE_6 0x89 140 #define DMA_LO_PAGE_7 0x8A 141 142 #define DMA_HI_PAGE_0 0x487 /* DMA 143 #define DMA_HI_PAGE_1 0x483 144 #define DMA_HI_PAGE_2 0x481 145 #define DMA_HI_PAGE_3 0x482 146 #define DMA_HI_PAGE_5 0x48B 147 #define DMA_HI_PAGE_6 0x489 148 #define DMA_HI_PAGE_7 0x48A 149 150 #define DMA1_EXT_REG 0x40B 151 #define DMA2_EXT_REG 0x4D6 152 153 #ifndef __powerpc64__ 154 /* in arch/powerpc/kernel/setup_32.c -- Co 155 extern unsigned int DMA_MODE_WRITE; 156 extern unsigned int DMA_MODE_READ; 157 #else 158 #define DMA_MODE_READ 0x44 /* I/O 159 #define DMA_MODE_WRITE 0x48 /* mem 160 #endif 161 162 #define DMA_MODE_CASCADE 0xC0 /* pas 163 164 #define DMA_AUTOINIT 0x10 165 166 extern spinlock_t dma_spin_lock; 167 168 static __inline__ unsigned long claim_dma_lock 169 { 170 unsigned long flags; 171 spin_lock_irqsave(&dma_spin_lock, flag 172 return flags; 173 } 174 175 static __inline__ void release_dma_lock(unsign 176 { 177 spin_unlock_irqrestore(&dma_spin_lock, 178 } 179 180 /* enable/disable a specific DMA channel */ 181 static __inline__ void enable_dma(unsigned int 182 { 183 unsigned char ucDmaCmd = 0x00; 184 185 if (dmanr != 4) { 186 dma_outb(0, DMA2_MASK_REG); 187 dma_outb(ucDmaCmd, DMA2_CMD_RE 188 } 189 if (dmanr <= 3) { 190 dma_outb(dmanr, DMA1_MASK_REG) 191 dma_outb(ucDmaCmd, DMA1_CMD_RE 192 } else { 193 dma_outb(dmanr & 3, DMA2_MASK_ 194 } 195 } 196 197 static __inline__ void disable_dma(unsigned in 198 { 199 if (dmanr <= 3) 200 dma_outb(dmanr | 4, DMA1_MASK_ 201 else 202 dma_outb((dmanr & 3) | 4, DMA2 203 } 204 205 /* Clear the 'DMA Pointer Flip Flop'. 206 * Write 0 for LSB/MSB, 1 for MSB/LSB access. 207 * Use this once to initialize the FF to a kno 208 * After that, keep track of it. :-) 209 * --- In order to do that, the DMA routines b 210 * --- only be used while interrupts are disab 211 */ 212 static __inline__ void clear_dma_ff(unsigned i 213 { 214 if (dmanr <= 3) 215 dma_outb(0, DMA1_CLEAR_FF_REG) 216 else 217 dma_outb(0, DMA2_CLEAR_FF_REG) 218 } 219 220 /* set mode (above) for a specific DMA channel 221 static __inline__ void set_dma_mode(unsigned i 222 { 223 if (dmanr <= 3) 224 dma_outb(mode | dmanr, DMA1_MO 225 else 226 dma_outb(mode | (dmanr & 3), D 227 } 228 229 /* Set only the page register bits of the tran 230 * This is used for successive transfers when 231 * the lower 16 bits of the DMA current addres 232 * may have been crossed. 233 */ 234 static __inline__ void set_dma_page(unsigned i 235 { 236 switch (dmanr) { 237 case 0: 238 dma_outb(pagenr, DMA_LO_PAGE_0 239 dma_outb(pagenr >> 8, DMA_HI_P 240 break; 241 case 1: 242 dma_outb(pagenr, DMA_LO_PAGE_1 243 dma_outb(pagenr >> 8, DMA_HI_P 244 break; 245 case 2: 246 dma_outb(pagenr, DMA_LO_PAGE_2 247 dma_outb(pagenr >> 8, DMA_HI_P 248 break; 249 case 3: 250 dma_outb(pagenr, DMA_LO_PAGE_3 251 dma_outb(pagenr >> 8, DMA_HI_P 252 break; 253 case 5: 254 dma_outb(pagenr & 0xfe, DMA_LO 255 dma_outb(pagenr >> 8, DMA_HI_P 256 break; 257 case 6: 258 dma_outb(pagenr & 0xfe, DMA_LO 259 dma_outb(pagenr >> 8, DMA_HI_P 260 break; 261 case 7: 262 dma_outb(pagenr & 0xfe, DMA_LO 263 dma_outb(pagenr >> 8, DMA_HI_P 264 break; 265 } 266 } 267 268 /* Set transfer address & page bits for specif 269 * Assumes dma flipflop is clear. 270 */ 271 static __inline__ void set_dma_addr(unsigned i 272 { 273 if (dmanr <= 3) { 274 dma_outb(phys & 0xff, 275 ((dmanr & 3) << 1) + 276 dma_outb((phys >> 8) & 0xff, 277 ((dmanr & 3) << 1) + 278 } else { 279 dma_outb((phys >> 1) & 0xff, 280 ((dmanr & 3) << 2) + 281 dma_outb((phys >> 9) & 0xff, 282 ((dmanr & 3) << 2) + 283 } 284 set_dma_page(dmanr, phys >> 16); 285 } 286 287 288 /* Set transfer size (max 64k for DMA1..3, 128 289 * a specific DMA channel. 290 * You must ensure the parameters are valid. 291 * NOTE: from a manual: "the number of transfe 292 * than the initial word count"! This is taken 293 * Assumes dma flip-flop is clear. 294 * NOTE 2: "count" represents _bytes_ and must 295 */ 296 static __inline__ void set_dma_count(unsigned 297 { 298 count--; 299 if (dmanr <= 3) { 300 dma_outb(count & 0xff, 301 ((dmanr & 3) << 1) + 302 dma_outb((count >> 8) & 0xff, 303 ((dmanr & 3) << 1) + 304 } else { 305 dma_outb((count >> 1) & 0xff, 306 ((dmanr & 3) << 2) + 307 dma_outb((count >> 9) & 0xff, 308 ((dmanr & 3) << 2) + 309 } 310 } 311 312 313 /* Get DMA residue count. After a DMA transfer 314 * should return zero. Reading this while a DM 315 * still in progress will return unpredictable 316 * If called before the channel has been used, 317 * Otherwise, it returns the number of _bytes_ 318 * 319 * Assumes DMA flip-flop is clear. 320 */ 321 static __inline__ int get_dma_residue(unsigned 322 { 323 unsigned int io_port = (dmanr <= 3) 324 ? ((dmanr & 3) << 1) + 1 + IO_DMA1 325 : ((dmanr & 3) << 2) + 2 + IO_DMA2 326 327 /* using short to get 16-bit wrap arou 328 unsigned short count; 329 330 count = 1 + dma_inb(io_port); 331 count += dma_inb(io_port) << 8; 332 333 return (dmanr <= 3) ? count : (count < 334 } 335 336 /* These are in kernel/dma.c: */ 337 338 /* reserve a DMA channel */ 339 extern int request_dma(unsigned int dmanr, con 340 /* release it again */ 341 extern void free_dma(unsigned int dmanr); 342 343 #endif /* __KERNEL__ */ 344 #endif /* _ASM_POWERPC_DMA_H */ 345
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.